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The lack of relevance labels is increasingly challenging and presents a bottleneck in the

training of reliable learning-to-rank (L2R) models. Obtaining relevance labels using hu-

man judgment is expensive and even impossible in some scenarios. Previous research has

studied di↵erent approaches to solving the problem including generating relevance labels

by crowdsourcing and active learning. Recent studies have started to find ways to reuse

knowledge from a related collection to help the ranking in a new collection. However,

the e↵ectiveness of a ranking function trained in one collection may be degraded when

used in another collection due to the generalization issues of machine learning.

Transfer learning involves a set of algorithms that are used to train or adapt a model

for a target collection without sucient training labels by transferring knowledge from

a related source collection with abundant labels. Transfer learning can also be applied

to L2R to help train ranking functions for a new task by reusing data from a related

collection while minimizing the generalization gap.

Some attempts have been made to apply transfer learning techniques on L2R tasks. This

thesis investigates di↵erent approaches to transfer learning methods for L2R, which are

called transfer ranking. However, most of the existing studies on transfer ranking have

been focused on the scenario when there are a small but not sucient number of relevance

labels. The field of transfer ranking with no target collection labels is still relatively

undeveloped. Moreover, the main reason why a transfer ranking solution is needed is

that a ranking function trained in the source collection cannot generalize to the target

collection, due to the di↵erences in the data distribution of the two collections. However,

the e↵ect of the data distribution di↵erences on ranking model generalization has not

been examined in detail. The focus of this study is the scenario when there are no

relevance labels from the new collection (the target collection), but where a related

collection (the target collection) has an abundant amount of training data and labels.

In this thesis, we first demonstrate the generalization gap of di↵erent L2R algorithms

when the distribution of the source and target collections are di↵erent in multiple ways,

and we then develop alternative solutions to tackling the problem, which includes in-

stance weighting algorithms and self-labeling methods. Instance weighting algorithms

estimate weights for each training query in the source collection according to the target

query distribution and use the weighted objective function to optimize a ranking function

for the target collection. The results on di↵erent test collections suggest that instance

weighting methods, including existing approaches, are not reliable. The self-labeling

methods use other approaches to generate imputed relevance labels for queries in the

target collection, which look to transfer the ranking knowledge to the target collection

by transferring the label knowledge. The algorithms were tested on various transferring

scenarios and showed significant e↵ectiveness and consistency. We thus demonstrate



that the performance of self-labeling methods can be further improved with a minimal

number of calibration labels from the target collection. The algorithms and knowledge

developed in this thesis can help solve generic ranking knowledge transfer problems

under di↵erent scenarios.
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Chapter 1

Introduction

Ranking has laid the foundations of many fields, for example, Information Retrieval (IR)

and Recommender Systems, as well as Question Answering (QA). For IR applications

like search engines, the ranking system looks to return a permutation of documents

ordered by their relevance to an information request, expressed in queries, submitted

to the system. However, the relevance of a document to an information need is not

straightforwardly expressed in the document. Instead, various ranking models, which

include the BM25 [1] and language models [2, 3], have been developed to predict the

relevance via a set of signals extracted from both the document and the query. However,

it has repeatedly been demonstrated that the ranking e↵ectiveness of ranking models

varies across di↵erent test collections [4–6]. The majority of existing ranking models

have been developed based on empirical studies and require parameter tuning for specific

corpus. Recent research on Learning to Ranking (L2R) [7] has made significant strides

towards training ranking models via machine learning techniques. Note that L2R is not

learning to optimise the parameters for existing models, but to train a ranking model

that can achieve optimised ranking function for a specific task.

Most L2R algorithms are supervised, which means plenty of training examples are re-

quired. Relevance judgments for IR systems are expensive to generate, and quality

control can be di�cult. In many cases, relevance judgments from a related collection

can help ranking function training for the new collection. For example, a hotel booking

company based in the US wants to expand its market to Asia and South America. Al-

though they may have an e↵ective ranking function for their existing markets trained

1
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with labeled data, it may not generalize to the new market because of language or other

di↵erences. However, the relevance judgments or click logs in their existing markets

could help them build a new ranking system for the new markets using transfer learning

techniques. This thesis investigates the technique used to transfer ranking knowledge

from an existing collection (the source collection) to a new collection (the target collec-

tion), which is named Transfer Ranking (TR).

1.1 Problem Statement

Like conventional machine learning problems such as regression and classification, the

ranking model trained by L2R algorithms can only generalize well when the training and

test data are drawn from the same distribution. The so-called “dataset shift” problem [8]

arises when the assumption is violated. For example, the e↵ectiveness of a ranking

function trained on one document collection will show some decrease when it is applied to

a new document collection. Transfer learning [9–11], including its subproblems, domain

adaptation [12–14], and multi-task learning [15, 16], has been widely used in the machine

learning community for solving dataset shift problems.

Potentially, transfer learning is also a solution to solve the dataset shift issues for L2R

collections. However, conventional transfer learning techniques cannot be used for TR

directly due to many reasons. One particular reason is that the training data for L2R is

generated from a di↵erent process as it is from a conventional machine learning dataset.

The training data for an L2R algorithm is initialized by retrieving documents from a

collection for a set of queries. For e�ciency, documents are pooled at a certain depth,

however, this makes it harder to formalize the data generating process. As a consequence,

the data distribution of L2R collection is governed by a number of factors: the query set,

document collection, and pooling depth, as well as the retrieval model used to gather the

pool of documents. All the factors have contributed to the challenge of implementing

transfer ranking algorithms.

The training data is also used di↵erently by L2R models. According to Liu and others

[7], three di↵erent types of algorithms have constituted the mainstream of L2R algo-

rithms: pointwise, pairwise, and listwise algorithms. Most of the state-of-the-art L2R

algorithms are listwise, so that the objective functions seek to minimize a query-level
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loss. Furthermore, the evaluation of the e↵ectiveness of a ranking function is based on

the averaged query-level measurement metric scores over a set of queries for testing.

Most of the existing transfer learning algorithms have sought to develop new techniques

to minimize the di↵erences between the source and target collection. The complicated

compromise of the L2R training data has made it a great challenge even to measure the

dataset shift among two collections, which makes it harder to implement conventional

transfer learning techniques for such collections.

In recent years, some attempts have been made to adapt some of the classical transfer

learning algorithms so that they can work for L2R collections. For example, Chen et al.

[17] and Gao et al. [18] have sought to develop instance weighting algorithms, for TR

among L2R collections; weights are assigned to training instances in the source collection

to change the data distribution to better resemble the distribution in the target. The

authors have demonstrated some success with some small L2R test collections. The study

has made important contributions to the study of TR problems, which has inspired many

others to try new methods for the task. However, the algorithms have only focused on

a particular transferring scenario where the di↵erence between the source and target

collection is only the data distribution in the input space. Moreover, the developed

algorithms can only work for pairwise algorithms.

Apart from instance weighting, some other methods have also been attempted to ad-

dress the problem, which include sample selection [19], co-regularization [20], feature

engineering [17, 21] and other miscellaneous approaches. Most of the existing solutions

can only work for a particular type of L2R algorithm. For example, pairwise L2R al-

gorithms have been widely used for studying TR problems as it is easier to measure

the distribution change for the preference data. However, since most of the advanced

L2R algorithms are listwise and the evaluation of performance is conducted at the query

level, TR for listwise algorithms at the query level is worth examining more closely.

The performance of a ranking system also depends on the resources available during the

transferring process, as well as the right choice of the corresponding algorithms. Di↵er-

ent transferring scenarios, namely Unsupervised TR and Supervised TR, are listed

and compared in Table 1.1. One commonality between the two transferring scenarios

is that there exists a su�cient amount of labeled training examples in the source col-

lection, which includes the document collection, queries submitted to the system, and
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Table 1.1: Di↵erent transfer ranking scenarios

Ds Qs Rs Dt Qt Rt

Supervised TR
p p p p p

small amount
Unsupervised TR

p p p p p
⇥

Minimally Supervised TR
p p p p p

minimal amount

the corresponding relevance labels (or click-through logs) for query-document pairs. In

some cases, the target collection only contains a document collection, a query set request

through the system, and a smaller number of relevance labels available in the target col-

lection. The aim of such a task, in supervised TR, is looking to leverage labeled training

instances from a source collection to improve the training of the target ranking function.

On the contrary, under the supervised TR scenario, no relevance judgments are assessed

for the target collection. The task is more challenging as little information is known for

the target collection. Later in the thesis, we also introduce a Minimally Supervised TR

scenario, where is only a minimal amount of data required from the target collection to

calibrate the transferring process.

Present understanding of TR algorithms is limited. The field of TR is still relatively

undeveloped. The problem merits further investigation; for example, how to generalize

di↵erent L2R models across di↵erent test collections; how to measure the relatedness

of two L2R collections; and how to quantify the distribution change between L2R col-

lections. Chapelle et al. [22] have also highlighted the need for further investigation of

TR.

1.2 Aim and Scope

Most of the previous research on TR has been focused on supervised TR. Unsupervised

TR scenarios require further investigation. This study seeks to address the unsupervised

TR problem and aims to develop methods to improve the transfer e↵ectiveness of the

machine-learned source ranking functions on a target L2R collection.

Therefore the focus of this study is unsupervised TR; the investigation of supervised TR

algorithms falls outside the scope of this study. A previous study [23] has attempted

to address the unsupervised TR problem when multiple source collections are available.

However, we have excluded such settings from our study due to the di�culty of accessing
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a valid testing environment and the fact that the setup cannot generalize to all real

scenarios. Similarly, multi-task learning to rank is beyond the scope of this study.

In practice, there might exist some other information in the target collection which could

help a transfer, for example: document information, collection information, and click

logs. However, most of the public L2R test collections have purposely excluded such

information from the collection. This study will focus on the unsupervised TR scenario

with minimal information requirement, which is when the extracted feature vectors for

query-document pairs are accessible.

One condition imposed by the study is that the source and target data should have the

same feature space. Heterogeneous transfer learning, which looks to implement transfer

learning when the feature spaces are di↵erent, will not be considered in this study.

To be able to develop better algorithms for unsupervised TR, several research questions

are to be addressed.

Research question 1: What are the generalization abilities of various L2R

algorithms across di↵erent L2R collections?

Theoretical analysis of the generalization abilities of di↵erent L2R algorithms has been

demonstrated by some early studies [24, 25]. However, the generalization ability of

an L2R algorithm on a di↵erent collection has not been well studied. As mentioned

in section 1.1, L2R collections can be distinct from one another in various ways, the

impact of the di↵erences on the cross-collection is not easy to determine and needs

further investigation.

Furthermore, understanding of the cross-collection generalization will help understand

how TR can contribute to improving ranking e↵ectiveness on a target collection. An

examination of generalization will lay the foundations for TR.

Research question 2: How can we implement unified unsupervised TR algo-

rithms on L2R collections to maximize the transfer e↵ectiveness on a target

collection?

The query-level nature of L2R algorithms poses some problems when implementing TR

algorithms. The task of unsupervised TR is complicated further by unavailable relevance
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information. In this study, we look to develop new TR algorithms that maximize the

ranking e↵ectiveness on the target collection in an unsupervised environment.

Instead of developing algorithms that work for some specific L2R algorithms, the study

seeks to develop unsupervised TR algorithms that fit most L2R algorithms.

Research question 3: How can we guarantee the performance of unsupervised

TR techniques so that they can work in various environments?

Finally, without any relevance judgment information from the target collection, it is

hard to determine whether a successful transfer has been made. Further investigation is

necessary to examine whether one could evaluate the performance of the TR algorithm

with a minimal relevance judgment requirement.

1.3 Significance of the Study

One intended outcome of the study is to provide better insight into the generalization

of the L2R algorithms. The further analysis of the data generating process - namely

the probabilistic model controlling the data distribution - of L2R collection will broaden

our understanding of L2R algorithms and can direct attention towards better strategies

to establish L2R test collections. Moreover, the study will result in a better under-

standing of how L2R algorithms are training. The thorough examination of various L2R

algorithms across di↵erent test collections may reveal better practices for training L2R

models.

Transfer learning has attracted much attention in machine learning communities. Most

of the existing solutions for transfer are focused on classification and regression problems,

where the distribution change happens in either the input feature space or the conditional

distribution. This study will expand the current knowledge of transfer learning for

ranking data and learning for matching problems [26].

The robustness of ranking functions across various collections has always been a con-

cern for the IR community. The study of TR problems will provide new insight into

how machine learning trained ranking function responds to a particular change in the

collection.
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The study can contribute many practical applications in the industry. For example,

the knowledge we gain from the study of unsupervised TR is related to the following

applications:

• Domain adaptation: TR knowledge from an existing ranking system to a new

domain, where no relevance judgments are available, for example, when an en-

terprise search service provider wants to adapt a ranking function trained for a

medical company to a newspaper corporation.

• Cross-language transfer: Deploy ranking system to a market where the lan-

guage of the collection is di↵erent from the original document collection, for ex-

ample, when a search company looks to deploy their ranking system trained in the

US market to other countries.

• Document collection shift: Update ranking systems when the original docu-

ment collection has substantially changed over time, for example, when a newspa-

per press intends to update their news search engines after an extended period of

time.

• Ranking adaptation to unseen collection: Adapt ranking function to a new

collection, where the content of documents is not available due to privacy consid-

erations. For example, when an email service company want to train a ranking

function for their customers email search system, where only some of their sta↵s

email is disclosed for making relevance judgments.

1.4 Overview of the Study

The thesis consists of seven further chapters to address the posed research questions. In

Chapter 2, the background theory of learning to rank and TR is discussed. To give a

clear image of the field of TR, related works on both transfer learning and TR are also

presented.

The main content of the study addresses the first research question through empirical

study of various L2R algorithms across di↵erent test collections in Chapter 3, which

includes a thorough examination of L2R algorithms by training and testing in various

test collections, and an experiment to analyze what makes a good ranking model.
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One of the most common solutions for transfer learning is instance weighting, which

looks to change the data distribution in a source collection to be closer to the data

distribution in a target collection by assigning instance weighting to training samples in

the target collection. Instance weighting has also been used for TR. However, existing

methods lack consideration of query e↵ects on rankings. In Chapter 4, we develop query-

level instance weighting algorithms. The algorithms are tested and compared with other

instance weighting methods across various collections and di↵erent transferring settings.

Instance weighting could be a great challenge for TR due to the di�culty of density ratio

estimation for queries. Alternatively, one could use label imputation-based methods to

generate pseudo relevance labels for training examples in the target collection. This

approach is discussed in detail in Chapter 5. A challenge for all unsupervised TR

algorithms is that the performance may vary in di↵erent transferring settings, yet it is

hard to measure the performance without relevance information. In Chapter 6, we have

relaxed the condition (TR without any relevance labels) by allowing a few relevance

judgments. Various techniques are studied to help train the system and improve the

reliability of the algorithms.

Finally, conclusions of findings, the limitations and the future works of the studies are

discussed in Chapter 7.



Chapter 2

Background and Related Work

This chapter introduces the field of transfer learning for IR. It begins by introducing

conventional ranking models for IR, followed by some basic background on learning-to-

rank. The concept of transfer learning, as well as TR will be introduced in the next

sections. The last section of this chapter will discuss some related work.

2.1 A Brief History of Ranking Models for IR

The task for an IR system is to find relevant documents from a corpus of documents in

order to satisfy a particular information need, which is usually expressed in the format

of a user-defined search query. An e↵ective IR system should discover as many relevant

documents from the corpus as possible, and rank them in decreasing order of relevance

to the information need.

Before learning-to-rank was introduced, many retrieval and ranking models were devel-

oped. Most of these models aim to compute similarity scores between the documents

and the query. The similarity scores are then used to determine which documents are

included in the result list and the ranking orders. In the following subsections, some of

the classical retrieval models will be reviewed briefly.

9
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2.1.1 Vector Space Model

The vector space model (VSM) [27] is one of the earliest ranking models. Under the

VSM model, both documents and queries are represented by vector representations in

word space. The similarity between the query and document is then computed using

cosine similarity. The element in the vector could be a statistic of the words, which may

be word counts or term frequencyinverse document frequency (tf-idf). The tf-idf score

is a combination of two term statistics: term frequency and inverse document frequency,

which aims to measure the importance of terms in the document and the whole corpus.

There are di↵erent variants of term frequency and inverse document frequency. One of

the simplest implementations of tf-idf is given as follows.

Term frequency (tf ) is the frequency of a term t appearing in the document d, which

can be computed as:

tf(t, d) = c(t, d) (2.1)

where c(t, d) denotes the count of term t in document d. There are also di↵erent variants

of term frequency, which include document length normalized term frequency, logarith-

mically scaled term frequency and others [28, 29]. For example,logarithmically scaled

term frequency is calculated as:

tf(t, d) = log(1 + c(t, d)) (2.2)

The document frequency (df), on the other hand, measures the document frequency of

a term in the collection. It measures how common a term is among all the documents

in the collection. If a term in a document rarely appears in the collection, it provides

an important signal for distinguishing the document from others. The inverse document

frequency is commonly calculated as:

idf(t, C) = log
|C|

|{d 2 C|t 2 d}| (2.3)

where C denotes a set of documents (the collection), and |C| is the size. Similar to term

frequency, there exist other variants of inverse document frequency [28, 29].
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The VSM model calculates the cosine similarity of the document and the query using

the inner product of the two vectors:

sim(d, q) =
~V (d) · ~V (q)���~V (d)

���
���~V (q)

���
(2.4)

Here ~V (d) and ~V (q) are the vectors for the document and query respectively. |~V (d)| =qP
i
~V (d) is their Euclidean length. Given the similarity scores for every query-document

pair, documents are then ranked in the descending order.

2.1.2 BM25

BM25 [1] is a probabilistic ranking model that has been widely used for ranking docu-

ments. Before BM25 was developed, several “BM” algorithms were proposed to heuristi-

cally approximate the 2-poisson probabilistic model of Robertson and Walker [30]. One

of the most famous variants of BM25 is the ATIRE BM25 [6], which can be computed

as:

BM25(d, q, C) =
MX

t2q

idf(t, C) · c(t, d)(k1 + 1)

tf(t, d) + k1(1� b+ b · c(d)
avgc(d))

(2.5)

where c(d) is the document length (number of words in d), avg c(d) is the average docu-

ment length in the collection, and k1 and b are two user-specified parameters. Di↵erent

variants of BM25 have been developed; a complete comparison of di↵erent variants can

be found in Trotman et al. [6]. BM25 and its variants have shown to be e↵ective on many

TREC collections, however, its performance may vary amaong di↵erent collections.

2.1.3 Language Model

Language models [2] are widely used probabilistic retrieval approaches for document

retrieval. Statistical modelings of text documents have been widely used for solving nat-

ural language processing problems before they were introduced to IR by Ponte and Croft

[2]. Language models for IR (LMIR) assume that queries are formulated by choosing

terms from a relevant document. As a result, the relevance between the document and

query can be approximated by estimating the “query likelihood” for a document, which

is the likelihood of generating the query given the document. To be able to compute the
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query likelihood, the algorithm first establishes a probabilistic language model Md that

fits for each document d in the collection.

The language model for each document is a categorical distribution over the set of terms,

which can be approximated as follows:

p̂(t|Md) =
c(t, d)

c(d)
(2.6)

where c(d) is the total number of terms in document d.

The query likelihood is calculated as p(q|Md). The probability that a query q been

generated from the language model Md [2] is then estimated by:

p̂(q|Md) =
Y

t2q

p̂(t|Md)⇥
Y

t/2q

(1� p̂(t|Md)) (2.7)

Some terms appearing in the query may not be seen in the document, which means

that p̂(t|Md) could be zero. As a consequence, the query likelihood will be zero if

some of the query terms do not exist in the document, which is problematic. To tackle

this “smoothing” issue, when a term is absent from the document, Ponte and Croft [2]

proposed to smooth the probability with the term’s global probability in the collection:

p̂(t|Md) ⇡
c(t, C)

cl
(2.8)

where c(t, C) denotes the counts of term t in collection C. cl =
P

t0 c(t
0, C) is the

total number of tokens in the collection. Several variants of language models have been

investigated to improve the stability.

A complete review of the language models was discussed in Zhai [31]. As it has shown

above, smoothing the maximum likelihood of p(t|Md) can a↵ect the accuracy of the

language model. Many solutions have been proposed to improve the accuracy of the

estimation, for example, the Jelinek-Mercer method [32] is a mixture model using the

linear interpolation of the maximum likelihood model of the document with the model

with the collection collection:

p(t|Md) = (1� �)p(t|Md) + �p(t|MC) (2.9)
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where MC is a language model fit for the whole collection, p(t|MC) is the likelihood of

the term t in the collection language model, � is a parameter controlling the importance

of the document and collection language model. Like BM25 models, most language

models have tuning parameters. In Zhai and La↵erty [32], the authors have shown that

the performance of language models on IR collections are sensitive to the parameters.

2.1.4 Learning-to-Rank

Many retrieval and ranking models have been proposed to achieve better ranking e↵ec-

tiveness. However, the e↵ectiveness of di↵erent ranking models can vary across di↵erent

test collections, and many require parameter tuning. Data fusion methods [33, 34] have

been investigated for combining di↵erent retrieval models in order to take advantage of

multiple models. However, the data fusion approaches also require settings for proper

combinations of models.

Learning-to-rank is closely related to data fusion. Learning-to-rank algorithms use ma-

chine learning techniques to combine various query-document-related features. The fea-

tures could also be the scores produced by some retrieval models. However, as it has been

pointed out by Macdonald et al. [35], the scenarios where data fusion and learning-to-

rank can be used are di↵erent. More specifically, data fusion combines di↵erent retrieval

results from di↵erent systems, which means the retrieved documents could be di↵erent.

The advent of learning-to-rank has brought significant improvements to the ranking

e↵ectiveness of modern IR systems. It uses machine learning techniques to learn dis-

criminative models, which combine various query-document-related features, to build

more complex and e↵ective ranking functions. Previous studies [36] have demonstrated

the power of learning-to-rank algorithms. The next section will provide a more detailed

explanation of learning-to-rank algorithms.

2.2 Learning-to-Rank

Learning-to-rank (L2R) is a field of research that uses machine learning techniques to

solve ranking problems. For IR systems, the results represented to users are obtained

via a two-stage ranking process illustrated in Figure 2.1. A user submits a search query
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Retrieval	Model

Document	Collection Index

Retrieved	
Doc	List

L2R	Ranker Re-ranked	Doc	List

Figure 2.1: Two-stage ranking system

expressing his/her information need to the retrieval system. For the consideration of ef-

ficiency, a conventional retrieval model is used to retrieve potentially relevant documents

from the collection. In the second stage, an L2R trained ranker is utilized to re-rank the

set of documents [37] that have been retrieved during the first stage. One of the reason

why L2R is only applied at the second stage is that some of the features used in L2R

models may be too expensive to calculate, which can harm users’ search experiences.

2.2.1 Training Data for L2R

Like many other machine learning algorithms, L2R algorithms learn patterns from exist-

ing examples. The training examples for learning-to-rank algorithms are a set of ranked

lists of documents corresponding to queries from a query set. As mentioned in the pre-

vious section, documents in the ranked lists are first selected using a classical retrieval

model. For e�ciency consideration, a subset (usually the top k items) of the returned

documents list is used for training. The documents retrieved for a query are represented

by feature vectors. The features for L2R models could be: i) document features, for

example, signals measuring the quality of the document like PageRank; ii) query fea-

tures, which indicate the statistics of the queries, for example, the length of the query;

and iii) matching features, which reflect the relation of the query and document.

For example, matching features could be conventional retrieval models like BM25. The

ranking order of retrieved documents for each query is inferred from assessor-annotated

relevance labels or click-through data [38].
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Figure 2.2: Data formatting for L2R

The relevance labels for query-document pairs can be binary (relevant/irrelevant). For

more complicated systems like web search, graded relevance is usually employed. For

example, the relevance label of query-document relevance could be labeled at four scales:

irrelevant (0), marginally relevant (1), fairly relevant (2), and highly relevant (3) [39].

An example of L2R training data is demonstrated in Figure 2.2. According to the

usage of data during the training, the training data for L2R forms three levels: query

level, document level, and document pair level, which determines the di↵erences between

di↵erent L2R algorithms.

2.2.2 Formal Definition of Learning-to-Rank

Following the notation in Cao et al. [40], let Q = {q1, q2, · · · , qm} be a set of queries;

di=(di1, di2, · · · , din) be the list of documents associated with query qi from document

space D, where dij is the jth document for query qi. Furthermore, let xij = �(qi, dij)

be the feature vector generated from the query document pair. For simplicity, we will

refer to query document pairs as documents throughout the remaining sections. To

avoid ambiguity, we use ~xi to denote the set of document feature vectors corresponding

to the query ~xi = {xij}nj=1
and let ~ri = {rij}nj=1

be the list of relevance scores, where rij

denotes the score of the jth document for qi. Finally, we use ⇡i to denote a permutation

of the documents for the ith query.

A training example tij = (xij , rij) consists of a feature vector xij and a relevance judge-

ment rij . For ease of expression, we simplify the notation, denoting the set of training
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examples for each query, i.e., the ranked list, as: li = (~xi,~ri). A training dataset con-

sisting of multiple queries with associated relevance judgments is then denoted by L.

Given a training sample L, consisting of a set of ranked lists, drawn from the query

set Q and the document collection D, the objective of learning-to-rank algorithms is to

train a ranking function that can best predict the ranking order of retrieve documents

for a query, given the feature vectors for each document:

f({xi1,xi2, · · · ,xin}) = {⇡(1),⇡(2), · · · ,⇡(n)} (2.10)

Since it is di�cult to train a function that directly map a set of feature vectors to a

ranking order, L2R algorithms usually train ranking functions that predict relevance

labels or real-valued relevance scores (indicating the degree of relevance) for individual

documents. Documents are then ranked in decreasing order of the labels/scores.

Some other L2R algorithms train functions to predict the relative orders (pairwise pref-

erences) of pairs of retrieved documents for the same query. A ranked list can then be

induced from the pairwise ranking preferences.

2.2.3 Evaluation for IR Models

E↵ective retrieval models and ranking models aim to return a ranked list of documents

to users that can meet their information needs. The e↵ectiveness of a retrieval system

is usually measured using an evaluation metric that accounts for users’ perceptions of

ranking quality on queries, and is averaged across all the queries submitted to the system.

As a result, the objective of L2R models is to train ranking functions that can maximize

these metrics. Before going into the details of how L2R algorithms are implemented,

some IR evaluation metrics will be introduced in the following section to reflect the

di↵erence between L2R and other machine learning tasks.

The two most straightforward metrics to measure the e↵ectiveness of IR models are

precision and recall. Precision for a query is defined as the fraction of relevant documents

among all the documents retrieved for an information need:

precision =
#retrieved relevant docs

#retrieved docs
(2.11)
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Meanwhile, recall is the percentage of retrieved relevant documents among all relevant

documents in the collection:

recall =
#retrieved relevant docs

#relevant docs
(2.12)

However, past research [41] has shown that users are less likely to examine search results

after the first or second pages. As a result, a criteria for a good IR system is that it

ranks more relevant documents higher. Neither of the above metrics consider the rank

positions of relevant documents in the returned list. If relevant documents are ranked

on the bottom of the list, they will have the same precision and recall score with the list

that put all relevant documents on top of the list. Precision and recall can only reflect

how good the retrieval system is, but not its ranking e↵ectiveness.

Average precision (AP) is a metric that measures the average of precision values at each

recall level (when running down the ranked list). As a result, the metric favors ranking

functions that put relevant documents at the top of the list. These measurements can

be completed up to some maximum rank, e.g., P@20.

The average precision of a query is the average of the precision values of the ranked list

at the rank position of each relevant doc:

Average Precision =
1

|Dr|
X

dk2Dr
P@k(li) (2.13)

where Dr is the set of retrieved relevant documents, |Dr| is the size of the retrieved

documents, and k is the ranking position of the document.

The mean average precision (MAP) measures the mean AP over all queries in the eval-

uation set:

MAP =
1

m

mX

i=1

1

n

nX

k=1

P@k(li) (2.14)

where m is the total number of queries in the evaluation set.

One drawback of MAP is that it only considers binary relevance labels, meaning that

documents are either considered relevant or irrelevant. However, as mentioned before,

the degree of relevance of documents to queries can be di↵erent. As a result, graded

relevance is sometimes applied for relevance judgments. Normalized Discounted Cumu-

lative Gain (NDCG) [39], on the other hand, measures the ranking e↵ectiveness with
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graded relevance. The cumulative gain (CG) aggregates gains in the number of relevant

documents observed when iterating through the ranked list. For an ideal ranking, highly

relevant documents should be ranked higher on the list, thus a rank-based discount func-

tion is introduced to the cumulative gain so that the metric places more emphasis on

top-ranked documents:

DCG =
kX

i=1

2reli � 1

log2(i+ 1)
(2.15)

Here reli denotes the relevance judgement for the ith document in the list and 2reli � 1

is an exponent gain formula used in Burges et al. [42]. The denominator 1

log2(i+1)
is

the discount function. There exist other gain and discount functions for DCG, with

a comparison of di↵erent methods discussed in Kanoulas and Aslam [43]. In e↵ect,

a highly relevant document ranked higher in the list obtains more gain than a highly

relevant document that ranked lower in the list. Since the length of the list as well as

total members of relevant and irrelevant documents can vary across queries, a normalized

DCG, NDCG, was proposed to normalize the metric with respect to the ideal ranking

of the documents retrieved for each query:

NDCG =
DCG

IDCG
(2.16)

where IDCG is the ideal DCG score for the returned documents. Similarly, the e↵ective-

ness of a ranking system is measured by averaging across queries. Sometimes a cut-o↵

k is applied for the metrics to reflect the users’ preferences on top-ranked documents -

for example, NDCG@10 measures the NDCG score at rank 10.

2.2.4 Learning-to-Rank Approaches

Di↵erent learning-to-rank algorithms have been developed to maximize the ranking ef-

fectiveness of the trained ranking function on a target collection. As was noted in the

previous section, the training data for learning-to-rank can be viewed on three di↵erent

levels, and the objective can be achieved by minimizing losses at di↵erent levels. As a

result, learning-to-rank algorithms can be classified as pointwise, pairwise and listwise

algorithms. In this section, we will explain the di↵erences between various learning-to-

rank algorithms and how they are implemented.
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Pointwise learning-to-rank algorithms train ranker functions at the document level.

The algorithms are designed to minimize the expected loss over all the query document

pairs used for training. Pointwise algorithms attempt to predict the relevance class

of each document separately, and thus cast the ranking problem as a classification,

regression or ordinal regression problem [7].

~✓⇤ = argmin
~✓

E(x,r)2T[`(f(x; ~✓)), r] (2.17)

where x is the feature vector for a query-document pair, r is the corresponding relevance

label, T is the training set, f is the ranking function, ~✓ is the parameter of the ranking

function to be learned.

All ranking functions learned with pointwise algorithms take a query-feature vector as in-

put; the di↵erences between the algorithms exist in the output space. The classification-

based approaches predict a relevance label for the feature vector:

f(x; ~✓) 7! r̂ (2.18)

where ✓ are the parameters for function f .

As a result, the loss function for classification-based approaches measures the gap be-

tween the ground-truth labels and their predicted labels, `(f(x; ~✓), r). The training is

then aiming to minimize the average loss over the observed training set:

~✓⇤ ⇡ argmin
~✓

1

|T|
X

(x,r)2T

[`(f(x; ~✓), r)] (2.19)

where T denotes the number of training query document pairs in the collection. As has

been mentioned previously, the relevance labels for the query document pairs could be

either binary or multi-graded. As a result, some algorithms have cast the problem as a

classification task and used binary classifiers like Support Vector Machines (SVM) [44]

to predict the relevance labels.

The ranking function trained with a SVM model is in the linear scoring form: f(x; ~✓) =

~✓>�(x)+b, where �(.) is a kernel function that maps the feature vector to a kernel space,

b is a constant. The relevance labels are mapped to binary labels: y = 1 when r = 1,

y = �1 when r = 0. The objective function is as following:
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~✓⇤ =argmin
~✓

1

2
||~✓||2 + �

|T|X

i=1

⇠i

subject to ~✓>�(xi) 6 �1 + ⇠i, if ri = 0, 8i

~✓>�(xi) > 1� ⇠i, if ri = 1.8i

⇠i > 0.

(2.20)

where ⇠ denotes the hinge loss:

⇠ = max(0, 1� yi · f(x; ~✓)) (2.21)

Other methods have also been investigated to deal with graded relevance, for example,

Li et al. [45] have used boosted classification trees to minimize a surrogate loss 1 for

the multi-class classification, which is then used to predict the relevance labels. Apart

from the classification-based solutions, some research has looked to cast the problem as

regression or ordinal regression problems [46–48] .

Pointwise algorithms minimize the di↵erences between the predicted relevance labels of

documents and the ground-truth labels. However, since the absolute relevance labels

are less significant than the relative ordering of pairs of documents, the solution can

sometimes be problematic due to the complexity of relevance judgements.

Pairwise algorithms are a series of algorithms that use document pairs as training

data. Di↵erent from pointwise algorithms, the inputs for pairwise L2R algorithms are

pairs of documents retrieved for the same query, (xij ,xik), which are from the same

ranked list. The output of pairwise L2R algorithms is a ranking function predicting

whether one document is more relevant than another (�rijk = 1, 8 rij > rik, and

�rijk = �1, 8 rij < rik). The ranking function is thus trained by minimizing the

expected pairwise loss:

~✓⇤ = arg min
~✓

E(x2,�r)2T [`(f(x
2; ~✓),�r)] (2.22)

1
a surrogate loss replaces and approximates a designed loss function
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where x2 2 {(xij ,xik)j 6=k}. In practice, as it is di�cult to compute the distribution of

the document pairs, minimizing the mean pairwise loss is used:

~✓⇤ = arg min
~✓

1

Nx2

X

(xij ,xik,�r)2T

`(f(xij ,xik; ~✓),�r) (2.23)

The loss function for the pairwise models looks to minimize the gap between the pre-

dicted pairwise preferences and the observed ranking preferences. RankingSVM[38] is

an example of a pairwise L2R algorithm that uses the SVM learning algorithm to build

a classifier that can predict the ranking preferences of a pair of documents. The input

for the algorithm is the di↵erence between the feature vectors of the document pairs,

while the labels (�r) are the di↵erence between the corresponding relevance labels.

Listwise L2R are a set of algorithms that looks to directly optimize the ranking function

at the query level. The objective of the listwise L2R algorithms is to minimize the

expected loss over the ranking for each query:

~✓⇤ = argmin
~✓

E(x,~r)2L[`(f(x; ~✓),~r)] (2.24)

Similarly, the expected loss is estimated by the mean loss over the queries in the training

set:

~✓⇤ = arg min
~✓

1

Nq

NqX

i=1

[`(f(xi; ~✓),~ri)] (2.25)

The loss function for the listwise algorithm quantifies the di↵erence between the rank-

ing orders of the documents in the query and the ground-truth rankings. Similar to

the pointwise algorithm, the ranking function trained by the listwise algorithm takes a

document feature vector as the input and outputs a relevance score. The documents

are then ranked according to the relevance scores. The ground-truth rankings of the

documents are inferred from the ground-truth labels of the query document pairs.

The loss function for listwise algorithms that compares the ground-truth ranking with

the predicted ranking is not always straightforward. Some algorithms like ListNet [40]

have attempted to use the cross-entropy loss of the permutation probabilities between
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the ground-truth ranking and the predicted ranking:

`(f(xi; ~✓),~ri) = �p(⇡i|~ri) log p(⇡̂i|f(xi; ~✓)) (2.26)

where p(⇡i|~ri) is the probability of observing a permutation ⇡i, provided with the rele-

vance labels ~ri. The permutation probability is estimated with the Plackett-Luce model

[49, 50]; p(⇡̂i|f(xi; ~✓)) is the probability of the permutation ⇡̂i given the documents xi

and the ranking function f controlled by the parameters ~✓.

As discussed in the previous section, many metrics have been developed to measure

the ranking e↵ectiveness. Some listwise algorithms attempt to directly optimize the

algorithm to maximize the metrics. These ranking e↵ectiveness ranking metrics are,

however, not smooth with respect to the relevance scores. Thus it is di�cult for learning

algorithms to optimize them directly. Di↵erent solutions have been proposed to achieve

this goal by instead optimizing a surrogate objective function.

AdaRank[51] uses a boosting ensemble method called AdaBoost[52] to iteratively opti-

mize the ranking function to achieve better ranking metric scores. Intuitively, AdaRank

learns an ensemble of weak rankers that can achieve better ranking e↵ectiveness:

f(x) =
TX

t=1

↵tht(x) (2.27)

where ht(.) is the weak ranker trained at the tth iteration of the algorithm and ↵t are the

weights for ht(.). In each iteration of AdaRank, the algorithm learns a new weak ranker

to maximize the e↵ectiveness metrics such as NDCG and then adds the weak ranker to

the ensemble. The new added weak ranker will come with a weight which is computed

based on its performance on the training set. Moreover, according to the performance of

the current ensemble, the queries are assigned with weights to reflect their importance

in the next iteration. The purpose of doing so is to make sure that the algorithm will

focus on the poorly performed queries under current ensemble. Finally, an ensemble of

weak rankers is trained to gain better e↵ectiveness on the entire collection.

One of the state-of-the-art listwise algorithms is called LambdaMART [53], which trains

boosted regression trees to maximize the ranking e↵ectiveness. Note that some re-

searchers classify LamdaMART as pairwise algorithms as the loss function was com-

puted based on pairs of documents. However, the loss function of LambdaMART also
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involves the e↵ectiveness metric of the ranking, thus the training of the algorithm will

also be a↵ected by the query distribution. As a result, LambdaMART is treated as

listwise algorithm throughout the thesis. The output of the LambdaMART algorithms

is an ensemble of regression trees, which is in the same format as Equation 2.27, but

each hypothesis model ht(x) is a regression tree. LambdaMART was developed from a

pairwise algorithm called RankNet [42]. RankNet models the ranking preference prob-

abilities of document pairs, P̄ (rij > rik), which are inferred from the relevance labels.

The ground-truth probability is modeled as:

P̄ (rij > rik) =
1

2
(1 + Sij) (2.28)

where Sij = 1 if rij > rik, Sij = �1 if rij < rik, and Sij = 0 if rij = rik. The preference

probability for a pair of documents is modeled using the sigmoid function applied to the

di↵erence between the relevance scores predicted by the model:

P (rij > rik) =
1

1 + e��(sij�sik)
(2.29)

where � controls the shape slope of the sigmoid function. To simplify, let P̄ (rij > rik)

and P (rij > rik) be denoted as P̄ijk and Pijk respectively. RankNet uses the cross

entropy loss to estimate the cost between P̄ijk and Pijk:

Cijk = �P̄ijk logPijk � (1� P̄ijk) log(1� Pijk) (2.30)

The cost function of the model on the training set is then calculated as:

C =
X

qi2Q

X

j,k

I(rij > rik) log (1 + e��(sij�sik)) + I(rij < rik) log (1 + e��(sik�sij)) (2.31)

In order to optimize the model, the gradients of the cost with respect to the document

scores, �ijk =
@Cijk

@sij
and �ikj =

@Cijk

@sik
, will be calculated and the corresponding model

weights will be updated accordingly.

A continuing study [42] shows that the e↵ectiveness of the model can be further improved

by incorporating weights to each document pairs for the cost function. The weights for
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document pairs, |�Zijk|, are the di↵erences in metrics. LambdaMART is a boosted

regression tree implementation of LambdaRank [42]. The cost function is computed as:

C =
X

qi2Q

X

j,k

|�Zijk|(I(rij > rik) log (1 + e��(sij�sik))+I(rij < rik) log (1 + e��(sik�sij)))

(2.32)

At each iteration of LambdaMART, the algorithm fits a regression tree whose predicting

labels are the lambdas of current model. Given a document dij that is more relevant

than another document dik, the gradient of the cost with respect to the relevance score

for dij , sij = f(xij , ✓), is computed as:

�ijk =
@Ci,j,k

sij
=

��

1 + e�(sij�sik)
|�Zijk| (2.33)

For an individual document in the training set, the gradient of the cost function with

respect to its current model score is computed as:

�ij =
@Cij

@sij
=

X

k:k 6=j

|�Zijk|(I(rij > rik)
��

1 + e�(sij�sik)
+ I(rij < rik)

��

1 + e�(sik�sij)
)

=
X

k:k 6=j

I(rij > rik)�ijk + I(rij < rik)�ikj

=
X

k:k 6=j

I(rij > rik)�ijk � I(rij < rik)�ijk

(2.34)

Note that �Zijk will be zero if the dij and dik have the same relevance labels. As a

result, pairs of documents with equal relevance labels will not be a↵ect �ij .

At each iteration of LambdaMART, the algorithm uses the �s as the training label for

each document and the predicted value at each leaf node of the current tree is updated

as:

�km =

P
dij2Rkm

@Cij

@sij
P

dij2Rkm

@2Cij

@s2ij

=

P
dij2Rkm

�ij
P

dij2Rkm

@�ij

@sij

(2.35)

where Rkm denotes the region of the mth leaf of the kth tree, �km is the value for Rkm,.

The tree will be updated as: fk = fk�1(~x) + ⌘
P

m �kmI(xi 2 Rm), where ⌘ is the

learning rate.
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2.2.5 Learning-to-Rank Datasets

Di↵erent L2R test collections have been published to help the investigation of L2R

algorithms. Table 2.1 lists some of the existing L2R test collections.

LETOR3.0 [37] is an L2R collection developed by the Microsoft Bing search team based

on the TREC 2003 Web Track [54], the TREC 2004 Web Track [55], and the medical

collection OSHUMED [56]. Both the TREC 2003 Web Track and the TREC 2004 Web

Track have three di↵erent topic sets that target di↵erent types of information needs:

topic distillation (TD), name-page finding (NP), and home-page finding (HP). The task

of TD is to find relevant homepages for a broad query, while both NP and HP queries

are navigational queries. Both navigational tasks look to find a particular webpage for

each query. However, NP queries specify the name of the page, while HP queries do

not have the name of the homepage. The document corpus used by both the two web

tracks is the GOV collection, which is a corpus of web pages with the ‘.gov’ domain,

published by TREC2. The six-topic set from the Gov collection in LETOR3.0 has a small

number of the queries, while nearly 1k documents were pooled per query. OSHUMED

is a medical collection with 106 queries with each query containing 152.3 documents

on average. The labels in LETOR3.0 are all binary, making each document as either

relevant or irrelevant.

LETOR4.03 was built using the million query tracks [57, 58] from TREC 2007 and

TREC 2008, which corresponds to query sets in LETOR4.0: MQ2007 and MQ2008.

The GOV2 collection was used as the corpus for LETOR4.0. The average number of

documents pooled for each query in MQ2007 is 41.1, while it is 19.4 in MQ2008. It

is worth mentioning that the pooling methods used for LETOR4.0 are di↵erent from

LETOR3.0. LETOR3.0 used BM25 as the base retrieval function and keeps the first

1k documents for ranking/judging, whereas LETOR4.0 used two di↵erent methods for

pooling: Minimal Test Collections (MTC) and statAP [57]. Both are random sampling

processes aimed at maximizing the information in the test collection to allow for better

evaluation. The details of the two methods can be found in Allan et al. [58]. The

relevance labels for query document pairs are judged at three levels, from 0 to 2.

The Microsoft learning-to-rank dataset (MSLR)4 is a large L2R test collection developed

2http://ir.dcs.gla.ac.uk/test_collections/
3https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
4https://www.microsoft.com/en-us/research/project/mslr/

http://ir.dcs.gla.ac.uk/test_collections/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
https://www.microsoft.com/en-us/research/project/mslr/
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based on Bing’s retired collections. MSLR contains two collections, MSLR-30K and

MSLR-10K. MSLR-10K is composed of 30k queries, whereas MSLR-10K is a small

sample of MSLR-30K, which contains 10k queries. The average pooling depth is 120

documents for queries in MSLR. The documents pooled for queries are judged at 5-levels,

from irrelevant (0) to perfectly relevant (4).

The Yahoo! learning-to-rank (Yahoo!L2R) [59] is an L2R collection published by Yahoo!.

Yahoo!L2R consists of two collections: Set 1 and Set 2. Set 1 and Set 2 are built to

facilitate research on TR. Set 1 was built based on the US web search market while Set 2

was built on an Asian web search market. Set 1 has many more queries than Set 2. The

relevance of the documents was also judged at five levels. Yahoo!L2R has a rather shallow

pooling depth, with only 23.9 documents judged per query. The number of features is

di↵erent for the two collections. There are 519 and 596 anonymous5 features respectively

in the two collections, with some overlap. All the features are rank-normalized as:

x̃i :=
1

n� 1
|{j,xj < xi}| (2.36)

The total number of distinct features is 700, and the values for missing features are set

as 0.

Yandex Internet Mathematics 2009 (Yandex2009) is the test collection by the Russian

search engine company Yandex. It contains 9124 queries with 10.6 sampled documents

per query on average. The relevance labels are also valued from 0 to 4, while the features

are anonymous.

Istella [60, 61] is a test collection from an Italian search engine that is used to study

the e�ciency issues of L2R. It contains two datasets, an Istella LETOR dataset, and its

subset Istella-s LETOR dataset. Istella LETOR datasets contain 33,018 queries with

316 documents on average per query. The subset collection Istella-s is randomly sampled

from the document pool. As a result, Istella-s contains the same number of queries, while

the average document size is 103.

5
By ’anonymous’ here we mean that the functions used to compute the feature values are unknown.
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Although there are six sets of L2R collections, none of the existing collections are de-

signed for evaluating TR algorithms, except for the Yahoo!L2R datasets. In the Ya-

hoo!L2R collection, Set 1 and Set 2 are built for cross-domain TR. Information describ-

ing the features in terms of the function used to compute them or even the one-to-one

correspondence between the features for the two sets is not provided, which makes it

hard to conduct further analysis. Moreover, the number of queries in Set 2 is very

small and does not include any additional unlabeled data. As a result, Set 2 might be

a biased sample from the second market, which makes it harder for knowledge trans-

fer to be transformed as well as for performance evaluation to be addressed. In other

collections, no explicit scenarios exist where we can apply TR, due to the limitation

of the unknown/anonymous features, or the small scales of the datasets. Later in this

thesis, we have manually developed some environments for evaluating TR algorithms.

Furthermore, the fact that no query and document information in the dataset is avail-

able for those large collections makes it di�cult for us to explore other context-based

methodologies for TR. As a result, in this thesis, we have limited our study of TR to

feature distribution-based approaches.

2.3 Transfer Learning

The assumption made by almost all supervised learning algorithms is that the set of

data used for training is a representative sample drawn from the same population as the

test set. It is hoped that the predictive model trained on the training set will generalize

to the whole population. As a result, conventionally, a new learning model will be

trained to accomplish a new task. The training process will require massive training

data. However, obtaining labels for training can be very expensive. For example, in IR,

assessors will need to be recruited to annotate relevance labels for hundreds of thousands

of query document pairs. Transfer learning [9, 62] looks to train or improve a learning

model for a new/target task by transferring knowledge from an existing/source task,

which provides a solution to the lack-of-training-labels problem.

As mentioned before, machine learning algorithms assume that the training and test set

come from the same distribution. The performance of the trained model will be degraded

if it is applied to a new task with di↵erent data distribution. The issue is commonly

referred to as the dataset shift problem [8], where the distribution of the training and
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test data are di↵erent. Typically the data used for classification and regression problems

form a joint distribution P (X,Y ), where X is the input feature space, y is the label to

be predicted, and P (X) is the marginal probability distribution for the feature space.

Overfitting is the problem where the model closely fits the training sample, but does

not generalise to the population. Overfitting can not be measured when moving to a

new population (distribution), since the training data was not sampled from it. If a

model generalises well to a population, it might still behave poorly when moving to a

new population. As the joint distribution P (X,Y ) is controlled by both the marginal

probability P (X) and the conditional probability P (Y |X), the changes to the data

distribution can manifest in various ways. Solutions to the transfer learning problem

are varied as they may tackle di↵erent aspects of the distribution change.

Many studies have focused on solving the problem where the source and target collec-

tion has the same conditional distribution but di↵erent marginal distribution P ta(X) 6=

P so(X), P ta(Y |X) = P so(Y |X)6. This problem is commonly referred to as Covariate

Shift [63] in the literature. For conventional machine learning algorithms, covariate

shift can be measured and reduced by density ratio estimation [63, 64]. However, it

is not possible to measure the covariate shift for learning to rank datasets as we will

show later, due to the complexity of the data generating process for learning to rank

datasets. Di↵erent from Covariate Shift, there might be other causes for the distribu-

tion change, for example, Domain Adaptation [12], where the conditional probability of

the source and target are di↵erent, while the marginal distribution remains the same,

P so(Y |X) 6= P ta(Y |X), P so(X) = P ta(X). Both Covariate Shift and Domain Adapta-

tion can happen at the same time, P so(Y |X) 6= P ta(Y |X), P so(X) 6= P ta(X), which can

be challenging to tackle [65]. Both of the cases will be explained in detail in the next

chapter. In some cases, transfer learning looks to solve the situation when the feature

spaces of the two collections are di↵erent, which is also known as Heterogeneous Transfer

Learning [66].

6
Note that throughout this thesis, we will use the superscript ta to denote parameters or elements

from the target collection and use so to denote those from the source collection.
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2.4 Transfer Ranking

Transfer Ranking (TR) is an application of transfer learning to L2R algorithms, which

aims to help train a new ranking function for a new collection by incorporating knowledge

from a related ranking task. In this section, we will provide a formal definition of the

TR problem and then review previous related works.

2.4.1 Problem Definition

Given a target collection Lta, which consists of a small set of labeled query document

pairs, Lta
l = (Xta

l , Rta
l )7 and a large set of unlabeled query document pairs, Lta

u =

(Xta
u , Rta

u ), where Rta
u = ;, the aim of the TR is to train or adapt a new ranking function

for the target collection by incorporating knowledge from a related source collection

Lso, which is made up of a large number of labeled query document pairs (Xso, Rso).

TR aims at tackling the scenario where the labeled target set is much smaller than the

unlabeled target set, |Lta
u | ⌧ |Lta

l |. Unsupervised TR is the scenario when there are no

labels in the target collection, Lta
l = ;, and Supervised TR is the case when there is a

small amount of labeled query-document pairs, Lta
l 6= ;.

2.4.2 Relatedness of L2R datasets

TR aims to train a new ranking function for a new collection, by transferring knowledge

from another “related” collection. However, the definition of “relatedness” is not clearly

defined in most TR literature. When an unrelated collection is used as the source

collection, “negative transfer” [67] could occur, where noise is introduced to the source

dataset, degrading the performance of source ranker on the target dataset. Geng et al.

[20] proposed a concept called “adaptability”, which measures the benefit that a source

collection can potentially bring to a target collection. They proposed to estimate the

ranking adaptability by averaging the correlation between the ranked lists produced by

the source model and the ground-truth lists, i.e., those based on human judgments.

However, measuring this requires relevance judgments from the target collection and

depends on the labeled queries. Thus comprehensive studies on the relatedness of L2R

datasets are still needed to increase our understanding of what is possible in this scenario.

7
We use subscript l to denote labeled data and u to denote unlabeled instances.



Transfer Learning for Information Retrieval 31

2.4.3 Categories of Transfer Ranking

The objectives of all TR algorithms are the same, namely, to improve the ranking ef-

fectiveness on a new collection by making use of labeled data from another collection.

However, the transfer settings of TR vary from case to case. There is no general classi-

fication of TR settings. As mentioned above, the TR can be classified as supervised and

unsupervised TR according to the availability of relevance labels in the target collection.

TR problems can also be classified into homogeneous and heterogeneous TR based on

the similarity in feature representation. Homogeneous TR is the case where the feature

space of the source and target collections are the same, while in heterogeneous TR, the

feature spaces of the datasets are di↵erent. The latter case necessitates a feature engi-

neering process to connect the di↵erent feature spaces. In some cases, there may exist

multiple source collections, or the source and target collections may require training

simultaneously.

2.4.4 Challenges of Transfer Ranking

Although transfer learning has been widely studied and applied in other contexts such

as natural language processing and image recognition, its application to IR requires

further investigation. The study of TR has been limited for many reasons which we

discuss below.

The training data for L2R can be required from three levels, namely the document level,

pair level, and query level, which di↵erentiates the problem from conventional machine

learning (regression) tasks. As a result, many existing solutions from transfer learning

techniques cannot be directly used, as these algorithms treat each data point as a single

training instance. The objective of an L2R algorithm is to maximize the e↵ectiveness of

a ranking function on a set of queries. However, since most ranking e↵ectiveness metrics

are not smooth, we cannot calculate the derivative of the metrics with respect to the

model scores, which we need in order to update the parameters of the ranking function.

Most algorithms thus make use of some approximated objective function, which also

contributes to the di�culty of TR problems. Moreover, due to e�ciency considerations,

the documents returned for a particular query are first retrieved using a base retrieval

model like BM25 and then pooled at a certain depth. Therefore, the fact that the ranked
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instances are a subset of the remaining examples makes it even harder to analyze and

quantify the di↵erences in the data distribution between the source and target.

Table 2.2: Di↵erence of L2R algorithms and conventional machine learning algorithms

Type Conventional Machine Learning Learning to Rank

Input Data Single data instance

Document-level: Query-document feature vector

Pair-level: Pair of query-document feature vectors

Query-level: A list of query-document feature vectors

Objective Function Loss on individual samples Surrogates of the ranking metric

Data Generating Process Usually controlled by a few parameters Controlled by too many factors, impossible to model

The di↵erences of the L2R algorithms and conventional machine learning algorithms are

summarised in Table 2.2.

The dataset shift for L2R datasets is di↵erent from conventional machine learning

datasets since it can be a↵ected by many factors, including the documents, the queries,

the mapping between documents and relevance labels and the domain parameters. Mea-

suring the impact of these factors on the generalization of L2R algorithms is di�cult as

there are so few such benchmark collection for experiments.

2.5 Literature Review

TR is a rather new area that has not been extensively studied. In this section, we review

previous related works on TR and discuss the knowledge gained from this work, as well

as its limitations.

Before the emergence of TR, there were some attempts to develop semi-supervised L2R

algorithms ([68–71]) that try to improve ranking e↵ectiveness by leveraging unlabeled

data. Semi-supervised L2R algorithms assume that the labeled training set is not su�-

cient for training reliable models. Semi-supervised L2R algorithms tackle this problem

by leveraging (large quantities of) unlabeled training instances in the collection. TR, on

the other hand, tries to incorporate knowledge from a related labeled collection. Ideally,

TR should perform better than semi-supervised L2R since it also transfers knowledge

about relevance labels from the other collection. In some cases, there are no relevance

labels in the target collection, in which case semi-supervised L2R techniques cannot be

used. If some other related collection is present, TR can be applied to help train a more

general ranking function.
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Solutions to the TR problem vary on di↵erent levels. However, the core idea of TR is

to try to migrate or eliminate the di↵erences between two di↵erent datasets (the source

and the target). The most common approaches to resolving TR are that by Chen et al.

[17], Gao et al. [18], Ren et al. [72], Cai et al. [73], sample selection [19, 74, 75], and

feature engineering [17, 74, 76], but other miscellaneous methods also exist [23, 77, 78].

All the TR literature has focused on knowledge transfer between di↵erent ranking tasks,

however, the resources that are available for transferring di↵er from case to case. Many

of the previous studies [11, 19, 74, 77–83] attempt to solve the supervised TR prob-

lem, where the task is to transfer the ranking function from a source collection to a

target collection that contains only a small number of relevance judgements. Among

the studies, some [11, 80, 82, 83] focused on the heterogeneous TR scenario, where the

feature spaces of the source and target collections are di↵erent. Di↵erently, Gao et al.

[18],Geurts and Louppe [84], Gao and Yang [76] and Macdonald et al. [85] attempted

to solve the problem under when there are no relevance labels in the target collection,

which is also known as the unsupervised TR problem. Apart from these mainstream

problems, Goswami et al. [23] have looked at transferring from multiple sources, and

Cai et al. [75] used transfer learning as a tool for active learning in learning to rank.

There are also some works [15, 86, 87] that have attempted to transfer knowledge across

di↵erent ranking task, namely multi-task learning to rank. All the existing studies on

TR that we are aware of are given in Table 2.3.

In the following sections, we will review di↵erent algorithms in the order of types in

Table 2.3.

2.5.1 Supervised Transfer Ranking

Most of the existing work on TR has belonged to the category of supervised TR. The

reason why supervised TR attracted more attention than unsupervised TR is that the

existing relevance labels in the target collection can calibrate the direction for adapting

the source ranker. The feature space of the source and target collection can either

be homogeneous or heterogeneous, which contributes to the di�culty of implementing

generic algorithms in solving all situations.
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Table 2.3: Literature classification

Problem Feature Space Solution Literature

Supervised TR
Homogeneous

Instance Weighting Chen et al. [17]

Sample Selection
Chen et al. [74]
Duh and Fujino [19]

Feature Engineering

Chen et al. [74]
Chen et al. [17]
Geurts and Louppe [84]
Zhou et al. [81]
Macdonald et al. [85]
Bahadori et al. [83]

Model Adaptation Gao et al. [79]
Chen et al. [77]
Wu et al. [78]
Bai et al. [88]
Wang et al. [89]

Co-regularization Geng et al. [20]

Heterogeneous Feature Engineering
Wang et al. [80]
Geng et al. [20]
Long et al. [82]

Unsupervised TR Homogeneous
Instance Weighting

Gao et al. [18]
Ren et al. [72]
Cai et al. [73]

Weak Supervision Gao and Yang [76]
Multi-source
Unsupervised TR

Homogeneous Weak Supervision Goswami et al. [23]

Multi-task L2R Homogeneous

Bai et al. [86]
Chapelle et al. [15]
Tang and Hall [90]
Chapelle et al. [87]

Transfer Active L2R Homogeneous Cai et al. [75]

2.5.1.1 Homogeneous Supervised TR

As mentioned before, TR is trying to solve the dataset shift problem, where there is

a mismatch between the source and target data distribution, P so(X,Y ) 6= P ta(X,Y ).

Changes in the joint distribution across collections can result from both covariate shift

(P so(X) 6= P ta(X)) and from changes in the class mapping function (P so(Y |X) 6=

P ta(Y |X)). Di↵erent solutions have made di↵erent assumptions on the causes of dataset

shift.
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Instance Weighting A common solution for covariate shift is Instance Weighting

[91], which re-weights the instances in the source collection to simulate the data dis-

tribution in the target collection. The word instance here refers to a single data point

in machine learning. However, for L2R, instances may refer to three di↵erent things

according to the ranking model being trained: documents, document pairs, or queries.

The weighted source collection data is then used to train a target collection-specific

ranking function.

Instance weighting is a widely used approach in transfer learning and is proposed to

tackle the covariate shift problem. Most supervised learning algorithms follow a risk

minimization framework as follows:

✓̂ = arg min
✓

Z Z
p(x, y)`(h(x; ✓), y)dxdy (2.37)

where p(x, y) is the true density of the instance (x, y) in the collection, h(.) is a hypoth-

esis, and `(.) denotes a loss function. Usually the true density is not known and instead

empirical data is used to estimate the risk:

✓̂ = arg min
✓

1

N

NX

i=1

`(h(xi; ✓), yi),where 8i, (xi, yi) ⇠ p(x, y) (2.38)

To train a model for the target collection, one needs to minimize the risk over the target

collection as:

✓̂ = arg min
✓

Z Z
pta(x, y)`(h(x; ✓), y)dxdy (2.39)

Since the target data is not su�cient for training the model, the source data is used for

training. However, as the source data may be distributed di↵erently from the target,

each source instance will need to be weighted in order to make source distribution closer

to the target collection:

✓̂ = arg min
✓

Z Z
pta(x, y)

pso(x, y)
pso(x, y)`(h(x; ✓), y)dxdy (2.40)
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In practice, the expected risk is estimated by the empirical risk:

✓̂ = arg min
✓

1

N ta

X

(x,y)⇠P ta(x,y)

pta(x, y)`(h(x; ✓), y)

+
1

N so

X

(x,y)⇠P so(X,Y )

w(x, y)pso(x, y)`(h(x; ✓), y)
(2.41)

As we will show later in the unsupervised TR scenario, w(x, y) ⇡ pta(x,y)
pso(x,y) .

The CLRankins TR algorithm [17] made the first attempt to use instance weighting for

supervised TR problems. CLRankins was a pair-wise TR algorithm that was designed

for use with RankSVM [38]. As a result, the instances for the algorithm are pairs of

documents in the same list. The algorithm first trains a model ˆf ta using labeled data

from target collection. For each document pair (xij ,xik) in the source collection, the

weight is computed as:

w(xij ,xik) =

8
><

>:

0, f̂ ta(xij ,xik) 6= I(rij > rik)

prec(qi, f̂ ta), f̂ ta(xij ,xik) = I(rij > rik)
(2.42)

where prec(qi, f̂ ta) denotes the precision of the rank function f̂ ta on the preferences of

pairs of documents in query qi. I(rij > rik) denote the ground-truth preferences of xij

and xik, while f̂ ta(xij ,xik) is the preference predicted by the ranker. The weights were

then used with Equation 2.42 to train the transferred model.

CLRankins was tested on LETOR3.0 datasets as well as AP and WSJ datasets from

TREC Collections [92]. The algorithm did not show significant improvement over the

model trained with a small number of queries from the target collection (called the

Target-only Model).

Reliably estimating the appropriate weights for training instances for L2R is very dif-

ficult. Under the supervised TR scenario, if a biased weighting strategy is used, more

noise will be introduced to the training set and can result in poor transfer e↵ectiveness.

(In other words, a negative transfer can occur.)

Sample Selection Apart from instance weighting, an alternative solution to su-

pervised TR is sample selection (aka instance selection [91]). The idea behind sample
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selection is to enrich the target training set by injecting source training instances that

coincide with the underline distribution of the target collection.

Sample selection can capture the functional change, where P so(Y |X) 6= P ta(Y |X). Sim-

ilar to instance weighting approaches, sample selection requires a procedure to assign

importance weights to source instances, so that more important source instances are

selected for adding to the training set.

Chen et al. [77] proposed a sample selection method called “TransRank”. TransRank

computes importance weights for source queries using a method called “ranking direc-

tion” and injects the top k source queries to the target collection for training. During

the weighting step, queries are represented by the “ranking direction” (rd), which is

the vector from the centroid of irrelevant documents to the centroid of the relevant

documents:

rd =

P
rij>0

xij

|{xij |rij > 0}| �
P

rij=0
xij

|{xij |rij = 0}| (2.43)

TransRank calculates query importance weights with a utility function comprised of

the separation score and similarity score to the target collection. The algorithm first

models the target ranking direction (rdta) using the vector pointing from centroid of all

irrelevant documents to all the relevant documents in the target collection as the target

ranking direction.

Next, for a source query, it computes the cosine similarity of its ranking direction and the

target ranking direction as the similarity score to the target collection (cosine(rdta, rdsoi )).

Furthermore, a separation score for the query is computed to indicate how separable the

feature vectors of the relevant and irrelevant documents are in the query. The query

importance scores were then used for selecting top k source queries for transferring.

The algorithm later uses a feature augmentation method to minimize the distribution

di↵erence at the feature level. TransRank was tested on OSHUMED, transferring from

WSJ and AP datasets [92] and in both cases showed a significant improvement over the

model trained with target data only, it also does better than the model trained with

mixed data from both collections. The computational cost of the method is very high

and the concept of ranking direction needs further investigation. Moreover, it is not

clear how the method can be applied for multigrade relevance.
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Duh and Fujino [19] provide another approach to supervised TR with sample selection.

They try to select the most similar queries from source domain according to their “relat-

edness” to the target domain. They model the query with the influence of each feature to

the ranking. Thus the algorithm trains a linear ranker for each query in both collections

and represents each query with the weights of each feature in the ranker. The related-

ness of queries is calculated using the density ratio estimation approach KEILP[63]. The

most related queries are selected for training. Similar to supervised instance weighting

approaches, the e↵ectiveness of the Duh and Fujino [19] approach depends on the avail-

able queries that have labels. The algorithm was tested on both the LETOR3.0 and

Yahoo datasets and showed significant improvements over the Target-only Model. Since

the Yahoo dataset has a large number of queries, the algorithm shows solid improve-

ments in this collection. However, this approach requires significant computational time

as well as memory to train rankers for each query.

One critical problem of sample selection is the threshold that is used to decide which

query to choose. Chen et al. [77] showed that the performance of the algorithm will

reach a peak once a certain proportion of queries were chosen and then will drop after

more queries are selected. The work does not provide any solution for the selection of the

appropriate threshold. The approach by Duh and Fujino [19] has a similar limitation to

Chen et al. [77], and they provide no conclusion on how to choose the number of queries

for training. For the sample selection approach, more studies may be needed to develop

a methodology to help choose the appropriate threshold.

Feature Engineering Feature engineering is a transfer learning technique which

looks to identify a feature space that can minimize the di↵erence between the data

distribution of two datasets. Two datasets may di↵er in one feature space but be similar

in another feature space. Thus, the transfer can be conducted in the identified feature

space, or “common feature space”. Imagine two L2R datasets have the same feature

space, which is made up of only three features: tf-idf, PageRank, and doclength. The

data distribution of <td-idf, PageRank, doclength> is di↵erent between source collection

and target collection. Feature engineering tries to map source and target collection data

into a di↵erent feature space so that the di↵erence can be reduced.

The common feature space can be detected by Subspace Finding, Feature Augmentation,

or Latent Space Learning. Subspace finding is a straightforward approach that studies
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the distribution of each feature dimension and finds a subspace of the original feature

space, in which the two datasets have a similar distribution, as in the example we

described. Feature augmentation is a feature construction method that combines both

common features and target-task-specific features. Latent space learning is a technique

that learns a latent feature space, in which the di↵erence between the source and target

collection is minimal.

The feature engineering methods have also been used for supervised TR. They can

not only be used for homogeneous supervised TR but also tackle the heterogeneous

supervised TR problem.

The TransRank [77] algorithm discussed in the last section also involves a feature en-

gineering step that uses the feature augmentation method developed by Daum III [93].

Daum III [93] constructs a common feature space for both the source and target collec-

tion by a mechanism called feature augmentation. Assume Xta and Xso are in the same

space R� (� > 0)8. The feature augmentation method maintains three versions of feature

space: general version(xg), source-specific version(xso) and target-specific version(xta).

The mapped feature space is < xg,xso,xta >. For source collection data x, the algorithm

map the original feature to < x,x,0 >, and for target collection data, the feature space

is mapped to < x,0,x >, where 0 is a zero vector < 0, 0, 0, ... > with the same length as

the original feature spaces. For example, if the feature space for both collections is <LM,

tf-idf, pr>, where LM is the language model, tf-idf is the TF-IDF score, and pr is the

PageRank score. If we only have one data in each set, for instance, < 0.2, 0.15, 0.1 > in

the source collection, and < 0.5, 0.3, 1 > in the target collection, the feature space would

be < 0.2, 0.15, 0.1, 0.2, 0.15, 0.1, 0, 0, 0 > and < 0.5, 0.3, 1, 0, 0, 0, 0.5, 0.3, 1 > respectively.

The feature augmentation method naturally combines the three versions of features into

training. The trained model is a combination of the three versions of features. Thus,

the final ranker will also be a combination of the general and target-specific model since

the features are 0s in the source version features. The algorithm is easy to implement.

TransRank was tested by transferring between three di↵erent collections, OHSUMED in

LETOR3.0 and two other L2R collections created using the Associate Press (AP) and

Wall Street Journal (WSJ) corpus and queries from TREC2 to TREC5 with the same

features implemented for OHSUMED. The results show that TransRank can outperform

8� is the number of dimension
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a RankingSVM model trained on the target data only as well as the model trained with

a mix of both the source and target data.

CLRankfeat [17] used the multi-task feature learning method proposed by Argyriou

et al. [16]. The algorithm learns a high-level feature representation for both collections

to minimize the di↵erence. The high-level features are linear combinations of the original

features that are learned from both collections. Di↵erent from Argyriou et al. [16],

CLRankfeat used pair-wise loss function. The algorithm was tested on LETOR3.0 [37],

WSJ and AP [92]. The result showed significant improvements over the models trained

with small numbers of target data. Moreover, it shows advantage over their instance

weighting approach, CLRankins.

The Transfer Boosting algorithm proposed by Zhou et al. [81] is also a feature engineering

method that learns a set of “super-features” for the original features in both collections.

The algorithm learns the super-features together with their coe�cient weights through

a boosting algorithm. At each iteration, the algorithm learns both the super-features

and the weighting using the following objective function:

argmin
g(x),wta,wso

X
(x,y) P so(X,Y )

`(f(wso, g(x)), y) + c
X

(x,y) P ta(X,Y )
`(f(wta, g(x)), y)

(2.44)

where g(x) are the super-features, wta are the weights or coe�cients of these super-

features in the target collection and wso are the weights for the source collection. The

parameter c controls the proportion of target collection data. The optimization is then

achieved following a stage-wise fashion with a boosting algorithm. It uses the ranking

function trained in the last iteration to find the super-features and their coe�cient

weights, and then use the super-features and coe�cient weights to update the ranker.

Several results on di↵erent transferring settings suggest that Transfer Boosting can help

improve the performance of the target model. However, one problem with the algorithm

is the parameter c in Equation 2.44. As demonstrated in the paper, the performance of

the algorithm varies with di↵erent settings of the parameter c, and it does not correlate

with the performance.

In Geurts and Louppe [84], the authors tried using di↵erent TR approaches by utilizing

di↵erent parts of data from the source and target, as well the features in both collections.

They found that adding the similarity scores predicted using the source model as an extra
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feature, and training on the target data by combining the ranking models trained with

the source model as a feature can improve the e↵ectiveness of the target ranker. Inspired

by the idea, Macdonald et al. [85] further tested the algorithm using the ClueWeb data

and showed significant improvements. However, the method is limited as it only works

for the dataset where the source and target data share some common features and the

improvements were small.

Model Adaptation Apart from the instance and feature-based approaches, some

other studies have attempted to adapt the existing source model with a few labeled

training data from the target collection. Most model adaptation-based algorithms can

reuse the source ranker as a base model or as a feature for training. As most model

adaptation algorithms rely on the source model instead of source training data, they can

be useful when the data in the source cannot be accessed due to privacy restrictions.

Gao et al. [79] have explored two di↵erent types of model adaptation - one is the model

interpolation and the other is the boosting-based approach. The model interpolation-

based method learns an ensemble of both source models and target models:

f(x) =
X

fi2{fso}[{f ta}

↵ifi(x) (2.45)

The coe�cient weights of the models can be learned with the validation set via L2R

models or cast as a multi-dimensional optimization problem. It is obvious that the

algorithm will depend on the representative of the validation set. In order to improve

performance, the authors employed a method to expand the validation set by selecting

samples from the source collection similar to the validation set.

The other solution, “error-driven learning”, LambdaBoost and LambdaSMART [78], is

using the source model as the base model and then using gradient boosted tree to update

the model based on the target data. Both of the algorithms have some limitations as

they depend on the labeled training data from the target collection. The results showed

that the model interpolation based model performs better when the source and target

collection are very di↵erent, while the boosting method works better when the source

and target collection are similar.
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Apart from the learning- and optimization-based adaptation method, others have looked

at ways to tune source models in order to fit the target collection. For example Chen

et al. [77] and Bai et al. [88] proposed algorithms that were designed specifically for

tree-based L2R algorithms. Chen et al. [77] proposed an algorithm called Trada, which

tunes the tree splits as well as the weights based on the tree model trained on the source

collection with the labeled data from the target collection. The experiment result shows

that the algorithm can improve the e↵ectiveness of the Target-only Model but then it is

a↵ected significantly by the number of labeled queries from the target collection. The

algorithm in Bai et al. [88] is an extension to Trada in that it uses pairwise preferences

data to guide the tree adaptation. The result showed a significant improvement over

Trada.

An alternative approach for model adaptation is via coe�cient transformation. For

example, in Wang et al. [89], the authors developed an algorithm that can learn a

transformation matrix which transforms the original coe�cients of a global ranking

model to enable personalization. The transformation of coe�cients is done by scaling

and shifting groups of features and the ranking function is then transformed into:

f ta(x) =
KX

k=1

X

g(i)=k

(akw
so
i + bk)xi (2.46)

where g(.) is a grouping function, g(i) = k denotes 8 feature i in group k, ak is the

scaling factor for group k features, and bk is the shifting factor for group k. The feature

grouping can be done either manually or automatically with co-clustering or k-means.

The proposed algorithms were tested on large-scale query logs from a commercial search

engine and showed significant improvements over both the source and target models and

other supervised TR algorithms.

Co-regularization Besides methods to reduce the di↵erence between the data dis-

tribution of the source and target collection, others have investigated solutions for su-

pervised TR using knowledge learned from the source collection as prior information in

the target model. For example, in Geng et al. [20], the authors developed an algorithm

named RA-SVM, which utilized the parameters in the source ranker in the regularization
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form of RankSVM:

~✓ = arg min
~✓

1� �

2
||~✓||2 + �

2
||~✓ � ~✓so||2 + C

X

ijk

⇠ijk

s.t. xij
~✓> � xik

~✓> � 1� ⇠ijk,

⇠ijk � 0

for 8{xij ,xik} 2 Lta
l with rij > rik

(2.47)

where ~✓so is the parameters for the source ranker, ~✓ is the learned parameters target

ranker, � 2 [0, 1] is a parameter that controls the regularization ||~✓|| and the similarity

of the source ranker.

The assumption is that the source ranker is a global ranking function. Moreover, the

target ranker and source ranker will have a similar shape in the function space. The

algorithm was tested with two TR settings: 1) transferring from TD2003 to TD2004 in

LETOR3.0, and 2) transferring from Web Page Search to Image Search. The results

demonstrated that RA-SVM outperforms the source ranker, the ranker trained with

target data only, and the ranker trained with both the source and target data. However,

RA-SVM assumes that the source and target model shares the same parameter space,

which may not be useful when it comes to more complicated models like LambdaMART.

2.5.1.2 Supervised Heterogeneous TR

The literature in the last section is mainly focused on scenarios where the source and

target collections share the same feature space. However, in some cases, the source and

target collections may have heterogeneous features, in which case the aforementioned

TR algorithm cannot fit. This could arise when a model is needed to be transferred to

a di↵erent domain, for example from a web search domain to a job search domain. In

this section, we review a few attempts that have been made to tackle the heterogeneous

TR problem.

The basic idea to solve heterogeneous TR is to build a bridge between the source and

target feature spaces, which could be accomplished by identifying a common feature

subspace, learning a latent feature space for both the source and target collection, or

mapping the source feature space of the target feature space. Wang et al. [80] have

developed an algorithm named HCD Ranking (Heterogeneous Cross-domain Ranking)
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that learns a projection matrix, U , in order to map both the source and target features

to a latent feature space (x0 = U>x). HCD Ranking first represents the original feature

spaces into an augmented feature space, that is, the value of a feature that does not

exist in a domain/collection will be set to zeros. It then learns the projection matrix

and model coe�cients by:

argmin
wso,wta,U

X

(xij ,xik)2Lta

[1� Sijkf(w
so, U>(xij � xik))]

+C
X

(xij ,xik)2L
so

[1� Sijkf(w
ta, U>(xij � xik))]

+�||W ||22,1

s.t. U>U = I

(2.48)

where Sijk =

8
><

>:

1, rij > rik

�1, rik < rik

, C is the parameter that controls the imbalance between

the source and target samples, ||W ||2
2,1 is the regularization term that penalizes the com-

plexity of the model, and � is the parameter controlling the tradeo↵ between empirical

loss and the penalty. The algorithm then solves Equation 2.48 in a two-stage learning

manner. It first learns to construct the projection matrix with an equivalent form of

Equation 2.48 and then learns the weights for the models.

The RA-SVM algorithm proposed in Geng et al. [20] also has two variants that can

deal with heterogeneous TR settings. However, the assumption is slightly di↵erent

from the previous case. RA-SVM solves the problem of transferring knowledge from a

generic ranking model to a domain-specific ranking model; heterogeneous TR happens

when there exist some domain-specific features in the target domain. The two variants

of RA-SVM, RA-SVM-MR, and RA-SVM-SR, tackled the problem by rescaling the

classification margin or the slack variables with the similarities of two documents in the

domain-specific feature space. The algorithms were tested by transferring from a web

search domain to an image search domain and showed significant improvements. Similar

to RA-SVM, the algorithms can hardly be generalized to other L2R algorithms.

In Long et al. [82], the authors have investigated the heterogeneous TR problem when

the source and target domain have some overlapped features. The authors developed

a probabilistic model called PCDF that can learn the latent factors between the two
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feature spaces. More specifically, PCDF assumes that the common feature spaces of

the source and target domain are generated from a distribution that is factored by a

mapping function:

X(tc) ⇠ p(X(tc)|f(Z(tc);P (c)) (2.49)

X(sc) ⇠ p(X(sc)|f(Z(sc);P (c)) (2.50)

where X(tc) and X(tc) are the source and target training data (the variable) in the

common feature space, respectively, Z(tc) and Z(tc) are the correlation matrix of the

corresponding common features, P (c) is the shared parameter of both domain and the

function f(.) maps the distinct latent factors to the common features of the two domains.

While for the domain-specific feature space the data of the two domains are modeled as

the latent matrix factored by two di↵erent mapping functions:

X(td) ⇠ p(X(td)|f(Z(td);P (td)) (2.51)

X(sd) ⇠ p(X(sd)|f(Z(sd);P (sd)) (2.52)

the output space of the training data is modeled as preferences using a latent relevance

score y:

R(s)
ijk ⇠ p(R(s)

ijk|r(y
s
ij , y

s
ik)) (2.53)

R(t)
ijk ⇠ p(R(t)

ijk|r(y
t
ij , y

t
ik)) (2.54)

and the latent relevance score is generated conditioned on the latent features of the

source and target domain:

ysij ⇠ p(ys|h(Z(s);w)) (2.55)

ytij ⇠ p(yt|h(Z(t);w)) (2.56)

(2.57)

where Z(s) = [Z(sd)Z(sc)] and Z(t) = [Z(td)Z(tc)]. As a result, the PCDF algorithm

derives a Bayesian network to model the relationship between the feature spaces, the

preferences output, the latent matrix, and the corresponding parameters. The model pa-

rameters are then learned with a stochastic gradient descent algorithm that is equivalent
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to maximizing the likelihood. After the latent feature representation Z(s) and Z(t) are

learned, a ranking function can be used to train the model in the latent feature space.

The results tested on a large commercial web search engine demonstrated that PCDF

can outperform many other existing solutions for heterogeneous transfer learning.

2.5.2 Unsupervised TR

Unlike supervised TR, under the unsupervised TR scenario, no relevance labels are

provided in the target collection. As a result, the algorithms are not able to detect

the relatedness of the joint distribution of the source and target domains, which poses

additional challenges. As the di↵erence in the mapping function cannot be modeled

without the presence of any relevance labels in the target collection, most unsupervised

TR can only tackle one aspect of the problem, which is the distribution change in the

input feature space. However, this is still very useful in some scenarios when the source

and target collections share the same mapping function, for example when a ranking

algorithm must be updated after a period of time. In this section, present algorithms to

tackle the unsupervised TR problem will be reviewed, including the instance weighting

approach and weak supervision-based methods.

2.5.2.1 Instance Weighting

Instance weighting is one of the most widely used solutions for the covariate shift problem

in transfer learning, and it has also been used to address the covariate shift problem in

ranking problems. Covariate shift is the main problem that unsupervised TR aims to

tackle.

As has been discussed in the section 2.2, the training data for L2R are used in di↵erent

ways. As a result, the instance weighting for L2R can be conducted at di↵erent levels,

i.e., document level, pair level, and query level. In Gao et al. [18] , the authors generated

instance weights at di↵erent levels for L2R datasets. Although not pointed out, their

methods are similar to classification-based density-ratio estimation; they built a clas-

sifier hyperplane between source and target documents and used a sigmoid function of

the distance of a target document to the hyperplane at the document level. Since docu-

ments are independent of each other, the document-pair weights are the multiplication
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of the documents’ weights. The query weights were generated by the average weights

of document pairs in the query. They tested their instance weights with RankSVM and

RankNet (two pairwise L2R algorithms9) on the six topic sets in LETOR3.0 and showed

some significant improvements. Cai et al. [73] further improved the algorithm by clas-

sifying the queries directly. The algorithms were tested on a set of a small dataset and

showed only limited improvements in ranking e↵ectiveness.

An importance-weighted AdaRank approach (wAdaRank) was proposed by Ren et al.

[72]. The authors used the Kullback-Leibler Importance Estimation Procedure (KLIEP) [63]

to estimate document weights, which were then incorporated into the AdaRank algo-

rithm. However, the algorithm was not tested under an unsupervised TR scenario.

Instead, the authors tested the algorithm in a supervised learning environment. The

density ratio was estimated according to the test set and was tested on the test set as

well.

2.5.2.2 Weak Supervision

One di�culty of instance weighting for unsupervised TR is the necessity to characterize

the data distribution of the L2R training data. However, most e↵ective L2R algorithms

use training data at the query level as well as for the evaluation of the e↵ectiveness of

ranking models is at the query level. Measuring the divergence of query distribution can

be very di�cult as queries are represented as lists of feature vectors. More details on the

di�culty of implementing query-level instance weighting will be discussed in Chapter 4.

Instead of estimating the density weights for each training example in the source col-

lection, an alternative approach is to generate imputed relevance labels to the query-

document pairs in the target collection with the auxiliary from a source collection.

Weak supervision-based unsupervised TR solutions have not been well studied. Gao and

Yang [76] have developed an algorithm that can use a weakly supervision algorithm called

multi-view learning to generate imputed labels to enable ranking model adaptation.

Multi-view learning [94] is a set of semi-supervised algorithms that can propagate labels

to unlabeled instances in the training set by the consistency of label prediction with

models trained with di↵erent feature sets. The AdaCoList algorithm developed by Gao

9
AdaRank and LambdaMART are more e↵ective [36].
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and Yang [76] is a co-training algorithm that can automatically identify two views from

the original feature set. This is done by minimizing the combined loss in the two views

in the source collection while maximizing the ranking agreements of the two views in

the target collection.

The weights of the two views were then used to predict the ranking of unpredicted target

queries. The top k queries with the most confident ranking predicted will be added to

the source collection in order to update the ranking function. The source queries are

weighted by the NDCG score achieved with the current model so that the algorithm

focuses more on source queries that are close to the target collection. The algorithm then

iteratively updates the weights for the model and adds more consistent ranked queries to

the source collection until no more target queries can be added. AdaCoList was tested

on LETOR3.0 and Yahoo transferring settings, and the result suggests that AdaCoList

can gain significant improvements with proper settings. However, the performance of

the algorithm may vary with di↵erent parameter settings.

2.5.3 Other TR-Related Problems

Apart from the common TR scenario that the knowledge transfer is from one collection

to another, there exist some other cases where the situation may change. For example,

Goswami et al. [23] attempted to look at the case when there exist multiple source collec-

tions. The authors tackled the problem by selecting the most similar collection for each

query by comparing the similarity of the td-idf distribution. The algorithm then uses the

most-related collection to generate pseudo relevance labels for the documents belonging

to the query and uses the labels for training. In the experiments, CLEF-3, and TR EC

3,4,5,6 were used as source collections and they tested the algorithms on TR EC 7,8, and

WT10G as well as Gov2 collections. The e↵ectiveness of the algorithm was compared

with BM25, language model, and LGD [95] as well as a RankSVM model trained with

source collection data, and it consistently outperformed these models significantly.

Others have also attempted to solve the multi-task learning problem for L2R. Multi-task

learning is a technique that learns multiple models simultaneously for di↵erent related

tasks. Most of the solutions (Bai et al. [86], Tang and Hall [90]) to multi-task L2R look to

find commonalities in the latent feature space in order to share knowledge. For example,

Bai et al. [86] assume that some “super features” are shared by di↵erent tasks. It uses a
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boosting algorithm to iteratively learn the super features and the coe�cients. Chapelle

et al. [15, 87] also developed an algorithm called multi-boost that can deal with multitask

learning problems for boosting algorithms. It is demonstrated that multi-boost can be

used for GBDT (gradient boosted decision tree) to solve the multi-task L2R problem.

TR can also be used to help active learning for L2R, for example, Cai et al. [75] tried

to use source collection data to help select queries from target collection for judgment.

It combines the techniques of transfer learning with active learning. The result showed

that the proposed approach can bring a significant improvement over the normal active

learning setting.

2.6 Summary

Although all the algorithms that have been discussed focused on knowledge transfer

between di↵erent ranking tasks, the scenarios can greatly di↵er. The choice of TR

algorithms for a particular scenario solely depends on the accessible resources for the

task. Moreover, some algorithms may not be flexible enough to apply to a di↵erent

L2R algorithm. In this thesis, we limit our focus to unsupervised TR where there are

no relevance labels from another collection. Unsupervised TR is a problem that has

not been well-studied and yet has many real applications, including dataset shifting

overtime, cross-lingual transferring, etc.



Chapter 3

Dataset Shift in L2R

One fundamental issue that TR aims to tackle is the dataset shifting problem. The

ranking model trained with a small number of observed training instances from the target

collection or the model trained with data from the source collection cannot generalize

to the unseen target data. In this section, the data generating process of L2R datasets,

which is the underlying true distribution that is generating the data, will be discussed

and it will be used to explain the causes and e↵ects of di↵erent distribution changes

within L2R datasets. Furthermore, the generalization of di↵erent L2R algorithms with

respect to di↵erent types of dataset shift is investigated so that insight can be gained

in order to better understand the correlation between dataset shift and performance

changes.

3.1 Introduction

TR algorithms are designed to tackle the scenario where a reliable ranking model cannot

be trained with existing training data and labels in the target collection and the ranking

model trained within the source collection does not generalize well to the target collec-

tion. One fundamental question that needs to be answered before investigating any TR

algorithms is when TR should be applied.

If the training data and labels in the target collection are su�cient to train an e↵ective

ranker, or the source ranker can be directly applied to the target collection without any

performance degradation, TR should not be chosen in these two scenarios. Obviously

50
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determining that this is, in fact, the case may be a non-trivial problem if insu�cient

test data on the target collection is available. As a result, it is important to investigate

the generalization of L2R algorithms with respect to the training size and changes in

the data distribution.

The study of generalization of machine learning algorithms with respect to the training

size is a general research topic, and some previous works [24, 25, 96] have also investigated

the generalization ability of L2R algorithms. Most of those studies have investigated the

generalization bound of L2R algorithms at either the document level or the query level.

Macdonald et al. [97] carried out empirical analysis of the document pooling methods

for L2R collections and its impact on training. The result showed that the impact of

number of documents for each query will not significantly a↵ect the performance unless

it is too small. In Yilmaz and Robertson [98], the authors have also found that training

L2R with shallow document depth but with more queries is better than training with

more documents per query and fewer queries. Later in Chen et al. [99], a generalization

bound has been derived to take account of both the document and query sample size.

They concluded that both document count and query count have an impact on the

generalization bound, while a cost-e↵ective approach to increase generalization is to

increase the query count over document count.

The second question we want to answer is the generalization of L2R algorithms across

di↵erent collections. To the best of our knowledge, there has been no previous work in-

vestigating this problem. The generalization issues of learning algorithms when training

and testing in di↵erent collections are usually referred to as dataset shift [8] problems

in machine learning. In this chapter, we investigate the cross-collection generalization

abilities of di↵erent types of L2R algorithms to provide us better insight into di↵erences

that exist among L2R collections and also the impact of those variations on the general-

ization of L2R algorithms. By understanding the cause of variations in the dataset, one

can determine particular change in the data distribution and should be able to identify

the appropriate solution to the problem.

In this chapter, we first discuss the data generating process of L2R datasets as it is dif-

ferent from conventional machine learning datasets from multiple perspectives. In the

following sections, we characterize di↵erent types of distribution shifts in L2R datasets,

which allow us to attribute the distribution shifts to a particular di↵erence in the dataset
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generation process. Finally, a set of experiments were performed to test the general-

ization abilities of di↵erent L2R algorithms across di↵erent test collections based on

particular changes in the collection. We found that: 1) di↵erent parameter changes in

the dataset can cause a generalization gap for L2R algorithms; 2) the impact on the

generalization abilities of di↵erent L2R algorithms with respect to a particular type of

change in the dataset may be di↵erent; and 3) the cross-collection generalization ability

of an L2R algorithm is also determined by its in-collection generalization ability.

3.2 Data Generating Process

To quantify the data distribution of L2R datasets, we formalize the data generation

process for L2R datasets. An L2R collection is comprised of a set of queries, and a set of

(retrieved) documents for each query together with relevance labels. We can model the

queries and documents in an L2R collection as random samples drawn from the query

space Q and the document space D respectively according to the following probabilities:

qi ⇠ Pq i 2 {1, . . . ,M} (3.1)

dj ⇠ Pd j 2 {1, . . . , N} (3.2)

The relevance of a document to a query is controlled by the relevance probability:

rij |qi, dj ⇠ Pr|q,d i 2 {1, . . . ,M}, j 2 {1, . . . , N} (3.3)

The relevance probability conditioned on the query and document is determined by

specific domains, and it may shift under di↵erent contexts. It determines the (marginal)

probability that a user having submitted query q would consider documents relevant (at

a certain level on a relevance scale). Thus the relevance itself only reflects the degree that

a document is related to the information need. A relevance label rij = y, meanwhile,

is an ordinal number that quantifies the degree of relevance, either being binary, multi-

graded or even real-valued, and is usually determined by the relevance judgment process.

We assume that the relevance label mapping is governed by a probability Py|r
1. Each

1
For the simplicity consideration, in other chapters, we will use rij to denote the relevance labels,

and the probability Pr|q, d is determined by both the domain and the judgement process.
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query-document pair is represented by a feature vector xij mapping from the pair to a

d dimensional vector (Q ⇥ D 7! Rd). To simplify, we assume that the feature vector is

controlled by a mapping function �, with parameters ��:

xij = �(qi, dj ;��) (3.4)

If all the relevance labels are present in the L2R collection, the distribution over the

feature vector and the relevance labels would be:

P (xij , yij) = Pq(qi)Pd(dj)Px|q,d,�(xij |�(qi, dj ;��))Pr|d,q(rij |qi, dj)Py|r(rij) (3.5)

where Pq(qi) is the probability of a query qi given the query distribution Pq, Pd(dj) is the

probability of a document dj , given the document distribution. Px|q,d,�(xij |�(qi, dj ;��))

denotes probability of a feature vector x, given the qi and dj , and this probability

is governed by a conditional distribution of Px|q,d,�, where � is a mapping function.

Pr|d,q(rij |qi, dj) is the probability of relevance, given qi and dj . Relevance labels can

be annotated in multiple ways, so the relevance label y is drawn from a conditional

distribution of Py|r(rij).

However, in practice, it is not feasible to assess the relevance of every document in the

corpus for every query. Moreover, if most of the documents in a corpus are irrelevant to a

search topic, it is meaningless to spend the e↵ort judging the relevance for large volumes

of irrelevant documents. Lastly, the computational burden for an L2R algorithm can be

very heavy in dealing with a collection with full sets of documents judged. Instead, only

a subset of the documents corresponding to a query is used for training, and it is obtained

by a pooling method. A typical pooling method uses a conventional IR retrieval model,

e.g., BM25, to return a ranked list of documents for each query, and then preserve the

top-k documents in the retrieved ranked list. However, the base retrieval models and

pooling depth k may change in di↵erent collections. To simplify, we use oij to denote

the whether dj is observed in qi with a pooling method. We assume oij is drawn from

a distribution that is governed by the distribution of Po|d,q:

oij ⇠ Po|d,q(qi, dj) (3.6)
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Figure 3.1: Model of training/test corpus generation for learning to rank: shaded
(/unshaded) round nodes represent observed (/latent) variables

As a result, the data in the collection is the observed feature vectors and their corre-

sponding relevance labels and the data forms a joint probability of P (xij , rij |oij = 1).

The joint probability can be rewritten as:

P (xij , yij |oij = 1)

=
P (oij = 1|xij , yij) · P (xij , yij)

P (oij = 1)

=
Po|qi,dj (oij = 1|qi, dj) · P (xij , yij)

P (oij = 1)

/ Pq(qi)Pd(dj)Px|q,d,�(xij |�(qi, dj ;��)) (3.7)

⇥Pr|d,q(rij |qi, dj)Py|r(rij)Po|qi,dj (oij = 1|qi, dj)

Figure 3.1 summarizes the data generating process of L2R collection as a Bayesian

network.A Bayesian network is a graphical model for the joint probability for a set of

variables. Each node in the graphic denotes a variable that is observed or hidden in

the dataset. The arrows denote the relationship between di↵erent nodes, i.e., di↵erent

variables pointing to the same variables are the ones that control the distribution of the

variable. The plates in the graphics denote the size of a set of variables. The shaded
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nodes are variables that were observed in the collection, the transparent nodes denote the

latent variables. The directional arrows show the parameters that control the generating

of a variable. It is clear from Figure 3.1 that the data distribution in an L2R collection

is controlled by the following parameters:

1. The document distribution Pd

2. The query distribution Pq

3. The conditional probability of relevance, given a query and document, Pr|d,q

4. The relevance judgment process, controlled by Py|r, the probability of the label

given its true relevance.

5. The conditional probability of relevance, given a pair of query and document, Pr|d,q

6. The condition of probability of a document being observed (and subsequently

labeled) for a query after pooling, Po|d,q

7. The parameter �� controls the feature mapping function �(q, d;��)

In the next sections, the impact of these factors will be discussed in order to quantify

the dataset shifts in L2R collections.

3.3 Generalization of L2R Models

Typically, an L2R algorithm looks to minimize the gap between the optimal ranking

and the predicted ranking of all the queries in the population:

R(h) = E(X,R)⇠P(X,R)
[`(R, h(X))] =

Z Z
p(X,R)`(R, h(X))dXdR (3.8)

where (X,R) is a set of retrieved document feature vectors paired with their relevance

labels, P(X,R) is the distribution of (X,R), h is the hypothesized optimal ranking function.

However, L2R models are usually trained using observed sampled data with correspond-

ing relevance labels, and the expected risk is approximated by the empirical risk:

R̃emp(h) =
1

NX

X

(Xi,Ri)2Lemp

[`(Ri, h(Xi))] (3.9)
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Ideally, the hypothesis should only be accepted as a solution when the gap between the

two risks (generalization gap) is small enough:

P (sup
h2H

|R(h)�Remp(h)| > ✏) < � (3.10)

Under the TR setting, the hypothesis is trained with the data drawn from the source

distribution, while it will be applied to data from a di↵erent data distribution. As a

result, the source hypothesis is trained by minimizing the following risk:

R̃so(h) =
1

Nso

X

(Xi,Ri)⇠P so(X,R)

[`(Ri, h(Xi))] (3.11)

However, the expected model is that which can minimize the expected risk over the

target distribution:

Rta(h) = E(X,R)⇠P ta(X,R)[`(R, h(X))] (3.12)

Issues arise when the observed data is generated from a di↵erent distribution, causing

the generalization gap, |Rta � R̃so|, to be even larger. The ranking function trained on

the source collection will not generalise to target collection, and the performance will be

degraded.

3.4 Characterizing Dataset Shifts in L2R Datasets

Quantifying if the data distribution di↵erence between source and target is a critical

step in studying transfer learning algorithms. However, the training data in L2R is

controlled by many factors, as has been shown in the data generation process. In this

section, we attribute di↵erent types of distribution changes to specific changes in the

data generating process.

According to Quionero-Candela et al. [8], the joint distribution change of the input and

output space can be a result of the following shifts:

• Covariate Shift
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• Prior Probability Shift

• Domain Shift

3.4.1 Covariate Shift

Covariate shift is the scenario where the distribution of data instances over the input

feature space changes, pso(x) 6= pta(x), while other probabilities remain the same. It

is obvious that covariate shift has an impact on the generative learning models as they

model the joint distribution p(x, y). However, most L2R algorithms are discriminant

learning models that directly learn the conditional distribution p(y|x). From the proba-

bility perspective, the distribution of p(x) has no impact on the conditional distribution

p(y|x), which means p(y|xso) can be used to predict xso accurately. However, as the

models are trained using empirical data through risk minimization, the model may not

be able to generate the global conditional probability. In other words, the trained model

may be locally minimized and cannot generalize well to another collection. To illustrate

this, we provide a covariate shift example in Figure 3.2. Assume the conditional dis-

tribution of the label y, given x, p(y|x) is controlled by the dashed line in the figure.

If all the data is present in the training set, we could train a linear regression model

to approximate the probability, which is denoted as the solid black line in the figure.

However, in many cases, the input features may not distribute evenly across space. This

is usually caused by the sample selection bias for specific domains. The feature distribu-

tion of a specific domain may be biased compared with the population of the universe.

For example, as illustrated in the figure, the observed instances in the source collection is

skewed towards lower ranges of the values. Using an empirical risk minimization-based

solution, the source model (the red line) will be trained. However, the trained source

model does not generalize well to the target collection instances, the black triangles in

the figure which are concentrated at higher values of x..

Covariate shift can also happen in L2R datasets, and the shift may occur at di↵erent

levels. For pointwise L2R algorithms, the input feature space is the feature vectors

extracted from query-document pairs. According to the data generating model that we

discussed in the last section, the distribution of the input feature space is controlled

by the document distribution, query distribution, and the pooling method. The factors

are still valid when it comes to pairwise algorithms. For listwise algorithms, the sets
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Figure 3.2: The red dots are instances observed in the source collection, the black
triangle points are the instances in the target collection. All the instances are governed
by the dashed line, which is the underlying distribution. The black line is the model
trained when all the instances were observed, while the red line is the model when only

the source collection data was observed

of feature vectors are deterministic when the distribution of the feature vectors are

fixed. As a result, the change in document distribution, query distribution, and pooling

methods are the three main factors that contribute to covariate shift.

3.4.1.1 Document Distribution Shift

Changes in document distribution are one of the most common causes of covariate shift

in L2R datasets. Notice that such changes should not introduce the domain shift, which

would cause the conditional probability change. For example, if the document corpus

was changed from the IT domain to the medical domain, the conditional probability

of relevance as well as the query distribution could also be a↵ected. However, whether

the change of document corpus will impact on the conditional probability is not easy

to detect. For example, it has been shown by some other studies [4, 5, 100] that the

choice of document corpus will have a significant impact on the e↵ectiveness of retrieval

systems.

In some scenarios, we could assume that the global definition of relevance does not change

over di↵erent collections, in which case the feature distribution change will be the main

cause of the distribution change. For example, in some collections, the document corpus

may be updated dramatically after a period of time. Unfortunately, there is no public
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test collection for us to validate how the document shifting over time could cause a

covariate shift.

The other situation when the document distribution shifts is when the document type

changes. For example, the characteristics of HTML files and pdf files can be very di↵er-

ent, which may lead to a dramatic di↵erence in the feature distribution of documents.

In order to observe the covariate shift when the document type changes, we separate the

MQ2007 dataset from the LETOR4.0 collection into a collection with only HTML files

and a collection with only pdf files. We then randomly sampled 1,000 query-document

pairs from both collections and compared two features present in both collections, BM25

of the whole document and the document length of the whole documents.

The scatter plot and the density plots in Figure 3.3 show that the features of the collec-

tions distribute di↵erently in the feature space. Pdf files are more likely to have lower

BM25 scores, while the document length tends to be less skewed. When it comes to

the high-dimensional feature space, the joint distribution of the features would be more

sensitive to the changes in the document space.

3.4.1.2 Query Distribution Shift

Changes in the distribution of queries are also one of the causes of covariate shift in L2R

datasets. According to the data generating process, the presence/absence of certain

feature vectors is also determined by the queries. Moreover, most of the state-of the–art

algorithms train the ranking function using query-level loss function and the performance

is also measured at the query level. As the distribution of queries shifts, it will very

likely cause covariate shift in the L2R training set.

The changes of query distribution may also introduce domain shift, in which case the

criteria of relevance may shift. In covariate shift, we are only concerned with the case

when the query probability shifts, while the information needs expressed by the queries

remains the same.

According to Weber and Castillo [101], users’ search behaviors, including queries issued,

are correlated with their demographics. As a result, query distribution change may

happen when an IR system is applied to a di↵erent market, for example, from the US

market to the Australian market.
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Figure 3.3: Feature distribution of html and pdf files in LETOR4.0

3.4.1.3 Pooling Method Change

The pooling methods can also a↵ect the input feature distribution. However, as the

pooling method is usually a controllable factor at the retrieval stage, it is less of a concern

for covariate shift. The pooling strategy and depth will only impact the probability of

a document being observed for a query. Some [102] attempts have been made to use

counterfactual learning methods to solve the observation bias issues for training ranking

functions with click data. Others [103] have investigated the relationship between the

robustness of L2R algorithms and the pooling methods used.
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In many cases, the covariate shift is caused by a combination of two or three changes in

the aforementioned factors. To mitigate the problem, one will need to tackle the shift

from di↵erent perspectives respectively.

Ideally we would like to check that covariate shift has occurred, and measure and visualise

shift between the datasets. But doing so for learning-to-rank algorithms is not possible

because of the structure of the query space, which consists of a set of feature vectors

(one for each candidate document) rather than a single feature vector, as would be

the case for conventional machine learning algorithms. Also, density estimates in high

dimensions (where the number of dimensions is comparable to the number of data points)

are inherently unreliable. For this reason, most previous studies of covariate shift in

Machine Learning have made use of synthesised datasets (sometimes exclusively). We

were unable to generate synthetic datasets because the data distribution of learning to

rank datasets are controlled by too many factors.

3.4.2 The E↵ect of Covariate Shift on L2R Algorithms

Although covariate shift is shown to a↵ect the generalization ability of machine learning

algorithm, how it will a↵ect L2R algorithms is not clear. As discussed above, covariate

shift may occur in di↵erent ways, how di↵erent types of covariate shifts will impact the

training of di↵erent L2R algorithms needs further investigation.

For pointwise algorithms, the ranking functions are trained and optimized at the docu-

ment level, which means that the learning algorithms minimize the expected loss over

all of the training instances. As a result, any changes in the data will a↵ect the gener-

alization of L2R algorithms significantly.

For pairwise algorithms, the input features are pairs of query-document feature vectors,

that are determined by the distribution of query-document feature vectors. As a result,

changes in the document distribution, query distribution, as well as pooling methods

used will all a↵ect the generalization performance of pairwise algorithms.

For listwise algorithms, the algorithms directly train ranking functions via optimizing at

the query level. The algorithms are likely more sensitive and a↵ected by the distribution

in the query distribution. As a consequence, the change in the query set would likely

have more influence on the generalization performance of listwise L2R algorithms.
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3.4.3 Prior Probability Shift

A Prior probability shift is the case when the prior probability of the labels shifts,

(pso(y) 6= pta(y). A common scenario for prior probability shift is that distribution of

the labels, e.g., the density of positive and negative labels, are di↵erent in the source

and target collection.

For a generative learning model, the conditional probability is obtained by:

p(y|x) = p(x, y)

p(x)
=

p(x|y)p(y)
p(x)

(3.13)

Even if the distribution of x, p(x) remains the same, the change in the class distribution

p(y) may also result in poor prediction accuracy for a model trained on data with a

di↵erent label distribution.

For di↵erent L2R collections, the labeling strategy could be di↵erent, for example, some

collections may use the binary definition for relevance while others may use graded

relevance. Even with exactly the same strategy for labeling, the distribution of the

relevance labels may also be di↵erent due to the document or query distribution. For

example, for navigational queries, there might be just one or two relevance documents

while for other ad-hoc queries the number of relevance document might be much larger.

However, most advanced learning-to-rank algorithms are trained to minimize pairwise

preference error. As a result, the impact of the di↵erences in relevance labels on the

training of those pairwise and listwise algorithms is smaller than it is on the pointwise

algorithms.

3.4.4 Domain Shift

Domain Shift is the other cause for dataset shift. Under domain shift, the main change

in the dataset is in the mapping function p(y|x), while the covariate distribution remains

the same, pso(x) = pta(x), pso(y|x) 6= pta(y|x).

As mentioned before, discriminant learning algorithms directly model the prediction

function. However, in many cases, the prediction function may change in di↵erent

collections, which means that the definition of relevance may drift. As a result, domain

shift is also called “concept drift” in some literature [104].
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Some document collections may be domain specific and thus when a trained ranking

model is applied to a di↵erent collection, the learned mapping function may not hold.

For example, the performance of a ranking function trained on a medical domain will be

degraded when applied to an IT collection as the definition of relevance may be di↵erent

across the collections.

Domain shift is not easy to detect and manage when there are not any relevance labels

in the target collection. As a result, the solutions for domain shift usually require a

small amount of target relevance labels.

In reality, dataset shift may be caused by multiple factors. For example, when a search

engine is applied to a di↵erent language market, the document corpus, query distribu-

tion, and even the mapping function itself may shift. In such cases, one needs to use

available resources in both the source and target collection to tackle di↵erent types of

changes separately.

3.5 Empirical Results

In order to investigate the e↵ect of di↵erent types of dataset shift on the generalization

ability of learning-to-rank algorithms, three representative learning-to-rank algorithms

were tested on di↵erent dataset shift cases, using synthetic data generated from public

L2R datasets.

3.5.1 Dataset

Some of the existing collections were split in order to simulate certain types of dataset

shift. In this section, we create di↵erent dataset shift scenarios to test the correlation

between the generalization performance of L2R algorithms and the presence of particular

types of shifts in the dataset.

3.5.1.1 Document Corpus Change

To test and analyze the impact of document corpus change on the generalization perfor-

mance of L2R algorithms, the MSLR collection was split into two collections according
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to document length. More specifically, we select documents whose length lies above

the 25th percentile and below the 75th percentile into two collections: MSLR-LongDoc

and MSLR-ShortDoc. As a result, MSLR-LongDoc and MSLR-ShortDoc shares the

same query set. In order to reduce the impact of pooling, we only retain the top 20

documents for every query in both collections.

3.5.1.2 Query Set Change

Query set shift is one of the most common scenarios when covariate shift happens. The

distribution of the queries determines the set of documents being retrieved. As a re-

sult, the concept of query distribution cannot leave out the retrieved document set.

Whether the characteristics of the queries themselves, such as the stream length and

frequency, a↵ect the distribution of input feature space requires further investigation.

In the LETOR4.0 dataset, there are two query sets from the Million Query Track cor-

responding to two di↵erent years. We will use the query sets from the two years to

investigate the impact of query distribution change. Moreover, in the MQ2008 dataset

from LETOR4.0, there are four categories of queries [58]: short-govslant, long-govslant,

short-heavy and long-govheavy. According to Allan et al. [58], short queries are those

queries that contain less than six words, while long queries are those with more than

six words. The “heavy” queries are those queries that have greater than three clicks

while “slant” queries are those that have less than three clicks. We split the MQ2008

set using two di↵erent collections, long queries and short queries, to see if it will cause

any covariate shifts for the L2R algorithms.

3.5.1.3 Domain Shift

Domain shift happens when the source and target collections come from di↵erent do-

mains, and as a consequence, the mapping function from the feature space to relevance

labels changes. In this experiment, we use the two collections built from the Gov and

OHSUMED corpus in LETOR3.0 to test the impact of domain shift on L2R. The Gov

collection contains six queries and the document corpus is the gov corpus, which is

crawled from the “gov” domain, while OSHUMED is based on a corpus of medical

publications [37].
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3.5.2 Algorithms

Four algorithms are tested to make the comparison, a pointwise algorithm based on

multiple additive regression tree (MART) [105], a pairwise algorithm (RankNet [42])

and two listwise algorithms (ListNet [40] and LambdaMART [53]). All the algorithms

are implemented using the ranklib library (v2.1)2.

3.5.3 Experiment Set up

The experiments are performed following a five-fold cross-validation strategy, by which

the original data is randomly split into five folds. All the models are trained on four out

of five folds and tested on the remaining fold. Each dataset will have five models and

the results presented are averaged over the five folds. When comparing the performance

of a ranker from another collection, we use all the data from the collection for training

and test on the entire target collection. As a result, we compare the performance of a

source ranker with the cross-validated performance on the same collection.

The performance of di↵erent models on various collections is measured using Normalized

Discounted Cumulative Gain (NDCG) [106] with the standard rank-plus-one discount

function and exponential gain [42]. We measure NDCG at rank cuto↵ 10. We conducted

two-tailed t-tests between results with significant level ↵ set to 0.05. To quantify the

changes in performance, we also report the e↵ect size of the di↵erences.

3.6 Results and Discussion

The results of the generalization test are presented in this section.

3.6.1 How does document corpus change a↵ect generalization of L2R

algorithms?

The results of cross-collection tests with di↵erent learning algorithms when the docu-

ment corpus changes occur is presented in Table 3.1. Each row in Table 3.1 corresponds

to a group of experiments, where the source and target collections are specified under

2https://sourceforge.net/p/lemur/wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/
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Table 3.1: Results on di↵erent algorithms when the document corpus changes: each
row is a group of experiments; the first column under the “NDCG@10” corresponds
to the cross-collection training, while the second column is the in-collection training.
Italic fonts denote the significant decrease in performance, the bold fonts denote the
significant increase in the performance compared with the target model. The e↵ect

sizes are shown in the last column.

Algorithm
Dataset NDCG@10

E↵ect Size
Source Target

Source
Model

Target
Model

BM25
MSLR-LongDoc MSLR-ShortDoc 0.4745 0.4745
MSLR-ShortDoc MSLR-LongDoc 0.5236 0.5236

MART
MSLR-LongDoc MSLR-ShortDoc 0.5400 0.6620 -0.534
MSLR-ShortDoc MSLR-LongDoc 0.5738 0.5903 -0.074

RankNet
MSLR-LongDoc MSLR-ShortDoc 0.4385 0.4419 -0.029
MSLR-ShortDoc MSLR-LongDoc 0.4526 0.4561 -0.039

ListNet
MSLR-LongDoc MSLR-ShortDoc 0.4407 0.4411
MSLR-ShortDoc MSLR-LongDoc 0.4540 0.4537 +0.020

LambdaMART
MSLR-LongDoc MSLR-ShortDoc 0.5682 0.6609 -0.435
MSLR-ShortDoc MSLR-LongDoc 0.5667 0.6231 -0.282

the “Dataset” column. The column “Target Model” under the “NDCG@10” is the per-

formance (NDCG@10) when the algorithm is trained and tested on the same collection

while the previous column (Source Model) is the performance for the cross-collection

case, where the algorithm is trained with the source dataset and tested on the tar-

get dataset. The italic fonts in the table denote a significant performance decrease as

compared with a model trained on the same collection (target model), the bold texts

indicate the cases when the performance is increased. The e↵ective size, measured using

the Cohen’s d [107], of the change is also reported in the last column. Given two groups

of variables X1 and X2, Cohen’s d measures the e↵ect size of the di↵erence by:

d =
mean(X1)�mean(X2)

SDpooled
(3.14)

where SDpooled is the pooled standard derivations computed as:

SDpooled =

s
SD2

X1
+ SD2

X2

2
(3.15)

MART is a multiple additive regression tree model (MART) that trains an ensemble

of regression trees to fit the relevance labels. Somewhat unexpectedly, the pointwise

algorithm performed acceptably well in the MSLR collection. One reason is the size

of training data in MSLR is very large while the MART model can fit the training
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data well. Similar pattern has been observed in [108]. However, the MART model is

generally more sensitive to the document corpus change, where we observe 0.534 and

0.074 of performance decrease in e↵ect size when ranking using a model trained with

a di↵erent document corpus (the first four rows in Table 3.1). As the input features

for pointwise algorithms are the query document feature vectors, a small change in the

document corpus could impact the generalization of the algorithm.

RankNet [42] is a pairwise L2R algorithm that aims to optimize the ranking function by

minimizing the loss between the pairwise probability inferred by the relevance labels and

the probability predicted using the model scores. As a result, the impact of document

corpus change is not direct, and the relative di↵erence in pairs of documents is more

important. When the algorithm was tested based on a cross-corpus test on the long and

short document corpus in MSLR, it showed less decrease in performance with respect

to MART.

The listwise algorithm, ListNet, optimizes its ranking function by minimizing loss in

terms of a predicted permutation probability. As a result, the distribution of the lists of

documents is more critical to ListNet algorithms, whereas the distribution of documents

has a lesser impact. No significant performance decline was observed when the document

corpus was changed.

It is noticeable that, although the e↵ectiveness of MART and LambdaMART has largest

degradation when applied to the target collection, the e↵ectiveness of the two models

are still the highest compared to other algorithms in such scenarios.

The document corpus change has a big impact on the generalization ability of the Lamb-

daMART algorithm as can be seen from the last set of results in Table 3.1. Although

LambdaMART was listed as a listwise algorithm in some literature, it optimizes its rank-

ing function by minimizing a pairwise loss penalized by the impact on a listwise metric

score, for example, the di↵erence in NDCG@10 when swapping the pair of documents

in the pair. As a result, LambdaMART is a↵ected by the document corpuss has a larger

impact.
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Table 3.2: Results on di↵erent algorithms when the query set changes on LETOR4.0:
each row is a group of experiments; the first column under the “NDCG@10” corre-
sponds to the cross-collection training, while the second column is the in-collection
training. Italic fonts denote the significant decrease in performance, bold fonts denote
the significant increase in the performance compared with the target model. The e↵ect

sizes are shown in the last column.

Algorithm
Dataset NDCG@10

E↵ect Size
Source Target

Source
Model

Target
Model

BM25
MQ2007 MQ2008 0.3981 0.3981
MQ2008 MQ2007 0.2986 0.2986

MART MQ2007 MQ2008 0.6103 0.6765 -0.290
MQ2008 MQ2007 0.4707 0.4907 -0.095

RankNet
MQ2007 MQ2008 0.6024 0.6741 -0.315
MQ2008 MQ2007 0.4548 0.3852 +0.277

ListNet MQ2007 MQ2008 0.6912 0.6766 +0.123
MQ2008 MQ2007 0.4636 0.4911 -0.219

LambdaMART
MQ2007 MQ2008 0.6908 0.6761
MQ2008 MQ2007 0.4850 0.5173 -0.149

3.6.2 How does query set change a↵ect generalization of L2R algo-

rithms?

Table 3.2 displays the cross-collection test results for di↵erent algorithms on the two years

of LETOR4.0: MQ2007 and MQ2008. MQ2007 and MQ2008 are two datasets released in

2007 and 2008 respectively. While the two datasets share the same document corpus, the

query sets are di↵erent. However, the query types of MQ2007 and MQ2008 are similar,

so there exists no domain shift in such scenario, while the distribution of ‘queries’ may

be di↵erent. Notice that the ‘query’ here is not referring to the characteristics of queries,

e.g., query length or population of queries, which will also be demonstrated.

When the query distribution changes, the distribution of the corresponding documents

will be a↵ected. As a result, the performance decrease of MART is seen.

Similarly, the pairwise L2R algorithm RankNet is also a↵ected and we saw a signifi-

cant performance decline when the model trained on MQ2007 is applied on MQ2008.

However, when the model is trained on the MQ2008 dataset, it generalizes well to the

MQ2007 dataset, and the performance is significantly better than the target model.

RankNet seems to perform well on the MQ2008 dataset, while poorly on the MQ2007

dataset. A possible explanation is that although MQ2007 has more queries and deeper
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Table 3.3: Results on di↵erent algorithms when the query set changes on long and
short queries in MQ2008: each row is a group of experiments; the first column under
the “NDCG@10” corresponds to the cross-collection training, while the second column
is the in-collection training. Italic fonts denote the significant decrease in performance,
bold fonts denote the significant increase in performance compared with the target

model.

Algorithm
Dataset NDCG@10

E↵ect Size
Source Target

Source
Model

Target
Model

BM25
MQ2008-Long MQ2008-Short 0.4096 0.4096
MQ2008-Short MQ2008-Long 0.3864 0.3864

MART
MQ2008-Long MQ2008-Short 0.6659 0.6756
MQ2008-Short MQ2008-Long 0.6464 0.6450

RankNet
MQ2008-Long MQ2008-Short 0.6852 0.6838
MQ2008-Short MQ2008-Long 0.6495 0.6603 -0.151

ListNet
MQ2008-Long MQ2008-Short 0.6913 0.6581
MQ2008-Short MQ2008-Long 0.6372 0.6703 -0.250

LambdaMART
MQ2008-Long MQ2008-Short 0.7007 0.6806
MQ2008-Short MQ2008-Long 0.6644 0.6723

pooling depth, the pooling method used in MQ2007 makes it harder for the learning

algorithm to generalize well.

When a listwise algorithm, ListNet, is applied, the model trained on MQ2007 can out-

perform the target model on MQ2008 since MQ2007 contains a wider range of queries.

As a result, the query distribution for MQ2007 is less biased than MQ2008, and when

the model trained on MQ2008 is applied on MQ2007, we see a performance decrease.

LambdaMART is a↵ected by both the pairwise distribution as well as the query distri-

bution, and as a result, its performance only decreases when the MQ2008 target model

is applied to MQ2007. However, the e↵ectiveness of the model is still the best among

all the other algorithms although the algorithm is applied to a di↵erent query set.

Table 3.3 shows the results when di↵erent algorithms are trained and tested on the

long and short queries in the MQ2008 dataset from LETOR4.0. The change in the

query length has no significant impact on the pointwise L2R algorithm, MART, since

the document distribution is not a↵ected. Significant performance drops were observed

when using the RankNet and ListNet models for MQ2008-Long on the short query set

MQ2008-Short. LambdaMART showed the highest performance on both the source and

target models in both transfer directions. The changes of this query characteristic may
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not a↵ect the overall distribution of the query-document feature space. However, the

inherent document feature distribution within queries may change.

In a summary, the characteristic distribution of the query strings may mot have a direct

impact on covariate shift, whereas the distribution of di↵erent types of queries may have

a significant impact on data distribution of L2R collections.

3.6.3 How does domain change a↵ect generalization of L2R algorithms?

Table 3.4 shows the results when the two datasets come from di↵erent domains. With the

pointwise algorithm, MART, a significant decrease occurs when the model trained with

the Gov collection is used for the OHSUMED collection, where the e↵ect size is 1.185.

However, the MART model trained on Gov can outperform the OHSUMED model on

the OHSUMED collection. For the pairwise algorithm, the impact of domain shift is

less sensitive. The other observation is that the listwise algorithm, ListNet, is ine↵ective

for the Gov collection. The reason was that there exist six query sets with di↵erent

types of information needs, which causes the poor generalization of listwise algorithms

which looks to optimize the query-level ranking performance. With the LambdaMART

algorithm, we also saw a significant performance drop when using the OHSUMED model

for the Gov collection, while no significant di↵erence is observed when the Gov model is

used for the OHSUMED model.

3.6.4 Discussion

According to the empirical results that we discussed in the last sections, the shift of

document set, query set, or domain may degrade the e↵ectiveness of an L2R-trained

ranking function, however, the impact of di↵erent changes on di↵erent types of L2R

algorithms is di↵erent. Pointwise algorithms appear to be more sensitive to changes in

distributions than other learning algorithms. For the pairwise algorithm, the impact on

the document set changes appear smaller, while it showed some performance variation

when the query set changed. Listwise algorithms appear most sensitive to any changes

in the query set. Moreover, when the query characteristics were used as distinguishing

features to divide the collections, the change in the query distribution caused the change

the distribution of lists of retrieved documents, which appears to be the main cause of
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Table 3.4: Results on di↵erent algorithms on the Gov and OHSUMED collection in
LETOR3.0: each row is a group of experiments; the first column under the “NDCG@10
corresponds to the cross-collection training, while the second column is the in-collection
training. Italic fonts denote the significant decrease in performance, bold fonts denote
the significant increase in performance compared with the target model. The e↵ect

sizes are shown in the last column.

Algorithm
Dataset NDCG@10

E↵ect Size
Source Target

Source
Model

Target
Model

BM25
OHSUMED Gov 0.5114 0.5114
Gov OHSUMED 0.4000 0.4000

MART
OHSUMED Gov 0.0336 0.5297 -1.185
Gov OHSUMED 0.4113 0.3754 +0.201

RankNet
OHSUMED Gov 0.4695 0.5223 -0.137
Gov OHSUMED 0.4038 0.4101

ListNet
OHSUMED Gov 0.4799 0.2332 +0.570
Gov OHSUMED 0.3720 0.3720 -0.3542

LambdaMART
OHSUMED Gov 0.0856 0.5339 -0.3542
Gov OHSUMED 0.3934 0.3917

performance degradation. Although LambdaMART is a listwise L2R algorithm, the

e↵ectiveness is largely a↵ected by the document and query set shift due to the fact

that LambdaMART optimizes similarity scores (between query and document) for the

individual document while the optimization process considers both pairwise loss and

query-level impact. Moreover, when domain change occurs, there is not necessarily a

change in the relevance mapping function. Most interestingly, it seems that in most cases,

when an e↵ective ranking function is trained on the source collection, it can improve the

ranking e↵ectiveness for the target collection when the target model is ine↵ective. For

example, although MQ2008 contains fewer queries than MQ2007, RankNet is ine↵ective

for MQ2007, whereas the e↵ective RankNet model trained in MQ2008 can outperform

the ranking function trained on MQ2007.

3.7 Conclusion

In this chapter, the data generating process for L2R training data and the impact of

dataset shifts on L2R are discussed. Di↵erent types of dataset shifts may occur for two

L2R collections and can impact the L2R algorithms in di↵erent ways. The empirical

study shows that di↵erent L2R algorithms will have di↵erent reactions towards di↵erent

types of shift in the datasets. Pointwise algorithms are easily a↵ected by both document
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and query set shift, pairwise algorithms are less impacted by document set shift while

more likely to be a↵ected by the changes in the query set, the listwise algorithm is

heavily a↵ected when the query set changes as a result of corresponding changes to

the document list distribution. Di↵erent L2R collections may di↵er in various ways.

Identifying the shift present in the dataset is critical to determine whether any extra

work is needed to improve the e↵ectiveness when one ranking function is applied to

a di↵erent collection. Moreover, understanding di↵erent changes in the dataset can

help find better solutions for TR. For example, tackling covariate shift for document

features may help develop e↵ective TR techniques for pointwise learning algorithms

when document set shift occurs, while minimizing the query distribution di↵erence may

be important for improving the transfer e↵ectiveness of listwise learning algorithms when

covariate shift problems arise.



Chapter 4

Instance Weighting Methods for

Unsupervised TR

It was mentioned in the previous chapter that the change in the data distribution is the

main cause of the degradation of a pre-trained ranking model. Weighting the source in-

stances during training to approach the target data distribution is one of the widely-used

strategies for tackling the data distribution shift problem. Such an instance-weighting-

based solution has been widely used in transfer learning and also some TR problems.

This chapter will investigate existing and new query-level instance weighting techniques

for unsupervised TR.

Instance weighting at the query level has been the most popular solution for the unsu-

pervised TR problem as the e↵ectiveness of L2R algorithms is evaluated at the query

level. Past work has shown that this approach can be used to significantly improve e↵ec-

tiveness. In this chapter, this approach is re-examined on a wide set of publicly available

L2R test collections with more advanced learning-to-rank algorithms. Di↵erent query-

level weighting strategies are examined using two TR frameworks: AdaRank and a new

weighted LambdaMART algorithm. Our experimental results show that the e↵ective-

ness of di↵erent weighting strategies, including those shown to perform well in past work,

vary greatly under di↵erent transfer environments. In particular, (i) Kullback-Leibler

based density-ratio estimation tends to outperform a classification-based approach and

(ii) aggregating document-level weights into query-level weights is likely superior to di-

rect estimation using a query-level representation. The Nemenyi statistical test, applied

73
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across multiple datasets, indicates that most instance-weighting-based transfer learning

methods do not significantly outperform baselines, although there is potential for the

further development of such techniques.

4.1 Introduction

Unsupervised TR assumes that there are no relevance judgements available in the target

collection. However, this does not exclude other knowledge, such as details of queries

that have previously been submitted to search the target collection [18, 76, 89]. To

any transfer learning problems, one needs to analyze the types of di↵erences that exist

between the source and target collection. Under the unsupervised TR scenario, there

is no information about the output space of a target collection, thus it is impossible

to model the prior probability shift or domain shift problems that were discussed in

the previous chapter. As a result, most unsupervised TR solutions assume that the

only di↵erence between the source and target collection is the result of covariate shift.

However, unlike problems in natural language processing where the predictive models

have large dependence on the problem domain, the task of IR systems is less dependent

on the domain since most of the features that are used are based on linguistic statistics

(for example, term frequency instead of semantic relations). The correlation of the

features with document relevance may not shift substantially when the domain changes.

For example, it was shown in the previous chapter that when transferring between

collections from the web search domain and the medical domain, we did not always

observe performance degradation (Table 3.4). It is also noticeable that the assumption

may not hold when a ranking function designed for IR is applied to a di↵erent task,

e.g., product search. A good use case of unsupervised TR is when the training set for

an application is outdated. For example, if the ranking function for a search engine of

an e-commerce site was built with data from 1 year ago, the performance may not be

optimal for the current corpus as the input feature space may change.

Among the solutions to unsupervised TR, instance weighting is a common technique,

which assigns weights to training examples in the source collection to adjust source data

distributions to better match those in the target collection. Instance weighting can be

regarded as the first step for TR, and thus is independent of the learning algorithm

used. The di�culty of applying instance weighting to ranking problems comes from the
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complexity of the training data. For conventional classification or ranking problems,

the training data consists of sets of feature vectors, which form a multivariate distri-

bution over training instances, and instance weighting can be applied directly to this

distribution. L2R algorithms train and test models at a query level, which consist of a

list of feature vectors over documents. Therefore, instance weighting at the query level

rather than the individual document level is appropriate but not obvious how to imple-

ment (due to the extreme sparsity of the query-level representation). Ways to obtain

query-level weights have been investigated, by either aggregating document-level weights

or by directly estimating query weights with query representation methods. Some at-

tempts [18, 72] have also been made to apply these techniques to ranking problems, and

have shown improvements on some collections. A deeper understanding of the problem

is still required, however, such as experimental analysis on a much wider set of TR

environments: in terms of both test collections and L2R methods.

Previous research has shown that the e↵ectiveness of transfer learning varies across

di↵erent environments [67], and depends greatly on the similarity of the source and tar-

get collection. TR appears to exhibit a similar phenomenon [21]. L2R datasets can be

di↵erent from each other in many ways, and thus it is more di�cult to evaluate the e↵ec-

tiveness of TR algorithms. To solve all these problems, one needs a better understanding

of the problem. In the previous chapter, we demonstrated that the e↵ectiveness of L2R

algorithms can be degraded when applying to a di↵erent collection, and the change may

be a↵ected by various types of shift occurring across the collections.

In this chapter, we answer the following research questions.

• How e↵ective are query-level instance weighting techniques for unsupervised TR

problems? Here, we consider how the e↵ectiveness of instance weighting algorithms

varies when applied to di↵erent L2R algorithms, and investigate the generalization

ability of di↵erent L2R algorithms.

• How do di↵erences in test collections a↵ect the performance consistency of unsu-

pervised TR algorithms, and how should unsupervised TR algorithms be evaluated

across di↵erent test collections?

• What is the best way to conduct query-level instance weighting for unsupervised

TR?
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A key contribution of this chapter is a thorough examination of di↵erent query-level

instance weighting strategies for unsupervised TR. Di↵erent approaches for generating

query-level weights are explored and their e↵ectiveness is compared across di↵erent TR

environments. In particular, the weights are applied in two unsupervised TR frame-

works: an existing query-importance-weighted AdaRank, and second, a new weighted

version of a state-of-the-art L2R algorithm, LambdaMART. A second contribution is an

investigation of di↵erent query representation techniques. Past work has considered ag-

gregating document features to generate query-level representation. We systematically

explore these approaches, and also introduce a new approach, which is based on the

Jensen-Shannon Divergence between features and a base ranker.

With respect to previous work on unsupervised TR techniques, we explore a much wider

range of environments. We make use of two datasets from LETOR4.0, two datasets

from the Yahoo! Learning to Rank Challenge, and also set up a transfer environment

between the MSLR-Web10K dataset and the LETOR 4.0 dataset. We excluded some

other transfer cases that were used to demonstrate the dataset shift problems in Chapter

3 due to the small sample size of some collections. Here we created a series of transfer

settings that could be as close to reality as possible. More advanced L2R algorithms are

studied in this chapter, and we also introduce a visualization method to compare the

e↵ectiveness of di↵erent models across di↵erent datasets.

The results show that the e↵ectiveness of di↵erent weighting algorithms, including those

that have seen shown to be e↵ective on a particular test set, are inconsistent on other

datasets. Our experiments suggest that Kullback-Leibler divergence-based density es-

timation methods are more e↵ective than classification-based methods. Moreover, ag-

gregating document-level weights appears to outperform direct estimation with a query

representation method. We apply a statistical test (Nemenyi) comparing algorithms

across multiple datasets and unlike past work, find no significant improvements from

instance weighting techniques over the non-weighted models, in contrast to the findings

resulting from the more narrow evaluation carried out in past work.

As it was demonstrated in the previous chapter, since L2R collections are represented

by document–query vectors of features, when attempting TR from one collection to

another, one can examine changes in the make-up of queries, as well as variations in the

documents composing the collections. Changes in documents will a↵ect the distribution
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of features across the collection, as well as the actual features used. Changes in query

sets can happen in two ways: query distribution and query type. For query distribution,

some queries may appear more often in one dataset than another. For query type, e.g.

ad-hoc and navigational queries, some types of queries might appear more often than

others. In e↵ect, the definition of relevance has changed across the collections, which

impacts on the ranker. Past work in this area [19] only considered the distribution of

queries across collections.

4.2 Related Work

Unsupervised TR is a more di�cult (and argubly more useful) problem than supervised

TR due to the eschewal of the need for supervision information from the target collection.

Most of the existing work on unsupervised TR is based on instance weighting.

In Gao et al. [18], the authors generated instance weights at di↵erent levels for L2R

datasets. Although not pointed out in the paper, their methods are similar to classification-

based density-ratio estimation. The authors built a classification hyperplane between

the source and target documents and used a sigmoid function of the distance of a target

document to the hyperplane at the document-level to weight the document instances.

Since documents are independent of one another, the document-pair weights are the

multiplication of the weights for the pair of documents. The query weights were gener-

ated by averaging the weights of document-pairs in the query. The authors tested their

instance weights with RankSVM and RankNet (two pair-wise L2R algorithms1) on the

six topic sets in LETOR3.0, and showed some significant improvements. Cai et al. [109]

further improved the algorithm by classifying the queries directly. In our experiments,

the algorithm was also implemented, but instead of using the probability transferred

from the distance, we employed a logistic regression classifier which can output the

probability directly.

An importance weighted AdaRank approach (wAdaRank) was proposed by Ren et al.

[72]. The authors used the Kullback-Leibler Importance Estimation Procedure (KLIEP)

to estimate document weights, which were then incorporated into the AdaRank algo-

rithm. However, the algorithm was not tested under an unsupervised TR scenario.

1
AdaRank and LambdaMART are more e↵ective [36].
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Instead, the authors tested the algorithm in a supervised learning environment. The

density-ratio was estimated according to the test set, and evaluated on the test set as

well.

There are other approaches to unsupervised TR. For example, instead of learning with

data from the source collection, Goswami et al. [23] tried to predict relative relevance

judgement for document pairs in the target collection and then use the judgements to

train a ranking function for the target collection.

4.3 Instance Weighting

Instance weighting aims to address the problem of covariate shift, as described in the

previous chapter, by weighting source datapoints using the ratio of their density in the

target and source distributions: w(x) = pta(x)
pso(x) . Assuming conditional distributions are

the same across the source and target datasets (i.e. pso(y|x) = pta(y|x)), then training

on the weighted source data will minimize the expected loss (denoted l(x, y, ✓)) under

the target distribution:

f⇤ = argmin
✓

1

N so

X

(xi,yi)⇠pso

w(xi)l(xi, yi, ✓)

⇡ argmin
✓

Z
pso(x, y)w(x)l(x, y, ✓) dxdy

= argmin
✓

Z
pso(x, y)

pta(x)

pso(x)

pta(y|x)
pso(y|x) l(x, y, ✓) dxdy

= argmin
✓

Z
pta(x, y)l(x, y, ✓) dxdy

= argmin
✓

Epta(x,y)[l(x, y, ✓)] (4.1)

Many techniques have been developed to e�ciently estimate the density-ratio w(x) at

the source data points. We examine two popular techniques, namely the Kullbak-Leibler

Importance Estimation Procedure (KLIEP) [63] and a classification-based approach. In

comparison with the density ratio estimation method in Huang et al. [110], KLIEP is

considered state-of-the-art. The KLIEP technique aims to learn a function that mini-

mizes the divergence between the weighted source collection and the target collection:

ŵ(x) = argmin
w(x)

KL(w(x)pso(x)||pta(x)) (4.2)
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As suggested by Sugiyama et al. [64], the density ratio can also be estimated using

a classification-based approach. The technique involves combining a sample of data

points from the source and target domains, and then training a probabilistic classifier

to classify the domain of each instance. Having trained such a model, the density ratio

can be estimated as:

ŵ(x) =
N so

N ta

p(c = target|x)
1� p(c = target|x) (4.3)

where N so and N ta are the number of instances in the source and target collection

respectively, and P (c = target|x) is the classifier’s estimate of the class probability. For

example, a logistic regression classifier (LR) can be employed to generate a probabilistic

model, p(c|x, ✓⇤).

4.3.1 Instance Weighting for TR

Instance weighting has been used previously for TR. The type of rank learning algorithm

(pointwise, pairwise, listwise) determines how instance weighting is estimated. Instance

weighting for point-wise algorithms is similar to instance weighting for conventional

transfer learning, with density-ratio estimation done at the document level (or individual

feature vectors). For pair-wise algorithms, weighting can be done at the document-pair

level (on pairs of feature vectors). For list-wise algorithms, it is natural to calculate

instance weights at the query level (on sets of feature vectors).

Query-level weighting can be performed by either (i) first estimating document-level

weights and then aggregating the weights into query-level values, or (ii) computing a

query level representation (from the set of document feature vectors for each query) and

then performing density-ratio estimation directly in that space.
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Estimation of the density ratio of the documents is straightforward, while it is more

di�cult to estimate the density ratio for queries, since queries are lists of documents

instead of single data points. Representing queries in a feature vector space is possible,

but there is a danger that the representation could lose the structural information in

queries. Similar ideas have been applied for query-dependent learning algorithms, where

the di↵erence of queries has been considered for ranking [20, 111]. We explore two

approaches to representing queries, as shown in Figure 4.3. The two methods have been

successfully used by query-clustering-based L2R algorithms.

4.3.1.1 Document Feature Aggregation

A straightforward method to represent queries is to construct a vector space by aggre-

gating features of the documents retrieved for a query. For example, the following is the

representation for the jth query in a collection:

~qj =<
1

n

X

i

xj,i,1, · · · ,
1

n

X

i

xj,i,m > (4.4)

where n is the number of documents in the retrieved list, m is the number of features

and xj,i,k denotes the value of the kth feature in the ith document for query j.

4.3.1.2 Feature Divergence

A simple term representation of queries is unlikely to be e↵ective as term overlap is

likely to be low. Equally, comparing document-query features alone in each of the

collections is unlikely to be e↵ective, as the value of document-query features is likely

to be di↵erent between the two collections. We therefore apply a weighting method,

inspired by an approach proposed by Peng et al. [111], who used a baseline ranker to act

as a normalizing pivot against which document-query features in the collections were

measured and compared.
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Peng et al. [111] suggested that the e↵ect of a feature on a query can be represented by its

divergence from a baseline ranker, such as BM25. The divergence represents how much

a document ranking has been changed by a particular feature. This provides a way to

normalize measurement of features across collections. Both Kullback-Leibler [112] and

Jensen-Shannon (JS) Divergence [113] were used.2 Since it is symmetric, we use the

JS Divergence to calculate a query-level feature vector ~JS(qj) = hJSk(qj), . . . JSn(qj)i

using the divergence of the feature distribution and the distribution of BM25 in that

query as follows:

JSk(qj) = JS(xj,·,k||xj,·,b) =
1

2
(KL(xj,·,k||xj,·,b) +KL(xj,·,b||xj,·,k)) (4.5)

where xj,·,b is the vector of values for the baseline feature (assumed to be BM25) for

query j, and xj,·,k denotes the vector of values for the kth feature. KL(.) denotes the

Kullback-Leibler Divergence [112] between two distributions, calculated as:

KL(xj,·,k||xj,·,k0) =
NX

i=1

xj,i,k log2
xj,i,k

xj,i,k0
(4.6)

Here, xj,i,k is the document score of di assigned by the kth feature and N is the number

of documents in a ranked list. The JS Divergence method for query representation is

illustrated in Figure 4.4.

This query representation is similar as that used by Peng et al. [111], which to the best of

our knowledge has never been applied to TR before. Notice that Equations 4.5 and 4.6

are usually applied to probability distributions, but in Peng et al. [111] un-normalised

feature vector values were used in the equations. Hence in this work, we followed their

implementation.

4.4 Unsupervised TR Frameworks

We describe two TR frameworks that can incorporate the query weights into training:

an existing framework modified from AdaRank for importance weighting [72]; and a new

weighted LambdaMART approach that we developed.

2
Peng et al. used divergence of features to represent queries for clustering.
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4.4.1 Weighted AdaRank (wAdaRank)

We integrate query weights into AdaRank, a listwise L2R model [51].3 AdaRank learns

an ensemble model F , which is a linear combination of weak rankers:

F (x;�,↵) =
taX

i=1

�ihi(x;↵i) (4.7)

where and hi(x;↵i) is the weak learner added in the ith iteration (with parameter ↵i)

and �i is the corresponding weight.

AdaRank learns the ensemble using boosting. At each iteration a new weak ranker

is added to the ensemble that provides maximum e↵ectiveness improvement on the

weighted training set. Weights are assigned at the query level based on the current

performance of the ensemble.

Thus adding density-ratio weights to AdaRank is straightforward and involves modifying

the initial weighting of queries in the AdaRank algorithm. Following query importance

weighted AdaRank (wAdaRank) [72], density-ratio weights are assigned to queries at

the initial stage. When updating query weighting at the end of each iteration, the query

distribution will be determined by density-ratio weights together with their performance

weights.

3
Our weighting strategy can be used for any listwise L2R algorithm.
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4.4.2 Weighted LambdaMART (w�MART)

LambdaMART [53] is an L2R algorithm which uses gradient-boosted regression trees to

optimize a listwise objective function, which depends on the chosen evaluation metric.

Thus, similar to AdaRank, LambdaMART also relies on a boosting-based technique

that outputs an ensemble of weak learners as in Equation (4.7), except that the weak

learners h(x;↵i) are regression trees rather than single feature-based predictors as was

the case for AdaRank. The reason for introducing regression trees is that they have

proven e↵ective for training ranking models. At each iteration, LambdaMART fits a

new regression tree to the gradient of the objective function of the current ensemble.

Since the Lambda gradient provides a score for each query and document-pair (denoted

�ij), which estimates the ranking performance improvement that would result from

increasing the score of the document for the query, in order to modify LambdaMART to

handle query-level weights we need only modify the tree learning part of the algorithm

to make use of weighted examples.

For a regression tree, the prediction at each leaf of the tree is simply the average value

of the training examples assigned to the leaf. (The average value is chosen because

it minimizes the squared error of the prediction at the node). Trees are grown by

recursively splitting the data present at each leaf node. For each leaf, the feature k and

split-point s is chosen that results in the minimum sum of squared errors across the

resulting branches:

(k, s)⇤ = argmin
k,s

X

i:xiks

(�i � �̄L)
2 +

X

i:xik>s

(�i � �̄R)
2 (4.8)

Here �̄L and �̄R denote the average values on the left and right of the split-point s. If

weights are associated with data points, then we can learn a weighted regression tree by

using the weighted squared error as the objective:

(k, s)⇤ = argmin
k,s

X

i:xiks

wi(�i � �̄L)
2 +

X

i:xik>s

wi(�i � �̄R)
2 (4.9)

Where �̄L = 1

VL

P
i:xikswi�i now denotes the weighted average on the left side of the

split, (since that is the prediction that minimizes the weighted squared error for the

data on the left), and VL =
P

i:xikswi denotes the sum of the weights on the left of
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the split. (�̄R and VR are defined analogously.) The optimization objective can then be

rewritten and simplified to:

(k, s)⇤ = argmin
k,s

P
i:xikswi(�2

i � 2�i�̄L + �̄2

L) (4.10)

+
P

i:xik>swi(�2

i � 2�i�̄R + �̄2

R)

= argmin
k,s

P
iwi�2

i +
P

i:xiks(�2wi�i�̄L + wi�̄2

L)

+
P

i:xik>s(�2wi�i�̄R + wi�̄2

R)

= argmin
k,s

P
iwi�2

i � 2�̄L
P

i:xiks(wi�i) +
P

i:xikswi�̄2

L

� 2�̄L
P

i:xik>s(wi�i) +
P

i:xik>swi�̄2

R

= argmin
k,s

P
iwi�2

i � 2�̄2

LVL + V 2

L �̄
2

L

� 2�̄2

RVR + V 2

R�̄
2

R

= argmin
k,s

P
iwi�2

i � (VL�̄2

L + VR�̄2

R)

And since the first term
P

iwi�2

i is constant (independent of the chosen split-point),

it can be dropped from the equation. For speed, we calculate running weighted sums

SL =
P

i:xijswi�i and SR =
P

i:xij>swi�i and maximise the following objective:

(k, s)⇤ = argmax
k,s

(SL)2

VL
+

(SL)2

VR
(4.11)

Thus the di↵erence between the w�MART and normal LambdaMART is that the regres-

sion tree is built using instance weights, as shown in Algorithm 14. Note that query-level

weights are passed down to the document-level (i.e., all the documents in a query will

be assigned the query-level weight).

4.5 Experiments

Several experiments were conducted to analyze the e↵ectiveness of di↵erent TR tech-

niques.

4
The weights are also used when updating the tree outputs with the Newton step.
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Algorithm 1: Pseudo-code for growing the weighted regression tree for the w�MART
algorithm

Input: {xi,�i, wi}Ni=1
, document feature vectors, corresponding �-gradient values,

and instance weights for instances
1 leafCount = 1;
2 WeightedTree({xi,�i, wi}Ni=1

)
3 if leafCount � 10 then

4 return leaf with prediction: �̄ =
P

i wi�iP
i wi

;

5 else
/* find best feature and split point */

6 bestgain = 0;
7 k = �1; s = �1;
8 for feature 2 {1, . . . ,m} do
9 sort({xi}Ni=1

, feature) SL = 0; SR =
P

iwi�i;
10 VL = 0; VR =

P
iwi;

11 previous = �1;
12 for split 2 possible splits(X, feature) do
13 �S =

P
i:previous<xi,featuresplitwi�i;

14 �V =
P

i:previous<xi,featuresplitwi;

15 SL = SL +�S; SR = SR ��S;
16 VL = VL +�V ; VR = VR ��V ;
17 gain = (SL)2/VL + (SR)2/VR;
18 if gain > bestgain then
19 bestgain = gain;
20 k = feature; s = split;

21 end
22 previous = split;

23 end

24 end
25 if bestgain > 0 then

/* recurse to child nodes */

26 leafCount = leafCount+ 1;
27 left =WeightedTree({xi,�i, wi}i:xiks);
28 right =WeightedTree({xi,�i, wi}i:xik>s);

29 else

30 return leaf with prediction: �̄ =
P

i wi�iP
i wi

;

31 end

32 end

4.5.1 Collections

To validate the TR techniques, three existing most widely-used L2R collections were

used: the LETOR 4.0 dataset, the Microsoft Learning to Rank datasets (MSLR5), and

5
We used the subset of MSLR: MSLR-10K. To keep denotation simple, we refer to the subset as

MSLR.
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Table 4.1: Transfer settings for testing di↵erent algorithms

Yahoo! Learning to Rank
Collection Queries Features Collection Queries Features

Source Set 1 19,944 415 Set 2 6330 415
Target Training Set 2 5064 415 Set 1 15955 415
Target Testing Set 2 1266 415 Set 1 3989 415

LETOR 4.0
Collection Queries Features Collection Queries Features

Source MQ2007 1,700 46 MQ2008 800 46
Target Training MQ2008 640 46 MQ2007 1440 46
Target Testing MQ2008 160 46 MQ2007 360 46

LETOR 4.0 and MSLR
Collection Queries Features Collection Queries Features

Source LETOR 4.0 2,340 45 MSLR-10K 10k 45
Target Training MSLR-10K 8k 45 LETOR 4.0 1,872 45
Target Testing MSLR-10K 2k 45 LETOR 4.0 468 45

the Yahoo! Learning to Rank (Yahoo!L2R) datasets, see Table 2.1. Each collection

was set up to contain a pair of datasets to simulate transfer from source to target. In

LETOR 4.0 we use the same document collection, but di↵erent query sets so we can

examine how di↵erent weighting methods perform when the source and target collection

are drawn from the same distribution.

The Yahoo!L2R collection is composed of two datasets, which were created to test TR.

The documents and queries of Set 1 are pooled from a non-English search engine, and

the size of query set is smaller than that of Set 2. The two datasets share 415 features

in common, and we used the 415 features in our experiment. As Yahoo has anonymised

the features, we could not provide any details for those features.

We also examined TR using the MSLR dataset and the LETOR 4.0 dataset. The two

datasets share relatively few commonalities: the document and query sets are di↵erent,

the pooling strategies are di↵erent, the relevance judgments are di↵erent, and even the

feature normalizations are di↵erent. However, these two datasets share 45 features (fea-

ture 1 - feature 45 of LETOR 4.0), which gave us an opportunity to study unsupervised

TR in a more realistic scenario. When transferring between LETOR 4.0 and MSLR, we

merged the two query sets in LETOR 4.0 to make a larger collection.

In each group, we select source and target collections, and then randomly split the

target collection into five folds for cross-validation evaluation. In each experiment, four

folds were taken as training data, and we removed the labels of the training set to
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simulate an unsupervised TR experiment. On both test collections, we assigned one of

the collections as the source and the other as the target The TR algorithms were tested

in both “directions”, first with an initial assignment and then with the assignments

reversed. The transfer settings are shown in Table 4.1.

Note, we did not include the LETOR3.0 test collections in this experiment (although it

has been used in past work) as the number of queries is too small for accurate density-

ratio estimation.

4.5.2 Measures

The e↵ectiveness measure and training objective function used was Normalized Dis-

counted Cumulative Gain (NDCG) [106] with the standard rank-plus-one discount func-

tion and exponential gain [42]: the details of NDCG can be referred to in section 2.2.3

in Chapter 2. We measure NDCG at rank cuto↵ 10. We conducted two-tailed t-tests

between results with ↵ (significance level) set to 0.05 and the Friedman test.

4.5.3 Setup

The implementation of the algorithms used the open source L2R library Ranklib2.1.6 For

all AdaRank-based algorithms, we set the iteration number to 500. For all LambdaMART-

based algorithms, we trained 1,000 trees with ten leaves with jForests-0.5 library [114]7.

The learning rate was set at 0.1. Sugiyama-Sato’s KLIEP code8 was used to estimate

density-ratio at the document or query level.

4.5.4 Comparison Models

Di↵erent models were investigated to compare di↵erent aspects of instance weighting

techniques for unsupervised TR. Two TR frameworks, wAdaRank and w�MART, were

used in the experiments. The following baselines are used as comparison points:

6http://sourceforge.net/p/lemur/wiki/RankLib/
7https://github.com/yasserg/jforests
8http://www.ms.k.u-tokyo.ac.jp/software.html

http://sourceforge.net/p/lemur/wiki/RankLib/
https://github.com/yasserg/jforests
http://www.ms.k.u-tokyo.ac.jp/software.html
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• BM25 was used as a baseline to examine whether a TR algorithm can exceed the

performance of a static ranker. Notice that we used the BM25 feature provided

by the collections as we do not have access to the original corpus.

• Ada.source was the model trained by AdaRank with all the data from the source

collection. This is a simple TR algorithm with the source model applied directly

to the target collection with no adjustment.

• �MART.source was the model trained by LambdaMART with all the data from

the source collection. Again the source model is applied directly to the target

dataset with no adjustment.

• Ada.target was the model trained by AdaRank with data from the target collec-

tion; the results were measured using 5-Fold cross validation. One can view the

performance of the target model as an upper bound to which the designer of the

TR algorithms aspires to achieve.

• �MART.target was the model trained by LambdaMART with data from the

target collection, the results were measured from 5-Fold cross validation. Again,

this model trained on the target should provide an upper bound on performance.

The following instance weighting algorithms were investigated in the experiments:

• kliep.doc: density-ratio estimation at document level using KLIEP, aggregating

document weights of queries into query-level weights. kliep.doc with wAdaRank

(wAdaRank-kliep.doc) was proposed in Ren et al. [72].

• kliep.avg: density-ratio estimation at query level using KLIEP, with the feature

aggregating representation method.

• kliep.js: density-ratio estimation at query level using KLIEP, with a JS divergence

based representation.

• class.doc: density-ratio estimation at document level using a classification-based

method, aggregating document weights of queries into query level weights. This

approach was most close to the weighting strategy proposed by Gao et al. [18].

• class.avg: density-ratio estimation at the query level using a classification based

method, with a feature aggregating representation method.

• class.js: density-ratio estimation at query level using a classification based method,

with a JS divergence-based representation.
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Table 4.2: E↵ectiveness (NDCG@10 score) on di↵erent transfer settings with
wAdaRank. Bold text indicates the best scores of each column, " denotes the fig-
ure is significantly better than Ada.source, # denotes the figure is significantly worse

than Ada.source. p < 0.05

MQ2007-
MQ2008

MQ2008-
MQ2007

Yahoo.Set 1-
Yahoo.Set 2

Yahoo.Set 2-
Yahoo.Set 1

MSLR-
LETOR 4.0

LETOR 4.0-
MSLR

BM25 0.335 0.249 0.540 0.507 0.276 0.180
Ada.source 0.495 0.353 0.658 0.701 0.367 0.251
kliep.doc 0.329 # 0.431 " 0.708 " 0.704 " 0.286 # 0.196 #
kliep.avg 0.379 # 0.383 " 0.684 " 0.695 # 0.370 " 0.281 "
kliep.js 0.493 0.384 " 0.694 " 0.705 " 0.402 " 0.274 "
class.doc 0.497 0.424 " 0.690 " 0.688 # 0.362 # 0.303 "
class.avg 0.501 0.265 # 0.566 # 0.605 # 0.362 # 0.140 #
class.js 0.363 # 0.383 " 0.561 0.667 0.370 " 0.281 "
Ada.target 0.494 0.417 " 0.698 0.710 " 0.447 " 0.304 "

Table 4.3: E↵ectiveness (NDCG@10 score) on di↵erent transfer settings with
w�MART. Bold text indicates the best scores of each column, " denotes the figure
is significantly better than �MART.source, # denotes the figure is significantly worse

than �MART.source. p < 0.05

MQ2007-
MQ2008

MQ2008-
MQ2007

Yahoo.Set 1-
Yahoo.Set 2

Yahoo.Set 2-
Yahoo.Set 1

MSLR-
LETOR 4.0

LETOR 4.0-
MSLR

BM25 0.335 0.249 0.540 0.507 0.276 0.180
�MART.source 0.505 0.407 0.718 0.702 0.236 0.197
kliep.doc 0.499 # 0.412 " 0.712 # 0.703 0.273 " 0.200 "
kliep.avg 0.498 # 0.384 # 0.705 # 0.697 0.271 " 0.180 #
kliep.js 0.473 # 0.395 0.710 # 0.700 # 0.295 " 0.222 "
class.doc 0.496 # 0.413 " 0.710 # 0.697 # 0.289 " 0.202 "
class.avg 0.495 # 0.408 0.693 # 0.690 # 0.289 " 0.213 "
class.js 0.466 # 0.392 # 0.698 # 0.686 # 0.273 " 0.226 "
�MART.target 0.501 0.455 " 0.763 " 0.742 " 0.463 " 0.429 "

4.6 Result Analysis

The e↵ectiveness of the instance weighting algorithms with wAdaRank and w�MART

are now discussed.

4.6.1 Comparing AdaRank and LambdaMART

LambdaMART was found to be more e↵ective than AdaRank on all the six datasets (as

shown in the last lines of Tables 4.2 and 4.3). However, when we use models trained with

data from a source collection and apply them directly to a target collection (the source

models, i.e. Ada.source and �MART.source ), the e↵ectiveness varies. We represent the

e↵ectiveness of AdaRank and LambdaMART models on di↵erent datasets and examine

how the trained model can best be generalized to another collection.
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The document collection is common across MQ2007 and MQ2008. Since MQ2007 con-

tains more queries, both AdaRank and LambdaMART trained on MQ2007 were more

e↵ective than the models trained on MQ2008 when testing on both collections.

The di↵erence between Set 1 and Set 2 in Yahoo!L2R are bigger than the di↵erence

between the two datasets in LETOR 4.0. When transferring from Set 1 to Set 2, both

Ada.source and �MART.source saw a 6% performance decrease compared with target

models (Ada.target and �MART.target). However, in the opposite direction, Ada.source

is 1% worse than Ada.target while LambdaMART su↵ers larger performance decrease

(6%). However, source modes trained with LambdaMART are still better than those

trained with AdaRank.

In the last group of transfer settings, where the dissimilarity is also the largest, the

decrease of model performance is even greater. Compared with Ada.target, Ada.source

saw a 17.9% and 17.4% decrease in system e↵ectiveness when transferring from MSLR

to LETOR 4.0 and from LETOR 4.0 to MSLR respectively. LambdaMART su↵ers

from an even greater drop; the �MART.sources are 49% and 54.1% worse than the

�MART.targets in the two transferring scenarios. During the training, LambdaMART

looks into the feature space to find the best splits to minimize the loss function, while

AdaRank is just looking to find the best features that gain the best performance on

the query sets. Thus, LambdaMART is more sensitive to the distribution of the feature

space. In the last group of collections, the feature spaces of LETOR 4.0 and MSLR

are very di↵erent from one another. Moreover, the features in LETOR 4.0 have been

normalized while MSLR datasets kept the original feature values.

4.6.2 Transferring with Di↵erent Algorithms

We now discuss how the performance of the weighted wAdaRank and w�MART per-

form di↵erently even with the same weighting strategies, and on the same datasets.

As shown in the third columns of Tables 4.2 and 4.3, when transferring from Set 1

to Set 2 of Yahoo!L2R dataset. The kliep.doc, kliep.avg, kliep.js, and class.doc meth-

ods are significantly better than the Ada.source when they are used in the wAdaRank

framework. However, with the same set of weighting algorithms, w�MART decreases

the e↵ectiveness of �MART.source. Similarly, all the w�MART algorithms outperform

the LambdaMART without weights (�MART.source), when transferring from MSLR to
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LETOR 4.0, while some of the wAdaRank algorithms reduce the performance under the

same environment, as shown in the last columns of Table 4.2 and 4.3.

The instance-weighting strategies appear more e↵ective with wAdaRank than with

w�MART. Among all the six datasets, in 17 out of 36 cases, wAdaRank models are

significantly better than Ada.source, and in 11 cases, the algorithms are significantly

worse than Ada.source, while with w�MART, there are only 12 of 36 wining cases, with

19 losing cases.

4.6.3 Transferring Across Di↵erent Datasets

The e↵ectiveness of di↵erent instance-weighting algorithms vary under two TR frame-

works and also under di↵erent collections. We analyze the di↵erent weighting algorithms

in di↵erent datasets in this section.

4.6.3.1 LETOR 4.0

As we mentioned, MQ2007 and MQ2008 are two samples from the same distribution,

while MQ2007 has a larger query set size than MQ2008. Transferring from MQ2007

to MQ2008 appears not to work at all with all weighting methods under either TR

framework. However, when transferring is executed in the opposite direction, some

improvements occur with di↵erent weighting approaches. Most of the figures from

the third column of Table 4.2 are significantly better than Ada.source, except the

wAdaRank.class.avg. We speculate that since MQ2007 has a larger query set, this

tends to be less biased than MQ2008, and since MQ2007 and MQ2008 are two samples

from the same distribution, estimating the density-ratio with respect to a larger sample

would improve accuracy. Moreover, since the size of MQ2008 is small, the test set would

contain a small number of instances for testing, which could cause the variation in test

results.

Yahoo!L2R The two ranking frameworks show di↵erences. KLIEP-based weighting

strategies appear to work with the wAdaRank framework on the Yahoo!L2R datasets.

However, when the technique is combined with w�MART, it shows no improvements

in both transfer directions. Close investigation shows that there were many missing
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feature values in the Yahoo!L2R datasets, which likely increases the di�culty (lowers

the accuracy) of estimating the density-ratio at both the document and query levels.

MSLR-LETOR 4.0 Transferring between MSLR and LETOR 4.0 is the most chal-

lenging task among all the transferring settings, since the datasets are dissimilar. Al-

though the source models su↵er from a substantial e↵ectiveness drop compared with

target models, many of the examined weighting algorithms appear to work. Consis-

tent improvements are observed from kliep.js and class.js with both frameworks. When

transferring from MSLR to LETOR 4.0, the wAdaRank.kliep.js algorithm in Table 4.2

gains 9.5% e↵ectiveness compared with the Ada.source. When the same weighting ap-

proach was used in w�MART, a 25% performance boost was achieved compared with

�MART.source under the same transferring setting. Transferring in the other direc-

tion, from LETOR 4.0 to MSLR, also shows improvements, from the weighting al-

gorithms. For example, wAdaRank.class.doc outperforms Ada.source by 5.2%, while

w�MART.class.js increased e↵ectiveness by 25% from �MART.source.

4.6.4 Does Query-Level Instance Weighting Work?

A challenging question for unsupervised TR is how to measure the performance of a

transferred ranking function. In reality, this is not possible as there are no relevance

labels in the target collection. Instead, we want to develop an unsupervised algorithm

that performs robustly well across di↵erent scenarios. As a result, we compare the

performance of di↵erent unsupervised TR algorithms across di↵erent transfer settings.

Friedman’s rank-based test [105] and its post test has the capacity to measure the

di↵erences in the ranks of performances of systems, which has been previously used by

comparing classification algorithms across di↵erent test collections [115]. In this chapter,

we use the similar method to compare the performance of di↵erent unsupervised TR

algorithm.

None of the six weighting algorithms consistently improved e↵ectiveness over the source

models in all transferring scenarios. It would appear that in some scenarios, source

models can be easily transferred to gain better performances, for example, transferring

from MSLR to LETOR 4.0. However, there are also cases, for a particular transferring

direction, where none of the algorithms work at all.
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(b) Compare all LambdaMART-based models

Figure 4.5: Plots of average rank across the 6 test environments for the 6 di↵erent
Transfer Learning techniques and the “source” baseline system (where no TR was
applied), the critical distance (CD) for the Nemenyi test (at the 5% confidence level).

The lower the rank the better performance of the approach.

It is very di�cult to distinguish the better algorithms from the poorer ones based on

inspection of the results tables. Thus we visualize the results in Figure 4.5 by computing

the average rank9 for each approach across all datasets (and all folds). The Nemenyi

test is used to determine whether there is significant di↵erence between the average

9
The average rank of a system across di↵erent test datasets is calculated as rj =

1

N

P
i r

j
i , where N

is the number of datasets, and rji is the rank of jth model in ith dataset.
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rank of any two systems. It can be performed after first checking with the Friedman

test (a non-parametric alternative to repeated measures ANOVA) that the systems are

not independent of rank (across the datasets). The similar method has been used to

compare classification algorithms across multiple datasets [115].

The di↵erences between models are compared against the critical distance (CD)10; two

models are not significantly di↵erent if the average ranks r of two models are within the

CD. We examine CD on the average rank graph to determine whether one model is more

e↵ective than another. The results of the tests are displayed in Figure 4.5, where the

y-axis shows the average ranks of the models. The black dots show the average ranks

of particular models, and the blue lines represent the CD. If a model’s mean rank lies

outside the CD for another model, then they are significantly di↵erent.

The tests on AdaRank (Figure 4.5(a)) show that some instance-weighting methods may

be more e↵ective than the non-weighted AdaRank. However, the di↵erences are not sig-

nificant. The document-level classification-based algorithm (class.doc) and the KLIEP

method with JS query representation method (kliep.js) show some improvements over

Ada.source (AdaRank-source in the figure). KLIEP-based weighting methods are bet-

ter than classification based algorithms, as most KLIEP based algorithms are ranked

above or around the Ada.source models. Two algorithms, class.js and class.avg, are

most likely to be useless for wAdaRank since they are significantly worse than the non-

weighted model.

The e↵ectiveness of the weighting approaches are di↵erent in LambdaMART as com-

pared with AdaRank. Most of the weighting methods are less e↵ective than the �MART.source

model, except the document-level KLEIP method (kliep.doc). The query-representation-

based methods make things worse, shown by lower ranks compared with the �MART.source

model, or even the other two document-level methods.

Query representation methods are an attempt to represent queries at a high level. If

the method does not properly represent the properties of queries, for example, averaging

document features ignores the ranking preferences of documents in the query, then the

density of queries will be estimated incorrectly. Instead, density-ratio estimation at the

10
When calculating the CD, 5 folds of all the six datasets were used, results of individual folds would

likely show some correlation (due to the fact that the independently drawn data for each fold comes

from the same distribution), but that any such correlation would inflate the false discovery rate, which

is not an issue here since we are not claiming significant improvements.
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document level estimates the distributions in the feature input space, which is also the

direct inputs to an algorithm, which means that the density-ratio density estimation is

then likely more accurate and meaningful. But then how best to use the document-level

weights for ranking is another issue.

4.7 Conclusions

This chapter compared a number of query-level weighting algorithms for unsupervised

TR. Query-level weights can be generated in two ways, by aggregating document-level

weights, or by estimating query-level weights directly based on a query representation

method. In this chapter, a set of query-level methods, with di↵erent levels, di↵erent

query representations, and also di↵erent density estimation approaches were tested with

two widely-used unsupervised TR frameworks, namely weighted versions of AdaRank

and LambdaMART. The experiments were conducted on six large-scale unsupervised

TR scenarios, which, to our best knowledge, has not been attempted before.

To answer the research question of whether query-level instance weighting is e↵ective for

solving unsupervised TR problems, we compare the e↵ectiveness of di↵erent weighting

methods as well as unsupervised TR algorithms. The results show that the generalization

ability of di↵erent L2R algorithms are di↵erent, and that this strongly depends on the

similarity of the datasets. AdaRank appears to have better generalization ability than

LambdaMART, especially when the source and target collection are less similar. The

e↵ectiveness of instance weighting algorithms is also di↵erent when they are applied to

di↵erent algorithms.

Experiments across di↵erent datasets showed that there are no consistent improvements

over the non-weighted models for any of the weighting methods, which answered the

research question of how do di↵erences in test collections a↵ect the performance consis-

tency of unsupervised TR algorithms. Furthermore, the performance of di↵erent algo-

rithms, including those tested in past work, varies substantially under di↵erent trans-

ferring environments. The visualization method of average rank provides a solution to

the research question of how to evaluate unsupervised TR algorithms across di↵erent

test collections. The Nemenyi test, comparing di↵erent models across all the testing

datasets, shows that none of the weighting algorithms are significantly better than the
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original non-weighted models. Nevertheless, we have observed the improvements of some

weighting algorithms with di↵erent unsupervised TR frameworks, which suggests there

is some potential for these algorithms.

Di↵erent query-level weighting algorithms were compared to determine which is the best

way to conduct query-level instance weighting for unsupervised TR. Query-level weight-

ing methods work better with AdaRank than LambdaMART, since LambdaMART is a

lower bias (higher variance) learner, which is more sensitive to changes in the feature

space. As it turns out, aggregating document weights to generate query-level weights

works better than estimating weights based on a query representation. However, queries

are represented as a ranked set of documents, so generating representations for queries

can be complicated, and without a qualified query representation method there is a risk

that the density estimation could be meaningless.

The findings of this chapter illustrated that it is hard to capture the concept of “query

distribution” from a mathematical viewpoint, which makes it even harder to model the

distribution change at the query level. However, the ranking models are optimized and

evaluated at the query level, and minimizing the gap between the source and target

collection distribution is a necessary step before conducting any ranking transfer, which

inspired our further study in self-labeling methods for TR.



Chapter 5

Self-Labeling Methods for

Unsupervised TR

As has been shown in the previous chapter, query-level instance weighting for unsu-

pervised TR is di�cult due to the di�culty of measuring the data distribution for

queries in L2R datasets. Alternatively, one can use knowledge in the source collec-

tion to estimate the relevance labels for queries in the target collection to enable better

knowledge transfer. We propose three self-labeling methods for unsupervised TR: an ex-

pectation maximization-based method (RankPairwiseEM) for estimating pairwise pref-

erences across documents, a hard assignment expectation maximization-based algorithm

(RankHardLabelEM) which directly assigns imputed relevance labels to documents, and

a self-learning algorithm (RankSelfTrain) which gradually increases the number of im-

puted labels. We compare the three algorithms on three large public test collections

using LambdaMART as the base ranker and find that (i) all the proposed algorithms

show improvements over the original source ranker in di↵erent transferring scenarios; (ii)

RankPairwiseEM and RankSelfTrain significantly outperform the source rankers across

all environments, and are not significantly worse than the model directly trained on the

target collection; and (iii) self-labeling methods are significantly better than previous

instance weighting-based solutions on a variety of collections.

97
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5.1 Introduction

In the last chapter, we investigated the use of instance weighting techniques to tackle

unsupervised TR problems: weights are assigned to training instances in the source

collection to change the data distribution to be more like the distribution in the target.

The objective of L2R algorithms is to maximize the ranking e↵ectiveness of a ranking

function for queries in a collection. As a result, instance weighting at the query level is a

more natural and e↵ective approach. However, queries are composed by a set of query-

document pairs (represented by feature vectors ), which makes it di�cult to measure

the density ratios for instance weighting. We demonstrated that the e↵ectiveness of

such algorithms varies substantially across di↵erent transfer scenarios in the previous

chapter.

An alternative TR approach is to directly impute relevance labels for the query document

pairs in a target collection and then use these imputed labels to train a rank learner

on the target dataset. This self-labeled [116] solution is related to self-training and co-

training methods, which have also been applied in transfer learning [117]. By gradually

imputing new labels for unlabeled instances in the target collection, the algorithm can

bypass the di�cult problem of density ratio estimation for the L2R collections.

In this chapter, we propose three di↵erent self-labeling techniques: an expectation max-

imization (EM)-based TR algorithm (RankPairwiseEM), a “hard EM”-inspired TR al-

gorithm (RankHardLabelEM), and a self-training for TR algorithm (RankSelfTrain).

The RankPairwiseEM algorithm looks to improve the ranking function by iteratively

estimating pairwise preference probabilities between documents in the unlabeled target

data and then uses these probability estimates as weights in the learning algorithm. The

other two algorithms, aim to directly impute relevance labels for the unlabeled query-

document pairs in the target collection. RankHardLabelEM is inspired by a variant of

the EM algorithm, which makes “hard” (non-weighted) assignments of relevance labels

to unlabeled training instances, while RankSelfTrain is an application of the self-training

algorithm for TR.

While these algorithms have been studied in other contexts, such as classification and

regression problems, they could not be directly applied to TR algorithms for several

reasons. Firstly, the data generating process of L2R datasets is di↵erent and more
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complicated than for conventional machine learning datasets. Secondly, most L2R-

trained ranking functions only predict the rank order of documents, rather than the

relevance labels of individual documents for a given query. This makes it di�cult to

determine the most likely relevance label for a document as well as the confidence of

the prediction. Finally, unlike conventional classification or regression algorithms which

look to minimize the expected loss on the instance-level, the e↵ectiveness of a ranking

function will be measured on a query-level basis.

The following research questions are addressed to gain a better understanding of the

self-labeling process for the unsupervised TR:

• How can one apply the self-labeling methods to transfer knowledge from the source

to the target collection within the L2R setting?

• Which self-labeling method is most e↵ective in the L2R TR setting?

• Are self-labeling methods more e↵ective and/or robust than instance-weighting

methods for unsupervised TR?

We demonstrate that self-labeling methods are more reliable than instance-weighting

for unsupervised TR and that the e↵ectiveness of instance-weighting varies with source

collections of di↵erent sizes. We test three unsupervised TR algorithms on three large

public test collections and show that both RankPairwiseEM and RankSelfTrain have

significantly better performance than a non-transferred source model. Moreover, both

algorithms are not significantly worse than the target model.

5.2 Related Work

Apart from instance-weighting methods, an alternative approach to unsupervised trans-

fer learning is self-labeling [118]. Self-labeling propagates labels from the source to the

target data by directly imputing relevance labels for unlabeled instances in a target col-

lection. A study by Triguero et al. [116] found that self-labeling methods are e↵ective

for various semi-supervised learning tasks.

Several solutions have been investigated to implement self-labeling, including EM algo-

rithms [119], self-training algorithms [120], and multi-view learning [94], which includes
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co-training [121]. All three solutions were originally utilized for semi-supervised learning,

but have been extended to unsupervised transfer learning by Chen et al. [117].

Preliminary work investigating self-training ideas in an unsupervised TR scenario was

performed by Goswami et al. [23] who propagated initial pseudo-relevance preferences

for pairs of documents drawn from related collections. A pairwise ranking function was

trained iteratively with a discriminant classification EM algorithm beginning with the

pseudo-preference labels. The results from that study suggested significant improve-

ments in some TREC ad-hoc collections with eight term-based features. However, the

algorithm was designed for a scenario where multiple source collections were available

for selection, and the content of documents was known.

Drawing inspiration from Goswami et al. [23], our algorithms fit into the unsupervised

TR scenario where only one source collection is available for transferring (and the source

text for each document is not the primary information used to perform the transfer).1

The idea of applying self-labeling methods to unsupervised TR was inspired by two

branches of prior work: a TR algorithm that infers labels from other collections [23] and

pseudo-relevance feedback (PRF) [27]. Self-labeling by imputed relevance labels shares

commonalities with PRF in that both algorithms make assumptions about relevance

and the initial set. However, PRF is typically utilized for reformulating queries, while

label imputation is used to train better ranking models. Moreover, PRF algorithms

are usually conducted on a per-query basis, while label imputation is performed on a

per-collection basis.

5.3 Problems with Instance Weighting for TR

The core challenge of transfer learning is that the source and target instances are drawn

from di↵erent distributions. Instance weighting looks to solve a special case of the

problem, covariate shift [8], where the conditional distribution of the class label remains

unchanged across the source and target collections (pso(y|x) = pta(y|x)), while the input

(feature) distribution has changed (pso(x) 6= pta(x)). Covariate shift can be addressed by

1
We note that while inspired by their work, the algorithms we develop in this paper are quite di↵erent

(and in a sense more general) than those of the work of Goswami et al. [23]. Indeed they are not even

directly comparable given that they are tackling di↵erent problems with di↵erent (and in their case more

specific) assumptions.
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Figure 5.1: E↵ectiveness of w�MART versus source sample size

re-weighting source samples such that the source distribution approximates the target

one. However, for listwise L2R algorithms, training is performed at the query level.

Consequently, instance weighting is more meaningful and natural at the query level

rather than the document level.

Query-level instance weighting attempts to re-weight source queries to approximate the

query distribution in the target collection: w(q)pso(q) ⇡ pta(q) 8 q 2 Qso, where pta(q)

and pso(q) denote the densities over queries in the target and source collection respec-

tively. The rank learner is trained on weighted training data, where the weight for each

source query qsoi is set to approximate the density ratio w(qsoi ) = pta(qsoi )/pso(qsoi ). By

doing this, the loss function used during training tends to follow the desired loss function

on the target collection.

In the previous chapter, we have demonstrated how the e↵ectiveness of di↵erent instance-

weighting methods varies across transferring settings. In this section, we take a di↵erent

approach to investigate the reliability of instance-weighting algorithms by controlling

the sample sizes of the source collection while keeping all the other settings the same.

Figure 5.1 shows the e↵ectiveness of query-weighted LambdaMART (w�MART)2 based

on the Kullback-Leibler Importance Estimation Procedure (KLIEP) [122], measured

with NDCG@10, when it was trained with di↵erent sizes of source queries pooled from

MSLR3 and tested on LETOR4.0. The settings of the transfer are similar to Li et al.

[122] except that the test set is used for density ratio estimation.

2
The algorithm used in here was the document-level-weight-aggregation version, kliep.doc.

3https://www.microsoft.com/en-us/research/project/mslr/

https://www.microsoft.com/en-us/research/project/mslr/
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The results in Figure 5.1 show that the e↵ectiveness of the source ranker on the target

dataset varies across training samples and degrades with the size of the training sample.

More concerning is the fact that the performance of the instance-weighting algorithm

is not consistent, but jumps above and below the blue line (representing the source

ranker). Notice that we also saw a slight decreasing of performance with the increase of

source sample size. As the sample size increases, the ranking function is fitting better for

the source training data, which caused the decreased performance in the unseen target

collection data.

Thus far, we have seen that the performance of instance weighting can be unreliable.

Two factors can be the cause of this issue: the inaccuracy of the density estimation for

the queries, or the unrealistic assumption that the mapping from documents to relevance

judgments, pso(r|x) = pta(r|x), remains the same across the collections. Moreover, the

fact that in the standard learning-to-rank setup, the learnt ranking function is actually

only re-ranking the top-k documents (as selected by an initial base ranker) means that

even if only covariate shift is present, the resulting conditional distribution will likely be

di↵erent across the source and target collections.

5.4 Expectation-Maximization (EM) for Unsupervised TR

Parameter estimation using the Expectation-Maximization (EM) algorithm has been

widely studied for training semi-supervised models when there is an absence of adequate

labels [123]. The EM algorithm can potentially be used for solving TR problems because

of its ability to leverage unlabeled training data.

The EM algorithm is used to generate maximum likelihood estimates for the parameters

of a statistical model via iterations. Given a joint distribution of p(X,Z|✓) governed by

parameters ✓, where X are the observed variables, and Z are some hidden or missing

values, the EM algorithm attempts to estimate parameters by maximizing the likelihood

p(X|✓) as follows:

1. Initialize parameters ✓(0).

2. E-step: Evaluate p(Z|X, ✓(t�1)) / p(X,Z|✓(t�1)).
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3. M-step: Evaluate ✓(t) by:

✓(t) = arg max
✓

X

Z

p(Z|X, ✓(t�1)) log p(X,Z|✓) (5.1)

4. Repeat steps 2 and 3 until parameters or log likelihood (summation in 3) converges.

5.4.1 EM Algorithm for TR with Pairwise Preferences

In this section, we apply a modified EM algorithm to tackle the TR problem. Assuming

the unlabeled target data is drawn from a joint distribution of p(X,R|✓), governed by

some parameters ✓. X is a set of observed feature vectors for a document set, and

R is their unobserved relevance labels. An EM algorithm estimates the parameters

✓ by maximizing the likelihood, p(X,R). In the E-step, the EM algorithm computes

the probability of each discrete value for individual document, p(r = 1|x, ✓) and p(r =

0|x, ✓). We assume the parameters ✓ to be the parameters of a function mapping a

query document pair to a relevance label (�(x, ✓) 7! r). This mapping function can

be decomposed into two functions, a scoring function which estimates a similarity score

for a query document pair, and a (possibly stochastic) assignment function which maps

each query-similarity score to a relevance label.

Estimating p(R|X, ✓) requires making strong assumptions about how scores map to

relevance levels. We can avoid this issue by instead using the pairwise ranking preferences

as the hidden values. The pairwise probability of a document pair {dij , dik} can be

estimated using a logistic function as in Burges et al. [42]

p(rij > rik) =
1

1 + e�� �sijk
(5.2)

Here � is a parameter controlling the shape of the logistic function4, �sijk = sij � sik

is the di↵erence between the query-similarity scores for the two documents as predicted

by a ranking function.

We propose a pairwise preference-based EM algorithm, called RankPairwiseEM, to

tackle the unsupervised TR problem. Here we consider the joint distribution of p(X2,�R|✓)

over pairs of documents with di↵erent relevance labels X2 = {(xij ,xik)}i,j<k s.t. rij 6=
4
Later in the experiments, � was set to 1, which is the same value used for LambdaMART.
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rik, where �R denotes the ranking preferences (�rijk = 1, if rij > rik; �rijk = �1, if

rij < rik).

In the E-step of EM, the algorithm evaluates the pairwise preference probability based on

parameters estimated in the last iteration, p(Y |�, ✓(t�1)), and this can be approximated

using the probability model:

!(t�1)

ijk = p(rij > rik|✓(t�1)) =
1

1 + e�� �s
(t�1)

ijk

(5.3)

where�s(t�1)

ijk = s(t�1)

ij �s(t�1)

ik is the di↵erence in the document scores sij = f(xij ; ✓(t�1)).

In the M-step, the estimation of the new parameters is performed by maximizing the

expected likelihood based on the probabilities estimated in the E-step. Instead of maxi-

mizing the expected likelihood, however, we minimize the expected cost, which depends

on the particular rank-learning algorithm being used. In this work, we apply the state-

of-the-art L2R algorithm, LambdaMART [53] which has been used for the experiments

in chapter 4. The detailed explantion of LambdaMART algorirthm can be found in

section 2.2.4.

The LambdaMART algorithm iteratively builds an additive ensemble of regression trees

for calculating document scores.

f(x) =
LX

l=1

↵l hl(x) (5.4)

At each iteration, the algorithm computes the cost between the ground-truth pairwise

probabilities and the probabilities inferred by the current ensemble (f (l�1)) using Equa-

tion 5.2. The ground truth pairwise probability is modeled as: Pijk = 1

2
(1+�rijk). For

each pair of documents for the same query, the cost function can be rewritten as:

Cijk = |�Zijk|(I[rij>rik] log(1 + e�� �s
(l�1)

ijk ) + I[rij<rik] log(1 + e� �s
(l�1)

ijk )) (5.5)

where �Zijk is the change of the ranking evaluation score (e.g., NDCG) that results

from swapping the position of documents dij and dik, while I[.] denotes an indicator

function. The cost of an individual document xij is then aggregated over the pairs:

Cij =
P

k:k 6=j Cijk.
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A regression tree is then trained to minimize the cost by fitting the derivatives of the

cost, denoted �ij , with respect to the query-similarity score predicted using the current

ensemble:

�ij =
@Cij

@s(l�1)

ij

=
X

k:k 6=j

|�Zijk|(I[rij>rik]
��

1 + e� �s
(l�1)

ijk

� I[rij<rik]
��

1 + e�� �s
(l�1)

ijk

)) (5.6)

According to Burges [53], the value of the kth leaf in the lth tree is then updated using

a second-order approximation:

�km =

P
dij2Rkm

@Cij

@sl�1

ij
P

dij2Rkm

@2Cij

@(sl�1

ij )2

=

P
dij2Rkm

�ij
P

dij2Rkm

@�ij

@sl�1

ij

(5.7)

Under the unsupervised TR scenario, the ground truth relevance labels are unknown,

but since we have computed the pairwise probability for all the target document-pairs

in the E-step, we can calculate expected costs for target documents:

E[Cij ] =
X

k:k 6=j

|�Zijk|(!
(t�1)

ijk log(1 + e�� �s
(t,l�1)

ijk ) + !(t�1)

ikj log(1 + e� �s
(t,l�1)

ijk )) (5.8)

where !ijk and !ikj are probabilities computed using Equation 5.3, and �s(t,l�1)

ijk =

s(t,l�1)

ij � s(t,l�1)

ik denotes the di↵erence in the scores computed using the model with

(l � 1) trees trained for t iterations. The corresponding derivative is:

E[�ij ] =
X

k:k 6=j

E[|�Zijk|](
�!ijk�

1 + e� �s
(t,l�1)

ijk

�
�!ikj�

1 + e�� �s
(t,l�1)

ijk

) (5.9)

In this paper, we use NDCG@10 as the training metric for LambdaMART (i.e. Z =

NDCG@10). Because the relevance labels, as well as ranking orders of documents, are

unknown, we need to compute the expected |�NDCG@10|5 based on parameters trained

in the last iteration, ✓(t�1). The query-similarity score predicted with the parameters

trained in the last iteration for each document are used as the expected relevance labels:

E[rij ] ⇡ s(t�1)

ij = f(xij ; ✓(t�1)).

5
Replacing �Z by the fixed value 1 was also investigated but resulted in poor performance.



Transfer Learning for Information Retrieval 106

E[|�NDCG@10ijk|] =
2E[rik] � 2E[rij ]

IDCG
⇥ (

1

log2(⇡
(t,l�1)

ij + 1)
� 1

log2(⇡
(t,l�1)

ik + 1)
) (5.10)

where ⇡(t,l�1)

ij denotes the rank of the jth document for query i, according to the scoring

function f(xij ; ✓(t,l�1)). The ground-truth labels for the documents for the queries are

unknown, we use the similarity score predicted in the last iteration as the label for

estimating IDCG. As a result, IDCG is calculated as:

IDCG =
10X

g=1

2
s
(t�1)

i⇡�1(g) � 1

log2(g + 1)
(5.11)

where s(t�1)

i⇡�1(g) is the score of the document ranked at gth position of query i, with the

ranking function f (t�1).

The expected lambdas E[�] are then used to fit the regression trees. The expected value

for each leaf is updated as:

E[�km] =

P
dij2Rkm

E[�ij ]
P

dij2Rkm

@E[�ij ]

@s
(t,l�1)

ij

(5.12)

The parameters will be updated after the ensemble has been trained, with the process

repeated until convergence.

The implementation of the EM algorithm for TR (RankPairwiseEM) is presented in

Algorithm 2. The parameters are initialized by training a LambdaMART with source

data:

✓̂(0) = argmin
✓

X

qi2Qso

X

dij2qi

Cij (5.13)

In the E-step, each document is assigned a similarity score predicted by the ranking func-

tion, with parameters trained in the last iteration. The pairwise preference probability

of document pairs is then computed using Equation 5.3. In the M-step, the parame-

ters are re-estimated with the expected LambdaMART together with the labeled source

data:

✓̂(t+1) = arg min
✓

X

qi2Qso

X

dij2qi

Cij +
X

qi2Qta

X

dij2qi

E[Cij ] (5.14)
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Algorithm 2: Label-imputation via RankPairwiseEM

Input: Source queries Qso and judgements Rso, target queries Qta, max iterations �, ⌧
threshold ✏

Output: Ranking function f
1 RankPairwiseEM(Qso,Rso,Qta,�)

2 Train ranker f (0) using (Qso,Rso) with Eq. 5.13;
3 for t 2 {1, ...,�} do

/* E-step */

4 foreach xij 2 Qta do
5 sij = f(xij ; ✓(t�1))
6 end
7 foreach {xij ,xik} 2 Qta do
8 Estimate p(rij > rik) using Eq. 5.3;
9 end

/* M-step */

10 Train f(x; ✓(t)) using pairwise probs, Eq. 5.14;

11 if ✓(t) == ✓(t�1) then
12 return f (t�1);
13 end

14 end

15 return f (t);

The algorithm repeats the E-step and M-step until the parameters converge or the

maximum iteration � is met.

5.4.2 EM for TR with “Hard” Assignment

It has been shown that in certain situations an EM algorithm with hard deterministic

label assignment can be more e�cient and more e↵ective than the original EM algorithm

for particular tasks [124]. This so-called hard EM algorithm is a variant of the original

EM algorithm, which assigns the best possible label to each training instance at the

E-step, rather than computing the probability of each label. In the M-step, the hard

EM algorithm updates the parameters using the updated labels.

To employ the hard EM algorithm for unsupervised TR, one needs to determine the most

likely label for each unlabeled document in the target collection according to the current

model. Here we only consider the binary relevance case and simply label documents

with highest similarity scores as relevant. Intuitively, allocating the relevant labels to a

smaller fraction of top-ranked documents will preserve more accuracy since on those top

documents the ranker is most confidential, and tends to be better for model transferring.
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Algorithm 3: Self-labeling via RankHardLabelEM

Input: Source queries Qso and judgements Rso, target queries Qta, stopping threshold
✏, max iteration �

Output: Ranking function f
1 RankHardLabelEM(Qso,Rso,Qta,✏,�)

2 Train ranker f (0) using (Qso,Rso) with Eq. 5.13;
3 for t 2 {1, ...,�} do

/* E-step */

4 Calculate scores for all query-doc pairs;
5 Sort query-doc pairs by decreasing score;
6 Label top k% as relevant, remainder irrelevant;

/* M-step */

7 Train f(x; ✓(t)) using Eq. 5.15;

8 if ✓(t) == ✓(t�1) then
9 return f (t�1);

10 end

11 end

12 return f (t);

In this work, only the top k percent documents with the highest ranker score will be

labeled as relevant documents.

In the M-step, the ranking function will be updated by training using both the labeled

source data and unlabeled target data together with the imputed relevance labels:

✓̂(t+1) = arg min
✓

X

qi2Qso

X

dij2qi

Cij +
X

qi2Qta

X

dij2qi

Ĉij(R̂
(t)) (5.15)

where Ĉij(R̂(t)) is computed with the imputed relevance labels, R̂(t)={[s(t)ij � sort({s(t)ij }j)k]}i,

generated at (t+1)(th) iteration according to the query-similarity scores predicted using

ranker function trained at t(th) iteration.

With the updated ranker, the system can update the imputed labels iteratively.

The RankHardLabelEM algorithm is demonstrated in Algorithm 3. The algorithm first

trains a source ranker with the labeled query-document pairs from the source collection

together. In the E-step, the algorithm will compute the similarity scores for all query-

document pairs and label the top k% pairs as relevant documents and the remainder as

irrelevant. In the M-step, using labeled source data and the target data together with

their imputed labels for training, the ranking function will be updated. The process
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Figure 5.2: RankHardLabelEM & self-labeling paradigm

runs iteratively until the imputed label stops changing or the maximum iteration count

is reached.

5.5 Self-Training for Unsupervised TR

A third self-labeling method for unsupervised TR is based on self-training: a form of

semi-supervised learning [125, 126], with applications in natural language processing

[120, 126] and transfer learning [117]. Self-training algorithms are similar to RankHard-

LabelEM except that instead of recalculating all of the predicted labels on each iteration,

the predicted positive (i.e., relevant) documents are preserved from the previous itera-

tion. In each subsequent iteration, the algorithms simply adds next documents to the

relevant set on which it is most confident.

So the self-training algorithm (RankSelfTrain) gradually increases the number of im-

puted relevant documents via an iterative process. Both RankHardLabelEM and Rank-

SelfTrain follows the self-labeling paradigm demonstrated in Figure 5.2. The system

will initialize a ranking function by the source instances with their source labels using a

particular L2R model. With the trained ranker, the system predicts relevance scores for

all the unlabeled training instances in the target collection, and then uses a Self-Labeler

to impute labels for all the unlabeled target instances. With the newly updated labels,
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the algorithm updates the ranker and conducts the self-labeling again. The process is

run iteratively until convergence.

Unlike RankHardLabelEM algorithm, which updates imputed labels iteratively, the

RankSelfTrain gradually adds confident labels to the training set. By gradually adding

a small number of likely accurate predictions, it is hoped the self-trained ranker can

update itself toward a ranking function that can generalize to the target collection. As

a result, for RankSelfTrain algorithm, once a document has been added to imputed

relevant set, the label will not change in the next iteration.

A confidence score is needed to allow label prediction. It is possible for some classifi-

cation algorithms to produce such scores; for example, logistic regression can output a

probability for a class label. However, it is not straightforward for ranking algorithms

to produce such probabilities6. Thus we develop a methodology to predict the proba-

bility of a document being relevant or irrelevant, provided with their similarity scores

predicted by a ranking function. The probability of relevance and irrelevance can later

be used as the confidence in the predicted label.

Bayes rule for the probability of a document being relevant, given a similarity score

gives:

p(r = 1|s = ↵) =
p(r = 1)p(s = ↵|r = 1)P

v2{0,1} p(s = ↵|r = v)p(r = v)
(5.16)

where s denotes the score predicted by a ranking function. The densities p(s = ↵|r = 1)

and p(s = ↵|r = 0) can be estimated via the kernel density estimation (KDE) [127] on a

collection. The algorithm samples all the predicted scores for relevant documents and use

KDE to measure the density of p(s = ↵|r = 1). The same measurement is applied to the

irrelevant documents. This approximates the densities of the scores in the distribution.

The prior probability p(r = 1) is estimated by the proportion of relevant documents in

the collection:

p(r = 1) =
|relevant documents|

|documents| (5.17)

Initially, the target collection contains no imputed relevant documents so the proba-

bilities can only be estimated using data from the source collection. As the relevance

6
RankSVM [38] and other pairwise L2R algorithms might be able to output a probability for ranking

preferences; however, the probabilities for preferences will not directly infer the labels of a document.
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labels in some source collections are multi-graded, we regard all the documents whose

relevance labels are larger than zero as relevant. In the following iterations, as some

imputed labels have been generated, the conditional probability can be estimated on

the target data together with the imputed labels:

pta(s = ↵|r = 1) ⇡ pta(s = ↵|r̂ = 1) (5.18)

pta(s = ↵|r = 0) ⇡ pta(s = ↵|r̂ = 0) (5.19)

where r̂ denote imputed labels.

Since the imputed labels are gradually added to the imputed set, directly estimating the

prior probability p(r = 1) with the imputed labels will be unreliable. At the same time,

the prior probability of the target collection can be di↵erent from the source collection.

Thus we propose a Dirichlet smoothed estimation which can balance the impact of the

source and the imputed labels from the target adaptively:

pta(r = 1) ⇡

P
i
I(r̂ = 1) + µpso(r = 1)

|r̂|+ µ

pta(r = 0) ⇡

P
i
I(r̂ = 0) + µ(1� pso(r = 1))

|r̂|+ µ

(5.20)

where µ is set to be half of the number of training instances in the target collection.

µ was applied to the prior probability for the source collection, the smoothing function

was trying to reduce the importance of the source collection. As a result, we choose to

use half, rather than the entire number of training instances as what normally is done

in Dirichlet smoothing. As a result, probability can be estimated:

pta(r = 1|s = ↵) =
pta(r = 1)pta(s = ↵|r̂ = 1)P

v2{0,1} p
ta(s = ↵|r̂ = v)pta(r = v)

(5.21)

The process of the RankSelfTrain algorithm is shown in Algorithm 4. Initially, a source

ranker f0 is trained with labeled examples (Qso, Rso) from the source collection. The

source ranker is then applied to calculate similarity scores for all the query-document

pairs in the target collection (line 4). In the first iteration, the algorithm calculates the

relevance probability for each query-document pair via Equation 5.16 with probabilities

in the source data. If the probability of a relevance label for a given pair is larger than

the threshold ⌘, which is a confidence threshold, the query-document pair will be added
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Algorithm 4: Self-training for Ranking

Input: Source queries Qso and judgements Rso, target queries Qta, confidence
threshold ⌘

Output: Ranking function f
1 SelfTrain(Qso,Rso,Qta,⌘)

2 Initialize set of labeled docs to be empty: ⌦(0) = ;;
3 Train ranker f (0) using (Qso, Rso) with Eq. 5.13;
4 for t 2 {1, ...} do
5 Calculate similarities for all query-doc pairs;

6 foreach unlabeled pair xij 62 ⌦(t�1) do
7 if t==1 then
8 Compute p(rij |sij) following Eq. 5.16;
9 else

10 Compute p(rij |sij) following Eq. 5.21;
11 end
12 if p(rij = 1|sij) > ⌘ then
13 Add (xij , 1) to ⌦(t);
14 else if p(rij = 0|sij) > ⌘ then
15 Add (xij , 0) to ⌦(t);

16 end

17 if (|⌦(t)|� |⌦(t�1)|) == 0 then
18 return f (t�1);
19 end

20 Train ranker f (t) using Eq. 5.15;

21 end

to the labeled document set. The confidence threshold ⌘ will be set at a higher number

to ensure the accuracy of the label imputation process. The system will then re-train a

ranking function with both the data from the source collection and previously labeled

documents from the target collection using Equation 5.15. In the following iterations,

the algorithm will continue to compute the probabilities via the imputed labels from

the target collection using Equation 5.21, conduct the labeling and update the ranker

iteratively until no more confident labels can be added or the maximum iteration is met.

5.6 Data and Methods

5.6.1 Datasets

Three public L2R test collections used for the instance weighting algorithm from the

last chapter are used in our experiments: MSLR, LETOR4.0, and the Yahoo! Learning
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to Rank (Yahoo!L2R) dataset.7

Similar to the previous chapter, three groups of transfer settings are studied:

1. Transferring between MQ2007 and MQ2008, which share the same document col-

lection but have di↵erent query sets. Since the two datasets di↵er only on the

queries, this can be viewed as an in-domain transfer.

2. Transferring between MSLR and LETOR 4.0: We merged the two datasets in

LETOR 4.0 to make a larger dataset and then conducted the transfer between

the merged LETOR 4.0 dataset and MSLR-WEB10K. The two datasets have few

commonalities, with di↵erent document sets, query sets, and methods for gathering

relevance. Thus transferring here can be viewed as a cross-domain transfer. In

the experiments the 45 features common to both collections were used to train the

L2R models.8

3. Transferring between Set 1 and Set 2 of Yahoo!L2R: each set represents web doc-

uments written in di↵erent regional languages, thus transferring between the two

is also cross-domain transfer. The original Yahoo!L2R collection has 700 features.

However, we found that only 415 were common to both sets, and utilized them in

the experiments.

One dataset from each pairing was taken to be the source collection, and the other to be

the target. Each target collection was split randomly into five folds for cross-validation-

based evaluation. In each experimental run, four folds were utilized as examples for

the target collection. To create an unsupervised TR environment, all relevance labels

were removed from these folds. The remaining fold of the target collection was used to

test the e↵ectiveness of the transfer algorithms. We note that this setup, in which the

target queries used during the transfer were not used for the evaluation, was particularly

challenging. The details of the transfer settings are provided in Table 4.1. All reported

results are averages over the five-fold cross-validation.

7
Details of these collections are presented in Table 2.1.

8
The features in LETOR 4.0 were normalized via a query-level normalization method [128] (min-max

normalization on a per-query basis) and we conducted normalization for the MSLR collection as well. It

turned out that conducting feature normalization, in the same way, can lead to a better generalization

for another collection.
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5.6.2 Setup and Measurements

The RankLib 2.1 implementation of LambdaMART was used as the base ranker.9 The

tree size was set to 1000, and the maximum number of leaves was set to 10. For the

instance-weighting-based KLIEP method, we applied Sugiyama-Sato’s Matlab imple-

mentation.10

For all the algorithms, we set the maximum iteration � as 20. The percentage of im-

puted relevance labels k% was set to 5% for the RankHardLabelEM algorithm. For

the RankSelfTrain algorithm, the threshold of confidence ⌘ was set at 95%. The � for

pair-wise probability in Equation 5.2 was set to 1 in the RankPairwiseEM algorithm,

which is aligned with the value of � in the implementation of LambdaMART.

The following baselines were considered:

• BM25: Retrieved documents sorted by decreasing BM25 similarity score.

• �MART.source: LambdaMART trained with all the data from the source col-

lection.

• w�MART:Weighted LambdaMART with the query-level instance weighting method

proposed by Li et al. [122]. We used the “kliep.doc” method proposed in the paper,

which aggregated the document-level weights for generating query-level weights.

The document-level weights are estimated via the KLIEP algorithm [63].

• �MART.target: LambdaMART trained with data from the target collection via

cross-validation.

The following label imputation algorithms were tested:

• RankPairwiseEM: EM-inspired self-labeling algorithm, using LambdaMART as

the base ranker.

• RankHardLabelEM: “Hard EM”-inspired self-labeling algorithm, using Lamb-

daMART as the base ranker.
9
http://sourceforge.net/p/lemur/wiki/RankLib/

10
http://www.ms.k.u-tokyo.ac.jp/software.html
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• RankSelfTrain: Self-training-based algorithm, using LambdaMART as the base

ranker.

All models were evaluated using normalized discounted cumulative gain (NDCG) [106],

with a rank cut-o↵ of 10. Statistical significance was tested using a two-tailed paired

t-test, with a threshold of 0.05.

5.7 Results and Discussion

The experimental results are presented and discussed below.

5.7.1 E↵ectiveness of Self-Labeling Methods

We compare the three proposed self-labeling-based TR algorithms on various transfer

settings. The most important aspect for distinguishing between the di↵erent transfer

settings is the level of similarity between the source and target collections, which we

consider in two cases impacts the e↵ectiveness of various TR algorithms. In-domain

transfer where the source and target were drawn from the same or similar distributions,

and cross-domain transfer where the source and target data were drawn from quite

di↵erent distributions.

The results of various algorithms on both in-domain and cross-domain transfer scenarios

are illustrated in Table 5.1 and 5.2. In both cases, we observe that when a ranking

function trained on the source data is applied to the target collection, it retains the

advantage over the base ranker, BM25 (second row of both tables).

In-domain transfers. As mentioned before, the MQ2007 and MQ2008 are two query

sets using the same document collection. Results demonstrate that �MART.source

trained with the larger query set of MQ2007 generalizes well to the smaller set of

MQ2008. �MART.source of MQ2007 is significantly better than �MART.target trained

on the MQ2008 datasets. Conversely, �MART.source trained on MQ2008 is not as

e↵ective as �MART.target trained on MQ2008.

In this in-domain transfer scenario, all the unsupervised TR algorithms performed better,

although not always significantly, than the source ranker. When transferring from the
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Table 5.1: E↵ectiveness (NDCG@10 score) on in-domain transfer settings with label
imputation methods. Bold text indicates the best scores of each column, " denotes the
figure is significantly better than �MART.source, # denotes the figure is significantly
worse than �MART.source, † denotes the figure is significantly better than w�MART.

p < 0.05

MQ2007-
MQ2008

MQ2008-
MQ2007

BM25 0.335 (-32.7%) # 0.249 (-39.6%) #
�MART.source 0.498 0.412

w�MART 0.498 0.384 (-6.8%) #

RankPairwiseEM 0.507 (+1.8%) "† 0.434 (+5.3%) "†
RankHardLabelEM 0.501 0.426 (+3.4%) "†
RankSelfTrain 0.505 † 0.438 (+6.3%) "†

�MART.target 0.487 (-2.2%) # 0.445 (+8%) "†

larger sample, MQ2007 to the smaller sample, MQ2008, most of the unsupervised TR

methods, including w�MART, did not show significant improvements, except for the

RankPairwiseEM algorithm. In this particular transferring setting, the source data has

a wider coverage of queries from the same distribution, which turned out to generate a

more general ranking function that performs better than the target model (i.e., the model

trained directly on the target data). The new transfer methods can further improve the

e↵ectiveness over the source ranker.

When the source collection has a smaller size (MQ2008-MQ2007), the generalization of

the source ranker becomes so poor that it is not comparable with the target model. All

the new proposed methods have shown to be significantly more e↵ective than the source

ranker on the target collection. Meanwhile, the previous instance-based transfer model,

w�MART, has shown to be significantly worse than the source ranker. Transferring from

MQ2008 to MQ2007 can be thought of as a special case of semi-supervised learning. The

results in LETOR4.0 showed that self-labeling-based methods can help improve ranking

e↵ectiveness under the semi-supervised L2R/in-domain transfer setting.

Cross-domain transfers Transferring between MSLR and LETOR4.0 is the first

cross-domain transfer scenario. As explained previously, conducting query-level feature

normalization for both the source and target collection helps increase the generalization

performance of LambdaMART over the target collection. In contrast to the results
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Table 5.2: E↵ectiveness (NDCG@10 score) on cross-domain transfer settings with
label imputation methods. Bold text indicates the best scores of each column, " denotes
the figure is significantly better than �MART.source, # denotes the figure is significantly
worse than �MART.source, † denotes the figure is significantly better than w�MART.

p < 0.05

MSLR-
LETOR4.0

LETOR4.0-
MSLR

Yahoo.Set 1-
Yahoo.Set 2

Yahoo.Set 2-
Yahoo.Set 1

BM25 0.276 (-29.8%) # 0.180 (-7.2%) # 0.540 (-5.3%) # 0.507 (-27.6%) #
�MART.source 0.393 0.194 0.723 0.700

w�MART 0.367 (-6.6%) # 0.147 (-24.2%) # 0.712 (-1.5%) # 0.703 (+0.4%) "

RankPairwiseEM 0.402 (2.3%) "† 0.193 † 0.734 (+1.5%) "† 0.709 (+1.3%) "†
RankHardLabelEM 389 † 0.202 (+4.1%) "† 0.731 (+1.1%) "† 0.707 (+1%) "
RankSelfTrain 0.410 (+1.8%) "† 0.194 † 0.725 (+0.3%) "† 0.708 (+1.1%) "†

�MART.target 0.461 (+17.3%) "† 0.423 (+11.8%) "† 0.761 (+5.3%) "† 0.743 (+6.1%) "†

obtained by Li et al. [122], when transferring between MSLR and LETOR4.0, via query-

level feature normalization, �MART.source shows better generalization on the target

collection.

When transferring from MSLR to LETOR4.0, both RankPairwiseEM and RankSelfTrain

significantly outperform �MART.source. All the proposed self-labeling algorithms have

shown significant improvements over w�MART.

Transferring from LETOR4.0 to MSLR is harder than transferring in the opposite di-

rection, as MSLR has a wider coverage of queries. w�MART failed to improve the

performance of �MART.source. Moreover, both RankPairwiseEM and RankSelfTrain

showed no significant improvement in this transfer setting. The RankHardLabelEM al-

gorithm can significantly improve the e↵ectiveness over �MART.source, and it is also

significantly more e↵ective than w�MART. Transfer learning from LETOR4.0 is a sce-

nario that is unlikely to occur in reality as the source collection is too small for e↵ective

transfer to be possible.

Transferring between Yahoo!L2R Set 1 and Set 2 is a harder task because of the cross-

language setting, and because Set 1 has a larger query set. When transferring from

Set 1 to Set 2, the e↵ectiveness of the all the proposed algorithms show significant im-

provements when compared with the �MART.source and the instance-weighting method

w�MART. When transferring from the small set to the larger set (Set 2 to Set 1), all

the algorithms can significantly outperform �MART.source.
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Under the cross-domain transferring scenario, most of the new algorithms have shown

some improvements over the source ranker. However, improvements can be varied under

di↵erent test environments.

5.7.2 Consistency of Unsupervised TR Approaches

In this section, we compare the consistency of di↵erent algorithms across di↵erent set-

tings. Although all the proposed algorithms showed better transfer e↵ectiveness com-

pared with the source ranker, it is not clear how consistent the performance is.

We compare the e↵ectiveness of unsupervised TR algorithms using average-rank-based

visualization [122]. The average rank of all the systems over all the folds in the di↵erent

collections is computed, and shown in Figure 5.3. The average rank of a system across

the test collections is calculated as rankj = 1

N

P
i rankij , where N is the number of

collections, and rankij is the rank of the jth model in the ith collection. We applied the

Nemenyi test of significance [115].

The di↵erences between models are compared against the critical distance (CD), i.e.,

two models are not considered significantly di↵erent if their average ranks lie within the

CD. The results of the tests are displayed in Figure 5.3. The black dots show the average

rank of each model, and the lines show the CD. If the average rank (dot) of a model lies

outside the CD of another model, then they are significantly di↵erent.

According to Figure 5.3, under current settings, the average rank of all the proposed

methods are lower (better) than the �MART.source. Among them, both RankPair-

wiseEM and RankSelfTrain are significantly better than the �MART.source across dif-

ferent collections, and they showed no significant di↵erence from �MART.target. Rank-

SelfTrain is also the most e↵ective algorithm compared to all the other self-labeling

methods.

Interestingly, w�MART appears less e↵ective than the �MART.source, which disagrees

with the previous chapter. The reason for this is that by performing query-level feature

normalization on the MSLR dataset, the di↵erence between the feature distributions

has been reduced. As a result, MSLR showed better generalization on the LETOR4.0

dataset, and the instance-weighting methods failed to show their advantage in minimiz-

ing the gap between feature distributions. The query-level feature normalisation has
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Figure 5.3: Plots of average rank across the six test environments for the six di↵erent
transfer learning techniques and the �MART.source and baseline �MART.target system
(where no TR was applied). The lower the rank the better performance of the approach.

The critical distance (CD) for the Nemenyi test (at the 5% confidence level).

been applied to all datasets, and has shown relatively better generalisation abilities in

most cases.

5.7.3 Analysis of Self-Labeling Methods

To gain a better understanding of di↵erent self-labeling-based approaches, the perfor-

mance over iterations of the algorithms over the iterations of three proposed methods

are illustrated in Figure 5.4. The learning curves presented are averaged over the five

runs.

The x-axis in the figure represents the number of the iterations, starting from the 0th

iteration (where the source ranker was applied). The y-axis is the average performance

of the rankers tested on the target training set, which is the unlabeled target set used for

training, together with their ground-truth labels. The black dashed line in the figures

shows the performance of the source ranker.

An ideal self-labeling algorithm would gradually increase its e↵ectiveness on the target

collection until the imputed labels converge. In most of the transferring settings, we have

observed that both RankPairwiseEM and RankSelfTrain gradually update themselves

to gain better e↵ectiveness in the target collection. RankHardLabelEM, on the other

hand, does not appear to be stable across all di↵erent transfer scenarios (collections).
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Figure 5.4: Performance vs iteration curve of di↵erent self-labeling methods under
various settings.

When transferring from LETOR4.0 to MSLR, none of the algorithms have performed

as expected. We argue this is a challenging transferring scenario where there is a much

smaller query coverage in the source collection, and the TR algorithm cannot transfer

knowledge from the source to the target.

The performance of di↵erent algorithms is limited by the parameter selection. In the

following section, the impact of the parameters on the performance of the algorithms
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will be analyzed.

5.8 Sensitivity of Parameter Settings

The sensitivity of the parameter settings for di↵erent transfer algorithms will be dis-

cussed in this section. The RankPairwiseEM algorithm does not require any parameter

settings while the RankHardLabelEM algorithm has a parameter k, which is the per-

centage of imputed relevant labels in each iteration. For RankSelfTrain algorithm, the

percentage is controlled by a confidence score. Alternatively, the percentage can be set

manually as it is for the RankHardLabelEM, both the manual setting and confidence

score based methods will be compared in the following section.

5.8.1 Threshold Setting for RankHardLabelEM

In the RankHardLabelEM algorithm, the percentage of documents being labeled as a

relevant document is manually defined. In this section, we compare the performance

of the RankHardLabelEM algorithm with di↵erent parameter settings. As the source

collection, we randomly sample 1,000 queries from the MSLR dataset; as the target

collection, we sample 1,000 queries from the LETOR4.0 dataset. As a result, the target

collection contains approximately 34k query-document pairs and the source collection

contains nearly 120k query-document pairs. The RankSelfTrain algorithm with di↵erent

settings for k% is evaluated for four times. The performance vs iteration curve for each

of the four scenarios is shown in Figure 5.5.

The x-axis in Figure 5.5 is the number of iterations, the y-axis is the NDCG@10 scores

measured on the unlabeled target set, the black dashed lines are the source rankers. In

most cases, the e↵ectiveness of the trained rankers is observed to increase over the iter-

ations, but the increase is not monotonic. In some cases, RankHardLabelEM achieves

more than 30% improvement over the source ranker. However, the algorithm performs

variously at di↵erent runs with a di↵erent setting of k%. For example, when k% was set

to 1%, its performance increased gradually over the iterations at the first run (Figure

5.5(a)), while in the other cases, the performance kept dropping (Figure 5.5(c)), indicat-

ing a significant amount of variance in performance. Moreover, in some cases, we have
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Figure 5.5: Comparing the parameter settings for RankHardLabelEM.

seen that the performance of the algorithm will start to decrease after a certain point

(50% in Figure 5.5(c)), so it is also important to determine when to stop the iterations.

Under the unsupervised TR scenario, it is hard to determine the parameters without any

supervised label information from the target collection. As a result, a smaller percentage

was chosen based on previous experience in IR collections.

5.8.2 Confidence Versus Fixed Increments for RankSelfTrain

In the RankSelfTrain algorithm, we have determined to set a confidence threshold for

the label prediction so that only the more confident labels are used (as impute labels)

in the next iteration. Alternatively, at each iteration of the RankSelfTrain algorithm,

one could label a fixed percentage (�k%) of unlabeled pairs as relevant, and leave the

remaining pairs unlabeled as irrelevant. The top �k% version RankSelfTrain is shown

in Algorithm 5. The main di↵erence between the fixed-increments-based RankSelfTrain
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Algorithm 5: RankSelfTrain with top � percentage

Input: Source queries Qso and judgements Rso, target queries Qta, maximum number
of iterations

Output: Ranking function f
1 SelfTrain(Qso,Rso,Qta, � )

2 Initialize set of relevant docs to be empty: ⌦(0) = ;;
3 Initialize set of irrelevant docs to be empty: 0(0) = ;;
4 Train ranker f (0) using (Qso, Rso) with Eq. 5.13;
5 for t 2 {1, ...,�} do

/* E-step */

6 Calculate scores for all query-doc pairs;

7 Sort unlabeled pairs (i, j) 62 ⌦(t�1) by score;

8 Label top �k% pairs as newly relevant: ⌦(t) = ⌦(t�1) [ {topk};
9 Set remaining query-doc pairs as irrelevant: 0(t) = Xta � ⌦(t);

/* M-step */

10 Train ranker f (t) using Eq. 5.15;

11 end

12 Return f (t);

and confidence-based RankSelfTrain is that the number of relevant labels is fixed, and

also all the unlabeled documents will be labeled as irrelevant.

The main challenge with this algorithm is how to set a proper parameter �k% for a

particular transfer setting. To compare the algorithms, we used the same sampling and

testing strategy utilized in the previous section. The learning curves of di↵erent runs

are plotted in Figure 5.6.

A glance at the figure illustrates the e↵ectiveness of RankSelfTrain with di↵erent pa-

rameter settings. Most of the algorithms tested so far have shown a gradual increase in

the e↵ectiveness of the ranker with each iteration, starting from the source ranker (0th

iteration).

The algorithm performs variously with di↵erent parameter settings across multiple runs.

For example, when �k% is set to 2%, the algorithm gained the best e↵ectiveness at the

2nd run at the 20th iteration, while it performed the worst at the 3rd run.

Another challenge with this approach is knowing when to terminate the process. The

algorithm can gradually label a certain amount of query-document pairs as relevant until

all the pairs are labeled as relevant. It is not clear when the algorithm should add more

relevant labels. Although we only plotted the first 20 iterations of the process in Fig-

ure 5.6, the five lines cross over at many iterations during training, which suggests that
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Figure 5.6: Comparing the parameter settings for RankSelfTrain.

if the algorithm was halted at di↵erent iterations, the relative performance of di↵erent

parameter settings would vary. Under the unsupervised TR scenario, it is di�cult to

determine which parameter to use and when to terminate.

Alternatively, the confidence-based approach does not require parameter setting except

the confidence level, which can usually be set to a high value. The performance of

the confidence-based approach is relatively stable compared with other settings, and

it converges quickly. Although the performance may not be comparable to the best

performance of other settings, it provides a more robust performance across di↵erent

transferring settings.

5.8.3 Discussion

The results discussed above have illustrated that all the three proposed algorithms,

RankPairwiseEM, RankHardLabelEM and RankSelfTrain can increase transferring ef-

fectiveness in most of the in-domain and cross-domain transferring scenarios. However,
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the improvements of the algorithms may not be consistent under di↵erent transferring

settings. The RankPairwiseEM and RankSelfTrain algorithms tend to be more robust

as they consistently outperform the source ranker across various test collections. Rank-

SelfTrain showed slightly better consistency compared with the RankPairwiseEM and is

easier to implement.

Parameter settings are critical for both RankHardLabelEM and RankSelfTrain algo-

rithms. Setting the parameters for both algorithms based on some assumptions can

gain acceptable results. However, the reliability and e↵ectiveness could likely be im-

proved if some supervision is provided.

Ideally we would hope to be able to monitor the cost of the algorithm during training to

determine when to stop the iterations. However, this is not reliable for the unsupervised

TR case due to two reasons: 1) relevance labels for the target data are imputed; 2)

training data is gradually added to the training set. We would also hope that testing

the variance of the performance on the training set would give us some indication of

when to stop the iteration. We have tried the ideas, but it didn’t work until we relaxed

the condition to have a minimally supervised set, as later introduced in Chapter 6.

5.9 Conclusion

Aiming to improve learning-to-rank for scenarios where a ranker has to be transferred to

a new collection with no available training data, we demonstrate three novel self-labeling

unsupervised TR algorithms, RankPairwiseEM, RankHardLabelEM and RankSelfTrain.

RankPairwiseEM is an application of an EM algorithm on unsupervised TR problems,

which looks to achieve transfer e↵ectiveness via maximizing the pairwise preference prob-

abilities in the target collection. RankHardLabelEM is inspired by a hard EM approach,

which applies an iterative process that predicts imputed relevance labels and updates

models iteratively, while RankSelfTrain employs self-training (by gradually increasing

the relevant label set) for semi-supervised learning.

Our algorithms can fit into a typical unsupervised TR scenario. These three novel

algorithms do not rely on an instance-based density-ratio estimation for transferring

knowledge from the source to the target. Therefore, they avoid the di�cult problem of

defining a representation for “query-space” and calculate density /similarity over it.
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The three algorithms were tested on six transferring scenarios, with LambdaMART used

as the base ranker. The results of the six scenarios show that with some simple parameter

settings, all the algorithms can achieve improvements over the source ranking function,

although in some cases the improvements are minimal.

Our experimental results showed that self-labeling methods are more e↵ective than

instance-weighting algorithms, with both new approaches outperforming a state-of-the-

art instance-weighting algorithm across various test scenarios.

To confirm whether the e↵ectiveness of self-labeling methods can perform consistently

over di↵erent transferring collections, we demonstrated improvements via an average

rank-based visualization method. The Nemenyi test on the results showed that both

RankPairwiseEM and RankSelfTrain can significantly outperform �MART.source across

di↵erent test collections.

We tested RankHardLabelEM and RankSelfTrain, under the “self-labeling paradigm”,

with di↵erent parameter settings to demonstrate how the parameters can impact ef-

fectiveness. For both algorithms, we have illustrated that the algorithms can achieve

better results with an optimal parameter setting. However, it is di�cult to estimate the

parameters under the unsupervised TR setting. Instead, our confidence-based approach

for RankSelfTrain has shown to be e↵ective and stable.

The evaluation of self-labelling algorithms has shown their potential in tackling the

unsupervised TR algorithms. However, the sensitivity analysis showed that some of the

algorithms are sensitive to the parameter setting; in the next chapter, we will investigate

proper ways to control the self-labelling algorithms with a limited number of relevance

labels from the target collection.



Chapter 6

Minimally Supervised TR

In the previous chapter, we discussed the potential of using self-labeling methods for

solving the unsupervised TR problem. However, one key issue that we found for self-

labeling algorithms is that it takes a long time to converge, and the performance of

the algorithms is sensitive to the parameter settings. In this chapter, we relax the

unsupervised TR condition to allow limited amounts of relevance labels from the target

collection, which will help calibrate the transferring. This is usually achievable in reality.

For example, a search engine company may be able to run a few queries in the corpus

from a new market and then obtain some editor judgements.

6.1 Introduction

It has been demonstrated in the previous chapter that TR with self-labeling methods can

help transfer a ranking model from one collection to another. However, one bottleneck

of unsupervised self-labeling methods is that the algorithms require parameter setting

and some of the parameters are sensitive to the transfer setting. Self-labeling methods

assume that there exists commonalities between the source and target collection. As a

result, using a ranking function trained with a source collection can infer weak labels for

a target collection. Starting from the model trained with source-only data, the algorithm

can keep evolving with imputed weak labels from the target collection to better fit the

target collection. However, the similarities between the source and target collection may

vary, which may lead to di↵erences in the label imputation accuracy. Without knowing
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any label information from the target collection, the transferring process may introduce

too much noise during training. On the other hand, if the label imputation becomes

too conservative, the impact of the target collection data with imputed labels becomes

negligible. Unless some monitoring process is provided, one will find it hard to tune

hyper-parameters.

In this chapter, we aim to solve the hyper-parameter problem by introducing a few

relevance judgments for the target collection as a validation set for helping make those

decisions. The labels from the target collection can help determine the hyper parameter

for training and thus can improve the reliability of the models. We call this approach

Minimally Supervised TR (MSTR).

Obtaining a small amount of training labels is usually achievable through crowd-sourcing

or using less sensitive data, for example, annotating internally used queries. Di↵erent

from supervised TR algorithms where the labeled target data is used during training

[17, 19, 74], the labeled queries from the target collection are only used for calibrating

the training. We argue this is a more reliable setup as the target labels provide some

insights into the performance of the model rather than blindly using them for training.

This setup is important especially when the labels are maintained at a minimal level.

For example, relevance judgement for users’ email queries is usually impossible due to

privacy. Instead, a company may be able to use their sta↵s’ work emails for relevance

judgement. With the minimally supervised TR setting, this would give the algorithm

more confidence of performance during the training.

We proposed a MSTR algorithm called PairwiseRankSelfTrain, which uses a small sam-

ple of the target collection data to calibrate the training of a variant of the RankSelfTrain

algorithm that generates preference labels for pairs of documents. Extensive experiments

on the Yahoo!L2R collection and Microsoft collections demonstrate that the novel al-

gorithm, PairwiseRankSelfTrain, cannot only improve the e↵ectiveness over a source

model, our previous unsupervised TR algorithm, RankSelfTrain, but also the target

model, which is the model that is directly trained on the target training set with labels.

In this chapter, the following research questions are addressed to gain better under-

standing of the properties of minimal supervision for TR:
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1. How can the validation set be configured to maximize its reliability in measuring

the performance of transferred rankers?

2. Does MSTR gain better e↵ectiveness performance on the target collection than

other TR settings?

6.2 Minimally Self-Training for TR

Self-labeling methods have shown to be an e↵ective approach for TR problems in the

previous chapter. However, most of those algorithms require a proper parameter setting.

The RankSelfTrain is demonstrated to be e↵ective across di↵erent settings.The algorithm

is done through the following steps:

1. Initializing the parameters for a ranker with source data.

2. Computing imputed relevance labels for all unlabeled query-document pairs from

an unlabeled target training set.

3. Updating ranker via training with both source and target training data with im-

puted labels.

A more detailed explanation of RankSelfTrain is given in Algorithm 4 in Chapter 5. At

each iteration of the RankSelfTrain, the algorithm needs to determine the confidence of

the label imputation. As the LambdaMART algorithm does not generate the confidence

or probability scores for the degree of relevance, the estimation of confidence of label

imputation becomes di�cult. In the previous chapter, we studied two methods to obtain

the confidence scores:

1. Use the model trained in the last iteration to predict the relevance scores for all

remaining documents, then take the top-k documents with the highest relevance

scores as relevant documents and the rest as irrelevant documents.

2. Similarly, first predict the relevance score for every document in the remaining

collection. Then the algorithm estimates a relevance probability using kernel esti-

mation with equation 5.21.
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The problem with the first approach is that it requires selecting the amount of imputed

relevance labels to be added to the training set, and the percentage �k% is sensitive

to di↵erent transferring settings. Moreover, the algorithm does not always converge

to an optimal ranker for the target collection. This is because too many inaccurate

labels are added to the training set. The second approach was shown to be more robust

under di↵erent transferring settings. However, the results in Figure 5.6 suggest that

the approach does not always yield the optimal transfer e↵ectiveness compared with a

proper �k% setting.

To improve the e↵ectiveness and robustness of unsupervised TR algorithms, we propose

to introduce a small number of relevance labels from the target collection as calibration

data. Di↵erent from supervised TR settings, where the labeled data from the target

collection is used for training, under this MSTR setting, the labeled data will only be

used for tuning the hyper-parameters for the unsupervised TR algorithms.

There are several reasons why the labeled target data is not used for training: 1) under

the MSTR setting, we only require a minimal number of relevance judgements for the

target collection, fewer than the number needed for training a supervised TR algorithm;

2) the labeled training data is too small to split into training and validation sets; 3) it is

hard to build the confidence of the transferred ranking function, without any monitoring

of the performance during the transferring; 4) Having the training data as calibration

data means there is a risk of overfitting.

Two hyper-parameters need to be tuned to enable better e↵ectiveness and reliability of

the RankSelfTrain algorithm, which will be explained and discussed in the following two

sections. The methodologies of tuning those parameters with validation data are also

discussed.

6.2.1 Pairwise Label Imputation

At the start of each iteration, RankSelfTrain needs to predict the relevance labels for

all the unlabeled query-document pairs for training from the target collection, given

the ranker parameters estimated from the previous iteration. This is done by using
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the updated ranker f (t�1) to predict a similarity score st�1

ij for every unlabeled query-

document pair. As each pair xij , the algorithm needs to determine the most likely label

(rij) for the pair with the confidence level, p(rij |st�1

ij ), given the similarity score.

In Chapter 5, the confidence score is estimated using Bayes’ rules:

p(rij = 1|sij = ↵) =
p(rij = 1)p(sij = ↵|rij = 1)P
v=0,1 p(sij = ↵|r = v)p(r = v)

(6.1)

The conditional distribution p(sij |r = 1) and (sij |r = 0) are estimated using Kernel

Density Estimation by combining the source data together with already labeled data

from the target collection. Similarly, the prior probabilities of p(rij = 1) and p(rij = 0)

are estimated using the source data, adjusted by the imputed relevance labels. At each

iteration, we only impute relevant labels - all the remaining documents will be labeled

as irrelevant documents and be used as unlabeled documents in the next iteration.

However, using the source data prior probability to approximate the prior probability

for the target collection is very inaccurate. Moreover, Kernel Density Estimation is more

computationally expensive.

Since the LambdaMART algorithm indirectly optimizes the pairwise loss (as part of a

list-wise loss, which is measured by swapping pairs of documents in the ranking), we can

directly use the modeled preference probabilities p(rij > rik) to predict the confidence

of pairwise preferences using Equation 5.3 from Chapter 5. The RankPairwiseEM al-

gorithm used the probabilities as weights to calculate the expected cost of the current

model. Instead, we now use the preference probabilities as confidence scores for label

predictions. At each iteration of the self-training process, if an unlabeled pair of docu-

ments has a confidence score higher than the threshold, it will be added to the training

set and the label will be kept for the rest of the iterations. To choose the best threshold,

we train several candidate ranking models with di↵erent candidates and pick the best

one by measuring the ranking e↵ectiveness of the current ranker on the validation set.

6.2.2 Early Stopping with the Validation Set

It can be di�cult to develop a single unsupervised strategy to determine when to stop

the RankSelfTrain processes when the algorithms are applied to a new collection with

little relevance information.
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Allowing the algorithms to determine which ranker is the optimal over the iterations,

it may require some relevance judgments for query-document pairs from the target col-

lection as the validation set. A ranker trained on di↵erent iterations can be tested and

compared on the validation set to give an image of how well the rankers perform.

However, in a real TR scenario, the objective is to optimize the e↵ectiveness of the

ranking functions on a new collection while minimizing the cost. So there will always

be constraints on how many relevance judgments can be obtained. If there is su�cient

budget to generate relevance labels for the target collection, TR may not be helpful

as it introduces noise from another collection. So we only consider the case where a

few labeled target query-document pairs are available for validating the performance.

However, measuring the performance of the rankers on a small validation set may not

represent their real performance on the entire collection. As a result, there may be

variations in terms of the measurements of system performance reflected on the judged

queries. One could use some active learning techniques to select a subset of queries that

are more representative for evaluation, or randomly select a small number of queries and

then use a statistical tool to make decisions. In reality, one may not have the flexibility to

choose the queries they want. As a result, in this chapter, we chose the second approach

to demonstrate the e↵ectiveness of the algorithm.

To decide when to stop the process, we conduct a paired t-test between the performance

of two consecutive iterations. If the performance has dropped significantly for a certain

number of iterations, we terminate the process and pick the best model. As a small

sample size was used, there is generally a risk that Type II Error can arise where there

t-test cannot measure the significance of the di↵erence when there is one. It puts a strict

condition for the algorithm to update. If it happens in the first iterations, one needs to

increase the sample size.

6.2.3 PairwiseRankSelfTrain

Algorithm 6 describes the proposed PairwiseRankSelfTrain algorithm, which starts by

training a source ranker f (0) with all the labeled data from the source collection. It

initializes an empty set ⌦ to store the pairwise label imputation. Lines 4-26 explains the

label imputation and ranker updating for each iteration. At each iteration, with each
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Algorithm 6: Pairwise Self-training for Ranking

Input: Source queries Qso and judgments Rso, target queries Qta, confidence
thresholds ⌘s and a validate set Qta

v , Rta
v

Output: Ranking function f
1 PairwiseRankSelfTrain(Qso,Rso,Qta,⌘)

2 Initialize set of labeled docs to be empty: ⌦(0) = ;;
3 Train ranker f (0) using (Qso, Rso) with Eq. 5.13;
4 for t 2 {1, ...} do
5 Calculate similarities for all query-doc pairs;

6 foreach unlabeled pair using f(xij ,xik) 62 ⌦(t�1) do
7 Calculate pairwise probabilities for all unlabeled doc pairs according to

Equation 5.2;
8 best validation score=0;

9 best model=f (t�1);
10 foreach ⌘ 2 ⌘s do

11 ⌦̂(t)
⌘ = ⌦(t�1);

12 if p(rij > xik)|s
(t�1)

ij , s(t�1)

ik ) > ⌘ then

13 Add (xij , 1), (xik, 0) to ⌦̂(t);

14 else if p(rij < xik)|s
(t�1)

ij , s(t�1)

ik ) > ⌘ then

15 Add (xij , 0), (xik, 1) to ⌦̂(t);

16 end

17 Train ranker f̂ (t) using Eq. 5.15;

18 Estimate performance s(✓t), by measuring the performance of f̂ (t) with

validation set,M(f̂ (t), Qta
v , Rta

v );
19 if s(✓) > best validation score then

20 best model=f̂ (t);

21 ⌦(t) = ⌦̂(t)
⌘ ;

22 end

23 end

24 if (|⌦(t)|� |⌦(t�1)|) == 0 then
25 return f (t�1);
26 end
27 if Model has not been improved for certain number of iterations, measured by

paired t-test then
28 return Best model in the last few iterations
29 end

30 end

candidate threshold for the confidence score, di↵erent candidate parameters are evalu-

ated to get the best performing model (lines 6-22). During each run with a parameter

setting, the algorithm first computes the pairwise probabilities for all unlabeled docu-

ment pairs from the unlabeled set. Notice that once a document pair has been labelled,

its label will not be changed in the following iterations. The updated document pairs

will be added to the training set together with their relevance labels to a temperate set
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⌦̂(t)
⌘ . With all the imputed relevance labels, an updated ranker is trained together with

the source data via:

✓̂(t+1) = arg min
✓

X

qi2Qso

X

dij2qi

Cij +
X

%2⌦̂
(t)
⌘

X

xij2%

Ĉij(R̂
(t)) (6.2)

where % is an imputed document pair, R̂(t) is the imputed label. We measure the

performance of the current model, s(✓t), according to their performance on the validation

set. We choose the best performed model to update the current best model and then

update the best training set accordingly. Finally, if there are no more labels to be

added to the set, the last ranking model will be returned. Or if the model has not

been improved for a certain number of iterations according to paired t-test, the best

performed algorithm will be returned.

6.3 Data and Methods

As it has been shown in the previous chapters, the performances of TR algorithms

depends on the similarity of the source and target collections. However, under the un-

supervised TR scenario, there is no established ways to measure the similarity of L2R

collections. As a result, the criteria for an e↵ective unsupervised and minimally super-

vised TR algorithm is that it can robustly improve or at least retain the e↵ectiveness of

the source model under all circumstances.

To evaluate the performance of the proposed PairwiseRankSelfTrain algorithm, we run a

series of experiments to simulate di↵erent transfer settings where the similarity between

the source and target collection vary.

6.3.1 Datasets

Notice that experiment setting is a bit di↵erent from previous chapters due to minimally

supervision setting, which requires a random sample from the target collection. To

obtain di↵erent similarities between the source and target collection, we randomly select

a subset from the source collection as the source dataset, and select a subset from the

target collection as the target dataset.
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Table 6.1: Experiment Setting for Minimally Supervised TR

Source Dataset
Unlabeled Target Dataset

for Training

Target Dataset

for Testing

Target Dataset

for Calibration

MSLR to LETOR 4.0 3k MSLR queries 1,213 LETOR 4.0 queries 1,213 LETOR 4.0 queries 50 LETOR 4.0 queries

Yahoo!L2R Set 1 to Set2 3k Set 1queries 3140 Set 2 queries 3140 Set 2 queries 50 Set 2 queries

We choose two transferring settings from previous chapters as the testing environ-

ment: 1) transferring from Set 1 to Set 2 in Yahoo!L2R; 2) transferring from MSLR

to LETOR 4.0. Both settings are close to real scenarios when one wants to transfer

their search algorithms between di↵erent markets. Moreover, the size of queries in both

cases are larger than others for randomization. The detailed description of the datasets

are shown in Table 2.1.

In this chapter, we create multiple synthetic data for TR via randomly selecting 3k

queries from the the source and target dataset separately. The data pooled from Set

1/MSLR is used as the source collection data and the data from Set 2/LETOR 4.0 is

used as the target collection data. The randomization process will create variations in

the similarities. We randomly selected 50 queries from the target collection as the target

validation set, the remaining queries of the target collection data are randomly split into

two equal sized query sets, one for training and the other for testing. The ground-truth

labels for the training data from the target collection are removed, and the data will be

used for label imputation and training during the transfer. For data split, training and

testing have been run 10 times to measure variation. The detailed experiment setting is

shown in Table 6.1.

6.3.2 Setup and Measurements

The XGBoost library implementation of LambdaMART was used as the base ranker.1

We use “pairwise:ndcg” as the objective function for XGBoost, which means that the

updating gradients are the �s where the swap change |�Z| was measured using the

NDCG metric. The tree size was set to 1000, the maximum number of leaves was set to

10, and the subsample size was set at 0.5 to reduce the variance in the sample. During

the transfer, the alpha level for the t-test used to determine whether to update models

was set at 0.12.
1
https://github.com/dmlc/xgboost version 0.81

2
Since the sample size is small, and the variation in the sample is larger, so we set the alpha level to

a larger value to allow for more variation.
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For all the algorithms, we set the maximum iteration � to 20. For the RankSelfTrain

algorithm, the threshold on confidence was set at 95%. The � for pair-wise probability

was set as 1 in the PairwiseRankSelfTrain algorithm and the candidate thresholds were

set at {0.9, 0.92, 0.94, 0.96, 0.98}.

The following baselines were considered:

• �MART.source: LambdaMART trained with all the data from the source col-

lection.

• �MART.target: LambdaMART trained with data from the target collection via

cross-validation.

The following label imputation algorithms were tested:

• RankSelfTrain: Self-training-based algorithm for relevance labels from last chap-

ter, using LambdaMART as the base ranker.

• PairwiseRankSelfTrain: Self-training-based algorithm for document pair pref-

erences, using LambdaMART as the base ranker. The algorthms use a target

validation set to calibrate the hyper-parameters for training.

All models were evaluated using NDCG [106], with a rank cut-o↵ of 10. Statistical

significance was determined using a two-tailed paired t-test, with a threshold of 0.05.

6.4 Result and Discussion

Table 6.2 shows the results when transferring from the subset of MSLR to LETOR 4.0.

Due to the fact that the query size and the document depth in LETOR 4.0 is small,

the model trained on the source dataset, MSLR, which has larger training data, has

similar or even better performance on the target collection than the �MART.target.

This simulate the situation when the source model is more e↵ective than the target

collection. In such situations, an e↵ective TR would at least have similar performance

with the �MART.source. The existing model RankSelfTrain has shown its reliability in

such situations that it did not harm the performance of the source model. The proposed
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Table 6.2: E↵ectiveness (NDCG@10 score) for 10 runs of minimally supervised TR
when transferring from MSLR to LETOR 4.0. Bold text indicates the best scores of
each row, † denotes the figure is significantly better than �MART.source, ‡ denotes the
figure is significantly better than RankSelfTrain, ? denotes the figure is significantly

better than �MART.target. p < 0.05

Run �MART.source RankSelfTrain PairwiseRankSelfTrain �MART.target
R1 0.569 0.569 0.608 † ‡ ? 0.564
R2 0.561 ? 0.562 ? 0.602 † ‡ ? 0.553
R3 0.572 ? 0.576 † ? 0.606 † ‡ ? 0.563
R4 0.561 0.562 0.602 † ‡ ? 0.557
R5 0.563 0.567 0.598 † ‡ ? 0.560 ?
R6 0.573 ? 0.571 ? 0.610 † ‡ ? 0.565
R7 0.565 0.565 0.606 † ‡ ? 0.565
R8 0.567 0.569 0.611 † ‡ ? 0.562
R9 0.559 0.561 ? 0.601 † ‡ ? 0.552
R10 0.565 0.564 0.605 † ‡ ? 0.565

Table 6.3: E↵ectiveness (NDCG@10 score) for 10 runs of minimally supervised TR
when transferring from Yahoo!L2R Set 1 to Set 2. Bold text indicates the best scores
of each row, † denotes the figure is significantly better than �MART.source, ‡ denotes
the figure is significantly better than RankSelfTrain, ? denotes the figure is significantly

better than �MART.target. p < 0.05

Run �MART.source RankSelfTrain PairwiseRankSelfTrain �MART.target

R1 0.740 0.743† 0.759† ‡ ? 0.750† ‡
R2 0.743 0.746† 0.758† ‡ ? 0.748†
R3 0.736 0.739† 0.757† ‡ ? 0.746† ‡
R4 0.740 0.742 0.757† ‡ ? 0.749† ‡
R5 0.735 0.735 0.751† ‡ ? 0.743† ‡
R6 0.741 0.741 0.758† ‡ ? 0.747† ‡
R7 0.742 0.743 0.759† ‡ ? 0.746 †
R8 0.734 0.734 0.754† ‡ ? 0.745† ‡
R9 0.739 0.742† 0.756† ‡ ? 0.745† ‡
R10 0.734 0.738† 0.754† ‡ ? 0.743 †

algorithm under the minimally supervised TR scenario, turns out to be the most e↵ective

model among all. The PairwiseRankSelfTrain algorithm has shown significantly better

performance than all the other algorithms in all runs.

The results for transferring from Yahoo!L2R are shown in Table 6.3. This is the scenario

when the source and target collection come from di↵erent markets with di↵erent lan-

guages. Similar to what we found before, performance degradation was observed when

LambdaMART is trained and tested on two di↵erent datasets from di↵erent data distri-

bution. For all the 10 random sets of experiments, �MART.target is significantly better

than �MART.source. With the label-imputation method, the RankSelfTrain model we
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developed from the previous chapter shows some improvement over the �MART.source

in most cases, although the improvements are not significant. Furthermore, all of these

algorithms are significantly worse than the �MART.target. The proposed algorithm,

PairwiseRankSelfTrain, appears to be the best among all the other algorithms. In

all the 10 sets of experiments, the PairwiseRankSelfTrain algorithm outperformed the

�MART.source and RankSelfTrain algorithm significantly. Moreover, the PairwiseR-

ankSelfTrain algorithm outperformed the �MART.targets which are ranking functions

that were directly trained on the data from the same collection.

6.4.1 Discussion

Overall, the performance of the proposed algorithm Pairwise has shown its advantages

of using a target validation set to tune the hyper-parameters in order to optimize the

performance. The result shows that with a proper TR algorithm and setup, the per-

formance of a transferred ranker can be better than directly training with a relatively

small number of training data.

In this experiment, we have used only 50 queries as the target validation set and demon-

strated a significant performance increase. In real applications, the variations in the

query set may be so large that the t-test will not detect the di↵erence between al-

gorithms. In such cases, one would need to make a decision whether to increase the

alpha level for the t-test, or increase the number of relevance judgements to expand the

reliability of the judgement.

Apart from the benefits of using a validation set for tuning hyper-parameters, the new

pairwise label imputation is the other reason why the new algorithm was performing

much better than the previous one. The RankSelfTrain only assumes that relevance

labels are binary from the target collection. However, two relevant documents may have

a di↵erent granularity of relevance, which means one document could be more relevant

than the other, which will not be reflected in the RankSelfTrain label imputation process.

Di↵erently, with the PairwiseRankSelfTrain algorithm, each pair of documents in the

target collection will have a pairwise preference probability for label imputation, which

can obtain a more accurate label process for training.



Transfer Learning for Information Retrieval 139

6.5 Conclusion

This chapter aims to improve the e↵ectiveness and reliability of the unsupervised TR

by introducing a minimal number of relevance judgments from the target collection.

We proposed a PairwiseRankSelfTrain algorithm that directly imputes the relevance

preference labels for each pair of documents in the target collection, determined by the

preference probability inferred from the model trained in the previous iterations. The

threshold of when to add the preference labels and when to terminate the transfer is

calibrated by a minimal number of validation sets from the target collection.

The algorithm, together with our previous algorithm, RankSelfTrain, were tested on the

two transferring sets by randomly generating source and target collections. The results

on the Yahoo!L2R and Microsoft collections show that the new proposed algorithm can

outperform the baseline, which is a model trained on the source collection and directly

applied to the target. The new algorithm is also significantly better than our previous

approach on all the ten sets of experiments. Moreover, the algorithm demonstrates to

be significantly better than models that were directly trained on a set of data from the

same collection.

The minimality of the calibration set has not been explored in this chapter. The cali-

bration set from the target collection is not used for training, it will not directly impact

the training process of the algorithm. However, the labels will be used for calibrating

the hyper-parameters during the training process, the calibration set may have some

impact on the performance of the algorithm. There are di↵erent ways to explore the

e↵ectiveness of an IR test collection, for example, some [129] have studied minimal test

collections. In this chapter, we simply applied a random procedure to select the queries

to demonstrate the e↵ectiveness of the algorithm. However, better methodologies can

be investigated in the future.



Chapter 7

Conclusion and Future Work

Due to the di�culties of obtaining relevance labels for a new collection, training an

e↵ective and reliable ranking function for an information retrieval system with limited

relevance labels has attracted much research. In many cases, because of privacy issues

in assessing documents, or because of the highly personalized tasks like job search or

hotel search, there are many search domains where it is di�cult or impossible to obtain

relevance labels to build o✏ine test collections for L2R. Because of the ability to share

knowledge between di↵erent tasks, transfer learning has been considered as one possible

solution for such ranking tasks, especially when there exists a related test collection

that provides plenty of relevance labels. For example, a search engine company may

also have an o✏ine test collection for an old market, but not the new one. Existing

studies have been mainly focused on transfer learning when there are already some

relevance labels from the target collection, and not cases when there are no any explicit

relevance judgments. Moreover, several fundamental research questions have not been

answered which would help tackle the TR problem: What are the generalization abilities

of di↵erent L2R models? How does changing the document collection a↵ect the data

distribution for L2R tasks? How can one determine the “transferabilities” for L2R tasks?

Which are the best-performing TR techniques? How can one measure the performance

of di↵erent TR algorithms? This thesis has contributed to answering the above research

questions by thorough examination and development of di↵erent TR techniques on large

publicly-available L2R test collections.

140
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7.1 Thesis Contribution

Although some attempts have been made to apply transfer learning techniques to L2R

tasks, few researchers have investigated the causes of performance degradation. In Chap-

ter 3, we formalized the data generating process for L2R collections and showed that

the data distribution of an L2R task is controlled by many factors. As a result, any

changes in the document set, query set, and relevance judgment process may cause a

distribution change. The impact of di↵erent types of changes in the data distribution

di↵ers with individual L2R algorithms. As a result, for a particular TR scenario, under-

standing what caused the di↵erences in the distribution and what performance change

is expected is the first step in conducting a successful knowledge transfer or determining

whether transfer learning is needed.

As shown in Chapter 3, unlike with other natural language processing (NLP) tasks, the

ranking e↵ectiveness of a rank learning algorithm may not change even when applied

to a di↵erent domain. Part of the reason is that the features used for defining an L2R

task are not specific the words in the documents, but the statistics resulting from term-

matching across the query-document pairs. At the same time, the domain adaption

techniques used for NLP tasks that incorporate lexicon correlations cannot be used for

L2R tasks. The data distribution change in the input feature space seems to be the

major challenge. One common solution for tackling the so-called covariate shift issue

is through a technique called “instance weighting” that computes importance weights

for each training instance in the source collection to move the source data distribution

closer to the target data distribution. The algorithms are trained by optimizing the

weighted loss according to their importance. Since most of state-of-the-art L2R algo-

rithms optimize a ranking function at the pair or query level, one di�culty of applying

instance weighting techniques to L2R is instance weighting at pair level or query level.

Chapter 4 answers the challenge by examining both existing and new query-level in-

stance weighting techniques on various publicly available L2R collections. The thorough

comparison shows that none of the techniques consistently outperforms the others in-

cluding the source model trained without any weights. Our new proposed model seems

to be more reliable, however, there are still cases when the new approach does not work

properly. The underlying reason was that the high-level representation of queries may

lose structural information in the data.
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Instance weighting for L2R datasets can be di�cult and inaccurate. Instead, in Chap-

ter 5, we propose to directly impute relevance labels for training data from the target

collection and then use these imputed labels for training. As the data from the target

collection is directly used for training, the problem of covariate shift can be tackled.

The main challenge of the label imputation process is to generate accurate predic-

tions for each query-document pair. This could be done by di↵erent variants of the

Expectation-Maximization processes. Experiments over various test collections show

that label-imputation algorithms are more e↵ective and robust across di↵erent transfer

environments.

The label-imputation methods appears to be an e↵ective solutionfor unsupervised TR

tasks. However, the performance of some of those algorithms are sensitive to parameter

settings for particular transfer tasks. In Chapter 6, we looked to solve the problem by

obtaining a minimal number of relevance labels from the target collection and use them

as a validation set to calibrate the hyper-parameters during training. This technique

demonstrated consistent improvements in performance, and indeed outperformed models

trained on the target data alone.

7.2 Other Contributions

This thesis has also made a number of other contributions to TR research as well as

broader research on transfer learning and L2R.

Transfer learning for ranking is a relatively new task and thus there have been limited

resources available for testing di↵erent algorithms. This thesis has established various

test environments for testing both supervised and unsupervised TR algorithms, which

could potentially be used for testing other TR algorithms. Moreover, the e↵ectiveness of

a TR algorithm could vary across di↵erent transfer environments, and thus measuring

the consistency of a TR algorithm is an important metric to test the robustness of a TR

algorithm. In this thesis, we propose to perform posthoc analysis using the Friedman and

Nemenyi tests to determine significant di↵erences between algorithms across di↵erent

experimental settings. .

The thesis has made several attempts to minimize the di↵erences in the data distribution

between the source and target collection when the objective function of an algorithm is



Transfer Learning for Information Retrieval 143

not minimized at the instance level. The study of this thesis can inspire other work on

unconventional transfer learning tasks like preference learning [130]. Moreover, Chapter

4 discussed various ways to measure the similarities between di↵erent queries. The

study of the similarities of queries can be used to understand the importance of query

selection for active learning as well as proper ways to establish e↵ective o✏ine L2R test

collections.

7.3 Limitation of the Study

The study of this thesis is largely limited by the available test environment. As has been

mentioned previously, apart from the Yahoo!L2R, there are no other public datasets that

can be used for TR settings. As a result, we are not explicitly testing the distribution

change when a particular controlling factor has changed. Moreover, as for those large test

collections like MSLR and Yahoo!L2R, there is no available information for the queries,

which has limited us to explore other possibilities to estimate importance weights for

source queries via the information of the queries.

7.4 The Future

The lack of reliable relevance labels for building o✏ine L2R test collections is still one of

the biggest challenges for developing a sound ranking model for commercial information

retrieval systems. Thus, the study of TR has continuously attracted the attention of

researchers as well as industry. With a better understanding of the importance of query

and document distributions for the training of L2R models, better approaches for query-

level instance weighting can be developed. Apart from investigating the data distribution

change of the feature space, the meta information of the queries can also be helpful in

solving the TR problem.

Many other researches have turned to user engagements (e.g. user dwell-time on search

results ) to build o✏ine [131, 132] or online L2R models [133–136] instead of explicit

relevance judgments. TR is still a useful technique for these approaches as the implicit

relevance labels could be biased and the interpretation of those engagement signals
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can be challenging. The study of TR algorithms for those tasks would help transfer

knowledge from an existing successful task.

Recently, the advances in deep learning [137] techniques and deep learning solutions for

retrieval and ranking [138–142] have attracted a large amount of attention. Training

neural IR models requires massive amounts of training data. Moreover, most neural IR

models use raw text features to represent queries and documents. The generalization

ability of deep neural models for ranking may not be as great as it is for conventional L2R

algorithms. For such learning algorithms, the learned high-level feature representation

may be domain-specific. As a result, using TR techniques to solve the lack of label

bottlenecks for neural IR models has much potential. In the field of deep learning,

transfer learning has been a hot topic and many studies [65, 143] have been conducted

to determine how best to transfer knowledge between two or more tasks. As a result,

we would expect to see more studies on TR for neural IR models in the near future.

7.5 Overall Conclusion

The findings of this thesis suggest that the generalization abilities of L2R algorithms can

vary across di↵erent situations. Instance weighting at the query level over the feature

distribution appears an ine↵ectivesolution for unsupervised TR while label imputation

could be an e↵ective and reliable solution. Moreover, obtaining a few target relevance

labels for validation purposes to tune the hyper-parameters for unsupervised TR can

dramatically improve the e↵ectiveness and reliability of the model.
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