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Abstract

As a central theme in computer vision, the problem of 3D structure and motion
recovery from image sequences has been widely studied during the past three
decades, and considerable progress has been made in theory, as well as in prac-
tice. However, there are still several challenges remaining, including algorithm
robustness and accuracy, especially for nonrigid modeling. The thesis focuses on
solving these challenges and several new robust and accurate algorithms have
been proposed.

The first part of the thesis reviews the state-of-the-art techniques of structure
and motion factorization. First, an introduction of structure from motion and
some mathematical background of the technique is presented. Then, the general
idea and different formulations of structure from motion for rigid and nonrigid
objects are discussed.

The second part covers the proposed quasi-perspective projection model and
its application to structure and motion factorization. Previous algorithms are
based on either a simplified affine assumption or a complicated full perspective
projection model. The affine model is widely adopted due to its simplicity,
whereas the extension to full perspective suffers from recovering projective
depths. A quasi-perspective model is proposed to fill the gap between the
two models. It is more accurate than the affine model from both theoretical
analysis and experimental studies. More geometric properties of the model are
investigated in the context of one- and two-view geometry. Finally, the model
was applied to structure from motion and a framework of rigid and nonrigid
factorization under quasi-perspective assumption is established.

The last part of the thesis is focused on the robustness and three new al-
gorithms are proposed. First, a spatial-and-temporal-weighted factorization
algorithm is proposed to handle significant image noise, where the uncertainty
of image measurement is estimated from a new perspective by virtue of repro-
jection residuals. Second, a rank-4 affine factorization algorithm is proposed
to avoid the difficulty of image alignment with erroneous data, followed by a
robust factorization scheme that can work with missing and outlying data. Third,
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the robust algorithm is extended to nonrigid scenarios and a new augmented
nonrigid factorization algorithm is proposed to handle imperfect tracking data.

The main contributions of the thesis are as follows: The proposed quasi-
perspective projection model fills the gap between the simplicity of the affine
model and the accuracy of the perspective model. Its application to structure
and motion factorization greatly increases the efficiency and accuracy of the
algorithm. The proposed robust algorithms do not require prior information of
image measurement and greatly improve the overall accuracy and robustness of
previous approaches. Moreover, the algorithms can also be applied directly to
structure from motion of nonrigid objects.
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Chapter 1

Introduction

Making computers see and understand the world are the main tasks of computer
vision. As a central theme in computer vision, the problem of 3D structure and
motion recovery from images or video sequences has been widely studied during
the past three decades [72].

The classical method for 3D reconstruction is stereo vision using two or three
images. Once the correspondences between these images have been established,
the 3D structure can be calculated via triangulations. For a sequence of many
images, the typical approach is the structure and motion factorization algorithm,
which was first proposed by Tomasi and Kanade [74]. The factorization method
is based on a bilinear formulation that decomposes image measurements directly
into the structure and motion components. The algorithm assumes that the
tracking matrix of an image sequence is available and deals uniformly with the
data from all images. Thus, it is more robust and more accurate than the methods
that use only two images [17][42][57][65][77].

In recent years, considerable progress has been made in theory and practice,
resulting in many successful applications in robot navigation and map building,
industrial inspection, medical image analysis, reverse engineering, autonomous
vehicles, and digital entertainment. However, the problem still remains far from
being solved.

In this chapter, the definition and classification of structure from motion (SfM)
is presented, followed by the challenges of structure and motion recovery. Then,
the contributions of this thesis are summarized.

1.1 Problem Definition of SfM

In projective geometry, a point is normally denoted in homogeneous form. Sup-
pose X̄ j = [x j , y j , z j]T is a 3D space point, which is projected to a 2D image point

1



x̄i j = [ui j , vi j]T in the i-th frame. Their corresponding homogeneous forms are
denoted as X j = [X̄ j , 1]T and xi j = [x̄i j , 1]T , respectively.

Under a full perspective projection model, a 3D point is projected to an image
point by the following equation.

λi jxi j = PiX j = Ki[Ri , ti]X j (1.1)

where λi j is a nonzero depth scale; Pi is a 3× 4 projection matrix of the i-th
camera; Ri and ti are the corresponding rotation matrix and translation vector of
the camera with respect to the world system; and Ki is the camera calibration
matrix. When the object is far away from the camera with relatively small depth
variation, one may safely assume a simplified affine camera model as below to
approximate the perspective projection.

x̄i j = AiX̄ j + t̄i (1.2)

where Ai is a 2× 3 affine projection matrix; the image point x̄i j and the space
point X̄ j are denoted in nonhomogeneous form. Under affine projection model,
the mapping from space to the image becomes linear since the unknown depth
scalar λi j in (1.1) is eliminated. If all image points of each frame are registered
to the centroid of that image and a relative image coordinate system is adopted,
the translation term t̄i will vanish. Thus, the affine projection Equation (1.2) is
further simplified to

x̄i j = AiX̄ j . (1.3)

Suppose we have an image sequence of m frames and a set of n feature points
tracked across the sequence. The coordinates of the tracked features are denoted
as {x̄i j =

� ui j
vi j

�

|i = 1, ..., m, j = 1, ..., n}, we can arrange these tracking data into a
compact matrix as

W= frames









y

points
︷ ︸︸ ︷









x̄11 · · · x̄1n
...

. . .
...

x̄m1 · · · x̄mn









2m×n

=

















�

u11

v11

�

· · ·
�

u1n

v1n

�

...
. . .

...
�

um1

vm1

�

· · ·
�

umn

vmn

�

















(1.4)

where W is called the tracking or measurement matrix, which is a 2m× n matrix
composed of all tracked features across the sequence.

Under the perspective projection (1.1), the tracking data can be denoted in
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66 4 Introduction to Structure and Motion Factorization

Fig. 4.1 Four consecutive frames from the dinosaur sequence. Where 115 tracked features are
overlaid on the images in the second row, the white lines denote the relative disparities between
frames. Courtesy of Andrew Fitzgibbon and Andrew Zisserman.

the image point x̄i j = [ui j,vi j]
T is expressed in non-homogeneous form. For all these

features, we can arrange them into a compact single matrix form as:
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where W is called the tracking or measurement matrix, a 2m£n matrix composed
of all tracking information across the sequence. Under perspective projection (4.1),
if we include the depth scale, the tracking data can be denoted in homogeneous form
as follows.
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We call Ẇ the projective-depth-scaled or weighted tracking matrix. The depth
scale li j is normally unknown.

Fig. 4.1 gives an example of the feature tracking result for a dinosaur sequence.
The sequence contains 36 frames which are taken evenly around a turn table. The
images and tracking data were downloaded from the Visual Geometry Group of
Oxford University. Fig. 4.1 shows 4 consecutive images with 115 tracked points.

Figure 1.1: Four consecutive frames from the dinosaur sequence, where 115
tracked features are overlaid on the images in the second row, and the white lines
denote the relative disparities between consecutive frames. Courtesy of Andrew
Fitzgibbon and Andrew Zisserman.

the following homogeneous form by including the depth scales.
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We call Ẇ the projective-depth-scaled or weighted tracking matrix. The depth
scale λi j is usually unknown.

Fig. 1.1 shows an example of the feature tracking result for a dinosaur toy
sequence, which contains 36 frames that are taken evenly around a turn table.
The images and tracking data were downloaded from the Visual Geometry Group
of Oxford University. Feature tracking has been an active research topic since
the beginning of computer vision. Many effective methods have been proposed,
such as the Kanade-Lucas-Tomasi (KLT) Feature Tracker [46][69], stereo vision
matching via epipolar geometry [106], scale-invariant feature transform (SIFT)
[45], and many more. Most approaches in SfM usually assume all features are
tracked across the entire sequence.

The problem of structure from motion is defined as: Given n tracked features
across a sequence of m frames, we want to recover the 3D Euclidean structure
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Table 1.1: Classification of structure and motion factorization of rigid and non-
rigid objects, where ’Affine’ and ’Persp.’ stand for affine and perspective projection
models, respectively.
Classification Tracking Motion matrix Shape matrix Upgrading matrix

Affine W ∈ R2m×n M ∈ R2m×3 S̄ ∈ R3×n H ∈ R3×3
Rigid

Persp. Ẇ ∈ R3m×n M ∈ R3m×4 S ∈ R4×n H ∈ R4×4

Affine W ∈ R2m×n M ∈ R2m×3k B̄ ∈ R3k×n H ∈ R3k×3k
Nonrigid

Persp. Ẇ ∈ R3m×n M ∈ R3m×(3k+1) B ∈ R(3k+1)×n H ∈ R(3k+1)×(3k+1)

Si j = {Xi j} for i = 1, · · · , m, j = 1, · · · , n, and the motion parameters {Ri , ti} of the
camera corresponding to each frame. The factorization based algorithm has been
proved to be an effective method to deal with this problem. According to the
property of the object and the camera model employed, the algorithm can be
classified generally into the following categories.

1. Rigid objects under affine assumption;

2. Rigid objects under perspective projection model;

3. Nonrigid objects under affine projection model;

4. Nonrigid objects under perspective projection model.

Table 1.1 shows the differences between different factorization algorithms,
where the meaning of some symbols, such as M,S,B, and H will be defined and
discussed in the following chapters.

1.2 Challenges in SfM

Although great progress has been made in structure and motion recovery from
image sequences, many problems have not been effectively solved by the available
approaches, especially when the data are corrupted by outliers, missing features,
and significant noise. The major challenges in SfM are as follows.

1. Trade-off between accuracy and efficiency

Most factorization algorithms are based on the affine assumption due to its
simplicity, although it is just a zero-order approximation to the real imaging
process. The extension to a full perspective model suffers from recovery of
the unknown projective depths, which is computationally intensive and no
convergence is guaranteed.

4



100 200 300 400 500 600 700

0

100

200

300

400

500
100 200 300 400 500 600 700

0

100

200

300

400

500

(a) (b)

Figure 1.2: The tracked features of the dinosaur sequence, where the consecutive
tracked features are connected by colorful lines. (a) The features being tracked
in more than four consecutive frames; and (b) the features being tracked in more
than eight consecutive frames.

2. Accurate solution in presence of significant noise

General factorization methods usually assume error-free tracking data,
however, the performance will degenerate in the presence of significant
noise or errors. Researchers proposed to use weighted factorization to
handle noisy and erroneous data, however, the weight matrix is hard to
retrieve and usually unavailable in many situations.

3. Robust algorithm in presence of outlying and missing data

Outliers and missing data are inevitable during the process of feature
tracking. Figure 1.2 shows an example of the missing features in tracking.
Existing approaches usually adopt RANSAC or other hypothesis-and-test
algorithms to detect outliers. However, these methods are computationally
intensive and can only be applied to rigid factorization. Few reports in the
literature can handle outliers for nonrigid factorization.

1.3 Thesis Contributions

The thesis is endeavored to solve the challenges of accuracy and robustness
for SfM. It is not only academically significant, but also significant to many
applications in 3D modeling, such as robot navigation, motion analysis, and
visual surveillance. Below are the major contributions of the thesis.
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First, we propose a quasi-perspective projection model and a structure and
motion factorization framework based on that model. Previous algorithms are
either based on a simplified affine assumption or a complicated full perspective
projection model. The affine model is widely adopted due to its simplicity,
whereas its extension to full perspective suffers from recovering projective depths.
The proposed quasi-perspective model fills the gap between the simplicity of the
affine model and the accuracy of the perspective model. It is more accurate than
the affine model from both theoretical analyses and experimental studies. The
geometric properties of the model are investigated in the context of one- and
two-view geometry. Finally, the model is applied to the SfM framework of rigid
and nonrigid objects.

Second, three robust SfM algorithms are proposed to handle the data that are
corrupted by outliers, missing features, and significant noise: (i) a spatial-and-
temporal-weighted factorization algorithm is designed to handle significant noise
contained in the tracking data, where the uncertainty of image measurement
is estimated from a new perspective by virtue of reprojection residuals; (ii) an
augmented affine factorization algorithm is proposed to handle outlying and
missing data for rigid scenarios. As a new addition to previous affine factorization
family based on rank-3 constraint, the algorithm avoids the difficulty of image
alignment; and (iii) the augmented affine factorization algorithm is successfully
extended to nonrigid scenarios in the presence of imperfect tracking data.

1.4 Thesis Organization

The rest of this thesis is organized as follows.
Chapter 2 presents the state-of-the-art techniques for the problem of structure

from motion, including a brief introduction of different formulations of structure
and motion factorization under different projection models.

Chapter 3 describes the affine approximation of a full perspective projection
model, and proposes a quasi-perspective projection model under the assumption
that the camera is far away from the object with small lateral rotations.

In Chapter 4, the geometrical properties of the quasi-perspective projection
model are investigated in the context of one- and two-view geometry, including
quasi-perspective projection matrix, fundamental matrix, plan induced homo-
graph, and quasi-perspective reconstruction.

Chapter 5 discusses a quasi-perspective-model-based algorithm for structure
and motion recovery of both rigid and nonrigid objects, and establishes a frame-
work of rigid and nonrigid factorization under quasi-perspective assumption.
Furthermore, the computation details on how to upgrade the solutions to the
Euclidean space are presented in this chapter.
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In Chapter 6, a spatial-and-temporal-weighted factorization algorithm is
proposed to handle significant noise contained in the tracking data. In the
algorithm, the error distribution is estimated from a new perspective by virtue
of reprojection residuals, and the image errors are modeled both spatially and
temporally to cope with different kinds of uncertainties.

Chapter 7 describes a robust structure from motion algorithm for rigid objects.
First, a rank-4 augmented affine factorization algorithm is proposed to overcome
the difficulty in image alignment for imperfect data. Then, a robust structure and
motion factorization scheme is proposed to handle outlying and missing data.

The robust algorithm is further extended to nonrigid scenarios in Chapter 8,
where the outliers can be detected directly from image reprojection residuals
of nonrigid factorization. A new augmented nonrigid factorization algorithm
is proposed in this chapter, followed by a robust scheme to handle imperfect
tracking data of nonrigid image sequence.

Chapter 9 summarizes the thesis conclusion and presents a discussion of
potential research work for future study.
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Chapter 2

Background

In this chapter, the state-of-the-art techniques for the problem of structure from
motion are presented, followed by a brief introduction of different formulations
of structure and motion factorization, including the factorization algorithms of
rigid and nonrigid objects based on different camera models.

2.1 Literature Review

In this section, we will present a review of the structure and motion factorization
algorithms, including the factorization of rigid objects and static scenes, nonrigid
objects and dynamic scenes, and robust algorithms.

2.1.1 Factorization for rigid objects and static scenes

The original factorization algorithm assumes an orthographic projection model
and works only for rigid objects and static scenes [74]. The main idea of the
algorithm is to decompose the tracking matrix into the motion and structure
components simultaneously by Singular Value Decomposition (SVD) with low-
rank approximation. It was extended to weak perspective and paraperspective
projection by Poelman and Kanade [62]. The orthographic, weak perspective,
and paraperspective projections can be generalized with the affine camera model,
which is a zero order (for weak-perspective) or first order (for paraperspective)
approximation of a full perspective projection [34][62][65].

More generally, Christy and Horaud [15] extended the algorithm to a perspec-
tive camera model by incrementally performing the factorization under affine
assumption. The method is an affine approximation to full perspective projection.
Triggs and Sturm [71][77] proposed a full projective reconstruction method via
rank-4 factorization of a scaled tracking matrix, where the unknown depth scales
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were recovered from pairwise epipolar geometry. The method was further studied
in Heyden et al. [37] and Mahamud and Hebert [47], and different iterative
schemes were proposed to recover the projective depths by minimizing reprojec-
tion errors. Recently, Oliensis and Hartley [56] provided a complete theoretical
convergence analysis for the iterative extensions. Unfortunately, no iteration has
been shown to converge sensibly, and they proposed a simple extension, called
CIESTA, to give a reliable initialization to other algorithms.

Almost all factorization algorithms are limited in handling the tracking data
of point features. Alternatively, Quan and Kanade [64] proposed an analogous
factorization algorithm for line features under affine assumption. The algorithm
decomposes the whole structure and motion into three substructures which can
be solved linearly via factorization of appropriate measurement matrix. The
line-based factorization requires at least seven lines in three views. Whereas the
point-based algorithm only needs a minimum of four points in three frames.

2.1.2 Factorization for nonrigid objects and dynamic scenes

In real world, many scenarios are nonrigid or dynamic, such as articulated motion
[58], human faces carrying different expressions, lip movements, hand gesture,
and moving vehicles, etc. In order to deal with these situations, many extensions
stemming from the factorization algorithm were proposed to relax the rigidity
constraint.

Costeira and Kanade [16] first discussed how to recover the motion and shape
of several independent moving objects via factorization using orthographic pro-
jection. Bascle and Blake [8] proposed a method for factorizing facial expressions
and poses based on a set of preselected basis images. Recently, Li et al. [44]
proposed to segment multiple rigid-body motions from point correspondences via
subspace separation. Yan and Pollefeys [97][98] proposed a factorization-based
approach to recover the structure and kinematic chain of articulated objects.
Zelnik-Manor and Irani [101][102] analyzed the problem of multi-sequence fac-
torization of multiple objects by both temporal synchronization of sequences and
spacial matching across sequences. Del Bue and Agapito [20] proposed a scheme
for nonrigid stereo factorization. Taylor et al. [73] proposed a framework to
solve unknown body deformation under orthography by introducing a constraint
of locally-rigid motion.

In the seminal work by Bregler et al. [11], it is demonstrated that the 3D
shape of a nonrigid object can be expressed as a weighted linear combination of
a set of shape bases. Then, the shape bases and camera motions are factorized
simultaneously for all time instants under the rank constraint of the tracking ma-
trix. Following this idea, the method was extensively investigated and developed
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by many researchers, such as Brand [9][10], Del Bue et al. [21][18], Torresani
et al. [75][76], and Xiao et al. [95][96]. Recently, Rabaud and Belongie [66]
relaxed the Bregler’s assumption [11] by assuming that only small neighborhoods
of shapes are well-modeled by a linear subspace; and proposed a novel approach
to solve the problem by adopting a manifold-learning framework. He et al. [36]
proposed an prior-free approach for nonrigid structure and motion recovery,
where no extra prior knowledge about the nonrigid scene or the camera motions
were assumed.

Most nonrigid factorization methods are based on affine camera model due
to its simplicity. It was extended to perspective projection in [96] by iteratively
recovering the projective depths. The perspective factorization is more compli-
cated and does not guarantee its convergence to the correct depths, especially for
nonrigid scenarios [32]. Vidal and Abretske [78] proposed that the constraints
among multiple views of a nonrigid shape consisting of k shape bases can be
reduced to multilinear constraints. They presented a closed form solution to the
reconstruction of a nonrigid shape consisting of two shape bases. Hartley and
Vidal [34] proposed a closed form solution to the nonrigid shape and motion
with calibrated cameras or fixed intrinsic parameters.

Since the factorization is only defined up to a nonsingular transformation
matrix, many researchers adopt metric constraints to recover the matrix and up-
grade the factorization results to the Euclidean space [9][11][18][76]. However,
the rotation constraint may cause ambiguity in the combination of shape bases.
Xiao et al. [95] proposed a basis constraint to solve the ambiguity and provide a
closed-form solution to the problem.

2.1.3 Robust structure and motion factorization

Most factorization methods usually assume all features are reliably tracked across
the sequence. In the presence of missing data, SVD factorization can not be
used directly, and some researchers have proposed to solve the motion and
shape matrices alternatively while maintaining the other matrix fixed, such
as the alternative factorization [49], power factorization [33][79][82], and
factor analysis [29]. In practice, outlying data are inevitable during the process
of feature tracking; as a consequence, the performance of the algorithm will
degenerate. The most popular strategy in the computer vision field for solving
this type of problem is RANSAC (RANdom SAmple Consensus) [26], Least
Median of Squares (LMedS) [32], and similar hypothesise-and-test frameworks
[14][52][67]. However, these methods are preliminary designed for two or three
views, they are not suitable for long sequence factorization due to its highly
intensive computational cost.
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In recent years, the problem of robust factorization has received a lot of
attention, and some practical methods have been proposed to handle noisy and
erroneous data [100]. Aguitar and Moura [3] proposed a scalar-weighted SVD
algorithm by minimizing the weighted square errors. Anandan and Irani [7]
proposed a covariance-weighted factorization to factorize noisy correspondences
with a high degree of directional uncertainty. Gruber and Weiss [29] formulated
the problem as a factor analysis and derived an Expectation Maximization (EM)
algorithm to incorporate prior knowledge and enhance the robustness to miss-
ing data and uncertainties. Zelnik-Manor et al. [103] defined a new type of
motion consistency based on temporal consistency; and applied it to multi-body
factorization with directional uncertainty.

Zaharescu and Horaud [100] introduced a Gaussian mixture model and in-
corporated it with the EM algorithm, an approach that is resilient to outliers.
Huynh et al. proposed an iterative approach to correct the outliers with ’pseudo’
observations. Ke and kanade [41] proposed a robust algorithm to handle outliers
by minimizing the L1 norm of the reprojection errors. Eriksson and Hengel
[23] introduced the L1 norm minimization to the Wiberg algorithm to handle
missing data and outliers. Buchanan and Fitzgibbon [12] presented a comprehen-
sive comparison on a number of factorization algorithms. Their study strongly
supports second order nonlinear optimization strategy.

Okatani et al. [55] proposed to incorporate a damping factor into the Wiberg
method to solve the problem. Yu et al. [99] presented a quadratic program
(QP) formulation for robust multi-model fitting of geometric structures in vision
data. Wang et al. [92] proposed an adaptive kernel-scale weighted hypotheses
(AKSWH) to segment multiple-structure data even in the presence of a large
number of outliers. Paladini et al. [60] proposed an alternating bilinear approach
to solve nonrigid SfM by introducing a globally optimal projection step of the
motion matrices into the manifold of metric constraints. Additional studies are
referenced in Aanæs et al. [1] and Okatani and Deguchi [54].

2.2 Structure and Motion Recovery of Rigid Objects

In this section, we will introduce the structure and motion factorization algorithm
for rigid objects under affine and perspective camera models.

2.2.1 Rigid factorization under affine projection

Suppose the image points in each frame are registered to the corresponding
centroid. Under affine projection model, the imaged points in the i-th frame are

12



formulated as

[x̄i1, x̄i2, · · · , x̄in] = Ai[X̄1, X̄2, · · · , X̄n], ∀ i = 1, · · · , m. (2.1)

Stacking the equations (2.1) for all frames together, we can obtain
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
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S̄3×n

. (2.2)

The above equation can be written concisely as W=MS̄, which is called the
general factorization expression under affine projection assumption. Suppose
the tracking data across the sequence of m frames are available, i.e. the tracking
matrix W is given, our purpose is to recover the motion matrix M and the rigid
shape matrix S̄.

SVD decomposition with rank constraint

The tracking matrix is a 2m×n matrix with highly rank-deficiency. From the right
side of (2.2), we can easily find that the rank of the tracking matrix is at most 3
for noise-free data since both M and S̄ are at most of rank 3. However, when the
data is corrupted by image noise, the rank of W will be greater than 3. Here we
use the concept of SVD decomposition to obtain the rank-3 approximation and
factorize the tracking matrix into the motion and shape matrices.

Without loss of generosity, we assume 2m≥ n and perform SVD decomposition
on the tracking matrix.

W= U2m×nΣn×nVT
n×n (2.3)

where Σ = diag(σ1,σ2, · · · ,σn) is a diagonal matrix with all diagonal entries
composed by the singular values of W and arranged in descending order as
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0; and U and V are 2m× n and n× n orthogonal matrices
respectively. Thus, UT U= VT V= In with In an n× n identical matrix. It is noted
that the assumption 2m≥ n is not crucial, we can obtain a similar decomposition
when 2m< n by simply taking a transpose of the tracking matrix.

In ideal case, W is of rank 3, which is equivalent to σ4 = σ5 = · · · = σn = 0.
However, when the data is contaminated by noise, the rank of W is definitely
greater than 3. Actually, the rank may also be greater than 3 even for noise free
data since the affine camera model is just an approximation of the real imaging
process. We will now seek a rank-3 matrix W′ that can best approximate the
tracking matrix. Let us partition the matrices U,Σ, and V as follows:

U = [U′2m×3|U
′′
2m×(n−3)],
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Σ =

�

Σ′3×3 0
0 Σ′′(n−3)×(n−3)

�

, (2.4)

V = [V′n×3|V
′′
n×(n−3)].

Then, the SVD decomposition (2.3) can be written as

W= U′Σ′V′T
︸ ︷︷ ︸

W′

+U′′Σ′′V′′T
︸ ︷︷ ︸

W′′

(2.5)

where Σ′ = diag(σ1,σ2,σ3) contains the first three greatest singular values of
the tracking matrix, U′ is the first three columns of U, and V′T is the first three
rows of VT . It is easy to prove that W′ = U′Σ′V′T is the best rank-3 approximation
of W in the Frobenius norm. Now let us define

M̃ = U′Σ′
1
2 (2.6)

S̃ = Σ′
1
2 V′T (2.7)

where M̃ is a 2m× 3 matrix and S̃ is a 3× n matrix. Then, we have W′ = M̃S̃,
a similar form of the factorization expression (2.2). In fact, M̃ and S̃ are one
set of the maximum likelihood affine reconstruction of the tracking matrix W.
Obviously, the decomposition is not unique since it is defined up to a nonsingular
linear transformation matrix H ∈ R3×3 as M̃S̃ = (M̃H)(H−1S̃). If we can find a
transformation matrix H that can make

M= M̃H (2.8)

exactly corresponds to a metric motion matrix as in (2.2), then the structure
S̄ = H−1S̃ will be upgraded from affine to the Euclidean space. We call the
transformation H an upgrading matrix, which can be recovered through a metric
constraint by enforcing orthogonality on the rotation matrix.

Euclidean stratification and reconstruction

Let us assume a simplified camera model with only one parameter, i.e. the focal
length f . Suppose the upgrading matrix is H, which upgrades the matrix M̃
in (2.6) to the Euclidean motion matrix as in (2.2). Then, the motion matrix
corresponding to frame i can be written as

�

f rT
1i

f rT
2i

�

=Mi = M̃iH=

�

mT
1i

mT
2i

�

H (2.9)

which leads to
�

mT
1i

mT
2i

�
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�

m1i|m2i

�

= f 2

�

rT
1i

rT
2i

�

�
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�

= f 2

�

1 0
0 1

�

. (2.10)
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Let us define Q= HHT , which is a 3× 3 symmetric matrix with 6 unknowns.
The following constraints can be obtained from (2.10).

¨

mT
1iQm1i =mT

2iQm2i

mT
1iQm2i =mT

2iQm1i = 0
. (2.11)

The constraints (2.11) are called metric or rotation constraints, which yield
a set of over-constrained equations for all frames i = 1, · · · , m. Thus, Q can
be calculated linearly via least squares and the upgrading matrix H is then
extracted from Q using Cholesky decomposition [32]. Finally, the correct metric
motion and structure matrices are obtained by applying the upgrading matrix as
M= M̃H, S̄= H−1S̃, and the rotation matrices corresponding to each frame are
then extracted from M.

It is noted that the above solution is defined only up to an arbitrary rotation
matrix since the choice of the world coordinate system is free. In practice, we
can simply choose the first frame as a reference, i.e. setting R1 = I3, and register
all other frames to it.

The implementation details of the above factorization algorithm are summa-
rized as follows.

1. Register all image points in each frame to their centroid and construct the
tracking matrix;

2. Perform rank-3 SVD decompozation on the tracking matrix to obtain a
solution of M̂ and Ŝ from (2.6) and (2.7);

3. Compute the upgrading matrix H from (2.11);

4. Recover the metric motion matrix M= M̂H and shape matrix S= H−1Ŝ;

5. Retrieve the rotation matrix of each frame from M.

2.2.2 Rigid factorization under perspective projection

Many previous studies on rigid factorization adopt an affine camera model due to
its simplicity. However, the assumption is valid only when the objects have small
depth variation and are far away from the cameras. Otherwise, the algorithm
may fail or yield poor results.

Christy and Horaud [15] extended the above methods to a perspective camera
model by incrementally performing the factorization under affine assumption.
The method is an affine approximation to full perspective projection. Sturm [71]
and Triggs and Sturm[77] proposed a full projective reconstruction method via
rank-4 factorization of a scaled tracking matrix with projective depths recovered
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from pairwise epipolar geometry. The method was further studied in [37][47],
where different iterative schemes were proposed to recover the projective depths
by minimizing image reprojection errors.

Under the perspective projection (1.1), all imaged points in the i-th frame are
formulated as

[λi1xi1,λi2xi2, · · · ,λinxin] = Pi[X1,X2, · · · ,Xn], ∀ i = 1, · · · , m. (2.12)

Thus, we can obtain the general perspective factorization expression by
gathering the equation (2.12) for all frames as follows.
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
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λ11x11 · · · λ1nx1n
...
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Ẇ3m×n
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M3m×4

�

X1, · · · , Xn

�

︸ ︷︷ ︸

S4×n

. (2.13)

Compared with the affine factorization (2.2), the main differences lie in
the dimension and entries of the tracking matrix, as well as the dimension of
the motion and shape matrices. Given a set of consistent projective scales λi j,
the rank of the weighted tracking matrix is at most 4, since the rank of either
the motion matrix M or the shape matrix S is not greater than 4. For noise
contaminated data, rank(Ẇ) > 4. We can adopt a similar SVD decomposition
process as in (2.4) to obtain a best rank-4 approximation of the scale-weighted
tracking matrix and factorize it into a 3m× 4 motion matrix M̃ and a 4× n shape
matrix S̃.

Obviously, this factorization corresponds to a projective reconstruction, which
is defined up to a 4× 4 transformation matrix H. Therefore, we need to upgrade
the solution from the projective to the Euclidean space. Through the above anal-
ysis, we can see that there are essentially two indispensable steps in perspective
factorization. One is the computation of the projective depths, the other is the
recovery of the upgrading matrix.

2.3 Structure and Motion Recovery of Nonrigid Objects

We assumed rigid objects and static scenes in the last section. In the real world,
however, many objects do not have fixed structures, such as human faces with
different expressions, torsos, and animals bodies, etc. In this section, we will
extend the factorization algorithm to the nonrigid and deformable objects. Fig.
2.1 shows the deformable structure of a jellyfish at different time instance.
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Figure 2.1: The structure of a jellyfish with different deformations. Courtesy of
BBC Planet Earth TV series.

Figure 2.2: Four female face models carrying expressions from neutral to smiling,
where any two structure may be taken as shape bases, and the other models can
be derived through a weighted linear combinations of the two bases. Courtesy of
Jing Xiao.

2.3.1 Bregler’s deformation model

For nonrigid structure, if all surface features deform randomly at any time
instance, there is currently no suitable method to recover its structure from
images. Here we restrict our study to a specific kind of deformable objects
following the idea first proposed by Bregler et al. [11], where the 3D structure
of the nonrigid structure is approximated by a weighted combination of a set of
shape bases.

Fig. 2.2 shows a very simple example of face models from neutral to smiling
with only mouth movements. The deformation can be modeled from two shape
bases. If more face expressions, such as joy, sadness, surprise, fear, etc., are
involved, more shape bases are needed to model the deformation.

Suppose the deformable structure S̄i ∈ R3×n is expressed as a weighted
combination of k principal modes of deformation Bl ∈ R3×n, l = 1, · · · , k. The 3D
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model can be expressed as

S̄i =
k
∑

l=1

ωilBl (2.14)

where ωil ∈ R is the deformation weight for base l at frame i. A perfect rigid
object corresponds to the situation of k = 1 and ωil = 1. Suppose all image
features are registered to their centroid in each frame, then, we have the following
formulation under orthographic projection.

Wi = [x̄i1, x̄i2, · · · , x̄in] = RAi

�
k
∑

l=1

ωilBl

�

=
�

ωi1RAi , · · · ,ωikRAi
�









B1
...

Bk









, ∀ i = 1, · · · , m (2.15)

where RAi stands for the first two rows of the rotation matrix corresponding to
the i-th frame. Then, we can obtain the factorization equation of the tracking
matrix by stacking all instances of equations (2.15) frame by frame as









x̄11 · · · x̄1n
...

. . .
...

x̄m1 · · · x̄mn









︸ ︷︷ ︸

W2m×n

=









ω11RA1 · · · ω1kRA1
...

. . .
...

ωm1RAm · · · ωmkRAm









︸ ︷︷ ︸

M2m×3k









B1
...

Bk









︸ ︷︷ ︸

B̄3k×n

. (2.16)

The above equation can be written in short as W =MB̄, which is similar as
the rigid factorization (2.2). The only difference lies in the form and dimension
of the motion and shape matrices. From the right side of (2.16), it is easy to find
that the rank of the nonrigid tracking matrix is at most 3k (usually 2m and n are
both larger than 3k). The goal of nonrigid factorization is to recover the motion
and the deformable structure corresponding to each frame.

2.3.2 Nonrigid factorization under affine assumption

Following the same idea of rigid factorization, we perform SVD decomposition
on the nonrigid tracking matrix and impose the rank-3k constraint, W can
be factorized into a 2m × 3k matrix M̃ and a 3k × n matrix B̃. However, the
decomposition is not unique as any nonsingular linear transformation matrix
H ∈ R3k×3k can be inserted into the factorization which leads to an alternative
result W= (M̃H)(H−1 ¯̃B). If we have a transformation matrix H that can resolve
the affine ambiguity and upgrade the solution to the Euclidean space, the shape
bases are then easily recovered from B = H−1B̃, while the rotation matrix RAi and
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the weighting coefficient ωi j can be decomposed from M = M̃H by Procrustes
analysis [9][11][76].

Similar to the rigid situation, the upgrading matrix can be recovered by
imposing metric constraint to the motion matrix. In the following section, we
will briefly review some typical methods to deal with this problem.

Metric constraints

To recover the upgrading matrix, many researchers apply metric constraints to
the rotation matrix. Bregler et al. [11] first introduced the nonrigid factorization
framework and proposed a sub-block factorization algorithm to recover the
rotation matrix RAi and deformation weights ωil by decomposing every two-row
sub-blocks of the motion matrix M̃.

In (2.16), each two-row sub-block is given by

Mi =
�

ωi1RAi , · · · ,ωikRAi
�

(2.17)

which can be rearranged as a k× 6 matrix M′i as follows.

M′i =









ωi1rT
1i | ωi1rT

2i
...

...
ωikrT

1i | ωikrT
2i









k×6

=









ωi1
...
ωik









�

rT
1i|r

T
2i

�

(2.18)

where rT
1i and rT

2i are the first and second rows of the rotation matrix, respectively.
Clearly, the deformation weight ωil and the rotation matrix can be easily derived
via the SVD factorization of M′i with rank-1 constraint. However, such recovered
rotation matrix

R̃Ai =

�

rT
1i

rT
2i

�

is usually not an orthonormal matrix, thus, an orthonormality process is required
to find the rotation matrix RAi [74].

Concerning the recovery of the upgrading matrix, Xiao et al. [95] presented
a block computation method via metric constraints. Suppose the l-th column
triples of H is Hl , l = 1, · · · , k, which is independent of each other since H is
nonsingular. Then, we have

M̃Hl =









ω1lRA1
...

ωmlRAm









(2.19)
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and

M̃HlH
T
l M̃T =













ω2
11RA1RT

A1 ∗ · · · ∗
∗ ω2

2lRA2RT
A2 · · · ∗

...
...

. . .
...

∗ ∗ · · · ω2
mlRAmRT

Am













(2.20)

where ′∗′ stands for nonzero entries. Let Ql = HlH
T
l , which is a 3k×3k symmetric

matrix with 1
2
k(9k+ 1) unknowns. Since RAi is an orthonormal rotation matrix,

from each diagonal block in (2.20), we have

M̃2i−1:2iQlM̃
T
2i−1:2i =ω

2
il

�

1 0
0 1

�

(2.21)

where M̃2i−1:2i stands for the i-th two-row of M̃. Thus, we have the following
linear constraints on Ql .

¨

M̃2i−1QlM̃
T
2i = 0

M̃2i−1QlM̃
T
2i−1− M̃2iQlM̃

T
2i = 0

, ∀ i = 1, · · · , m. (2.22)

Therefore, Ql may be computed linearly via least squares from (2.22) given
sufficient frames, then, Hl is recovered from Ql via Cholesky decomposition.

In sub-block factorization, it is assumed that all configurations concerning the
camera motion and deformation weights are contained in the initially factorized
matrix M̃. Nevertheless, the initial decomposition may yield random solution
for M̃ and B̃, and result in a bad estimation of the rotation matrix [9][19]. To
overcome the limitation of sub-block factorization, Torresani et al. [76] proposed
a tri-linear approach to solving Bl ,ωil , and RAi alternatively by minimizing the
following cost function.

f (Bl ,ωil ,RAi) =







Wi −RAi

�
k
∑

l=1

ωilBl

�









2

F
,∀ i = 1, · · · , m. (2.23)

The iterative algorithm that solves the cost function is initialized by the rigid
assumption solution, and a rigid factorization [74] on the nonrigid tracking
matrix is performed to obtain an average shape (mean shape) matrix S̃ri g and
a rigid rotation matrix R̃Ai , i = 1, · · · , m, for each frame; while the deformation
weights are initialized randomly. The algorithm is performed iteratively through
the following three steps:

1. Estimate the shape bases B̄ from R̃Ai and ωil ;

2. Update the deformation weight ωil from B̄ and R̃Ai;
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3. Update the rotation matrix R̃Ai from B̄ and ωil .

The procedure is simpler than the general nonlinear method and usually
converges to a proper solution. However, the algorithm does not preserve the
replicated block structure of the motion matrix (2.16) during iterations [19].

Similar to the tri-linear technique, Wang et al. [82] proposed a rotation
constrained power factorization technique by combining the orthonormality of
the rotation matrix into a power factorization algorithm. In Addition, Brand [9]
proposed a flexible factorization technique to compute the upgrading matrix and
recover the motion parameters and deformation weights using an alternative
orthonormal decomposition algorithm.

Basis constraints

One main problem of using a metric constraint to recover the upgrading ma-
trix lies in its ambiguity. Given the same tracking data, different motion and
deformable shapes may be found, since any nonsingular linear transformation
matrix can be inserted into the factorization process and, as a result, lead to
different sets of eligible shape bases.

On the other hand, when we use the constraints (2.22) to recover the matrix
Ql , it appears that if we have enough features and frames, the upgrading matrix
can be solved linearly by exploring all the constraints in (2.22). Unfortunately,
using only the rotation constraints may be insufficient when the object deforms
at varying speed, since most of the constraints are redundant. Xiao et al. [96]
proposed a basis constraint to solve this ambiguity.

The main idea is based on the assumption that there exists k frames which
include independent shapes that can be treated as a set of bases. Suppose the
first k frames are independent of each other. Then, their corresponding weighting
coefficients can be set as

ωil =

¨

1 if i, l = 1, ..., k and i = l
0 if i, l = 1, ..., k and i 6= l

. (2.24)

Let us define Ω = {(i, j)|i = 1, · · · , k, j = 1, · · · , m, i 6= l}, then, from (2.20) we
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can obtain the following basis constraint.










































M̃2i−1QlM̃
T
2 j−1 =

¨

1, i = j = l
0, (i, j) ∈ Ω

M̃2iQlM̃
T
2 j =

¨

1, i = j = l
0, (i, j) ∈ Ω

M̃2i−1QlM̃
T
2 j =

¨

0, i = j = l
0, (i, j) ∈ Ω

M̃2iQlM̃
T
2 j−1 =

¨

0, i = j = l
0, (i, j) ∈ Ω

. (2.25)

Altogether we have 4m(k− 1) linear basis constraints. Using both the metric
constraints (2.22) and the basis constraints (2.25), Xiao et al. [96] derived a
linear close form solution to the nonrigid factorization by dividing the problem
into k linear systems. However, the method deals with each column-triples
Mi separately. Thus, the repetitive block structure of the entire motion matrix
is not observed during computation. In addition, the solution is dependant
on the selection of shape bases, which are treated as prior information of the
deformation, but such a selection may be difficult in some situations. Following
this idea, Brand [10] proposed a modified approach based on the deviation of
the solution from metric constraints. The approach explores a weak constraint to
the independent shape bases.

2.3.3 Nonrigid factorization under perspective projection

In this section, we will discuss the perspective reconstruction method proposed
in [96]. From perspective projection (1.1), we can obtain the following equation
system by stacking the projection of each frame.

Ẇ=









λ11x11 · · · λ1nx1n
...

. . .
...

λm1xm1 · · · λmnxmn









=









P1S1
...

PmSm









(2.26)

where Si is a 4× n matrix which denotes the 3D structure corresponding to the
i-th frame in homogeneous form. For rigid objects, the shape does not change
with time, thus, S1 = · · · = Sm. Following Bregler’s deformation model (2.14), we
have

PiSi =
k
∑

l=1

�

ωilP
(1:3)
i Bl

�

+ P(4)i 1T (2.27)

where P(1:3)
i and P(4)i denote the first three columns and the last column of Pi,

respectively; and 1T is a n-vector with unit entries. From equations (2.26) and

22



(2.27), we obtain the following expression for perspective nonrigid factorization.

Ẇ=









ω11P(1:3)
1 · · · ω1kP(1:3)

1 P(4)1
...

. . .
...

...
ωm1P(1:3)

m · · · ωmkP(1:3)
m P(4)m









︸ ︷︷ ︸

M3m×(3k+1)













B1
...

Bk

1T













︸ ︷︷ ︸

B(3k+1)×n

(2.28)

where M ∈ R3m×(3k+1) and B ∈ R(3k+1)×n are the motion matrix and shape bases,
respectively. All nonrigid structures of one object share the same set of shape
bases, and both M and B are of full rank. Therefore, the rank of the scale-
weighted tracking matrix is no more than min((3k+ 1), 3m, n). In practice, the
point and frame numbers are usually larger than the shape bases number, so the
rank of Ẇ is at most 3k+ 1. This is consistent with that of rigid factorization,
where k = 1 and the rank is no more than 4.

Suppose the projective depth scales in Ẇ are available, then, a projective
solution of M̃ and B̃ can be obtained through SVD decomposition of the weighted
tracking matrix with rank-(3k+ 1) constraint. Obviously, the solution is defined
up to a nonsingular transformation matrix H ∈ R(3k+1)×(3k+1). Similar to the rigid
case, the upgrading matrix can be recovered using both the metric constraints and
the basis constraints. Then, the Euclidean motion parameters and deformation
structures are recovered from the matrices M̃ and B̃. Please refer to Xiao and
Kanade [96] for computation details.

As for the recovery of the projective depths, a similar iteration method as in
[31] and [47], based on the rank constraint on Ẇ, is adopted. The algorithm
starts with weak perspective assumption by setting λi j = 1, then, the depth scales
are optimized iteratively by minimizing the following cost function

J(λi j) =min‖Ẇ− M̃B̃‖2F . (2.29)

The minimizing process is achieved iteratively by first factorizing Ẇ into M̃B̃
with the given depth scales and then updating the depth scales through back
projection. In deformation case, the rank of the tracking matrix is 3k+ 1 and
the dimension of M̃ and B̃ follows the Equation (2.28). In order to avoid trivial
solutions of λi j = 0, the following constraints are enforced alternatively during
the computation to ensure that the depth scales of all points in any frame or a
single point in all images have unit norms. As a result, the minimization of (2.29)
is converted to a simple eigenvalue problem [96].
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2.3.4 Nonrigid factorization in trajectory space

Bregler’s assumption [11] represents the nonrigid structure in shape space as a
linear combination of shape bases. Most recently, Akhter et al. [4] [5] proposed a
dual representation of nonrigid objects in trajectory space, where the evolving 3D
deformable structure is described in the trajectory space by a linear combination
of some basis trajectories.

Suppose the structure of a nonrigid object is represented as follows by an
m× 3n matrix.

S∗ =









X11 · · · X1n Y11 · · · Y1n Z11 · · · Z1n
...

. . .
...

...
. . .

...
...

. . .
...

Xm1 · · · Xmn Ym1 · · · Ymn Zm1 · · · Zmn









m×3n

. (2.30)

The row space of S∗ spans the shape space, while the column space of S∗

corresponds to the trajectories of the points, all of which form the trajectory
space. Since both the row and column spaces have the same dimension, the
trajectory of the points can also be denoted by k trajectory bases. Let us write
the trajectory as

T( j) = [TT
x ( j),T

T
y ( j),T

T
z ( j)]

T (2.31)

where

TT
x ( j) = [X i j , · · · , Xmj], TT

y ( j) = [Yi j , · · · , Ymj], TT
z ( j) = [Zi j , · · · , Zmj] (2.32)

are the j-th trajectory in the three coordinates directions. Each trajectory can be
denoted by k trajectory bases as follows.

TT
x ( j) =

k
∑

l=1

ωx l( j)θ
l , TT

y ( j) =
k
∑

l=1

ωyl( j)θ
l , TT

z ( j) =
k
∑

l=1

ωzl( j)θ
l (2.33)

whereωx l( j),ωyl( j), andωzl( j) are the coefficients; and θ l = [θ l
1, · · · ,θ l

m]
T ∈ Rm

is a trajectory basis vector. Expending (2.33) yields




































X11 · · · X1n

Y11 · · · Y1n

Z11 · · · Z1n

X21 · · · X2n

Y21 · · · Y2n

Z21 · · · Z2n
... · · ·

...
Xm1 · · · Xmn

Ym1 · · · Ymn

Zm1 · · · Zmn





































︸ ︷︷ ︸

S3m×n

=





































θ T
1
θ T

1
θ T

1
...

...
...

θ T
m
θ T

m
θ T

m





































︸ ︷︷ ︸

Θ3m×3k













































ω1
x1 ω1

x2 · · · ω1
xn

...
...

...
...

ωk
x1 ωk

x2 · · · ωk
xn

















ω1
y1 ω1

y2 · · · ω1
yn

...
...

...
...

ωk
y1 ωk

y2 · · · ωk
yn

















ω1
z1 ω1

z2 · · · ω1
zn

...
...

...
...

ωk
z1 ωk

z2 · · · ωk
zn













































︸ ︷︷ ︸

Ω3k×n

(2.34)
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where θ T
j = [θ

1
j , · · · ,θ k

j ]
T . Thus, the nonrigid trajectory can be written concisely

as follows.
S3m×n =Θ3m×3kΩ3k×n. (2.35)

Under orthographic projection, the mapping from 3D space to 2D image can
be written as

W=MS= (MΘ)Ω= ΛΩ (2.36)

where

M=









R1
. . .

Rm









(2.37)

with R j the j-th 2× 3 orthographic projection matrix; and Λ=MΘ is a 3m× 3k
matrix. It is clear that the factorization in trajectory space (2.36) is a dual
expression of the nonrigid factorization in shape space (2.16).

Like in shape space, the rank of (2.36) is at most 3k, the factorization can be
easily obtained via SVD decomposition, however, the solution is not unique and
a similar metric constraint can be used to upgrade the solution from perspective
to the Euclidean space by an invertible upgrading matrix H ∈ R3k×3k.

An advantage of the trajectory based algorithm lies in the fact that the trajec-
tory bases can be predefined independently of the tracking data. The key point
here is how to select the trajectory bases. Some available candidates include
Discrete Sine/Cosine transformation, discrete Wavelet transformation, Hadamard
transform basis, etc. In [5], it was demonstrated that DCT basis was suitable to
represent human motions. The method was used to reconstruct the 3D trajectory
of a moving point from 2D projections [61]. Gotardo and Martinez further
studied the approach [27] and applied a kernel trick in the standard nonrigid
SfM [28].

2.4 Discussion

In the literature, most algorithms assume affine camera model due to its simplicity,
while the extension to full perspective model is computational intensive and
no convergence is guaranteed. To bridge the gap between the two model, a
quasi-perspective projection model is proposed in Chapter 3. The model is
showed to be more accurate than the affine assumption and more computational
efficient than the full perspective model. The geometric properties of the quasi-
perspective model are investigated in Chapter 4 in the context of one- and
two-view geometry. Finally, a structure from motion framework for both rigid
and nonrigid objects is established in Chapter 5. Theoretical analyses and
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experimental studies demonstrate the advantages of the proposed model over
the previous affine and perspective projection models.

Robustness is another important issue of SfM because the tracking data are
usually corrupted by outliers, missing features, and significant noise. The main
difficulty of the robust algorithm lies in the estimation of feature uncertainties,
which has not been effectively solved in the literature. In this thesis, the un-
certainties are modeled from a new perspective by virtue of the fact that the
uncertainties associated with image features are largely in proportion to the
reprojection residuals.

A spatial-and-temporal-weighted factorization algorithm is proposed in Chap-
ter 6, where the image uncertainties are modeled both spatially and temporally
to address different kinds of errors. An augmented affine factorization algorithm
is proposed in Chapter 7 to circumvent the problem of image registration in
affine factorization in the presence of outlying and missing data. Based on the
new formulation, a robust factorization scheme is presented in the chapter to
handle outliers in rigid factorization. In Chapter 8, the idea is successfully ex-
tended to nonrigid scenarios with imperfect tracking data. Unlike other existing
robust algorithms, the proposed technique requires no prior information of the
error distributions of the tracked features. Extensive experiments validate its
advantages and effectiveness.
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Chapter 3

Quasi-Perspective Projection Model

The chapter focuses on the approximation of a full perspective projection model.
We first present a review on the affine camera model, including orthographic
projection, weak-perspective projection, and paraperspective projection. Then,
under the assumption that the camera is far away from the object with small
lateral rotations, we show that the imaging process can be modeled by quasi-
perspective projection. Geometrical analysis and experimental study show that
the proposed model is more accurate than the affine model.

3.1 Introduction

The modeling of imaging formation is an important issue for many computer
vision applications, such as structure from motion, object recognition, pose es-
timation, etc. Geometrically, a camera maps data from 3D space to 2D image
space. The general camera model used in computer vision is modeled by per-
spective projection. This is an ideal and accurate model for a wide range of
existing cameras. However, the resulting equations from perspective projection
are complicated and nonlinear due to the unknown scaling factor [56]. To sim-
plify computation, researchers have proposed many approximations to the full
perspective projection.

The most common approximation includes weak-perspective projection, or-
thographic projection, and paraperspective projection [6]. These approximations
are generalized as affine camera model [51] [68]. Faugeras [24] studied the
properties of projective cameras. Hartley and Zisserman [32] presented a compre-
hensive survey and in-depth analysis of different camera models. Affine camera
is a zero-order (for weak-perspective) or a first-order (for paraperspective) ap-
proximation of full perspective projection [15]. It is valid only when the depth
variation of the object is small compared to the distance from camera to the
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object. Kanatani et al. [40] analyzed a general form of symmetric affine camera
model to mimic perspective projection and provided the minimal requirements for
orthographic, weak perspective, and para-perspective simplification. The model
contains two free variables that can be determined through self-calibration.

In structure from motion, the affine assumption is widely adopted due to
its simplicity. In this chapter, we try to make a trade-off between the simplicity
of the affine model and the accuracy of the full perspective projection model.
By assuming that the camera is far away from the object with small lateral
rotations, which is similar to affine assumption and is easily satisfied in practice,
we propose a quasi-perspective projection model and present an error analysis
of different projection models [83]. The proposed model is shown to be more
accurate than the affine approximation. In Chapters 4 and 5 of this thesis, we will
further analyze the geometrical properties of the model [85] and its application
to structure and motion factorization. Part of this chapter was published in
International Journal of Computer Vision [86].

The remaining part of the chapter is organized as follows. The affine projec-
tion model is reviewed in Section 3.2. The proposed quasi-perspective model
and error analysis are elaborated in Section 3.3. Some experimental evaluations
on synthetic data are given in Section 3.4.

3.2 Affine Projection Model

Under perspective projection, a 3D point X j is projected onto an image point xi j

in frame i according to equation

λi jxi j = PiX j = Ki[Ri , ti]X j (3.1)

where λi j is an unknown depth scale; Pi, Ri, and ti are the projection matrix, rota-
tion matrix, and translation vector, respectively; and Ki is the camera calibration
matrix with the following general form.

Ki =







fi ςi u0i

0 κi fi v0i

0 0 1






. (3.2)

For most precise industrial CCD cameras, it is safe to assume zero skew ςi = 0,
known principal point u0i = v0i = 0, and unit aspect ratio κi = 1. Then, the
camera is simplified to have only one intrinsic parameter fi.

When the distance of an object from a camera is much greater than the depth
variation of the object, we may assume an affine camera model. Under affine
assumption, the last row of the projection matrix is of the form PT

3i ' [0, 0, 0, 1],
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where ’'’ denotes equality up to scale. Thus, a general affine projection matrix
for the i-th view can be written as

PAi =







p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1






=

�

Ai t̄i

0T 1

�

(3.3)

where Ai ∈ R2×3 is composed by the upper-left 2 × 3 submatrix of Pi, t̄i is a
translation vector. Under affine assumption, the imaging process (3.1) can be
simplified by removing the unknown scale factor λi j.

x̄i j = AiX̄ j + t̄i . (3.4)

Under the affine projection (3.4), the mapping from space to the image is
linear. One attractive attribute of the affine camera model is that the mapping is
independent of the translation term if relative coordinates are employed in both
space and image coordinate frames.

Suppose X̄r is a reference point in space and x̄ir is its image in the i-th frame.
Then, we have x̄ir = AiX̄r + t̄i. Let us denote

x̄′i j = x̄i j − x̄ir , X̄′j = X̄ j − X̄r

as the relative image and space coordinates. We can immediately obtain a
simplified affine projection equation in terms of relative coordinates.

x̄′i j = AiX̄
′
j . (3.5)

The translation term t̄i is actually the image of the world origin. It is easy to
verify that the centroid of a set of space points is projected to the centroid of their
images. In practice, we can simply choose the centroid as the reference point, then
the translation term vanishes if all the image points in each frame are registered
to the corresponding centroid. The affine matrix Ai has six independent variables
which encapsulate both intrinsic and extrinsic parameters of the affine camera.
According to RQ decomposition [32], matrix Ai can be uniquely decomposed
into the following form.

Ai = KAiRAi =

�

α1i ζi

α2i

��

rT
1i

rT
2i

�

(3.6)

where KAi is the intrinsic calibration matrix. In accordance with the camera
matrix of perspective projection, α1i and α2i are the scaling factors of the two
image axes and α1i/α2i is defined as the aspect ratio, ζi is the skew factor of
the affine camera. For most CCD cameras, we usually assume unit aspect ratio
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Figure 3.1: The imaging process of different projection models, where O is the
optical center; Z = f is the image plane; C is the centroid of the object; Z = Zc

is the average depth plane; and X1 and X2 are two space points on the object.
(a) Perspective projection; (b) orthographic projection; (c) weak-perspective
projection; (d) para-perspective projection.

α1i = α2i = αi, and zero skew ζi = 0. RAi is the rotation matrix, and rT
1i and rT

2i
are the first two rows of the rotation matrix with the constraint

rT
1ir2i = 0, ‖r1i‖2 = ‖r2i‖2 = 1 (3.7)

while the third row of the rotation matrix can always be recovered from r3i =
r1i × r2i. From the above analysis, we can easily see that the affine matrix Ai has
six degrees of freedom. Under affine assumption, the camera projection is usually
modeled by three special cases, i.e. orthographic projection, weak perspective
projection, and para-perspective projection, as shown in Figure 3.1.

Orthographic projection is the simplest approximation. In this case, it is
assumed α1i = α1i = 1 and ζi = 0. Thus, the projection can be modelled as

Kor tho =

�

1 0
0 1

�

(3.8)
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where the subscript index i is omitted for simplicity. Under weak-perspective
projection, the space point is first projected to the average depth plane via
orthographic projection, then projected to the image by perspective projection.
Thus, the scaling factor is included as α1i = α2i = αi and ζi = 0, which is
equivalent to a scaled orthography.

Kweak = αKor tho = α

�

1 0
0 1

�

. (3.9)

The weak-perspective projection can model the scaling effect caused by depth
changes between images. It is suitable for objects with small depth variations.
Para-perspective is a more generalized affine model which is a step closer to
perspective projection. As shown in Figure 3.1, the main difference between
para-perspective and weak-perspective projection is that the space point is first
projected to the average depth plane along the line passing through optical center
and the centroid of the object. Thus, it models not only the scaling of weak
perspective, but also the apparent result of an object moving towards the edge
of the image. Please refer to papers [53] and [62] for more details on para-
perspective projection. It can be verified that weak-perspective is a zero-order
approximation of full perspective projection, while paraperspective is a first-order
approximation.

3.3 Quasi-Perspective Projection Model

In this section, we will propose a new quasi-perspective projection model to fill
the gap between the simplicity of the affine camera model and the accuracy of
the full perspective projection model.

3.3.1 Quasi-perspective projection

Under perspective projection, the image formation process is shown in Figure
3.2. In 3D reconstruction, in order to ensure that large overlapping parts of the
object are observed, the camera usually undergoes really small movements across
adjacent views, especially for images of a video sequence.

Suppose Ow − XwYwZw is a world coordinate system selected on the object to
be reconstructed. Oi − XiYiZi is the camera coordinate system with Oi being the
optical center of the camera. Without loss of generality, we assume that there
is a reference camera system Or − XrYrZr . Since the world system can be set
freely, we align it with the reference frame as illustrated in Figure 3.2. Therefore,
the rotation Ri of frame i with respect to the reference frame is the same as the
rotation of the camera to the world system.
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Figure 3.2: The imaging process of a camera and the coordinates systems. (a)
Camera setup with respect to the object; and (b) the relationship of world
coordinate system and camera systems at different viewpoint.

Definition 3.1 (Axial and lateral rotation)
The orientation of a camera is usually described by roll-pitch-yaw angles.
For the i-th frame, we define the pitch, yaw, and roll as the rotations αi ,βi,
and γi of the camera with respect to the Xw , Yw, and Zw axes of the world
system. As shown in Figure 3.2, the optical axis of the cameras usually
point towards the object. For convenience of discussion, we define γi as
the axial rotation angle, and define αi and βi as lateral rotation angles.

Proposition 3.1
Suppose the camera undergoes small lateral rotation with respect to the
reference frame, then, the variation of projective depth λi j is proportional
to the depth of the space point. The projective depths of a point at different
views have same trend of variation.

Proof Suppose the rotation matrix and translation vector of the i-th frame with
respect to the world system are

Ri =







rT
1i

rT
2i

rT
3i






, Ti =







t x i

t yi

tzi






. (3.10)

Then, the projection matrix can be written as

Pi = Ki[Ri , ti]

=







fir
T
1i + ςir

T
2i + u0ir

T
3i fi t x i + ςi t yi + u0i tzi

κi fir
T
2i + v0ir

T
3i κi fi t yi + v0i tzi

rT
3i tzi






. (3.11)
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The rotation matrix can be decomposed into rotations around the three axes
of the world frame.

Ri=R(γi)R(βi)R(αi) (3.12)

=







cosγi ,− sinγi ,0
sinγi , cosγi , 0

0, 0, 1













cosβi , 0,sinβi

0, 1, 0
− sinβi ,0,cosβi













1, 0, 0
0,cosαi ,− sinαi

0,sinαi , cosαi







=







cosγi cosβi ,cosγi sinβi sinαi − sinγi cosαi ,cosγi sinβi cosαi + sinγi sinαi

sinγi cosβi ,sinγi sinβi sinαi + cosγi cosαi ,sinγi sinβi cosαi − cosγi sinαi

− sinβi , cosβi sinαi , cosβi cosαi






.

Inserting (3.11) and (3.12) into (3.1), we have

λi j = [r
T
3i , tzi]X j =−(sinβi)x j + (cosβi sinαi)y j + (cosβi cosαi)z j + tzi . (3.13)

From Figure 3.2, the rotation angles αi ,βi, and γi of the camera to the world
system are the same as those to the reference frame. Under small lateral rotations,
i.e., small angles of αi and βi, we have

sinβi � cosβi cosαi , cosβi sinαi � cosβi cosαi . (3.14)

Thus, Equation (3.13) can be approximated by

λi j ≈ (cosβi cosαi)z j + tzi . (3.15)

All features {x i j| j = 1, ..., n} in the i-th frame correspond to the same rotation
angles αi ,βi ,γi, and translation tzi. It is evident from (3.15) that the projective
depths of a point in all frames have same trend of variation, which are propor-
tional to the value of z j. Actually, the projective depths have no relation with the
axial rotation γi.

Proposition 3.2
Under small lateral rotations and a further assumption that the distance from
the camera to an object is significantly greater than the object depth, i.e.,
tzi >> z j, the ratio of {λi j|i = 1, ..., m} corresponding to any two different
frames can be approximated by a constant.

Proof Let us take the reference frame as an example, the ratio of the projective
depths of any frame i to those of the reference frame can be written as

µi =
λr j

λi j
≈
(cosβr cosαr)z j + tzr

(cosβi cosαi)z j + tzi
(3.16)
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=
cosβr cosαr(z j/tzi) + tzr/tzi

cosβi cosαi(z j/tzi) + 1

where cosβi cosαi ≤ 1. Under the assumption that tzi >> z j, the ratio can be
approximated by

µi =
λr j

λi j
≈

tzr

tzi
. (3.17)

All features in a frame have the same translation term. Therefore, we can see
from (3.17) that the projective depth ratios of two frames for all features have
the same approximation µi.

According to Proposition 3.2, the projective depth scale is decoupled into the
product of two parts as λi j =

1
µi
λr j. Thus, the perspective projection Equation

(3.1) can be approximated by

1

µi
λr jxi j = PiX j . (3.18)

Let us denote λr j as 1
` j

, and reformulate (3.18) as

xi j = PqiXq j (3.19)

where

Pqi = µiPi , Xq j = ` jX j . (3.20)

We call Equation (3.19) quasi-perspective projection model. Compared with
general perspective projection, the quasi-perspective model assumes that pro-
jective depths between different frames are defined up to a constant µi. Thus,
the projective depths can be decoupled and implicitly embedded in the scalars
of the homogeneous structure Xq j and the projection matrix Pqi. As a result, the
difficult problem on estimating the unknown depths is avoided. The model is
more general than affine projection model (3.4), where all projective depths are
simply assumed to be equal to λi j = 1.

3.3.2 Error analysis of different models

In this section, we will present a heuristic analysis on imaging errors of quasi-
perspective and affine camera models with respect to the full perspective projec-
tion. For simplicity, the subscript in ′i′ of the frame number is omitted throughout
the analysis.
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Suppose the intrinsic parameters of the cameras are known, and all images
are normalized by the cameras as K−1

i xi j → xi j. Then, the projection matrices
under different projection models can be written as

P=







rT
1 t x

rT
2 t y

rT
3 tz






, rT

3 = [− sinβ , cosβ sinα, cosβ cosα] (3.21)

Pq =









rT
1 t x

rT
2 t y

rT
3q tz









, rT
3q = [0,0, cosβ cosα] (3.22)

Pa =







rT
1 t x

rT
2 t y

0T tz






, 0T = [0,0, 0] (3.23)

where P is the projection matrix of full perspective projection, Pq is that of quasi-
perspective assumption, and Pa is that of affine projection. Obviously, the main
difference between the above projection matrices lies only in the last row. For a
space point X̄ = [x , y, z]T , its projected images under different camera models
are given by

m= P

�

X̄
1

�

=







u
v

rT
3 X̄+ tz






(3.24)

mq = Pq

�

X̄
1

�

=









u
v

rT
3qX̄+ tz









(3.25)

ma = Pa

�

X̄
1

�

=







u
v
tz






(3.26)

where

u= rT
1 X̄+ t x , v = rT

2 X̄+ t y (3.27)

rT
3 X̄=−(sinβ)x + (cosβ sinα)y + (cosβ cosα)z (3.28)

rT
3qX̄= (cosβ cosα)z (3.29)

and the nonhomogeneous image points can be denoted as

m̄=
1

rT
3 X̄+ tz

�

u
v

�

(3.30)
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m̄q =
1

rT
3qX̄+ tz

�

u
v

�

(3.31)

m̄a =
1

tz

�

u
v

�

. (3.32)

The point m̄ is an ideal image by perspective projection. Let us define eq =
‖m̄q − m̄‖ as the error of quasi-perspective, and ea = ‖m̄a − m̄‖ as the error of
affine, where ‖ · ‖ stands for the Euclidean norm of a vector. Then, we have

eq = ‖m̄q − m̄‖

=









rT
3 X̄+ tz

rT
3qX̄+ tz

m̄− m̄







= det
�(rT

3 − rT
3q)X̄

rT
3qX̄+ tz

�

‖m̄‖

= det
�−(sinβ)x + (cosβ sinα)y

(cosβ cosα)z+ tz

�

‖m̄‖ (3.33)

ea = ‖m̄a − m̄‖

=









rT
3 X̄+ tz

tz
m̄− m̄








= det
�rT

3 X̄

tz

�

‖m̄‖

= det
�−(sinβ)x + (cosβ sinα)y + (cosβ cosα)z

tz

�

‖m̄‖. (3.34)

Based on the above equations, it is rational to state the following results for
different projection models.

1. The axial rotation angle γ around Z-axis has no influence on the images of
m̄, m̄q, and m̄a.

2. When the distance of a camera to an object is much larger than the object
depth, both m̄q and m̄a are close to m̄.

3. When the camera system is aligned with the world system, i.e., α= β = 0,
we have rT

3q = rT
3 = [0,0,1] and eq = 0. Thus, m̄q = m̄, and the quasi-

perspective assumption is equivalent to perspective projection.

4. When the rotation angles α and β are small, we have eq < ea, i.e., the
quasi-perspective assumption is more accurate than the affine assumption.

5. When the space point lies on the plane through the world origin and
perpendicular to the principal axis, i.e., the direction of rT

3 , we have α =
β = 0 and z = 0. It is easy to verify that m̄= m̄q = m̄a.
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Figure 3.3: Evaluation on projective depth approximation of the first 50 points.
(a) Coordinates and distribution of the synthetic space points; (b) the depth
variation of the space points; (c) the real projective depths of the imaged points
after normalization; and (d) the approximated projective depths under quasi-
perspective assumption.

3.4 Experimental Evaluations

During simulation, we randomly generated 200 points within a cube of 20×
20× 20 in space as shown in Figure 3.3(a), only the first 50 points are displayed
for simplicity. The depth variation in Z-direction of the space points is shown
in Figure 3.3(b). We simulated 10 images from these points by perspective
projection. The image size is set at 800× 800. The camera parameters are set
as follows: focal lengths are set randomly between 900 and 1100, the principal
point is set to the image center, and the skew is zero. The rotation angles are set
randomly between ±5◦. The X and Y positions of the cameras are set randomly
between ±15, while the Z position is spaced evenly from 200 to 220.

The true projective depths λi j associated with these points across the 10
different views are shown in Figure 3.3(c), where the values are given after
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Figure 3.4: Evaluation of the imaging errors by different camera models. (a) The
mean error of the generated images by the quasi-perspective and affine projection
models; and (b) the histogram distribution of the errors by different projection
models.

normalization so that they have unit mean.

3.4.1 Imaging errors

Using the simulated data, we estimated the values of λ1 j and µi from (3.15)

and (3.16), and constructed the estimated projective depths from λ̂i j =
λ1 j

µi
. The

normalized result is shown in Figure 3.3(d). We can see from the experiment
that the recovered projective depths are very close to the ground truth. They
are generally in proportion to the depth variation of the space points in the
Z-direction. If we adopt the affine camera model, it is equivalent to setting
all projective depths to λi j = 1. The error is obviously much bigger than that
recovered from the quasi-perspective assumption.

According to the projection equations (3.30) to (3.34), different images will
be obtained if we adopt different camera models. We generated three sets of
images using the simulated space points via full perspective projection model,
affine camera model, and the quasi-perspective projection model. We compared
the errors given by the quasi-perspective projection model (3.33) and affine
assumption (3.34). The mean error of different models in each frame is shown
in Figure 3.4(a), the histogram distribution of the errors for all 200 points across
10 frames is shown in Figure 3.4(b). The results indicate that the error of
quasi-perspective assumption is much smaller than that under affine assumption.
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Figure 3.5: Evaluation on quasi-perspective projection under different imaging
conditions. (a) The relative error of the estimated depths under different rotation
angles; and (b) the relative error with respect to different relative distances.

3.4.2 Influence of imaging conditions

The proposed quasi-perspective model is based on the assumption of small camera
movement. We investigated the influence of different imaging conditions to the
model. First, we fix the camera position as given in the first test and vary the
amplitude of rotation angles from ±5◦ to ±50◦ in steps of 5◦. At each step, we
calculate the following defined relative errors of the recovered projective depths.

ei j =
|λi j − λ̂i j|
λi j

× 100 (%) (3.35)

where λ̂i j is the estimated projective depth. At each step,100 independent tests
were carried out so as to obtain a statistically meaningful result. The mean and
standard deviation of ei j are shown in Figure 3.5(a).

Then, we fix the rotation angles at ±5◦ and vary the relative distance of
the camera to the object (i.e. the ratio between the distance of the camera to
the object center and the object depth) from 2 to 20 in steps of 2. The mean
and standard deviation of ei j at each step for 100 tests are shown in Figure
3.5(b). It is evident that the quasi-perspective projection is a good approximation
(ei j < 0.5%) when the rotation angles are less than ±35◦ and the relative distance
is larger than 6. Please note that the result is obtained from noise free data.

3.5 Conclusion

In this chapter, we have proposed a quasi-perspective projection model and
analyzed the projection errors of different projection models. The proposed
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model is a trade-off between the affine assumption and the perspective projection.
It is computationally efficient with better accuracy than the affine approximation.

The proposed model is suitable for structure and motion factorization of a
short sequence with small camera motions. It should be noted that the small
rotation assumption of the proposed model is not a limiting factor and is usually
satisfied in many real-world applications. During image acquisition of an object
to be reconstructed, we tend to control the camera movement so as to guarantee
large overlapping part, which also facilitates the feature tracking process. Some
geometrical properties of the model in one-view and two-view [85] will be pre-
sented in Chapter 4. The application details to structure and motion factorization
[86] will be discussed in Chapter 5.
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Chapter 4

Properties of Quasi-Perspective Model

This chapter investigates the geometrical properties of the quasi-perspective
projection model in one- and two-view geometry. The main results are as follows:
(i) Quasi-perspective projection matrix has nine degrees of freedom, and the
parallelism along the X and Y directions in world system are preserved in images;
(ii) quasi-fundamental matrix can be simplified to a special form with only six
degrees of freedom. The fundamental matrix is invariant to any non-singular pro-
jective transformation; (iii) plane induced homography under quasi-perspective
model can be simplified to a special form defined by six degrees of freedom. The
quasi-homography may be recovered from two pairs of corresponding points with
known fundamental matrix; and (iv) any two reconstructions in quasi-perspective
space are defined up to a non-singular quasi-perspective transformation.

4.1 Introduction

Stereo vision and structure from motion algorithms are based on certain as-
sumption of camera models, including the perspective projection model, affine
projection model, and the quasi-perspective projection model proposed in Chap-
ter 3. Different models have different geometrical properties.

The fundamental matrix is an important concept in stereo vision as it en-
capsulates the underlying epipolar geometry between images. Classical linear
techniques for fundamental matrix estimation are sensitive to noise. Hartley
[35] analyzed the problem and proposed a normalized eight-point algorithm
to improve the stability and accuracy of computation. Zhang and Kanade[107]
provided a good review on fundamental matrix estimation and uncertainty anal-
ysis. Hu et al. [38] proposed to use evolutionary agents for epipolar geometry
estimation. The RANdom SAmple Consensus (RANSAC) paradigm [26] was
originated for robust parameter estimation in presence of outliers that severely
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affect least-squares based techniques. Torr et al. [59] proposed to adopt RANSAC
to estimate fundamental matrix. Cheng and Lai [13] proposed a consensus
sampling technique to increase the probability of sampling inliers. Dellaert et al.
[22] also proposed a robust method to reject outliers and reconstruct 3D scene
geometry.

The concept of affine camera and affine fundamental matrix were well estab-
lished in [51] [68] as a generalization of orthographic, weak perspective, and
paraperspective projections. Zhang and Xu [108] presented a general expression
of fundamental matrix for both projective and affine cameras. Wolf and Shashua
[94] investigated the recovery of affine fundamental matrix and structure of
multiple planes moving relatively to each other under pure translation between
two cameras.

Mendonca and Cipolla [48] investigated the trifocal tensor for an affine
trinocular rig. Guilbert et al. [30] presented a batch algorithm to recover the
Euclidean camera motion from sparse data for affine cameras. Lehmann et al.
[43] proposed an integral projection approach to determine affine fundamental
matrix directly from two sets of features without any correspondence or explicit
constraint on the data. Shimshoni et al. [70] presented a geometric interpretation
for weak-perspective motion from two and three images. Zhang et al. [105]
investigated the problem of structure reconstruction by the combination of
perspective and weak-perspective images.

The quasi-perspective projection model was originally proposed for factor-
ization based structure recovery from image sequences [86]. In this chapter, we
will further investigate some geometrical properties of the model in one- and
two-view geometry. Part of this chapter was published in Pattern Recognition
Journal [85].

The remainder of this chapter is organized as follows. Properties of the quasi-
perspective projection matrix are given in Section 4.2. The two-view geometry
of the model is elaborated in Section 4.3. Some properties on quasi-perspective
reconstruction are presented in Section 4.4. Extensive experimental evaluations
on synthetic and real images are reported in Section 4.5 and 4.6 respectively.

4.2 One-View Geometrical Property

In Chapter 3, under the assumption that the camera is far away from the object
with small lateral rotations and translation, we proved that the variation of
projective depth λi j is mainly proportional to the depth of the corresponding
space point, and the projective depths between different frames can be defined
up to a constant. Thus, the projective depths may be decoupled and implicitly
embedded in the scalars of the homogeneous structure and the projection matrix.
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Figure 4.1: The imaging process and relationship of the world coordinate system
with respect to the camera system at different positions.

Consequently, the imaging process is simplified to the following quasi-perspective
projection model.

xi = PqXqi (4.1)

where Pq is the quasi-perspective projection matrix and Xqi is scale weighted space
point in homogeneous form. In this section, we will present some geometrical
properties of the model.

Proposition 4.1
The quasi-perspective projection matrix has nine degrees of freedom, and
its last row is of the form PT

3 ' [0,0,∗,∗], where ′∗′ stands for a nonzero
entry.

Proof As shown in Figure 4.1, let us take the coordinate system O1− X1Y1Z1 of
first camera as a reference frame. Without loss of generality, we assume that the
world coordinate system O−X Y Z is aligned with the reference system. Then, the
camera rotation R with respect to the reference frame is the same as the rotation
with respect to the world system.

Suppose the rotation and translation of the second view are R = [r1, r2, r3]T =
R(γ)R(β)R(α) and T = [t1, t2, t3]T , where α,β , and γ are the rotation angles
along the three axes X , Y , and Z , respectively. Then, the last row of the projection
matrix can be written as

PT
3 = [r

T
3 , t3] = [− sinβ , cosβ sinα, cosβ cosα, t3]. (4.2)

Under quasi-perspective assumption of small rotations, we have

{sinα, sinβ , sinγ} → 0, {cosα, cosβ , cosγ} → 1 (4.3)
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which results to sinβ � cosβ cosα ≤ 1, and cosβ sinα� cosβ cosα ≤ 1. Thus,
the last row (4.2) can be approximated by

PT
3 ' [0, 0, cosβ cosα, tz] = [0,0,∗,∗]. (4.4)

As a consequence, the quasi-perspective projection matrix Pq has only ten
nonzero entries and nine degrees of freedom since it is defined up to a global
scale. The matrix Pq can be linearly solved from a minimum of 41

2
space to image

correspondences. In comparison, at least 51
2

correspondences are required for
the recovery of a full perspective projection matrix, and four pairs of matches for
the affine model.

Proposition 4.2
Under quasi-perspective projection, parallel lines along X and Y directions
of the world system are mapped to parallel lines in the image.

Proof In projective geometry, parallel lines in 3D space intersect at a point at
infinity, which is also called ideal point in P3. The intersection of the parallel lines
along X and Y directions can be written in canonical form as Vx = [1,0,0,0]T ,
Vy = [0,1, 0,0]T . Then, their images are obtained as

vx = PqVx =







∗
∗
0






, vy = PqVy =







∗
∗
0






. (4.5)

Obviously, both vx and vy locate at infinity, and the parallelism is preserved
along the X and Y directions.

In a similar way, we can verify that parallel lines on the O− X Y coordinate
plane or any other parallel planes also project to parallel lines in the image.
However, the parallel relationship is not preserved in the Z-direction. This is
different with respect to affine camera model where the parallelism is invariant.

When the space points are coplanar, we assume that the plane is Z = 0 without
loss of generality, then, the quasi-perspective projection (4.1) is simplified to

xi ' Hπ







X i

Yi

1






=







h11 h12 h13

h21 h22 h23

0 0 h33













X i

Yi

1






(4.6)
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where Hπ ∈ R3×3 is called homography or perspectivity. There are six degrees of
freedom in the perspectivity, so Hπ can be recovered from three non-collinear
space points with known positions. The form of the perspectivity in (4.6) is
the same as that under affine model. In contrast, a general homography under
perspective model has eight degrees of freedom and at least four points are
required for computation.

4.3 Two-View Geometrical Property

In this section, More geometrical properties of quasi-perspective projection are
introduced in the context of two views.

4.3.1 Fundamental matrix

Epipolar geometry is the intrinsic projective geometry between a pair of stereo
images, and the intrinsic geometry between two images can be encapsulated as

x′T Fx= 0 (4.7)

where F ∈ R3×3 is called fundamental matrix; and x and x′ are a pair of corre-
sponding points between the images. If the camera parameters are calibrated
and the images are normalized as y= K−1x, y′ = K′−1x′, we have an analogous
relation as y′T Ey = 0, where E is named as essential matrix. The fundamental
and essential matrices are related by

Eq = K′T FqK. (4.8)

Both the fundamental matrix and the essential matrix are rank-2 homoge-
neous matrices defined up to scales. Thus, they have only seven degrees of
freedom.

Proposition 4.3
Both the fundamental matrix and the essential matrix under quasi-
perspective projection can be simplified to the form of







0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗






,

which is defined by five degrees of freedom.
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Proof Given the rotation R= R(γ)R(β)R(α) and the translation t= [t1, t2, t3]T

between two views, the essential matrix can be computed from

Eq = [t]×R=







e11 e12 e13

e21 e22 e23

e31 e32 e33






(4.9)

where

[t]× =







0 t3 −t2

−t3 0 t1

t2 −t1 0






,

e11 = t3 sinγ cosβ + t2 sinβ ,

e21 = −t3 cosγ cosβ − t1 sinβ ,

e12 = t3(cosγ cosα+ sinγ sinβ sinα)− t2 cosβ sinα,

e22 = t3(sinγ cosα− cosγ sinβ sinα) + t1 cosβ sinα.

Using Equation (4.3), we can see that {e11, e22} → 0. Therefore, the essential
matrix is simplified to

Eq =







0 e12 e13

e21 0 e23

e31 e32 e33






=







0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗






. (4.10)

Suppose the camera parameters are fixed as

K= K′ =







f1 0 u0

0 f2 v0

0 0 1






(4.11)

then, the quasi-fundamental matrix can be obtained from

Fq = K′−T EqK−1 =







e11/ f 2
1 e12/( f1 f2) ∗

e21/( f1 f2) e22/ f 2
2 ∗

∗ ∗ ∗







=







0 f12 f13

f21 0 f23

f31 f32 f33






=







0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗






. (4.12)

Both Eq and Fq have the same form with seven entries. The two matrices are
defined up to scales, subjected to an additional rank-2 constraint. Therefore, Eq

and Fq have only five degrees of freedom.
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To address the rank-2 constraint, the quasi-fundamental matrix may be pa-
rameterized as follows.

Fq =







0 f12 k2 f12

f21 0 k1 f21

f31 f32 k1 f31+ k2 f32






. (4.13)

The quasi-essential matrix can also be parameterized in a similar way. There
are only six entries in (4.13), and the fundamental matrix can be estimated via
nonlinear iterations. Under the above parametrization, the epipole in the second
image is given by e′ = [−k1,−k2, 1]T . It should be noted that the parametriza-
tion (4.13) degenerates when e′ lies at infinity or the camera undergoes pure
translation. In these cases, it is easy to verify that f12 = f21 = 0. Thus, the first
two columns of Fq are linearly dependent.

Proposition 4.4
Given two quasi-perspective camera matrices Pq and P′q, the fundamental
matrix between the two views can be recovered from Fq = [e′]×P′qP+q , where
P+q denotes the pseudo-inverse of Pq. The fundamental matrix is invariant
to any non-singular projective transformation H ∈ R4×4. i.e. Fq remains the
same if we set Pq← PqH and P′q← P′qH.

Proof Similar to the case of perspective projection as in [107], it is easy to obtain
the following relationship.

Fq = [e
′]×P′qP+q . (4.14)

Suppose a space point Xi is projected to xi and x′i via the projection matrices
Pq and P′q respectively. If we apply a non-singular projective transformation H to
the world system, i.e. Pq ← PqH, P′q ← P′qH, and Xi ← H−1Xi. It is easy to verify
that the transformation does not change the images xi and x′i. Thus, the camera
pairs {Pq,P′q} and {PqH,P′qH} correspond to the same fundamental matrix as:

Fq = [e
′]×P′qP+q = [e

′]×(P
′
qH)(PqH)+ (4.15)

which indicates that the quasi-fundamental matrix is invariant to the transforma-
tion H. Specifically, we can choose a certain transformation matrix to register the
first camera to the world system and obtain the following projection matrices:

Pq = K[ I |0 ], P′q = K′[R | t ]. (4.16)
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Then, the epipole in the second image equals to e′ = K′t, and the fundamental
matrix can be expressed by substituting (4.16) into (4.14).

Fq=[K
′t]×K′[R | t ]

�

K[ I |0 ]
�+
= K′−T t×RK−1

=K′−T EqK−1. (4.17)

Equation (4.17) derives (4.12) from a different viewpoint.

Remark 4.1
For the computation of a general fundamental matrix under perspective
projection, we may adopt a normalized 8-point linear algorithm [35], iter-
ative minimization algorithm of Sampson distance [93], 7-point nonlinear
algorithm with rank-2 constraint [107], or the Gold Standard algorithm
[32]. Please refer to [32][107] for more details and a comparison of the
above algorithms. Similarly, we have normalized 6-point linear algorithm
and 5-point nonlinear algorithm for the estimation of quasi-perspective
fundamental matrix. Usually, we adopt the linear algorithm for initial
estimation, and utilize the Gold Standard algorithm to further optimize
the fundamental matrix.
Remark 4.2
Under affine assumption, the optical center of an affine camera locates at
infinity, it follows that all epipolar lines are parallel and both epipoles are
at infinity. Thus, the affine fundamental matrix is simplified to the form

Fa =







0 0 ∗
0 0 ∗
∗ ∗ ∗







which is already a rank-2 matrix with four degrees of freedom.

4.3.2 Plane induced homography

For coplanar space points, their images in two views are related with a planar
homography, which is named as plane induced homography.

Proposition 4.5
Under quasi-perspective projection, the plane induced homography can be
simplified to the form of

Hq =







∗ ∗ ∗
∗ ∗ ∗
0 0 ∗






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Table 4.1: The entry number and degrees of freedom (DOF) of different geometric
matrices.

ProjectionPerspectivityFundamentalEssentialHomographyModel
matrix matrix matrix matrix matrix

Persp 12 (11) 9 (8) 9 (7) 9 (7) 9 (7)
Entry (DOF) Quasi 10 (9) 7 (6) 7 (5) 7 (5) 7 (6)

Affine 9 (8) 7 (6) 5 (4) 5 (4) 7 (6)

with six degrees of freedom.

Proof Suppose x and x′ are a pair of images of a coplanar space point X in the
two views, and Hπ and H′π are the perspective homographies of the two views.
Then, from (4.6) we have

x' HπX, x′ ' H′πX. (4.18)

By eliminating X from (4.18), we get

x′ ' H′πH−1
π x (4.19)

where Hq = H′πH−1
π is called plane induced homography which can be expanded

as

Hq = H′πH−1
π =







h′11 h′12 h′13
h′21 h′22 h′23
0 0 h′33













h11 h12 h13

h21 h22 h23

0 0 h33







−1

=







∗ ∗ ∗
∗ ∗ ∗
0 0 ∗






. (4.20)

The homography Hq is a full rank matrix with six degrees of freedom, and at
least three non-collinear corresponding points can give a unique solution.

It is easy to verify that the homography under an affine camera model has
the same form as (4.20). In contrast, a general homography under a perspective
model has eight degrees of freedom and at least four points are required for
computation. A comparison of the entry numbers and degrees of freedom under
different camera models of above discussed geometric matrices are tabulated in
Table 4.1.
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Proposition 4.6
Given a fundamental matrix Fq, the plane induced homography Hq may be
recovered from two pairs of correspondences xi ↔ x′i , i = 1, 2.

The result is obvious, since an additional correspondence of the epipoles
e↔ e′ can be obtained from the fundamental matrix as

Fqe= 0, FT
q e′ = 0. (4.21)

Therefore, if the two image points xi , i = 1, 2 are not collinear with the epipole
e, Hq can be uniquely determined from the three correspondences.

The homography H∞ induced by the plane at infinity is called infinite ho-
mography. H∞ is of great importance in stereo vision since it is closely related
with camera calibration and affine reconstruction. According to the Proposition
4.6, the infinite homography may be computed from the correspondences of two
vanishing points if the fundamental matrix is known. This is an interesting result
for quasi-perspective projection model.

4.3.3 RANSAC computation

In the above analysis, we assume all correspondences are inliers without mis-
matches. However, mismatches are inevitable in real applications, and the result
may be severely disturbed in presence of outliers. In this case, we usually adopt
the RANSAC algorithm [26] to eliminate outliers and obtain a robust estimation.
RANSAC algorithm is an iterative method to estimate parameters of a mathemat-
ical model and is computationally intensive. We will present a comparison on
the number of trials required for different projection models.

Suppose the outlier-to-inlier ratio is k = Noutl ier/Ninl ier , and the number of
the minimum subset required to estimate the model is n. We want to ensure that
at least one of the random samples is free from outliers with a probability of p.
Then, the trial number N must satisfy

1− p =
�

1− (
1

k+ 1
)n
�N (4.22)

which leads to

N =
ln(1− p)

ln
�

1− ( 1
k+1
)n
�

. (4.23)

Under the given probability p, the number of trials depend on the outlier-
to-inlier ratio k and the subset number n. In practice, we usually select a
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Table 4.2: The number of trials required for different models to ensure probability
p = 99% with respect to different minimal subsets and outlier-to-inlier ratios .

Minimal Outlier-to-inlier ratioModel
subset 10% 20% 40% 60% 80% 100%

Persp 8/7 8/7 18/15 66/47 196/122 506/280 1177/588
Fundamental Quasi 6/5 6/5 12/9 33/23 75/46 155/85 293/146

Affine 4 5 7 16 28 47 72
Persp 4 5 7 16 28 47 72

Homography Quasi 3 4 6 11 17 25 35
Affine 3 4 6 11 17 25 35

conservative probability as p = 0.99. Table 4.2 shows the required number of
trials under different conditions.

We can conclude from Table 4.2 that the required number of trials increases
sharply with the increase in subset number n and outlier-to-inlier ratio k. The
quasi-perspective algorithm is computationally less intensive than the perspective
projection algorithm, especially for large proportion of outliers. As noted in
Remark 4.1, we may adopt a normalized 8-point linear algorithm or a 7-point
nonlinear algorithm for fundamental estimation under perspective projection.
Accordingly, we have a 6-point linear algorithm and a 5-point nonlinear algorithm
for the computation of quasi-fundamental matrix. We can use the simple linear
algorithm when the ratio k is small. However, it is wise to adopt a nonlinear
algorithm for large outlier ratios so as to speed up the computation.

4.4 3D Structure Reconstruction

Quasi-perspective projection is a special case of the full perspective projection.
Thus, most theories on 3D reconstruction under the perspective model may be
applied directly to the quasi-perspective model. Some important properties of
quasi-perspective reconstruction are summarized as follows.

Proposition 4.7
Under quasi-perspective assumption, a pair of canonical cameras can be
defined as

Pq = [ I |0 ], P′q = [Mq | t ] (4.24)

where Mq is a 3× 3 matrix with its last row of the form [0, 0,∗ ].
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Proposition 4.8
Suppose

�

Pq1,P′q1, {X1i}
�

and
�

Pq2,P′q2, {X2i}
�

are two quasi-perspective re-
constructions of a set of correspondences xi ↔ x′i between two images.
Then, the two reconstructions are defined up to a quasi-perspective trans-
formation as below.

Pq2 = Pq1Hq, P′q2 = P′q1Hq, X2i = H−1
q X1i

where the transformation Hq is a 4× 4 non-singular matrix of the form

Hq =

�

A2×2 B2×2

02×2 C2×2

�

.

Under quasi-perspective transformation Hq, we have

Pq2X2i = (Pq1Hq)(H
−1
q X1i) = Pq1X1i = xi (4.25)

P′q2X2i = (P
′
q1Hq)(H

−1
q X1i) = P′q1X1i = x′i . (4.26)

It is easy to verify that the transformed camera matrices Pq2 = Pq1Hq and
P′q2 = P′q1Hq have the same forms as the quasi-perspective projection matrices as
given in Proposition 4.1. The transformed space points can be written as

X2i = H−1
q X1i =

�

A−1 −A−1BC−1

0 C−1

�

X1i . (4.27)

It is obvious that the parallelism along X and Y axes are preserved under the
transformation Hq, since ideal points X1i = [1,0,0,0]T or X1i = [0,1,0,0]T are
mapped to ideal points according to (4.27).

For the recovery of 3D structure and camera motions, we may adopt a strat-
ified reconstruction algorithm [25] to refine the structure from perspective to
affine, and finally to the Euclidean space. In this chapter, we assume calibrated
cameras. Therefore, the metric structure can be recovered directly from singular
value decomposition (SVD) of the essential matrix [32]. The implementation of
the reconstruction algorithm is summarized as follows.

1. Establish initial correspondences between the two images according to the
method in [80];
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Figure 4.2: Histogram distribution of the epipolar residual errors under different
camera models. (a) The result obtained with 1-pixel Gaussian noise; and (b) the
result obtained with 2-pixel Gaussian noise.

2. Estimate the quasi-fundamental matrix via RANSAC algorithm and elimi-
nate outliers;

3. Optimize the fundamental matrix via the Gold Standard algorithm as stated
in Remark 4.1 and recover the essential matrix from (4.8);

4. Perform SVD decomposition on the essential matrix and extract the camera
projection matrices according to the method in [32], which will give four
pairs of solutions;

5. Resolve ambiguity in the solutions via trial and error. Take one pair of
matching points as reference and reconstruct it from the above four solu-
tions, only the true solution can make the reconstructed point lie in front
of both cameras;

6. Compute the 3D structure of all correspondences via triangulation from the
recovered camera matrices;

7. Optimize the solution via bundle adjustment [32].

4.5 Evaluations on Synthetic Data

During simulation, we randomly generated 200 points within a cube of 20×
20× 20 in space, and simulated two images from these points by perspective
projection. The image size is set at 800× 800. The camera parameters are set as
follows: focal lengths are set randomly between 1000 and 1100. Three rotation
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Figure 4.3: Histogram distribution of reprojection errors by plane induced ho-
mography. (a) The result obtained with 1-pixel Gaussian noise; and (b) the result
obtained with 2-pixel Gaussian noise.

angles are set randomly between ±5◦. The X and Y positions of the cameras
are set randomly between ±15, while the Z positions are set randomly between
210 to 220. The synthetic imaging conditions are very close to affine and the
quasi-perspective assumptions.

4.5.1 Fundamental matrix and homography

We recovered the quasi-fundamental matrix Fq by normalized 6-point algorithm
and calculated the epipolar residual error ε1i which is defined as the distance of
a point to the associated epipolar line.

ε1i =
1

2

�

dis(xi ,F
T
q x′i)

2+ dis(x′i ,Fqxi)
2
�

(4.28)

where ′dis(∗,∗)′ denotes the Euclidean distance from a point to a line. The
histogram distribution of the errors across all 200 correspondences is outlined in
Fig. 4.2. Gaussian image noise was added to each image point during the test. As
a comparison, we also recovered the general fundamental matrix F by normalized
8-point algorithm and the affine fundamental matrix Fa by normalized 4-point
algorithm. We see that the error of the quasi-perspective projection lies in
between those of the perspective projection and affine projection models. Thus,
the quasi-perspective fundamental matrix is a better approximation than the
affine fundamental matrix.

To evaluate the accuracy of homography estimation, we set all space points
on the plane Z = 10 and regenerated two images with the same camera pa-
rameters. Then, we recovered the plane induced homography Hq and H under
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Figure 4.4: Result of outlier removal. (a) Initial feature matches in two images
with outliers; and (b) final detected correspondences after RANSAC algorithm.

quasi-perspective and perspective projection, respectively, and evaluated the
reprojection error defined as

ε2i =
1

2

�

d(xi ,H
−1
q x′i)

2+ d(x′i ,Hqxi)
2
�

(4.29)

where ′d(∗,∗)′ denotes the Euclidean distance between two feature points. The
histogram distribution of the errors under different noise levels is shown in Fig.
4.3. It is clear that the error obtained from Hq is higher than that from H. The
homography under the affine model is the same as Hq as noted in Section 4.3.2.

4.5.2 Outlier removal

We randomly added 50 mismatches to the initial generated correspondences.
The initial matches with disparities and outliers are shown in Fig. 4.4. We adopt
the RANSAC paradigm to remove outliers and estimate the quasi-fundamental
matrix. As shown in Fig. 4.4, all mismatches were detected by the algorithm.
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Figure 4.5: Average computation time under different camera models. (a) The
time with respect to different outlier-to-inlier ratios; and (b) the time with respect
to different feature point numbers.

We compared the average computation time in estimating the fundamental
matrix under different models. Only linear algorithm was adopted and the
minimal subsets for F, Fq, Fa are set as 8, 6, and 4, respectively. The program was
implemented with Matlab R14 on Dell Inspiron 600m laptop of Pentium®1.8GHz
CPU. In the first case, we select 200 correspondences and vary the outlier-to-inlier
ratio from 0.1 to 1.0. In the second case, we set the outlier ratio at 0.8 and vary
the feature number from 200 to 2000. The result is shown in Fig. 4.5. It is
evident that the algorithm runs significantly faster using the quasi-perspective
model than using the perspective projection model, especially for larger data sets
and higher outlier ratios.

4.5.3 Reconstruction result

We reconstructed the 200 data points under different camera models according
to the algorithm presented in Section 4.4. The reconstruction is defined up to a
Euclidean rotation and translation with respect to the ground truth. We recover
these parameters and register the result with the ground truth. The reconstruction
error is defined as point-wise distance between the recovered structure and its
ground truth. In order to obtain a statistically meaningful result, we vary the
image noise level from 0 to 3 pixels in steps of 0.5, and take 100 independent tests
at each noise level. The mean and standard deviation of the errors are shown
in Fig. 4.6. The experimental results show that the reconstruction accuracy
obtained using the quasi-perspective model lies in between those obtained by
the full perspective and affine projection models. The quasi-perspective model is
more accurate than the affine model.
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Figure 4.6: Evaluation on 3D reconstruction accuracy by different models. (a)
The mean of the reconstruction errors at different noise levels; and (b) the
corresponding standard deviation.

Table 4.3: The reprojection error under different projection models.
Model Persp Quasi Affine

Stone dragon 0.72 0.80 0.86Error
Medusa head 0.97 1.04 1.13

4.6 Evaluations on Real Images

4.6.1 Test on stone dragon images

We tested and compared different models on many real images and we report two
results here. The correspondences in the tests were established by a matching sys-
tem based on SIFT and the epipolar constraint [80], and the camera parameters
were calibrated offline via the method in Zhang [104].

The stone dragon images were captured by a Canon G3 camera in Chung
Chi College of the Chinese University of Hong Kong. The image resolution is
1024× 768, and 4261 reliable features were established by the system [80]. We
recover the fundamental matrix via Gold Standard algorithm and reconstructed
the 3D Euclidean structure according to the process in Section 4.4. Figure 4.7
shows the matched features, reconstructed VRML model with texture, and the
corresponding wireframe model viewed from different viewpoints. The structure
of the dragon is correctly recovered using the quasi-perspective model. The
distributions of epipolar residual errors using the three models are compared in
Figure 4.8, and the reprojection errors are listed in Table 4.3.
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(a)

(b)

(c)

Figure 4.7: Reconstruction result of stone dragon images. (a) Two images
of the stone dragon overlaid by tracked features with relative disparities; (b)
reconstructed VRML model of the scene shown from different viewpoints with
texture mapping; and (c) the corresponding wireframe of the VRML model.

4.6.2 Test on Medusa head images

The Medusa head image sequence was downloaded from Dr. Pollefeys’s home-
page which was taken in the ancient city of Sagalassos, Turkey. It was recorded
by a Sony TRV900 camcorder with a resolution of 720× 576. We selected two
adjacent frames and in total 1216 correspondences were established. The cam-
era’s intrinsic parameters were estimated by the method [88]. We recover the
fundamental matrix and reconstruct its structure by the proposed algorithm. The
reconstructed VRML model and the corresponding wireframe model are shown in
Figure 4.9. The result is realistic and visually correct despite of the unavailability
of the ground truth. As a quantitative evaluation, we calculated the reprojection
errors by the three projection models as tabulated in Table 4.3. The histogram
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Figure 4.8: Histogram distribution of the epipolar residual errors under different
camera models. (a) Fountain base images; (b) stone dragon images; and (c)
Medusa head images.

distribution of the epipolar residual errors by different models are shown in
Figure 4.8. The result by the quasi-perspective model is better than that by the
affine assumption.

4.7 Conclusion

In this chapter, we have investigated the one-view and two-view geometry of the
quasi-perspective projection model and presented some special properties of the
quasi fundamental matrix, plane induced homography, and 3D reconstruction
under the proposed model. Both theoretical analysis and experimental results
show that the quasi-perspective model is a good trade-off between the simplicity
of the affine assumption and the accuracy of the full perspective projection
model. The result is consistent with our previous study on structure and motion
factorization [83]. The proposed method is suitable to deal with images with
small baseline.
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(a)

(b)

(c)

Figure 4.9: Reconstruction result of Medusa head images. (a) Two images
of the fountain base overlaid by tracked features with relative disparities; (b)
reconstructed VRML model of the scene shown from different viewpoints with
texture; and (c) the corresponding triangulated wireframe of the VRML model.
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Chapter 5

SfM Based on Quasi-Perspective Pro-
jection Model

Previous studies on structure and motion factorization are either based on a
simplified affine assumption or a general perspective projection model. The affine
approximation is widely adopted due to its simplicity, whereas the extension to
perspective model suffers from difficulties in projective depth recovery. To fill the
gap between simplicity of affine and accuracy of perspective model, we propose
a quasi-perspective model based algorithm for structure and motion recovery of
both rigid and nonrigid objects. In this chapter, we first establish a framework
of rigid and nonrigid factorization under quasi-perspective assumption. Then,
we propose an extended Cholesky decomposition to recover the rotation part of
the Euclidean upgrading matrix. Finally, we prove that the last column of the
upgrading matrix corresponds to a global scale and translation of the camera thus
may be set freely. The proposed algorithm is validated and evaluated extensively
on synthetic and real image sequences.

5.1 Introduction

The factorization algorithm is a powerful and efficient method for structure and
motion recovery. Since Tomasi and Kanade [74] first introduced the algorithm
in the early 90’s, numerous extensions and generalizations have been proposed.
Most early studies on the problem assume a rigid object and an affine camera
model [62][65]. The main difficulty of its extension to perspective projection
lies in the recovery of depth scales. One method is to estimate the depths in a
pair-wise fashion via epipolar constraint [71][77], which may be unstable due
to possible error accumulation. Another method is based on nonlinear iteration
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by minimizing reprojections [47]. These methods rely on the accuracy of initial
affine solution. Oliensis and Hartley [56] recently proved that no iteration
converges sensibly. Wang and Wu [88] proposed a hybrid method to initialize
the depth scales via a projective reconstruction.

In recent years, many extensions stemming from the factorization algorithm
were proposed to relax the rigidity constraint to multiple moving objects [16][44]
and articulated objects [97][98]. Bregler et al. [11] firstly established the frame-
work of nonrigid factorization using shape bases. The method was extensively
investigated and developed under the affine assumption [10][21][75][95]. It
has been extended to perspective projection in [81][96]. Rabaud and Belongie
[66] relaxed the Bregler’s assumption and proposed to solve the problem by a
manifold-learning framework. Wang et al. [82] introduced a rotation constrained
power factorization algorithm. Hartley and Vidal [34] proposed a closed form
solution to the nonrigid shape and motion with known camera constraints.

The affine camera model is widely adopted in factorization due to its sim-
plicity. However, the accuracy of this approximation is not satisfactory in many
applications. Perspective projection based algorithms are computationally in-
tensive and thus convergence is not guaranteed. In this chapter, we apply the
quasi-perspective projection model [83] to both a rigid and a nonrigid factoriza-
tion framework. This is a trade-off between the simplicity of the affine and the
accuracy of the full perspective projection. It is demonstrated to be more accu-
rate than affine approximation since the projective depths in quasi-perspective
projection are implicitly embedded in the motion and shape matrices. Thus, the
difficult problem of depth recovery in perspective factorization is circumvented.
Part of this chapter was published in International Journal of Computer Vision
[86].

The remaining part of this chapter is organized as follows. The factorization
algorithm is briefly reviewed in Section 5.2. The proposed quasi-perspective
factorization algorithm for rigid objects is detailed in Section 5.3. The nonrigid
factorization under quasi-perspective projection is presented in Section 5.4. Some
experimental evaluations on synthetic and real image sequences are reported in
Section 5.5 and 5.6 respectively.

5.2 Background on Factorization

We already introduced the rigid and nonrigid factorization under the affine
and perspective projection models in previous chapters. For convenience of
discussion, we present a brief review in this section on the expressions of different
factorization algorithms.

Under perspective projection, a 3D point X j is imaged at xi j in the i-th frame
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according to equation

λi jxi j = PiX j = Ki[Ri , ti]X j . (5.1)

If we adopt affine projection model and register all image points to the
centroid. Then, the projection process (5.1) is simplified to the form

x̄i j = AiX̄ j . (5.2)

Given n tracked features of an object across a sequence of m frames. The struc-
ture and motion factorization under affine assumption (5.2) can be expressed as









x̄11 · · · x̄1n
...

. . .
...

x̄m1 · · · x̄mn









︸ ︷︷ ︸

W2m×n

=









A1
...

Am









︸ ︷︷ ︸

M2m×3

�

X̄1, · · · , X̄n

�

︸ ︷︷ ︸

S̄3×n

. (5.3)

The factorization is usually performed by SVD decomposition of the tracking
matrix W with rank-3 constraint. When the perspective projection model (5.1) is
adopted, the factorization can be modeled as









λ11x11 · · · λ1nx1n
...

. . .
...

λm1xm1 · · · λmnxmn









︸ ︷︷ ︸

Ẇ3m×n

=









P1
...

Pm









︸ ︷︷ ︸

M3m×4

�

X̄1, · · · , X̄n

1, · · · , 1

�

︸ ︷︷ ︸

S4×n

. (5.4)

The rank of the projective depth-scaled tracking matrix Ẇ is at most 4 if a
consistent set of scalars are present.

When an object is nonrigid, we follow Bregler’s assumption [11] to model the
nonrigid structure by a linear combination of some shape bases.

S̄i =
∑k

l=1
ωilBl . (5.5)

With this assumption, the nonrigid factorization under affine camera model is
expressed as
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

x̄11 · · · x̄1n
...

. . .
...

x̄m1 · · · x̄mn








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W2m×n
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







ω11A1 · · · ω1kA1
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. . .
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ωm1Am · · · ωmkAm








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M2m×3k









B1
...

Bk









︸ ︷︷ ︸

B̄3k×n

(5.6)
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and the rank of the nonrigid tracking matrix is at most 3k. Similarly, the factor-
ization under perspective projection can be formulated as follows [96].






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λ11x11 · · · λ1nx1n
...

. . .
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λm1xm1 · · · λmnxmn
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1T


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
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B(3k+1)×n

. (5.7)

The rank of the correctly scaled tracking matrix in (5.7) is at most 3k+1. Just
as its rigid counterpart, the most difficult issue for perspective factorization is to
determine the projective depths that are consistent with (5.1).

5.3 Quasi-Perspective Rigid Factorization

Under the assumption that the camera is far away from the object with small
lateral rotations, we proposed a quasi-perspective projection model to simplify
the imaging process as follows.

xi j = PqiXq j = (µiPi)(` jX j). (5.8)

In quasi-perspective projection (5.8), the projective depths are implicitly
embedded in the scalars of the homogeneous structure Xq j and the projection
matrix Pqi. Thus, the difficult problem of estimating the unknown depths is
circumvented. The model is more general than the affine projection model
(5.2), where all projective depths are simply assumed to be equal. Under the
quasi-perspective assumption, the factorization equation of a tracking matrix is
expressed as









x11 · · · x1n
...

. . .
...

xm1 · · · xmn









=









µ1P1
...

µmPm









[`1X1, · · · ,`nXn] (5.9)

which can be written concisely as

W̃3m×n =M3m×4S4×n. (5.10)

The form is similar to perspective factorization (5.4). However, the projective
depths in (5.9) are embedded in the motion and shape matrices, hence there is no
need to estimate them explicitly. By performing SVD on the tracking matrix and
imposing the rank-4 constraint, W̃ may be factorized as M̂3m×4Ŝ4×n. However,
like all other factorization algorithms, the decomposition is not unique since it is
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defined up to a nonsingular linear transformation H4×4 as M = M̂H and S = H−1Ŝ.
Due to the special form of (5.9), the upgrading matrix has some special properties
compared to that under affine and perspective projection. We will present the
computational details in the following subsections.

5.3.1 Euclidean upgrading matrix

We adopt the metric constraints to compute the upgrading matrix H4×4. Let us
decompose the matrix into two parts as

H= [Hl |Hr] (5.11)

where Hl denotes the first three columns, and Hr denotes the fourth column.
Suppose M̂i is the i-th triple rows of M̂, we have

M̂iH= [M̂iHl |M̂iHr] (5.12)

where

M̂iHl = µiP
(1:3)
i = µiKiRi (5.13)

M̂iHr = µiP
(4)
i = µiKiti (5.14)

where P(1:3)
i and P(4)i denote the first three columns and the fourth column of Pi.

In the following, we will show how to compute Hl and Hr .

Recovering Hl

Let us denote Q = HlH
T
l , which is a 4 × 4 symmetric matrix. As in previous

factorization studies [31][65], we adopt a simplified camera model with only
one parameter as Ki = diag( fi , fi , 1). Then, from

Ci = M̂iQM̂T
i =

�

M̂iHl
��

M̂iHl
�T = (µiKiRi)(µiKiRi)

T

= µ2
i KiK

T
i = µ

2
i







f 2
i

f 2
i

1






(5.15)

we obtain the following constraints.










Ci(1, 2) = Ci(2, 1) = 0
Ci(1, 3) = Ci(3,1) = 0
Ci(2, 3) = Ci(3,2) = 0
Ci(1, 1)−Ci(2,2) = 0

(5.16)
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Since the factorization (5.9) can be defined up to a global scalar as W̃ =
MS = (εM)(S/ε), we set µ1 = 1 to avoid the trivial solution of Q = 0. Thus, we
have 4m+ 1 linear constraints in total on the ten unknowns of Q, which can be
solved via least squares. Ideally, Q is a positive semidefinite symmetric matrix,
the matrix Hl can be recovered from Q via extended Cholesky decomposition as
follows.

Definition 5.1 (Vertical extended upper triangular matrix)
Suppose U is a n× k (n> k) matrix. We call U a vertical extended upper
triangular matrix if it is of the form

Ui j =

¨

ui j if i ≤ j+ (n− k)
0 if i > j+ (n− k)

(5.17)

where Ui j denotes the (i, j)-th element of U, and ui j is a scalar. For
example, a n× (n− 1) vertical extended upper triangular matrix can be
written explicitly as

U=

















u11 u12 · · · u1(n−1)
u21 u22 · · · u2(n−1)

u32 · · · u3(n−1)
. . .

...
un(n−1)

















. (5.18)

Proposition 5.1 (Extended Cholesky Decomposition)
Suppose Qn is a n× n positive semidefinite symmetric matrix of rank k (k <
n). Then, it can be decomposed as Qn = HkHT

k , where Hk is a n×k matrix of
rank k. Furthermore, the decomposition can be written as Qn = ΛkΛ

T
k with

Λk, a n×k vertical extended upper triangular matrix. The degree-of-freedom
of the matrix Qn is nk− 1

2
k(k− 1), which is the number of unknowns in Λk.

Proof Since A is a n× n positive semidefinite symmetric matrix of rank k, it can
be decomposed by SVD as

A= UΣUT = U










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

σ1
. . .
σk

0
. . .

0




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















UT (5.19)
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where U is a n× n orthogonal matrix, and Σ is a diagonal matrix with σi the
singular value of A. Consequently we get

Hk = U(1:k)









p
σ1

. . .
p
σk









=

�

Hku

Hkl

�

(5.20)

such that A = HkHT
k , where U(1:k) denotes first k columns of U, Hku denotes upper

(n− k)× k submatrix of Hk, and Hkl denotes lower k× k submatrix of Hk. By
applying RQ-decomposition to Hkl , we have Hkl = ΛklOk, where Λkl is an upper
triangular matrix, and Ok is an orthogonal matrix.

Let us denote Λku = HkuOT
k and construct a n× k vertical extended upper

triangular matrix

Λk =

�

Λku

Λkl

�

. (5.21)

Then, we have

Hk = ΛkOk, A= HkHT
k = (ΛkOk)(ΛkOk)

T = ΛkΛ
T
k . (5.22)

It is easy to verify that the matrix A has nk− 1
2
k(k− 1) degrees of freedom,

which is just the number of unknowns in Λk.

The proposition can be taken as an extension of the Cholesky Decomposition to
the case of positive semidefinite symmetric matrix, while Cholesky Decomposition
can only deal with positive definite symmetric matrix. From the above proposition,
we obtain the following result.

Corollary 5.2
The matrix Q recovered from (5.16) is a 4×4 positive semidefinite symmetric
matrix of rank 3. It can be decomposed as Q = HlH

T
l , where Hl is a 4× 3

rank 3 matrix. The decomposition can be further written as Q= Λ3Λ
T
3 with

Λ3 a 4× 3 vertical extended upper triangular matrix.

In practice, the matrix Hl can be easily computed as follows. Suppose the
SVD decomposition of Q is U4Σ4UT

4 , where U4 is a 4 × 4 orthogonal matrix,
Σ4 = diag(σ1,σ2,σ3, 0) is a diagonal matrix with σi the singular value of Q.
Thus, we have

Hl = U(1:3)







p
σ1 p

σ2 p
σ3






. (5.23)
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Then, the vertical extended upper triangular matrix Λ3 can be constructed
from Hl as in (5.21). From the number of unknowns in Λ3, we know that Q is
only defined up to nine degrees of freedom.

In Corollary 5.2, we claim that the symmetric matrix Q can be decomposed
into Λ3Λ

T
3 . In practice, we can simply decompose the matrix into HlH

T
l as shown

in (5.23), it is unnecessary to recover Λ3 since the upgrading matrix (5.11) is not
unique. However, when the data is corrupted by noise, the recovered matrix Q
may be negative definite and the decomposition of (5.23) is impossible. In such
case, we suggest the following alternative estimation method.

Let us denote

Λ3 =











h1 h2 h3
h4 h5 h6

h7 h8
h9











(5.24)

and substitute the matrix Q in (5.15) with Λ3Λ
T
3 . Then, a best estimation of Λ3

in (5.24) can be obtained via minimizing the following cost function

J1 =min
(Λ3)

1

2

m
∑

i=1

�

C2
i (1,2) +C2

i (1,3) +C2
i (2, 3) + (Ci(1, 1)−Ci(2,2))2

�

. (5.25)

The minimization scheme can be solved using any nonlinear optimization
techniques, such as gradient descent or Levenberg-Marquardt (LM) algorithm. By
introducing the vertical extended upper triangular matrix (5.24), we can reduce
three unknowns in matrix Q.

Recovering Hr

In this section we recover the right part Hr of the upgrading matrix (5.11). From
quasi-perspective equation (5.8), we have

xi j = (µiP
(1:3)
i )(` jX̄ j) + (µiP

(4)
i )` j . (5.26)

For all features in the i-th frame, we take a summation of their coordinates as
below.

n
∑

j=1

xi j = µiP
(1:3)
i

n
∑

j=1

(` jX̄ j) +µiP
(4)
i

n
∑

j=1

` j (5.27)

where µiP
(1:3)
i can be recovered from M̂iHl , µiP

(4)
i = M̂iHr . Since the world

coordinate system can be chosen freely, we may set the origin of the world system
at the gravity center of the scaled space points as

n
∑

j=1

(` jX̄ j) = 0. (5.28)
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On the other hand, we may simply set

n
∑

j=1

` j = 1 (5.29)

since the reconstruction is defined up to a global scalar. Thus, Equation (5.27) is
simplified to

M̂iHr =
n
∑

j=1

xi j =









∑

j ui j
∑

j vi j

n









(5.30)

which provides three linear constraints on the four unknowns of Hr . Therefore,
we obtain 3m equations from the sequence and Hr can be recovered via linear
least squares.

From the above analysis, we note that the solution of Hr is not unique as it is
dependant on the selection of the world origin

∑n
j=1(` jX̄ j) and the global scalar

∑n
j=1 ` j. Actually, Hr may be set freely as shown in the following proposition.

Proposition 5.3
Suppose Hl in (5.11) is already recovered. Let us choose an arbitrary four
dimensional vector H̃r that is independent of the three columns of Hl , and
construct a matrix as

H̃= [Hl |H̃r].

Then, H̃ must be a valid upgrading matrix. i.e., M̃ = M̂H̃ is a valid Euclidean
motion matrix, and S̃ = H̃−1Ŝ corresponds to a valid Euclidean shape matrix.

Proof Suppose the correct transformation matrix is H= [Hl |Hr], then, from

S= H−1Ŝ=

�

`1X̄1, · · · , `nX̄n

`1, · · · , `n

�

(5.31)

we obtain a correct Euclidean structure [X̄1, · · · , X̄n] of the object under a certain
world coordinate frame by dehomogenizing the shape matrix S. The arbitrary
constructed matrix H̃ = [Hl |H̃r] and the correct matrix H are defined up to a
4× 4 invertible matrix G as

H= H̃G, G=

�

I3 g
0T s

�

(5.32)
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where I3 is a 3× 3 identity matrix, g is a 3-vector, 0 is a zero 3-vector, and s is a
nonzero scalar. Under the transformation matrix H̃, the motion M̂ and shape Ŝ
are transformed to

M̃ = M̂H̃= M̂HG−1 =M

�

I3 −g/s
0T 1/s

�

(5.33)

S̃ = H̃−1Ŝ= (HG−1)−1Ŝ= G(H−1Ŝ)

= s

�

`1(X̄1+ g)/s · · · `n(X̄n+ g)/s
`1 · · · `n

�

. (5.34)

As shown in (5.34), the new shape S̃ is actually the original structure that
undergoes a translation g and a scale 1/s, which does not change the Euclidean
structure. From (5.33), we have M̃(1:3) = M(1:3), which indicates that the first-
three-columns of the new motion matrix (rotation term) do not change. While the
last column, which corresponds to translation factor, is modified in accordance
with the translation and scale changes of the structure.

Therefore, the constructed matrix H̃ is a valid transformation matrix that can
upgrade the factorization from projective space to the Euclidean space.

According to Proposition 5.3, the value of Hr can be set randomly as any
4-vector that is independent of Hl . A practical selection method may be as
follows.

Suppose the SVD decomposition of Hl is

Hl = U4×4Σ4×3VT
3×3 = [u1,u2,u3,u4]











σ1 0 0
0 σ2 0
0 0 σ3

0 0 0











[v1,v2,v3]
T (5.35)

where U and V are two orthogonal matrices, and Σ is a diagonal matrix composed
of the three singular values. Let us choose an arbitrary value σr between the
biggest and the smallest singular values of Hl , then we may set

Hr = σru4, H= [Hl ,Hr]. (5.36)

Such a kind of construction guarantees that H is invertible and has the same
condition number as Hl , so that we can obtain a good precision in computing the
inverse H−1.

After recovering the Euclidean motion and shape matrices, the intrinsic param-
eters and pose of the camera associated with each frame can be easily computed
as follows.

µi =




M(1:3)
i(3)





 (5.37)
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fi =
1

µi





M(1:3)
i(1)





=
1

µi





M(1:3)
i(2)





 (5.38)

Ri =
1

µi
K−1

i M(1:3)
i , Ti =

1

µi
K−1

i M(4)i (5.39)

where M(1:3)
i(t) denotes the t-th row of M(1:3)

i . The result is obtained under quasi-
perspective assumption, which is a close approximation to the general perspective
projection. The solution may be further optimized to perspective projection by
minimizing the image reprojection residuals.

J2 = min
(Ki ,Ri ,Ti ,µi ,X j)

1

2

m
∑

i=1

n
∑

j=1

�

�x̄i j − x̂i j

�

�

2
(5.40)

where x̂i j denotes the reprojected image point computed via perspective projec-
tion (5.1). The minimization process is termed as bundle adjustment, which is
usually solved via Levenberg-Marquardt (LM) iterations [32].

5.3.2 Algorithm outline

Given the tracking matrix W̃ ∈ R3m×n across a sequence with small camera
movements. The implementation of the quasi-perspective rigid factorization
algorithm is summarized as follows.

1. Balance the tracking matrix via point-wise and image-wise rescalings, as in
[71], to improve its numerical stability;

2. Perform rank-4 SVD decomposition on the tracking matrix to obtain a set
of solution of M̂ and Ŝ;

3. Compute the left part of upgrading matrix Hl according to (5.23), or (5.25)
for negative definite matrix Q;

4. Construct Hr and H according to (5.36);

5. Recover the Euclidean motion matrix M= M̂H and shape matrix S= H−1Ŝ;

6. Estimate the camera parameters and pose from (5.37) to (5.39);

7. Optimize the solution via bundle adjustment (5.40).

In the above analysis, as well as in other factorization algorithms, we usu-
ally assume one-parameter-camera model as in (5.15) so that we can use this
constraint to recover the upgrading matrix H. In real applications, we may take
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the solution as an initial value and optimize the camera parameters via Kruppa
constraints that arise from pairwise images [88].

The essence of quasi-perspective factorization (5.10) is to find a rank-4 approx-
imation MS of the tracking matrix by minimizing the Frobenius norm ‖W̃−MS‖2F .
Most studies adopt a SVD decomposition of W̃ and truncate it to the desired
rank. However, when the tracking matrix is not complete, such as when some
features are missing in some frames due to occlusions, it is hard to perform
SVD decomposition. In case of missing data, we adopt the power factorization
algorithm [33][84] to obtain a least squares solution of M̂ and Ŝ. The solution
is then upgraded the solution to the Euclidean space according to the proposed
scheme.

5.4 Quasi-Perspective Nonrigid Factorization

5.4.1 Problem formulation

For nonrigid factorization, we follow Bregler’s assumption (5.5) to represent
a nonrigid shape by weighted combination of k shape bases. Under quasi-
perspective projection, the structure is expressed in homogeneous form with
nonzero scalars. Let us denote the scale-weighted nonrigid structure associated
with the i-th frame and the l-th scale weighted shape basis as

S̄i = [`1X̄1, · · · ,`nX̄n], Bl = [`1X̄l
1, · · · ,`nX̄l

n]. (5.41)

Then from (5.5), we have

X̄i =
k
∑

l=1

ωil X̄
l
i , ∀ i = 1, · · · , n. (5.42)

Let us multiply a weight scale `i on both sides as

`iX̄i = `i

k
∑

l=1

ωil X̄
l
i =

k
∑

l=1

ωil(`iX̄
l
i) (5.43)

then, we can immediately have the following result.

Si =

�

S̄i

`T

�

=

�

∑k
l=1ωilBl

`T

�

. (5.44)

We call (5.44) extended Bregler’s assumption in homogeneous case. Un-
der this extension, the quasi-perspective projection of the i-th frame can be
formulated as

W̃i = (µiPi)Si = [µiP
(1:3)
i ,µiP

(4)
i ]

�

∑k
l=1ωilBl

`T

�

(5.45)
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= [ωi1µiP
(1:3)
i , · · · ,ωikµiP

(1:3)
i ,µiP

(4)
i ]











B1

· · ·
Bk

`T











.

Thus, the nonrigid factorization under quasi-perspective projection can be
expressed as

W̃3m×n =









ω11µ1P(1:3)
1 · · · ω1kµ1P(1:3)

1 µ1P(4)1
...

. . .
...

...
ωm1µmP(1:3)

m · · · ωmkµmP(1:3)
m µmP(4)m





















B1
...

Bk

`T













(5.46)

or represented concisely in matrix form as

W̃3m×n =M3m×(3k+1)B(3k+1)×n. (5.47)

The factorization expression is similar to (5.7). However, the difficulties in
estimating the projective depths are circumvented.

5.4.2 Euclidean upgrading matrix

The rank of the tracking matrix is at most 3k+ 1, and the factorization is defined
up to a transformation matrix H ∈ R(3k+1)×3k+1). Suppose the SVD factorization
of a tracking matrix with rank constraint is W̃ = M̂B̂. Similar to the rigid case, we
adopt the metric constraint to compute the upgrading matrix. Let us denote the
matrix into k+ 1 parts as

H= [H1, · · · ,Hk|Hr] (5.48)

where Hl ∈ R(3k+1)×3(l = 1, · · · , k) denotes the l-th triple columns of H, and Hr

denotes the last column of H. Then, we have

M̂iHl =ωilµiP
(1:3)
i =ωilµiKiRi (5.49)

M̂iHr = µiP
(4)
i = µiKiti . (5.50)

Similar to (5.15) in the rigid case, Let us denote Cii′ = M̂iQlM̂
T
i′ with Ql =

HlH
T
l , we obtain

Cii′ = M̂iQlM̂
T
i′ = (ωilµiKiRi)(ωi′ lµi′Ki′Ri′)

T

= ωilωi′ lµiµi′Ki(RiRi′)K
T
i′ (5.51)
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where i and i′ (= 1, · · · , m) correspond to different frame numbers, l = 1, · · · , k
corresponds to different shape bases. Assuming a simplified camera model with
only one parameter as Ki = diag( fi , fi , 1), we have

Cii = M̂iQlM̂
T
i =ω

2
ilµ

2
i







f 2
i

f 2
i

1






(5.52)

from which we obtain following four constraints.










f1(Ql) = Cii(1, 2) = 0
f2(Ql) = Cii(1, 3) = 0
f3(Ql) = Cii(2, 3) = 0
f4(Ql) = Cii(1, 1)−Cii(2,2) = 0

. (5.53)

The above constraints are similar to (5.16) in the rigid case. However, the
matrix Ql in (5.52) is a (3k + 1) × (3k + 1) symmetric matrix. According to
Proposition 5.1, Ql has 9k degrees of freedom, since it can be decomposed into the
product of (3k+1)×3 vertical extended upper triangular matrix. Given m frames,
we have 4m linear constraints on Ql . It appears that if we have enough features
and frames, the matrix Ql can be solved linearly by stacking all constraints in
(5.53). Unfortunately, only the rotation constraints may be insufficient when an
object deforms at varying speed, since most of these constraints are redundant.
Xiao et al. [96] proposed a basis constraint to solve this ambiguity.

The main idea of basis constraint is to select k frames that include indepen-
dent shapes and treat them as a set of bases. Suppose the first k frames are
independent of each other, then their corresponding weighting coefficients can
be set as

ωil =

¨

1 if i, l = 1, ..., k and i = l
0 if i, l = 1, ..., k and i 6= l

. (5.54)

From (5.51) we obtain following basis constraint.

Cii′ =







0 0 0
0 0 0
0 0 0






if i = 1, ..., k, i′ = 1, ..., m, and i 6= l. (5.55)

Given m images, (5.55) can provide 9m(k−1) linear constraints to the matrix
Ql (some of the constraints are redundant since Ql is symmetric). By combining
the rotation constraint (5.53) and the basis constraint (5.55) together, the matrix
Ql can be computed linearly. Then, Hl , l = 1, · · · , k may be decomposed from Ql

according to following Proposition.
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Proposition 5.4
The matrix Ql is a (3k+1)× (3k+1) positive semidefinite symmetric matrix
of rank 3. It can be decomposed as Q = HlH

T
l , where Hl is a (3k+ 1)× 3

rank-3 matrix. The decomposition can be further written as Q= Λ3Λ
T
3 with

Λ3 being a (3k+ 1)× 3 vertical extended upper triangular matrix.

The result can be easily derived from Proposition 5.1. It is easy to verify
that the Proposition 5.3 is still valid for the nonrigid case. Thus, the vector Hr

in (5.48) can be set as an arbitrary (3k + 1)-vector that is independent of all
columns in {Hl}, l = 1, · · · , k. After recovering the Euclidean upgrading matrix,
the camera parameters, motions, shape bases, and weighing coefficients can be
easily decomposed from the upgraded motion and shape matrices.

M= M̂H, B= H−1B̂. (5.56)

5.5 Evaluations on Synthetic Data

In this section, the proposed rigid and nonrigid factorization algorithms are
evaluated using synthetic data in terms of accuracy and efficiency.

5.5.1 Evaluations of rigid factorization

During simulations, we randomly generated 200 points within a cube of 20×20×
20 in space and simulated 10 images from these points by perspective projection.
The image size is set at 800× 800. The camera parameters are set as follows: the
focal lengths are set randomly between 900 and 1100, the principal point is set
at the image center, and the skew is zero. The rotation angles are set randomly
between ±5◦. The X and Y positions of the cameras are set randomly between
±15, while the Z positions are set evenly from 200 to 220. The imaging condition
is very close to quasi-perspective assumption.

We add Gaussian white noise to the initially generated 10 images (i.e., all
tracked features in the tracking matrix), and vary the noise level (the standard
deviation of the Gaussian noise) from 0 to 3 units with steps of 0.5. At each
noise level, we reconstruct the 3D structure of the object which is defined up to a
similarity transformation with the ground truth. We register the reconstructed
model with the ground truth and calculate the reconstruction error, which is
defined as mean point-wise distance between the reconstructed structure and the
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Figure 5.1: Evaluation on the accuracy of rigid factorization. (a) The mean of
reconstruction errors by different algorithms at different noise levels; and (b) the
corresponding standard deviation of reconstruction errors.

ground truth. The mean and standard deviation of the errors on 100 independent
tests are shown in Figure 5.1.

The proposed algorithm (Quasi) is compared with [62] under the affine
assumption (Affine) and [31] under the perspective projection (Persp). We also
perform a bundle adjustment optimization scheme through Levenberg-Marquardt
(LM) algorithm to upgrade the solution to the perspective projection. It is evident
that the proposed method performs much better than that of affine, and the
optimized solution (Quasi+LM) is very close to the perspective projection with
optimization (Persp+LM).

The proposed model is based on the assumption of large relative camera-to-
object distance and small camera rotations. We studied the influence of these two
factors to different camera models. In the first case, we vary the relative distance
from 4 to 18 in steps of 2. At each relative distance, we generate 20 images with
the following parameters. The rotation angles are confined between ±5◦, the X
and Y positions of the camera are set randomly between ±15. We recover the
structure and compute the reconstruction error for each group of images. The
mean reconstruction error by different methods is shown in Figure 5.2. In the
second case, we increase the rotation angles to the range of ±20◦, and retain
other camera parameters the same as in the first case. The mean reconstruction
error is given in Figure 5.2. These results are evaluated on 100 independence
tests with 1-unit Gaussian noise.

Based on experimental evidence we have the following Conclusion. (i) The
error by the quasi-perspective projection is consistently less than that by the affine,
especially at small relative distances; (ii) both reconstruction errors by the affine
and the quasi-perspective projection increase greatly when the relative distance

76



4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Affine+LM
Quasi+LM
Persp+LM

Relative distance

M
ea

n 
re

co
ns

tru
ct

io
n 

er
ro

r

Relative distance
4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Affine+LM
Quasi+LM
Persp+LM

M
ea

n 
re

co
ns

tru
ct

io
n 

er
ro

r

(a) (b)

Figure 5.2: The mean reconstruction error of different projection models with
respect to varying relative distance. (a) The rotation angle of the camera varies
in a range of ±5◦; and (b) the rotation angle varies in a range of ±20◦.

Table 5.1: The average computation time of different algorithms (unit: second).
Frame number 5 10 50 100 150 200

Affine 0.015 0.015 0.031 0.097 0.156 0.219
Time (s) Quasi 0.015 0.016 0.047 0.156 0.297 0.531

Persp 0.281 0.547 3.250 6.828 10.58 15.25

is less than 6, since both models are based on large distance assumption; (iii) the
error at each relative distance increases with the rotation angles, especially at
small relative distances, since the projective depths are related to rotation angles;
and (4) theoretically, the relative distance and rotation angles have no influence
on the result of full perspective projection. However, we see that the error by the
perspective projection also increases slightly with the increase in rotation angles
and the decrease in relative distance. This is because we estimate the projective
depths iteratively starting with an affine assumption [31]. The iteration easily
gets stuck to local minima due to bad initialization.

We compared the computation time of different factorization algorithms
without LM optimization. The program was implemented with Matlab 6.5 on
a PC with Intel Pentium®4 3.6GHz CPU. In this test, we use all 200 feature
points and vary the frame number from 5 to 200, so as to generate different
data size. The actual computation time for different data sets are tabulated in
Table 5.1, where the computation time for the perspective projection is taken
for 10 iterations (it usually takes about 30 iterations to compute the projective
depths in perspective factorization). Clearly, the computation time required
by the quasi-perspective factorization is close to that of the affine assumption,
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Figure 5.3: Reconstruction results of nonrigid factorization. (a) Two synthetic
cubes with moving points in space; (b) the quasi-perspective factorization result
of the two frames (in black dots) superimposed with the ground truth (in pink
circles); and (c) the final structures after optimization.

whereas the perspective factorization is computationally more intensive than
other methods.

5.5.2 Evaluations of nonrigid factorization

In this test, we generated a synthetic cube with six evenly distributed points on
each visible edge. There are three sets of moving points on adjacent surfaces of
the cube that move at a constant speed as shown in Figure 5.3, each moving set is
composed of five points. The cube with moving points can be taken as a nonrigid
object with two shape bases. We generated ten frames with the same camera
parameters as in the first test for the rigid case. We reconstructed the structure
associated with each frame by the proposed method. The result is shown in
Figure 5.3, from which we can see that the structure after optimization is visually
the same as the ground truth, while the result before optimization is a little bit
deformed due to perspective effect.

We compared our method with the nonrigid factorization under the affine
assumption [95] and that under the perspective projection [96]. The mean and
standard deviation of the reconstruction errors with respect to different noise
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Figure 5.4: Evaluation of nonrigid factorization. The mean (a) and standard
deviation (b) of the reconstruction errors by different algorithms at different
noise levels.

levels are shown in Figure 5.4. It is obvious that the proposed method performs
significantly better than that under the affine camera model.

5.6 Evaluations on Real Image Sequences

We tested our proposed method on many real sequences, and we report two
results in the following.

5.6.1 Test on fountain base sequence

There are seven images in the fountain base sequence, which were taken at
the Sculpture Park of Windsor by Canon Powershot a G3 camera. The image
resolution is 1024× 768. In order to ensure large overlap of the object to be
reconstructed, the camera undergoes small movement during image acquisi-
tion, hence the quasi-perspective assumption is satisfied for the sequences. We
established the initial correspondences by utilizing the technique outlined in
[80] and eliminated outliers iteratively as in [59]. Totally 4218 reliable features
were tracked across the sequence as shown in Figure 5.5. We recovered the 3D
structure of the object and camera motions by utilizing the proposed algorithm,
as well as some previous methods. Figure 5.5 shows the reconstructed VRML
model and the corresponding wireframes from different viewpoints. The model
looks realistic and most details are correctly recovered by the proposed method.

In order to compare the algorithms quantitatively, we reproject the recon-
structed 3D structure back to the images and calculate the reprojection errors,
i.e. distances between the detected and the reprojected image points. Figure 5.6
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(a)

(b)

(c)

Figure 5.5: Reconstruction results of fountain base sequence. (a) Three images
from the sequence, where the tracked features with relative disparities are
overlaid to the second and the third images; (b) the reconstructed VRML model
of the scene shown from different viewpoints with texture mapping; and (c) the
corresponding triangulated wireframe of the reconstructed model.

shows the histogram distributions of the errors using nine bins. The correspond-
ing mean (’Mean’) and standard deviation (’STD’) of the errors are listed in Table
5.2. It can be seen that the reprojection error by the proposed model is much
smaller than that under the affine assumption.

5.6.2 Test on Franck sequence

The Franck face sequence was downloaded from the European working group
on face and gesture recognition. We selected 60 frames with various facial
expressions for the test. The image resolution is 720× 576, and there are 68
tracked feature across the sequence. Figure 5.7 shows the reconstructed models of
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Figure 5.6: The histogram distributions of the reprojection errors by different
algorithms in the test of fountain base sequence.

Table 5.2: Camera parameters of the first four frames and reprojection errors in
real sequence test.
Method f1 f2 f3 f4 Mean STD Erep

Quasi+LM 2140.5 2143.6 2139.4 2142.8 0.418 0.285 2.473
Affine+LM 2153.4 2155.7 2151.2 2153.1 0.629 0.439 3.189
Persp+LM 2131.7 2135.3 2131.2 2134.5 0.240 0.168 1.962

two frames utilizing the proposed nonrigid factorization method. Different facial
expressions are correctly recovered. As a comparison, the relative reprojection
error Erep generated from different methods are listed in Table 5.2. All tests
illustrate that the accuracy by the proposed method is fairly close to that of full
perspective projection, and considerably better than the affine assumption.

5.7 Conclusion

In this chapter, we have proposed a quasi-perspective factorization algorithm for
both rigid and nonrigid objects and elaborated the computation details of the Eu-
clidean upgrading matrix. The proposed method avoids the difficulties associated
with computation of the projective depths under the perspective factorization.
It is computationally simple with better accuracy than the affine approximation.
The proposed model is suitable for structure and motion factorization of short
sequences with small camera motions. Experiments demonstrates improvements
of our algorithm over the existing techniques. For a long image sequences taken
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(a) (b) (c)

Figure 5.7: Reconstruction of different facial expressions in Franck face sequence.
(a) Two frames from the sequence with the 68 tracked features overlaid to the
lower frame; (b) the front, side, and top views of the reconstructed VRML models
with texture mapping; and (c) the corresponding triangulated wireframe of the
reconstructed models.

around an object, we can simply divide the sequence into several subsequences
with small movements, then register and merge the results of every subsequences
to reconstruct the structure of the entire object.
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Chapter 6

Spatial-and-Temporal-Weighted Factor-
ization

In this chapter, a spatial-and-temporal-weighted factorization algorithm is pro-
posed to handle significant noise contained in the tracking data. The main
novelties and contributions of the proposed algorithm include: (i) The image
reprojection residual of a feature point is demonstrated to be generally propor-
tional to the error magnitude associated with the image point; (ii) the error
distributions are estimated from a new perspective, the reprojection residuals.
The image errors are modeled both spatially and temporally to cope with dif-
ferent kinds of uncertainties. Previous studies have considered only the spatial
information; and (iii) based on the estimated error distributions, a spatial-and-
temporal-weighted factorization algorithm is proposed to improve the overall
accuracy and robustness of traditional approaches. Unlike existing approaches,
the proposed technique does not require prior information of image measure-
ment and is easy to implement. Extensive experiments on synthetic data and real
images validate the proposed method.

6.1 Introduction

Most factorization methods usually assume error-free tracking data. The perfor-
mance will degenerate in the presence of outliers or significant noise. In recent
years, the problem of robust factorization has been a concern, and some practical
methods have been proposed to handle noisy and erroneous data [100].

Aguitar and Moura [3] proposed a scalar-weighted SVD algorithm by mini-
mizing the weighted square errors. Anandan and Irani [7] proposed a covariance-
weighted factorization to factorize noisy correspondences with a high degree of
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directional uncertainty. Gruber and Weiss [29] formulated the problem as a factor
analysis and derived an expectation maximization (EM) algorithm to incorporate
prior knowledge and enhance the robustness to missing data and uncertainties.
Zelnik-Manor et al. [103] defined a new type of motion consistency based on
temporal consistency, and applied it to multi-body factorization with directional
uncertainty. Zaharescu and Horaud [100] introduced a Gaussian/uniform mix-
ture model and incorporated it with the EM algorithm. Buchanan and Fitzgibbon
[12] presented a comprehensive comparison on a number of factorization al-
gorithms. Their study strongly supports second order nonlinear optimization
strategy.

Previous methods of robust factorization are either based on isotropic or
directional assumption of the feature uncertainties, which may be recovered
during the stage of feature detection and matching. Unfortunately, this infor-
mation is hard to retrieve in practice, and unavailable in many situations. By
analyzing the image reprojection residuals, we find that the errors associated
with image features are closely related to the reprojection residuals. Based on
this observation, the image uncertainties are modeled spatially and temporally,
and a spatial-and-temporal-weighted factorization algorithm is proposed in this
chapter. Experiments show that the proposed method improves the accuracy and
robustness of the classical affine factorization algorithm. A preliminary work on
this research was published in IEEE Trans. on Circuits and Systems for Video
Technology [89].

The remainder of this chapter is organized as follows. Some preliminary
background on structure and motion factorization is offered in Section 6.2. The
proposed spatial-and-temporal-weighted factorization is elaborated in Section
6.3. Experimental evaluations and comparisons on synthetic and real images are
described in Section 6.4 and 6.5, respectively. Finally, a short conclusion is drawn
in Section 6.6.

6.2 Background on Structure and Motion Factorization

In this section, a brief introduction to structure and motion factorization is
presented to facilitate understanding of the discussed problem in this chapter.

Under a simplified affine camera model, if the imaged points in each image
are registered to the centroid and relative image coordinates are employed, the
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imaging process of an image sequence can be modeled as



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x̄11 · · · x̄1n
...

. . .
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(6.1)

where f is the frame number. Please note that, for the convenience of discussion,
we use f to denote the frame number in this chapter, and let m= 2 f . Equation
(6.1) is usually written concisely as:

Wm×n =Mm×3S̄3×n (6.2)

where the matrix

W= {x̄i j}=
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(6.3)

is called the tracking matrix or measurement matrix. Suppose the tracking matrix
W is available, the purpose of structure and motion factorization is to recover the
motion matrix M and the shape matrix S as shown in (6.1).

The classical factorization algorithms utilize all image measurements and give
them equal consideration. Thus, the problem is equivalent to minimizing the
following error function:

Err(M,S) = argmin
M,S

‖W−MS‖2F (6.4)

where ‖ · ‖F stands for the Frobenius norm of a matrix. The above algorithm
may yield poor results in the presence of significant noise or outliers. In order to
handle these challenging situations, researchers proposed a robust factorization
approach to increase the robustness of the algorithm. One common practice is to
introduce a weight matrix into the cost function in (6.4) as below:

Err(M,S) = argmin
M,S

‖(W−MS)⊗Σ‖2F (6.5)

where ′⊗′ denotes the Hadamard product, which is an element-by-element
multiplication of two matrices; and Σ = {σi j} is the uncertainty matrix whose
entries are weights derived from the confidence of the image measurements
[3][7]. However, the weight matrix is usually unavailable and is hard to retrieve.
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Figure 6.1: Illustration of feature uncertainties. Different features have different
uncertainties due to their spatial distribution in the image, as well as temporal
distribution across the sequence. The features in the middle image have larger
uncertainties than other images due to bad imaging quality of the frame.

6.3 Weighted Factorization

A spatial-and-temporal-weighted factorization algorithm is proposed in this sec-
tion. First, the uncertainty of a feature is demonstrated to be generally in
proportional to its reprojection residual, which in return is employed to deter-
mine its uncertainty spatially and temporally. Then, a weighted factorization
scheme is derived from the estimated uncertainties.

6.3.1 Feature uncertainty modeling

Measurement errors are inevitable in the process of feature detection and track-
ing. As a result, the key step of all robust methods is the modeling of error
distributions. The strategy most people use is to model the uncertainty of each
feature based on the information such as sharpness and intensity contrast around
its neighborhood. Some researchers modeled the errors isotropically with differ-
ent variances [3][74]; while others adopted directional distribution to describe
the uncertainties [7][49].

As shown in Figure 6.1, the uncertainty of very ’sharp’ and ’smooth’ features
are highly directional in elliptical shape; while the uncertainty of a regular
corner point is isotropic and has smaller magnitude than the very ’smooth’ ones.
The uncertainty is usually estimated during the process of feature detection
and tracking or given as prior information. Nonetheless, this information is
unavailable in many applications.

The accuracy of the tracked features is affected by many factors. Previous
studies determine the uncertainties based only on the spatial information, such
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Figure 6.2: The spatial distribution and the temporal distribution of the tracking
features.

as feature location, sharpness, and detection reliability, etc. In this chapter,
the uncertainty is derived from a new perspective and not only the spatial
information, but also the temporal information is introduced to model the error
distribution of image measurement. The temporal uncertainty reflects to the
errors among different frames caused by the variation of imaging conditions,
such as illumination and stability.

As shown in Figure 6.1, the same feature may have different uncertainties
across the sequence depending on the imaging quality of different frames, how-
ever, this temporal error is rarely considered in the existing approaches.

Consider the tracking matrix across the sequence, as shown in Figure 6.2.
Different columns stand for the spatial distribution of the tracked features, while
different rows contain the tracked data of different frames. This will be referred
as temporal information hereafter.

Suppose M̃ and S̃ are the rank-3 affine factorization of a noise contaminated
tracking matrix W, the reprojection residuals can be computed by reprojecting
the solution back onto all images and arranging in the following form.

Erep =W− M̃S̃=









e11 · · · e1n
...

. . .
...

em1 · · · emn









m×n

. (6.6)

As will be investigated in Section 6.4, extensive experiments show that the
residual error of each image point is generally proportional to the error magnitude
added to that point. For example, let us arrange the image noise in the same
form as the tracking matrix and denote them in a matrix form as

Nnoise =









n11 · · · n1n
...

. . .
...

nm1 · · · nmn









m×n

(6.7)
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(a)

(b)

Figure 6.3: (a) Illustration of the normalized absolute value of the real added
Gaussian noise matrix Nnoise, where the intensity of each pixel corresponds the
error magnitude at that pixel; (b) illustration of the normalized absolute value of
the reprojection residual matrix Erep.

where ni j is the noise or error added to the (i, j)-th element of the tracking matrix
W. Fig. 6.3(a) illustrates an example of the real Gaussian noise Nnoise added to
an image sequence of ten frames with 80 tracked features. Fig. 6.3(b) depicts
the reprojection residuals (6.6) by using a regular affine factorization algorithm.
It is evident that the reprojection residuals have very similar distribution as the
added noise. Please refer to Section 6.4 for the analysis and more results.

The above observation suggests that the image errors can be largely estimated
by virtue of the reprojection residuals. In the following, the feature errors in an
image will be modeled spatially and temporally from the residuals.

Spatial error estimation: Let us write the reprojection residual matrix (6.6)
into the following form.

Erep =
�

es
1, · · · ,es

n

�

m×n
(6.8)

where es
j is the j-th column of Erep. Obviously, es

j contains the reprojection error
of the feature j across the sequence. Assume the image noise is Gaussian, then
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the average noise level of es
j can be embodied by its standard deviation

δs
j =

s

1

m

m
∑

i=1

(ei j −µs
j)

2 (6.9)

where

µs
j =

1

m

m
∑

i=1

ei j (6.10)

is the mean of the error vector es
j. Stacking the noise levels δs

j of every features
into a vector form yields

Es =
�

δs
1, · · · ,δs

n

�T
. (6.11)

As discussed above, Es can actually reflect the average noise distribution
among different features. Therefore, it is named as spatial error of the tracking
data. Equation (6.11) provides a new perspective in recovering the spatial errors
from available data.

Temporal error estimation: Let us rewrite the residual matrix (6.6) into the
following from.

Erep =









et
1
...

et
m









m×n

(6.12)

where et
i = [ei1, · · · , ein] is the reprojection residuals of all features in the i-th

frame. Similarly, the noise level of the i-th frame is reflected by the standard
deviation of et

i as shown below.

δt
i =

s

1

n

n
∑

i=1

�

ei j −
1

n

n
∑

i=1

ei j

�2
. (6.13)

Similar to the definition of (6.11), the temporal error is defined by stacking
δt

i for every frames.

Et =
�

δt
1, · · · ,δt

m

�T
. (6.14)

Evidently, Et embodies the average noise distribution at different time instants
across the sequence. The temporal information was rarely considered in previous
studies.

6.3.2 Spatial-and-temporal-weighted factorization

Based on the above estimated spatial and temporal errors, an uncertainty matrix
of the tracking data is calculated and applied to the weighted factorization (6.5).
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The weighted factorization can be modeled by considering only the spatial error,
temporal error, or both errors.

Spatial-weighted factorization: If only the spatial error (6.11) is considered,
the weight matrix can be defined in the form of
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where Σ1 is an m× n matrix with each column having identical entries; and δs
0 is

a normalization scalar. In practice, one can choose δs
0 =min(Es) such that each

element in the weight matrix is no more than 1. Due to the special form of Σ1,
the weighted tracking matrix can be expressed as

Ws =W⊗Σ1 =W
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n
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=WΣs (6.16)

where

Σs = diag
�δs

0

δs
1

,
δs

0

δs
2

, · · · ,
δs

0

δs
n

�

(6.17)

is called spatial-weight matrix. Note that the size of the weight matrix Σ1 is
of dimension m× n, the same as the tracking matrix; while the spatial-weight
matrix Σs is an n× n diagonalized matrix. Consequently, the spatial-weighted
factorization (SWF) is given by

Errs(M,S) = argmin
M,S

‖(W−MS)⊗Σ1‖2F

= argmin
M,S

‖(W−MS)Σs‖2F

= argmin
M,S

‖WΣs −M(SΣs)‖2F

= argmin
M,S

‖Ws −MSs‖2F . (6.18)

The factorization of (6.18) is exactly the same as the regular affine factor-
ization algorithm (6.4) of the tracking matrix Ws, where the motion matrix M
is obtained directly, while the shape matrix can be simply recovered from Ss as
follows.

S= Ss(Σs)−1. (6.19)
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Temporal-weighted factorization: The weight matrix can be written as
follows when only the temporal error (6.14) is present.
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where δt
0 =min(Et) is the normalization scalar and each row in Σ2 has n identical

entries. Consequently, the temporal-weighted tracking matrix can be simply
denoted as the following form.

Wt =W⊗Σ2 =
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where the m×m diagonal matrix

Σt = diag
�δt
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is named as temporal-weight matrix. Unlike the SWF algorithm, the temporal-
weighted factorization (TWF) is equivalent to left multiplication of the temporal-
weight matrix as follows.

Err t(M,S) = argmin
M,S

‖(W−MS)⊗Σ2‖2F

= argmin
M,S

‖Σt(W−MS)‖2F

= argmin
M,S

‖ΣtW− (ΣtM)S‖2F

= argmin
M,S

‖Wt −MtS‖2F . (6.23)

Therefore, the factorization of the temporal-weighted tracking matrix directly
yields the structure matrix S; while the motion matrix can be decoupled from Mt

by left multiplication of the inverse of the temporal-weight matrix.

M= (Σt)−1Mt . (6.24)

Spatial-and-temporal-weighted factorization: Based on the above analysis,
the spatial-and-temporal-weighted factorization (STWF) can be obtained simply
by combining the equations (6.18) and (6.23) together as follows.

Errst(M,S) = argmin
M,S

‖Σt(W−MS)Σs‖2F
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Figure 6.4: Outline of the proposed method and implementation flowchart.

= argmin
M,S

‖ΣtWΣs − (ΣtM)(SΣs)‖2F

= argmin
M,S

‖Wst −MtSs‖2F . (6.25)

The factorization of the spatial-and-temporal-weighted tracking matrix yields
a temporal-weighted motion matrix Mt and a spatial-weighted shape matrix Ss,
which can be decoupled from equations (6.24) and (6.19), respectively.

Due to the introduction of the spatial-weight and temporal-weight matrices, it
is evident that the complicated element-by-element multiplication of the weight
matrix in (6.5) is converted into simple matrix multiplication in the proposed
weighted factorization (6.18), (6.23), and (6.25). Consequently, the decoupling
process for the final structure and motion matrices is greatly simplified.

6.3.3 Implementation details

The structure and motion recovered in the above weighted factorization is in
affine space. The solution is then upgraded to the Euclidean space by imposing
metric constraint to the motion matrix. Finally, a scheme of bundle adjustment is
usually carried out to refine the final results. The proposed approach is shown in
Figure 6.4 and the implementation details are outlined as follows.

1. Seek correspondences of feature points across all frames of the sequence;

2. Register the tracked features in each image to their centroid;

3. Perform an initial affine factorization and calculate the reprojection residu-
als according to (6.6);

4. Estimate the spatial error and the temporal error from (6.11) and (6.14);
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5. Construct the spatial-weight matrix (6.17) and the temporal-weight matrix
(6.22);

6. Perform the spatial-and-temporal-weighted factorization according to (6.25);

7. Recover the motion matrix and the shape matrix from (6.24) and (6.19);

8. Determine the metric upgrading matrix and upgrade the solution to the
Euclidean space;

9. Refine the solution via bundle adjustment if necessary.

6.4 Evaluations on Synthetic Data

The proposed technique was validated and evaluated extensively on synthetic
data and compared with the previous algorithms. During the simulation, 100
space points were randomly generated within a cube of 40 × 40 × 40, and a
sequence of 50 images were produced from these points by the affine projection.
The following settings were used in the test: image resolution: 800× 800; focal
lengths varying randomly from 500 to 550; rotation angles randomly between
−60◦ and +60◦; camera positions randomly inside a sphere with a diameter
of 40; average distance from the cameras to the object: 600. These imaging
conditions were very close to the assumption of affine projection.

6.4.1 Recovery of spatial and temporal errors

For the generated images, Gaussian white noise was added to the imaged points
and the standard deviation of the noise levels was set at 3. First, the rank-3 affine
factorization of the tracking matrix was performed to recover the initial motion
and shape matrices. Then, the solution was reprojected back onto the images
and the reprojection residual matrix was calculated via (6.6). Fig. 6.5 shows the
actual reprojection residuals of the first 50 points in one images. It is evident
that the variational trend of the reprojection residuals and the real added noise
are similar to each other and their magnitudes are largely in proportion.

From the reprojection residuals, the spatial error (6.11) and the temporal
error (6.14) of the entire sequence were recovered. As shown in Fig. 6.6, from
which we can see that the two errors recovered by the proposed technique are
very close to the ground truth of the noise added to the images.

In the above tests, the images were generated via affine projection model,
which is the first-order approximation of the full perspective projection model.
In practice, the images are actually formulated by a full perspective model.
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Figure 6.5: The real values of the added Gaussian noise (unit: pixel) and the
reprojection residuals (unit: pixel) associated with the first 50 features in the first
image. (a) The values along X direction; and (b) the values along Y direction.

Consequently, the errors always exist for rank-3 affine factorization, even though
the images are captured free of noise.

In order to verify whether the proposed approach can be applied to the general
perspective model, another set of images was generated by a full perspective
projection model using the same data and camera parameters. The spatial and
temporal errors were then estimated from the perspective images using the
proposed approach. As shown in Fig. 6.6, the recovered errors are largely close
to the ground truth in terms of both variational trend and magnitude, although
they are not as close as the results under the affine assumption.
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Figure 6.6: (a) The spatial error of the synthetic sequence; (b) the temporal error
of the synthetic sequence. Where only the first 50 values are plotted; ’Real noise’
stands for the real added noise; ’Spatial-A’ and ’Temporal-A’ denote the spatial
and temporal errors under affine model; and ’Spatial-P’ and ’Temporal-P’ denote
the spatial and temporal errors under perspective projection model.

6.4.2 Weighted factorization under affine model

The proposed factorization algorithm was evaluated and compared using the
affine generated images in the following with respect to three different kinds of
added noise to the images.

Spatial noise: In this case, significant spatial noise was added to the images,
i.e., the magnitude of the added noise mainly varied with respect to the features;
while the inter-frame noise variation was insignificant, as shown in Fig. 6.7(a).
Using the noisy data, the structure and motion were recovered by the proposed
SWF, TWF, and STWF algorithms. As a comparison, three benchmark algorithms,
i.e. the regular rank-3 affine factorization without uncertainty weight [87], the
scalar-weighted factorization [3], and the covariance-weighted factorization [1],
were also implemented. Since the above factorizations are in affine space, their
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(a)

(b)

Figure 6.7: (a) The spatial and temporal noises (unit: pixel) added to the images,
where the temporal noise is insignificant; (b) the reprojection variation (unit:
pixel) obtained using different algorithms with respect to different noise levels.

performances are evaluated and compared by means of the reprojection variance,
which is defined as follows:

Erv =
1

mn
‖W0− M̃S̃‖2F (6.26)

where W0 is the noise-free tracking matrix; M̃ and S̃ are the estimated motion
and shape matrices, respectively. In order to obtain a statistically meaningful
comparison, the temporal noise level (i.e., the standard deviation of the noise)
was varied from 1 to 3 pixels in steps of 0.5 during the test, and 100 independent
tests were performed at each noise level; while the spatial noise level was set at
four times of the temporal noise level. The mean reprojection variances (6.26)
obtained by different algorithms are shown in Fig. 6.7(b).

Based on this test results, the following Conclusion can be drawn: (i) the
SWF and STWF algorithms perform similarly, and the accuracy of the solution
is significantly improved by the two algorithms; (ii) the TWF algorithm has
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Figure 6.8: (a) The spatial and temporal noises (unit: pixel) added to the images,
where the spatial noise is insignificant; (b) the reprojection variation (unit: pixel)
obtained using different algorithms with respect to different noise levels.

only a minor effect since the temporal error is insignificant; (iii) the scalar-
weighted factorization does not make big improvement, because the algorithm
assumes orthographic camera model and isotropic uncertainty; and (iv) the
covariance-weighted algorithm assumes directional uncertainty and has compa-
rable performance as the STWF in this case.

Temporal noise: In this test, a significant temporal noise was added to the
images over minor spatial noise. As shown in Fig. 6.8(a), the noise variation
among different features is insignificant. Similar to the test in the first case, the
reprojection variance recovered by different algorithms were evaluated. The
mean errors at different noise levels are shown in Fig. 6.8(b).

It is evident from Fig. 6.8 that both the TWF and STWF algorithms significantly
outperform the regular affine factorization, as well as the scalar-weighted and the
covariance-weighted algorithms. The SWF algorithm shows minor improvements
due to the insignificance of the spatial error. The performance of the scalar-
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Figure 6.9: (a) The spatial and temporal noises (unit: pixel) added to the images,
where both noises are present significantly; (b) the reprojection variation (unit:
pixel) obtained using different algorithms with respect to different noise levels.

weighted and the covariance-weighted algorithms lie in between the regular
affine factorization and the proposed STWF, since they only model the noise
spatially without explicitly consideration of the influence of temporal noise. The
proposed TWF and the STWF are specifically designed to deal with the temporal
noise, it is not surprising that both of them exhibit the best performance in this
experiment.

Spatial noise + temporal noise: All algorithms were evaluated under a
general situation, where a significant spatial noise was applied among different
features and an equivalent amount of temporal noise was applied across the
sequence, as shown in Fig. 6.9(a). Using the noise contaminated date, the mean
reprojection variances of different algorithms with respect to varied noise levels
are plotted in Fig. 6.9(b).

It can be concluded from this test that (i) the STWF performs the best over
other approaches since it can handle both kinds of errors simultaneously. How-
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ever, as the spatial error and temporal error are coupled with each other, the
performance of STWF is not as significant as when only one kind of error is
applied; (ii) the SWF, TWF, and scalar-weighted factorization have comparable
improvement over the regular affine factorization; and (iii) the performance of
the covariance-weighted algorithm lies in between, since it could not effectively
handle the temporal noise.

In many real applications, the temporal error is usually coupled with the
spatial error in image measurements due to the variation in imaging quality and
illumination. Therefore, the STWF algorithm is the best choice for any situation.
In addition, as will be discussed in the following, the STWF algorithm does not
require extra computational cost.

6.4.3 Weighted factorization under perspective projection

The above tests were performed using affine-generated images. As a comparison,
the same tests were also carried out using the data from full perspective projection
with other parameters remained the same. The corresponding results, as shown
in Fig. 6.10, are similar to those under the affine model. Nevertheless, some
differences are obvious: (i) the overall error magnitude is larger when using the
data generated by the perspective model than those from the affine assumption;
(ii) all weighted factorization algorithms do not have noticeable effect when the
noise levels are lower than 1 pixel. This phenomenon is easy to explain: all
factorization algorithms discussed in the paper are based on the affine assumption,
however, the data here are produced by the perspective projection. Therefore,
the data are "inaccurate" to the algorithms even when they are free of noise. As
a consequence, the small added noise is overwhelmed by the "inaccurate" data.
This conclusion also applies to the scalar-weighted and the covariance-weighted
algorithms; and (iii) the proposed STWF has the best performance over other
weighted algorithms.

6.4.4 Computational complexity

In this test, the real computational cost of different approaches were compared.
All algorithms were implemented in Matlab 6.5 on an AMD AthlonTMdual core
processor desktop with 2.2GHz CPU; the feature point number was set at 100,
and the frame number was varied from 50 to 300 in steps of 50 so as to generate
different sizes of the tracking matrix. Table 8.1 shows the real computation time
of the STWF algorithm with respect to its counterparts.

As listed in Table 8.1, the scalar-weighted factorization is more computation
efficient than other algorithms, this is because it is a rank-1 factorization, which
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(a)

(b)

(c)

Figure 6.10: The reprojection variation obtained using the data generated from
full perspective projection with respect to different noise levels. (a) Significant
spatial noise v.s. insignificant temporal noises; (b) significant temporal noise v.s.
insignificant spatial noises; (c) both spatial and temporal noises are significant.
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Table 6.1: Real computation time of different algorithms (unit: second).

Frame no. 50 100 150 200 250 300
Affine 0.016 0.047 0.094 0.156 0.250 0.354
STWF 0.047 0.110 0.235 0.495 0.859 1.297
Scalar 0.010 0.023 0.035 0.047 0.058 0.071
Covariance 0.045 0.106 0.226 0.487 0.848 1.283

can be implemented using power method, while other approaches use computa-
tional intensive SVD decomposition. The proposed STWF utilize the solution of
the affine factorization to compute the weight matrices and then recalculate the
factorization. Consequently, its computation time is in general about two times
longer than that of the regular affine factorization. The covariance-weighted
algorithm also includes two steps of SVD decomposition, thus, it has comparable
computational complexity as the STWF. The time by the proposed SWF and TWF
is not tabulated in the table. In general, they have similar computational cost as
the STWF, since the only difference between them lies in the times of matrices
inversion and multiplication.

It should be noted that the time of global optimization was not included
here as this is the most computationally intensive stage in the process and its
computation time varies with the iteration times. If the optimization step is
included, all algorithms will have very close computation time.

6.5 Evaluations on Real Sequences

The method was tested on many real image sequences. The results on three data
sets are reported here. These sequences were captured by a Canon Powershot G3
camera at Queens park, Stratford, Ontario. The image resolution was 1024×768,
and the image correspondences were established by the feature tracking system
based on the SIFT and epipolar constraints [80].

6.5.1 Test on garden sequence

The garden sequence consists of eight images, with 2189 features in total tracked
across the sequence. As shown in Figure 6.11(a), although the tracking result
seems reliable visually, there are indeed many errors as the scene contains a
large portion of homogeneous and repetitive textures. It is, thus, hard to track
accurately for this type of scene.

Using the proposed technique, the spatial and temporal errors were recovered
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(a)

(b)

(c)

Figure 6.11: Reconstruction results of the garden sequence. (a) Four frames from
the sequence, where the tracked features with disparities to the first image are
overlaid to the images; (b) the reconstructed VRML model of the scene shown
from different viewpoints with texture mapping; and (c) the corresponding
triangulated wireframe of the VRML model.

and the 3D structure of the scene was reconstructed using the STWF algorithm,
followed by a global optimization scheme. As shown in Figure 6.11, the structure
has been correctly recovered and looks realistic. Since there is no ground truth
of the scene, the following defined image reprojection error is used to evaluate
the performance of different algorithms.

Ērep =
1

nf

∑

i, j

dis(x i j , x̂ i j) (6.27)

where x i j and x̂ i j are the detected and reprojected image points, respectively;
dis(•,•) stands for the Euclidean distance of two points. The reprojection errors
by the regular affine algorithm and the proposed algorithm are tabulated in
Table 6.2, where ’Affine+LM’, ’STWF+LM’, ’Scalar+LM’, and ’Covariance+LM’
stand for the results after global optimization using the Levenberg-Marquardt
algorithm [87]. It is evident that the error is reduced by the weighted algorithms.
Like the results in the previous simulations, the proposed STWF algorithm gives
the lowest reprojection error.
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(a)

(b)

(c)

Figure 6.12: Reconstruction results of the tree trunk sequence. (a) Four frames
from the sequence overlaid with the tracked features with disparities to the
first image; (b) the reconstructed VRML model of the trunk shown from differ-
ent viewpoints with texture mapping; and (c) the corresponding triangulated
wireframe of the VRML model.
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Table 6.2: The reprojection errors by different algorithms in real sequence tests.

Method Garden Trunk Head
Affine 0.785 0.566 0.608
STWF 0.697 0.493 0.534
Scalar 0.746 0.529 0.577
Covariance 0.712 0.506 0.543
Affine+LM 0.406 0.315 0.327
STWF+LM 0.349 0.274 0.281
Scalar+LM 0.374 0.297 0.301
Covariance+LM 0.355 0.286 0.294

6.5.2 Test on tree trunk sequence

There are nine images in the tree trunk sequence, and 4224 features were
tracked across the sequence. As shown in Figure 6.12(a), the features were
tracked densely, however, there are many errors due to the homogeneous texture
of the trunk. We calculated the spatial- and temporal-weight matrices from the
affine reprojection residuals and recovered the 3D structure and camera motions
using the proposed algorithm. Figure 6.12 shows the reconstructed VRML model
with texture mapping and the corresponding triangulated wireframes from differ-
ent viewpoints. The model looks realistic and most details are correctly recovered
by the proposed method. The reprojection errors obtained from different algo-
rithms are listed in Table 6.2, from which we can see that the proposed STWF
outperforms other weighted algorithms.

6.5.3 Test on statue sequence

The head statue sequence consists of seven images with 2676 features being
tracked. Figure 6.13(a) shows the four frames overlaid with the tracked features.
Figure 6.13(b) shows the recovered 3D model and the corresponding wireframe
by the proposed STWF algorithm. The structure of the statue is correctly recov-
ered. As a comparison with the regular affine factorization, the scalar-weighted,
and the covariance-weighted algorithms. The reprojection errors are tabulated
in Table 6.2, from which it is clear that the solution of the regular affine factor-
ization is improved by the weighted algorithms, and the STWF exhibits the best
performance.
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(a)

(b)

Figure 6.13: Reconstruction results of the head statue sequence. (a) Four frames
from the sequence overlaid with the tracked features with disparities to the first
image; (b) the reconstructed VRML model and the corresponding triangulated
wireframe of the head shown from different viewpoints.

6.6 Conclusion

The chapter has illustrated empirically that the errors contained in images can be
modeled spatially and temporally from the image reprojection residuals. Thus,
the feature uncertainties could be derived from the errors and a spatial-and-
temporal-weighted factorization algorithm was proposed to handle the erroneous
image measurements and improve the accuracy of the final solutions. Unlike
other existing weighted factorization algorithms, the proposed technique requires
no prior information of the error distributions of the tracked features. Extensive
tests and evaluations validated the algorithm and demonstrated its advantages
over the previous methods. Our recently study demonstrated that the proposed
technique can also effectively handle outliers and missing data. A further study
will be presented in the following two chapters.
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Chapter 7

Robust SfM of Rigid Objects

The chapter presents a robust structure from motion algorithm for rigid objects.
First, a rank-4 augmented affine factorization algorithm is proposed to overcome
the difficulty in image alignment for imperfect data. Then, a robust structure
and motion factorization scheme is proposed to handle outlying and missing
data. The novelty and main contribution of the paper are as follows: (i) The
rank-4 factorization algorithm is a new addition to previous affine factorization
family using rank-3 constraint; (ii) it is demonstrated that image reprojection
residuals are in general proportional to the error magnitude in the tracking
data. Thus, the outliers can be detected directly from the distribution of image
reprojection residuals, which are then used to estimate the weight matrix of
inlying measurement; and (iii) the robust factorization scheme is demonstrated
empirically to be more efficient and accurate than other robust algorithms.
Extensive experiments on synthetic data and real images validate the proposed
approach.

7.1 Introduction

Most factorization methods usually assume all features are tracked across the
sequence. In the presence of missing data, SVD factorization can not be used
directly. Some approaches propose to solve the motion and shape matrices
alternatively, such as the alternative factorization [41], power factorization
[33], and factor analysis [29]. In practice, outlying data are inevitable during
the process of feature tracking, and as a consequence, the performance of the
algorithm will degenerate. The most popular strategy in computer vision field is
RANSAC, Least Median of Squares [32], and other similar hypothesis-and-test
frameworks [67]. However, these methods are usually designed for two or three
views.
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In recent years, the problem of robust factorization has received a lot of
attention [2][63][100]. Aguitar and Moura [3] proposed a scalar-weighted
SVD algorithm that minimizes the weighted square errors. Gruber and Weiss
[29] formulated the problem as a factor analysis and derived an Expectation
Maximization (EM) algorithm to enhance the robustness to missing data and
uncertainties. Zelnik-Manor et al. [103] defined a new type of motion consistency
based on temporal consistency, and applied it to multi-body factorization with
directional uncertainty. Zaharescu and Horaud [100] introduced a Gaussian
mixture model and incorporate it with the EM algorithm. Huynh et al. [39]
proposed an iterative approach to correct the outliers with ’pseudo’ observations.

Ke and kanade [41] proposed a robust algorithm to handle outliers by mini-
mizing a L1 norm of the reprojection errors. Eriksson and Hengel [23] introduced
the L1 norm to the Wiberg algorithm to handle missing data and outliers. Okatani
et al. [55] proposed to incorporate a damping factor into the Wiberg method to
solve the problem. Yu et al. [99] presented a Quadratic Program formulation for
robust multi-model fitting of geometric structures. Wang et al. [92] proposed
an adaptive kernel-scale weighted hypotheses to segment multiple-structure
data even in the presence of a large number of outliers. Paladini et al. [60]
proposed an alternating bilinear approach to solve nonrigid SfM by introducing
a globally optimal projection step of the motion matrices onto the manifold of
metric constraints. Wang et al. [89] proposed a spatial-and-temporal-weighted
factorization approach to handle significant noise in the measurement.

In this chapter, the outlying data are detected from a new viewpoint via
image reprojection residuals by exploring the fact that the reprojection residuals
are in general proportional to measurement errors of the tracking data. This
chapter first proposes an augmented rank-4 factorization algorithm to circumvent
the problem of image registration in the presence of missing and outlying data.
Then, an alternative weighted factorization algorithm is presented to handle the
missing features and image uncertainty. Finally, a robust factorization scheme is
proposed to handle outliers. A preliminary work on this research was published
at the WACV conference [91].

7.2 Background on Structure and Motion Factorization

Under affine projection model, a 3D point X̄ j = [x j , y j , z j]T is projected onto an
image point x̄i j = [ui j , vi j]T in frame i according to the imaging equation

x̄i j = AiX̄ j + ci (7.1)

where the matrix Ai is a 2× 3 affine projection matrix; and ci is a translation
term of the frame. Under the affine projection, the mapping from space to the
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image is linear. From (7.1), the imaging process of all space points to the i-th
frame can be denoted as:

[x̄i1, x̄i2, · · · , x̄in] = Ai[X̄1, X̄2, · · · , X̄n] +Ci (7.2)

where Ci = [ci ,ci , · · · ,ci] is the translation matrix of frame i. Therefore, the
imaging equation of an image sequence can be formulated by stacking Equation
(7.2) frame by frame.





x̄11 ··· x̄1n

...
...

...
x̄m1 ··· x̄mn





︸ ︷︷ ︸

W2m×n

=





A1

...
Am





︸ ︷︷ ︸

M2m×3

[ X̄1, ··· , X̄n ]
︸ ︷︷ ︸

S̄3×n

+





C1

...
Cm





︸ ︷︷ ︸

C2m×n

(7.3)

where m is the frame number; and n is the number of features. It is easy to verify
that ci in (7.1) is the image of the centroid of all space points. Thus, if all imaged
points in each image are registered to the centroid and relative image coordinates
with respect to the centroid are employed, the translation term vanishes, i.e.
ci = 0 and C = 0. Consequently, the imaging process (7.3) is written concisely as

W2m×n =M2m×3S̄3×n. (7.4)

It is obvious from (7.3) that the tracking matrix is highly rank-deficient, and
the rank of W is at most 3 if the translation term C is removed. In practice, the
rank of a real tracking matrix is definitely greater than 3 due to image noise and
affine approximation error. Thus, one need to find a rank-3 approximation of
the tracking matrix. A common practice is to perform SVD decomposition on
the matrix W and truncate it to rank 3, then the motion matrix M and the shape
matrix S can be easily decomposed from the tracking matrix.

7.3 Rank-4 Structure from Motion

Previous studies on affine structure from motion are based on rank-3 factorization
(7.4) due to its conciseness and simplicity. One necessary condition of the rank-3
factorization is that all image measurements are registered to the corresponding
centroid of each frame. However, when some tracked features are missing, or
contaminated with outliers or significant noise, it is impossible to reliably retrieve
the centroid. As will be shown in the experiments, the misalignment of the
centroid will cause a big error to the final solution. Previous studies were either
simply ignoring this problem or hallucinating the missing points with pseudo
observations, which may lead to a biased solution. In this section, an augmented
rank-4 factorization algorithm is proposed to solve this problem.
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7.3.1 Rank-4 affine factorization

Let us rewrite the affine imaging process (7.1) as:

x̄i j =
�

Ai|ci
�

X j (7.5)

where the space point X̄ j is denoted by a 4-dimensional homogeneous form as
X j = [X̄ j , 1]T . Then, the projection for the entire sequence is formulated as:





x̄11 ··· x̄1n

...
...

...
x̄m1 ··· x̄mn





︸ ︷︷ ︸

W2m×n

=





A1 | c1

... |
...

Am | cm





︸ ︷︷ ︸

M2m×4

[ X1, ··· , Xn ]
︸ ︷︷ ︸

S4×n

. (7.6)

The factorization can be written concisely as:

W2m×n =M2m×4S4×n. (7.7)

Obviously, the rank of the tracking matrix becomes 4 in this case. Thus,
given the tracking matrix, the factorization can be simply obtained via SVD
decomposition by imposing the rank-4 constraint.

In Equation (7.6), if all image points are perfectly registered to the corre-
sponding centroids of every views and the origin of world system is set at the
gravity center of the space points, i.e.

∑n
j=1 X̄ j = 0. Then, the last column of the

motion matrix vanishes since ci = 0, the expression (7.5) is equivalent to rank-3
factorization (7.4). Nonetheless, the registration is hard to achieve due to image
noise, outliers, or missing data in the tracking matrix, while the rank-4 factoriza-
tion (7.5) does not require any image registration since it is derived directly from
the affine projection model (7.1). Therefore, the rank-4 factorization always hold
true for any tracking data.

Suppose the rank-4 SVD decomposition yields a set of solutions M̂m×4Ŝ4×n.
The decomposition is not unique since it is defined up to a nonsingular linear
transformation H ∈ R4×4 as M = M̂H and S = H−1Ŝ. The upgrading matrix will
be recovered in the following section.

7.3.2 Euclidean upgrading matrix

The upgrading matrix H is a 4× 4 nonsingular matrix which can be denoted as:

H= [H1:3|h4] (7.8)

where H1:3 denotes the first three columns, and h4 is the fourth column. Suppose
M̂i is the i-th two-row submatrix of M̂, then the upgraded motion matrix can be
written as

Mi = M̂iH=
�

M̂iH1:3|M̂ih4
�

=
�

Ai|ci
�

. (7.9)
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The left part of Mi in (7.9) can be written as:

M̂iH1:3 = Ai = fi

�

rT
i1

rT
i2

�

(7.10)

where fi is the focal length of cameras, and rT
i1 and rT

i2 are the first two rows of the
camera rotation matrix. Let us denote Q= H1:3HT

1:3, then, Q can be constrained
from (7.10) as:

M̂iQM̂T
i =

�

M̂iH1:3
��

M̂iH1:3
�T = f 2

i

�

1 0
0 1

�

. (7.11)

The above equation provides two independent constraints to Q, which is a
4× 4 positive semidefinite symmetric matrix with nine degree-of-freedom since
it is defined up to a scale. Thus, the matrix Q can be linearly solved via least
squares given five or more images. Furthermore, matrix H1:3 can be decomposed
from Q via extended Cholesky decomposition as proved in [86].

After recovering H1:3, the last column of the upgrading matrix is then deter-
mined straightforwardly. From the expression (7.9), the projection Equation
(7.5) can be written as

x̄i j = M̂iH1:3X̄ j + M̂ih4. (7.12)

It can be easily proved from (7.12) that the last column h4 corresponds to
the translation from the world coordinate system to the image system. Under
a given coordinate system, different values of h4 will only change the origin
of the world system, however, it has no influence to the Euclidean structure of
the reconstructed object. Thus, h4 can be set freely as any 4-vector which is
independent of the columns of H1:3 so as to guarantee the nonsingularity of the
resulted upgrading matrix. Practically, h4 may be constructed as follows.

Suppose the SVD decomposition of H1:3 is

H1:3 = U4×4Σ4×3VT
3×3 (7.13)

= [u1,u2,u3,u4]

�

σ1 0 0
0 σ2 0
0 0 σ3
0 0 0

�

[v1,v2,v3]
T

where U and V are two orthogonal matrices, and Σ is a diagonal matrix of the
three singular values. Then, h4 can be simply set as

h4 = σ2u4 (7.14)

where σ2 is the second singular value, and u4 is the last column of U. The
construction guarantees a good numerical stability in computing the inverse of
H, since the constructed matrix H has the same condition number as H1:3.
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7.3.3 Algorithm of rank-4 affine factorization

The above proposed rank-4 affine factorization algorithm is summarized as
follows.

Algorithm 1: Rank-4 Affine Factorization

Input: tracking matrix W
1. Perform SVD decomposition on the tracking matrix;

2. Obtain a set of rank-4 solutions of M̂ and Ŝ;
3. Recover the Euclidean upgrading matrix matrix H;
4. Compute the Euclidean structure and camera motion

parameters from H−1Ŝ and M̂H.

Output: the Euclidean structure and motion parameters

7.4 Alternative and Weighted Factorization

SVD decomposition is a convenient way of structure and motion factorization,
however, SVD only works when all features are tracked across the sequence. In
practice, missing data are inevitable since some features may be missing during
the process of tracking due to occlusion or other factors. Researchers proposed
different alternative factorization approaches to handle missing data [33]. In
this section, a two-step alternative and weighted factorization algorithms are
introduced to handle missing data and image uncertainties.

7.4.1 Alternative factorization algorithm

The essence of structure and motion factorization (7.6) is equivalent to finding
rank-4 matrices M and S by minimizing the following Frobenious norm.

argmin
M,S

‖W−MS‖2F (7.15)

subject to: M ∈ R2m×4,S ∈ R4×n.

The basic idea of the two step factorization is to minimize the cost function
(7.15) over S and M alternatively until convergence, while leaving the other one
fixed, i.e.,

f (S) = argmin
S
‖W−MS‖2F (7.16)

112



f (M) = argmin
M
‖W−MS‖2F . (7.17)

Each cost function of the algorithm is indeed a convex function, so a global
minimum can always be found. The algorithm converges fast if the tracking
matrix is close to rank-4, even with a random initialization. This idea was
adopted in several papers [33] [39] [41].

Different with SVD decomposition, the minimization process is carried out by
least squares. Let us rewrite the cost function (7.16) with respect to each feature
as follows.

f (s j) = argmin
s j

‖w j −Ms j‖2F (7.18)

where w j is the j-th column of W, and s j is the j-th column of S. Thus, the least
squares solution of S can be given as

s j =M†w j , j = 1, · · · , n (7.19)

where M† = (MT M)−1MT is the Moore-Penrose pseudoinverse of matrix M. The
solution (7.19) can easily handle the missing data in the tracking matrix. For
example, if some entries in w j are unavailable, one can simply delete those
elements in w j and the corresponding columns in M†, or just set those entries
in w j as zeros, then, s j can be solved from (7.19) using the available entries via
least squares.

Similarly, the second cost function (7.17) can be rewrite as

f (mT
i ) = argmin

mT
i

‖wT
i −mT

i S‖2F (7.20)

which yields the following least-square solution of the motion matrix M.

mT
i =wT

i S†, i = 1, · · · , m (7.21)

where the pseudoinverse S† = ST (SST )−1, mT
i and wT

i denote the i-th row of the
matrices M and W, respectively. In case of missing elements, one can simply reset
those entries in wT

i as zeros.
The alternative algorithm is summarized as follows.

Algorithm 2: Alternative Factorization Algorithm

Input: matrix W and matrix M
Repeat the following two steps until convergence

1. Updata shape matrix via (7.19)

2. Updata motion matrix via (7.21)

Output: matrices M and S
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7.4.2 Alternative weighted factorization

Measurement errors are inevitable in the process of feature detection and tracking.
If prior knowledge about distribution of the errors is available, then all elements
of the approximation error can be weighted by taking account of the error
distribution so as to increase the robustness and accuracy of the algorithm.
The basic idea is to give each image measurement a weight according to its
uncertainty. Reliable features get higher weights, while unreliable features are
assigned lower weights. The weighted rank-4 factorization is formulated as
follows.

argmin
M,S

‖Σ⊗ (W−MS)‖2F (7.22)

subject to: M ∈ R2m×4,S ∈ R4×n

where ′⊗′ denotes the Hadamard product, which is an element-by-element
multiplication of two matrices; Σ= {σi j} is an 2m× n uncertainty matrix whose
entries are weights derived from the confidence of the image measurements.

The general weighted factorization could not be solved analytically in terms
of the singular value decomposition. Many researchers have proposed different
schemes to solve the problem [3][7][100]. In this section, the solution of (7.22)
will be obtained using the alternative factorization algorithm by solving S and M
alternatively as follows.

f (S) = argmin
s j

‖Σ j ⊗ (w j −Ms j)‖2F (7.23)

f (M) = argmin
mT

i

‖ΣT
i ⊗ (w

T
i −mT

i S)‖2F (7.24)

where Σ j denotes the j-th column of Σ, and ΣT
i the i-th row of Σ. The close-form

solutions of the shape and motion matrices can be obtained by least squares.

s j =
�

diag(Σ j)M
�† �

diag(Σ j)w j

�

, j = 1, · · · , n (7.25)

mT
i =

�

wT
i diag(ΣT

i )
��

Sdiag(ΣT
i )
�†

, i = 1, · · · , m (7.26)

where (•)† denotes the pseudoinverse of a matrix, and ′diag(•)′ stands for the
diagonal matrix generated by a vector. Equations (7.25) and (7.26) give the
least-square solutions of S and M. Similar to the alternative factorization, when
there are any missing data in the tracking matrix, one can simply set those entries
in w j as zeros.

The alternative weighted factorization algorithm is summarized as follows,
where the initial values of the motion matrix M and weight matrix Σ will be
discussed in next section.
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Algorithm 3: Alternative Weighted Factorization

Input: matrices W, M, and Σ
Repeat the following two steps until convergence

1. Updata shape matrix S via (7.25)

2. Updata motion matrix M via (7.26)

Output: matrices M and S

7.5 Outlier Detection and Robust Factorization

Based on the rank-4 factorization algorithm proposed in the foregoing sections.
A fast and practical scheme for outlier detection is proposed in this section.

7.5.1 Outlier detection scheme

Outlying data are inevitable in the process of feature tracking. The most popular
strategy in computer vision field is RANSAC (RANdom SAmple Consensus) [26],
Least Median of Squares (LMedS), and some other similar techniques in the
family [14]. However, all these methods are computationally intensive. Another
class of robust algorithm that can work with outliers is based on L1 factorization
by minimizing the L1 norm of the reprojection errors [41].

The RANSAC approach initiates a model from a minimal set of data and then
scores the model by the number of feature points within a given threshold. It can
deal with data having more than 50% outliers. However, since the inlying data
are also contaminated by noise, the initiated model using minimal data may be
biased.

Both the SVD-based and the alternative factorization-based algorithms yield
a set of least-square solutions. The best fit model is obtained by minimizing
the sum of the squared residuals between the observed data and the fitted
values provided by the model. Extensive experiments show that the least-square
algorithms usually yield reasonable solutions even in the presence of certain
amount of outliers and the reprojection residuals of these outlying data are
usually much larger than those associated with inliers.

Suppose M̂ and Ŝ are a set of solutions of the rank-4 factorization of a tracking
matrix W, the reprojection residuals can be computed by reprojecting the set of
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solutions back onto all images. Let us define a residual matrix as follows.

E=W− M̂Ŝ=









e11 · · · e1n
...

. . .
...

em1 · · · emn









2m×n

(7.27)

where

ei j = x̄i j − M̂i ŝ j =

�

∆ui j

∆vi j

�

(7.28)

is the residual of point (i, j) in both directions. The reprojection error of the point
is defined by the Euclidean distance ‖ei j‖ of the image point and its reprojection,
and the reprojection error of the entire sequence is defined by an m× n matrix

Err= {‖ei j‖}m×n. (7.29)

Figure 7.1 shows an example of the distribution of the error matrix (7.29),
where 40 images of 100 random space points were generated via the affine
projection. The image resolution is 800× 800, and the images are corrupted by
Gaussian noise and 10% outliers. The added noise level is 3-unit, and the outliers
are also simulated by Gaussian noise whose magnitude is set at 15-unit. The real
added noise and outliers are illustrated by an image as shown in Figure 7.1 (a),
where the grayscale of each pixel corresponds to the inverse magnitude of the
error on that point, the darker the pixel, the larger the error magnitude on that
point. The distribution of the real added outliers is depicted as a binary image in
Figure 7.1 (c), which corresponds to the darker points in Figure 7.1 (a).

Using the corrupted data, a set of motion and shape matrices were estimated
by employing the rank-4 factorization algorithm and the error matrix was then
computed. The distribution of the reprojection error (7.29) is illustrated in
Figure 7.1 (b) with each pixel corresponds to the reprojection error of that
point. It is evident that the reprojection error and the real added noise have
a similar distribution. The points with large reprojection errors correspond
to those with large noise levels. Figure 7.1 (d) shows the binary image of
Figure 7.1 (b) by simply applying a global threshold to the reprojected residuals.
Surprisingly, almost all outliers are successfully detected by a single threshold.
The distribution of false positive error (the inlier points being classified as outliers
by a given threshold) and the false negative error (the outliers not being detected
by thresholding) are given in Figure 7.1 (e) and (f), respectively.

Inspired by this observation, an intuitive outlier detection and robust factor-
ization scheme is proposed. The flowchart of the strategy is shown in Figure 7.2,
and the computation details is given as follows.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: (a) Illustration of the normalized absolute value of the real added
Gaussian noise and outliers in the tracking matrix, where the intensity of each
pixel corresponds the error magnitude at that point; (b) the normalized value
of the reprojection error (7.29); (c) the distribution of the added outlying data;
(d) the outliers segmented from reprojection error by a single threshold; (e)
the distribution of false positive error given by thresholding; and (f) the false
negative error given by thresholding.
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Figure 7.2: The outline and flowchart of the robust structure from motion

Algorithm 4: Robust Structure and Motion Factorization

Input: the tracking matrix W
1. Balance the tracking matrix via point-wise and image-wise rescalings,

as in [71], to improve numerical stability.

2. Perform rank-4 affine factorization on the tracking matrix to

obtain a set of solutions of M̂ and Ŝ.

3. Estimate the reprojection residuals and determine the outlier

threshold.

4. Eliminate the outliers and recalculate the matrices M̂ and Ŝ using

the inlying data via Algorithm 2.

5. Estimate the uncertainty of each inlying feature.

6. Refine the solutions by weighted factorization algorithm.

7. Recover the Euclidean upgrading matrix H and upgrade the solutions

to the Euclidean space as M= M̂H and S= H−1Ŝ.

8. Perform a global optimization via bundle adjustment if necessary.

Output: the 3D structure and camera motion parameters recovered from

S and M respectively.

In the above algorithm, steps 3 and 4 can be repeated once to ensure a more
refined inlying data and solutions, but in practice, the repetition does not make
much difference to final results. During computation, Algorithms 2 and 3 are
employed to deal with missing data. Normally, the alternative algorithm can
work with random initialization, however, since an initial set of solutions have
been obtained in the previous steps, these solutions can be used as initial values
in the iteration so as to speed up the convergence.
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7.5.2 Parameter estimation

The image noise is usually modeled by a Gaussian distribution. It can be verified
that the reprojection residuals (7.27) also follows the same distribution as the
image noise. Suppose the noise at both coordinate directions in the image is in-
dependent and identically distributed (IID), and let V(E) be the 2mn-dimensional
vector formed by the residual matrix E. Then, V(E) should also be a Gaussian as
shown in Figure 7.3 (b).

Suppose µ and σ are the mean and standard deviation of V(E), respectively.
If the residual vector V(E) is registered with respect to its mean µ. The outlier
threshold is chosen as follows.

θ = κσ (7.30)

where κ is a parameter which can be set from 3.0 to 5.0. The points whose
absolute values of the registered residuals in either direction, or the registered
reprojection errors, are greater than θ will be classified as outliers.

outliers=
�

xi, j

�

� |∆ui j −µ|> θ or |∆vi j −µ|> θ

or
�

(∆ui j −µ)2+ (∆vi j −µ)2
�

1
2 > θ

	

. (7.31)

Since the residual vector V(E) contains outliers, which have signifycant in-
fluence to the estimation of the mean and standard deviation due to the large
deviations of the outliers. In practice, the mean is estimated from the data that
are less than the median value of |V(E)|.

µ=mean{V ′(E)|V ′(E)<median(|V(E)|)} (7.32)

while the standard deviation is estimated from the median absolute deviation
(MAD)

σ = 1.4826 median(|V(E)−median(V(E))|) (7.33)

since the MAD is resistant to outliers. The above computation usually guarantees
robust estimation of the mean and the standard deviation.

As for the weights in the weighted factorization, most researchers estimate it
from the uncertainty of each feature based on the information such as sharpness
and intensity contrast around its neighborhood. Some researchers modeled the
errors isotropically with different variances [3][74]; others adopted directional
distribution to describe the uncertainties [7][49]. The uncertainty is usually
estimated during the process of feature detection and tracking or given as prior
information. Nonetheless, this information is unavailable in many applications.

In our early study [89], it was shown that the uncertainty of each feature
is generally proportional to the reprojection residual of that point. Thus, the
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Figure 7.3: (a) The histogram distribution of the real added noise and outliers;
(b) the histogram distribution of the reprojection residuals.
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weight of each point can be estimated from the residual value obtained from
the data after eliminating outliers. The point with higher residual value has
larger uncertainty and thus gets lower weight. The weight of each point at each
coordinate direction is determined as follows in a shape like normal distribution.

ωi j =
1

N exp

 

−
E2

i j

2σ2

!

(7.34)

where the standard deviation σ is estimated from Equation (7.33), Ei j is the
(i, j)-th element of the residual matrix (7.27), and N is a normalization scale.
Clearly, one point may have different weights at the two image directions based
on the residual value at each direction. For the missing data and outliers, the
corresponding weights are set as ωi j = 0.

7.6 Evaluations on Synthetic Data

The proposed technique was validated and evaluated extensively on synthetic
data and compared with other similar algorithms. During the simulation, 100
space points were randomly generated within a cube of 40 × 40 × 40, and a
sequence of 50 images were produced from these points by the affine projection.
The following settings were used in the test: image resolution: 800× 800 pixel;
focal lengths varying randomly from 500 to 550; rotation angles randomly
between −60◦ and +60◦; camera positions randomly inside a sphere with a
diameter of 40; average distance from the cameras to the object: 600. These
imaging conditions are very close to the assumption of the affine projection.

7.6.1 Influence of image centroid

The proposed rank-4 factorization algorithm was compared with its rank-3
counterpart with respect to different image centroid. For the generated images,
Gaussian white noise was added to the images and the centroid of each image
was deviated with a displacement, then, all imaged points were registered to the
deviated centroid. This is a simulation of the situation when the centroid could
not be reliably recovered due to the missing and outlying data.

Using the misaligned data, the motion and shape matrices were recovered by
SVD factorization with the rank-4 and rank-3 constraints, then, the solution was
reprojected back onto the images and the reprojection residuals was calculated.
The performance of different algorithms were evaluated and compared by means
of the mean reprojection variance, which is defined as:

Erv =
1

mn
‖W0− M̂Ŝ‖2F (7.35)
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Figure 7.4: The mean reprojection variance with respect to different centroid
displacements at the noise level of (a) 1-unit and (b) 4-unit.

where W0 is the noise-free tracking matrix; and M̂ and Ŝ are the estimated motion
and shape matrices, respectively. In order to obtain a statistically meaningful
comparison, 100 independent tests were performed at each noise level. The
mean reprojection variance with respect to different centroid displacements at
different noise levels is shown in Fig. 7.4, where the noise level is defined as the
standard deviation of the Gaussian noise.

As shown in Fig. 7.4, it is evident that the miscalculated centroid has no
influence on the proposed rank-4 factorization algorithm, however, the centroid
errors have huge impact to the performance of the rank-3 based algorithm. The
test shows that the influence caused by the centroid error is far more significant
than that caused by the image noise. Thus, the rank-4 affine factorization
approach is a better choice in practice, especially in the presence of missing data
or large image noise.

7.6.2 Performance evaluation

In this test, the performance of the proposed robust factorization algorithm was
evaluated and compared in terms of accuracy and computational complexity.

For the above generated image sequence, Gaussian noise was added to each
image point and the noise level was varied from 1-unit to 5-unit in steps of
1. In the mean time, some outliers were added to the tracking matrix. Using
the contaminated data, the foregoing proposed robust algorithm was employed
to recover the motion and shape matrices. The mean reprojection variance at
different noise levels and outliers ratios is shown in Fig. 7.5. As a comparison,
two successful algorithms in the literature were implemented as well, one is
an outlier correction scheme proposed by Huynh et al. [39], the other one is
proposed by Ke and kanade [41] based on minimization of the L1 norm.
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Figure 7.5: The mean reprojection variance at different noise levels with (a) 5%
outliers and (b) 20% outliers.

Table 7.1: Real computation time of different algorithms (unit: second).

Frame no. 50 100 150 200 250 300
Huynh 1.19 2.35 3.68 6.41 10.45 12.69
Ke 1.81 6.27 14.32 26.94 44.87 67.53
Proposed 1.27 3.93 8.12 14.28 22.40 32.13

The results in Fig. 7.5 were evaluated by 100 independent tests, where
’Direct’ stands for normal rank-4 factorization algorithm without outlier rejection.
Here the reprojection variance was estimated only using the original inlying
data by eliminating the added outliers. It is obvious that the proposed scheme
outperforms other algorithms in terms of accuracy. The direct factorization
algorithm yields significantly large errors due to the influence of outliers, and the
errors increase with the increase of outliers. The experiment also shows that all
three robust algorithms are resilient to outliers, as can be see in Fig. 7.5, the ratio
of outliers has little influence to the reprojection variance of the three robust
algorithms.

The complexity of different approaches was compared in terms of real com-
putation time in the above test. All algorithms were implemented in Matlab
2009 on a Lenovo T500 laptop with 2,26GHz Intel Core Duo CPU. The frame
number was varied from 50 to 300 in steps of 50 so as to generate different
sizes of the tracking matrix, and 10% outliers were added in the data. Table
8.1 shows the real computation time of different algorithm. Obviously, the
complexity of the proposed scheme lies in between of [39] and [41]. This is
because Huynh’s method does not include the weighted factorization step, while
the minimization of L1 norm in [41] is computation more intensive than the
alternative factorization algorithm.

123



(a)

(b)

(c)

(d)

Figure 7.6: Reconstruction results of the fountain base sequence. (a) Four frames
from the sequence with the tracking data and 5% outliers overlaid on three im-
ages; (b) the correctly detected inlying tracking data; (c) the reconstructed VRML
model shown from different viewpoints; and (d) the corresponding triangulated
wireframe of the model.
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Figure 7.7: The histogram distribution of the residual matrix of the fountain base
sequence before (a) and after (b) outlier rejection.

7.7 Evaluations on Real Sequences

The method was tested on many real image sequences. The results on two data
sets are reported here. The resolution of each image is 1024× 768, and the
feature correspondences are established by the feature tracking system based on
SIFT and epipolar constraints [80].

The first test is on a fountain base sequence captured at downtown San
Francisco. The sequence consists of 10 images and 5648 features were tracked
across the sequence. Since the images have a large portion of homogeneous and
repetitive textures, it is thus hard to track accurately for this type of scene, but
visually only a few features were obviously mismatched. In order to test the
algorithm, an additional 5% outliers were added to the tracking data, as shown
in Figure 7.6 (a). After rejecting the outliers by the proposed approach, the
remaining inlying features with disparities to the first image are shown in Figure
7.6 (b), the outliers were successfully rejected. Then, the alternative weighted
algorithm was employed to recover the motion and structure matrices. Finally,
the solution was upgraded to the Euclidean space. As shown in Figure 7.6 (c)
and (d), the structure looks realistic and most details are correctly recovered.

The histogram distribution of the reprojection residual matrix with outliers is
shown in Figure 7.7 (a). The residuals are largely conform to the assumption
of normal distribution. It can be seen from the distribution that the outliers can
be obviously distinguished from inliers, the computed threshold is shown in the
figure. The histogram distribution of the residuals of the detected inlying data is
shown in Figure 7.7 (b). Obviously, the residual error was reduced significantly
after rejecting the outliers. The final reprojection error is 0.426, as a comparison,
the reprojection errors by the algorithms of ’Huynh’ and ’Ke’ are 0.736 and 0.597,
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respectively. The proposed scheme yields the lowest reprojection error.
The second sequence is a corner of the Hearst Gym at UC Berkeley. There

are 12 images in the sequence, and 1890 features were tracked in total. The
tracking data with 5% outliers are shown in Figure 7.8 (a); and the correctly
detected inlying features are shown in Figure 7.8 (b). The proposed robust
algorithm was used to recover the Euclidean structure of the scene. Figure 7.8
(c) and (d) show the reconstructed VRML model with texture mapping and the
corresponding triangulated wireframes from different viewpoints. The model is
correctly recovered by the proposed method. The reprojection errors obtained
from ’Huynh’, ’Ke’, and the proposed algorithm are 0.742, 0.635, and 0.508,
respectively. The proposed approach outperforms other robust algorithms.

7.8 Conclusion

The chapter first proposed an augmented rank-4 factorization algorithm which
has been proved to be more accurate and more widely applicable than classical
rank-3 affine factorization, especially in the case when the centroid of the feature
points could not be reliably recovered due to the presence of missing and outlying
data. Then, an alternatively weighted factorization algorithm was presented to
alleviate the influence of large image noise. Finally, a robust factorization scheme
was designed to deal with corrupted data containing outliers and missing points.
The proposed technique requires no prior information of the error distribution in
the tracking data. Extensive tests and evaluations demonstrated its advantages
over previous methods. Although the proposed approach was demonstrated by
factorization of rigid objects and static scenes, it can be applied directly to handle
nonrigid factorization, as will be discussed in Chapter 8.
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(a)

(b)

(c)

(d)

Figure 7.8: Reconstruction results of the Hearst Gym sequence. Four frames from
the sequence with the tracking data and 5% outliers overlaid on three images;
(b) the correctly detected inlying tracking data; (c) the reconstructed VRML
model shown from different viewpoints; and (d) the corresponding triangulated
wireframe of the model.
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Chapter 8

Robust SfM of Nonrigid Objects

This chapter is an extension of the robust algorithm of Chapter 7 to nonrigid
scenarios, and it is presented in a similar style. An augmented nonrigid factoriza-
tion algorithm is first proposed to circumvent the difficulty of image alignment
for imperfect data, followed by a robust scheme to handle outlying and missing
data in nonrigid structure and motion recovery. The contributions of this chapter
are as follows: (i) as a new addition to previous nonrigid structure from motion,
the proposed factorization algorithm can perfectly handle imperfect tracking
data; (ii) it is demonstrated that the outliers can be detected directly from image
reprojection residuals of nonrigid factorization; and (iii) the robust factoriza-
tion scheme is proved empirically to be more efficient and more accurate than
other robust algorithms. The proposed approach is validated and evaluated by
extensive experiments on synthetic data and real image sequences.

8.1 Introduction

The factorization algorithm was extended to nonrigid SfM by assuming that the
3D shape of a nonrigid object can be modeled as a weighted linear combination
of a set of shape bases [11]. Thus, the shape bases and camera motions are
factorized simultaneously for all time instants under a rank-3k constraint of the
tracking matrix. The method has been extensively investigated and developed in
[9], [75], and [66].

In recent years, the problem of robust factorization has received a lot of
attention [50] [103] [100]. Aguitar and Moura [3] proposed a scalar-weighted
SVD algorithm that minimizes the weighted square errors. Gruber and Weiss
[29] formulated the problem as a factor analysis and derived an Expectation
Maximization (EM) algorithm to enhance the robustness to missing data and
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uncertainties. Huynh et al. [39] proposed an iterative approach to correct the out-
liers with ’pseudo’ observations. Ke and Kanade [41] designed a robust algorithm
to handle outliers by minimizing a L1-norm of the reprojection errors. Wang
et al. [89] proposed a spatial-and-temporal-weighted factorization approach to
handle significant noise in the measurement. The problem is further studied and
different robust algorithms have been proposed [23] [55] [99] [92] [60].

Most of the above robust algorithms are initially designed for SfM of rigid
objects. To the best of our knowledge, few studies have been carried out for
nonrigid scenarios. In this chapter, we will extend the robust factorization
approach of Chapter 7 to the nonrigid scenarios.

This chapter first proposes an augmented rank-(3k+1) factorization algorithm
to circumvent the difficulty of image registration for imperfect data, followed by
an alternative weighted factorization algorithm to handle the missing features and
image uncertainty. Then, the outlying data are detected from a new viewpoint via
image reprojection residuals by exploring the fact that the reprojection residuals
are largely proportional to the measurement errors. Finally, a robust factorization
scheme is proposed to deal with outliers. A preliminary work on this research
was published at the CRV conference [90].

8.2 Background of Nonrigid Factorization

Under the affine projection model, a 3D point X̄ j is projected onto x̄i j in frame i
according to the imaging equation

x̄i j = AiX̄ j + ci (8.1)

where Ai is a 2×3 affine projection matrix; and the translation term ci is the image
of the centroid of all space points. Let Si = [X̄i1, · · · , X̄in] be the 3D structure
associated with frame i, the structure may be different at different instants. In
nonrigid SfM, we usually follow Bregler’s assumption that Si =

∑k
l=1ωilBl , where

the nonrigid structure is assumed to be a linear combination of a set of rigid
shape bases Bl [11]. Under this assumption, the imaging process of one image
can be modeled as

Wi = [x̄i1, · · · , x̄in] = AiSi + [ci , · · · ,ci]

=
�

ωi1Ai , · · · ,ωikAi
�





B1

...
Bk



+ [ci , · · · ,ci].

It is easy to verify that if all image points in each frame are registered to
the centroid and relative image coordinates are employed, the translation term
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vanishes, i.e., ci = 0. Consequently, the nonrigid factorization under affine
camera model is expressed as





x̄11 ··· x̄1n

...
...

...
x̄m1 ··· x̄mn





︸ ︷︷ ︸

W2m×n

=





ω11A1 ··· ω1kA1

...
...

...
ωm1Am ··· ωmkAm





︸ ︷︷ ︸

M2m×3k





B1

...
Bk





︸ ︷︷ ︸

B̄3k×n

. (8.2)

Structure from motion is an ill-posed problem. Suppose the tracking matrix
W is available, our purpose is to recover the camera motion parameters and the
3D structure from the shape matrix. It is obvious from (8.2) that the rank of the
tracking matrix W is at most 3k. Previous studies on nonrigid SfM are based on
the rank-3k constraint due to its simplicity, and the factorization can be easily
obtained via SVD decomposition by truncating its rank to 3k.

8.3 Augmented Affine Factorization

One critical condition for Equation (8.2) is that all image measurements are
registered to the corresponding centroid of each frame. When the tracking matrix
contains outliers and/or missing data, it is impossible to reliably retrieve the
centroid. As will be shown in the experiments, the miscalculation of the centroids
will cause significant errors to the final solutions. Previous studies were either
ignoring this problem or hallucinating the missing points with pseudo observa-
tions, which may lead to a biased estimation. In this section, an augmented affine
factorization algorithm based on rank-(3k+ 1) constraint is proposed to solve
this problem.

8.3.1 Rank-(3k+ 1) affine factorization

Let us formulate the affine imaging process (8.1) in the following form

xi j =
�

Ai|ci
�

X j (8.3)

where X j = [X̄T
j , t j]T is a 4-dimensional homogeneous expression of X̄ j. Then,

the imaging process of frame i can be written as

Wi = [x̄i1, · · · , x̄in] =
�

Ai|ci
�

�
∑k

l=1ωilBl

tT
i

�

=
�

ωi1Ai , · · · ,ωikAi ,ci
�









B1

...
Bk
tT
i









.
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Thus, the structure and motion factorization for the entire sequence is formu-
lated as follows.





x̄11 ··· x̄1n

...
...

...
x̄m1 ··· x̄mn





︸ ︷︷ ︸

W2m×n

=





ω11A1 ··· ω1kA1 c1

...
...

...
...

ωm1Am ··· ωmkAm cm





︸ ︷︷ ︸

M2m×(3k+1)









B1

...
Bk
tT
i









︸ ︷︷ ︸

B(3k+1)×n

. (8.4)

Obviously, the rank of the tracking matrix becomes 3k+ 1 in this case. Given
the tracking matrix, the factorization can be easily obtained via SVD decompo-
sition with rank-(3k+ 1) constraint. Unlike the affine factorization (8.2), the
augmented expression (8.4) does not require any image registration. Thus, it can
work with outlying and missing data.

Both factorization algorithms (8.2) and (8.4) can be equivalently denoted as
the following minimization scheme.

f (M,S) = argmin
M,S

‖W−MS‖2F . (8.5)

By enforcing different rank constraints, the Frobenius norm of (8.5) corre-
sponding to the algorithms (8.2) and (8.4) would be

E3k =
N
∑

i=3k+1

σ2
i , E3k+1 =

N
∑

i=3k+2

σ2
i (8.6)

where σi , i = 1, · · · , N are singular values of the tracking matrix in descending
order, and N =min(2m, n). Clearly, the error difference by the two algorithm is
σ2

3k+1. For noise free data, if all image points are registered to the centroid, then,
σi = 0,∀i > 3k, the equations (8.2) and (8.4) are actually equivalent. However,
in the presence of outlying and missing data, the image centroid could not be
accurately recovered, the rank-3k algorithm (8.2) will yield a big error since
σ3k+1 does not approach to zero in this situation.

8.3.2 Euclidean upgrading matrix

Suppose W = M̂B̂ is a set of factorization result of (8.4). Obviously, the de-
composition is not unique since it is only defined up to a nonsingular linear
H ∈ R(3k+1)×(3k+1) as M = M̂H and S = H−1Ŝ. The recovery of the upgrading
matrix is different with that in the rank-3k factorization.

Let us write the (3k+ 1)× (3k+ 1) upgrading matrix in the following form.

H= [H1, · · · ,Hk|h3k+1] (8.7)
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where Hl ∈ R(3k+1)×3(l = 1, · · · , k) denotes the l-th triple columns of H, and h3k+1

denotes the last column of H. Suppose M̂i is the i-th two-row submatrix of M̂,
then the upgraded motion matrix can be written as

Mi = M̂iH= [M̂iH1, · · · , M̂iHk|M̂ih3k+1]. (8.8)

Comparing the above equation with (8.4), we have

M̂iHl =ωilAi =ωil fi

�

rT
i1

rT
i2

�

(8.9)

where fi is the focal length of the camera, rT
i1 and rT

i2 are the first two rows of the
rotation matrix. Denote Ql = HlH

T
l , then, Ql can be constrained from (8.9) as

M̂iQlM̂
T
i =

�

M̂iHl
��

M̂iHl
�T =ω2

il f 2
i

�

1 0
0 1

�

. (8.10)

The matrix Ql has 9k degree-of-freedom since it is a (3k+1)×(3k+1) positive
semidefinite symmetric matrix defined up to a scale. The above equation provides
two constraints to Ql , thus, it can be linearly solved via least squares by stacking
the constraints (8.10) frame by frame. Furthermore, the submatrix Hl can be
decomposed from Ql via extended Cholesky decomposition [86].

From equations (8.4) and (8.8), it is easy to prove that the last column of the
upgrading matrix h3k+1 only influences the translation from the world coordinate
system to the image system. Under a given coordinate system, different values of
h3k+1 will only alter the origin of the world system, however, it does not change
the Euclidean structure of the reconstructed points. Therefore, h3k+1 can be set
freely as any (3k+ 1)-dimensional vector that is independent of the columns of
{Hl , l = 1, · · · , k} such that the resulted upgrading matrix is nonsingular.

After recovering the Euclidean upgrading matrix, the camera parameters,
motions, shape bases, and deformation weights can be easily decomposed from
the upgraded motion matrix M̂H and shape matrix H−1B̂.

8.3.3 Alternative factorization with missing data

SVD decomposition could not directly work with missing data. If some features
are missing in the tracking data, we can adopt a similar alternative factorization
algorithm as in Chapter 7. The basic idea is to minimize the cost function (8.5)
over S and M alternatively until convergence, while leaving the other one fixed
at each step, i.e.,

f (S) = argmin
S
‖W−MS‖2F (8.11)
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f (M) = argmin
M
‖W−MS‖2F . (8.12)

As discussed in Chapter 7, each cost function of the algorithm is indeed a
convex function thus a global minimum can be found. The algorithm converges
very fast if the tracking matrix is close to rank-(3k + 1) even with a random
initialization.

In the alternative factorization, the minimization process of each cost function
is carried out by least squares. Thus, in case of missing elements, one can simply
eliminate those entries in the equation and still obtain a least-square solution of
the motion and structure matrices.

8.3.4 Alternative weighted factorization

When the uncertainty of image measurement is available, a weighted factorization
strategy can be adopted to alleviate the influence of unreliable features. The
weighted factorization is formulated as follows.

f (M,S) = argmin
M,S

‖Σ⊗ (W−MS)‖2F (8.13)

where ′⊗′ denotes the Hadamard product of element-by-element multiplication;
and Σ = {σi j} is the weight matrix whose entries are derived from the confidence
of the image measurements. Similar to Chapter 7, the solution of (8.13) is
obtained using the alternative factorization algorithm.

f (S) = argmin
s j





Σ j ⊗ (w j −Ms j)






2
F (8.14)

f (M) = argmin
mT

i





ΣT
i ⊗ (w

T
i −mT

i S)






2
F (8.15)

where Σ j and ΣT
i denote the j-th column and i-th row of Σ, respectively. The al-

gorithm alternatively updates the shape and motion matrices using least squares
until convenience. In case of missing data, one can simply delete the correspond-
ing elements in the equations.

8.4 Outlier Detection and Robust Factorization

Based on the foregoing proposed factorization algorithm, a fast and practical
scheme for outlier detection is discussed in this section.
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(a) (b)

(c) (d)

Figure 8.1: (a) Illustration of the normalized absolute value of the added Gaus-
sian noise, where the intensity of each pixel corresponds the error magnitude at
that point; (b) the distribution of the real added outliers; (c) the normalized value
of the reprojection errors; and (d) the outliers segmented from the reprojection
errors by applying a single threshold. Only 50 frames of 100 points are showed
in the image.

8.4.1 Outlier detection scheme

The best fit model of the factorization algorithm is obtained by minimizing
the sum of squared residuals between the observed data and the fitted values
provided by the model. Extensive empirical studies show that the least-square
solutions are usually reasonable even in the presence of certain amount of outliers,
and the reprojection residuals of the outlying data are significantly larger than
those associated with inliers.

Suppose M̂ and Ŝ are a set of initial solutions of the motion and structure
matrices, the reprojection residuals can be computed by reprojecting the solutions
back onto all images. Let us define a residual matrix as:

E=W− M̂Ŝ=

� e11 ··· e1n

...
...

...
em1 ··· emn

�

2m×n

(8.16)

where
ei j = x̄i j − M̂i ŝ j =

h

∆ui j
∆vi j

i

(8.17)
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Figure 8.2: The outline and flowchart of the proposed approach

is the residual of point (i, j) at both image directions. The reprojection error of
a point is defined as ‖ei j‖, which is the Euclidean norm of the residual at that
point.

Below is an example of the residual matrix and reprojection errors. Using
the synthetic data in Section 8.5, we added 3-unit Gaussian noise and 10%
outliers (defined by significant noise greater than 5-unit) to the images. Then,
the reprojection error is estimated via back-projection of the solutions from
rank-(3k+ 1) factorization.

The real added noise and the reprojection error are illustrated in Figure 8.1
as grayscale images, where the gray level of each pixel corresponds to the inverse
magnitude of the error on that point, lower gray level (black points) stands for
larger error. It is evident that the reprojection error and the added noise have
similar distribution. The ground truth of the real added outliers is depicted as a
binary image in Figure 8.1 (b). Figure 8.1 (d) shows the binarized image of the
reprojection errors by simply applying a global threshold. Surprisingly, almost all
outliers are successfully detected by a single threshold.

8.4.2 Implementation details

Inspired by the above observation, an efficient outlier detection and robust
factorization scheme is developed based on the reprojection residuals. The
outline of the proposed scheme is shown in Fig. 8.2, where the blue boxes
indicate the contributions of this chapter. The computational details of the
proposed scheme are as follows.
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Robust Factorization Algorithm

Input: Tracking matrix of the sequence
1. Perform rank-(3k+ 1) factorization to obtain an initial solutions of M̂ and B̂.
2. Estimate the reprojection residuals (8.16) from initial solutions.
3. Determine an outlier threshold and eliminate the outliers.
4. Refine the solutions from the inliers via the alternative factorization algorithm.
5. Estimate the weight matrix Σ from the refined solutions.
6. Perform the weighted factorization using the inliers.
7. Recover the upgrading matrix H and upgrade the solutions to the Euclidean space.
8. Recover the Euclidean structure and motion parameters corresponding to each

frame.
Output: 3D structure and camera motion parameters

The alternative factorization algorithm is employed in steps 4 and 6 to handle
missing data, while the initial values are obtained from the previous steps.
Although the alternative factorization can work with random initialization, a
reliable initial values can speed up its convergence.

Two important parameters are required in the robust algorithm: one is the
outlier threshold, the other is the weight matrix. The following will discuss how
to recover these parameters.

8.4.3 Parameter estimation

Assuming Gaussian image noise, it is easy to prove that the reprojection residuals
also follow the same distribution as that of the image noise. Figure 8.4 shows
an example from the synthetic data in Section 8.5. 3-unit Gaussian noise and
10% outliers were added to the synthetic images, and the residual matrix was
calculated from (8.16). As shown in Figure 8.4, the residuals are obviously follow
Gaussian distribution. Thus, the outlier threshold can be determined from the
distribution of the residuals.

Let V(E) be a 2mn-vector formed by the residual matrix E, suppose µ and σ
are the mean and standard deviation of V(E), then the outlier threshold can be
chosen as follows.

θ = κσ (8.18)

where κ is a parameter which is usually set from 3.0 to 5.0. Register V(E) with
respect to its mean µ, then the outliers are classified via the following criteria.

|∆ui j −µ|> θ or |∆vi j −µ|> θ or









∆ui j−µ
∆vi j−µ








> θ . (8.19)
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Figure 8.3: (a) Histogram distribution of the real added noise and outliers; (b)
histogram distribution of the reprojection residuals.

Since the outliers have heavily influence to the estimation of the mean and
standard deviation due to their large deviations, the mean is practically estimated
from the data that are less than the median value of |V(E)|.

µ=mean{V ′(E)|V ′(E)<median(|V(E)|)} (8.20)

while the standard deviation is estimated from the median absolute deviation
(MAD)

σ = 1.4826 median(|V(E)−median(V(E))|). (8.21)

The above computation is resistant to outliers and thus guarantees a robust
estimation of the mean and standard deviation of the residuals.

The weight matrix is determined from the uncertainty of each feature based
on the information such as sharpness and intensity contrast around its neigh-
borhood [3][74]. The uncertainty is usually estimated during the process of
feature detection and tracking or given as prior information. Nonetheless, this
information is unavailable in many applications. In our early study [89], it was
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Figure 8.4: (a) (e) Two simulated space cubes with three sets of moving points;
(b) (c) (d) three synthetic images with noise and outliers (shown as black stars);
(f) (g) (h) the reconstructed 3D structures corresponding to the three images of
(b), (c), and (d).

demonstrated that image uncertainty is generally proportional to the magnitude
of reprojection residuals. The points with larger residuals have higher uncertain-
ties, and vice versa. Based on this fact, the weight of each point is estimated
directly from the residual matrix as:

ωi j =
1

N exp
�

−
E2

i j

2σ2

�

(8.22)

where the standard deviation σ is estimated from the median absolute deviation
(8.21) using the data after eliminating the outliers, Ei j is the (i, j)-th element of
the residual matrix (8.16), andN is a normalization scale. Clearly, the weight of a
point is directional, it may have different values at different coordinate directions
based on its residual. The points with higher residuals get lower weights, and
the weights of missing data and outliers are set at zeros.

8.5 Evaluations on Synthetic Data

The proposed technique was tested and evaluated extensively on synthetic data.
During the simulation, we generated a deformable space cube, which was com-
posed of 21 evenly distributed rigid points on each side and three sets of dynamic
points (33× 3 points) on the adjacent surfaces of the cube that were moving
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Figure 8.5: The mean reprojection variance with respect to different centroid
deviations at the noise level of (a) 1-unit and (b) 4-unit.

outward. There are 252 space points in total as shown in Figure 8.4. Using
the synthetic cube, 100 images were generated by the affine projection with
randomly selected camera parameter. Each image corresponds to a different 3D
structure. The image resolution is 800× 800 units and Gaussian white noise is
added to the synthetic images.

8.5.1 Influence of image centroid

The influence of the centroid was evaluated in this test. We deliberately deviated
the centroid of the features in each image from 1% to 9% in steps of 2%, then
registered all image points to the deviated centroid. This is a simulation of the
situation that the centroid could not be reliably recovered due to missing and
outlying data.

Using the misaligned data, the motion and shape matrices were recovered
using the augmented factorization algorithm and its rank-3k counterpart. The
performance of different algorithms were evaluated and compared by means of
the below defined mean reprojection variance.

Erv =
1

mn
‖W0− M̂Ŝ‖2F (8.23)

where W0 is the noise-free tracking matrix; M̂ and Ŝ are the estimated motion
and shape matrices, respectively. In order to obtain a statistically meaningful
comparison, 100 independent tests were performed at each noise level. The mean
reprojection variance with respect to different centroid deviations at different
noise levels is shown in Fig. 8.5, where the noise level is defined as the standard
deviation of the Gaussian noise.
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Figure 8.6: The mean reprojection variance with respect to different noise levels
and outliers. (a) 5% outliers; (b) 20% outliers.

As shown in Fig. 8.5, the miscalculated centroid has no influence to the
proposed augmented algorithm, but has an extremely large impact to the perfor-
mance of rank-3k based approach. The test indicates that the influence caused
by the centroid error is far more significant than that caused by the image noise.
Thus, it is better to choose the augmented affine factorization in practice, espe-
cially in cases that the centroid cannot be reliably recovered due to the presence
of missing data and/or outliers.

8.5.2 Performance of the robust algorithm

For the above simulated image sequence, Gaussian noise was added to each
image point (i.e. the points in the tracking matrix) and the noise level was varied
from 1-unit to 5-unit in steps of 1. In the mean time, 10% outliers were added to
the tracking matrix. Using the contaminated data, the foregoing proposed robust
algorithm was employed to recover the motion and shape matrices.

Figure 8.4 shows three noise and outlier corrupted images and the corre-
sponding 3D structures recovered by the proposed approach. It is evident that
the deformable cube structures are correctly retrieved.

As a comparison, the direct nonrigid factorization algorithm without outlier
rejection [75] and two successful robust algorithms in the literature were imple-
mented as well, one is an outlier correction scheme proposed by Huynh et al.
[39], the other one is proposed by Ke and Kanade [41] based on minimization of
the L1 norm. The two robust algorithms were employed to recover the nonrigid
structure using the same data in the test. The mean reprojection variance at
different noise levels and outliers ratios is shown in Figure 8.6.

The results in Figure 8.6 were evaluated from 100 independent tests, and
the reprojection variance was estimated only using the original inlying data so
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Table 8.1: Real computation time of different algorithms (second)

Frame no. 50 100 150 200 250 300
Huynh 3.62 12.25 23.18 41.93 70.54 99.27
Ke 5.48 32.61 90.17 176.42 303.26 527.98
Proposed 15.76 56.08 79.86 136.14 212.39 303.46

as to provide a fair comparison. Obviously, the proposed scheme outperforms
other algorithms in terms of accuracy. The direct factorization algorithm yields
significantly large errors due to the influence of outliers, and the error increases
with the increase of the amount of outliers. The experiment also shows that
all three robust algorithms are resilient to outliers, as can be seen in Fig. 8.6,
the ratio of outliers has little influence to the reprojection variance of the three
robust algorithms.

The complexity of different approaches was compared in the above test. We
implemented all algorithms using Matlab on a Lenovo T500 laptop with 2,26GHz
Intel Core Duo CPU. The frame number was varied from 50 to 300 in steps of
50 so as to generate different sizes of the tracking data, and 10% outliers were
added to the data.

Table 8.1 shows the real computation time of different algorithms. Obviously,
the complexity of the proposed scheme lies in between of ’Huynh’ and ’Ke’,
but it yields the best accuracy. The minimization of the L1 norm in ’Ke’ is
computationally more intensive than the alternative factorization algorithm.
Huynh’s method does not include the step of weighted factorization, this is why
it is relatively fast but it yields the lowest accuracy among the three algorithms.

8.6 Evaluations on Real Sequences

The method was tested on several real image sequences. The results on two data
sets are reported here.

The first test was on a dinosaur sequence from paper [5]. The sequence
consists of 231 images with various movement and deformation of a dinosaur
model. The image resolution is 570× 338 pixel and 49 features were tracked
across the sequence. In order to test the robustness of the algorithm, an additional
8% outliers were added to the tracking data as shown in Figure 8.7.

Using the proposed approach, all outliers were successfully detected, however,
a few tracked features were also eliminated due to large tracking errors. The
proposed approach was employed to remove the outliers and recover the motion
and structure matrices. Then, the solutions were upgraded to the Euclidean
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(a)

(b)

(c)

Figure 8.7: Test results of the dinosaur sequence. (a) Four frames from the
sequence overlaid with the tracked features (red circles) and added outliers (blue
stars); (b) the corresponding 3D VRML models from different viewpoints; and
(c) the associated wireframes of the reconstructed models.

space. Figure 8.7 shows the reconstructed structure and wireframe at different
viewpoints. It can be seen from the results that the deformed structure has been
correctly recovered from the corrupted data, and the reconstructed VRML model
is visually realistic.

The histogram distribution of the reprojection residual matrix (8.16) with
outliers is shown in Figure 8.8. The residuals largely conform to the assumption of
normal distribution. As can be seen from the histogram, the outliers are obviously
distinguished from inliers, the computed threshold is shown in the figure. After
rejecting outliers, the histogram distribution of the residuals produced by the
final solutions is also shown in Figure 8.8. Obviously, the residual error is reduced
significantly by the proposed approach. The final mean reprojection error given
by the proposed approach is 0.597. In comparison, the reprojection errors by the
algorithms of ’Huynh’ and ’Ke’ are 0.926 and 0.733, respectively. The proposed
scheme outperforms other approaches.

The second test was on a face sequence with different facial expressions. The
sequence was downloaded from FGnet, and 200 images from the sequence were
used in the test. The image resolution is 720×576 with 68 automatically tracked
feature points using the active appearance model (AAM). For test purpose, 8%
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Figure 8.8: The histogram distribution of the residual matrix of the dinosaur
sequence. (a) Before outlier rejection; (b) after outlier rejection.

outliers were added to the tracking data as shown in Figure 8.9.
The proposed robust algorithm was used to recover the Euclidean structure

of the face. Figure 8.9 shows the reconstructed VRML models of four frames
and the corresponding wireframes from different viewpoints. As demonstrated
in the results, different facial expressions have been correctly recovered by the
proposed approach. The reprojection errors obtained from ’Huynh’, ’Ke’, and the
proposed algorithms are 0,697, 0.581, and 0.453, respectively. The proposed
scheme yields the lowest reprojection error.

8.7 Conclusion

This chapter first proposed an augmented factorization algorithm which has been
proved to be more accurate and more widely applicable than classical rank-3k
based nonrigid factorization, especially in the case that the image centroids
could not be reliably recovered due to the presence of missing and outlying data.
Then, an alternatively weighted factorization algorithm was presented to reduce
the influence of large image noise. Finally, a robust factorization scheme was
designed to deal with corrupted data containing outliers and missing points. The
proposed technique requires no prior information of the error distribution in the
tracking data. Extensive tests and evaluations demonstrated its advantages over
the previous methods.
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(a)

(b)

(c)

Figure 8.9: Test results of the face sequence. (a) Four frames from the sequence
overlaid with the tracked features (red circles) and added outliers (yellow stars);
(b) the corresponding 3D VRML models from different viewpoints; and (c) the
associated wireframes of the reconstructed models.

145





Chapter 9

Conclusion and Future Work

This thesis started with an introduction to the state-of-the-art techniques of struc-
ture from motion and some challenges the field was facing. Then, we proposed
several new algorithms to increase the accuracy, efficiency, and robustness of the
previous approaches. This chapter revisits the contributions and conclusion of
the thesis, followed by a discussion of potential research topics for future study.

9.1 Contributions and Conclusion

This thesis focused on the accuracy and robustness for the problem of structure
from motion. The major contributions and conclusion are as follows.

The first part of the thesis discussed the accuracy and efficiency of structure
from motion. First, a quasi-perspective projection model was proposed in Chapter
3 under the assumption that the camera was far away from the object with small
lateral rotations. As a trade-off for the simplified affine assumption and the
complicated full perspective projection model, the quasi-perspective model filled
the gap between the two popular models. The proposed model was demonstrated
theoretically and experimentally to be more accurate than the affine model.

More special geometric properties of the model were investigated in Chapter
4 in the context of one- and two-view geometry, including the quasi-fundamental
matrix, plane induced homography, and quasi-perspective 3D reconstruction.
Theoretical analysis and experimental study showed that the quasi-perspective
model was a good trade-off between the simplicity and the accuracy of previous
projection models.

Finally, the quasi-perspective model was applied to the problem of SfM, and a
structure and motion factorization framework of both rigid and nonrigid objects
was presented in Chapter 5. The new framework avoided the difficulty of com-
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puting projective depths under perspective factorization. It was computationally
efficient with better accuracy than affine approximation.

The proposed model is suitable for structure and motion factorization of a
short sequence with small camera motions. It should be noted that the small
rotation assumption of the proposed model is not a limiting factor and is usually
satisfied in many real-world applications. For a long image sequence taken
around an object, we can simply divide the sequence into several subsequences
with small movements, then register and merge the results of each subsequence
to reconstruct the structure of the entire scene.

The second part of the thesis focused on the robustness of SfM algorithms.
First, a spatial-and-temporal-weighted factorization algorithm was proposed in
Chapter 6 to handle significant noise contained in the tracking data, where the
uncertainty of image measurement was estimated directly from the reprojection
residuals. Unlike other existing weighted factorization algorithms, the proposed
technique didn’t require any prior information of the error distributions of the
data, and the errors could be easily modeled both spatially and temporally to
cope with different measurement uncertainties.

In Chapter 7, an augmented rank-4 affine factorization algorithm was pro-
posed to handle outlying and missing data in rigid SfM. As a new addition to the
previous affine factorization family, the new formulation is more accurate and
more widely applicable than classical rank-3 affine factorization, since it avoids
the difficulty of image alignment for erroneous data. Based on the distribution of
reprojection residuals, a robust factorization scheme was designed to deal with
corrupted data with outliers.

The robust algorithm of Chapter 7 was further extended to nonrigid scenarios
in Chapter 8. A new augmented nonrigid factorization algorithm was first
proposed to rout the difficulty in image alignment. Then, it was demonstrated
that the outliers could be detected directly from the image reprojection residuals
of nonrigid factorization. Thus, a similar robust scheme as rigid factorization was
designed to handle outlying and missing data in nonrigid structure and motion
recovery. The proposed technique was demonstrated empirically to be more
efficient and more accurate than other robust algorithms.

The study in this thesis is not only academically significant, but also urgently
needed by automotive and robotic industries for autonomous navigation and
environment modeling. The study provides a new perspective for accurate and
robust modeling of both rigid and nonrigid objects.

It should be noted that the proposed robust algorithms are based on the affine
camera model. However, if the camera undergoes small lateral movements, we
can adopt the quasi-perspective model in these robust algorithms. As studied in
Chapter 5, the quasi-perspective model is more accurate than the affine model.
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Thus, more accurate solutions are expected by assuming the quasi-perspective
assumption.

9.2 Future Work

3D environment modeling and motion estimation using visual sensors are two
main functions of autonomous robots. As a central theme in computer vision,
the problem of 3D structure and motion recovery from image sequences has
been widely studied during the past three decades and considerable progress has
been made in theory and applications. Unfortunately, the problem remains far
from being solved. One critical challenge is how to recover the 3D structure of
dynamic natural scenes with rigid, nonrigid, articulated, and moving objects. The
problem is very complex and has, thus, seldom been addressed in the literature.
Some potential research topics in this field are as follows.

1. Structure and motion recovery of dynamic scenes

Previous study on structure from motion dealt only with simple objects
or scenes, however, a natural environment is more complex; it may be
coupled with rigid, nonrigid, moving, and articulated objects. The 3D
reconstruction of such a dynamic environment is still an open problem in
computer vision. A possible approach is to solve this problem in trajectory
space by introducing some constraint to the 3D trajectory of the scene.

2. Visual SLAM in dynamic environments

The SfM of dynamic scenes has many potential applications. One direct
application is the vision based simultaneous localization and mapping
(SLAM) of mobile robots in dynamic environments. Another application is
3D reconstruction in video surveillance; the 3D information is very helpful
for objects recognition and event detection from a dynamic surveillance
video. If the problem of dynamic modeling is solved, we can directly use
all information in the video, including moving and nonrigid objects. Thus,
a faster and more reliable result is expected.

3. Robust algorithm for structure from motion

Robustness is a well-known bottleneck of many computer vision applica-
tions, because outliers and missing data are inevitable during the process
of feature tracking. This thesis provides a partial solution to the problem
by virtue of the reprojection residuals, however, the problem has not been
completely solved, especially for 3D modeling of dynamic environments.
More efforts have to be addressed to this research.
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