518 research outputs found

    Face modeling for face recognition in the wild.

    Get PDF
    Face understanding is considered one of the most important topics in computer vision field since the face is a rich source of information in social interaction. Not only does the face provide information about the identity of people, but also of their membership in broad demographic categories (including sex, race, and age), and about their current emotional state. Facial landmarks extraction is the corner stone in the success of different facial analyses and understanding applications. In this dissertation, a novel facial modeling is designed for facial landmarks detection in unconstrained real life environment from different image modalities including infra-red and visible images. In the proposed facial landmarks detector, a part based model is incorporated with holistic face information. In the part based model, the face is modeled by the appearance of different face part(e.g., right eye, left eye, left eyebrow, nose, mouth) and their geometric relation. The appearance is described by a novel feature referred to as pixel difference feature. This representation is three times faster than the state-of-art in feature representation. On the other hand, to model the geometric relation between the face parts, the complex Bingham distribution is adapted from the statistical community into computer vision for modeling the geometric relationship between the facial elements. The global information is incorporated with the local part model using a regression model. The model results outperform the state-of-art in detecting facial landmarks. The proposed facial landmark detector is tested in two computer vision problems: boosting the performance of face detectors by rejecting pseudo faces and camera steering in multi-camera network. To highlight the applicability of the proposed model for different image modalities, it has been studied in two face understanding applications which are face recognition from visible images and physiological measurements for autistic individuals from thermal images. Recognizing identities from faces under different poses, expressions and lighting conditions from a complex background is an still unsolved problem even with accurate detection of landmark. Therefore, a learning similarity measure is proposed. The proposed measure responds only to the difference in identities and filter illuminations and pose variations. similarity measure makes use of statistical inference in the image plane. Additionally, the pose challenge is tackled by two new approaches: assigning different weights for different face part based on their visibility in image plane at different pose angles and synthesizing virtual facial images for each subject at different poses from single frontal image. The proposed framework is demonstrated to be competitive with top performing state-of-art methods which is evaluated on standard benchmarks in face recognition in the wild. The other framework for the face understanding application, which is a physiological measures for autistic individual from infra-red images. In this framework, accurate detecting and tracking Superficial Temporal Arteria (STA) while the subject is moving, playing, and interacting in social communication is a must. It is very challenging to track and detect STA since the appearance of the STA region changes over time and it is not discriminative enough from other areas in face region. A novel concept in detection, called supporter collaboration, is introduced. In support collaboration, the STA is detected and tracked with the help of face landmarks and geometric constraint. This research advanced the field of the emotion recognition

    Aprendizaje evolutivo supervisado: Uso de histograma de gradiente y algoritmo de enjambre de partículas para detección y seguimiento de peatones en secuencia de imágenes infrarrojas

    Get PDF
    Recently, tracking and pedestrian detection from various images have become one of the major issues in the field of image processing and statistical identification.  In this regard, using evolutionary learning-based approaches to improve performance in different contexts can greatly influence the appropriate response.  There are problems with pedestrian tracking/identification, such as low accuracy for detection, high processing time, and uncertainty in response to answers.  Researchers are looking for new processing models that can accurately monitor one's position on the move.  In this study, a hybrid algorithm for the automatic detection of pedestrian position is presented.  It is worth noting that this method, contrary to the analysis of visible images, examines pedestrians' thermal and infrared components while walking and combines a neural network with maximum learning capability, wavelet kernel (Wavelet transform), and particle swarm optimization (PSO) to find parameters of learner model. Gradient histograms have a high effect on extracting features in infrared images.  As well, the neural network algorithm can achieve its goal (pedestrian detection and tracking) by maximizing learning.  The proposed method, despite the possibility of maximum learning, has a high speed in education, and results of various data sets in this field have been analyzed. The result indicates a negligible error in observing the infrared sequence of pedestrian movements, and it is suggested to use neural networks because of their precision and trying to boost the selection of their hyperparameters based on evolutionary algorithms

    Novel Aggregated Solutions for Robust Visual Tracking in Traffic Scenarios

    Get PDF
    This work proposes novel approaches for object tracking in challenging scenarios like severe occlusion, deteriorated vision and long range multi-object reidentification. All these solutions are only based on image sequence captured by a monocular camera and do not require additional sensors. Experiments on standard benchmarks demonstrate an improved state-of-the-art performance of these approaches. Since all the presented approaches are smartly designed, they can run at a real-time speed

    Hibernation ecology and population biology of the hazel dormouse

    Get PDF
    Detailed knowledge of the ecology and environmental conditions suitable for individual species across the landscape is vital for effective conservation measures. Similarly, understanding demographic factors that influence the structure of animal populations is crucial for understanding species trends. In this thesis, I explore one of the most interesting aspects that distinguishes the hazel dormouse (Muscardinus avellanarius) from other woodland small mammals - its ability to hibernate. Hibernation is a complex strategy with marked trade-offs that shapes the demography and structure of hazel dormouse populations and yet it is one of the least studied facets of their life cycle. Firstly, I introduce relevant background to the thesis. I evaluate different methods to locate hibernacula, investigate dormouse movements before hibernation, their behaviour as they prepare to face months of low activity at low temperatures and fewer foraging opportunities, to the point where they find a suitable place to build a nest to hibernate on the ground. I then examine population structure and estimate overwinter survival of different hazel dormouse populations. Using telemetry, I found that hazel dormice select hibernation sites within their autumnal home range. I investigate the impact of hibernation on body weight of hazel dormice and quantify rates of weight loss in wild animals. With the use of high-resolution airborne LiDAR derived canopy structure and topography, I develop novel models to characterise hazel dormouse hibernaculum locations and predict suitable locations across the landscape. I demonstrate that topography, sky view and canopy height can influence hibernaculum location selection. At the hibernaculum location, I demonstrate how hazel dormouse hibernation nests are built in a similar fashion to their summer nests and that they utilise a range of materials that are available in the immediate vicinity of the selected hibernation site. I quantify hazel dormouse overwinter survival of different populations and find that on average 0.36 (0.29 - 0.44, 95% Confidence Intervals (CI) of the population survives. My findings, based on the existing literature and evidence I collected in the field, suggests that hazel dormice are resourceful, able to cope with diverse habitat characteristics and resources. Conservation efforts should therefore focus on creating, managing and/or enhancing diversity within their habitat by promoting a varied canopy structure that is well connected and made up of assorted tree and shrub species of value to the hazel dormice in order to increase nesting and foraging opportunities through the seasons.People's Trust for Endangered Specie

    Real-time person re-identification for interactive environments

    Get PDF
    The work presented in this thesis was motivated by a vision of the future in which intelligent environments in public spaces such as galleries and museums, deliver useful and personalised services to people via natural interaction, that is, without the need for people to provide explicit instructions via tangible interfaces. Delivering the right services to the right people requires a means of biometrically identifying individuals and then re-identifying them as they move freely through the environment. Delivering the service they desire requires sensing their context, for example, sensing their location or proximity to resources. This thesis presents both a context-aware system and a person re-identification method. A tabletop display was designed and prototyped with an infrared person-sensing context function. In experimental evaluation it exhibited tracking performance comparable to other more complex systems. A real-time, viewpoint invariant, person re-identification method is proposed based on a novel set of Viewpoint Invariant Multi-modal (ViMM) feature descriptors collected from depth-sensing cameras. The method uses colour and a combination of anthropometric properties logged as a function of body orientation. A neural network classifier is used to perform re-identification

    Ubiquitous Technologies for Emotion Recognition

    Get PDF
    Emotions play a very important role in how we think and behave. As such, the emotions we feel every day can compel us to act and influence the decisions and plans we make about our lives. Being able to measure, analyze, and better comprehend how or why our emotions may change is thus of much relevance to understand human behavior and its consequences. Despite the great efforts made in the past in the study of human emotions, it is only now, with the advent of wearable, mobile, and ubiquitous technologies, that we can aim to sense and recognize emotions, continuously and in real time. This book brings together the latest experiences, findings, and developments regarding ubiquitous sensing, modeling, and the recognition of human emotions

    飛行ロボットにおける人間・ロボットインタラクションの実現に向けて : ユーザー同伴モデルとセンシングインターフェース

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 矢入 健久, 東京大学教授 堀 浩一, 東京大学教授 岩崎 晃, 東京大学教授 土屋 武司, 東京理科大学教授 溝口 博University of Tokyo(東京大学

    Development of new intelligent autonomous robotic assistant for hospitals

    Get PDF
    Continuous technological development in modern societies has increased the quality of life and average life-span of people. This imposes an extra burden on the current healthcare infrastructure, which also creates the opportunity for developing new, autonomous, assistive robots to help alleviate this extra workload. The research question explored the extent to which a prototypical robotic platform can be created and how it may be implemented in a hospital environment with the aim to assist the hospital staff with daily tasks, such as guiding patients and visitors, following patients to ensure safety, and making deliveries to and from rooms and workstations. In terms of major contributions, this thesis outlines five domains of the development of an actual robotic assistant prototype. Firstly, a comprehensive schematic design is presented in which mechanical, electrical, motor control and kinematics solutions have been examined in detail. Next, a new method has been proposed for assessing the intrinsic properties of different flooring-types using machine learning to classify mechanical vibrations. Thirdly, the technical challenge of enabling the robot to simultaneously map and localise itself in a dynamic environment has been addressed, whereby leg detection is introduced to ensure that, whilst mapping, the robot is able to distinguish between people and the background. The fourth contribution is geometric collision prediction into stabilised dynamic navigation methods, thus optimising the navigation ability to update real-time path planning in a dynamic environment. Lastly, the problem of detecting gaze at long distances has been addressed by means of a new eye-tracking hardware solution which combines infra-red eye tracking and depth sensing. The research serves both to provide a template for the development of comprehensive mobile assistive-robot solutions, and to address some of the inherent challenges currently present in introducing autonomous assistive robots in hospital environments.Open Acces
    corecore