297 research outputs found

    Real-Time Fault Detection and Diagnosis System for Analog and Mixed-Signal Circuits of Acousto-Magnetic EAS Devices

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper discusses fault diagnosis of the electronic circuit board, part of acousto-magnetic electronic article surveillance detection devices. The aim is that the end-user can run the fault diagnosis in real time using a portable FPGA-based platform so as to gain insight into the failures that have occurred.Peer reviewe

    Handling Fault Diagnosis Problem of Linear-Analogue Circuits with Voltage Phasor Measurement

    Get PDF
    This paper proposes a novel method to estimate the influence of hard-fault in linear-analogue circuit system based on the measurement of voltage phasor with assistant branch introduced. Furthermore, a new fault diagnosis strategy based on the voltage phasor modeling is established, and the tolerance influence on the corresponding voltage measurement is also discussed. The actual analogue circuit test shows us that the proposed method is effective and reliable to locate the accurate fault signature in voltage measurement for the fault diagnosis. As a matter of fact, it includes both the amplitude and phase information in a complex value form when the linear-analogue circuit is under the AC test. Besides, it can be also applied to ambiguous groups and the sensitive test-frequencies determination in the process of fault diagnosis,while the effectiveness of multifrequencies test has also been testified through test-frequencies sweeping investigation and the maximum error evaluation of fault component value in the second circuit example

    Methods for testing of analog circuits

    Get PDF
    Práce se zabývá metodami pro testování lineárních analogových obvodů v kmitočtové oblasti. Cílem je navrhnout efektivní metody pro automatické generování testovacího plánu. Snížením počtu měření a výpočetní náročnosti lze výrazně snížit náklady za testování. Práce se zabývá multifrekveční parametrickou poruchovou analýzou, která byla plně implementována do programu Matlab. Vhodnou volbou testovacích kmitočtů lze potlačit chyby měření a chyby způsobené výrobními tolerancemi obvodových prvků. Navržené metody pro optimální volbu kmitočtů byly statisticky ověřeny metodou MonteCarlo. Pro zvýšení přesnosti a snížení výpočetní náročnosti poruchové analýzy byly vyvinuty postupy založené na metodě nejmenších čtverců a přibližné symbolické analýze.The thesis deals with methods for testing of linear analog circuits in the frequency domain. The goal is to develop new efficient methods for automatic test plan generation. To reduce test costs a minimum number of measurements as well as less computational demands are the fundamental aims. The thesis is focused on the multi-frequency parametric fault diagnosis which was fully implemented in the Matlab program. The fundamental problem consists in selection of test frequencies which can reduce the influences of measurement errors and errors caused by tolerances of well-working components. The proposed methods for test frequency selection were statistically verified by the MonteCarlo method. To improve the accuracy and reduce the computational complexity of fault diagnosis, the methods based on least-square techniques and approximate symbolic analysis were presented.

    New techniques for selecting test frequencies for linear analog circuits

    No full text
    International audienceIn this paper we show that the problem of minimizing the number of test frequencies necessary to detect all possible faults in a multi-frequency test approach for linear analog circuits can be modeled as a set covering problem. We will show in particular, that under some conditions on the considered faults, the coefficient matrix of the problem has the strong consecutive-ones property and hence the corresponding set covering problem can be solved in polynomial time. For an efficient solution of the problem, an interval graph formulation is also used and a polynomial algorithm using the interval graph structure is suggested. The optimization of test frequencies for a case-study biquadratic filter is presented for illustration purposes. Numerical simulations with a set of randomly generated problem instances demonstrate two different implementation approaches to solve the optimization problem very fast, with a good time complexity

    New techniques for selecting test frequencies for linear analog circuits

    No full text
    International audienceIn this paper we show that the problem of minimizing the number of test frequencies necessary to detect all possible faults in a multi-frequency test approach for linear analog circuits can be modeled as a set covering problem. We will show in particular, that under some conditions on the considered faults, the coefficient matrix of the problem has the strong consecutive-ones property and hence the corresponding set covering problem can be solved in polynomial time. For an efficient solution of the problem, an interval graph formulation is also used and a polynomial algorithm using the interval graph structure is suggested. The optimization of test frequencies for a case-study biquadratic filter is presented for illustration purposes. Numerical simulations with a set of randomly generated problem instances demonstrate two different implementation approaches to solve the optimization problem very fast, with a good time complexity

    Testability analysis of analog systems

    Full text link

    Doctor of Philosophy

    Get PDF
    dissertationThe design of integrated circuit (IC) requires an exhaustive verification and a thorough test mechanism to ensure the functionality and robustness of the circuit. This dissertation employs the theory of relative timing that has the advantage of enabling designers to create designs that have significant power and performance over traditional clocked designs. Research has been carried out to enable the relative timing approach to be supported by commercial electronic design automation (EDA) tools. This allows asynchronous and sequential designs to be designed using commercial cad tools. However, two very significant holes in the flow exist: the lack of support for timing verification and manufacturing test. Relative timing (RT) utilizes circuit delay to enforce and measure event sequencing on circuit design. Asynchronous circuits can optimize power-performance product by adjusting the circuit timing. A thorough analysis on the timing characteristic of each and every timing path is required to ensure the robustness and correctness of RT designs. All timing paths have to conform to the circuit timing constraints. This dissertation addresses back-end design robustness by validating full cyclical path timing verification with static timing analysis and implementing design for testability (DFT). Circuit reliability and correctness are necessary aspects for the technology to become commercially ready. In this study, scan-chain, a commercial DFT implementation, is applied to burst-mode RT designs. In addition, a novel testing approach is developed along with scan-chain to over achieve 90% fault coverage on two fault models: stuck-at fault model and delay fault model. This work evaluates the cost of DFT and its coverage trade-off then determines the best implementation. Designs such as a 64-point fast Fourier transform (FFT) design, an I2C design, and a mixed-signal design are built to demonstrate power, area, performance advantages of the relative timing methodology and are used as a platform for developing the backend robustness. Results are verified by performing post-silicon timing validation and test. This work strengthens overall relative timed circuit flow, reliability, and testability

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database

    OSCILLATION-BASED TESTING METHOD FOR DETECTING SWITCH FAULTS IN HIGH-Q SC BIQUAD FILTERS

    Get PDF
    Testing switched capacitor circuits is a challenge due to the diversity of the possible faults. A special problem encountered is the synthesis of the test signal that will control and will make the fault-effect observable at the test point. The oscillation based method which was adopted for testing in these proceedings resolves that important issue by his nature. Here we discuss the properties of the method and the conditions to be fulfilled in order to implement it in the right way. To achieve that we resolved the problem of synthesis of the positive feed-back circuit and the choice of a proper model of the operational amplifier. In that way a realistic foundation to the testing process was generated. A second order notch cell was chosen as a case-study. Fault dictionaries were developed related to the catastrophic faults of the switches used within the cell. The results reported here are a continuation of our previous work and are complimentary to some other already published
    corecore