7 research outputs found

    Primena funkcionalnih normi za regularizaciju rangiranja nad temporalnim podacima

    Get PDF
    Quantifying the properties of interest is an important problem in many domains, e.g., assessing the condition of a patient, estimating the risk of an investment or relevance of the search result. However, the properties of interest are often latent and hard to assess directly, making it dicult to obtain classication or regression labels, which are needed to learn a predictive models from observable features. In such cases, it is typically much easier to obtain relative comparison of two instances, i.e. to assess which one is more intense (with respect to the property of interest). One framework able to learn from such kind of supervised information is ranking SVM, and it will make a basis of our approach...Kvantikovanje osobina (karakteristika) od interesa je vazan problem u mnogim domenima, npr. utvrdivanje tezine bolesti kod pacijenata, ocena rizika investicije ili relevantnost vracenih rezultata pretrage. Medutim, osobine od interesa su cesto latentne i tesko se mogu izmeriti direktno, sto otezava dobijanje klasikacionih oznaka (labela) ili ciljeva za regresiju, koji su potrebni za ucenje prediktivnih modela iz merljivih karakteristika. U takvim slucajevima obicno je mnogo lakse pribaviti relativno poredenje dva slucaja, tj. proceniti koji od dva je intenzivniji (iz ugla karakteristike od interesa). Jedna klasa algoritama koji mogu uciti iz ovakvih informacija je SVM za rangiranje i on ce biti osnova ovde predlozenog pristupa..

    Otimização multi-objetivo em aprendizado de máquina

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Regressão logística multinomial regularizada, classificação multi-rótulo e aprendizado multi-tarefa são exemplos de problemas de aprendizado de máquina em que objetivos conflitantes, como funções de perda e penalidades que promovem regularização, devem ser simultaneamente minimizadas. Portanto, a perspectiva simplista de procurar o modelo de aprendizado com o melhor desempenho deve ser substituída pela proposição e subsequente exploração de múltiplos modelos de aprendizado eficientes, cada um caracterizado por um compromisso (trade-off) distinto entre os objetivos conflitantes. Comitês de máquinas e preferências a posteriori do tomador de decisão podem ser implementadas visando explorar adequadamente este conjunto diverso de modelos de aprendizado eficientes, em busca de melhoria de desempenho. A estrutura conceitual multi-objetivo para aprendizado de máquina é suportada por três etapas: (1) Modelagem multi-objetivo de cada problema de aprendizado, destacando explicitamente os objetivos conflitantes envolvidos; (2) Dada a formulação multi-objetivo do problema de aprendizado, por exemplo, considerando funções de perda e termos de penalização como objetivos conflitantes, soluções eficientes e bem distribuídas ao longo da fronteira de Pareto são obtidas por um solver determinístico e exato denominado NISE (do inglês Non-Inferior Set Estimation); (3) Esses modelos de aprendizado eficientes são então submetidos a um processo de seleção de modelos que opera com preferências a posteriori, ou a filtragem e agregação para a síntese de ensembles. Como o NISE é restrito a problemas de dois objetivos, uma extensão do NISE capaz de lidar com mais de dois objetivos, denominada MONISE (do inglês Many-Objective NISE), também é proposta aqui, sendo uma contribuição adicional que expande a aplicabilidade da estrutura conceitual proposta. Para atestar adequadamente o mérito da nossa abordagem multi-objetivo, foram realizadas investigações mais específicas, restritas à aprendizagem de modelos lineares regularizados: (1) Qual é o mérito relativo da seleção a posteriori de um único modelo de aprendizado, entre os produzidos pela nossa proposta, quando comparado com outras abordagens de modelo único na literatura? (2) O nível de diversidade dos modelos de aprendizado produzidos pela nossa proposta é superior àquele alcançado por abordagens alternativas dedicadas à geração de múltiplos modelos de aprendizado? (3) E quanto à qualidade de predição da filtragem e agregação dos modelos de aprendizado produzidos pela nossa proposta quando aplicados a: (i) classificação multi-classe, (ii) classificação desbalanceada, (iii) classificação multi-rótulo, (iv) aprendizado multi-tarefa, (v) aprendizado com multiplos conjuntos de atributos? A natureza determinística de NISE e MONISE, sua capacidade de lidar adequadamente com a forma da fronteira de Pareto em cada problema de aprendizado, e a garantia de sempre obter modelos de aprendizado eficientes são aqui pleiteados como responsáveis pelos resultados promissores alcançados em todas essas três frentes de investigação específicasAbstract: Regularized multinomial logistic regression, multi-label classification, and multi-task learning are examples of machine learning problems in which conflicting objectives, such as losses and regularization penalties, should be simultaneously minimized. Therefore, the narrow perspective of looking for the learning model with the best performance should be replaced by the proposition and further exploration of multiple efficient learning models, each one characterized by a distinct trade-off among the conflicting objectives. Committee machines and a posteriori preferences of the decision-maker may be implemented to properly explore this diverse set of efficient learning models toward performance improvement. The whole multi-objective framework for machine learning is supported by three stages: (1) The multi-objective modelling of each learning problem, explicitly highlighting the conflicting objectives involved; (2) Given the multi-objective formulation of the learning problem, for instance, considering loss functions and penalty terms as conflicting objective functions, efficient solutions well-distributed along the Pareto front are obtained by a deterministic and exact solver named NISE (Non-Inferior Set Estimation); (3) Those efficient learning models are then subject to a posteriori model selection, or to ensemble filtering and aggregation. Given that NISE is restricted to two objective functions, an extension for many objectives, named MONISE (Many Objective NISE), is also proposed here, being an additional contribution and expanding the applicability of the proposed framework. To properly access the merit of our multi-objective approach, more specific investigations were conducted, restricted to regularized linear learning models: (1) What is the relative merit of the a posteriori selection of a single learning model, among the ones produced by our proposal, when compared with other single-model approaches in the literature? (2) Is the diversity level of the learning models produced by our proposal higher than the diversity level achieved by alternative approaches devoted to generating multiple learning models? (3) What about the prediction quality of ensemble filtering and aggregation of the learning models produced by our proposal on: (i) multi-class classification, (ii) unbalanced classification, (iii) multi-label classification, (iv) multi-task learning, (v) multi-view learning? The deterministic nature of NISE and MONISE, their ability to properly deal with the shape of the Pareto front in each learning problem, and the guarantee of always obtaining efficient learning models are advocated here as being responsible for the promising results achieved in all those three specific investigationsDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétrica2014/13533-0FAPES

    Extending low-rank matrix factorizations for emerging applications

    Get PDF
    Low-rank matrix factorizations have become increasingly popular to project high dimensional data into latent spaces with small dimensions in order to obtain better understandings of the data and thus more accurate predictions. In particular, they have been widely applied to important applications such as collaborative filtering and social network analysis. In this thesis, I investigate the applications and extensions of the ideas of the low-rank matrix factorization to solve several practically important problems arise from collaborative filtering and social network analysis. A key challenge in recommendation system research is how to effectively profile new users, a problem generally known as \emph{cold-start} recommendation. In the first part of this work, we extend the low-rank matrix factorization by allowing the latent factors to have more complex structures --- decision trees to solve the problem of cold-start recommendations. In particular, we present \emph{functional matrix factorization} (fMF), a novel cold-start recommendation method that solves the problem of adaptive interview construction based on low-rank matrix factorizations. The second part of this work considers the efficiency problem of making recommendations in the context of large user and item spaces. Specifically, we address the problem through learning binary codes for collaborative filtering, which can be viewed as restricting the latent factors in low-rank matrix factorizations to be binary vectors that represent the binary codes for both users and items. In the third part of this work, we investigate the applications of low-rank matrix factorizations in the context of social network analysis. Specifically, we propose a convex optimization approach to discover the hidden network of social influence with low-rank and sparse structure by modeling the recurrent events at different individuals as multi-dimensional Hawkes processes, emphasizing the mutual-excitation nature of the dynamics of event occurrences. The proposed framework combines the estimation of mutually exciting process and the low-rank matrix factorization in a principled manner. In the fourth part of this work, we estimate the triggering kernels for the Hawkes process. In particular, we focus on estimating the triggering kernels from an infinite dimensional functional space with the Euler Lagrange equation, which can be viewed as applying the idea of low-rank factorizations in the functional space.Ph.D

    Transfer learning for information retrieval

    Get PDF
    The lack of relevance labels is increasingly challenging and presents a bottleneck in the training of reliable learning-to-rank (L2R) models. Obtaining relevance labels using human judgment is expensive and even impossible in some scenarios. Previous research has studied different approaches to solving the problem including generating relevance labels by crowdsourcing and active learning. Recent studies have started to find ways to reuse knowledge from a related collection to help the ranking in a new collection. However, the effectiveness of a ranking function trained in one collection may be degraded when used in another collection due to the generalization issues of machine learning. Transfer learning involves a set of algorithms that are used to train or adapt a model for a target collection without sucient training labels by transferring knowledge from a related source collection with abundant labels. Transfer learning can also be applied to L2R to help train ranking functions for a new task by reusing data from a related collection while minimizing the generalization gap. Some attempts have been made to apply transfer learning techniques on L2R tasks. This thesis investigates different approaches to transfer learning methods for L2R, which are called transfer ranking. However, most of the existing studies on transfer ranking have been focused on the scenario when there are a small but not sucient number of relevance labels. The field of transfer ranking with no target collection labels is still relatively undeveloped. Moreover, the main reason why a transfer ranking solution is needed is that a ranking function trained in the source collection cannot generalize to the target collection, due to the differences in the data distribution of the two collections. However, the effect of the data distribution differences on ranking model generalization has not been examined in detail. The focus of this study is the scenario when there are no relevance labels from the new collection (the target collection), but where a related collection (the target collection) has an abundant amount of training data and labels. In this thesis, we first demonstrate the generalization gap of different L2R algorithms when the distribution of the source and target collections are different in multiple ways, and we then develop alternative solutions to tackling the problem, which includes instance weighting algorithms and self-labeling methods. Instance weighting algorithms estimate weights for each training query in the source collection according to the target query distribution and use the weighted objective function to optimize a ranking function for the target collection. The results on different test collections suggest that instance weighting methods, including existing approaches, are not reliable. The self-labeling methods use other approaches to generate imputed relevance labels for queries in the target collection, which look to transfer the ranking knowledge to the target collection by transferring the label knowledge. The algorithms were tested on various transferring scenarios and showed significant effectiveness and consistency. We thus demonstrate that the performance of self-labeling methods can be further improved with a minimal number of calibration labels from the target collection. The algorithms and knowledge developed in this thesis can help solve generic ranking knowledge transfer problems under different scenarios

    Multi-task learning for learning to rank in web search

    No full text
    corecore