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Abstract
Regularized multinomial logistic regression, multi-label classification, and multi-task learn-
ing are examples of machine learning problems in which conflicting objectives, such as losses
and regularization penalties, should be simultaneously minimized. Therefore, the narrow
perspective of looking for the learning model with the best performance should be replaced
by the proposition and further exploration of multiple efficient learning models, each one
characterized by a distinct trade-off among the conflicting objectives. Committee machines
and a posteriori preferences of the decision-maker may be implemented to properly explore
this diverse set of efficient learning models toward performance improvement. The whole
multi-objective framework for machine learning is supported by three stages: (1) The multi-
objective modelling of each learning problem, explicitly highlighting the conflicting objectives
involved; (2) Given the multi-objective formulation of the learning problem, for instance,
considering loss functions and penalty terms as conflicting objective functions, efficient so-
lutions well-distributed along the Pareto front are obtained by a deterministic and exact
solver named NISE (Non-Inferior Set Estimation); (3) Those efficient learning models are
then subject to a posteriori model selection, or to ensemble filtering and aggregation. Given
that NISE is restricted to two objective functions, an extension for many objectives, named
MONISE (Many Objective NISE), is also proposed here, being an additional contribution
and expanding the applicability of the proposed framework. To properly access the merit
of our multi-objective approach, more specific investigations were conducted, restricted to
generalized linear learning models with regularization: (1) What is the relative merit of the
a posteriori selection of a single learning model, among the ones produced by our proposal,
when compared with other single-model approaches in the literature? (2) Is the diversity level
of the learning models produced by our proposal higher than the diversity level achieved by
alternative approaches devoted to generating multiple learning models? (3) What about the
prediction quality of ensemble filtering and aggregation of the learning models produced by
our proposal on: (i) multi-class classification, (ii) imbalanced classification, (iii) multi-label
classification, (iv) multi-task learning, (v) multi-view learning? The deterministic nature of
NISE and MONISE, their ability to properly deal with the shape of the Pareto front in each
learning problem, and the guarantee of always obtaining efficient learning models are advo-
cated here as being responsible for the promising results achieved in all those three specific
investigations.

Keywords: Machine Learning; Multi-objective optimization; Ensemble learning, Pattern
classification.



Resumo
Regressão logística multinomial regularizada, classificação multi-rótulo e aprendizado multi-
tarefa são exemplos de problemas de aprendizado de máquina em que objetivos conflitantes,
como funções de perda e penalidades que promovem regularização, devem ser simultanea-
mente minimizadas. Portanto, a perspectiva simplista de procurar o modelo de aprendizado
com o melhor desempenho deve ser substituída pela proposição e subsequente exploração
de múltiplos modelos de aprendizado eficientes, cada um caracterizado por um compromisso
(trade-off ) distinto entre os objetivos conflitantes. Comitês de máquinas e preferências a pos-
teriori do tomador de decisão podem ser implementadas visando explorar adequadamente
este conjunto diverso de modelos de aprendizado eficientes, em busca de melhoria de de-
sempenho. A estrutura conceitual multi-objetivo para aprendizado de máquina é suportada
por três etapas: (1) Modelagem multi-objetivo de cada problema de aprendizado, destacando
explicitamente os objetivos conflitantes envolvidos; (2) Dada a formulação multi-objetivo do
problema de aprendizado, por exemplo, considerando funções de perda e termos de penaliza-
ção como objetivos conflitantes, soluções eficientes e bem distribuídas ao longo da fronteira
de Pareto são obtidas por um solver determinístico e exato denominado NISE (do inglês Non-
Inferior Set Estimation); (3) Esses modelos de aprendizado eficientes são então submetidos a
um processo de seleção de modelos que opera com preferências a posteriori, ou a filtragem e
agregação para a síntese de ensembles. Como o NISE é restrito a problemas de dois objetivos,
uma extensão do NISE capaz de lidar com mais de dois objetivos, denominada MONISE (do
inglês Many-Objective NISE), também é proposta aqui, sendo uma contribuição adicional
que expande a aplicabilidade da estrutura conceitual proposta. Para atestar adequadamente
o mérito da nossa abordagem multi-objetivo, foram realizadas investigações mais específicas,
restritas à aprendizagem de modelos lineares generalizados com regularização: (1) Qual é o
mérito relativo da seleção a posteriori de um único modelo de aprendizado, entre os pro-
duzidos pela nossa proposta, quando comparado com outras abordagens de modelo único
na literatura? (2) O nível de diversidade dos modelos de aprendizado produzidos pela nossa
proposta é superior àquele alcançado por abordagens alternativas dedicadas à geração de
múltiplos modelos de aprendizado? (3) E quanto à qualidade de predição da filtragem e agre-
gação dos modelos de aprendizado produzidos pela nossa proposta quando aplicados a: (i)
classificação multi-classe, (ii) classificação desbalanceada, (iii) classificação multi-rótulo, (iv)
aprendizado multi-tarefa, (v) aprendizado com multiplos conjuntos de atributos? A natureza
determinística de NISE e MONISE, sua capacidade de lidar adequadamente com a forma da
fronteira de Pareto em cada problema de aprendizado, e a garantia de sempre obter modelos
de aprendizado eficientes são aqui pleiteados como responsáveis pelos resultados promissores
alcançados em todas essas três frentes de investigação específicas.



Keywords: Aprendizado de Máquina; Otimização Multi-objetivo; Aprendizado por ensem-
bles, Classificação de Padrões.



List of Figures

Figure 1 – Representation of multiple binary classifiers with their correspondent lo-
gistic loss. Scenario with more miss-labelled samples from the red class
than from the blue class. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2 – Representation of multiple binary classifiers with their correspondent lo-
gistic loss. Scenario with balanced miss-labelled samples. . . . . . . . . . 24

Figure 3 – Multi-objective representation of the High-End CPUs with only 29 Pareto-
optimal options in 485 CPUs. Values and benchmark scores available at
<cpubenchmark.net>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4 – Representation of the decision space (on the left) and the objective space
(on the right) taking two decision variables and two objectives. . . . . . 32

Figure 5 – Representation of the solution produced by the weighted sum method. . 34
Figure 6 – Pareto front of logistic error vs L2 norm of the parameter vector for the

well-known Iris dataset. ( c○2018 IEEE) . . . . . . . . . . . . . . . . . . . 35
Figure 7 – Geometrical view of the current representation and relaxation of the Pareto

front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 8 – Illustrative sequence of steps of the NISE method. . . . . . . . . . . . . . 38
Figure 9 – Representation of inner and outer approximation derived from solutions of

the weighted sum method. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 10 – Suboptimal solutions of the weight vector calculation (described in Defi-

nition 2.8) of the MONISE method. . . . . . . . . . . . . . . . . . . . . . 41
Figure 11 – Illustrative sequence of steps of the MONISE method. . . . . . . . . . . . 42
Figure 12 – Evolution of margin µ along iterations for the problem in Definition 2.9. 43
Figure 13 – Two perspectives of the non-inferior set automatically obtained at the

Pareto front for the problem in Definition 2.9 using MONISE. . . . . . . 44
Figure 14 – Behavior of the prediction error in training and validation dataset when λ

is increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 15 – Behavior of the parameters when λ is increased with l2 norm regularization. 51
Figure 16 – Behavior of the parameters when λ is increased with l1 norm regularization. 51
Figure 17 – Two perspectives of the same Pareto front representation, with the logistic

error of each learning task as the three objective functions ( c○2018 IEEE)
(RAIMUNDO; VON ZUBEN, 2018a). . . . . . . . . . . . . . . . . . . . 61

Figure 18 – Overview of the proposed framework for multi-objective learning. . . . . 64
Figure 19 – Pareto front representation for the low-res-spect dataset. . . . . . . . . . 81

cpubenchmark.net


Figure 20 – Pareto front representation for the heart-cleveland dataset. . . . . . . . . 82
Figure 21 – Evolution of the some-correct (•) and both-correct (×) diversity measures

by increasing the number of generated components for heart-cleveland di-
versity dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 22 – Bar chart comparing the diversity behavior of four techniques devoted to
ensemble generation. From left to right, bars correspond to: boosting, bag-
ging, regular multi-objective component generator using NISE, and tuned
multi-objective component generator using NISE. . . . . . . . . . . . . . 86

Figure 23 – Representation of the ensemble operation involving single-task learned
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 24 – Representation of the ensemble operation involving transfer-learned models. 98
Figure 25 – Graphs denoting the results of a Finner post-hoc test, indicating the meth-

ods hierarchy obtained for AUC, and the global comparison of metrics. . 100
Figure 26 – Graphs denoting the results of a Finner post-hoc test, indicating the pair-

wise comparison of methods considering SPE, AUC and global metrics. . 103
Figure 27 – Many-objective training followed by a stacking aggregation representation. 106
Figure 28 – Average performance of the evaluated methods for each metric in each

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 29 – A heatmap representation of the task parameters with distinct sharing

structures. Parameters are located at the ordinate axis, and tasks at the
abscissa axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 30 – A heatmap representation of the different noise profiles applied to the
single cluster sharing structure (Figure 29-b). Parameters are located at
the ordinate axis and tasks at the abscissa axis. . . . . . . . . . . . . . . 111

Figure 31 – Normalized average accuracy (and standard deviation) for distinct classi-
fiers grouped by sample size for synthetic datasets (Part I). On each group
label there is the sample size, and the accuracy of stl, inside parenthesis,
which was subtracted from every method’s average accuracy inside that
group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 32 – Normalized average accuracy (and standard deviation) for distinct classi-
fiers grouped by sample size for synthetic datasets (Part II). On each group
label there is the sample size, and the accuracy of stl, inside parenthesis,
which was subtracted from every method’s average accuracy inside that
group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



Figure 33 – Normalized average accuracy (and standard deviation) for distinct classi-
fiers grouped by sample size for real datasets. On each group label there
is the sample size, and the accuracy of stl, inside parenthesis, which was
subtracted from every method’s average accuracy inside that group. . . . 117

Figure 34 – Performance of the proposed method varying the number of ensemble com-
ponents generated by the multi-objective procedure. . . . . . . . . . . . . 118

Figure 35 – Representation of the generated relations and parameters for the dataset
three clusters with outliers. . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 36 – Representation of resultant mean influence of the many-objective trained
multi-task models for the dataset three clusters with outliers. . . . . . . . 120

Figure 37 – Representation of the generated relations and parameters for the dataset
three clusters with outliers, using “w influence”. . . . . . . . . . . . . . . 121

Figure 38 – Representation of the generated relations and parameters for the dataset
three clusters with outliers, using “w similarity”. . . . . . . . . . . . . . . 121

Figure 39 – Representation of the generated relations and parameters for the dataset
three clusters with outliers, using “component influence”. . . . . . . . . . 121

Figure 40 – Representation of the recovered task relations for the real datasets. . . . 122



List of Tables

Table 1 – Statistical comparison involving five model selection methods with three
different number of evaluations. . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 2 – Friedman rank (average) considering the accuracy metric. Top 60 out of
190 classifiers (proposed methods in bold). . . . . . . . . . . . . . . . . . 88

Table 3 – Friedman rank (average) considering the kappa metric. Top 60 out of 190
classifiers (proposed methods in bold). . . . . . . . . . . . . . . . . . . . . 89

Table 4 – Friedman rank (average) considering the gmean, kappa and F1 metric for
all datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Table 5 – Friedman rank (weighted average) considering the gmean, kappa and F1
metric for all datasets. The Friedman rank is weighted by the imbalance-
degree metric with total variance (ORTIGOSA-HERNÁNDEZ et al., 2017). 92

Table 6 – Friedman rank (average) considering the gmean, kappa and F1 metric for
the 20 most imbalanced datasets (according to imbalance-degree metric
with total variance (ORTIGOSA-HERNÁNDEZ et al., 2017). . . . . . . . 93

Table 7 – Friedman rank and average values for SEN, SPE, LAT, AUC and UND
metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 8 – Friedman rank and average values for SEN, SPE, LAT, AUC and UND
metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 9 – Description of the benchmark datasets. . . . . . . . . . . . . . . . . . . . 105
Table 10 – Average ranking and statistical comparisons for each metric. . . . . . . . . 107
Table 11 – Rate of correctly recovered connections between the tasks in w.r.t. the gen-

erative relationships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Symbols

Symbol Meaning
Multi-objective optimization symbols
m objective space dimension
n decision space dimension
w ∈ [0,1]m weighted sum method’s weighting vector
x ∈ Rn decision space variable
r ∈ Rm objective space variable
r,r ∈ Rm outer and inner approximation of the Pareto front for NISE and

MONISE methods
f (·) ∈ R, f (·) ∈ Rm objective function and vector of objective functions
Machine learning variables
N number of samples
d number of features
K number of classes
L number of labels
T number of tasks
V number of views or groups
x ∈ Rd sample input
y ∈ {0,1}K sample output
θ ∈ Rd vector of parameters
f (·) generic objective function
l(·) generic learning loss function
r(·) generic regularization function



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1 Basics of machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Basics of multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Using conflicts to deal with machine learning problems . . . . . . . . . . . . 26
1.4 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Publications and already submitted manuscripts . . . . . . . . . . . . . . . . 29

2 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Weighted sum method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 NISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Neighborhood choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3 Calculation of the scalarization weight vector . . . . . . . . . . . . . 37
2.2.4 Updating new neighborhoods . . . . . . . . . . . . . . . . . . . . . . 38
2.2.5 Stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 MONISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Relaxation-approximation interpretation of the weighted sum method 39
2.3.2 Calculating the weight vector for the weighted sum method . . . . . . 40
2.3.3 Outline of the methodology . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Summarizing comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 Learning with generalized linear models . . . . . . . . . . . . . . . . . . . . . 45

3.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Multinomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Parameter prior and regularization . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Multi-label classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Multi-input learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Summarizing comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 The proposed framework for multi-objective learning . . . . . . . . . . . . . . 55
4.1 Multi-objective modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Generalized linear models with regularization . . . . . . . . . . . . . 56



4.1.2 Regularized logistic regression . . . . . . . . . . . . . . . . . . . . . . 56
4.1.3 Regularized multinomial logistic regression models . . . . . . . . . . . 57
4.1.4 Multi-label classification model . . . . . . . . . . . . . . . . . . . . . 58
4.1.5 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.6 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.7 Group LASSO and multi-view learning . . . . . . . . . . . . . . . . . 59

4.2 Multi-objective training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Ensemble filtering and aggregation . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Summarizing comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Multi-objective learning in the literature . . . . . . . . . . . . . . . . . . . . 65
5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Imbalanced classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 Multi-label classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.7 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.8 Multi-view learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.9 Summarizing comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1 Multi-class classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.2 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.2.1 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.2.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.3 Ensemble generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.3.1 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.3.2 Experimental setup, baselines and evaluation metrics . . . . 84
6.1.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . 84

6.1.4 Ensemble filtering and aggregation . . . . . . . . . . . . . . . . . . . 86
6.1.4.1 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . 86
6.1.4.2 Experimental setup, baselines and evaluation metrics . . . . 87
6.1.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



6.1.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.5 Imbalanced classification . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.5.1 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.5.2 Experimental setup, baselines and evaluation metrics . . . . 90
6.1.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Detection of epileptic seizures . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2 Transfer learning applied to the detection of epileptic seizures . . . . 96

6.2.2.1 Proposed methods . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.2.1.1 Single-task predictor generated by multi-objective

optimization . . . . . . . . . . . . . . . . . . . . . 96
6.2.2.1.2 Ensemble of single-task learned models . . . . . . . 97
6.2.2.1.3 Ensemble of transfer-learned models . . . . . . . . 97

6.2.2.2 Experimental setup, baselines and evaluation metrics . . . . 98
6.2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.3 Multi-view learning applied to detection of epileptic seizures . . . . . 100
6.2.3.1 Proposed methods . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.3.2 Experimental setup, baselines and evaluation metrics . . . . 101
6.2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Multi-label classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 Experimental setup, baselines and evaluation metrics . . . . . . . . . 106
6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.1 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1.1 Synthetic datasets . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.1.2 Real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.3 Experimental setup, baselines and evaluation metrics . . . . . . . . . 113
6.4.4 General performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



6.4.5 Sensitivity to the number of ensemble components . . . . . . . . . . . 117
6.4.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.6 Analysis of knowledge sharing relations . . . . . . . . . . . . . . . . . 119
6.4.6.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



21

Chapter 1

Introduction

The design of high-performance learning machines usually involves decision making
under conflicting objectives. Let us take the example of medical diagnosis systems: due to
the scarcity of information, if a learning machine focus on the patterns of healthy patients it
can incorrectly diagnose sick patients (false negative), and vice-versa (false positive). When
we design medical diagnosis systems, we rarely produce learning machines with no incorrect
diagnosis, but we can usually tune the machine to promote lower false positive or false
negative rates.

Given that, a system that creates distinct classifiers capable of capturing the patterns
of healthy and sick patients, with distinct false positive and false negative rates, can be very
beneficial, because the diversity of behavior of the obtained classifiers may promote better
generalization. A posteriori multi-objective methods are capable of finding a set of efficient
classifiers exhibiting a wide range of trade-offs between false positive and false negative rates.

The main purpose of this thesis is to further explore the multi-objective nature of the
learning problem, by properly: (1) specifying the conflicting objectives in an effective math-
ematical formulation; (2) solving the resulting multi-objective optimization problem with an
existing deterministic solver characterized by consistently spreading the candidate solutions
(learning models) along the Pareto front; (3) extending that multi-objective solver to deal
with more than two conflicting objectives, thus expanding the applicability of the method-
ology; (4) exploring the obtained efficient learning models using a posteriori selection of a
single learning model or even aggregating multiple efficient learning models in an ensemble,
thus taking full advantage of the distinct trade-offs among the learning models.

Theoretical aspects of machine learning and multi-objective optimization are intro-
duced in what follows, evidencing the mutual relationship of both areas and thus creating
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favourable conditions to support the main proposal.

1.1 Basics of machine learning

In psychology, learning is defined as a permanent change in the behaviour of the
decision maker based on past experience (GROSS, 2010). Embedding the learning proce-
dure on computers, without human interference, is the main objective of machine learning
(MITCHELL, 1997). Machine learning is gaining more and more attention due to the in-
creasing availability of data in the information age (HASTIE et al., 2009), and learning from
data usually occurs exploring one of two approaches (HASTIE et al., 2009): (i) supervised
learning, that uses the gathered data and some expert knowledge (used to label the data)
to build a system capable of predicting new outcomes; this also allows human insights on
the patterns that explain the expert knowledge; (ii) unsupervised learning, that aims to find
the patterns that describe the statistical distribution of the data, searching for a model that
explains its generation.

More formally, given an input x and an output y, supervised learning consists in
finding a map function f (·) that provides the relation between input and output ( f (x) ≈
y). In many methodologies, such as linear methods, support vector machines (SVM) and
neural networks, it is defined a loss function l(·) that measures the dissimilarity between the
function f (x,θ) and the output y, given a parameter vector θ. In supervised learning, the
two main problems are: (i) regression: in which we want to predict a real value y ∈ R, and
(ii) classification: in which we want to predict the membership yk ∈ {0,1} to a given class k.

Taking the example of binary classification (where we want to find the membership
y ∈ {0,1} to a single class), a suitable mapping function consists in measuring the probability
of membership f (x,θ) ∈ [0,1] to that class. A good loss function would measure how far the
probability is from the correct assignment (0 or 1). However, it is still necessary to adjust the
parameter vector θ to reduce the learning loss l(·), which can be accomplished by optimization
procedures.

It is important to notice the necessity of designing a robust procedure that is capable
of finding the parameter vector θ which guides to the minimization of the learning loss.
To illustrate this challenge, Figure 1 shows the loss l(·) for different parameter vectors θ
(hyperplanes that separate samples belonging to one class from samples belonging to another
class), represented here as lines of different colors, and the goal is represented by the orange
line.

However, the selection of the learning model with minimal loss might be misguiding.
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Figure 1 – Representation of multiple binary classifiers with their correspondent logistic loss.
Scenario with more miss-labelled samples from the red class than from the blue
class.

Figure 1 represents a scenario where there are more miss-labelled samples from the red
class than from the blue class. A more realistic representation is shown in Figure 2, that
represents the same distribution but with balanced miss-labelled samples. In this case, the
classifier represented by the blue line is the most suitable classifier.

This reasoning highlights the necessity of dealing with two challenges: (1) how to
direct the optimization procedure, and (2) how to exploit distinct models. The first challenge
is called model selection or hyper-parameter tuning, which consists in selecting the (hyper-
)parameters that guide the optimization (or learning) procedure; the second challenge may
be faced by committee machines, in the form of an ensemble of learning models, and consists
in properly combining the prediction of multiple classifiers, that was generated by exploring
distinct perspectives of the problem.

The central concept for model selection relies on cross-validation. This procedure can
be done by splitting the data sampling into distinct sets: training and validation. The first one
is used to adjust the model (for example by optimization), represented in Figure 1; and the
second one is used to select the model, fine-tune the parameters, or help another meta-learner
(such as an ensemble) to build a learning machine, represented in Figure 2. We can see that,
even if the classifiers were designed in Figure 1, a model selection was also able to mitigate
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Figure 2 – Representation of multiple binary classifiers with their correspondent logistic loss.
Scenario with balanced miss-labelled samples.

the miss-classification rate if we select the best model based on the scores of Figure 2. Even
if we are not confident of selecting a single classifier, it is also possible to build an ensemble
by using, for instance, the three best classifiers (blue, orange, and red), also achieving a good
classification performance.

Besides training and validation, it is also important to separate a test set. This set is
used to report the expected performance in practical applications. Training, validation and
test sets should be independent among each other, and each one should be representative of
the expected input-output behavior of the system being learned.

1.2 Basics of multi-objective optimization

Suppose you want to buy a CPU unit that has to be simultaneously cheap and power-
ful. We know the impossibility of achieving both criteria at the same time, and normally we
end up with searching for a good cost-benefit option. When this selection is well executed,
our choice is such that there is no other CPU, at the same time, cheaper and more powerful
than the chosen one. This desired situation is called Pareto-efficiency, a concept developed
by Vilfredo Pareto in his book “Manual of Political Economy”, 1906.
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The problem with cost-benefit approaches involves some explicit or implicit prefer-
ences, for example, expense constraints. When you fix a priori a maximum spending limit,
you might refuse a significantly more powerful CPU even if it is marginally more expensive
than the limit. To help finding a suitable CPU, a posteriori decision making will benefit from
the most representative trade-offs, also called Pareto-optimal candidate solutions. Indeed,
dominated solutions (solutions that are not part of the Pareto-optimal set) will not interfere
in the decision making process, and a posteriori preferences will be applied in a more consol-
idated scenario. A real-world example is presented in Figure 3 in which all dominated CPUs
(with at least one option less expensive and with better benchmark) are displayed in grey
and the Pareto-optimal CPU options are displayed in black.
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Figure 3 – Multi-objective representation of the High-End CPUs with only 29 Pareto-optimal
options in 485 CPUs. Values and benchmark scores available at <cpubenchmark.
net>.

In machine learning, the use of multi-objective optimization can surely be
considered a comprehensive approach, being used to simultaneously find interpretable and
accurate models, to generate multiple efficient models endowed with complementary prop-
erties, and also to create ensembles using conflicting objectives (JIN; SENDHOFF, 2008).
Despite that, generally a single Pareto-optimal solution is achieved, by imposing a priori a
relative relevance among the multiple objectives, thus guiding to a single-objective criterion.

An example of this negligence can be seen in a multinomial regression (further explored
and explained in the text) expressed in Equation (1.1), where the loss of all classes are

cpubenchmark.net
cpubenchmark.net
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considered of the same level of relevance:

min
θ

K∑
k=1

[
N∑

i=1
−yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
≡

K∑
k=1

lk(θ). (1.1)

where eθ
>
k
φ(xi )∑K

j=1 eθ
>
k
φ(xi )

is the probability that the model assigns class k to sample i, yk
i = 1 if sample

i is originally assigned to class k and yk
i = 0 otherwise, thus −yk

i ln
(

eθ
>
k
φ(xi )∑K

j=1 eθ
>
k
φ(xi )

)
indicates the

learning error of sample i associated with class k

In this case, it is possible to suppose that the learning error in each class, expressed
by lk(θ), might be conflicting. This occurs because, to correctly classify more samples from
one class, it may induce an increase in the miss-classification rate of other classes. Given
that, Equation (1.1) implicitly takes a “flat” a priori preference among classes, and the
optimization method will search the model with the lowest aggregate loss. As a consequence:
(i) this aggregate loss will indirectly improve the classification accuracy of the majority classes
because they have more samples in cases of data imbalance; and (ii) it may also not fulfill the
expectation of the user in some sensible scenarios such as in medical cases, where wrongly
classifying a case as a disease may not be as crucial as sending a sick patient home.

Given that, we can see that even with a good optimization method, this optimization
model might guide to a misleading classifier in more complex cases, reinforcing relevance of
multi-objective approaches. Multi-objective optimization methods can help in this task, and
this thesis wants to show improvements when dealing with a variety of machine learning
problems.

1.3 Using conflicts to deal with machine learning
problems

The proposal of this thesis is a unified framework that adapts and constructs general-
ized linear learning models to solve an assortment of classification problems. This framework
relies on 3 steps:

1. Multi-objective modelling: conflicting objectives are explicitly formalized and ag-
gregated in a multi-objective formulation;

2. Multi-objective training: using a model with highlighted conflicting objectives, it is
possible to use multi-objective optimization methods to find Pareto-optimal solutions.
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In this work we rely on a posteriori methods, such as NISE (COHON et al., 1979) and
MONISE (RAIMUNDO; VON ZUBEN, 2017), to find a set of solutions acting as a
good representation of all possible trade-offs between those objectives;

3. A posteriori decision making: since we build a set of solutions, we can select the best
possible solution, or we can use these efficient candidate learning models as ensemble
components, exploring the literature of ensembles to aggregate these models toward
better performance.

The core of the proposal consists in exploring the Pareto-optimal solutions. To do
this, it is necessary to model the problem in such a way that, when optimized, it generates
trade-off solutions that can be useful to the problem. For example, in an L1 regularized
logistic regression, we do not know a priori which is the correct regularization constraint to
find the best model in a real-world scenario. Given this, a diverse set of trade-offs between the
classification loss and the L1 strength can be obtained. Multi-class imbalanced classification
is another scenario where it is not known how much importance to give to each class. When
the learning machine gives too much importance to a class with scarce samples, it can result
in a poor classifier if a good portion of those samples are noisy; and when the machine gives
too little importance, it can result in a biased classifier which is focused only on the majority
classes.

Our approach attacks those problems on two fronts: (1) giving more flexibility to
the models, allowing training with distinct priorities for the losses and penalties; (2) multi-
objective training, which generates a set of solutions that is a parsimonious representation of
all possible trade-offs between the objectives. Considering this set of solutions, the primary
objective of this work is to study the benefits of these Pareto-optimal solutions resorting to
a posteriori preferences.

One primary aspect of the methods NISE and MONISE involves their necessity of
using the weighted sum method, a scalarization procedure, as an auxiliary step of the method.
Methods founded on scalarization are only capable of finding any member of the Pareto front
for convex problems. Therefore, with convex Pareto fronts, NISE and MONISE are very good
at properly sampling the Pareto front, in a deterministic and systematic way. With nonconvex
Pareto fronts, there is no a priori control of the quality level of the sampling process. That
is why we have concentrated our research in convex machine learning problems, involving
learning models which are linear in the adjustable parameters. Moreover, this kind of learning
models are known to be scalable and usually quite competent in solving machine learning
problems. Additionally, ensemble methods, responsible for aggregating multiples learning
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models in a single solution, mitigate the potential limitation of single learning models which
are linear in the adjustable parameters.

Using a set of experiments, we deeply investigate many contexts of machine learning,
thus raising characteristics and relevance of multi-objective optimization in every scenario,
allowing us to make assumptions to the general field. In multi-class classification, we not
only investigate the quality of the final classifier, but also investigate the merit of the multi-
objective optimization sampling regarding model selection, and how much diversity is gen-
erated by this methodology. Exploring a model where every class loss is conflicting, we also
investigate the relevance of allowing distinct weights for every class loss with weights being
automatically determined to promote diverse sampling of the Pareto front. Another impor-
tant field of machine learning is the knowledge transferring field (mainly transfer learning and
multi-task learning). In this field, we investigate the importance of multi-objective trained
models in multi-label classification, transfer learning in the detection of epileptic seizures
and multi-task learning. In this last problem, we also investigate how crucial is the insertion
of new ensemble candidates increase the quality of the prediction as well as the knowledge
transfer relations that occur in our framework.

1.4 Organization of the manuscript

The content of this manuscript is organized as follows:

Chapter 2 introduces the main concepts of multi-objective optimization, further explaining
the weighted sum method, the NISE multi-objective solver (COHON et al., 1979) and
also introducing MONISE (RAIMUNDO; VON ZUBEN, 2017) algorithm, which is an
original contribution of the research. These algorithms are supported by the weighted
sum method, which turns to be a very convenient formulation for multi-objective prob-
lems in machine learning.

Chapter 3 introduces the machine learning problems explored in this thesis. This chap-
ter further explains the statistical background of the learning models, resulting in a
weighted sum of the conflicting objectives. In other words, the machine learning prob-
lems are explicitly formulated as multi-objective optimization problems which admit a
direct manipulation by solvers founded on scalarization.

Chapter 4 presents the whole framework of our proposal. This is achieved by explaining
the following three steps: how the models are adapted to take advantage of the multi-
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objective approach, how to optimize these models using NISE and MONISE, and how
to use the set of models to construct a coherent and robust learning machine.

Chapter 5 summarizes the most important methodologies which exhibits a close relation-
ship with the multi-objective approach in this work.

Chapter 6 presents a set of experiments to assess the merit of out proposal. These exper-
iments comprehend 4 types of learning problems: multi-class classification with 121
datasets; detection of epileptic seizures with 17 patients; multi-label classification with
6 datasets; and multi-task learning with 15 synthetic and three real-world datasets.
The experiments are independent of each other, comparing our methodology with the
best models of every specific field, and resorting to consolidated metrics to evaluate the
methodologies.

Chapter 7 outlines the concluding remarks and directions for further investigations.

1.5 Publications and already submitted manuscripts

During the development of this PhD research at the Laboratory of Bioinformatics and
Bio-inspired Computing (LBiC), DCA/FEEC/UNICAMP the papers listed in what follows
were conceived. Many of them are directly related to the contributions of this research.

∙ Raimundo, M.M.; Marques, A.C.R.; Drumond, T.; Rocha, A.; Lyra, C.; and Von Zuben,
F.J.; “Exploring multiobjective training in multiclass classification”. IEEE Transactions
on Neural Networks and Learning Systems (submitted).

∙ Raimundo, M.M.; Ferreira, P.A.V.; and Von Zuben, F.J.; “An Extension of the Non-
Inferior Set Estimation Algorithm for Many Objectives”. European Journal of Opera-
tions Research (submitted).

∙ Raimundo, M.M.; and Von Zuben, F.J.; “Investigating multiobjective methods in mul-
titask classification”. 2018 International Joint Conference on Neural Networks (IJCNN),
Rio de Janeiro, 2018, pp. 1-9.

∙ Beserra, F.S.; Raimundo, M.M.; and Von Zuben, F.J.; (2018) “Ensembles of Multi-
objective-Based Classifiers for Detection of Epileptic Seizures”. In: Mendoza M., Ve-
lastín S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications. CIARP 2017. Lecture Notes in Computer Science, vol 10657. Springer.
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Chapter 2

Multi-objective optimization1

Multi-objective optimization is a class of problems in mathematical programming
whose main characteristic is the existence of multiple, potentially conflicting, objective func-
tions. The main challenge of multi-objective optimization is to simultaneously deal with
conflicting objectives and be able to express the user’s preference concerning these objec-
tives.

Definition 2.1. A multi-objective problem is defined as follows (MIETTINEN, 1999; MAR-
LER; ARORA, 2004):

min
x

f (x) ≡ { f1(x), f2(x), . . . , fm(x)}

subject to x ∈ Ω,Ω ⊂ Rn

f (·) : Ω→ Ψ,Ψ ⊂ Rm

In Definition 2.1, the set Ω ⊂ Rn is known as the decision space and Ψ ⊂ Rm is known
as the objective space. Figure 4 represents the established relation between those two spaces
(restricted to two dimensions for visualization purposes). Each point at the decision space has
a correspondent point at the objective space, obtained by evaluating each objective function.
On the objective space, the two bold lines correspond to the Pareto front, which is the set of
all efficient or non-inferior solutions.

The symbol “min” in Definition 2.1 means searching for minimal solutions in a partial
ordering (WIECEK et al., 2016). Since the objective space is multidimensional, two solutions

1This chapter is based on both MONISE - Many Objective Non-Inferior Set Estimation (RAIMUNDO;
VON ZUBEN, 2017) and Exploring multi-objective training in multiclass classification ( c○2018 IEEE)
(RAIMUNDO et al., 2018)
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only have a relation of order (dominance relation) when the worse solution has, with respect
to a better solution, all objectives of equal or lower quality and at least one objective strictly
of lower quality (WIECEK et al., 2016). The solutions not dominated by any other feasible
solution are called Pareto-optimal solutions (also called efficient solution, further defined in
Definition 2.2) (MIETTINEN, 1999; WIECEK et al., 2016). In the absence of preferences,
those solutions correspond to distinct trade-offs of the objectives.

x
2

x1

Ω

f
2
(x
)

f1(x)

Ψ

·
x

·f(x)

Figure 4 – Representation of the decision space (on the left) and the objective space (on the
right) taking two decision variables and two objectives.

In the sequence, based on the formalism provide by Miettinen (1999), Marler & Arora
(2004), Raimundo & Von Zuben (2017), we present some basic definitions to contextualize the
multi-objective optimization problem. Without loss of generality, the objectives are associated
with minimization problems.

Definition 2.2. Efficiency/Pareto-optimality: A solution x∗ ∈ Ω is efficient (Pareto-
optimal) if there is no other solution x ∈ Ω such that fi(x) ≤ fi(x∗), ∀i ∈ {1,2, . . . ,m} and
fi(x) < fi(x∗) for some i ∈ {1,2, . . . ,m}.

Definition 2.3. Efficient front/Pareto front: An efficient front Ψ∗ (Pareto front) is
the set of all efficient solutions. When considered the problem on Definition 2.1, the efficient
front Ψ∗ is formed by efficient objective vectors f (x∗) ∈ Ψ∗ which has a corresponding feasible
solution x∗ ∈ Ω. Also, Ω∗ is the Pareto-optimal set whose objective vectors are into the
efficient front: x∗ ∈ Ω∗ ⇔ f (x∗) ∈ Ψ∗.

The following definitions are necessary to support the proposition of some of the
adaptive and scalarization methods. The “k-th definitions” are intended to refer to single
objective solutions.
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Definition 2.4. k-th individual minimum value: When only the k-th component of
the objective function vector is optimized, the solution x∗(k) is obtained. The k-th individual
minimum value l(k) corresponds to the minimum value of the optimization (l(k) = fk(x∗(k))).

min
x

fk(x)

subject to x ∈ Ω, Ω ⊂ Rn

f (·) : Ω→ Ψ,Ψ ⊂ Rm

Definition 2.5. k-th individual minimum solution: An individual minimum solution
l∗(k) is an efficient solution characterized by having its k-th component equal to the k-th
individual minimum value l(k).

Definition 2.6. Utopian solution: A utopian solution rutopian is a vector on the objective
space characterized by having its k-th component rutopian

k given by the k-th individual minimum
value l(k) (see Definition 2.4), and this is valid for all k ∈ {1,2, . . . ,m}:

rutopian = {l(1); . . . ; l(m)}

It is important to notice that, if utopian solution is attainable it would dominate any
other solutions, being possible to assume that objectives are not conflicting.

2.1 Weighted sum method

The weighted sum method consists in optimizing a convex combination of the objec-
tives, with each component of the weight vector representing a relative importance of the
corresponding objectives. With this scalarization, the designer expresses his/her preference
(COHON, 1978). Additionally, as will be done in this work, the weighted vector may be
automatically determined by a recursive process, aiming at exploring particular regions of
the Pareto front.

Definition 2.7. The definition of the weighted sum method is given by:

min
x

w>f (x)

subject to x ∈ Ω, Ω ⊂ Rn,

f (·) : Ω→ Ψ,Ψ ⊂ Rm.

where
∑m

i=1 wi = 1, w ∈ Rm and wi ≥ 0 ∀i ∈ {1,2, . . . ,m} is the parameter of the scalarization.
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In Figure 5, the weight vector w defines the slope of the line that guides the optimiza-
tion process, reaching a tangent point in the objective space.

f
2
(x
)

f1(x)

b

min w
⊤
f(x)

w
⊤
f(x) =

[

0.53 0.47
]

[

f1(x)
f2(x)

]

= 2.85

w
⊤
f(x) =

[

0.53 0.47
]

[

f1(x)
f2(x)

]

= 1.9

Figure 5 – Representation of the solution produced by the weighted sum method.

Some properties of this scalarization are relevant. In the general case, without assum-
ing any particularity of the objective space Ψ, an optimal solution for weighted sum method
results in a efficient solution (this sufficient condition is proved in Geoffrion (1968) and Mi-
ettinen (1999)). Now, all efficient solutions are only attained by the weighted sum method
if the problem is convex (this necessary condition is proved in Miettinen (1999)). Despite
that, all efficient solutions which are dominated by a convex combination of other efficient
solutions are not attained by the weighted sum method (non-necessary condition is proved
in Koski (1985) and Das & Dennis (1997)), which means that there is no weight vector w
capable of conducting the weighted sum method to find an efficient solution x whose objective
vector f (x) is dominated by a convex combination of other efficient objective vectors, making
the weighted sum method incapable of finding solutions in the so-called “concave” parts of
Pareto fronts.

Taking the example of regularized multinomial logistic regression in machine learning
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(further explained in in Sections 3.3 and 3.4):

min
θ

l(x,y,θ) + λr(θ) ≡
N∑

i=1

K∑
k=1
−

[
yk

i ln
(

eθ
>
k
φ(xi)∑K

j=1 eθ
>
k
φ(xi)

)]
+ λ | |θ| |. (2.1)

A naïve procedure to create a sampling of the Pareto front for regularized multinomial
regression using the weighted method consists in creating a grid sampling w2 ≡

λ
1+λ from 0

to 1 in a fixed step (thus sampling w1 ≡
λ

1+λ as w1 = 1 − w2), such as using a step of 0.05
to generate samples of the Pareto front. However this procedure does not take into account
the topology of the front, and also ignores that the mapping w ⇒ f (x∗) may not keep the
uniformity of the Pareto front sampling. The application of this method is exemplified in
Figure 6-a; when compared to Figure 6-b (produced by NISE), it clearly leads to a lower-
quality exploration of the front. The main difficulty with this approach is related to the slope
sensitivity (JUBRIL, 2012). Defining the slope tan(φ) = w2

w1
= λ of the parameter vector w,

it can be seen that changing w2 from 0.95 to 1 leads to a corresponding change in the slope
from 19 to ∞, missing all possible values of slope in this large interval.
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Figure 6 – Pareto front of logistic error vs L2 norm of the parameter vector for the well-known
Iris dataset. ( c○2018 IEEE)

Since there is no prior knowledge on the shape of the Pareto front, a priori methods
(e.g. grid search) are not a reasonable choice. To overcome this issue, we leverage an adaptive
method known as Non-Inferior Set Estimation (NISE) and its generalization known as Many
objective NISE (MONISE).
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2.2 NISE

The NISE (Noninferior Set Estimation) method (COHON, 1978) is an iterative ap-
proach that uses the weighted sum method to automatically create, at the same time, a
representation and a relaxation of the Pareto front using a linear approximation. At ev-
ery iteration, based on the already calculated efficient solutions, a line is traced connecting
each neighboring pair of solutions, determining new weight vectors. This procedure finds an
accurate and fast approximation for problems with two objectives (ROMERO; REHMAN,
2003).

Two neighboring efficient solutions (called neighborhood) are used to determine a
new efficient solution employing the weighted sum method. More deeply explained: the ini-
tialization should generate the first two solutions (Section 2.2.1); at each iteration: the next
neighborhood to be explored should be determined (Section 2.2.2), thus obtaining the param-
eters for the weighted sum method (Section 2.2.3), and a new solution, along with the next
neighborhood (Section 2.2.4); the stopping criterion is defined to ensure a quality threshold
of the approximation (Section 2.2.5).

2.2.1 Initialization

The initialization consists of finding the first two solutions f (x1) and f (x2) which
are individual minimum solutions (Definition 2.5) for objectives 1 and 2, respectively. The
weight vectors w1 and w2 have null elements except for the element corresponding to the
objective being optimized, assumed to be equal to one. Finally, it is possible to define the
first neighborhood N1 = {(1,2)}, containing the indexes of the first solutions 1 and 2, which
will be used to find the subsequent solutions.

2.2.2 Neighborhood choice

Considering a set of neighborhoods N k , the neighborhood to be explored at the k-th
iteration is the neighborhood that has the maximum error µ = max µi,j,∀(i, j) ∈ N . To find
that error, for every neighborhood (i, j) ∈ N it is possible to calculate the larger distance µi,j

(defined in Equation (2.2)) between the normal vector w (calculated as described in Section
2.2.3) of the line that contains the solutions f (xi) and f (x j) and the intersection point between
the solution hyperplanes (wi>r = wi>f (xi) and w j>r = w j>f (xi)) of the neighborhood, thus
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producing:

µi,j =

√
(w>f (xi) − w>r)2

| |w| |2
. (2.2)

In Figure 7, a geometrical view is depicted to help the comprehension of the steps
involved. Vectors wi, w j indicate the weight vectors used to find the solutions f (xi) and f (x j),
respectively. Then, in the intersection of wi>r = wi>f (xi) and w j>r = wi>f (x j), it is obtained
r, leading to the distance µ between r and w>r = w>f (x j) produced by Equation (2.2).
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Figure 7 – Geometrical view of the current representation and relaxation of the Pareto front

2.2.3 Calculation of the scalarization weight vector

Given the neighborhood (i, j) composed of two efficient solutions {f (xi), f (x j)}, it is
possible to calculate the unitary normal vector w of the line containing these points, using
the following linear system:


w>f (xi) = b

w>f (x j) = b

w>1 = 1

(2.3)

Considering the weight vector w with maximum error µ at the k-th iteration, it is
possible to solve the weighted sum method (see Definition 2.7) and find f (xk).
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2.2.4 Updating new neighborhoods

Given that it was found a solution f (xk) associated with the current neighborhood,
the new neighborhoods (i, k) and (k, j) are added to N k and the previous neighbohood (i, j)

is deleted, resulting in N k+1 = N k ∪ {(i, k), (k, j)} \ (i, j).

2.2.5 Stopping criterion

The stopping criterion is fulfilled when the largest estimation error µ, defined in
Section 2.2.2, is smaller than the threshold error µstop, or the desired number of efficient
solutions is achieved.

2.2.6 Discussion
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Figure 8 – Illustrative sequence of steps of the NISE method.

A brief illustrative example of the execution of the method is shown in Figure 8. The
initialization is represented in Figure 8-a, with the determination of the extreme solutions
of the problem (f (x1) and f (x2)). In Figure 8-b, the unitary normal vector of the segment
containing solutions f (x1) and f (x2) is determined, and then Definition 2.7 is used to find so-
lution f (x3). Finally, in Figure 8-c, we have two neighborhoods (f (x1),f (x3)) and (f (x3),f (x2)),
where the first neighborhood is selected (given the larger margin error µ), thus finding the
solution f (x4) using Definition 2.7 again. This procedure is repeated until convergence, when
the larger margin error considering all the existing neighborhoods is smaller than µstop.
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2.3 MONISE

In this section we present a novel adaptive multi-objective optimization algorithm act-
ing as a generalization of NISE (COHON et al., 1979) to deal with more than two objectives.
The main distinct aspect of the proposed methodology is a new optimization model described
in Definition 2.8, responsible for recursively finding the next weight vector w and the current
estimation error µ. This generalization will be called Many Objective NISE (MONISE) and
it reduces to NISE when only two objectives are considered.

2.3.1 Relaxation-approximation interpretation of the weighted
sum method

Considering the utopian solution rutopian, as well as L ≥ 1 efficient solutions f (xi) :
i ∈ {1, . . . , L} obtained by the weighted sum method (see Definition 2.7) using the weight
vectors wi : i ∈ {1, . . . , L}. For any weight vector w, it is possible to determine the outer
approximation r and the inner approximation r of the Pareto front guiding to a distance
µ.

The outer approximation is a theoretical limitation for any efficient solution x∗

attainable by the weighted sum method. So, it is possible to conclude that a relaxed objective
vector r ∈ Rm will be limited by the inequalities wi>f (x∗) ≥ wi>r ≥ wi>f (xi) ∀i ∈ {1, . . . , L},
since xi is the optimal solution of the problem in Definition 2.7 considering the weight vector
wi.

The inner approximation is a theoretical limitation for any efficient solution x∗

attainable by the weighted sum method. Thus there is a weight vector w whose correspondent
efficient solution is x∗, and the approximate objective vector is r ∈ RM . Following the premises
it is possible to demonstrate that w>f (x∗) ≤ w>r ≤ w>f (xi) ∀i ∈ {1, . . . , L}, since x∗ is the
optimal solution of the problem in Definition 2.7 considering the weight vector w.

Hence, there are two estimations, a inferior estimation r associated with the front
relaxation (wi>r ≥ wi>f (xi)), represented by the dashed line in Figure 9; and an superior
estimation r associated with the front approximation (w>r ≤ w>f (xi)), represented by the
solid line in Figure 9. The space between these approximations define all solutions attainable
by the weighted sum method, considering the information provided by L already found
solutions.
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Figure 9 – Representation of inner and outer approximation derived from solutions of the
weighted sum method.

2.3.2 Calculating the weight vector for the weighted sum method

The calculation of the weighted vector w at each iteration is done by finding the largest
distance between the hyperplanes w>r and w>r, provided by the solution of the following
optimization problem:

Definition 2.8.
min
w,r,r

− µ = w>r − w>r

subject to wi>r ≥ wi>f (xi) ∀i ∈ {1, . . . , L}

w>r ≤ w>f (xi) ∀i ∈ {1, . . . , L}

r ≥ rutopian

w ≥ 0

w>1 = 1.

The problem formalized in Definition 2.8 has the role of determining the weight vector
w and its inner and outer approximations r and r that leads to a maximal margin between
the inner and outer approximations. From Figure 10-a to 10-d it is shown a representation
of the optimization progress of Definition 2.8 for a suboptimal solution w′ and its inner and
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outer approximations r and r. It is important to notice that, due to the non-convexity of this
problem, the optimization process is capable of automatically progressing to a region with
more quality (Figure 10-b onwards) until it finally achieves the best solution (Figure 10-d).
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Figure 10 – Suboptimal solutions of the weight vector calculation (described in Definition
2.8) of the MONISE method.

Given that, the optimization procedure of Definition 2.8 can be seen as a search of
w that leads to the maximum margin w>r − w>r considering r and r constrained by the
optimality premises of the weighted sum method.
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2.3.3 Outline of the methodology

The Many-Objective NISE method, called here MONISE, jointly estimates the weight
vector and the estimation error. This is done without any additional structure (such as the
neighborhood in NISE method), simply resorting to the previous solutions {x1, . . . ,xL} and
weight vectors {w1, . . . ,wL}. Therefore, the procedure adopted by MONISE turns to be much
simpler than the one required by NISE and may be summarized in three phases:

Initialization - Consists on finding: (1) the utopian solution rutopian, and (2) at least one
weight vector (wi) and its respective solution (xi).

Iterative Process - This phase is responsible for finding the weight vector wL+1 (by solving
problem in Definition 2.8) and using it to find the solution xL+1 according to Definition
2.7. Furthermore, the negative of the obtained optimal value refers to the approximation
error (µ) of the iteration.

Stopping Criterion - The execution of MONISE stops when the estimation error µ is lower
than a threshold µstop or when the number of the already obtained efficient solutions
achieves a pre-specified value R.
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Figure 11 – Illustrative sequence of steps of the MONISE method.

Considering Figure 11, and given that f (xi) and f (x j) were found by in the initializa-
tion, Figure 11 depicts the iterative process of finding wL+1 using Definition 2.8 and finding
the solution xL+1 according to Definition 2.7. These pictures start with the first iteration
after initialization, and shows the evolution along the iterations.
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2.3.4 Discussion

To exemplify the convergence of the method in terms of µ and the resultant coverage
of the Pareto front, let us consider a case study with three objectives.

Definition 2.9.
minimize

x
f (x) =

[
(x1 − 1)2, (x2 − 1)2, (x3 − 1)2

]
subject to x>1 = 1, x1, x2, x3 ≥ 0

The simple problem presented in Definition 2.9 will be used to further investigate the
behavior of MONISE. In Figure 12 it is shown the evolution of the optimized margin µ along
the iterations, which monotonically decreases to zero in few iterations. Figure 13 shows a
well distributed sample of the Pareto front after 300 iterations in two perspectives.
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Figure 12 – Evolution of margin µ along iterations for the problem in Definition 2.9.

The quality of the Pareto front representation of this proposal is also reliable for
machine learning problems. Its good performance can be verified in the reference paper
(RAIMUNDO; VON ZUBEN, 2017) and it can be seen that it is more robust than other
deterministic algorithms as well as evolutionary algorithms, being more suitable especially
for a high number of objectives.

2.4 Summarizing comments

The focus of this thesis is on learning machines that can be represented by convex
optimization problems, exploring the well known literature associated with these optimization
problems.



Chapter 2. Multi-objective optimization 44

(x1 1)20.0 0.2 0.4 0.6 0.8 1.0(x2 1) 2 0.00.20.40.60.81.0

(x
3

1) 2

0.0

0.2

0.4

0.6

0.8

1.0

(x1
1) 2

0.0
0.2

0.4
0.6

0.8
1.0 (x2

1)2
0.0

0.2
0.4

0.6 0.8 1.0

(x
3

1)
2

0.0
0.2
0.4

0.6

0.8

1.0

Figure 13 – Two perspectives of the non-inferior set automatically obtained at the Pareto
front for the problem in Definition 2.9 using MONISE.

Since the models are convex, we decided to explore the NISE (COHON et al., 1979)
method because it is based on a convenient approach for multi-objective optimization: the
weighted sum method. This scalarization method has a direct connection with the learning
problem and can be applied in a vast scenario since it does not add constraints, thus not
increasing the complexity of the model. Additionally, the sampling of the Pareto front is de-
terministic and diversity of trade-offs is achieved by conducting the sampling process toward
less populated areas of the Pareto front. It also enables interpretability, since the weights
indicate the relative importance of each objective to the solution.

However, the NISE method is not extensible to more than two objectives, which
motivates the conception of the MONISE proposal, generalizing the NISE for any dimension
in the objective space and improving the performance of multi-objective optimization when
compared to traditional methods (RAIMUNDO; VON ZUBEN, 2017).
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Chapter 3

Learning with generalized linear
models

Aiming at constructing a better understanding of the statistical models used in this
work, a statistical formalism is outlined here, starting with models for regression and classifi-
cation and ending up with more complex models such as group lasso and multi-task learning
models.

This material is based on the content of Bishop (2006) sequentially presenting the
statistical development of linear regression in Section 3.1, logistic regression in Section 3.2,
multinomial logistic regression in Section 3.3, regularizations in Section 3.4, a multi-label
classification formulation in Section 3.5, a generic formulation of multi-task learning in Section
3.6, and ending up with Group LASSO formulation in Section 3.7.

3.1 Linear regression

The regression problem consists in finding a good mapping function f (·) for any
sample x aiming at approximating a target y ∈ R leading to f (x) ≈ y. To solve this problem,
it is used a set of N samples, where xi ∈ R

d : i ∈ {1, . . . ,N} represents the vector of input
features and yi ∈ R : i ∈ {1, . . . ,N} is the target value to predict. Using statistics framework,
it is necessary to choose a predictive distribution and a model f (x,θ) : Rd → R, being θ the
feature vector of the function f (·).

The name linear regression came from the choice of a linear model f (x,θ) =
∑d

i=1 θi xi

+ θ0 being θ ∈ Rd+1. For convenience, we use a function φ(x) = [φ0(x), . . . , φd(x)]>, where
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φ0(x) = 1, φi(x) = xi ∀i , 0, i ∈ {1, . . . , d}, thus guiding to f (x,θ) = θ>φ(x).

Considering that the output y is determined by the function f (x,θ) plus a Gaussian
noise, we have:

y = f (x,θ) + ε, (3.1)

where ε is a Gaussian noise with zero mean and standard deviation σ. It is then possi-
ble to determine the predictive distribution p(y |x) as a Gaussian distribution N(y |µ,σ) =(

1
σ
√

2π
e−
(y−µ)2

2σ2

)
with mean µ = f (x,θ) and variance σ2 = β−1, finding:

p(y |x,θ, β−1) = N(y | f (x,θ), β−1) =
1√

β−1
√

2π
e
−
(y− f (x,θ))2

2β−1 . (3.2)

After choosing the model and the predictive distribution, it is necessary to determine
the parameter θ that makes the error ε as small as possible. One way to determine θ is by
means of likelihood maximization. The likelihood function for this problem is given by:

p(y |x,θ, β−1) =
N∏

i=1
N(yi | f (xi,θ), β

−1). (3.3)

Taking the logarithm of the likelihood, we have that:

ln p(y |x,θ, β−1) =
N∑

i=1
lnN(yi | f (xi,θ), β

−1)

=
N
2 ln β − N

2 ln 2π − 1
2 β

N∑
i=1

(
yi − θ

>φ(xi)
)2
.

(3.4)

Discarding the constant terms, we have that:

ln p(y |x,θ, β−1) ∝ −
β

2

N∑
i=1

(
yi − θ

>φ(xi)
)2 (3.5)

To reach a minimization problem, we define the loss function as l(x,y,θ) =∑N
i=1

(
yi − θ

>φ(xi)
)2, thus guiding to the usual optimization problem for linear regression:

min
θ

l(x,y,θ) ≡
N∑

i=1

(
yi − θ

>φ(xi)
)2
. (3.6)



Chapter 3. Learning with generalized linear models 47

3.2 Logistic regression

In binary classification the target y ∈ {0,1} reduces to a presence (class 1) or absence
(class 0) of annotated characteristic, charging the problem to find a mapping function f (·)

that correctly assigns any sample x. To solve this problem, it is used a set of N samples, where
xi ∈ R

d : i ∈ {1, . . . ,N} represents the vector of input features and yi ∈ {0,1} : i ∈ {1, . . . ,N}
is the target value to predict.Furthermore, to construct a logistic regression, it is chosen
the Bernoulli distribution p(y |z) = zy(1 − z)1−y and a sigmoid as the classification model
f (x,θ) = eθ

>φ(x)

1+eθ>φ(x)
∈ [0,1], which describes the probability of a sample x belonging to class 1.

Thus:

p(y |x,θ) = B(y | f (x,θ)) =
(

eθ
>φ(x)

1 + eθ>φ(x)

) y (
1 − eθ

>φ(x)

1 + eθ>φ(x)

)1−y

. (3.7)

After choosing the model and predictive distribution, it is necessary to find the param-
eter θ which results in the minimal prediction error using the principle of maximal likelihood.
The likelihood function to this problem is given by:

p(y |x,θ) =
N∏

i=1
B(yi | f (xi,θ)). (3.8)

Taking the logarithm of the likelihood, we have that:

ln p(y |x,θ) =
N∑

i=1
lnB(yi | f (xi,θ))

=

N∑
i=1

[
yi ln

(
eθ
>φ(xi)

1 + eθ>φ(xi)

)
+ (1 − yi) ln

(
1 − eθ

>φ(xi)

1 + eθ>φ(xi)

)]
.

(3.9)

To reach a minimization problem, we define the loss function as follows:

l(x,y,θ) =
N∑

i=1
−

[
yi ln

(
eθ
>φ(xi)

1 + eθ>φ(xi)

)
+ (1 − yi) ln

(
1 − eθ

>φ(xi)

1 + eθ>φ(xi)

)]
. (3.10)

thus guiding to the usual optimization problem for logistic regression:

min
θ

l(x,y,θ) ≡
N∑

i=1
−

[
yi ln

(
eθ
>φ(xi)

1 + eθ>φ(xi)

)
+ (1 − yi) ln

(
1 − eθ

>φ(xi)

1 + eθ>φ(xi)

)]
. (3.11)
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3.3 Multinomial regression

In multi-class classification the target y indicates the presence of a single label among k

possible classes, charging the problem to find a mapping function f (·) that correctly assigns
any sample x. To solve this problem, it is used a set of N samples, where xi ∈ R

d : i ∈

{1, . . . ,N} represents the vector of input features and yk
i ∈ {0,1} : i ∈ {1, . . . ,N}, k ∈ {1, . . . ,K}

is the target value to predict, where yk
i = 1 indicates that sample i belongs to class k and

yk
i = 0 that sample i does not belong to class k. Furthermore, to construct a multinomial

regression, it is chosen the multinomial distribution p(y |z) =
∏K

i=1 zy
i and a softmax as the

classification model f (x,θk) =
eθ
>
k
φ(x)∑K

j=1 eθ
>
k
φ(x) ∈ [0,1], which describes the probability of a new

sample x belonging to class k. Thus:

p(y |x,θ) = C(y | f (x,θ)) =
K∏

k=1

(
eθ
>
k φ(x)∑K

j=1 eθ
>
k φ(x)

)yk

. (3.12)

After choosing the model and predictive distribution, it is necessary to find the pa-
rameter θ which results in the minimal prediction error according to the maximal likelihood
estimator. The likelihood function to this problem is given by:

p(y |x,θ) =
N∏

i=1
C(yi | f (xi,θ)). (3.13)

Taking the logarithm of the likelihood, we have that:

ln p(y |x,θ) =
N∑

i=1
ln C(yi | f (xi,θ)) =

N∑
i=1

K∑
k=1

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 ew>
k
φ(xi)

)]
. (3.14)

To reach a minimization problem, we define the loss function as follows:

l(x,y,θ) =
N∑

i=1

K∑
k=1
−

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
. (3.15)

thus guiding to the usual optimization problem for multinomial regression:

min
θ

l(x,y,θ) ≡
N∑

i=1

K∑
k=1
−

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
. (3.16)
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3.4 Parameter prior and regularization

Regularization is another relevant concept in machine learning. Through regulariza-
tion, it is possible to deal with the bias × variance dilemma by adjusting the complexity of the
model. The traditional regularizations, l1 and l2 norms, emerge from the prior distributions
of the problem.

Assuming a generic predictive distribution D(y| f (x,θ)), when it is considered that
θ is a sample coming from a multivariate Gaussian with 0 mean and α−1I covariance, the
likelihood function is given by:

p(y |x,θ, σ) =
N∏

i=1
D(yi | f (xi,θ))N(θ|0, α−1I). (3.17)

Taking the logarithm of the likelihood, where l(xi,yi,θ) is the loss function coming
from D, we have that:

ln p(y|x,θ) ∝
N∑

i=1
l(xi,yi,θ) +

α

2 θ
>θ. (3.18)

Setting λ = α
2 , we find the traditional learning model with l2 regularization as follows:

min
θ

N∑
i=1

l(xi,yi,θ) + λθ
>θ. (3.19)

Another approach is to choose a Laplacian distribution L(y|x, b, µ) =
(

1
2be−

|x−µ |
b

)
with

µ = 0 as a prior of parameter θ, finding the traditional learning model with l1 regularization
as follows:

min
θ

N∑
i=1

l(xi,yi,θ) + λ | |θ| |1, (3.20)

where | |θ| |1 =
∑d

i=1 |θi |.

In a more general formulation:

min
θ

l(x,y,θ) + λr(θ), (3.21)
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with l(x,y,θ) ≡
∑N

i=1 l(xi,yi,θ) being the mean loss function in the samples and r(θ) being the
regularization function of the model.

The l1 norm has as its most interesting property the capability of controlling the
complexity of the model by defining the sparsity of the parameter θ. In other words, when λ

is correctly adjusted, a subset of the parameters θi, i ∈ {0, . . . , d} will be set to zero, resulting
in a feature selection. This may not only lead to an improvement in performance, but also
gives a qualitative analysis of the importance of each feature to the learning process (null
parameters correspond to less important features).

The hyper-parameter λ should be properly defined for both l1 and l2 norms. Since
we want to find the model with the best generalization, the choice of this parameter can be
arbitrarily made by the specialist, or it can be done by strategies in which some values of λ
are tested, so the resulting model with the best performance in a validation dataset is chosen.
A representation of this methodology is presented in Figure 14.

Figure 14 – Behavior of the prediction error in training and validation dataset when λ is
increased.

We show in Figures 15 e 16 the typical behavior of the parameters that compose
vector θ as a function of the magnitude of λ when solving problems defined in Equations
(3.19) and (3.20).

In Figure 15, associated with the regularization considering the l2 norm, it is possible
to see that the parameters tend to converge to zero but never meet this value. However, in
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Figure 16 it is possible to notice the effective convergence of the parameters to zero when λ

is increased, providing sparsity to the model.

Figure 15 – Behavior of the parameters when λ is increased with l2 norm regularization.

Figure 16 – Behavior of the parameters when λ is increased with l1 norm regularization.
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3.5 Multi-label classification

In multi-label classification, an arbitrary number of labels L can be assigned to a
sample. Given that, the target yl ∈ {0,1} indicates the presence (class 1) or absence (class
0) of a label l, the mapping function f (·) (or a set of functions) should assign a set of labels
for any x. To solve this problem, it is used a set of N samples, where xi ∈ R

d : i ∈ {1, . . . ,N}
represents the vector of input features and yk

i ∈ {0,1} : i ∈ {1, . . . ,N}, being the samples and
l ∈ {1, . . . , L} being the labels. This problem can be seen as a multiple classification problem
where the classes are associated with the same set of attributes as input. Therefore, the main
challenge of this problem is to discover the relationship among the labels, aiming at inducing
similar classification models to classes exhibiting similar labels for the training dataset.

For the model explored in this thesis, there is a feature vector θ(l) ∈ Rd+1 for each
label l in the logistic model f (x,θ(l)) = eθ

(l)>φ(x)

1+eθ(l)
>
φ(x)

for classification. To unify the parameters
for all tasks in a single representation, we propose a matricial notation Θ = [θ(1), . . . ,θ(L)],
which will be used in the following steps.

Let us take the Bernoulli as the predictive distribution and suppose that the parame-
ters have a generic prior P(Θ|b), where b represents the set of parameters of P(·). Considering
that their logarithms are given by Pr(Θ), we find the following likelihood:

p(y|x,Θ) =
L∏

l=1

N∏
i=1
B(y

(k)
i | f (xi,θ

(l)))P(Θ|b) (3.22)

where nk is the number of samples for a label k. Applying the logarithm, we find the following
model:

ln p(y|x,θ) ∝
L∑

l=1

N∑
i=1

[
y
(l)
i ln

(
eθ
(l)>φ(xi)

1 + eθ(l)
>
φ(xi)

)
+ (1 − y

(l)
i ) ln

(
1 − eθ

(l)>φ(xi)

1 + eθ(l)
>
φ(xi)

)]
+

+Pr(Θ)

(3.23)

which can be generalized to produce:

ln p(y|x,Θ) ∝
L∑

l=1
l(x,y(l),θ(l)) + Pr(Θ). (3.24)

This formulation results in a model with independent classifiers linked by a regular-
ization. This assumption will be useful for the models we propose in this thesis, but another
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assumption can be made in multi-label classification, resulting in different ways of inducing
relationships among the labels.

3.6 Multi-task learning

In multi-task learning, it is assumed the existence of T learning tasks of any nature
(here simplified to binary classification) that shares the input xt ∈ Rd : ∀t ∈ {1, . . . ,T} and
output yt ∈ {0,1} : ∀t ∈ {1, . . . ,T} space. Considering the existence of T tasks, and nt : t ∈

{1, . . . ,T} samples for each task. Let us assume that x(t)i ∈ R
d : t ∈ {1, . . . ,T}, i ∈ {1, . . . ,nt}

represents the input feature vector and y(t)i ∈ {0,1} : t ∈ {1, . . . ,T}, i ∈ {1, . . . ,nt} is the
output value to predict. The joint learning is here applied since it is expected to explore the
similarities among the tasks. And the goal of multi-task learning in this context is to discover
the structural relationship among the labels, thus correctly inducing knowledge sharing.

Given that, there is a feature vector θ(t) ∈ Rd+1 for each task t in the logistic model
f (x,θ) = eθ

>φ(x)

1+eθ>φ(x)
. So, to unify the parameters for all tasks in a single representation, we

propose a matricial notation Θ = [θ(1), . . . ,θ(T)], which will be used in the following steps.

Let us take the Bernoulli as the predictive distribution and suppose that the parame-
ters have a generic prior P(Θ|b), where b represents the set of parameters of P(·). Considering
that their logarithms are given by Pr(Θ), we find the following likelihoods:

p(y|x,Θ) =
T∏

t=1

nt∏
i=1
B(y(t)i | f (x

(t)
i ,θ

(t)))P(Θ|b) (3.25)

where nt is the number of samples for target t. Applying the logarithm, we find the following
models:

ln p(y|x,θ) ∝
T∑

t=1

nt∑
i=1

[
y(t)i ln

(
eθ
(t)>φ(x(t)i )

1 + eθ
(t)>φ(x(t)i )

)
+ (1 − y(t)i ) ln

(
1 − eθ

(t)>φ(x(t)i )

1 + eθ
(t)>φ(x(t)i )

)]
+

+Pr(Θ)

(3.26)

which can be generalized to produce:

ln p(y|x,Θ) ∝
T∑

t=1
l(x(t),y(t),θ(t)) + Pr(Θ). (3.27)

This regularization term can be used to promote knowledge sharing among the tasks.
It is worth mentioning that it can be done by making all parameters share the same sparsity
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pattern, for instance, by canceling out the contribution of a subset of features for all tasks
(GONG et al., 2012), by creating a low-dimensional shared subspace (ANDO; TONG, 2005),
or by considering that the parameter vectors of the tasks obey the same Gaussian distribution,
thus sharing the same co-variance matrix (GONÇALVES et al., 2015).

3.7 Multi-input learning

Analogous to what was verified when dealing with multiple dealing with multiple
outputs, there are situations where identifying the group of inputs may guide to improved
performance and interpretability (YUAN; LIN, 2006; MEIER et al., 2008). It is possible to
split the input x into V groups of inputs. The formulation explored here is based on Group
LASSO, where a distinct regularization is applied to the parameters of each group:

min
θ

l(x,y,θ) + λ
V∑
v=1

√∑
i∈Vv

θ2
i , (3.28)

being Vv a set that contains the feature indexes of group v.

This model is capable of switching off groups of inputs that does not help in the
prediction.

3.8 Summarizing comments

Focused on linear models and generalized linear models, this section presented the
main concepts of the base models used in this thesis. The limitations around linear models
are motivated by the possibility of simplifying the optimization step of the learning process
and to keep convexity. Convexity will be required to properly explore the Pareto front in the
multi-objective formulations.

Additionally, the potential oversimplification of the models will be attenuated by the
use of ensemble methods, as will be described in the next chapters, responsible for aggregating
multiple models, thus inherently increasing the complexity of the aggregated final model. This
strategy was conceived to promote high performance without losing simplicity and scalability
of the learning process.
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Chapter 4

The proposed framework for
multi-objective learning

The main proposal of this thesis is a novel approach to deal with machine learn-
ing problems by exploring its multi-objective nature. Three stages are involved: (1) multi-
objective modelling consists in adapting or modifying machine learning models to uncover
the conflicting objectives of the model; (2) multi-objective training consists in adopting
an a posteriori multi-objective method that will find a diverse sampling of the Pareto-optimal
solutions; (3) model selection or ensemble aggregation deals with the multiple efficient
solutions to create a proper learning machine.

The main potential of this methodology is to give more flexibility to the model (for
example allowing a flexible weighting of each class loss) and use a multi-objective optimization
to find diverse and accurate models. This allows the use of simple cross-validation to select
a single model among the candidates, as well as the use of simple ensemble filtering and
aggregation techniques to build a learning machine at the end of the process.

4.1 Multi-objective modeling

Many machine learning problems have, in its essence, a multi-objective nature. The
role of this section is to modify and extend the machine learning models of Chapter 3 to
highlight the conflicting objectives. To facilitate the comprehension of the learning problem
as a multi-objective optimization problem, Equation (4.1) presents an objective function
in which each conflicting objective fi(ζ) is accompanied by a weight coefficient wi. This
format highlights all the conflicting objectives, and is also compatible with the weighted
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sum method, allowing a straightforward application of NISE and MONISE, responsible for
recursively applying scalarization to find a representation of the Pareto front.

miniminze
ζ

w1 f1(ζ) + . . . + wm fm(ζ) (4.1)

where f1(ζ), . . . , fm(ζ) are the m conflicting objectives of the problem and w1, . . . ,wm are the
m coefficients of these objectives.

Using this notation with weights to be defined, we present: (1) a multi-objective
reinterpretation of generalized linear models with regularization in Section 4.1.1; (2) a multi-
objective reinterpretation of regularized logistic models in Section 4.1.2; (3) an attempt to
explore two aspects of the regularized multinomial logistic regression models in Section 4.1.3;
(4) an adaptation of the logistic regression model to deal with the multiple outputs of multi-
label classification datasets in Section 4.1.4; (5) a deeper modification of the logistic regression
model to deal with multi-task learning problems, which is described in Section 4.1.5; (6) a
model capable of transferring knowledge from a source task to a target task in Section 4.1.6;
and (7) an illustrative model of a possible extension to multi-view learning that controls the
level of importance of each vision of the learning problem in Section 4.1.7.

4.1.1 Generalized linear models with regularization

The adaptation to the multi-objective context in regularized models consists in high-
lighting, in Equation (3.21) (l(xi,yi,θ)+ λr(θ)), the conflict between the loss l(x,y,θ) and the
regularization strength r(θ). Given that, dividing the function by 1

1+λ and defining w1 =
1

1+λ
and w2 =

λ
1+λ , it is possible to produce the multi-objective format (weighted sum method

format) in Equation (4.2):

min
θ

w1l(x,y,θ) + w2r(θ). (4.2)

4.1.2 Regularized logistic regression

Using the model developed in Section 3.2 and adding a regularization developed in
Section 3.4, we can find the standard regularized logistic model:

min
θ

N∑
i=1
−

[
yi ln

(
eθ
>φ(xi)

1 + eθ>φ(xi)

)
+ (1 − yi) ln

(
1 − eθ

>φ(xi)

1 + eθ>φ(xi)

)]
+ λr(θ). (4.3)
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Adapting the model to follow the canonical form of (Equation (4.2)), we can produce
the regularized logistic regression formulation:

min
θ

w1

N∑
i=1
−

[
yi ln

(
eθ
>φ(xi)

1 + eθ>φ(xi)

)
+ (1 − yi) ln

(
1 − eθ

>φ(xi)

1 + eθ>φ(xi)

)]
+ w2r(θ). (4.4)

4.1.3 Regularized multinomial logistic regression models

Starting with the model developed in Section 3.3 and adding a regularization term
developed in Section 3.4, we can find the standard regularized multinomial model:

min
θ

K∑
k=1

1
uk

N∑
i=1
−

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
+ λr(θ), (4.5)

where uk can be used to control the importance of the loss of each class in the optimization.
Doing uk = 1 ∀k ∈ {1, . . . ,K} results in the standard model and an ad-hoc balancing consists
in doing uk = nk ∀k ∈ {1, . . . ,K}, being nk the number of samples for the class k.

Simplifying to the standard model and adapting the model to follow the template of
Equation (4.2), we can find the conflicting regularized multinomial logistic regression
formulation (RAIMUNDO et al., 2018):

min
θ

w1

K∑
k=1

1
uk

N∑
i=1
−

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
+ w2r(θ). (4.6)

This formulation is particularly useful in balanced classification datasets. However, it
is possible to think the loss associated with each class − 1

uk

∑N
i=1

[
yk

i ln
(

eθ
>
k
φ(xi )∑K

j=1 eθ
>
k
φ(xi )

)]
as a con-

flicting objective, as well as the regularization component r(θ). With those considerations we
can formulate this problem with K +1 conflicting objectives, called here as class-conflicting
regularized multinomial logistic regression:

min
θ

K∑
k=1

wk

[
−

N∑
i=1

yk
i ln

(
eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
+ wK+1r(θ). (4.7)

It is possible to see that the formulation at Equation (4.7) generalizes the formulation
at Equation (4.6), allowing the search for useful models in imbalanced classification datasets.
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4.1.4 Multi-label classification model

Multi-label classification consists in a scenario where each sample can belong to more
than one class. Two traditional approaches consist in: (1) consider each label as a binary
independent classification problem; (2) consider each existing combination of labels as a class,
and create a single classifier. We shall adopt the first approach, but having a single parameter
vector for all labels on a single model, called here as single-parameter label-conflicting
regularized multinomial logistic regression formulation (RAIMUNDO; VON ZUBEN,
2018b):

min
θ

L∑
l=1

vl l(x,yl,θ) + λ | |θ| |2 ≡
L∑

l=1
wl l(x,yl,θ) + wL+1 | |θ| |

2, (4.8)

where | |θ| |2 is the regularization component, λ is the regularization parameter,
wi =

vi∑L
k=1 vk+λ

∀i ∈ {1, . . . , L}, and wL+1 =
λ∑L

k=1 vk+λ
.

To manage the class imbalance of every label, we used a multinomial regression to
make an ad-hoc balancing approach to find a parameter θl for each label l (RAIMUNDO;
VON ZUBEN, 2018b).

min
θl

l(x,yl,θl) = −

N∑
i=1

[
1
nl

1
yl

i ln
(

f (xi,θ
l)

)
+

1
nl

0
(1 − yl

i ) ln
(
1 − f (xi,θ

l)

)]
, (4.9)

where nl
1 is the number of 1s in label l and nl

0 is the number of 0s in label l, with softmax

function f (x,θl) = eθ
l
1
>x

eθ
l
0
>x
+eθ

l
1
>x
∈ [0,1] as the input-output model and θl

0 ∈ R
d+1 and θl

1 ∈ R
d+1

as the parameters for class 0 and 1 for the label l.

4.1.5 Multi-task learning

Multi-task learning can be seen as a multi-objective optimization problem (LI et al.,
2015; BAGHERJEIRAN, 2007). To explore this perspective we first present a general multi-
task learning formulation:

min
θ

T∑
t=1

l(x(t),y(t),θ(t)) + λr(θ). (4.10)

Starting from this, an initial proposal consists in simplifying the parameters θ(t), t ∈
{1, . . . ,T} as a single parameter θ = θ(1) = . . . = θ(T) and consider the regularization as a
simple 1-norm regularization r(θ) = | |θ| |1. Interestingly, it is possible to consider the loss
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of each task l(x(t),y(t),θ) as a conflicting objective as well as the regularization component
r(θ), so that we can modify the previous formulation to meet the weighted sum method for-
mat, as shown in Equation (4.11), which describes the single-parameter task-conflicting
regularized logistic regression formulation (RAIMUNDO; VON ZUBEN, 2018a):

min
θ

T∑
t=1

wt l(x(t),y(t),θ) + wT+1 | |θ| |1. (4.11)

Even though the formulation considers a single parameter vector θ, this limitation
is easily bypassed by the fact that multi-objective optimization methods generates multiple
solutions with distinct trade-offs among the objectives. Given that, generating multiple ef-
ficient solutions, it is very likely to find good parameter vectors for the tasks. Then, when
filtering and aggregation of these solutions are applied, it is possible to find high quality
learning machines for all tasks.

4.1.6 Transfer learning

Considering a set of source tasks S ⊂ P and a target t ∈ P task, t , s with s ∈ S,
transfer learning consists in transmitting the extracted knowledge from S to t.

When we consider a single source s ∈ S, it is possible to define a single parameter
for both source and target tasks (θ = θs = θt). In this case, considering that the learning
tasks have conflicting objectives, we reach the following formulation, called here as single-
parameter transferring regularized multinomial logistic regression formulation (BE-
SERRA et al., 2018):

min
θ

w1 (l(θ,xs,ys) + λr(θ)) + w2
(
l(θ,xt,yt) + λr(θ)

)
, (4.12)

where the regularization parameter λ can be obtained using cross validation in the source
task.

It is also possible to use multiple sources using a formulation similar to that obtained
by the multi-task learning formulation.

4.1.7 Group LASSO and multi-view learning

Another scenario where multi-objective formulation can be useful is in multi-view
learning. Our approach is inspired by Group LASSO (YUAN; LIN, 2006), and consider each
view (subset of features) as a group. Consider that we have V views, and let Vv be a set that
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contains the feature indexes of group v. The first formulation considers the learning loss as
conflicting with the regularization for the groups:

min
θ

wl l(x,y,θ) + wr
V∑
v=1

√∑
i∈Vv

θ2
i . (4.13)

Another approach considers each view and the learning loss as conflicting objectives,
resulting in the following formulation:

min
θ

wl l(x,y,θ) +
V∑
v=1

wr
v

√∑
i∈Vv

θ2
i . (4.14)

Now considering that the parameter vector of each group v is given by θ(v), we can
propose an average classifier for every view, and consider the loss for each view and the
regularization of all views as conflicting objectives, thus producing:

min
θ

V∑
v=1

wl
vl(x,y,θ(v)) + wr

V∑
v=1

√∑
i∈Vv

θ2
i . (4.15)

And finally we consider the loss for each view and for each regularization as conflicting,
thus producing:

min
θ

V∑
v=1

wl
vl(x,y,θ(v)) +

V∑
v=1

wr
v

√∑
i∈Vv

θ2
i . (4.16)

This last formulation is also a general formulation for all other previous formulations
in this section: (1) making wl

v = wl ∀v ∈ V and wr
v = wr ∀v ∈ V , Equation (4.16) becomes

Equation (4.13); (2) making wl
v = wl ∀v ∈ V , Equation (4.16) becomes Equation (4.14); and

(3) making wr
v = wr ∀v ∈ V , Equation (4.16) becomes to Equation (4.15).

4.2 Multi-objective training

The multi-objective training is a procedure that guides to efficient learning models
exhibiting distinct trade-offs among the conflicting objectives. An example of a three-objective
Pareto front representation is given by Figure 17. This example consists in using the model in
Equation (4.10) to deal with three well known monks’ datasets1 that share the same feature

1Available at <archive.ics.uci.edu/ml/machine-learning-databases/monks-problems/>

archive.ics.uci.edu/ml/machine-learning-databases/monks-problems/
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vector, characterizing a multi-task learning problem. Each point of this representation is an
efficient solution obtained by attributing a specific relative relevance of all the datasets.
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Figure 17 – Two perspectives of the same Pareto front representation, with the logistic
error of each learning task as the three objective functions ( c○2018 IEEE)
(RAIMUNDO; VON ZUBEN, 2018a).

To generate the representation of Figure 17, we have adopted MONISE.

4.3 Ensemble filtering and aggregation2

Aiming at dealing with multiple efficient models generated by multi-objective opti-
mization, we rely on ensemble methods. Generally, the use of an ensemble involves three steps:
generation of learning machines, selection of a proper subset of these machines and compo-
sition of the selected machines to achieve a single outcome (ZHOU, 2012). Multi-objective
approaches usually address multiple performance metrics (instead of solely model losses or
regularization strengths) in the first two steps of the ensemble framework.

4.3.1 Filtering

Since the multi-objective training is already a generator of a diverse set of ensem-
ble components, we now need to select a single model among the multiple efficient learning
models or filter/aggregate the ensemble components. Filtering is an important step since
it can reduce the computational cost in prediction while improving the generalization capa-

2This section is an amended version of Exploring multi-objective training in multi-class classification
( c○2018 IEEE)(RAIMUNDO et al., 2018)
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bility (ZHOU, 2012). We explore multiple possibilities, aiming at finding the most accurate
classifier:

∙ Winner takes all (wta) - Considering the performance in the validation set (given
a chosen performance metric), the best classifier is chosen. This ensemble filtering is
equivalent to a model selection.

∙ Winner takes all per class (wtaPL) - Considering the performance in the validation
set (given a chosen performance metric in a one versus all approach), the best classifier
for each class is chosen.

∙ Elite K (elite) - Considering the performance in the validation set (given a chosen
performance metric), the K best classifiers are chosen.

∙ Elite K per class (elitePL) - Considering the performance in the validation set (given
a chosen performance metric in a one versus all approach), the K best classifiers are
chosen for each class.

∙ Multi-objective Filtering (moPL) - Considering the performance in the validation
set (given each chosen performance metric), a classifier is selected if there is no other
classifier better than this classifier in all metrics (non-dominated classifiers) (KRAUS
et al., 2011).

∙ Maximum diversity (max-div) - The components with maximal diversity are selected,
given that we want K components.

To better explain maximum diversity, it is necessary to further analyze an explicit
metric of diversity. The metric of double-fault (SCHAPIRE, 2003) and the adapted some-
correct si,j metric are interesting metrics, because of its pairwise strategy. The some-correct
metric has the quality of being simple, only computing the ratio of samples in which, at
least one of the learning machines, i or j, is capable of correctly predicting that sample. To
compute the diversity of a set of components C, Equation (4.17) was used:∑

i∈C
∑

j∈C,j,i si,j

|C|2 − |C|
(4.17)

Given this evaluation, the maximum diversity filtering consists in selecting K com-
ponents from the generated set of components U with maximal diversity. This procedure is
done by solving the problem in Definition 4.1.
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Definition 4.1. Maximal diversity filtering.

maximize
u

∑
i∈U

∑
j∈U uiu j si,j

K2 − K
subject to

∑
i∈U

ui = K

ui ∈ {0,1},∀i ∈ {1, . . . , |U|}

(4.18)

Finally, in the new set U, ui = 1 indicates that i ∈ U and ui = 0 indicates that i < U,
being U the set of selected components.

4.3.2 Aggregation

Finally, after filtering, it is necessary to aggregate the outputs of every classifier. For
this stage of the proposal, we implemented some methods:

∙ Simple Vote (svote) - The votes are accounted, and the most frequent is chosen as
the final decision (ZHOU, 2012).

∙ Weighted Vote (wv) - The magnitude of the metric used to select the component is
used to weight the relative importance of the component to the prediction.

∙ Distribution summation (dsum) - Similar to simple voting, this method sums the
confidence of the prediction for each class.

∙ Bayesian combination (bc) - This method is equivalent to weighted voting for the
distribution summation scheme, where each confidence is weighted by the quality of
the predictor on each class.

∙ Stacking (stk) - This method consists in creating a new classifier on the top of the
outputs of all component prediction. To do that, we consider the outputs of the com-
ponents as features, and train another classifier using this new feature space.

4.4 Summarizing comments

To give a better understanding of the framework operation, Figure 18 shows a repre-
sentation of the process. In Figure 18-1, it is shown a generic multi-objective unconstrained
model weighted by a generic weight vector w; Figure 18-2 shows the training procedure,
in which MONISE (or NISE) method is responsible for determining the weight vectors
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w1,w2, . . . ,wR using an iterative process that generates the parameter vectors θ1,θ2, . . . ,θR

which is also represented in a Pareto front determined by these solutions in the objective space
determined by the objectives f1(x,y,θ), f2(x,y,θ), . . . , fm(x,y,θ). Those solutions θ1,θ2, . . . ,θR

are also learning machines in which their predictions p(·) are used to first filter the most
proper machines in Figure 18-3 and then, they are aggregated in Figure 18-4, resulting in the
final predictor pens(·).

Figure 18 – Overview of the proposed framework for multi-objective learning.



65

Chapter 5

Related works

5.1 Multi-objective learning in the literature1

This thesis proposes a unified framework for multi-objective modelling and training
being applied to a vast set of classification tasks in machine learning. Despite the fact that
multi-objective optimization methods are not widely used in machine learning, the literature
is vast in approaches and scenarios being used to search for both interpretable and accurate
models, models generated to have complementary properties, and conflicting loss functions
building ensembles (BRAGA et al., 2006; JIN; SENDHOFF, 2008; JIN et al., 2009). It is also
used to model selection, ensemble generation, filtering, and aggregation (ZHOU, 2012); to
the classification of imbalanced datasets (AKAN; SAYIN, 2014; GARCÍA et al., 2010); and
to multi-task learning (BAGHERJEIRAN, 2007).

When models should have more than one desired quality (usually represented by per-
formance metrics), a model selection that uses multi-objective methods can be capable of
providing efficient options to the user characterized by multiple trade-offs among conflicting
metrics (MÜSSEL et al., 2012) and to select models when performance and complexity of the
model are simultaneously optimized (MIRANDA et al., 2012; MIRANDA et al., 2014; IGEL,
2005; MAO et al., 2013). Other approaches do not act directly in the model selection, but
contribute to this task by creating Pareto front representations that generate models exhibit-
ing diverse trade-offs among more than one performance metric; and after this procedure,
another performance metric is used to select the best model among these generated models
(FERNÁNDEZ CABALLERO et al., 2010; PILAT; NERUDA, 2013; ROSALES-PÉREZ et

1This section is an amended version of Exploring multi-objective training in multi-class classification
( c○2018 IEEE)(RAIMUNDO et al., 2018)
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al., 2015).

A similar procedure is used to generate ensemble components that correspond
to trade-offs between more than one performance metric using different metrics: accuracy
for each label (AHMADIAN et al., 2007; ENGEN et al., 2009); recall per label (WANG et
al., 2014); prediction error and complexity of the model (OLIVEIRA et al., 2005; SMITH;
JIN, 2014); prediction error on different training sets (ABBASS, 2003); false positive and
false negative rates (CASTILLO et al., 2006); number of leaves of a genetic program, false
positive and false negative rates (NAG; PAL, 2016); error, neural tree size and diversity
index (OJHA et al., 2017); between-class and within-class variance on feature extraction
(ALBUKHANAJER et al., 2017); precision and recall (EKBAL; SAHA, 2016); precision,
recall and number of selected features (SAHA et al., 2016); and different metrics of clustering
validation (MUKHOPADHYAY et al., 2009).

Considering models already generated, there are some multi-objective procedures for
ensemble filtering: filtering by excluding machines with other machines having better per-
formance in all performance metrics (KRAUS et al., 2011; ZHANG et al., 2011); and filtering
by selecting components at the elbow on the Pareto front (SMITH; JIN, 2014). Furthermore,
some methods select a set of classifiers optimizing different conflicting objectives: prediction
error and number of components on the ensemble (AHMADIAN et al., 2007); accuracy for
each class (ENGEN et al., 2009); precision and recall (EKBAL; SAHA, 2010; EKBAL; SAHA,
2012); accuracy and diversity (KRAWCZYK; WOZNIAK, 2013; KRAWCZYK; WOŹNIAK,
2014; LÖFSTRÖM et al., 2009; ZHANG et al., 2011); diversity metrics, size of ensemble and
prediction error (DOS SANTOS et al., 2008).

Some methods perform ensemble generation and filtering simultaneously, by
maximizing accuracy and diversity (CHANDRA; YAO, 2004; CHANDRA et al., 2006;
CHANDRA; YAO, 2006), or by minimizing prediction error and maximizing diversity
(OLIVEIRA et al., 2005; BHOWAN et al., 2011a; BHOWAN et al., 2011b; BHOWAN et
al., 2013; NETO et al., 2013).

Some methods deal with classification on imbalanced datasets by optimizing multiple
error losses such as classification loss in each class (GARCÍA et al., 2010), positive and
negative empirical errors in addition to the typical margin maximization (AKAN; SAYIN,
2014), and optimizing the recall in each label (WANG et al., 2014).

In addition to not being a unified framework, most proposals are heuristic-based,
with emphasis on NSGA-II (AHMADIAN et al., 2007; SMITH; JIN, 2014; EKBAL; SAHA,
2010; EKBAL; SAHA, 2012; EKBAL; SAHA, 2016; ALBUKHANAJER et al., 2017; SAHA
et al., 2016; GARCÍA et al., 2010), although other evolutionary-like multi-objective optimiza-
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tion methods have also been considered (MIRANDA et al., 2012; MIRANDA et al., 2014;
ISHIBUCHI; NOJIMA, 2013; AHMADIAN et al., 2007; ENGEN et al., 2009; OLIVEIRA
et al., 2005; ABBASS, 2003; KRAWCZYK; WOZNIAK, 2013; KRAWCZYK; WOŹNIAK,
2014; LÖFSTRÖM et al., 2009). Many methods directly rely on non-convex performance
metrics to optimize the models, thus motivating evolutionary-like approaches. However, ma-
chine learning problems are required to be scalable, and convexity of the learning loss is
one of the most common strategies to achieve scalability. By imposing convexity, we rely
herein on two deterministic multi-objective methods to search for efficient solutions: NISE
(non-inferior set estimation (COHON, 1978)) and MONISE (many objective non-inferior set
estimation (RAIMUNDO; VON ZUBEN, 2017)).

5.2 Classification

The learning process in classification consists in observing a set of samples/objects and
using the characteristics of the samples to determine the membership of each sample to a class
or concept. In biology, for example, we discriminate mammals for having hairs and producing
milk; birds for having feathers, beaks and laying eggs; and reptiles for being covered with
scutes, being cold-blooded and laying eggs. The existence of these characteristics is enough to
discriminate most animals in these classes, exemplifying one of our classification processes.
However, we need to create an automatic process that enables a machine to discriminate
classes by presenting samples (with its respective labels). Those automatic procedures will
be approached in this revision.

Starting with the most simple one, k nearest neighbours (kNN) consists in assigning
the most frequent class between the k nearest samples to the target sample. This method
usually uses the Euclidean distance of the feature vectors, but it can be changed depending
on the nature of the dataset (for example, for categorical features it can be counted the
number of feature matches).

Adding complexity to the model, each node of a decision tree contains a rule that
forward the evaluated sample to different branches depending on its feature values, and the
leaf of the tree is associated with a class. The rules are chosen to have the higher discriminative
power in the samples of the training set, and the labeled samples forwarded to a leaf are used
to choose the class as that leaf.

Logistic regression and multinomial regression (BISHOP, 2006) separates the sam-
ples of the classes using hyperplanes as boundaries with minimal misclassification. Suport
vector machines (SVMs) (CORTES; VAPNIK, 1995) are similar to logistic regression, but
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they create boundaries with maximum margins, which means that the boundary has the
maximum distance to all samples. Moreover, SVMs are capable of exploring the kernel trick,
which consists in projecting the samples to a higher dimensional space and create a linear sep-
arator. When mapped to the original dimension, the boundary becomes non-linear. Neural
Networks is an intrinsic non-linear mapping constructed by composing decision functions
in a structure of layers using the output of the functions of a previous layer as inputs to the
next layer.

Another way to construct a classifier is by aggregating multiple classifiers. Ensem-
bles take advantage of other classifiers to enhance some qualities of a classifier, for example
improving bias with boosting or variance with bagging; other characteristics and properties
of ensembles are described in Section 5.4. The proposed framework in this thesis is focused
on guiding the creation of diverse logistic and multinomial regression models which can be
used to build an ensemble or can be filtered using model selection.

5.3 Model selection 2

Many of those classification methods have the training procedure, where given some
hyper-parameters and the data, the model is adjusted to enable the prediction. Even when
the training procedure is not needed, it is necessary to select the hyper-parameters. Highlight-
ing some notable hyper-parameters we consider: k in kNN; the depth and the function that
evaluates the splitting in decision trees; the regularization parameter in logistic/multinomial
regression; kernel and regularization parameters in support vector machines; number of hid-
den layers and the type of activation function in a neural network; and number of ensemble
components in ensembles.

These hyper-parameters are commonly chosen using knowledge of the expert or by
selecting a specific value among a set of values (usually known as manual and grid search,
respectively). This last approach can be recommended in low dimensional spaces due to the
straightforward parallelization (BERGSTRA; BENGIO, 2012), and due to the simplicity of
the procedure (CHANG; LIN, 2011). After selecting the values for each hyper-parameter, or
selecting the creation rule, the learning machine is trained (or adjusted) using each candidate
set of hyper-parameters, with the best model being selected according to a performance
metric in the validation set. Some creation rules to implement grid search includes parameters
linearly spaced (LAROCHELLE et al., 2007), arbitrarily spaced (KRSTAJIC et al., 2014),
or exponentially spaced (HUANG et al., 2012).

2This section is an amended version of Exploring multi-objective training in multi-class classification
(RAIMUNDO et al., 2018)
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Apart from those simple approaches, more complex methods are usually supported by
heuristic and statistical procedures, that conducts the searching by employing the evaluated
parameter on each step, and the performance on validation being the guide to find better
learning models. The heuristic approaches include a grid search refined with golden search
(KULAIF; ZUBEN, 2013); genetic algorithms (CAMILLERI; NERI, 2014); and Nelder-Mead
with paired tests (ZHENG; BILENKO, 2013). The statistical approaches include a search
in estimated response surfaces (WEIHS et al., 2005); a search in a surface estimated by
Gaussian processes or a tree-structured Parzen estimator (BERGSTRA et al., 2011); and a
refined random search (BERGSTRA; BENGIO, 2012)

Instead of using a sampling procedure to acquire information about the statistical
distribution and estimate it, this work explores another perspective in model selection: by
assuming the problem as being multi-objective, it is only necessary to suitably sampling the
Pareto front aiming at obtaining a diverse set of efficient learning models. Notice that each
Pareto-optimal learning model will be associated with a distinct set of values for the hyper-
parameters. Afterwards, it is possible to select the best model according to the performance
in the validation set, and use it to make the prediction.

5.4 Ensembles3

Even with a good choice of classification and model selection methods, there are in-
trinsic challenges that single-model machine learning may not be able to surpass. Three of
the main challenges that can be improved by the use of ensembles are: (1) scarcity of data:
generalization guarantees are typically associated with a significant amount of data; (2) com-
putational difficulties: even with a significant amount of data, the correct model hypothesis
might not be found; (3) representational constraints: the subset of possible hypothesis of a
statistical model might not contain the ideal hypothesis. The use of ensemble can surpass or
at least alleviate the negative effects of these challenges by creating a set of diverse learning
machines possibly founded on distinct datasets, distinct model hypothesis and with distinct
statistical models that, when aggregated, can promote performance improvement.

A pertinent organization of an ensemble can the described by three steps: (1) gen-
eration: a procedure to create a set of learning machines that can compete as candidate
components; (2) selection: these candidate components are selected aiming at improving the
performance in the aggregation step; and (3) aggregation: this procedure creates a consensus
response based on the outputs of the selected learning machines.

3This section is an amended version of Exploring multi-objective training in multi-class classification
(RAIMUNDO et al., 2018)
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The proposed methodology mainly contributes to ensemble generation, only using
ensemble filtering and aggregation as tools to build the learning machine. Given that, it is
important to notice that, the primary goal in ensemble generation is to promote the diversity
of the learning machines (COELHO, 2006). By granting diversity, it is possible to achieve
robustness for different scenarios. There are four ways to generate ensemble diversity (ZHOU,
2012): (1) By manipulating the learning parameters. This case includes changing architecture,
initialing neural networks with different values, use of different ramification rules in decision
trees, and training learning machines with different types and levels of regularization; (2) By
disturbing the outputs of some samples, or changing how the output is treated; (3) Training
in distinct subsets of features; (4) By presenting distinct views of the training data.

Following the last methodology, bagging consists of training each learning machine
with a random sampling of the training set (BREIMAN, 1996). In an iterative approach,
boosting consists in using the current ensemble output and weight the samples to prioritize
those that were miss-classified (SCHAPIRE, 2009). Random forests are used to train each
learning machine by sampling both features and samples (BREIMAN, 2001). Bagging and
boosting properties were experimentally evaluated (OPITZ; MACLIN, 1999), indicating that
bagging always has a performance better than single learning machines, and boosting, despite
having far superior performance in some cases, may guide to over-fitting.

As presented in Section 5.1, each learning machine in multi-objective ensemble gen-
eration methods is a trade-off between conflicting objectives: (1) prediction error × model
complexity; (2) prediction error × cardinality of the training subset; (3) accuracy of distinct
classes. The proposal of this thesis uses distinct sets of conflicting objectives, in response to
the demands of each machine learning task.

5.5 Imbalanced classification

Imbalanced classification is a usual problem inside classification problems, and it oc-
curs when there is a high distinction in the number of samples associated with each class.
This can be a natural issue in scenarios which are implicitly imbalanced such as fraud detec-
tion, medical diagnosis, network intrusion detection, detection of oil spills and manufacturing
issue detection (SUN et al., 2009). The imbalance of a classification set can deteriorate the
performance of a non-specialized classifier. Imbalance issues are generally detected around
rates such as 1:10 (SUN et al., 2009).

In those scenarios, it is necessary to create methodologies to handle this problem.
Supported by the taxonomy explored in Sun et al. (2009), we wanted to discuss some of
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those methodologies but focused on three types of proposals: sampling-level methodologies,
cost-sensitive approaches, and ensemble/boosting approaches.

Sampling-level approaches consist in cleverly under-sampling the majority class
samples and/or over-sampling the minority class samples. The main work on the over-
sampling vein, called SMOTE, creates new samples by convexly combining minority samples
with their neighbors of the same class (CHAWLA et al., 2002). Each minority sample creates
the same number of synthetic samples (CHAWLA et al., 2002); it can be proportional to the
ratio of majority samples in the neighborhood (HE et al., 2008); or the generation can be
constrained to the samples in the borderline with majority class samples (at least 50% of the
neighbors) (HAN et al., 2005).

The under-sampling usually removes some majority class samples from the train-
ing set. The selection of the percentage of random under-(and over) sampling can be se-
lected by a grid search (CHAWLA et al., 2002) or using a wrapper algorithm to select the
amount of under-re-sampling and SMOTE over-sampling by firstly finding a valid under-
sampling followed by a performance improvement SMOTE oversampling (CHAWLA et al.,
2005; CHAWLA et al., 2008).

Cost-sensitive approaches consists of weighting the cost of miss-classification for
each class and using these costs to guide the learning. The most naïve approach consists in
weighting the classes inversely proportional to the frequency of the samples on each class
(BRADFORD et al., 1998), which can be accomplished by creating adjustable weight factors
on each term of the class loss (LIN et al., 2002; DATTA; DAS, 2015), by changing the boosting
weight update to differently calculate the majority and minority class samples (CHAWLA
et al., 2003), and by adding class specific terms in the kernel calculation to become cost
sensitive (MARATEA et al., 2014).

The boosting approaches adapts each step of AdaBoost to correct the bias of the
majority class. It can be done by modifying the weight updating to be cost sensitive (SUN et
al., 2005), by applying SMOTE to over-sample the minority class on each step (CHAWLA
et al., 2003), by under-sampling the majority class on each step (SEIFFERT et al., 2008),
by oversampling of the minority class with SMOTE on each step (CHEN et al., 2010), but
preferring samples with more neighbours in the majority class, and oversampling hard-to-
learn samples (GUO; VIKTOR, 2004), that according to the authors are mostly from the
minority class. Other ensemble approaches consists in creating each learning machine by sub-
sampling only the majority class (LIU et al., 2009b), by also removing the correctly classified
samples from the majority class (LIU et al., 2009b), and by bootstrap under-sampling followed
by SMOTE over-sampling, thus creating balanced datasets.
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The proposal of this thesis for imbalance classification is a particular case of the
proposed framework, by imposing every multinomial regression loss of each class to be a
conflicting objective. This gives more freedom to the model to find appropriate solutions
given the level of imbalance (and even the level of preference of the user).

5.6 Multi-label classification4

Multi-label classification is a generalization of the conventional classification problem
in machine learning when, instead of assigning a unique, relevant label for each object, it is
possible to assign more than one label per object. A straightforward approach, called Binary
Relevance (BR), ignores any possible relationship among the labels and learns one classifier
per label, for example, using kNN with Bayesian inference (ZHANG; ZHOU, 2007). BR is
computationally efficient, but it is not capable of exploring the relations among the labels to
increase generalization. The main proposals devoted to promoting task relationship rely on
Label Powerset, Classification Chains, and Multi-task Learning.

Label powerset consists in transforming the multi-label problem into a multi-class
one by creating a class for each combination of original labels. Despite exploring the rela-
tionship of labels, this proposal promotes an exponential growth of classes in the multi-class
equivalent problem. Some solutions for this issue were proposed: converting the powerset pro-
cess in random subsets of labels which are aggregated by simple voting (TSOUMAKAS et al.,
2011); excluding the labels on the multi-class equivalent problem characterized by few objects
(READ et al., 2008); heuristically subsampling to overcome imbalanced data (CHARTE et
al., 2014).

Considering an ordered sequence of labels, Classification Chains create a sequence
of classifiers, each one considering the predicted relevance of the labels provided by classifiers
previously trained. The considered sequence can be nominal or random (READ et al., 2011),
and the architecture can be a tree instead of a sequence (RAMÍREZ-CORONA et al., 2016),
so that the prediction depends on the parents of the label. Also, the classification can be
based on the relevance probability (DEMBCZY, 2010).

Multi-task learning creates binary relevance classifiers by jointly exploring the
relation of labels by structure learning (CARUANA, 1997). This can be done by modeling
the dependence among the labels using Ising-Markov Random Fields, further applied to
restrict the flexibility of the task parameters adjustment (GONÇALVES et al., 2015), or using

4This section is an amended version of Many-Objective Ensemble-Based multi-label Classification
(RAIMUNDO; VON ZUBEN, 2018b)
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a multi-target regression proposal that explores multiple output relations in data streams
(JAPKOWICZ; MATWIN, 2015).

Other methods were considered to extend these main proposals. Ensembles were
proposed to increase robustness by resampling (READ et al., 2008); generating ensemble
components using powersets in random sets of labels (TSOUMAKAS et al., 2011), and fil-
tering then using genetic algorithms and rank-based proposals (COSTA; COELHO, 2011);
generating multiple classifiers by changing the label order in classification chains (READ et
al., 2011), and using many state-of-the-art multi-label classifiers to compose ensembles with
different aggregation methods (TAHIR et al., 2012). Meta-learning methods, instead of
predicting the relevant labels found by binary relevance, predict the labels with higher mem-
bership degree, such that the number of predicted labels are estimated by a previously trained
cardinality classifier (TANG et al., 2009; SATAPATHY et al., 2015), or by a fixed optimal
number of labels (RAMÓN QUEVEDO et al., 2012). Multi-objective optimization was
used to: create ensembles by optimizing a novel accuracy metric that takes into account the
correlation of the labels and a diversity ensemble metric using evolutionary multi-objective
optimization (SHI et al., 2011); train an RBF network considering different sets of perfor-
mance metrics as conflicting objectives (SHI et al., 2012; SHI et al., 2014); and make feature
selection in ML-kNN classifiers (YIN et al., 2015).

In this thesis, we propose a novel ensemble method that uses a many-objective op-
timization approach to generate components exploring the relations among the labels (by
weighted averaging the loss on each label), followed by a stacking method to aggregate the
components for each label.

5.7 Multi-task learning5

Most of the multi-task learning methods encourage knowledge sharing by different
types of regularization structures (CARUANA, 1998). When negative transfer is avoided,
the constraints produced by regularization tends to promote generalization improvement
for the learning tasks involved, when compared to what could be achieved by single-task
learning. An algebraically effective strategy for knowledge sharing, when the loss function is
linearly related to the parameter vector of each task, is achieved by parameter sharing, so
that the parameter vector of a specific task may be conditioned by the parameter vector of
the remaining tasks (CARUANA, 1998). However, parameter sharing causes the task losses
to be conflicting with each other – the reduction in the loss function for one specific task

5This section is an amended version of Investigating multi-objective methods in multi-task classification
( c○2018 IEEE)(RAIMUNDO; VON ZUBEN, 2018a)
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may increase the loss of a subset of some other tasks – creating an issue on how to weight
the losses to promote the maximum generalization for that specific task.

Out of the scope of multi-task learning, a possible solution for the weighting problem
involving the loss functions of the whole set of tasks was proposed in Engen et al. (2009),
Wang et al. (2014), approaching a multi-class classification by considering the minimization
of the multiple learning losses, one for each class, as conflicting objectives, thus resorting to
a multi-objective optimization method. Supported by other scenarios when multi-objective
optimization methods were used to solve machine learning problems (JIN; SENDHOFF, 2008;
JIN et al., 2009), this work also conceives the learning losses as conflicting objectives, but
now under the framework of multi-task learning and explicitly adopting parameter sharing,
a perspective that from the best of our knowledge still was unexplored.

With or without the multi-objective perspective, the main concern of multi-task learn-
ing is to promote joint improvement of performance/generalization of multiple tasks using
structural modelling/learning and procedures devoted to knowledge sharing among the tasks.
The main idea consists in proposing models which are linear in the adjustable parameters,
such as linear regression, logistic regression, and support vector machines (SVMs), a prop-
erty that is directly explored when designing the regularization components of the learning
problem. Basically, those regularization components try to enforce similar tasks to have sim-
ilar parameter vectors, using advanced matrix manipulations and norms (KIM; PAIK, 2014).
The resulting learning problem may be convex or not. Convexity guides to more efficient
solvers, while nonconvexity and /or scalability issues will generally require iterative and ap-
proximate solutions. As a sample of relevant solvers, we may cite: (1) the approach of Gong
et al. (2013) to deal with non-smooth convex models; (2) iteratively finding new models to
correct the error of previous predictions (CHAPELLE et al., 2011); (3) using alternate opti-
mization (iteratively fixing a subset of variables and optimizing another subset) to deal with
more complex (usually bi-convex) models (ANDO; TONG, 2005); and (4) making model
relaxations (CHEN et al., 2009).

Among the most effective ways of imposing regularization is to force the reduction
of the norm of the parameter vector, generally looking for sparse parameter vectors for the
tasks. The most simple approaches restrain Θ to: (i) create a task shared sparsity on the
features (OBOZINSKI et al., 2008; LIU et al., 2009a; GONG et al., 2013; KIM; PAIK, 2014),
(ii) promote a general sparsity (KIM; PAIK, 2014; GONG et al., 2013), (iii) look for a low-
rank task shared space (KIM; PAIK, 2014), and (iv) encourage smoothness along neighbour
tasks (ZHOU et al., 2011).

Other mechanism is to model Θ with the help of other auxiliary matrices and al-
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gebraic properties. Using the additive approach (Θ = U + V), each matricial parcel would
extract different properties of the tasks and their relationship, including (i) shared sparsity
on the features (GONG et al., 2012; JALALI et al., 2010); (ii) sparsity on the tasks, allowing
parameters without parameter sharing for the non-zero tasks (allowing outlier tasks) (GONG
et al., 2012; CHEN et al., 2011); (iii) a low rank task shared space (CHEN et al., 2011; CHEN
et al., 2012); (iv) clustered tasks (EVGENIOU; PONTIL, 2004; ZHONG et al., 2012); (v)
general sparsity to allow outlier parameters (JALALI et al., 2010; CHEN et al., 2012); (vi)
multiple models derived from multiple clustering results (HAN; ZHANG, 2015a); and (vii)
a tree-structured clustering model in which models at higher levels contain the lower level
clusters (HAN; ZHANG, 2015b).

The multiplicative approach (Θ = SV +U) creates a shared subspace S, a task-specific
projection of the subspace V , and an additive factor to detect outliers U. Different properties
are applied to characterize the shared subspace: (i) orthonormality (ANDO; TONG, 2005;
ARGYRIOU et al., 2006; ARGYRIOU et al., 2008; CHEN et al., 2009; CHEN et al., 2013;
ZHONG et al., 2016); (ii) low-dimensional shared subspaces (ANDO; TONG, 2005; CHEN
et al., 2009; CHEN et al., 2013); and (iii) norms that promote sparsity in parameter sharing
(ARGYRIOU et al., 2006; ARGYRIOU et al., 2008; ZHONG et al., 2016).

Other proposals include the manipulation of the covariance matrix established by the
parameter vectors of the multiple tasks (ZHANG; YEUNG, 2010; ZHANG; YEUNG, 2014;
GONÇALVES et al., 2014; CHARUVAKA; RANGWALA, 2015), the a priori imposition
(LI; LI, 2007) or the online definition (YANG et al., 2012) of the graph Laplacian, the online
definition of task clusters (ZHOU et al., 2011; ZHOU; ZHAO, 2016) and the use of multiple
shared models (BAI et al., 2009; CHAPELLE et al., 2011; SIMM et al., 2014).

In the ensemble vein, there are works that explore the intrinsic multi-task character-
istic of neural networks (CARUANA, 1997) to propose a ensemble generation methodology
for non-multi-task learning models (QIANG; MUNRO, 2006; WANG; ZHANG, 2010). To do
that, it is proposed that the i-th component of the ensemble has as outputs the i-th feature
of the problem and the output whose prediction is desired. This procedure is well succeeded
because, when the neural network is forced to jointly learn another task (in this case, to learn
a feature), a new bias is forced, generating ensemble diversity (WANG; ZHANG, 2010). Fi-
nally, it is important to highlight some methods that explore ensemble for multi-task learning
such as: an adaptation of random forests (BREIMAN, 2001) for multi-task learning (SIMM
et al., 2014); an adaptation of adaboost for decision trees (QUINLAN, 1993), by modifying
the rules of information (FADDOUL et al., 2012) to integrate multiple tasks.

Transfer-learning is a related field that also explores knowledge sharing between
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tasks, but instead of having equal importance tasks, there are source tasks Ti, i ∈ S, that will
provide knowledge to a target task Tt . Given that, transfer learning aims at improving the
generalization capability of the target task using the knowledge contained in the instance,
feature representation, parameter or relational knowledge of the source tasks (PAN; YANG,
2010). Given that, mainly in the context of inductive transfer learning (PAN; YANG, 2010),
there are a few differences between the methodologies of transfer and multi-task learning.
However, since transfer learning is solely focused in improving the predictive capability of
the target task, any initiative to reach this objective is well fitted.

This work aims to study the impact of multi-objective optimization on multi-task
learning founded on parameter sharing. Starting from all tasks having the same parameter
vector, we generate multiple Pareto-optimal shared models from different views of the data
tasks. In fact, our proposal can be properly characterized as being a many-objective formu-
lation, because the loss function of each task is taken as a single objective. The method-
ology is promptly applicable to regression and classification problems, but here we will fo-
cus on classification. The Many-Objective Noninferior Set Estimation (MONISE) algorithm
(RAIMUNDO; VON ZUBEN, 2017), which is an extension of the well-known NISE algo-
rithm (COHON et al., 1979) to deal with more than two objectives, is taken to automatically
sample efficient solutions in the Pareto front. Notice that each efficient solution is a learning
model resulting from attributing a distinct importance to the data coming from multiple
tasks. Being a deterministic solver, MONISE will explore the particular conformation of the
Pareto front toward a better distribution of the Pareto-optimal solutions, thus promoting
very distinct perspectives for parameter sharing. Finally, for each specific task, a selected
subset of the obtained learning models will compose an ensemble, creating a classifier.

5.8 Multi-view learning

The primary challenge of this field is to explore the multitude of data without overfit-
ting, which could happen when the method concatenates the data features. This behavior can
be avoided by constructing learners that integrate features without directly sharing them.
The main strategies are guided by two principles (XU et al., 2013): (i) consensus: that tries
to maximize the agreement between the learning machines, and (ii) complementarity: that
tries to use the pieces of information of one view to complement the features of another view.

The primary methods to deal with this problem consists of co-training: enhancing
consensus by enforcing the classes from different views to be similar (FARQUHAR et al.,
2005), and enhancing complementarity by using the predicted labels of a classifier in one
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view as training samples of another view (NIGAM; GHANI, 2000; WANG; ZHOU, 2007);
kernel learning (MEMISEVIC et al., 2012) and subspace learning (SHON et al., 2006; XIA et
al., 2010). However, multi-view learning keeps some similarities with ensemble learning (XU
et al., 2013). Still, ensemble learning is applied to multi-view data by aggregating the votes
of random forests associated with each view (FRATELLO et al., 2017).

Many multi-view insights are contemplated by our proposal, although this multi-view
approach is mainly based on a simple ensemble aggregation. The general purpose classifier
tries to explore the common features along all views; the specific purpose classifier creates
individual classifiers per view; and the transfer learning classifier tries to find a specific view
regularized by the common features through all views. These approaches can explore many
characteristics of the data, and the final classifier produced by the aggregation of all views
benefits from this diversity.

5.9 Summarizing comments

The primary strength of the proposed methodology relies on its meta-learning be-
havior grounded on multi-objective concepts that we suppose to express good properties by
creating a good sampling of the hyper-parameters as well as by producing diverse models.
These properties make the proposed method similar to model selection and ensemble genera-
tion methods, differing from the literature by exploring the multi-objective characteristics of
generalized linear models with regularization. Compared with multi-objective meta-learning
methods, our methodology stands out. In addition to the characteristics mentioned above, it
relies upon deterministic multi-objective algorithms, such as NISE and MONISE, reinforcing
the applicability for convex machine learning problems.

Our methodology is also very general, being applicable to every formulation that can
be expressed as a generalized linear model with regularization, by highlighting the conflicting
objectives of the original problems. The combination of exploring the multi-objective nature
of generalized linear models with regularization, as well as the combination of multiple models
(each one corresponding to a trade-off solution of conflicting aspects of the learning process)
with ensembles were shown to exhibit very attractive cost/benefit rates in a wide range
of problems (multi-class classification, imbalanced classification, multi-label classification,
multi-task learning, transfer learning, and multi-view learning), and may be interpreted as
being a robust framework to deal with those and possibly many other problems in machine
learning.
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Chapter 6

Experiments

The usefulness of the multi-objective learning framework is attested by a series of rel-
evant classification problems in machine learning. Experiments are designed to verify model
selection, ensemble diversity, multi-class classification, class imbalance, multi-label classifica-
tion, multi-task learning, and multi-view learning.

6.1 Multi-class classification 1

Since Fernández-Delgado et al. (2014) have made an extensive experimental analysis,
considering a wide range of classifiers as contenders, this section incorporates their results in
further analyses that consider many aspects of multi-class classification. Remembering that
in multi-class classification a sample can be assigned to a single class, the primary goal of this
problem is to find classifiers with the highest rate of correct assignments. Taking into account
that the proposed method generates multiple models using multiobjective optimization, this
experimental design evaluates these models observing three aspects: (1) evaluating the quality
of the model selection (Section 6.1.2); (2) exploring the diversity of the models and their
effectiveness when composing an ensemble (Section 6.1.4); and (3) evaluating the quality of
the resultant classification using distinct ensemble filtering and aggregation (Section 6.1.4).
An additional fourth experiment deals with class imbalance (Section 6.1.5), scenario where
the rate of correct assignments can be misleading, since the number of samples from a single
class is so high that this evaluation can select classifiers incapable of learning the patterns
of the class with a small number of samples. With this diversity of problems, we aimed at

1This chapter is an amended version of Exploring multi-objective training in multi-class classification
(RAIMUNDO et al., 2018)
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investigating many aspects, qualities, and limitations of the proposed methodology.

With this diversity of problems, we aimed at investigating many aspects, qualities,
and limitations of the proposed methodology.

6.1.1 Datasets description

This section explains and defines the datasets of the experiments of model selection,
ensemble diversity, multi-class classification, and class imbalance. The database adopted for
those experiments are based on Fernández-Delgado et al. (2014), in which a group composed
of 121 datasets was used to benchmark multiple classifiers. Inside this group, 19 datasets
have an additional separated test set.

The original data, except for four datasets, came from the UCI’s repository2. They
are also available in the author’s site3, as well as the Matlab scripts that pre-process the
original data.

The experiments of model selection, ensemble diversity, and multi-class clas-
sification will follow the methodology in Fernández-Delgado et al. (2014) where it was used
a four-fold cross-validation to generate four distinct sets, and each set has three-quarters
of data kept to training/validation and one quarter to test. However, in the 19 datasets
that have an additional separated test set, the one quarter test set designed by the previous
procedure is replaced by the additional set.

An issue in the split procedure in Fernández-Delgado et al. (2014) might inflate the
performance of some classifiers of that paper (WAINBERG et al., 2016). It was used a 50/50
split of the complete dataset to make the parameter tuning procedure. Since this data is
the same as the 4-fold splitting, some samples of the test set could have been used in the
parameter tuning procedure, contaminating the whole methodology. Aiming at not falling in
the same mistake, we used the dataset seen in training/validation in only the three quarters
after the 4-fold splitting, adopting a 70/30 ratio for training and validation respectively.

We conducted the experiments of model selection (Section 6.1.2) and ensemble gen-
eration (Section 6.1.3) in the set of 19 datasets exhibiting a separated test partition; and the
experiment of ensemble filtering and aggregation (Section 6.1.4) in the set of 121 datasets
(which includes the 19 datasets with separated test partition).

It the experiment of class imbalance we separate 25% of the data for test in cases
without a separate test set. The remaining data (75% of data without a separate test set and

2https://archive.ics.uci.edu/ml/index.html
3http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/
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100% of data with a separate test set) will be split using the 75%/25% partition to training
and validation respectively.

6.1.2 Model selection

6.1.2.1 Proposed method

To emphasize the importance of taking the multi-objective nature of the regularized
multinomial regression into consideration for model selection, the following sequence of steps
is proposed: (1) the models are formulated as the conflicting regularized multinomial
logistic regression (Equation (4.6), Section 4.1.3); (2) P models are generated by NISE;
(3) the best model on validation set is selected; (4) the accuracy in validation is compared
to the one produced by other model selection techniques.

Remembering Equation (4.6):

min
θ

w1

K∑
k=1

1
uk

N∑
i=1
−

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
+ w2r(θ), (4.6 revisited)

6.1.2.2 Baseline

The algorithms used to make the comparison involves two types of grid search and
two types of global search. The first grid search (called logarithmic grid search) consists in
evaluating models taking constant steps on a logarithmic scale (λ ∈ {2− P

2 ,2− P
2 +1, . . . ,2 P

2 −1,
2 P

2 } ∪ {0}) (HUANG et al., 2012). The second grid search (called constant grid search) takes
constant steps varying w2 on the set {0, 1

P−1, . . . ,
P−2
P−1,1}. Finally, two zero-order hyperparam-

eter optimizers were applied, the Nelder-Mead global optimization method and a statistical
method based on tree-structured Parzen estimator and random search, which is called hy-
peropt4. Both approaches are restricted to P evaluations, and the performance index consists
in the accuracy in the validation set of a model using λ as the regularization parameter.

Those methods were evaluated in each of the four folds on the 19 datasets that
contain an independent test set. The best model found by those techniques are compared
constraining P to 50, 25, and 10 evaluations. The performances in all datasets for all four
replications were compared using Friedman test (FRIEDMAN, 1937), with p = 0.01 as a
threshold to indicate the statistical difference, and using Finner posthoc test (FINNER, 1993)
with the same threshold.

4Available at <https://github.com/hyperopt/hyperopt>

https://github.com/hyperopt/hyperopt
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6.1.2.3 Results

Figures 19 and 20 show the Pareto front (Multinomial loss vs L2 norm of the vector of
parameters) for two different datasets using NISE, logarithmic constant step grid search (log
grid) and constant step grid search (grid). Confirming the hypothesis presented in Section
2.1, these scenarios show that NISE clearly creates a better representation of the Pareto
front, which can help on finding a richer set of non-dominated models.
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(c) Constant grid search

Figure 19 – Pareto front representation for the low-res-spect dataset.

To provide a stronger evidence supporting the relevance of NISE for model selection,
we used the test proposed in Section 6.1.2. In this experiment, we compare NISE, logarithmic
grid search, constant grid search, Nelder-Mead and hyperopt for 10, 25 and 50 evaluations,
analyzing if there is any statistical difference with Friedman test (threshold of p = 0.01), and
all versus all with Finner post-hoc test (threshold of p = 0.01).

Since the Friedman test rejected the null hypothesis, Table 1 summarizes the post-
hoc Finner test comparisons. The table provides information for each evaluated method
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(c) Constant grid search

Figure 20 – Pareto front representation for the heart-cleveland dataset.

with corresponding number of evaluations (indicated in the method and evals columns):
the average rank (in the rank column); the number of methods better than the evaluated
method (in the #< column); the number of methods worse than the evaluated method (in the
#> column). This ordering relation (better and worse) is accounted only if there is statistical
significance according to the Finner post-hoc test.

The rows of Table 1 are sorted by the average rank, and the rank is directly used by
the Finner post-hoc test, as such, the #< column indicates how many methods of the rows
above the current row are better than the method at that row (e.g., the first four methods
are better than const grid 50 ), and the #> column indicates how many methods of the rows
below the current row are worse than the method at that row (e.g., the last six methods are
worse than const grid 50 ).



Chapter 6. Experiments 83

Table 1 – Statistical comparison involving five model selection methods with three different
number of evaluations.

method evals rank #< #>
NISE 50 6.25 0 10
log grid 50 6.46 0 10
Hyperopt 50 6.71 0 10
NISE 25 6.73 0 10
log grid 25 6.97 0 9
const grid 50 7.70 4 6
Hyperopt 25 7.77 5 6
NISE 10 7.81 5 6
const grid 25 8.27 5 3
log grid 10 8.75 8 1
Nelder-Mead 50 8.80 8 1
Nelder-Mead 25 8.93 8 1
const grid 10 9.24 9 1
Hyperopt 10 9.45 9 0
Nelder-Mead 10 10.15 13 0

6.1.2.4 Discussion

These results show the usefulness of an effective multi-objective optimization tech-
nique for model selection. The quality of our technique is highlighted by the fact that NISE,
with the limit of 50 evaluations, was never outperformed in all tested scenarios. Moreover,
notice that NISE, with the limit of 25 evaluations, even though being the fourth in the rank-
ing, exhibits results with no statistical difference to the three best methods. Hence, fewer
evaluations are admissible for this technique.

6.1.3 Ensemble generation

6.1.3.1 Proposed method

In this section, instead of choosing the best classifier given a performance metric, the
models generated by the optimizer are used to compose an ensemble. One of the most impor-
tant aspects in ensemble generation is linked to the capability of generating multi-objective
diversity. Given a set of classifiers, the diversity measure should capture the difference be-
tween those classifiers.

After formulating the models as the conflicting regularized multinomial logistic
regression (Equation (4.6), Section 4.1.3). We create two versions of the proposed method:
consider the 10 first models generated by NISE; and choose the 10 most diverse models,
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between 50 models generated by NISE, and solving the maximum diversity filtering problem
(Definition 4.1).

Remembering Equation (4.6):
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+ w2r(θ), (4.6 revisited)

6.1.3.2 Experimental setup, baselines and evaluation metrics

These methods are compared against bagging and boosting with 10 components. All
methods used a multinomial regression as the base classifier. To make a comparison between
ensemble generators, the mean some-correct (Equation (4.17)) and mean one-correct mea-
sures were used. Those methods were evaluated in each of the four folds on the 19 datasets
that contain an independent test set. The evaluated mean some-correct diversity measure for
the three ensemble generation methods was compared using Friedman test (FRIEDMAN,
1937), with p = 0.01 as a threshold to indicate a statistical difference, and using Finner
posthoc test (FINNER, 1993) with the same threshold.

6.1.3.3 Results and discussion

Figure 21 shows the evolution of both diversity measures (some-correct and both-
correct) when increasing the number of components, for NISE, bagging and boosting ((a)
to (c), respectively), using multinomial regression as base classifiers over the heart-cleveland
dataset. It can be seen that the multi-objective procedure has a competitive performance
when compared to bagging (being slightly worse in some-correct and slightly better in both-
correct metrics) and having a consistently better performance than boosting. Those results
can be explained by the behavior of each algorithm: bagging is based on randomness; it allows
this procedure to generate different components by random re-sampling. Boosting is the op-
posite, it is focused on improving the accuracy of the composed ensemble by inserting new bi-
ased components. In turn, NISE searches for components with different complexity×accuracy
trade-offs. Given that, NISE is not only focused on accuracy; it also tends to find diverse
components by properly sampling the Pareto front.

The next experiment shows that NISE is not only capable of generating diverse com-
ponents but also exhibits a consistent behavior across several datasets. First, 50 models are
generated using the NISE method. After that, the 10 best models are selected using maxi-
mum diversity filtering (Definition 4.1) as described in Section 4.3. We refer to this approach
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(c) Boosting

Figure 21 – Evolution of the some-correct (•) and both-correct (×) diversity measures by
increasing the number of generated components for heart-cleveland diversity
dataset

as tuned multi-objective component generator. The first 10 models generated by the multi-
objective procedure are denoted regular multi-objective components.

Figure 22 shows a bar graph where each group of four bars is a comparison between
four ensemble generation methods, for each of the 19 datasets with test partition, all labeled
in the abscissa. The gray bar is the double-correct measure, and the black bar on top of it
is one-correct measure. Their sum, indicated by the top of the bar, corresponds to the some-
correct measure. Each bar from the dataset group corresponds to a different method. From
left to right: boosting, bagging, the regular multi-objective component generator using NISE,
and the tuned multi-objective component generator using NISE. One of the approaches using
NISE is always the best one in terms of diversity, or equivalent to other approaches, except
for a single dataset (hayes-roth).

To further enhance the comparative analysis, a Friedman test followed by a Finner
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Figure 22 – Bar chart comparing the diversity behavior of four techniques devoted to ensem-
ble generation. From left to right, bars correspond to: boosting, bagging, regu-
lar multi-objective component generator using NISE, and tuned multi-objective
component generator using NISE.

post-hoc test was applied, covering all folds for all datasets. Tuned multi-objective is better
than all the others; boosting is worse than all the others; and bagging is better than regular
multi-objective.

The competitiveness of regular and tuned multi-objective using NISE is enforced by
the necessary association of multi-objective solutions with efficient solutions, a favorable
condition to enhance the whole performance of the ensemble.

6.1.4 Ensemble filtering and aggregation

6.1.4.1 Proposed method

Supported by the diversity expected (and observed in the experimental studies) from
our methodology, we propose a learning machine resulting from the following sequence of
steps: (1) the models are formulated as the conflicting regularized multinomial logistic
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regression (Equation (4.6), Section 4.1.3); (2) the ensemble generation of 50 models using
NISE; and (3) the final predictor can be a selected model (as discussed in Section 6.1.2) or an
ensemble composition (as described in section 6.1.3). Two steps are involved: (1) filtering: first
some components are selected, using all filters described in Section 4.3; and (2) aggregation:
after filtering, simple voting and distribution summing, described in Section 4.3, are used,
except for winner takes all that only uses simple voting.

Remembering Equation (4.6):

min
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+ w2r(θ), (4.6 revisited)

6.1.4.2 Experimental setup, baselines and evaluation metrics

Afterward, those models were compared with 179 classification methods evalu-
ated in Fernández-Delgado et al. (2014), on their experimental setup. To deal with missing
data (absence of results for some algorithms), the comparison was made using Skilling-Mack
test (SKILLINGS, 1981), p = 0.01 as the threshold, for accuracy and kappa metrics (CO-
HEN, 1960). Given an evaluation metric for the performance of a classifier in a dataset,
this measure creates a rank by sorting classifiers for a specific dataset, replacing the rank
of the missing value by a median rank for that block. Then, it is created a table sorted by
the mean, presenting how many algorithms are worse or better than the algorithm under
analysis, considering a statistical significance of p = 0.01 as the threshold.

6.1.4.3 Results

Supported by the results in Section 6.1.2.3 and Section 6.1.3.3, we have evidence that
the proposed framework is suitable for model selection and diversity generation. We then
compare the classifiers based on generating components with multi-objective optimization
(presented in Section 6.1.4) with multiple classifier methodologies with alternative imple-
mentations cataloged in Fernández-Delgado et al. (2014). The description and names of the
classifiers not proposed in this paper are listed in reference Fernández-Delgado et al. (2014).
Using this description it is possible to catalog the methods that possibly had the performance
inflated, in the results reported in Wainberg et al. (2016), by hyperparameter tuning being
done in a set with some samples of the test set.

Since the Skilling-Mack test rejected the null hypothesis, Tables 2 and 3 summarizes
the post-hoc Finner test comparisons. The tables present information for each evaluated
method (indicated in the method column): the average rank (in the rank column); the
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Table 2 – Friedman rank (average) considering the accuracy metric. Top 60 out of 190 clas-
sifiers (proposed methods in bold).

method rank #< #> method rank #< #>
rf_caret* 37.75 0 164 pnn_matlab* 63.78 7 110
parRF_caret* 38.03 0 162 cforest_caret* 63.79 7 110
svm_C* 40.69 0 161 gaussprRadial_R* 64.45 7 107
svmPoly_caret* 41.50 0 160 wta_svote 64.46 7 107
elm_kernel_matlab* 43.40 0 160 RandomForest_weka 65.14 7 107
svmRadialCost_caret* 43.47 0 160 svmLinear_caret* 66.56 12 102
rforest_R 44.38 0 160 dkp_C* 66.62 12 102
svmRadial_caret* 46.10 0 155 MultiBoostAB_RandomForest_weka 67.50 12 101
elite_svote 46.14 0 155 mlp_C* 68.97 16 98
elite_dsum 46.24 0 155 fda_caret 69.20 16 96
elitePL_dsum 47.13 0 155 RandomCommittee_weka 69.47 16 96
elitePL_svote 47.14 0 155 knn_caret* 69.49 16 96
max-div_svote 48.83 0 152 mlpWeightDecay_caret* 69.59 17 96
C5.0_caret* 48.93 0 152 Decorate_weka 69.78 18 95
avNNet_caret* 49.01 0 152 MultiBoostAB_MultilayerPerceptron_weka 70.43 18 94
moPL_dsum 49.11 0 152 rda_R* 70.97 20 94
max-div_dsum 50.38 0 148 gcvEarth_caret 71.34 22 94
nnet_caret* 50.49 0 147 multinom_caret* 71.68 22 94
wtaPL_dsum 51.39 0 145 knn_R* 72.11 23 93
Bagging_LibSVM_weka* 51.58 0 145 MultiBoostAB_PART_weka 72.20 23 93
moPL_svote 51.99 0 144 glmnet_R 72.43 24 92
pcaNNet_caret* 52.12 0 144 treebag_caret 72.56 24 92
mlp_caret* 52.83 0 142 svmlight_C* 72.60 24 92
RotationForest_weka 53.29 0 140 mda_caret 72.66 24 92
wtaPL_svote 55.52 0 133 ClassificationViaRegression_weka 72.67 24 92
RRF_caret* 55.81 0 132 Bagging_PART_weka 73.12 24 91
MultiBoostAB_LibSVM_weka* 57.12 1 128 elm_matlab* 74.09 24 91
RRFglobal_caret* 57.17 1 128 SimpleLogistic_weka 74.75 25 89
LibSVM_weka* 58.29 2 126 pda_caret* 75.03 26 88
adaboost_R 60.42 3 119 rbfDDA_caret* 75.59 26 86

*Methods with hyperparameter tuning done in a set with some samples of the test set, a process that, in some
sense, leads to contamination of training/test samples, as reported in Wainberg et al. (2016).

number of methods better than the evaluated method (in the #< column); and the number
of methods worse than the evaluated method (in the #> column). This ordering relation
(better and worse) is accounted only if there is statistical significance according to the Finner
post-hoc test. Also, the rows of Tables 2 and 3 are sorted by the average rank, columns #<

and #> follow the same interpretation adopted in Table 1.

In Tables 2 and 3, the proposed methods are highlighted in bold and the names follows
the structure filtering_aggregation whose codes were presented in Section 4.3. Also, there
are some methods marked with a footnote (e.g., parRF_caret*) expressing the methods with
performance possibly inflated by having access to some samples of the test set (WAINBERG
et al., 2016).

6.1.4.4 Discussion

It is possible to see that our methods have a comparable performance with the best
classifiers, even with the classifiers with an inflated performance (WAINBERG et al., 2016).
We can see that only the ensemble with a single component (wta_svote) is worse than the
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Table 3 – Friedman rank (average) considering the kappa metric. Top 60 out of 190 classifiers
(proposed methods in bold).

method rank #< #> method rank #< #>
parRF_caret* 40.48 0 164 MultiBoostAB_PART_weka 63.74 3 111
rf_caret* 40.58 0 164 RandomCommittee_weka 66.47 4 104
svm_C* 43.88 0 161 MultiBoostAB_J48_weka 67.63 7 101
rforest_R 46.81 0 159 treebag_caret 67.64 7 101
elite_dsum 47.50 0 158 Bagging_PART_weka 67.80 7 101
mlp_caret* 47.78 0 158 LibSVM_weka* 67.82 7 101
elite_svote 48.27 0 158 MultiBoostAB_LibSVM_weka* 67.84 7 101
elitePL_dsum 49.07 0 151 RandomForest_weka 68.22 7 100
nnet_caret* 49.32 0 151 fda_caret 68.22 7 100
elitePL_svote 49.63 0 150 AdaBoostM1_J48_weka 68.69 9 97
elm_kernel_matlab* 50.13 0 149 rda_R* 69.05 10 97
C5.0_caret* 50.14 0 149 wta_svote 69.74 12 96
svmPoly_caret* 50.66 0 148 MultiBoostAB_RandomForest_weka 69.99 13 96
moPL_dsum 50.89 0 147 Bagging_RandomTree_weka 70.34 14 95
max-div_svote 51.73 0 145 mlp_C* 70.79 14 95
avNNet_caret* 51.79 0 145 gcvEarth_caret 71.02 16 95
svmRadialCost_caret* 52.28 0 144 multinom_caret* 72.10 19 95
RRF_caret* 52.29 0 144 MultilayerPerceptron_weka 72.75 19 92
wtaPL_dsum 52.92 0 144 Bagging_J48_weka 73.18 19 91
pcaNNet_caret* 54.08 0 140 svmLinear_caret* 73.19 19 91
moPL_svote 54.20 0 139 mda_caret 73.27 20 91
max-div_dsum 54.39 0 139 mlpWeightDecay_caret* 73.57 22 91
RRFglobal_caret* 54.60 0 138 gaussprRadial_R* 74.31 23 90
svmRadial_caret* 55.71 0 137 MultiBoostAB_RandomTree_weka 74.96 24 90
wtaPL_svote 57.67 0 128 pda_caret* 75.43 24 89
RotationForest_weka 59.18 0 126 pnn_matlab* 75.45 24 89
logitboost_R 62.13 2 115 ClassificationViaRegression_weka 75.50 24 88
adaboost_R 62.52 2 114 glmnet_R 75.66 24 88
MultiBoostAB_MultilayerPerceptron_weka 62.73 2 114 SMO_weka 75.75 24 88
Decorate_weka 63.48 3 111 knn_caret* 75.81 24 88

*Methods with hyperparameter tuning done in a set with some samples of the test set, a process that, in some sense,
leads to contamination of training/test samples, as reported in Wainberg et al. (2016).

best classifiers from the literature, with statistical significance. All ensembles are comparable
with the best classifiers from the literature. It is important to notice that there is only one
method without sample contamination (rforest_R) better than our best method (elite_-
dsum). Furthermore, the number of methods worse than these methods with the highest
performance, are similar (160 versus 155 for the accuracy and 159 versus 158 for the kappa
metric) strengthening the hypothesis that our method has a competitive performance when
compared to the best-ranked classifiers from the literature.

6.1.5 Imbalanced classification

6.1.5.1 Proposed method

To explore the potential of the multi-objective framework in the imbalanced scenarios,
instead of using the simple regularized multinomial model, we are going to adopt the multi-
nomial model with the loss of every class as conflicting objectives (called class-conflicting
regularized multinomial logistic regression and presented in Equation (4.7), Section



Chapter 6. Experiments 90

4.1.3).

Remembering Equation (4.6):

min
θ

w1

K∑
k=1

1
uk

N∑
i=1
−

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
+ w2r(θ), (4.6 revisited)

and Equation (4.7):

min
θ

K∑
k=1

wk

[
−

N∑
i=1

yk
i ln

(
eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
+ wK+1r(θ), (4.7 revisited)

This formulation is used to generate 50 efficient models using MONISE, that we call
here as manyobj. However, since it could not find the models with a flat preference of classes
(models with equal preference for all objectives), as well as a preference that balances the
importance with the inverse of the number of samples for each class, we created an approach
called all with 50 models of each approach (manyobj, standard multinomial models, and
balanced multinomial models). The standard multinomial models are formulated with the
regularized multinomial logistic regression (Equation (4.6)) with uk = 1, and balanced
multinomial models are formulated with the regularized multinomial logistic regression
(Equation (4.6)) with uk = nk ; both methods are trained using NISE and generating 50 mod-
els. To show a baseline the approach both used models coming from standard multinomial
models, and balanced multinomial models.

6.1.5.2 Experimental setup, baselines and evaluation metrics

The algorithms used to make the comparison are the most relevant in imbalanced
classification literature5: SMOTE, ADASYN, ENN, Tomek-links, ENN, SMOTEENN, SMO-
TETL, SMOTEBoost, RAMOboost, random undersampling and random oversampling. Gi-
ven that those methods actuate as meta-learners, we used a balanced regularized multinomial
regression as its base classifier, and following a similar procedure of (SÁEZ et al., 2015),
the number of neighbors was kept as k = 5, and the over-sampling and under-sampling
was targeted to achieve N

K samples. Since the majority of classes were not changed in the
over-sampling (and the minority in the under-sampling case), this procedure only reduces
the level of imbalance, but it did not make the dataset completely balanced. Also, after the
sampling the training procedure evaluates models taking constant steps on a logarithmic scale
(λ ∈ {2− P

2 ,2− P
2 +1, . . . ,2 P

2 −1,2 P
2 } ∪ {0}) (HUANG et al., 2012); and we used cross-validation to

select the number of candidate models in the boosting approaches.
5Available at <contrib.scikit-learn.org/imbalanced-learn>

contrib.scikit-learn.org/imbalanced-learn
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Table 4 – Friedman rank (average) considering the gmean, kappa and F1 metric for all
datasets.

gmean kappa F1
rank #< #> rank #< #> rank #< #>

balanced 6.66 0 14 8.53 0 6 8.65 0 5
imbalanced 11.23 8 4 8.70 0 6 8.75 0 5
wta_manyo 13.58 15 0 14.09 14 0 14.52 15 0
elite_manyo 14.91 15 0 14.79 15 0 15.63 16 0
wta_both 6.89 0 14 7.91 0 7 8.21 0 6
elite_both 7.07 0 12 8.09 0 7 8.02 0 6
wta_all 7.17 0 12 7.96 0 7 8.38 0 6
elite_all 7.07 0 12 8.13 0 7 8.04 0 6
ENN 10.08 5 4 10.35 7 4 9.79 0 5
random_us 10.36 5 4 8.69 0 6 8.44 0 6
TL 10.50 5 4 8.24 0 7 8.33 0 6
smote 9.18 5 5 8.21 0 7 8.29 0 6
adasyn 9.33 5 4 8.95 0 6 8.78 0 5
random_os 8.90 2 5 8.15 0 7 7.79 0 6
SMOTETomek 8.97 2 5 8.69 0 6 8.52 0 6
SMOTEENN 9.82 5 4 11.00 12 4 10.61 9 4
RAMOBoost 13.85 15 0 13.68 14 0 13.67 14 0
SMOTEBoost 13.66 15 0 13.43 14 0 13.49 14 1
EE 10.66 5 4 12.30 12 1 11.99 13 2

Those methods were evaluated in all 121 datasets with 25% for the test set and 25%
of the rest of the dataset separated to validation. The evaluation was done using distinct
metrics: kappa, gmean (it consists in the geometric mean of the recall for every class) and F1.
The same metric used to present the performance was also presented beforehand to select the
models. The performances in all datasets were compared using Friedman test (FRIEDMAN,
1937), with p = 0.01 as a threshold to indicate the statistical difference, and using Finner
posthoc test (FINNER, 1993) with the same threshold.

6.1.5.3 Results

The Friedman test rejected the null hypotheses for the class imbalance experiment.
The post-hoc Finner test was summarized by Tables 4, 5 and 6, which show, respectively,
the experiment with all datasets; all datasets with weighted Friedman test; and for the 20
most imbalanced datasets. The weighted Friedman test consists in weighting the average
rank with the imbalance-degree metric with total variance (ORTIGOSA-HERNÁNDEZ et
al., 2017), and the imbalance-degree metric also selects the most imbalanced datasets with
total variance (ORTIGOSA-HERNÁNDEZ et al., 2017). The tables present information for
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Table 5 – Friedman rank (weighted average) considering the gmean, kappa and F1 metric for
all datasets. The Friedman rank is weighted by the imbalance-degree metric with
total variance (ORTIGOSA-HERNÁNDEZ et al., 2017).

gmean kappa F1
rank #< #> rank #< #> rank #< #>

balanced 5.92 0 14 9.49 0 5 9.20 0 5
imbalanced 12.83 12 0 9.10 0 5 9.32 0 5
wta_manyo 13.38 13 0 13.69 14 0 14.64 16 0
elite_manyo 14.40 14 0 14.38 14 0 15.59 17 0
wta_both 6.08 0 14 7.55 0 7 8.16 0 6
elite_both 6.82 0 14 8.40 0 6 8.15 0 6
wta_all 6.35 0 14 7.64 0 7 8.16 0 6
elite_all 6.75 0 14 8.40 0 6 8.06 0 6
ENN 9.90 5 6 9.83 2 5 9.02 0 5
random_us 11.27 7 4 9.19 0 5 8.84 0 5
TL 11.91 11 1 8.36 0 6 8.61 0 5
smote 9.59 5 6 8.20 0 6 8.60 0 5
adasyn 9.64 5 6 9.03 0 6 9.04 0 5
random_os 8.92 5 7 8.35 0 6 7.79 0 6
SMOTETomek 9.37 5 6 9.05 0 6 8.44 0 6
SMOTEENN 9.10 5 7 11.10 9 2 10.64 6 3
RAMOBoost 13.74 13 0 12.82 13 0 12.71 14 1
SMOTEBoost 13.46 13 0 12.38 13 0 12.43 13 2
EE 10.48 5 5 12.93 13 0 12.49 13 2

each evaluated method (indicated in the method column): the average rank (in the rank
column); the number of methods better than the evaluated method (in the #< column); and
the number of methods worse than the evaluated method (in the #> column). This ordering
relation (better and worse) is accounted only if there is statistical significance according to
the Finner posthoc test.

In Tables 4, 5 and 6, the proposed methods are highlighted in bold and the names
follow the structure filtering_generation. The filtering codes were presented in Section
4.3, and the generation was presented in Section 6.1.5.

6.1.5.4 Discussion

First of all, the traditional ad-hoc balancing performs well in the gmean metric in all
scenarios, and any change focused on dealing with imbalance datasets does not improve much
performance. In the kappa and F1 metric, it is possible to observe an improvement from some
imbalance methods coming from the literature (TL, smote, random oversampling), as well as
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Table 6 – Friedman rank (average) considering the gmean, kappa and F1 metric for the
20 most imbalanced datasets (according to imbalance-degree metric with total
variance (ORTIGOSA-HERNÁNDEZ et al., 2017).

gmean kappa F1
rank #< #> rank #< #> rank #< #>

balanced 5.74 0 8 11.27 0 0 10.12 0 1
imbalanced 12.52 3 0 9.27 0 1 9.90 0 1
wta_manyo 14.12 7 0 13.57 2 0 14.99 10 0
elite_manyo 14.59 7 0 15.32 9 0 16.32 15 0
wta_both 5.52 0 8 6.59 0 3 8.15 0 3
elite_both 7.65 0 3 9.74 0 0 8.44 0 3
wta_all 5.54 0 8 6.17 0 3 7.74 0 3
elite_all 7.45 0 3 9.34 0 1 8.19 0 3
ENN 10.55 0 0 8.67 0 2 8.74 0 3
random_us 12.44 3 0 10.02 0 0 10.30 0 1
TL 12.17 3 0 8.47 0 2 8.44 0 3
smote 9.22 0 0 7.95 0 2 8.77 0 3
adasyn 9.59 0 0 8.02 0 2 8.49 0 3
random_os 7.45 0 3 8.30 0 2 6.99 0 3
SMOTETomek 9.59 0 0 9.57 0 0 8.17 0 3
SMOTEENN 8.02 0 2 11.90 0 0 10.34 0 1
RAMOBoost 13.19 6 0 9.94 0 0 9.92 0 1
SMOTEBoost 12.82 3 0 11.07 0 0 10.90 0 0
EE 11.72 3 0 14.72 7 0 14.97 10 0

some proposed methods (*_both and *_all). This statement shows that proper manipulation
of the weights in the optimization of an L2 regularized multinomial logistic regression helps
to build good classifiers in imbalanced datasets.

It is important to notice that the methods both are ensembles composed of balanced
and imbalanced models. Those methods are straightforward and consistent and achieve this
excellent performance by only changing the objective function. The methods generated by
many-objective (manyo) training were not capable of achieving a good performance; however,
when they are associated with balanced and imbalanced models (both) they improve the
performance of the classifier. The result for the most imbalanced datasets, depicted in Table
6 for kappa and F1 metrics, is the scenario where this quality is most prevalent, showing a
more profound relevance. This profile of performance can be explained by the fact that this
kind of optimization might not be able to find more trivial models (no matter their intrinsic
performance) and is capable of finding more challenging models (when the trivial models
were not enough to achieve a good performance).



Chapter 6. Experiments 94

6.2 Detection of epileptic seizures 6

In this section, we focus on the problem of seizure detection in epileptic brain record-
ings. Seizures, being scarce events, pose a defiance to machine learning algorithms both
regarding biological variability of their types and also regarding the formation of datasets
with balanced sample classes.

Concerning the nature of the features that are usually passed to such classifiers, there
is no consensus: energies of subbands of the Fourier spectrum have been shown to be descrip-
tive of seizure events (SHOEB; GUTTAG, 2010) as well as wavelet expansions (LATKA et
al., 2003), entropic measures, and other linear and nonlinear features (GIANNAKAKIS et
al., 2015). More recently, there is an increasing interest in extracting features capable of un-
veiling the interdependence between multiple channels’ recordings, forming synchronization
graphs (DHULEKAR et al., 2015). All these extraction methods can be used to generate ex-
planatory features that a learning machine would make use to detect seizures. Depending on
particular characteristics of the state of the patient under evaluation, some feature extraction
methods may outperform others. These considerations motivate us to explore multiple ex-
tractions and construct ensemble approaches, which are capable of weighting multiple points
of view, automatically, giving preference to distinct classifiers depending on how each sample
is positioned in the feature space.

Given the multitude of patients and extractions, two experiments were conducted
subject to distinct characteristics of the problem: (1) focused on addressing strategies for
information sharing among patients, we adopted a transfer learning method, which uses
MOO to share data from a source patient to a target one. Furthermore, we resort to ensembles
to aggregate these transfer-learned classifiers coming from multiple feature extractions; (2)
focused on addressing strategies for aggregating multiple feature extractions, we proposed
models that explicitly deals with all feature extractions at once, weighting the influence of
each extraction in the loss function and the regularization.

6.2.1 Datasets description

The data analyzed in this experiment was extracted from electroencephalographic
(EEG) recordings in the Physionet Database (GOLDBERGER et al., 2000; SHOEB, 2009).
Among its available patients and channels, here we work with the following subset of channels
C present in all patients P = {1,2,3,4,5,6,7,8,9,10,11,12,14,20,21,22,23}, for uniformity

6This section is an amended version of Ensembles of Multiobjective-Based Classifiers for Detection of
Epileptic Seizures (BESERRA et al., 2018), a research made in partnership with Fernando dos Santos Beserra
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across patient’s settings. Whenever convenient, the EEG recording at a given channel c ∈ C

and time t will be denoted by data(t)[c]. The set of extraction methods are defined by E ≡
{gph, f ou,wlt} corresponding respectively to synchronization graph-based, Fourier transform-
based, wavelet expansion-based extractions.

Wavelet-based features are extracted by a wavelet transform of each data channel.
Let hi(t) = data(t)[i], t = 0, . . . , (N − 1)δt be the recording of the i-th channel at time t = T ,
where δt = 1/256 is the sampling time precision. Then, a wavelet transform of hi(t) is defined
as

Wi(n,a) =
N−1∑
j=0

hi( jδt) f
(
( j − n)δt

a

)
(6.1)

where f (·) is the Sombrero Wavelet (LATKA et al., 2003): f (t) =
√

δt
a

2√
3
π−1/4(1 − t2)e−t2/2.

The adopted a-scales are A = {0.031 , 0.033, 0.037, 0.049, 0.080 , 0.165, 0.392, 1}.

The entire generation of a feature vector concatenates two shifts of one second of the
W coefficients obtained at t and t − 1. At each of these time instants, one second of data
is used for the transform and the N = 256 coefficients are reduced to a pair of means and
standard deviations, per channel and per a-scale.

Synchronization graph-based features were inspired by the works of Dhulekar et
al. (2015), Kramer et al. (2008). This procedure divides windows of 10s into twenty intervals
of the form I(n) = [t − (1+ n/20), t − L(1+ n/20)+ 1](s). For each of these subintervals and for
every pair of electrodes, the Pearson correlation coefficients between these electrodes’ signals
were computed, the maximum absolute values of these correlations were retained and used
to create a weighted graph, which is then converted to three unweighted undirected graphs,
using τ = [0.4,0.5,0.6] as discretization thresholds.

The metrics extracted from each of these graphs were composed of all those outlined
in Section 3.1 of Dhulekar et al. (2015), adding: number of λ = 1 eigenvalues of the Lapla-
cian Matrix; average connected component size; adjacency matrix spectral radius; adjacency
matrix trace; adjacency matrix energy; clustering coefficient; eccentricity; radius; number
of edges; normalized Laplacian Energy; the ratio between the first non-zero and the largest
eigenvalue of the normalized Laplacian; the second largest eigenvalue of the Laplacian matrix.

Finally, the features of the kind Fourier transform-based are extracted following
the procedure defined in Shoeb (2009). They have information of the channels along the
interval [t − 4, t + 2], for a feature characterizing time t.

The feature extraction stage generated a set of pairs (xxxp(t), yp(t)), with time discretized
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in windows of size ∆t = 1s, and labels generated according to Van Esbroeck et al. (2016),
where only the first 20s of a seizure are marked with y = 1 and time instants outside a seizure
receive label y = 0.

Target patients p ∈ P had their data divided into training, validation and out-of-time
test sets, by assigning to the test sets all the samples whose time instants were t ≥ tp

seiz =

t∗p − 5 min, t∗p being the lowest time index of a sample occurring after the n∗p-th last seizure,
n∗p = max(1, bnseiz

p /4c), nseiz
p denoting the number of annotated seizures for patient p. All

patients were tested in a set containing a single seizure interval mark, except for patients
6,12,14,20, whose test sets contained 6,10,2,2 annotated test seizures, respectively. Training
and validation data consisted of a random split (70% / 30%) of the samples whose extraction
times were t < tp

seiz and, due to the large amount of data, we retained only a random quarter
of the y = 0-labeled samples. Source patients p ∈ P had their non-seizure training samples
with times t < tp

seiz again subsampled by a quarter, while their validation data consisted of
all samples with associated t ≥ tp

seiz.

6.2.2 Transfer learning applied to the detection of epileptic
seizures

6.2.2.1 Proposed methods

6.2.2.1.1 Single-task predictor generated by multi-objective optimization

Considering a unique target-task t ∈ P and a unique feature extraction e ∈ E ≡

{gph, f ou,wlt}, with P and E defined in Section 6.2.1. the models are trained using NISE on
a balanced regularized multinomial logistic regression formulation (Equation (4.6), Sec-
tion 4.1.3). This procedure generates a set of 25 models, where the predictor is selected using
the harmonic mean between sensitivity and specificity in a validation set. Here, three predic-
tors are created: STNISE_gph, STNISE_fou and STNISE_wlt, corresponding to single-task
learning strategies using, respectively, graph, Fourier and wavelet feature extractions.

Remembering Equation (4.6):

min
θ

w1

K∑
k=1

1
uk

N∑
i=1
−

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
+ w2r(θ), (4.6 revisited)
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6.2.2.1.2 Ensemble of single-task learned models

For every feature extraction e ∈ E on target-task t ∈ P, the models are trained using
NISE on a balanced regularized multinomial logistic regression formulation (Equation
(4.6), Section 4.1.3). Then, the 25 models for every extraction e ∈ E are gathered to compose
an ensemble, selected (wta) or filtered using the 10 best models (elt) and aggregated by
summing the distributions (better explained in Section 4.3). This pipeline is depicted in
Figure 23, where each NISE box represents the training of an extraction e ∈ E to a target-
task t ∈ P. Here, two predictors are created: STNISE_wta and STNISE_elt.

Remembering Equation (4.6):

min
θ

w1

K∑
k=1

1
uk

N∑
i=1
−

[
yk

i ln
(

eθ
>
k φ(xi)∑K

j=1 eθ
>
k φ(xi)

)]
+ w2r(θ), (4.6 revisited)

Figure 23 – Representation of the ensemble operation involving single-task learned models.

6.2.2.1.3 Ensemble of transfer-learned models

For every feature extraction e ∈ E and for every transfer for a unique source-task s ∈ P

to a unique target-task t ∈ P, the models are trained using NISE with a single-parameter
label-conflicting regularized logistic regression formulation (Equation (4.12), Section
4.1.6). This pipeline is represented in Figure 24 where each NISE box represents the training
of an extraction e ∈ E, all using a transfer from a source-task s ∈ P to a unique target-task
t ∈ P. Then, the 25 models for every source-task s ∈ P and every extraction e ∈ E are
gathered to compose an ensemble, selected (wta) or filtered using the 10 best models (elt)
and aggregated by summing the distributions (better explained in Section 4.3). Here, two
predictors are created: TLNISE_wta and TLNISE_elt.
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Remembering Equation (4.12):

min
θ

w1 (l(θ,xs,ys) + λr(θ)) + w2
(
l(θ,xt,yt) + λr(θ)

)
(4.12 revisited)

Figure 24 – Representation of the ensemble operation involving transfer-learned models.

6.2.2.2 Experimental setup, baselines and evaluation metrics

Jointly with STNISE_{gph,fou,wlt} single-task baseline methodologies, three other
comparison benchmarks were developed: SVM_gph, SVM_fou and SVM_wlt, characterized
by the results of the best chosen configurations of Support Vector Machines, in a validation
set, with a regularization parameter varying in C ∈ {10−3,10−2, . . . ,10+2} and kernels belong-
ing to sigmoid or radial basis function, for each of the feature extraction methods treated
individually.

The metrics used to evaluate the performance were sensitivity, denoted by SEN, the
ratio of true positives to the total of positives; specificity, denoted by SPE, the ratio of true
negatives to the total of negatives; latency, denoted by LAT, the required time to detect a
given seizure since its onset mark; the area under the receiver operating characteristic curve,
denoted by AUC; and the number of entirely undetected seizures, i.e., cases where all the 20
positive instances of a seizure were missed, across all patients, denoted by UND.
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Table 7 – Friedman rank and average values for SEN, SPE, LAT, AUC and UND metrics.

SEN SPE LAT AUC UND
rnk mean ± std rnk mean ± std rnk mean ± std rnk mean ± std sum

SVM_fou 5.7 0.77 ± 0.24 4.0 0.87 ± 0.31 6.3 3.96 ± 4.65 3.9 0.89 ± 0.23 0
SVM_gph 5.7 0.81 ± 0.21 7.4 0.83 ± 0.26 5.2 2.23 ± 3.96 6.5 0.88 ± 0.15 0
SVM_wlt 6.5 0.74 ± 0.25 8.1 0.80 ± 0.23 6.7 3.23 ± 3.64 8.1 0.81 ± 0.20 2
stNISE_fou 3.9 0.86 ± 0.17 4.5 0.86 ± 0.21 3.9 1.89 ± 3.23 3.4 0.95 ± 0.08 0
stNISE_gph 7.6 0.61 ± 0.24 7.2 0.89 ± 0.14 7.9 5.73 ± 4.63 7.3 0.88 ± 0.09 1
stNISE_wlt 6.5 0.72 ± 0.27 5.6 0.91 ± 0.17 5.7 2.47 ± 3.31 5.7 0.91 ± 0.09 1
stNISE_wta 4.5 0.80 ± 0.20 4.5 0.90 ± 0.18 4.5 2.80 ± 3.52 6.8 0.85 ± 0.11 0
stNISE_elt 4.9 0.82 ± 0.17 4.7 0.96 ± 0.06 5.5 2.84 ± 3.72 3.2 0.96 ± 0.07 0
tlNISE_wta 4.9 0.80 ± 0.20 4.5 0.92 ± 0.15 4.6 2.45 ± 3.39 7.5 0.86 ± 0.10 0
tlNISE_elt 4.9 0.82 ± 0.18 4.5 0.92 ± 0.16 4.8 2.55 ± 3.58 2.7 0.96 ± 0.07 0

6.2.2.3 Results

The first column of each metric in Table 7 corresponds to the average Friedman rank,
used in the Friedman test, and the second corresponds to the mean ± standard deviation,
except for the undetected seizures metric (UND) which indicates the sum of the undetected
seizures across all patients. For all metrics, lower ranks indicate better methods, higher means
of SEN, SPE and AUC values indicate better methods, and for latency and UND, lower values
indicate better methods. The obtained results for all the detailed metrics are exhibited in
Table 7.

To make more assertive comparisons, we use a Friedman test, first to detect whether
all the methods are similar, or reject the null hypothesis. If the null hypothesis is rejected,
as a post-hoc stage, we used the Finner test. The latter test compares pairs of methods and,
when the similarity hypothesis is rejected, the method with lower rank is considered better
than the method with higher rank. Both tests consider a significance level of t = 0.01.

The Friedman test rejected the null hypotheses for SPE, LAT, AUC and a global test,
that compared all metrics, for all the patients. The Finner post-hoc test for the metrics AUC
and global are in Figures 25-(a) and 25-(b), in a directed graph format, where the arrow goes
from the better method to the (pairwise) worse method. This post-hoc test also indicates that
SVM_fou performed better than SVM_wlt for SPE, and for LAT, stNISE_fou performed
better than stNISE_gph.

6.2.2.4 Discussion

From the statistical point of view, and considering the evaluation of AUC and global
metrics, presented at Figures 25a and 25b, it is possible to infer that the top three algorithms,
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(a) Finner testing AUC (b) Finner testing global

Figure 25 – Graphs denoting the results of a Finner post-hoc test, indicating the methods
hierarchy obtained for AUC, and the global comparison of metrics.

those with the highest out-degrees, are tlNISE_elt, stNISE_elt and stNISE_fou. These al-
gorithms keep a good performance on SPE and LAT metrics, not being statistically worse
than any method. Additionally, analyzing the performances per se at Table 7, these classi-
fiers have different facets. stNISE_fou is specialized in sensitivity and latency but keeping
a fair specificity, stNISE_elt and tlNISE_elt have a higher specificity keeping a reasonable
sensitivity and latency. Moreover, none of these algorithms had completely missed seizures,
since their UND value is 0. Interestingly, the model selection approaches (stNISE_wta and
tlNISE_wta) did not achieve the performance level obtained by ensemble approaches (*_elt),
even though selecting from the same set of classifiers.

Analysing classifiers with specific feature extractions, when it is evaluated the in-
degree and out-degree on graphs of Figure 25 for both SVM and stNISE, it is possible to
see that the Fourier feature extraction produces the best classifiers, and the graph feature
extraction produces the worst classifiers.

6.2.3 Multi-view learning applied to detection of epileptic
seizures

This experiment aims at investigating the impact of multi-objective training using
Group LASSO based formulations, where the result of each feature extraction procedure is
considered as a group (or view) to be properly weighted by the learning model.
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6.2.3.1 Proposed methods

Supported by the formulations presented in Section 4.1.7, we want to make an ex-
haustive comparison across all formulations, allowing each view to have a specific loss and/or
a specific penalty. The importance for the learning is automatically determined by a multi-
objetive formulation (NISE for bi-objective and MONISE for many-objective formulations).

Given that, we proposed four classes of methods which are determined by adjusting
the parameters of Equation (4.16): (1) making wl

v = wl ∀v ∈ V and wr
v = wr ∀v ∈ V , we

find models which consider only the loss as conflicting with all regularization terms, called
here as SPSL_*; (2) making wl

v = wl ∀v ∈ V , we find models which considers a single loss
conflicting with the regularization terms for each group; called here as MPSL_*; and (3)
making wr

v = wr ∀v ∈ V , we find models which consider a single regularization for all groups
conflicting with the loss for each group; called here as SPML_*; and finally (4) all weights
are left free and then, we find models which consider the loss function for each group as
conflicting with the regularization terms for each group, called here as MPML_*.

Remembering Equation (4.16):

min
θ

V∑
v=1

wl
vl(x,y,θ(v)) +

V∑
v=1

wr
v

√∑
i∈Vv

θ2
i , (4.16 revisited)

Each formulation is trained by NISE or MONISE to find 50 × |E| models, where |E |
is the number of feature extraction procedures. After that, they are filtered and aggregated
by three methods: (1) *_wta: multi-objective procedure followed by a model selection; (2)
*_elt: multi-objective procedure followed by an elite selection and a distribution summation
(ROKACH, 2010); (3) *_stk: multi-objective procedure followed by a stacking training.

These combinations generate twelve possible methods.

6.2.3.2 Experimental setup, baselines and evaluation metrics

These methods are compared with the single-task baseline methodologies, already
presented in the previous experiment in Section 6.2.2.1.1, called here SV_{gph,fou,wlt},
trained to find 50 models and also aggregated with the same ensemble methodologies {wta,
elt, skt}.

The metrics used to evaluate the performance were sensitivity, denoted by SEN, the
ratio of true positives to the total of positives; specificity, denoted by SPE, the ratio of true
negatives to the total of negatives; latency, denoted by LAT, the required time to detect a
given seizure since its onset mark; the area under the receiver operating characteristic curve,
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Table 8 – Friedman rank and average values for SEN, SPE, LAT, AUC and UND metrics.

SEN SPE LAT AUC UND
gen agr rnk mean ± std rnk mean ± std rnk mean ± std rnk mean ± std sum
SV_fou wta 10.9 0.833 ± 0.166 8.4 0.953 ± 0.039 11.1 2.634 ± 3.509 11.7 0.953 ± 0.046 0

elt 11.3 0.826 ± 0.182 8.2 0.951 ± 0.045 12.6 2.810 ± 3.750 9.7 0.955 ± 0.061 0
stk 8.6 0.853 ± 0.174 11.4 0.935 ± 0.051 9.0 2.029 ± 3.427 9.3 0.955 ± 0.053 0

SV_gph wta 12.9 0.783 ± 0.218 17.6 0.857 ± 0.080 12.1 3.130 ± 4.362 18.1 0.891 ± 0.086 0
elt 13.5 0.775 ± 0.263 18.2 0.863 ± 0.073 13.2 3.739 ± 5.304 18.8 0.883 ± 0.116 0
stk 14.8 0.735 ± 0.252 18.0 0.886 ± 0.070 12.8 3.995 ± 4.624 17.8 0.882 ± 0.138 0

SV_wlt wta 13.9 0.745 ± 0.216 12.3 0.924 ± 0.064 11.0 2.432 ± 3.288 15.5 0.901 ± 0.101 0
elt 13.3 0.771 ± 0.232 12.0 0.934 ± 0.047 10.4 2.302 ± 3.440 14.3 0.922 ± 0.084 0
stk 12.4 0.789 ± 0.220 13.9 0.916 ± 0.038 10.9 2.394 ± 4.130 14.4 0.918 ± 0.095 0

SLSP wta 11.2 0.829 ± 0.213 9.2 0.953 ± 0.033 12.4 3.088 ± 4.472 9.8 0.947 ± 0.086 0
elt 11.5 0.822 ± 0.214 8.6 0.954 ± 0.035 12.6 3.117 ± 4.487 10.2 0.949 ± 0.084 0
stk 9.9 0.836 ± 0.204 10.4 0.943 ± 0.034 9.4 2.117 ± 4.117 9.4 0.945 ± 0.090 0

SLMP wta 9.9 0.831 ± 0.205 7.8 0.959 ± 0.032 10.5 2.697 ± 4.169 9.9 0.949 ± 0.084 0
elt 9.9 0.839 ± 0.202 7.5 0.960 ± 0.033 10.5 2.373 ± 4.145 7.7 0.956 ± 0.086 0
stk 7.8 0.862 ± 0.176 12.4 0.921 ± 0.079 9.9 2.180 ± 3.247 9.9 0.947 ± 0.089 0

MLSP wta 10.5 0.825 ± 0.181 7.4 0.958 ± 0.034 10.0 1.953 ± 3.471 9.0 0.953 ± 0.073 0
elt 11.0 0.815 ± 0.194 5.2 0.964 ± 0.032 10.8 2.453 ± 3.896 5.1 0.964 ± 0.074 0
stk 8.4 0.856 ± 0.194 10.5 0.933 ± 0.055 9.3 2.218 ± 3.905 7.0 0.952 ± 0.082 0

MLMP wta 11.5 0.816 ± 0.196 7.7 0.957 ± 0.035 11.2 2.491 ± 4.065 9.3 0.954 ± 0.076 0
elt 10.4 0.825 ± 0.195 9.8 0.952 ± 0.043 11.9 3.079 ± 4.219 7.2 0.960 ± 0.076 0
stk 6.3 0.881 ± 0.192 13.2 0.926 ± 0.051 8.2 1.689 ± 3.552 5.8 0.958 ± 0.078 0

denoted by AUC; and the number of entirely undetected seizures, i.e., cases where all the 20
positive instances of a seizure were missed, across all patients, denoted by UND.

6.2.3.3 Results

The obtained results for all the detailed metrics are exhibited in Table 8. The first
column of each metric in Table 8 corresponds to the average Friedman rank, used in the
Friedman test, and the second corresponds to the mean ± standard deviation, except for the
undetected seizures metric (UND) which indicates the sum of the undetected seizures across
all patients. For all metrics, lower ranks indicate better methods, higher means of SEN, SPE
and AUC values indicate better methods, and for latency and UND, lower values indicate
better methods.

To make more assertive comparisons, we use a Friedman test, first to detect whether
all the methods are similar, or reject the null hypothesis. If the null hypothesis is rejected,
as a post-hoc stage, we used the Finner test. The latter test compares pairs of methods and,
when the similarity hypothesis is rejected, the method with lower rank is considered better
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(a) Finner testing SPE (b) Finner testing AUC

(c) Finner testing global

Figure 26 – Graphs denoting the results of a Finner post-hoc test, indicating the pairwise
comparison of methods considering SPE, AUC and global metrics.

than the method with higher rank. Both tests consider a significance level of t = 0.01.

The Friedman test rejected the null hypotheses for SEN, SPE, AUC and a global test,
that compared all metrics, for all the patients. The Finner post-hoc test for the metrics SPE,
AUC and global are in Figures 26-(a), 26-(b) and 26-(c), in a directed graph format, where
the arrow goes from the better method to the (pairwise) worse method. Despite the fact
that Friedman test rejected the null hypotheses for SEN, no significant difference was found
between the methods.
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6.2.3.4 Discussion

From the statistical point of view, and considering the evaluation of SPE, AUC and
global metrics, presented at Figures 26-(a), 26-(b) and 26-(c), it is possible to infer that the
algorithms SLMP_elt, MLSP_elt and MLMP_elt as the best algorithms, and the algorithms
with wavelet and graph based feature extraction as the worst algorithms. Additionally, ana-
lyzing the performances per se at Table 8, these classifiers have different facets. MLSP_stk,
MLMP_stk, SLMP_stk and SV_fou_stk are specialized in SEN and LAT and MLSP_elt,
MLMP_wta, MLMP_elt and SV_fou_elt are specialized in SPE. It is worth mention that
SLMP_elt is a quite competent detector in all SEN, SPE, LAT and AUC metrics being a
good tradeoff solution.

Additionally, it is possible to see that the performance is bounded by the Fourier-
based extraction procedure. However, the methods that used more feature extractions were
capable of keeping and even improving the performance compared to classifiers that use only
the Fourier-based extraction procedure. It opens the possibility of improving the performance
of the classification by properly combining multiple views.

6.3 Multi-label classification 7

In multi-label classification, a sample can be assigned to an arbitrary number of labels
(among L possible labels). The main challenge in this problem is to correctly find the learning
relations among the labels to improve the performance.

In this experimental design, we choose the logistic or multinomial regression as base
classifiers for meta-learning design that tries to induce joint learning among the labels. Fixing
the base classifiers, the objective is to isolate the influence of the meta-learners and their
ability to improve the classification performance.

6.3.1 Datasets description

To evaluate the potential of the proposed multi-objective ensemble-based methodology
we consider six datasets8. Table 9 provides the main aspects of these datasets. Aiming at
obtaining better statistical results, we used a 10-fold split to create 10 independent test sets
with 10% of the samples, and the remaining samples are randomly divided into 75% for

7This section is an amended version of Many-Objective Ensemble-Based Multilabel Classification
(RAIMUNDO; VON ZUBEN, 2018b)

8Available at <mulan.sourceforge.net/datasets-mlc.html>

mulan.sourceforge.net/datasets-mlc.html


Chapter 6. Experiments 105

Table 9 – Description of the benchmark datasets.
Name Instances Atributes Labels Cardinality Density of 1s
emotions 593 72 6 1.869 0.311
scene 2407 294 6 1.074 0.179
flags 194 19 7 3.392 0.485
yeast 2417 103 14 4.237 0.303
birds 645 260 19 1.014 0.053
genbase 662 1186 27 1.252 0.046

training and 25% for validation for the baseline algorithms and 50% for T1 set and 50% for
T2 set for the proposed method. T1 set was used to create the ensemble components, and T2

set to train the stacked classifiers. T1 set was used again to select the model in the stacking
training procedure.

6.3.2 Proposed method

Stacking is an ensemble methodology that uses the outcome of the ensemble com-
ponents (learning machines trained by an ensemble generation methodology, represented in
Step 1 of Figure 27a) to train another classifier (Step 2 of Figure 27a) which will be re-
sponsible for making the prediction. In our proposal, we chose the model formulation to
the single-parameter label-conflicting regularized multinomial logistic regression
(Equation (4.8), Section 4.1.4), and the many-objective optimization method is responsible
for generating R classifiers to compose the ensemble.

Remembering Equation (4.8):

min
θ

L∑
l=1

vl l(x,yl,θ) + λ | |θ| |2 ≡
L∑

l=1
wl l(x,yl,θ) + wL+1 | |θ| |

2. (4.8 revisited)

and a stack classifier is responsible for predicting each label l using logistic regression as the
classification model:

min
θ̂
l
−

N∑
i=1

[
1
k l

1
yl

i ln
(

f (zi, θ̂
l
)

)
+

1
k l

0
(1 − yl

i ) ln
(
1 − f (zi, θ̂

l
)

)]
(6.2)

where z j
i is the degree of membership predicted by the j-th ensemble component with relation

to the i-th sample.

The proposed method consists in: Step 1, ensemble components ({θ1,θ2, . . . ,θl}) are
generated by finding a set of efficient solutions, to the formulation of Equation (4.8) using
the methodology described in Section 4.2 (Figure 27b). This generator of many-objective
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Figure 27 – Many-objective training followed by a stacking aggregation representation.

ensemble components can be seen as a feature vector mapping ( f m(θ, x)), so that each
mapped feature is a classifier (Figure 27c) associated with a distinct weight vector. From
Equation (4.8) we can realize that each classifier will give a distinct weight to the loss at
each label and also to the regularization term. In Step 2 (represented in Figure 27d), the
output of all efficient solutions are aggregated using a stacking approach (ROKACH, 2010),
which can be seen as a cross-validation procedure in the mapped feature space x̂ using the
model of Equation (6.2). The training procedure in the second step is done for each label l

employing the same feature vector x̂, but adopting the output ŷl of the worked label. The
set of classifiers were generated by a weighted average of the label losses. For this reason, not
all classifiers will have a good performance for a specific label, thus requiring a more flexible
aggregation, such as stacking, to create a final classifier.

6.3.3 Experimental setup, baselines and evaluation metrics

To create a solid baseline we compared our method with 5 other approaches: Binary
Relevance (BR), Classification Chains (CC) (READ et al., 2011), RakelD (TSOUMAKAS
et al., 2011), Label Powerset (LP)9. All of those methods were implemented using Logistic
Regression10 as the base classifier and had their parameters selected using hyperopt11 with
50 evaluations to tune regularization strength and 50 more evaluations if the method in-
volves another parameter (RakelD). Since the proposed and baseline algorithms use logistic
regression as the base classifier, the attributes are considered as a vector of real numerical
values.

9Implementations available at <http://scikit.ml/>
10Available at <http://scikit-learn.org>
11Available at <https://github.com/hyperopt/hyperopt>

http://scikit.ml/
http://scikit-learn.org
https://github.com/hyperopt/hyperopt
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In our proposal, we generate 10 ∗ (L + 1) ensemble components, and the parameter
selection on the stacking phase was implemented by cross-validation with 50 evaluations.
We developed two versions of our proposal. These versions were created by balancing or not
the importance of a label according to the stacking by changing the constants k l

1 and k l
0 on

Equation (6.2). In the imbalanced approach (described as MOn) k l
1 and k l

0 were set to 1, and
in the balanced approach (described as MOb) k l

1 was set to the number of 1s for this labels
and k l

0 for that specific number of 0s.

The used evaluation metrics were: 1-Hamming Loss (1-hl), precision, accuracy, recall,
F1 and Macro-F1 (MADJAROV et al., 2012; GONÇALVES et al., 2015), all of those metrics
associated with a quality measure in the interval [0,1] so that higher values indicate a better
method.

6.3.4 Results

To promote an extensive comparison we presented the results from two perspectives.
Figure 28 presents the average performance, calculated over the 10-folds, for all evaluated
metrics for each dataset. And to make a more incisive evaluation, we used a Friedman paired
test with p = 0.01 comparing all folders for all datasets, followed by a Finner posthoc test with
the same p, if Friedman test were rejected. Table 10 contains the evaluated method in the
rows, and, for each performance metric, the Friedman ranking in the first column, how many
methods are worse than the evaluated metric in the second column, and how many methods
are better in the third column. This ordering relation (better and worse) is accounted only
if there is a statistical significance according to the Finner posthoc test. Looking to RakelD
for the precision score, it is statistically significantly better than the worst ranked method:
MOb (4.92), and statistically significantly worse than the three better-ranked methods: MOn
(1.99), BR (2.74) and CC (2.94).

Table 10 – Average ranking and statistical comparisons for each metric.
1-hl precision accuracy recall F1 Macro-F1

method rank > < rank > < rank > < rank > < rank > < rank > <

BR 3.29 1 1 2.74 3 0 3.79 0 1 3.73 1 1 3.68 0 0 3.22 0 0
CC 3.29 1 1 2.94 3 1 2.64 3 0 3.16 1 1 2.9 1 0 2.87 0 0
RakelD 3.64 1 1 3.95 1 3 3.35 0 0 3.59 1 1 3.3 1 0 3.45 0 0
LP 3.89 0 1 4.43 0 3 3.12 1 0 3.85 1 1 3.54 0 0 4.01 0 0
MOn 2.23 5 0 1.99 4 0 4.31 0 2 4.96 0 5 4.37 0 3 3.75 0 0
MOb 4.63 0 4 4.92 0 4 3.75 0 1 1.69 5 0 3.17 1 0 3.66 0 0
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Figure 28 – Average performance of the evaluated methods for each metric in each dataset.

6.3.5 Discussion

In Section 6.3, we successfully proposed a many-objective ensemble-based classifier to
multi-label classification. Analyzing both Figure 28 and Table 10, it is possible to see that
MOn is the best-ranked classifier on 1-hl and precision but falling away on recall, accuracy,
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and F1. MOb is one of the best-ranked classifiers on recall and F1, but has difficulties on
1-hl and precision. These findings indicate that these two classifiers are biased for some
metrics, exhibiting complementary performance. This behavior is due to the low density of
the datasets, and to the fact that the non-balanced stacked model focuses the prediction on
the 0s, thus producing high precision, as long as the balanced approach is predicting 1s more
frequently, explaining the high recall score.

This scenario where an approach has a good performance on specific metrics at the
expense of performance loss for other metrics can be useful in some applications. Given the
absence of a dominant method for all metrics, our proposals can be seen as valuable choices
in metric-driven scenarios. Also, since the complementary behavior was generated changing
parameters, further exploration using ensembles of many-objective trained classifiers can
promote good classifiers with different performance profiles.

6.4 Multi-task learning 12

In multi-task learning, the primary challenge is to promote joint learning among
multiple learning tasks. The task relations can be structured in any topology, not always
existing among all task altogether. This experimental design considers this and explores a
large set of synthetic and real-world datasets. The synthetic datasets try to cover as many
scenarios as possible to deeply compare the proposed method against a large set of other
methods.

Taking into account that the proposed method generates a set of classifiers with
distinct sharing relations, we evaluate these models into distinct perspectives: (1) compos-
ing those models using ensemble aggregation techniques and compare with other multi-task
learning methods in diverse datasets (Section 6.4.4); (2) evaluating the sensitivity of the
methodology w.r.t. the number of generated ensemble components (Section 6.4.5); (3) eval-
uating the sharing relations of the best ensemble components to analyze if the task relations
of the datasets are recovered (Section 6.4.6).

With this diversity of problems, we aimed at investigating many aspects, qualities,
and flaws of the proposed methodology.

12This section is an amended version of Investigating multi-objective methods in multi-task classification
( c○2018 IEEE)(RAIMUNDO; VON ZUBEN, 2018a)
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6.4.1 Datasets description

6.4.1.1 Synthetic datasets
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Figure 29 – A heatmap representation of the task parameters with distinct sharing structures.
Parameters are located at the ordinate axis, and tasks at the abscissa axis.

Aiming at ensuring an experimental analysis with diversity of sharing structures, we
decided to construct synthetic datasets following a procedure already considered in the liter-
ature (ZHONG et al., 2012) but expanding to more datasets. We designed synthetic datasets
with T = 20 classification tasks and d = 30 attributes. Any sample i for any task t is generated
by a multivariate normal distribution x(t)i ∼ N(0d, Id×d). Considering the parameters θ(t) ∈ Rd

of the t-th task (further explained), we first calculate the probability p(t)i ∼
1

1+expx(t)
i

>
θ(t)

, and

we consider the output y(t)i = 1 if p(t)i > 0.5 and y(t)i = 0, otherwise. We also impose a 10%
misclassification rate by simply inverting this aforementioned rule.

To investigate distinct properties of the multi-task methods, we proposed five groups
of multi-task datasets. Each one of these dataset groups is constructed by generating the
target parameters Θ ≡ {θ(1), . . . ,θ(T)} with a procedure that emulates distinct task-sharing
properties:

∙ Independent tasks - All tasks are independent: θ(t) ∼ N(0d,25Id×d) for all t, with 30%
of the parameters set to 0 to create a sparse scenario.

∙ Single cluster of tasks - Considering a cluster prototype γ ∼ N(0d,25Id×d), with 30%
of the parameters set to 0. All tasks share the same cluster with a noise that does not
act on the nullified parameters: θ(t) ∼ γ +N(0d, Id×d) for all t.

∙ Three clusters of tasks - Same procedure as single cluster but creating three distinct
clusters.

∙ Tasks sharing the same shared subspace - A subspace U ∈ Rd×K was generated
considering each column as u(k) ∼ N(0d,25Id×d) for all k ∈ {1, . . . ,K}, with 30% of the
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parameters set to 0 to create a sparse parameter set. Given that, each θ(t) is a random
convex combination of the columns of U.

∙ Groups of tasks with multiple structures of sharing - The dataset groups were created
imposing some clusters of tasks (three clusters) and making some other groups of tasks
to share a subspace.

These distinct groups of tasks are represented in Figure 29 using a heatmap to express
the parameter vector of each task.
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Figure 30 – A heatmap representation of the different noise profiles applied to the single
cluster sharing structure (Figure 29-b). Parameters are located at the ordinate
axis and tasks at the abscissa axis.

For each one of those groups of datasets we impute three different noise profiles:

∙ None - No noise is applied

∙ Dirty - Inspired by the structure captured in Jalali et al. (2010), and using a procedure
proposed by Zhong et al. (2012): for each feature j, one task t is chosen to have that
feature degenerated doing θ(t)j ∼ 10 +N(0,1)

∙ Outliers - Inspired by the structure captured in Gong et al. (2012), the last three
tasks does not share the other structures, being generated as independent tasks θ(t) ∼
N(0d,25Id×d).

These noise profiles, applied to the single cluster dataset group, are represented in
Figure 30 using a heatmap of the task parameter vectors. We generated 15 datasets (three
noise profiles applied to five groups of datasets), and each dataset was investigated constrain-
ing the sample size of training and validation sets to nt ∈ {10,25,50,100,250,500,1000}, and
keeping the same test sample size of 1000 examples.
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6.4.1.2 Real datasets

The synthetic datasets work on a wide variety of controlled scenarios, stressing most
of the relevant task sharing structures that could be observed in real-world applications.
Nonetheless, we also considered real datasets to complement our experimental analysis. The
real datasets are: landmine detection13; and ECML/PKDD spam detection challenge14 with
3 and 15 users. We selected 100 features per task using the maximal mutual information15

to reduce the dimension of spam datasets. The test set for landmine contains from 45 to
290 data points (depending on the task), and the test sets for spam, with 3 and 15 users,
contain 500 and 100 samples, respectively. Training and validation datasets have the same
size, varying from 10 to the maximum available number of samples, a procedure already
adopted for the synthetic datasets.

6.4.2 Proposed method

Given that our multi-task approach is characterized by an L1 regularized logistic
regression with a single parameter vector for all tasks, see Section 4.1.5, more specifi-
cally Equation (4.11), two steps are necessary: (1) the multi-objective optimization procedure
that generates R = 50×T models; (2) a model selection or the ensemble synthesis according to
the methodology outlined in Section 4.3. Since the stacking procedure needs another training
step, this training was made using the validation dataset and evaluated using the training
dataset, in an attempt to avoid overfitting to the training dataset.

Remembering Equation (4.11):

min
θ

T∑
t=1

wt l(x(t),y(t),θ) + wT+1 | |θ| |1. (4.11 revisited)

Overall, we proposed three methods (see Section 4.3): (1) mo-wta: multi-objective
procedure followed by a model selection; (2) mo-elt: multi-objective procedure followed by an
elite selection and a distribution summation (ROKACH, 2010); (3) mo-stk: multi-objective
procedure followed by a stacking training.

An alternative proposal was also made by changing the first step, where instead of gen-
erating R = 50×T models, we generate R = 25×T models using our multi-task multi-objective
procedure and generating 25 models per task using a single-task multi-objective procedure
(the conflicting objectives are the specific task loss against the regularization strength). This

13Available at <ece.duke.edu/~lcarin/LandmineData.zip>
14Available at <ecmlpkdd2006.org/challenge.html>
15Available at <scikit-learn.org>

ece.duke.edu/~lcarin/LandmineData.zip
ecmlpkdd2006.org/challenge.html
scikit-learn.org
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procedure generates three methods: (1) stmo-wta; (2) stmo-elt; (3) stmo-stk. The ensem-
ble aggregation is the same as previous methods but using both single-task and multi-task
learning models as components.

6.4.3 Experimental setup, baselines and evaluation metrics

Aiming at making a consistent analysis of the potential of our proposal, we designed
a comparison with three single-task learning methods, and six multi-task learning meth-
ods. The single-task learning methods are the following: an L1 regularized logistic regression
model, a bagging of 10 L1 regularized logistic regression models, and stacking of the models
produced by bagging. The multi-task models are regularized logistic models and the meth-
ods of regularization are: Joint Feature Selection (OBOZINSKI et al., 2008), Dirty Model
(JALALI et al., 2010), Trace Norm Regularization (CHEN et al., 2012), Clustered Multitask
Learning (ZHOU et al., 2011), Alternating Structure Optimization (CHEN et al., 2009), and
Robust Multitask Feature Learning (GONG et al., 2012)16.

The hyper-parameters (parameters such as regularization strengths and the number
of task clusters) was tuned using hyperopt17 using 50 evaluations per task. The learning
model was synthesized using the training dataset and considering the evaluated criterion.
The performance of each learning model was then captured using accuracy on the validation
dataset. Therefore, each single-task learning model was trained with 50 evaluations, including
each model from the ensemble methods (bagging and stacking), and the stacking training
also had 50 evaluations. The multi-task models include 50×T evaluations to tune the hyper-
parameters.

6.4.4 General performance

6.4.4.1 Results

The average and the standard deviation of accuracy are plotted for each size of the
training dataset in each experimental scenario. These results for synthetic datasets are shown
in Figures 31 and 32; and for real datasets in Figure 33. To enable more detailed plots, we
also normalized the average accuracies by subtracting the average accuracy of the single-
task method. For visualization purposes, we plotted the following results: the L1 single-task
learning method (identified as stl); a single plot for the three single-task methods (identified

16The multi-task learning models are implemented as members of the MALSAR toolbox, available at
yelab.net/software/MALSAR

17Available at github.com/hyperopt
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as max-stl) showing only the best average (and its correspondent standard deviation); two
plots for the six multi-task methods (identified as mtl-1st and mtl-2nd) showing the best
and second best averages (and their correspondent standard deviations); and the averages
(and their correspondent standard deviations) of our six proposed methods (identified as
mo-wta, mo-elt, mo-stk, stmo-wta, stmo-elt and stmo-stk).

Notice that we are purposely imposing the best possible scenario for the contenders,
when taking mtl-1st and mtl-2nd. Those best and second-best methods are not the same
for each sample-size/dataset and are not known a priori, being selected after evaluating all
the available configurations for the models. Therefore, overcoming or being competitive with
mtl-1st and mtl-2nd is an expressive result.

6.4.4.2 Discussion

Aiming at making a deeper analysis, we are going to, firstly, make an overall analysis
of all the base groups with different noise profiles. The proposed single model approach mo-
wta, apart from the independent dataset, has better performance compared to the single-task
single model stl on almost all datasets and sample sizes, only being outperformed in larger
sample sizes. This statement shows the capability of knowledge sharing over tasks. However,
the single-task ensemble approaches and the multi-task learning approaches from the liter-
ature usually outperform mo-wta. The proposed multi-task ensemble approaches (mo-elt
and mo-stk) are usually better than mo-wta, clearly indicating the relevance of ensemble
methods. Moreover, except for the independent datasets, our ensembles also have at least a
comparable performance with mtl-2nd and max-stl, frequently figuring as the best method.
Our proposal combining single-task and multi-task trained models as ensemble components
(stmo-wta, stmo-elt and stmo-stk) had the same performance profile of multi-task only
models, but they are more robust, losing performance in rare cases and increasing the per-
formance in harder scenarios for multi-task methods, such as the ones with independent or
outlier tasks.

Our proposals do not achieve good performance on independent tasks when com-
pared to single-task methods (and also compared to the best multi-task method), delivering
a comparable performance against mtl-2nd. The stmo techniques were capable of achieving
a performance comparable with mtl-1st, guiding to good solutions for scenarios with non-
shared task datasets. On single cluster and subspace datasets, our elt methods have the
best performance on small-size datasets being outperformed and replaced by our stk methods
on large-size datasets. On three cluster and relationship tasks, elt methods have at least
a comparable performance with the best methods from the literature, frequently being the
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(c) independent with outliers
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(e) single cluster dirty
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(f) single cluster with outliers
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(g) three clusters
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(h) three clusters dirty
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Figure 31 – Normalized average accuracy (and standard deviation) for distinct classifiers
grouped by sample size for synthetic datasets (Part I). On each group label
there is the sample size, and the accuracy of stl, inside parenthesis, which was
subtracted from every method’s average accuracy inside that group.

best method. Besides, stk methods also have its comparative performance improved when
the size of the dataset increases, even outperforming elt.

The different noise profiles do not seem to heavily interfere in the relative performance
of the methods under analysis. But it is noticeable a drop in the performance gap between
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(a) subspace
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(c) subspace with outliers
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(d) relationship
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(f) relationship with outliers

Figure 32 – Normalized average accuracy (and standard deviation) for distinct classifiers
grouped by sample size for synthetic datasets (Part II). On each group label
there is the sample size, and the accuracy of stl, inside parenthesis, which was
subtracted from every method’s average accuracy inside that group.

single-task learning and multi-task learning methods when comparing tasks with and without
outliers. This effect sometimes acts more heavily on the multi-task-only proposed methods
(mo-wta, mo-elt and mo-stk). The mixed single-task and multi-task models (stmo-wta,
stmo-elt and stmo-stk) taken as components of the ensemble helped on dealing with outliers
as well as independent tasks. The hybrid aggregation of single and multi-task models has
proved advantageous on these scenarios.

On the real datasets, we can detect three distinct behaviours. The landmine dataset
seems to be an “easy” dataset, guiding to a high performance even for single-task models on
small datasets. In this scenario, we did not notice an increase in performance when applying
our methods. The performance on the spam dataset with three users indicates a positive
transfer on small datasets (reaching the performance of 1st-mtl), but a negative transfer on
large datasets. Finally, the performance on the spam dataset with 15 users is robust and
guides to the best performance on almost all sample sizes. Reduced datasets and /or an
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(b) spam with 3 users
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(c) spam with 15 users

Figure 33 – Normalized average accuracy (and standard deviation) for distinct classifiers
grouped by sample size for real datasets. On each group label there is the sample
size, and the accuracy of stl, inside parenthesis, which was subtracted from every
method’s average accuracy inside that group.

increase in the number of tasks, both contributing to more challenging scenarios, seem to
favour our proposal.

6.4.5 Sensitivity to the number of ensemble components

6.4.5.1 Results

To better explain the performance of the proposed method, we design an experiment
to study the impact of the number of ensemble components generated by the multi-objective
training of multi-task models. Looking at the results of Section 6.4.4, it is possible to see
distinct behaviors in terms of performance for models with and without single-task trained
models (stmo). Given that, we decided to pick some scenarios with these distinct behaviors
to better study the impact of the number of ensemble components:

∙ Independent tasks with 25 samples - In this dataset, it is possible to observe, in
Figure 31, that there is some negative transferring mitigated by stl models.

∙ Tasks related in a single cluster with 25 samples - In this dataset, it is possible
to observe, in Figure 31, that there is positive transferring hurt by stl models.

∙ Tasks related in three clusters with outlier and 50 samples - In this dataset, it
is possible to observe, in Figure 31, that there is positive transferring improved by stl
models.
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In Figure 34 we show the experiment for each one of these scenarios, where the number
of ensemble components generated by the multi-task multi-objective approach varies from
1 × T to 50 × T components. In the stmo_* approaches, these components complement the
25 models generated by the single-task trained models, unlike mo_* approaches that only
have these multi-task components.
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(c) Three clusters with 50 samples

Figure 34 – Performance of the proposed method varying the number of ensemble compo-
nents generated by the multi-objective procedure.

6.4.5.2 Discussion

In Figure 34-a, negative transferring was verified when it is used only multi-task learn-
ing models (mo_*). However, when the single-task learning models are applied, it is possible
to see a better performance, and the performance is marginally improved with the addition of
multi-task learning models. In Figure 34-b, positive transferring was verified when it is used
only multi-task learning models (mo_*). It is important to notice the increase in perfor-
mance during the addition of multi-task learning models. It occurs in both methods, mo_*
and most_*, but the performance of the method that starts with single-task learning models
was never able to achieve the same performance of mo_*. In Figure 34-c, positive transfer-
ring was verified when it is used only multi-task learning models (mo_*). The particularity
of this case is the substantial improvement when it is applied single-task learning models,
starting with a high performance that is only marginally improved by adding multi-task
learning models.

Supported by these experiments, some hypotheses are raised . First of all, knowing
that the single-task learning models from all tasks are jointly considered to compose the
ensemble for each task, two behaviours are possible to observe: (1) in the independent tasks,
the cross-validation procedure were not able to select the correct models and achieve the
performance of default stl contender (notice that the performance of stl in Figure 31-a, was
not achieved by most_* at the beginning of Figure 34-a, where there is only the influence
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of single-task trained models); (2) in the datasets with task sharing, this aggregation works
as a rudimentary knowledge sharing (it can be noticed comparing the performance of stl in
Figure 31-i with the performance of most_* at the beginning of Figure 34-c).

Making an analysis of the increase in the number of ensemble components, it is possible
to observe the lack of robustness coming from wta approaches, as well as the solid robustness
of elt and stk approaches that seems, with little variation, to always take advantage of the
increase in the number of components.

6.4.6 Analysis of knowledge sharing relations

6.4.6.1 Results and discussion

As we can see in Section 6.4.1.1, the definition of the synthetic datasets obeys some
sharing structures. Aiming at studying the nature of this kind of sharing relations, we de-
cided to investigate if the sharing structures, employed in this thesis, retain and recover these
sharing relationships. The synthetic datasets are, again, a useful tool to make this investi-
gation, since it is possible to check the structures that generated the datasets. For didactic
purposes, Figure 35-a shows the generative graph of relations between the tasks of the base
three clusters with outliers, Figure 35-b shows the heat-map of parameters for this base,
and Figure 35-c shows a normalized similarity matrix of parameters for this base.
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Figure 35 – Representation of the generated relations and parameters for the dataset three
clusters with outliers.

Since the elt ensemble is the most robust classifier in our methodology, we will use
the 10 classifiers with higher performance in the validation to make the investigation. First
of all, we are going to define the mean influence ut of the weighted sum method’s parameter
w for all 10 best classifiers. To do so, we define the set Bt as the set in indexes of w which
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generates the best models for the task t with respect to the performance in validation.

ut = [
1
10

∑
i∈Bt

w(i)1 , . . . ,
1
10

∑
i∈Bt

w(i)T ]
> (6.3)
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Figure 36 – Representation of resultant mean influence of the many-objective trained multi-
task models for the dataset three clusters with outliers.

Given that, we can plot a matrix U : Ut
i = ut

i in Figure 36 for every size of training
set. We can see that, with the increase in the dataset size in training, the similarity with the
correct relations increase.

To clean the noise of the relations and reconstruct the graph of relations, we proposed
a rule that tries to infer if there is a relation between two tasks. So if u j

i ≥ ε or ui
j ≥ ε , we

consider that there exists an edge connecting the tasks i and j in both directions. We call
this rule “w influence”. For the three clusters with outliers and 100 samples, we plotted the
graph in Figure 37.

However, it is possible to see in Figure 37 that, despite the cluster structure is being
captured by the method, not always there exists a pairwise relation involving the members
of each cluster. To mitigate that, we proposed another two methods to infer these relations:
(1) “w similarity” calculates a normalized distance of the mean influence, resulting in the
following rule 2−||ui−ui | |1

2 ≥ ε , and having the recovered relation shown in Figure 38; (2)
“component influence” calculates the number of ensemble members that each task share,
resulting in the following rule |B

i∪B j |

10 ≥ ε , and having the recovered relations shown in Figure
39.
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Figure 37 – Representation of the generated relations and parameters for the dataset three
clusters with outliers, using “w influence”.
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Figure 38 – Representation of the generated relations and parameters for the dataset three
clusters with outliers, using “w similarity”.
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Figure 39 – Representation of the generated relations and parameters for the dataset three
clusters with outliers, using “component influence”.

Aiming at making an extensive study of the recovering of task relations, we fixed the
number of samples in training as 100 samples and varied, for every synthetic dataset and rule
of inference of the recovering method, the threshold of those methods ε ∈ {0.1,0.2,0.3,0.4,
0.5}. The accuracy, calculated by the number of correctly recovered edges, is shown in Table
11.

We can see that the w similarity is the most effetive method to recover the task
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Table 11 – Rate of correctly recovered connections between the tasks in w.r.t. the generative
relationships.

w influence w similarity component influence
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

independent 0.920 0.989 0.994 0.989 0.987 0.239 0.764 0.939 0.989 0.994 0.930 0.979 0.989 0.999 0.999
independent_dirty 0.922 0.974 0.989 0.984 0.974 0.104 0.584 0.869 0.974 0.994 0.949 0.989 0.989 0.994 0.994
independent_outlier 0.874 0.964 0.989 0.989 0.974 0.080 0.405 0.874 0.979 0.999 0.939 0.989 0.994 0.999 0.999
1_cluster 0.307 0.124 0.085 0.020 0.005 0.999 0.999 0.999 0.959 0.775 0.499 0.195 0.094 0.059 0.050
1_cluster_dirty 0.260 0.130 0.077 0.042 0.014 0.999 0.994 0.925 0.764 0.515 0.560 0.354 0.160 0.094 0.070
1_cluster_outlier 0.477 0.357 0.307 0.284 0.275 0.749 0.839 0.915 0.959 0.819 0.874 0.609 0.434 0.349 0.325
3_clusters 0.869 0.827 0.729 0.692 0.675 0.714 0.949 0.984 0.994 0.949 0.984 0.920 0.824 0.770 0.729
3_clusters_dirty 0.869 0.795 0.747 0.709 0.689 0.704 0.989 0.984 0.969 0.930 0.959 0.900 0.834 0.810 0.770
3_clusters_outlier 0.925 0.874 0.824 0.800 0.780 0.790 0.984 0.999 0.979 0.959 0.979 0.949 0.939 0.910 0.869
subspace 0.262 0.102 0.052 0.027 0.002 0.989 0.854 0.569 0.330 0.170 0.225 0.089 0.059 0.054 0.050
subspace_dirty 0.232 0.112 0.059 0.020 0.010 0.999 0.879 0.609 0.379 0.200 0.344 0.160 0.085 0.059 0.050
subspace_outlier 0.472 0.359 0.299 0.275 0.275 0.719 0.650 0.624 0.579 0.499 0.460 0.414 0.354 0.325 0.320
relationship 0.572 0.472 0.455 0.419 0.419 0.660 0.785 0.714 0.704 0.685 0.689 0.665 0.634 0.609 0.574
relationship_dirty 0.592 0.499 0.465 0.427 0.412 0.714 0.800 0.729 0.665 0.589 0.604 0.564 0.540 0.494 0.465
relationship_outlier 0.714 0.634 0.602 0.587 0.574 0.744 0.829 0.819 0.759 0.724 0.704 0.689 0.694 0.680 0.650
mean 0.618 0.548 0.512 0.484 0.471 0.680 0.821 0.837 0.799 0.720 0.714 0.631 0.575 0.547 0.528
heterogeneous 0.757 0.684 0.637 0.606 0.592 0.721 0.889 0.872 0.845 0.806 0.820 0.781 0.744 0.712 0.676
single sharing 0.429 0.337 0.297 0.273 0.258 0.756 0.770 0.753 0.665 0.534 0.567 0.436 0.348 0.314 0.302
outlier 0.647 0.556 0.508 0.486 0.476 0.751 0.826 0.839 0.820 0.751 0.754 0.666 0.606 0.566 0.541
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Figure 40 – Representation of the recovered task relations for the real datasets.

relations, mainly with ε = 0.2 or ε = 0.3. Supported by these results we run the method
w similarity with ε = 0.3 for the real datasets where there are the most active positive
transferring for each one of the datasets (landmine detection with 10 samples, spam with
3 users and 50 samples, spam with 15 users and 50 samples). These results are depicted in
Figure 40 suggesting a single sharing structure for the datasets spam a and spam b. The
dataset landmine has a known structure of two clusters of tasks 0 to 15 and 16 to 28. This
structure was partially recovered having a strong separation between the clusters but the
density inside each cluster was not very strong.

Overall, the robust performance and interpretation capability of the multi-objective
method proposed in this thesis turns this methodology into a competent method for multi-
task learning.
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Chapter 7

Conclusion

The main scientific contribution of this thesis was to study the impact of multi-
objective optimization in machine learning. To deeply investigate this, we proposed a frame-
work that formulates machine learning models as multi-objective problems and solves it with
a posteriori multi-objective methods. Since this class of methods generates a pool of solu-
tions, we saw these solutions as candidates to compose an ensemble and explored a diverse
set of efficient candidate solutions with ensemble filtering and aggregations methods. We
proposed multi-objective formulations for the following relevant problems in machine learn-
ing: multi-class classification, multi-class classification with imbalanced classes, multi-label
classification, multi-task classification, multi-view learning and transfer learning. Supported
by this vast application scenario, it is safe to say that the proposed framework supports the
possibility of formulating other machine learning models as a multi-objective problem.

In addition to being general and flexible, the proposed framework is also compelling.
The experimental results support the sampling capability for model selection, sampling that
was also capable of generating diversity for the ensemble components. These results are rele-
vant since they connect the sampling and diversity concepts of multi-objective optimization
with equivalent machine learning concepts, and allows an in-depth looking at relevant trade-
offs in machine learning. As expected, these capabilities supported a consistent performance
in multi-class classification, the problem that was further explored by enhancing the flexibil-
ity of the model by facing the loss of each class as a conflicting objective. The results showed
that, by just promoting more flexibility to the class losses, it could enhance performance in
the class imbalance context.

It is worth mentioning the originality and simplicity of the models for multi-task classi-
fication, multi-label classification, and transfer learning: it was considered a single parameter
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vector for all tasks. Even with that simplicity of the model, the multi-objective framework
was able to promote good levels of knowledge transfer, supported by vast scenarios induced
into synthetic datasets that were designed to be as diverse as possible. Multiple real-world
datasets also supported it in the detection of epileptic seizures, multi-label classification, and
multi-task classification. It is important to highlight the relevance of ensemble approaches
in our framework, with the application of multiple models being the key to promote good
behavior in datasets characterized by more than one sharing structure. This framework also
allowed the insertion of single-task trained models, which was fundamental to mitigate neg-
ative transferring as well as improve the performance in scenarios with outlier tasks.

Another relevant connection between multi-objective optimization and machine learn-
ing resides in the final experiments of multi-task learning: we find that increasing the quality
of the representation in the multi-objective perspective also increases the quality of the clas-
sifier until a certain threshold level, with a stable performance after that threshold; both
findings are significant, it highlights the connection between the fields and also shows the ro-
bustness of the framework, because it is necessary only to give enough candidates to achieve a
threshold from which the maximal performance is achieved, keeping a reasonable performance
after that. We also found that scalarization weights are capable of depicting the transferring
level between the tasks. It creates another connection now between weighting sum method
and multi-task learning, showing the capability of analyzing the relations between the tasks
only using the weights of the multi-objective scalarization.

The promising performance of the proposed framework in several case studies helps
shedding more light on the interplay of multi-objective optimization and machine learning.
Convexity is certainly a key aspect of the adopted learning models, and a straightforward
extension involves considering other convex learning models such as linear regression and
kernel regression.
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