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Abstract

Technologies related to advanced driver assistance systems and automated
driving vehicles have enjoyed a rapid development in recent years. In these
highly automated systems, visual tracking approaches are widely employed to
analyze the behavior of traffic participants, e.g., pedestrians and vehicles, in
the surrounding environment to provide reliable information for functions such
as motion control, maneuver determination and collision avoidance. Despite
tremendous progress achieved, existing tracking approaches still have diffi-
culties dealing with challenging scenarios like severe occlusion, deteriorated
vision and long range multi-object reidentification.

To address above mentioned problems, in this thesis, novel tracking solutions
are presented, which aggregate information in levels from visual features to
object parts/groups. All these solutions are only based on image sequence
captured by a monocular camera and do not require additional sensors. To
track a severely occluded object, a part filter-based tracker is employed, in
which the occurrence of occlusion is recognized through the variation of the
appearance model and the classifier response. The part filter is only learned on
the visible object area identified in pixel-level precision by a masking process
and is demonstrated with high robustness in experiments. For handling de-
teriorated vision, a new tracker is presented, which decomposes features into
several expert filters and searches the most discriminative one based on their
estimated reliabilities. Additionally, it performs an optimization in the tempo-
ral domain to filter out corrupted samples. Both procedures are integrated in a
single learning scheme and the trained tracker yields favorable performance in
cases with low illumination or adverse weathers. Following the trending tech-
nique of tracking-by-detection and leveraging the advances in object detection,
multi-object tracking can be cast as a reidentification/association problem. To
efficiently process large amount of objects, a three-stage association scheme is
presented in this thesis, which is mainly based on the strategy of joining both
spatial and temporal constraints. The first one encodes the relative motion
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Abstract

between targets while the second one focuses on long ranged objects. Such
frameworks can cope with both camera motion and full occlusion. Integrated
with previously introduced trackers, it exhibits an improved state-of-the-art per-
formance in more challenging scenarios. Since all the presented approaches
are carefully designed, they run at a real-time speed.
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Kurzfassung

Technologien im Feld von Fahrerassistenzsystemen und autonomen Fahrzeu-
gen haben in den letzten Jahren eine rasante Entwicklung erfahren. In diesen
hochautomatisierten Systemen werden visuelle Tracking-Ansätze häufig ver-
wendet, um das Verhalten von Verkehrsteilnehmern, z.B. Fußgängern und
Fahrzeugen, in der Umgebung zu analysieren sowie um zuverlässige Infor-
mationen für Funktionen wie Bewegungssteuerung, Manöverplannung und
Kollisionsvermeidung bereitzustellen. Trotz enormer Fortschritte haben beste-
hende Verfolgungsansätze immer noch Schwierigkeiten mit anspruchsvollen
Szenarien wie starker Verdeckung, verschlechterter Sicht und der Wieder-
Identifizierung mehrerer Objekte.

Um die oben genannten Probleme zu lösen werden in dieser Arbeit neuar-
tige Tracking-Ansätze vorgestellt, die Informationen in Ebenen nutzen von
visuellen Merkmalen bis hin zu Objektteilen/-gruppen. All Lösungen basieren
nur auf einer Bildsequenz, die mit einer monokularen Kamera aufgenommen
wurde, und erfordern keine zusätzlichen Sensoren. Um ein stark verdeck-
tes Objekt zu verfolgen, wird ein Part-Filter-basierter Tracker verwendet, bei
dem das Auftreten der Verdeckung durch die Variation des Aussehen-Modells
und der Klassifiziererantwort erkannt wird. Der Part-Filter wird nur auf dem
sichtbaren Objektbereich gelernt, der durch einen Maskierungsprozess in pix-
elweiser Genauigkeit identifiziert wird. Seine hohe Robustheit wird in Exper-
imenten demonstriert. Um die verschlechterte Sicht zu behandeln, wird ein
neuer Tracker vorgestellt, der die Merkmale in mehrere Expertenfilter zerlegt
und die diskriminierendsten Filter anhand ihrer geschätzten Zuverlässigkeit
durchsucht. Zusätzlich führt es eine Optimierung in der zeitlichen Domäne
durch, um beschädigte Samples herauszufiltern. BeideVerfahren sind in einem
einzigen Lernschema integriert, und der trainierte Tracker liefert eine günstige
Leistung in Fällen mit geringer Beleuchtung oder widrigen Wetterbedingun-
gen. Nach dem Tracking-by-Detection-Verfahren und dank des Fortschritts
bei Objektdetektionstechniken kann das Multiobjekt-Tracking als ein Assozi-
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Kurzfassung

ationsproblem gedeutet werden. Um eine große Anzahl von Objekten ef-
fizient zu bearbeiten, wird in dieser Arbeit ein dreistufiges Assoziationsschema
vorgestellt, das hauptsächlich auf der Strategie basiert, sowohl räumliche als
auch zeitliche Bedingungen zu kombinieren. Die erste kodiert die relative
Bewegung zwischen Objekten, während die zweite sich auf Objekte in großer
Entfernung konzentriert. Ein solcher Rahmen kann die Kamerabewegung und
langzeitig voll verdeckte Objekte gut behandeln. In Kombinationmit den bere-
its vorgestellten Trackern bietet es eine verbesserte Leistung auf dem neuesten
Stand der Technik in anspruchsvolleren Szenarien. Da alle vorgestellten An-
sätze elegant gestaltet sind, erlauben sie auch eine Echtzeitgeschwindigkeit.
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Notation and Symbols
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1 Introduction

According to statistics [123], in last decade, the vehicle ownership has been
significantly increased and the number of vehicles in operation world widely
has reached 1.32 billion in 2016. However, the rapid increase in vehicle number
not only improves the mobility for the vast majority of people but also brings
challenging issues, such as traffic congestions and accidents, which result in
enormous social burdens. Only in the year of 2016, the average congestion
time is about 30 hours on German roads [33], which causes a total cost of over
69 billion euros. In the meanwhile, road accidents become one of the major
threats to the safety of human beings [163]. Over 56.6 million vehicles crashed
on German roads in 2016 [14]. The associated cost is estimated around 34
billion euros and over 90% of traffic accidents are caused by human factors.

To alleviate congestions on road and to reduce the amount and severity of vehi-
cle accidents, both automobile industries and research institutions have made
great endeavors to upgrade the technology. Representatively, the advanced
driver assistance systems (ADAS) are applied in tasks such as congestion as-
sistance, adaptive cruise control (ACC), obstacle avoidance, collision warning,
etc., to help the driver make maneuver decisions and recognize objects in the
surroundings. Such developments led to a pronounced improvement on the
quality of traffic flow [80] and a steady decline in car accidents [14].

As a prominence of intelligent transportation systems, the automated driving
(AD) is regarded as the future automobile technology, which aims to signifi-
cantly improve the traffic safety as well as efficiency and comfortability. The
automated driving system is able to partially or fully take over the control of
the vehicle especially in critical scenarios. Thanks to advances from sensing
and computing technologies, such system operates much more robust and is
insusceptible to human-related factors such as distraction, fatigue, drowsiness
and other dangerous driving behaviors. In the meanwhile, it also saves human
drivers a lot of time and energy by freeing them from heavy driving burdens.

1



1 Introduction

One of themost essential technologies for automated driving is the environment
perception, which persistently monitors various objects and events in complex
traffic scenarios and provides vital information for sub-processing modules
such as localization, path planning, motion control and maneuver decision.
To ensure both a high reliability and a high accuracy, the perception system
is usually implemented by heterogeneous sensors which are able to generate
high-resolution, high-frequency data and with lots of computation power and a
wide communication bandwidth. Currently, a vast amount of sensor setups are
available off-the-shelf and applied in the development of automated driving
systems. For instance, one of the perception systems from Google is basically
a powerful multi-line lidar in combination with additional camera and radar
sensors [62]. However, the Tesla Model S mainly utilizes a sensor setup of
eight monocular cameras aided with radar and ultrasonic sensors [56]. A
similar setup is also adopted by Daimler yet enhanced with stereo and infrared
vision [152]. Although the sensor selection differs for each developer, the
camera-based visual system is still a common choice for the main perception
solution. Such systems can provide remarkable discriminative power and are
utilized to recognize objects like traffic signs and lane markings, and to analyze
the trajectory or even behavior of vehicles and pedestrians. In the latter case,
the related technology is the tracking approach, which is usually implemented
in vision systems and also the focus of this thesis.

1.1 Vision System and Tracking Approach

The vision system is an essential perception technology with interdisciplinary
applications. In biology, especially for human beings, it refers to the eyes,
which perceive about 80% of all environmental information [77], far more
than other organs of perception. For artificial systems, we mainly talk about
the camera-based perception devices. They are able to capture the shape, color
and texture information, which are difficult to obtain by radar or ultrasonic
sensors [20] but are requisite features for interpretation of objects or scenes.
Thanks to the advances from the domain of optics and photonics, both camera
size and weight have been significantly reduced in recent years while their
performance persistently increased. In the meanwhile, both the manufacturing
cost and market price of cameras have been significantly reduced due to mass
production. All these points led to the popularity of camera sensors and made
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1.1 Vision System and Tracking Approach

it possible to integrate them into small and flexible mobile systems like smart
phones and specific devices in automated driving vehicles.

Generally, a vision system can be decomposed into two main parts [77]: the
imaging component like optics to project the scene and the processing com-
ponent to parse the image information. While the first part is mainly related
to hardware, the second part emphasizes more on software levels. Normally,
domain knowledge from computer vision is leveraged to extract and analyze
image information, making camera-based perception systems suitable for var-
ious applications. As illustrated in Fig. 1.1 (a), for blind spot surveillance,
side cameras are installed on the vehicle to identify pedestrians or cyclists
and analyze their behaviors to prevent possible collisions [148, 149]. The be-
havior analysis can be extended in 3D vision by stereo setups or additional
range sensors [61]. In other applications, camera systems are installed in the
cabin to analyze the eye movements of the driver (Fig. 1.1 (c)) and identify
distraction and drowsiness [76]. Aside from that, the motion of objects can
also be estimated by analyzing the position change of points over images [67],
which is illustrated in Fig. 1.1 (b). Along the resurgence of deep learning in
recent years, neural networks are introduced into computer vision and image
processing domain. Depending on huge amounts of training data and high
performance processors, a lot of problems which are difficult for traditional
approaches become tractable by neural networks, especially in object identifi-
cation, action recognition (Fig. 1.1 (d)), scene understanding, etc. For specific
areas, neural networks even surpass the performance of human beings [121].
Thus, they become more popular in the development of ADV technologies. In
above discussion, although applications of vision system differ under circum-
stances, most of them are related to the analysis of object behaviors in observed
scenes. The key information is the object trajectory which is mostly interpreted
in image coordinates and derived by tracking approaches. Thus, vision-based
tracking becomes an indispensable part of many perception systems.

Vision-based Tracking Approach

Object tracking is commonly considered as estimating the trajectory of an
object by analyzing its movements in a predefined time interval. Before the
broad application of camera-based vision systems, targets were tracked mainly
by radar sensors in precedent works [2, 157]. Due to low resolution of the
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sensors, objects are normally considered as rigid points, which are identified
by correlating signals with their echos or by deriving the posteriori density
of the state using Bayesian approaches. However, with such a poor feature
interpretation, they are unable to deal with scenarios such as to distinguish
objects which are, with similar motion patterns, in a very close distance.

(a) (b)

(c) (d)

Figure 1.1: Applications of vision system. Image (a) to (d) show collision surveillance [61],
motion estimation [67], eyeball tracking and action recognition [52], respectively.

By applying vision systems such as cameras, the problem of interpreting the
appearance of an object is significantly alleviated by the rich image information.
Thus, the tracking task is cast into finding the object with the most similar
appearance of the target. Since objects are observed in the image plane,
their estimated trajectories are also represented by image coordinates. This
methodology is called visual tracking.

The visual information can also be adopted for point tracking and one of
its successful applications is the optical flow [55], which interprets motion of
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points on an object or in a scene over consecutive images. Besides the analytical
method which solves a set of differential equations [102], the optical flow also
employs blockmatching tomeasure the shift of small image regions. The query
point is usually centered in the small block region and visual information
such as color and texture are encoded by descriptors. Thanks to enormous
progress on both descriptor structures like SIFT [101], SURF [15], FAST [130],
BRIEF [22] and matching operations which are conducted pyramid-wise [13]
or embedded in deep networks [158], optical flow is widely employed by ADV
technologies, e.g., in sensor calibration, visual odometry and simultaneous
localization and mapping (SLAM).

Apart from points, complex objects such as pedestrians, vehicles, etc., are
also considered as tracking targets in various applications. Numerous related
approaches have been proposed in recent years and the main progress has
been achieved in areas of appearance representation and object reidentifica-
tion. To represent the appearance of an object, features are constructed in
different manners, e.g., modeling the shape with blobs [164], seeking distinc-
tive contours [78], extracting color or gradient histograms [31], ensembles of
templates of feature points [153], etc. Besides hand-crafted features, some
research works [105,114] also adopted convolutional neural networks (CNNs)
to learn the object appearance. Since most of these CNNs are pre-trained on
huge image data sets, the extracted deep features are learned to capture the
most distinctive information of objects.

The simplest approach for target reidentification is matching, which can be
interpreted as a correlation operation or as a distance metric such as Euclidean,
Mahalanobis, etc. Inspired by the image classification technique, the trend
of tracking-by-detection surfaces among the tracking community. In such
trend, machine learning techniques like boosting, random forests and even
CNNs are adopted to train classifiers to distinguish the target from background
objects. The correlation filter is one of the most successful approaches. It is
derived from the structural support vector machine (SVM) and due to its high
performance, in terms of both precision and computation efficiency, it became
a hot research topic [166,167].

Unlike single object tracking, a simple appearance matching approach is usu-
ally insufficient to track multiple objects. The most challenging issue for
multi-object tracking is the data association problem. Due to the fact that
objects are allowed to enter and exit the scene observed by the camera and
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the motion of each object may differ from each other, the number of objects
in the image may vary over the time. Ambiguity between detections and
tracked targets occurs when objects are close in position or similar in appear-
ance. The problem of multi-object tracking has been studied for almost a
half century [2]. Recent successful works are mostly based on a combination
of object appearance matching, motion modeling and additional association
strategies [126, 128, 142].

Problems and Solutions

Despite tremendous progress achieved in object tracking techniques and ex-
citing performance of newly developed trackers reported by standard bench-
marks [90, 166, 167], corner cases for visual tracking such as severe occlu-
sion, deteriorated vision and multi-object reidentification still exist. Coping
with these challenges is considered difficult, even for state-of-the-art track-
ing approaches, especially with monocular camera images only. Thus, these
challenges are stumbling rocks on the way to ADV technology, which should
ensure a high reliability and safety for the vehicle in nearly all possible traffic
situations. In the context of traffic scenes, we address three main challenges
for visual tracking in this thesis, which are listed as follows:

• Severe Occlusion
This scenario usually occurs for tracking pedestrians or cyclists, which
are considered as vulnerable road users (VRUs). Since their sizes are
relatively small, they are easy to be occluded by big objects such as
vehicles on the street and only leave a small body part exposed (see
Fig. 1.2 (a)-(b)). However, most of state-of-the-art trackers cannot rec-
ognize the occurrence of occlusion or have difficulties in identifying the
non-occluded object part. This can lead to loss of target in the tracking
approach and further to failures of the collision warning system, yielding
a dangerous situation for VRUs, since the driver barely has any time to
react before an accident happens.

• Deteriorated Vision
Here it distinguishes between two cases: nearly constant and temporally
varying vision deterioration. In the first case, it is mainly caused by
poor illumination conditions, such as dark scenarios like in the night or
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1.1 Vision System and Tracking Approach

whitened scenarios like in the fog. Driving in these scenarios, visual
features in the image are significantly degraded and only some distinctive
parts of an object, e.g., the vehicle lamps or reflection stripes, can be
observed (Fig. 1.2 (c)). Such cases require the tracker to be able to
seek the most discriminative visual feature of an object, which is yet
not the case for most standard trackers. The second case is mostly
related to the impact of weather conditions like the rain. As illustrated in
Fig. 1.2 (e), raindrops falling on the windshield of the vehicle result in an
unclear vision of the camera mounted directly behind it. Although the
windshield wiper clears the windshield afterwards, the unclear image is
still saved in the storage, which deteriorates the training samples of the
tracker, further leading to tracking drifts or failures (Fig. 1.2 (f)).

• Multi-object Reidentification
This reidentification problem frequently occurs for tracking multiple
objects. In the tracking-by-detection paradigm, association ambiguity
appears when the object number varies over the time, which is due to the
object-scene-interaction (e.g., objects enter or exit the scene) or mutual
occlusion between objects. In the latter case, especially when objects are
fully occluded and disappear for a long time, most of standard tracking
approaches consider these objects as “dead” due to their long term
disappearance and terminate the estimation for their trajectories. Even
though these objectsmay be rediscovered after the occlusion, theywill be
assigned with different identities due to failed association (Fig. 1.2 (h)).
Such a case is called as “ID switch”, which is a common, not well-solved
problem among the tracking community.

Since the above mentioned corner cases are greatly influenced by environment
factors or by crowd behaviors, current tracking approaches which mostly con-
sider individual targets within non-complex situations can only yield inferior
performance. To tackle these challenging issues, the key point for a tracking
approach is to appropriately manipulate object models, channel features, train-
ing samples and even association strategies under specific circumstances. In
this thesis, we call such approaches aggregated solutions.

The terminology of “aggregation” stems from statistics and refers to the com-
piling of information from combined datasets with intent to prepare them for
data processing [140]. The concept is broadly applied in data science domain.
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1 Introduction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.2: Challenges for visual tracking. In each row it respectively shows a tracking scenario
with severe occlusion, constantly deteriorated vision, temporally deteriorated vision and multi-
object reidentification. In the first three scenarios, the utilized tracker is a correlation filter and the
tracking failure or drift is displayed in the second column. The last scenario is for multi-object
tracking. The association is conducted by the Hungarian algorithm [91], which is adopted by a
vast of research works. In the next image, it shows the failed association, i.e., ID switch, between
object 5 and object 14.

8



1.2 Contributions

It is used to optimize the collecting and transfer of data from distributed
systems [63,137] as well as in machine learning to manipulate training datasets
(e.g., bootstrapping) and to learn joined classifiers (e.g., ensemble learning).
Here we introduce this concept in the visual tracking domain and extend its
definition to cover any manipulation related to compiling information with
different resources to improve the tracking performance. Thus, it ranges from
low levels, e.g., features and samples, to high levels such as object parts and
crowds. In this sense, proposed solutions in this thesis can also be considered
as aggregated approaches which work on different levels to solve each of the
above mentioned challenging scenarios.

1.2 Contributions

In this thesis, novel aggregated approaches are proposed to solve challenging
issues for visual tracking in traffic scenarios like severe occlusion, deterio-
rated vision and multi-object reidentification. All proposed approaches can
work with monocular camera images and require no further information from
additional sensors. Contributions of this thesis are summarized as follows:

• To deal with severe occlusion, a new tracking approach by adopting part
filters is proposed. In this approach, the occluded parts of an object
are recognized by utilizing the information derived from both image
features and filter responses. By a masking procedure, visible object
areas can be obtained with pixel-level accuracy and used to build part
filters. By experimental results on real traffic scenes, the tracker is proven
to be vigorous against occlusion, particularly in cases where long term
severe occlusion happens. It is also demonstrated by further experiments
on a standard benchmark that this approach improves object tracking
performance under other challenging circumstances. This approach has
been published in works [146], [151].

• For deteriorated vision, a novel online method is proposed to manipulate
features and samples in the learning procedure to adjust the tracker to
environmental factors. In this method, channel features are assigned to
various experts. Appearance models of an object are constructed based
on their evaluated reliabilities to emphasize the most discriminative

9



1 Introduction

visual features, which can handle constant deteriorated vision, such as
low illumination conditions during the night. Additionally, a temporal
optimization is performed to suppress outliers and maintain the most
reliable samples to train the tracker, which thus becomes insusceptible
to temporally varying vision contamination such as in rainy weather. An
outstanding performance of this approach is exhibited by experiments on
real driving datasets with scene tags of night, fog and rain. The related
work is published in [144].

• A novel multi-object tracking approach is proposed to address the rei-
dentification issue for multiple targets observed in large spatial and
temporal domains. In this approach, detections are firstly amassed into
short tracklets according to affinity measurements. In a short time span,
motion patterns and spatial relationships within grouped targets are used
to link tracklets to existing objects. In a period window of bigger scale,
graph theories are adopted to recover objects, which vanished for quite
a long time due to failed detections or long-term occlusions. Leverag-
ing both strategies, this approach exhibits an improved state-of-the-art
performance, demonstrated in works [104,145,147,175] 1.

1.3 Thesis Outline

In this thesis, we address aggregated solutions in terms of different challenging
scenarios of visual tracking. Thus, this thesis consists of topics from differ-
ent perspectives. For a better narrative, only a general overview about the
development of vision system and tracking approach has been placed in the
introduction of this thesis. Details about the state of the art of each topic is
given in the beginning of each chapter.

Hence, the remainder of this thesis is organized as follows: In Chapter 2 we
give a brief introduction about the correlation filter, which is the basic frame-
work for most of our proposed approaches. We introduce its development,
its theoretical derivation and the specific versions utilized in our approaches.

1 In works [144–147, 151], the author of this thesis contributed to most of the ideas and most of
the writing work.
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1.3 Thesis Outline

Chapter 3 describes the proposed approach which adopts part filters to solve
tracking with severe occlusions. At the beginning it is about occlusion aware-
ness, which is divided into two parts: occlusion occurrence detection and
occluded object part identification. Afterwards we move to dynamic filter
management and finally to the evaluation results. In Chapter 4 we respec-
tively describe the approaches for object tracking with constant and temporally
varying vision deterioration. We give the detailed mathematical derivation and
show how to join two sub-approaches into one tracking framework. Finally, we
evaluate the approach on a challenging dataset. In Chapter 5 we describe our
multi-object tracking approach and introduce two association strategies. The
first one is based on spatial relationships and motion patterns within grouped
targets and is called as spatial constraint. The second one is based on graph-
cutting and is utilized in a large-scale time domain. Thus, it is called temporal
constraint. We join two constraints in one tracking framework and evaluate it
on several standard benchmarks. In Chapter 6 we give the conclusion of this
thesis and end it with research directions in the future work.

Chapter Topic of Tracking Aggregation Level Base Technique

2 Correlation Filter - Support Vector Machine
3 Severe Occlusion Object Parts Correlation Filter
4 Vision Deterioration Feature, Samples Correlation Filter
5 Multi-object Reidentification Objects Graph Cutting

Table 1.1: An overview of the topic, the information aggregation level and the base technique of
each chapter except the introduction and conclusion part of this thesis.

An overview about the relationship between the main chapters of this thesis is
also given in Table 1.1. As illustrated, except Chapter 5, all other chapters are
based on the correlation filter technique and concentrated on the aggregation
level of features, samples and object parts. Since they are more related to
learning the appearance model for one target, we mainly focus on single-object
tracking in these chapters. The discussion about their application for multiple
targets and issues like the multi-object association are left for Chapter 5,
in which we focus on a higher information aggregation level: the behavior
between objects.
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2 Basic Framework -
Correlation Filter

The discriminative tracking approach commonly leverages machine learning
techniques to build a classifier based on given image samples to distinguish
the target from its background. However, to ensure a high accuracy, traditional
classification methods usually require a large amount of training samples,
e.g., extracted from different image locations. Such a sampling procedure is
extremely time consuming and brings inevitable computational burden while
processing these samples. To tackle this bottleneck, the correlation filter
emerges, which employs a circular shift to replace the normal image translation
and is learned as a support vector machine, which can be efficiently solved
in frequency domain. By incorporating additional techniques such as the
kernel function, the correlation filter shows a comparable or even superior
performance in comparison with other traditional tracking methods.

Due to the above reasons, the correlation filter is chosen as the basic framework
for most of proposed approaches, which are described in Chapter 3 and Chap-
ter 4 of this thesis, respectively. In this chapter, we first give a short review
about the development of single-object tracking which includes the discrimi-
native tracking approach and the correlation filter. Thereafter, we present the
detailed formulation of the correlation filter from both machine learning and
signal processing perspectives. After that, we introduce the specific version of
the correlation filter utilized in our approaches.

2.1 State of the Art

For comprehensive studies about the topic of visual tracking the readers can
be referred to recent surveys such as [88, 138, 167]. Here we provide a brief
overview about the works related to single-camera, single-object tracking,
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2 Basic Framework - Correlation Filter

which, depending on how the tracker model is constructed, can be coarsely
divided into two categories: generative and discriminative approaches.

Generative Models

Generative tracking approaches typically focus on building an appearance
model to represent the target and utilizing it to search the most similar image
region in new frames. Since the searching procedure is usually guided by
probability inferences or by distance metrics, a powerful visual representation
of the target becomes the key to these tracking approaches. For instance,
Ross et al. [129] represent the target with a subspace model consisting of
eigenvectors from the covariance matrix of image samples. By a maximum
likelihood estimation, the location of the target is estimated in consecutive
frames. Eigenspace representation is also utilized by Black et al. in [17]
but enhanced with a multi-scale and coarse-to-fine matching strategy. In
the spirit of brightness consistency, they managed to track an object over
long video sequences in which the target undergoes camera motion and view
changes. Comaniciu et al. in [32] directly model the object appearance with
its probability distribution of color values. The object is also spatially masked
by an isotropic kernel to avoid large response variation for adjacent locations
on image lattice.

Aside from naive image statistics, other visual representation such as sparse
coding is also utilized. Wibowo et al. in [162] calculate sparse coefficient
vectors from small patches. These sparse features are utilized to measure the
likelihood of an observation and in collaboration of particle filter, it is able to
estimate the a posteriori probability of the target on evaluated locations. In
another way, the sparse representation of an image sample in [108] is obtained
through the L1-regularized least square minimization. The probability of the
sample is thus calculated with respect to the reconstruction error of the target.
By investigating the trivial coefficients from the minimization, occlusion can
also be detected. This work is further developed in [109]. By introducing
lower error bound and two-stage reconstruction, the computational efficiency
is significantly boosted. The low-rank sparse representation is also investigated
in [173], which incorporates background samples in the dictionary and a sparse
error term to address occlusion and tracking drift problems.
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2.1 State of the Art

Unlike them, visual features like superpixels are utilized in [119] in combi-
nation with a probabilistic model implemented by Earth Movers’s Distance
to deal with non-rigid objects. In spite of the fact that both the precision
and runtime speed of generative models have been greatly improved by above
mentioned techniques, their tracking performance strongly depends on specific
probabilisticmodels or distancemetrics, and an appropriate selection of them is
still difficult. Another issue of generative models is that they rarely take back-
ground image information into consideration, which make their approaches
prone to background clutter.

Discriminative Models

Due to the recent progress of machine learning in the domain of image classi-
fication, speech recognition, medical diagnosis, etc., tracking-by-detection has
risen as one of the most successful paradigms. As one of its representatives,
the discriminative approach treats tracking as a classification problem, which
learns a classifier to predict the location of the target in a new frame. Since
background information is involved in negative training samples, the target can
be readily distinguished from other objects in the background.

In prior works, heterogeneous classifiers are adopted by discriminative models.
Saffari et al. in [132] combine random forests and online bagging in one
scheme. Since it allows consecutively growing new trees, their method shows
resistance against occlusions. As a simplified version, random ferns are utilized
by Rao et al. in [125]. By incremental learning, their tracker model can be
readily adapted to the variation of target appearance. Similar classifiers are
employed in [154] but enhanced with boosting, which is demonstrated with
a promoted precision in recognition of objects undergoing rotation and view
changes. The boosting approach is also deployed for ensemble learning of
classifiers in [6]. Their weak classifier is based on the distribution of low level
features and the new position of target is identified by mean-shift, which works
well with color, gray and infrared (IR) images. In [58], Grabner et al. apply
online AdaBoost on features such as Haar [155], HOG [35] and LBP [117]
and use the confidence map to estimate target positions, achieving boosted
performance. This work is further developed in [60] by formulating the tracker
update process in a semi-supervised fashion to reduce the risk of tracking
failure or drift. Such a problem is also addressed by Babenko et al. in [7],
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where they introduce multiple instance learning to create sample bags and
train the classifier with high potential positive samples to alleviate the model
degradation by target location errors.

Aside from ensemble methods, classification techniques such as nearest neigh-
bors are also utilized, e.g., in [165], where the object is evaluated with respect
to its distance to a subspace spanned by selected training samples. Since deep
learning becomes a trend in computer vision, neural networks are adopted in
plenty of research works. For instance, Jin et al. in [75] train a light weight
network augmented with a radial basis function classifier and prove its stabil-
ity against dramatical changes of object appearance. Nam et al. in [114] train
two CNNs to switch the tracking between short and long term modes, which
benefits greatly in rediscovering lost targets. Although these above-mentioned
methods yield outstanding tracking performance, most of their classifiers re-
quire a large amount of training samples, which results in huge consumption
of memory and computing resources.

As a remedy of this shortcoming, Hare et al. in [66] build a classifier based
on the principles of the structured SVM [14]. By augmenting class labels
with location information, its computation load is relatively small, compared
with other methods. Such an idea inspires the work [18], where Bolme et al.
reformulate the learning procedure of SVM in frequency domain, significantly
improving the computational efficiency by utilizing fast calculations such as
the FFT. This also established the foundation for a novel tracking model: the
correlation filter (CF).

In recent years, correlation filter-based tracking approaches enjoyed a rapid
development. For precision improvement, correlation filters with multiple
feature channels are designed in [82] to adopt more discriminative features
such as improved HOG [50], color attributes [40] and intensity channels [48].
In [71], Henriques et al. explore essential properties of a data matrix consist-
ing of circular shifted samples and prove that these properties are also valid
for specific kernels. By adopting the kernel function, both the precision and
runtime performance of their tracker have been further improved. To enhance
the classifier training, several strategies are proposed. For example, spatial
regularization is adopted in [38, 83] to weight samples with respect to their
distance to the target. Spatial priors are utilized in [103] to handle occlusions.
Support vectors [177] and context information [43] are employed to augment
training samples. Multi-memory stores are introduced by [73] to accommo-
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2.2 Learning Correlation Filter

date appearance variations. In [37] the training set is adaptively managed
to suppress the influence by imperfect or noised samples. Some works also
leverage deep learning techniques by incorporating powerful deep features into
their models [39,98]. Due to these efforts, CF-based trackers currently achieve
state-of-the-art performance on standard benchmarks. The excellence of the
correlation filter in terms of both tracking precision and efficiency also inspired
the development of approaches proposed in this thesis.

2.2 Learning Correlation Filter

In this section, we introduce the details about the correlation filter from two
perspectives: machine learning and signal processing. In the first perspective,
we describe how to apply a classifier (which is referred to the SVM here) in
the object tracking task. In the second perspective, we give a discussion about
the special data structure utilized by the correlation filter: the circulant matrix,
which enables a fast calculation in the frequency domain.

2.2.1 Tracking by Support Vector Machine

Machine learning is the key technique to discriminative tracking approaches,
which is utilized to learn a classifier to distinguish the target from its back-
ground. Given image samples assigned with target tags at the initial frame
(which is mostly the case for single-object tracking), the discriminative tracker
can be learned in a supervised fashion.

Generally speaking, the supervised learning can be expressed as learning a real-
valued function (a.k.a. classification/evaluation function) f : X ⊆ Rm → R,
which maps a set of samples (i.e., inputs) xi ∈ X to their assigned labels (i.e.,
outputs/responses) yi ∈ R1, where index i is in the range of 1 ≤ i ≤ n and n is
the total sample number. Since samples are usually represented in the form of

1 For classification tasks, the labels are integers, i.e., yi ∈ N. However, the Correlation Filter
introduced here is based on the regression form, which takes real-valued labels. Thus, to be
consistent with the description of CF and also for a more generalized interpretation, here it is
written in the form of yi ∈ R.
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image patches or attribute/feature vectors, the dimension m indicates the pixel
number or vector length.

Support Vector Machine for Classification

In terms of conventional image classification, we usually deal with binary
classification problems, i.e., to distinguish one specific object (or object class)
from other objects. In this sense, the labels can only be assigned with two
different values, e.g., with yi = 1 for positive samples and yi = −1 for
negative ones. A simple idea to distinguish these samples is to construct
a hyperplane (a.k.a. classification plane) to divide the space of X into two
parts, each associated with a unique class label, as illustrated in Fig. 2.1 (a).
This concept yields the linear form of support vector machine, in which the
hyperplane is interpreted by the linear function

f (x) = w> · x + b, (2.1)

where vector w encodes the plane parameter (i.e., the norm vector) and term b
is the bias. For a more generalized representation, we reformulate Eq. (2.1) in
a homogeneous form2 which omits the bias term b, expressed as

f (x′) =
[

w> b
]
·

[
x
1

]
= w′> · x′, (2.2)

where w′ denotes the extended parameter vector and x′ is the extended sample
attribute. Thus, in this new form, the bias term b is included in the parameter
vector describing the hyperplane in the extended feature space. This new
formulation can also be considered as moving the hyperplane described in
Eq. (2.1) to make it cross the zero-point of the space. The same translation is
also applied on all sample points. Since the classification result is not changed,

2 In some literatures [30, 135], the bias term b is explicitly handled as in Eq. (2.1) and not
regularized during optimization. However, recent studies [47, 136] show that by utilizing
the extended parameter vector w′ (i.e., implicitly regularizing b in Eq. (2.3)), a much faster
convergence rate in the learning procedure can be achieved due to a stronger convexity of the
loss function. It is also found that the influence on classification performance is only limited by
regularizing the bias term b. For the same reason, the form (2.2) is preferred in the work [70],
which introduced the KCF tracker. For consistency, such form is utilized in this thesis.
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for a simplified representation but without causing confusion, we use symbol
x instead of x′ and w instead of w′ in the following discussion.

(a) (b)

Figure 2.1: Linear support vector machine for binary classification: (a) with hard margin, (b) with
soft margin. Positive samples are represented by triangles while negative samples are represented
by squares. Hard samples are denoted in red. Support vectors are marked in blue. The hard
margin plane is represented by dash line. The normal vector w of the hyperplane is represented
by an arrow.

The goal of a learning approach is to approximate the true labels (a.k.a. ground
truths) with the function f as accurate as possible. Thus, the output value f (x)
should also be binarized, e.g., by taking its sign. Hence, it desires f (x) ≥ 0
for positive samples and f (x) < 0 for negative ones. Normally, we also expect
that the learned classifier can perform well on untrained data. Therefore, the
most stable hyperplane should guarantee the largest distance/margin to each
class, which is determined by its nearest sample points (i.e., support vectors).
Mathematically, it can be interpreted as solving problem

arg min
w
‖w‖2 +

1
λ

n∑
i=1

ξi (2.3)

subject to {
yiw>xi ≥ 1 − ξi
ξi ≥ 0

, ∀i ∈ {1, . . . ,n} (2.4)

with the non-negative slack variable ξi and a positive regularization factor
λ. As mentioned, the bias term b is already incorporated into the augmented
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parameter vectorw. According to [136], regularizing the bias during optimiza-
tion only leads to limited influence of the classification performance but yields
a stronger convexity of the loss function, which makes the learning procedure
much easier. In constraint (2.4), if all slack variables are forced to be zero,
then only the first term is left in loss function (2.3), which yields the hard-
margin binary SVM (Fig. 2.1 (a)). Recall that the distance of a sample xi with
respect to the hyperplane equals w>xi/‖w‖, the resulted constraint (2.4), i.e.,
yiw>xi ≥ 1, forces all samples to be located on the correct side of the hyper-
plane with a minimum distance of 1/‖w‖, which is maximized by minimizing
its denominator.

However, in most of classification tasks, we cannot find a hyperplane which
can clearly separate different object classes, due to noises in samples or insuf-
ficient feature representation. Therefore, we employ a positive slack variable
ξi in constraint (2.4) for each misclassified sample. This yields the soft-margin
binary SVM, which tolerates samples located on the wrong side of the hyper-
plane. Thus, the second term in problem (2.3) is to minimize the summed
distance of misclassified samples with respect to their corresponding margin
planes (illustrated in Fig. 2.1 (b)). The regularization factor is just to balance
between both terms that are to be minimized.

Support Vector Machine for Tracking

Although the binary SVM is utilized for most classification tasks, there are still
issues restricting its application for tracking approaches. The first one is that
solving the problem (2.3) should leverage the Quadratic Programming (QP) or
Lagrange Multiplier Method. The resulted computation amount is high, which
is inappropriate for learning trackers with strict runtime requirements. Another
issue is that the location of the target should also be identified in a tracking task.
This requires ranking of locations, where the classifier is evaluated, according
to their scores. Thus, the SVM should be able to output continuous values
instead of binary ones.

To guarantee a precise localization, ideally, the highest classification score
should be obtained at the location where the detection window exactly covers
the target and both of them are center-aligned. This requires that in the training
process positive samples, e.g., extracted from different locations, should be
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assigned with non-equal labels, with low values to penalize samples with great
location errors. A common approach is that the sample label is determined by
a predefined probability function, e.g., a 2D Gaussian function, with respect to
the distance between the center of the sample and the original target location,
as illustrated in Fig. 2.2. Thus, the greatest label is always assigned to the
sample located at the target center and equals to one while the smallest label
is assigned to samples without overlap with the target and is set to nearly zero.

Figure 2.2: Continuous label values for samples. On the left is an image (from the KITTI
dataset [95]) with the target, i.e., a cyclist, located in its center. Two samples covering the target
are extracted by a smaller bounding box, respectively denoted in red and blue. On the right, it
shows the label map calculated by a predefined 2D Gaussian function with respect to the distance
between the sample center and the original target location. The labels are displayed by a heatmap
with warm colors to indicate high values. The corresponding points of those two samples are also
denoted in this map. The utilized bounding box is bigger than the target size, because we would
like to include texture information from background, which is helpful for training the classifier.

Since the output label becomes a continuous real number, the objective function
for binary classification is ineligible. Here we resort to the regression form of
support vector machine, e.g., the linear epsilon-insensitive SVM (ε - SVM),
which is expressed as

arg min
w
‖w‖2 +

1
λ

n∑
i=1
(ξi + ξ

∗
i ) (2.5)

subject to 
yi − w>xi ≤ ε + ξi
w>xi − yi ≤ ε + ξ

∗
i

ξi ≥ 0
ξ∗i ≥ 0

, ∀i ∈ {1, . . . ,n}, (2.6)

where ε controls the tolerance band for the prediction and term ξi and ξ∗i are
slack variables. Similar as in the soft-margin binary SVM, the slack variables
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represent the distance of outliers to the margin of the tolerance band. To
simplify the representation, we rewrite the problem (2.5) as

arg min
w

n∑
i=1

Lε (yi, f (xi,w)) + λ‖w‖2 (2.7)

subject to

Lε (yi, f (xi,w)) =

{
0, for |yi − f (xi,w)| ≤ ε
|yi − f (xi,w)| − ε, otherwise

(2.8)

and the constraint can be further replaced by a hinge loss function, which is
expressed as

Lε (yi, f (xi,w)) = max{0, |yi − f (xi,w)| − ε}. (2.9)

Intuitively, the optimization problem of (2.7) turns to be more complicated
than a binary SVM and an analytical solution is difficult to attain due to the
non-differentiable form (i.e., the L1-form) of constraint in (2.9).

To circumvent this problem, we employ an alternative loss function with
squared prediction errors, yielding the L2-form SVM [135], formulated as

arg min
w

n∑
i=1
|yi − f (xi,w)|2 + λ‖w‖2. (2.10)

Here we force the tolerance band ε to be zero to further simplify the solving
procedure. Compared with the L1-form SVM, the L2-form SVM (a.k.a. L2-
SVM) is differentiable and strongly penalizes samples with bigger prediction
errors. Thus, it usually yields a better performance [87, 143].

For a compact representation, we leverage the linear form of function f (x,w)
and rewrite the problem (2.10) as

arg min
w
‖y − Xw‖2 + λ‖w‖2 (2.11)

with label vector y = [y1, . . . , yn]
> and data matrixX = [x1, . . . ,xn]>. Another

merit of the quadratic form of the L2-SVM is that its Hessian matrix is always
positive definite [87], which makes the optimization problem of (2.11) convex
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and thus a closed-form solution feasible. Herewe summarize all to be penalized
terms from Eq. (2.11) in one loss function as

L(w) =
1
2
(‖y − Xw‖2 + λ‖w‖2), (2.12)

where the constant factor 1
2 has no influence on the solution. According to its

convexity property, the minimum loss value should be located at the point with
zero gradients. Thus, we take the derivatives with respect to vector w and set
them to zero, which yields

∂L(w)
∂w

= −X>y + (X>X + λI)w = 0, (2.13)

where term I and 0 respectively denote the identity matrix and zero vector.
By solving Eq. (2.13), we obtain the analytical solution of problem (2.11),
interpreted as

w = (X>X + λI)−1X>y. (2.14)

The form of Eq. (2.14) is also known as the ridge regression. Compared with
the least square estimation, it employs an additional regularization term λ to
deal with cases where the matrix X>X is ill-conditioned [30].

2.2.2 Circular Data Structure

Although the closed-form solution of L2-SVM is not complicated, the explicit
inversion of matrix in Eq. (2.14) is still the bottleneck for fast computation,
especially when the data matrix X consists of a large number of samples.
Moreover, the time cost of the sampling approach is proportional to the number
of samples, which are usually extracted from different image locations. Since a
big training dataset is commonly considered as the key to a good generalization
ability, in this sense, the contradiction between the classification power of a
SVM and its runtime performance (including learning) seems irreconcilable.

Since preparing the training dataset could be laborious and computationally
expensive, recent research works [44,116] resort to learning with virtual sam-
ples which yields a performance comparable with that trained on real images.
The success of their idea led us to the belief that our problem could also be
solved in a similar way. Considering that in a tracking task training samples are
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densely extracted from a small nearby region of the target, most of the samples
overlap with each other and thus are strongly correlated. Such relationship can
be equivalently interpreted by a translation operation, i.e., circular shifting,
to transform the original target image patch. For a small shifting step, the
transformed image sample still shares a big area with the original one and only
differs in a few pixels at the margin (Fig. 2.3 (b)). For a big translation, the ar-
tifact caused by circular shifting becomes severe (Fig. 2.3 (e)). However, as the
transformed sample is assigned with a very small label value, i.e., nearly zero,
it will be taken as a negative sample and thus imposes very limited influence
on learning the target appearance. In this way, the circular shifting approach
merely changes the prior knowledge of the target appearance. Moreover, since
only one image sample (which contains the target) is required, the preciously
mentioned explicit sampling procedure can be spared while the amount of
training data remains unchanged. Furthermore, the circular shifting yields a
very special form of the data matrix X, i.e., the circulant matrix3 [74], which
significantly eases the calculation of Eq. (2.14).

(a) (b) (c) (d) (e)

Figure 2.3: Circular shifting in horizontal direction. On the leftmost side is the original image
sample containing the target, i.e., a cyclist. The other four samples are its circular shifted versions
with a step size of 13 pixels. Image sample is from the KITTI dataset [95].

Circulant Matrix

Principally, the circular representation can be generalized for 2D images and
multi-channel feature maps [70]. However, for a simplified representation of
the circulant matrix, we only consider the one-dimensional case, where the

3 In literatures, the circulant matrix is usually referred to the transposed matrix X>. However,
for simplified representation, we directly derive the properties introduced in this thesis from the
matrix X rather than from its transposed form.
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target sample is interpreted as a vector4 x = [x1, . . . , xn]>. Considering the
shifting step equal to 1, the data matrix X can be written as

X =



x1 x2 · · · xn−1 xn
xn x1 · · · xn−2 xn−1
...

...
. . .

...
...

x3 x4 · · · x1 x2

x2 x3 · · · xn x1


=



(P0x)>

(P1x)>
...

(Pn−2x)>

(Pn−1x)>


, (2.15)

where P is a permutation matrix with

Pix = [xn−i+1, . . . , xn, x1, . . . , xn−i]> for 1 ≤ i ≤ n. (2.16)

From the above formulation, we can see two interesting points: Firstly, since
each row of matrix X consists of one sample, the total row number is equal
to the dimension of x. Hence, the amount of training data solely depends on
the resolution of the sample image or its feature map. Secondly, the circular
shifting operation can be cast into a multiplication between sample x and
a permutation matrix P, which can be efficiently implemented on modern
hardwares such as digital signal processors (DSPs).

Recall that the Discrete Fourier Transform (DFT) also adopts a complex mul-
tiplier with periodic powers [34], a link between the circulant matrix and the
DFT can be easily established [41], interpreted as

X = FH diag(x̂)F, (2.17)

where term diag(x̂) is a diagonal matrix. Its diagonal is formed by vector x̂,
which is the DFT form of sample x and can be expressed as x̂ = F (x) with the
Fourier operator F . The matrix F is called as DFT matrix, which consists of
constant complex numbers and reformulates the DFT as a matrix multiplica-
tion: F (x) =

√
n Fx. According to this formulation, the matrix F is unitary,

4 Previously, the feature dimension is defined as m and the sample number is n. However, for a
circulant matrix generated by one-dimensional vector, both values are equal.
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which means FHF = I with superscript H to indicate the Hermitian transpose.
Additionally, for each vector x, we have the norm-preserving property of

‖Fx‖2 = ‖x‖2 = ‖FHx‖2. (2.18)

Fast Calculation in Frequency Domain

Enlightened by the norm-preserving property (2.18), the loss function (2.11)
will not be changed if the unitary matrix F is multiplied within each of its
terms. Thus, we can rewrite it as

L(w) =
1
2
(‖Fy − FXw‖2 + λ‖Fw‖2). (2.19)

Leveraging the relationship (2.17) and the unitary property of matrix F, loss
function L(w) can be further reinterpreted as

L(w) =
1
2
(‖Fy − diag(x̂)Fw‖2 + λ‖Fw‖2). (2.20)

Based on the definition of DFT matrix, all vectors multiplied with F in the
above form can be replaced with their Fourier transforms. Hence, we obtain a
new loss function

L(ŵ) =
1
2n
(‖ŷ − diag(x̂)ŵ‖2 + λ‖ŵ‖2) (2.21)

which is only represented by terms from the frequency domain. The constant
multiplier 1

2n can be easily omitted, because it imposes no influence on the
optimization results. Compared with the original loss function (2.11), the
computation amount in this new form is low due to the reason that in the product
diag(x̂)ŵ, non-zero multiplication can only happen on diagonal elements.

For a better understanding of the new form (2.21), we reformulate the matrix
product diag(x̂)ŵ as

diag(x̂)ŵ = x̂ � ŵ = F (x ∗ w) = F (Xw), (2.22)

where � indicates the Hadamard product and operator ∗ denotes the convolu-
tion. Eq. (2.22) points out that since matrix X only consists of circular shifted
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versions of sample x, the matrix multiplication Xw can be considered as the
convolution between a filter w and image x. According to signal processing
theory, the convolution in spatial domain can be replaced by the element-wise
product between their Fourier transforms. In this sense, solving the original
loss function L(w) is equivalent to solve its Fourier form L(ŵ) in frequency
domain, which is consistent with the Parseval’s theorem.

In analogy to its form in spatial domain, the optimum of L(ŵ) is also located
at its zero-gradient point. Thus, by setting its derivatives to zero and solving
those equations, the solution is obtained as

ŵ =
x̂? � ŷ

x̂? � x̂ + λ
, (2.23)

where superscript ? indicates the conjugate of a complex number and the divi-
sion is conducted element-wise. The spatial form w can be easily obtained by
an inverse Fourier transform expressed as w = F −1(ŵ). Compared with the
original solution form (2.14), the explicit matrix inversion disappears and only
element-wise operations are conducted in the new form (2.23). The compu-
tational overhead by additional Fourier transform for these utilized vectors is
also little, e.g., by deploying the method of Fast Fourier Transform (FFT). The
computational complexity for the new solution form is only O(n log n) while
for the original form it is normally O(n3) (reported on state-of-the-art solvers
such as [27]).

To recognize the target as well as to reuse the fast calculation fashion, for a
new image sample z, we apply the evaluation function on all of its circularly
shifted versions (contained in matrix Z), formulated as

f(z) = Zw = z ∗ w = F −1(ẑ � ŵ). (2.24)

The point with the maximum value is then searched in the response map f(z)5
and considered as the location of the target. In this way, both classification6

5 Here we distinguish between two annotations f(z) and f (z), where the first one indicates the
evaluation on all shifted versions of sample z and thus it represents the response map, while the
second one indicates the single evaluation on sample z and thus it is scalar.

6 Here we consider the utilized regression form of SVM as a general form for classification with
real-valued labels.
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and localization tasks are joined in one step. Since the evaluation is performed
in a correlation-like manner (which resembles the convolution operation yet
with a rotated filter), such discriminative tracking approach is named as the
correlation filter.

In above discussions, we only considered sample z as a single-channel vector.
However, in most classification and tracking tasks, we usually use multiple
feature channels encoding different information resources as representation
attributes. Since these channels are constructed independently from each
other, evaluation function (2.24) can be easily extended to multiple channel
features. Thus, given a total channel number C, the evaluation on all shifted
versions of sample z can be expressed as

f(z) =
C∑
c=1

zc ∗ wc = F
−1

(
C∑
c=1

ẑc � ŵc

)
, (2.25)

where term zc denotes the sample features from channel c and wc contains the
corresponding filter coefficients for current channel, which is learned in the
same form of Eq. (2.23) only with a minor modification by replacing sample x̂
with one of its feature channel x̂c .

2.3 Specialized Correlation Filter

The correlation filter has been widely applied in current tracking approaches.
In this section we introduce one of the specific strategies to further improve the
learning power of the correlation filter, which is also adopted in the approaches
proposed in this thesis.

Kernelized Correlation Filter: Basic Theory

Although the linear SVM can quickly find a model to fit the expected outputs,
its approximation precision may still be less satisfied for complex datasets, in
which lots of samples are located far from the estimated hyperplane. Such
a problem is usually caused by the fact that the exploited attribute/feature
representation is insufficient to model the distribution of samples. Thus, the
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2.3 Specialized Correlation Filter

representation of samples in a better feature space, e.g., with higher dimensions,
is greatly desired.

With this point in mind, we define a new mapping function φ : Rm → Rm′′,
which transforms the original sample attributes into a high dimensional space
with m′′ ≥ m, interpreted as x′′ = φ(x), where x′′ is the sample representation
in the new feature space. According to the Representer Theorem [134], the
solution w for a linear regression problem belongs to the space spanned by its
samples, which is interpreted as

w =
n∑
i=1

αiφ(xi) = X′′α (2.26)

with coefficient vector α = [α1, . . . , αn]
> and matrix X′′ consists of all trans-

formed samples with each in one row. Hence, the evaluation on mapped
attributes of an image sample x can be reformulated as

f (x) = w>φ(x) =
n∑
i=1

αiφ(xi)>φ(x) =
n∑
i=1

αiκ(xi,x), (2.27)

where κ denotes a kernel function which implicitly calculates the dot-product
φ(xi)>φ(x). Intuitively, the calculation of f (x) becomes more difficult, espe-
cially when φ is a very complex mapping function. However, if we observe
Eq. (2.27) carefully, we can find out that the evaluation result sorely depends
on the utilized kernel function κ. This inspires us to the idea that we can build
the kernel κ with simple functions (e.g., the Gaussian) to indirectly evaluate
the product φ(xi)>φ(x) to circumvent the explicit transform of samples. In-
troducing such concept into the normal classification problem yields the new
definition: kernelized support vector machine. Analogously, the type of CF
tracker which employs kernel function is called as kernelized correlation filter
(kernelized CF or KCF) [71].

To learn the KCF is just to solve the coefficient vector α by minimizing the
loss function (2.11). Since the vector α is directly related to filter w, we just
introduce Eq. (2.27) into the original solution (2.14) and obtain

α = (K + λI)−1y, (2.28)
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where K is the kernel matrix with each element equal to ki j = κ(xi,xj).
Leveraging the relationship between circulantmatrix and the Fourier transform,
we introduce Eq. (2.17) into the above solution and thus obtain the Fourier
transform of vector α, interpreted as

α̂ =
ŷ

k̂xx + λ
, (2.29)

where the division is conducted element-wise and the vector k̂xx is the Fourier
form of the first row of matrix K.

In a similar manner, by introducing Eq. (2.27) into Eq. (2.24), the evaluation
of KCF on an image sample z as well as on all of its circularly shifted versions
can be written as

f(z) = F −1(k̂xz � α̂), (2.30)

where k̂xz can be considered as the Fourier form of kernelized convolution7
between training sample x and test sample z.

To cope with the appearance variation of the target, the appearance template
x and coefficient α is usually updated in an interpolation manner with a small
positive learning rate β, interpreted as{ xl = (1 − β)xl−1 + βxcur

αl = (1 − β)αl−1 + βαcur

, (2.31a)
(2.31b)

where vector xl and xl−1 respectively denote the appearance attributes stored
at frame l and l − 1, while xcur stands for the one learned from the current
image. Similar subscript notations are also utilized for coefficient vector α.

Kernelized Correlation Filter: Merits and Shortcomings

As introduced above, similar to linear correlation filters, both the learning and
inference procedure of KCF can be accomplished in the frequency domain.
Since only element-wise operations are conducted and fast calculationmethods

7 In some literatures, it is also called as kernelized cross-correlation, since the correlation opera-
tion can be rewritten as convolution by rotating the filter by 180◦.
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2.3 Specialized Correlation Filter

such as FFT can be utilized, the computational complexity of KCF is little8,
which is also O(n log n). As the samples are mapped into a feature space with
higher dimensions, the estimated hyperplane by KCF enjoys a better fitting of
the desired outputs. Thus, it can yield a superior performance over conventional
linear correlation filters and other conventional tracking approaches such as
optical flow, which is demonstrated in [71].

However, due to the design concept, there are still challenging scenarios where
the KCF performs imperfectly. For instance, the KCF is not explicitly designed
to recognize occluded targets. Especially in cases with severe occlusions,
the target suffers from great appearance change, which may lead to detection
failures. Besides, in a lot of kernel functions, e.g., theGaussian kernel, multiple
feature channels of a sample are treated equally (shown in following chapters),
which is inappropriate in scenarios such as at night, where visual features
suffer from different degradations. Moreover, the linear updating fashion of
KCF does not reject corrupted training samples (caused by deteriorated vision
condition such as the raindrop), which may lead to tracking drifts or even
failures. Furthermore, the KCF is designed mainly for tracking a single target.
For the task of multiple target reidentification, additional association strategies
are imperatively required.

In the following chapters, we will introduce the novel tracking approaches
proposed in this thesis, which are based on KCF but aimed to tackle each of
above-mentioned problems.

8 For most utilized kernel functions, e.g., the Gaussian kernel, they can be efficiently calculated
in frequency domain, which only yields little computational overhead. This will be shown in
the following chapters.
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3 Tracking with Severe Occlusion

Despite tremendous progress achieved by recent trackers [138], the task of
visual tracking is still challenging, especially in dealing with severe occlusions,
where the visible part of an object is very limited, which leads to negative
impact on both the learning and inference procedure of tracker model and
further results in tracking failures. Such case is common in traffic scenarios,
especially for the VRUs, i.e., the pedestrians and bicyclists. Because of a
relative small size, the VRUs can be easily occluded by big objects like vehicles
on the road and only small body parts are left noticeable [146, 151], as shown
in Fig. 3.1. This is a typical scenario in every day life (e.g., at narrow streets
or before road intersections) but a very difficult one to deal with.

Conventional vision-based frameworks such as [149, 150] regularly fail to
perceive and track those partially occluded objects because of four main rea-
sons [146, 151]: Firstly, the unexpected appearance change from full body to
small visible object parts can result in matching failures. Secondly, to perceive
these small obvious parts, it requires extra detection process, which may end
up troublesome when the obvious parts are not so distinctive. Thirdly, if long
term occlusion shows up, which prompts long time loss of tracked object, the
appearance model can be debased by a plenty of false positives and cannot
recuperate. Last but not least, despite that motion information can be utilized,
the object location can still be misestimated, if object’s motion unexpectedly
changes (e.g., by sudden speeding up or brake).

Aiming to tackle the above problems, in this chapter, we present a novel ap-
proach to track objects under severe occlusion by utilizing part filters, which is
published in works [146, 151]. The organization of this chapter is as follows:
Firstly, we introduce the related tracking approaches on dealing with occlu-
sions. Afterwards, we give a description about the proposed mechanism for
occlusion awareness. This part includes two main points: occlusion occur-
rence detection and occluded object parts identification. Thereafter, a dynamic
framework is presented to efficientlymanage utilized filters. Finally, evaluation
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3 Tracking with Severe Occlusion

results of the proposed method on several datasets are given, demonstrating
that it performs superior over state-of-the-art especially in dealing with long
term severe occlusions.

(a) (b)

Figure 3.1: In image (a) and (b), a pedestrian and a cyclist are respectively occluded by vehicles
on the road [151]. Just their heads and shoulders are noticeable in the image.

To avoid confusion, the term occlusion addressed in this chapter, without
explicit statement, refers to the partial occlusion. As to full occlusions (partic-
ularly the long term ones), since the target completely vanishes in the image,
it cannot be recognized any more. Once the target is rediscovered, e.g., after a
long time full occlusion, it should be associated with its previous trajectories.
This is yet based on additional association strategies, which will be addressed
in following chapters. Aside from that, the terms part tracker and part filter
are not differentiated in this chapter, since most part trackers, discussed in this
chapter, are constructed in a filter-like structure.

3.1 State of the Art

Dealing with occlusion is considered as one of the persistent challenging
issues confronted in the visual tracking community. In recent researches, this
topic gains increased interest. Depending on the manner how the occlusion
is handled, visual tracking approaches can be generally categorized into two
subgroups: implicit and explicit approaches.
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3.1 State of the Art

Implicit Occlusion Handling

The tracking approaches with implicit occlusion handling neither employ spe-
cific mechanisms to recognize the occurrence of occlusion nor deploy addi-
tional strategies for modeling the visible object parts. They usually adopt the
same model for object tracking in both occluded and non-occluded cases. The
focus of these approaches is to enhance the learning power of the classifica-
tion model to make it capable to capture the most discriminative information
of the target. Although there is no explicit occlusion handling in these ap-
proaches, they still report some robustness against occlusion according to their
evaluation results. In the following part, we give a brief overview about the
corresponding research directions as well as an introduction of some represen-
tative approaches.

In the first research direction, tracking approaches attempt to involve more
background image information into the training data so that the learned clas-
sifier can better distinguish the target from other objects such as the obstacles.
Such approach type usually relies on linear correlation filters. For instance,
Danelljan et al. in [38] expand the input sample by a large background image
margin in its surroundings. Although the diversity of samples is increased,
background noises covered by the filter coefficients will also be learned by the
classifier. To address this problem, they replace the regularization factor λ of
loss function (2.11) by a matrix with big values to suppress the filter coeffi-
cients covering background image areas. Although their tracker is proven with
improved robustness, the circular data structure is lost, which makes the fast
calculation impossible. As a circumvention, Lukežič et al. in [103] directly
utilize a binary mask to constrain the number of filter coefficients so that only
a small image region can be evaluated. Such approach imposes no harm on
the circular data structure. However, the binary mask is obtained by a segmen-
tation approach. It may yield a very small segment due to occlusions, which
further leads to a very small filter, losing the information of full target.

In another branch, research works are more interested in learning classifier
from different historical samples. For instance, Hong et al. in [73] sort detected
target samples in a temporal order and save them in two memory stores. In
the short-term store, they train a KCF tracker based on recently collected
samples while in the long-term store they learn a optical flow tracker across
a long frame sequence. The inference is made by the tracker with the higher
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3 Tracking with Severe Occlusion

estimated reliability. In this approach, they are able to detect the target with
non-severe occlusion by the long-term tracker, because the appearance model
of short-term tracker can be severely contaminated when occluded samples are
included in the training data while the long-term tracker is merely influenced
as it emphasizes more on the old samples. In a similar concept, Nam et al.
in [114] build the tracker with two separate CNNs. They adjust the updating
rate so that one CNN can quickly learn the current appearance of target while
the other learns the target in a long time. By manipulating multi-temporal
domains, their approach achieves a boosted tracking precision yet with high
computation loads.

In other directions, context information is also deployed by some researchers
to assist the learning or inference of the classifier. For instance, Mueller et al.
in [113] extend the loss function (2.11) to train the classifier both on the target
sample and context image samples extracted from specific regions, yielding
a promoted detection rate. In the work [43], context samples contain objects
with similar appearance of the target. They are trained as negative samples
in order to avoid confusion with the target. Additionally, key points in the
background are utilized as supporters to help the inference according to their
motion relationship to the target. However, the performance of this approach
may be limited in some scenarios, e.g., with homogeneous backgrounds.

Explicit Occlusion Handling

According to the above discussion, we can see that tracking approaches with
implicit occlusion handling already show some kind of robustness, thanks to
various strategies adopted in these approaches. However, most of them are
still incapable to deal with very difficult scenarios such as with long term
severe occlusion. Since these approaches are mostly learned on-the-fly and
updated for each frame, image samples containing the occluded target can be
easily included into the training data. Due to lacking of occlusion recognition
mechanism, these contaminated samples are indubitably treated as positive
samples, which will misguide the learning of classification model. Even
though reliability estimation is employed in some approaches, for long term
severe occlusion, samples containing the correct target appearance will be
unavailable for a long time. Hence, the tracker model has no chance to be
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updated or corrected during the occlusion. Its reliability thus degrades over
the time, finally leading to tracking drifts or failures.

In contrast, approaches with explicit occlusion handling are commonly inte-
grated with occlusion awareness mechanism and decompose the target into
multiple parts with each part represented by a single model. By identifying the
visible parts of the target, these approaches are more suitable in dealing with
severe occlusion and usually yield a superior performance. Depending on how
the part model is constructed, approaches in this category can be further sorted
into two subgroups: generative part models and discriminative part models.

In the first subgroup, approaches describe each part of the target with manually
designed appearance models and match them in next frame with respect to spe-
cific distance metrics or probabilistic methods. Representatively, Kwon et al.
in [93] model the appearance of target by a lot of small local patches, which can
be deleted or changed due to their robustness measurement. They also combine
the Monte Carlo method with a local optimizer to reduce the computational
complexity and achieve an efficient inference. Similarly, the target in [28] is
decomposed into several segments with ellipsoidal shapes and each of them is
represented by the mean and covariance of its color and spatial coordinates.
The segments are matched in analogy to the Lucas-Kanade algorithm and a
Gaussian Mixture Model (GMM) is utilized for the target inference. Although
this method is able to handle occlusion, it requires the user to mark the target
at the input image. In a more advanced version, Maggio et al. in [106] allow
the overlap between part models and represent them by color histograms. The
matching is based on the Bhattacharryya distance and their method is robust
against rotation and scale variations. However, in most of these methods, the
part matching operation is conducted inefficiently, thus their computational
complexities are relative high.

In comparison, approaches with discriminative part models usually train indi-
vidual classifiers for each part. Since efficient trackers such as the correlation
filter can be deployed, their runtime performance is more favorable. For in-
stance, Li et al. in [99] model each part of the target by a KCF tracker trained
on a small patch. For each part, they estimate its reliability with respect to
a specific confidence function and only exploit the most reliable ones to infer
the target location by a Hough voting scheme, achieving encouraging results.
In the work [1], Akin et al. employ both local and global filters respectively
for tracking parts and the full object. The local filters provide an initial refer-
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ence for the global filter while the global filter provides feedback to part filters
regarding their deformation parameters, which are further used to estimate
their reliabilities. Their method is verified with improved robustness against
occlusion and deformation of objects. Different from them, Liu et al. in [100]
utilize correlation filters to build part models and combine a Bayesian inference
framework with structural constraints. Despite the benefit for both precision
and processing time, as the part number is fixed, the question of how to set
the number and the size of part models still remains open. This issue is yet
crucial to deal with severely occluded objects and rarely considered in above
mentioned methods.

In this chapter, a novel tracking approach is proposed based on the correlation
filter to track severely occluded objects. The occlusion is recognized by bi-
directional search fashion. With the help of a masking process, the visible
object area can be obtained in a pixel-level precision. Additionally, both the
number and size of part filters are adapted to the current target appearance.

3.2 Adaptive Part Filter Modeling

In this section, we introduce the proposed tracking approach based on adaptive
part filtermodeling to tackle the tracking problemwith severe occlusion. Due to
the high tracking precision and high computational efficiency of KCF tracker, it
is chosen as the base framework for both the part filter and the full object tracker.
Here a Gaussian function is used as the kernel and a brief description about
it is given in the beginning of this section. In the following parts, regarding
the stated issues in the beginning of this chapter, the occlusion recognition
mechanism is firstly discussed, which is able to recognize the abrupt change of
object appearance. Thereafter, filter construction strategies and the masking
process are introduced, by which the visible object areas can be identified in
a pixel-level precision. Finally, a dynamic filter management framework is
presented, which can efficiently handle the updating process particularly in
the case of long time occlusion. Since the proposed tracker mainly relies on
the visual information, it is immune to estimation errors from motion models,
which are usually employed in other tracking works.
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3.2.1 KCF with Gaussian Kernel

As discussed in Chapter 2, kernel functions are adopted to map samples into
a higher dimensional space to make them more distinguishable. Intuitively,
the selection of kernel function κ could be discretionary. However, not all
the kernels are valid for the circular data structure. According to [71], the
kernel matrix K in Eq. (2.28) is only circulant, when the kernel function of
two samples xi and xj satisfies

κ(xi,xj) = κ(Mxi,Mxj) (3.1)

for any permutation matrixM. The valid kernels are the ones with exponential,
dot-product and additive functions. Here the Gaussian function is used as the
kernel, as it is employed in most tracking works and demonstrated with a
superior performance over other kernel functions.

Hence, given a predefined standard deviation σ, the utilized Gaussian kernel
function can be interpreted as

κ(xi,xj) = exp
(
−

1
σ2 h(xi,xj)

)
(3.2)

with
h(xi,xj) = ‖xi − xj ‖

2 = ‖xi ‖2 + ‖xj ‖
2 − 2x>i xj . (3.3)

Leveraging this expression, the kernelized convolution between sample x and
z can be rewritten as

kxz = exp
(
−

1
σ2 h(x,z)

)
(3.4)

with
h(x,z) = ‖x‖2 + ‖z‖2 − 2x ∗ z. (3.5)

From Eq. (3.5), it can be seen that the first two terms are both constant while
the convolution term can be reinterpreted as dot-product between their Fourier
transforms in the frequency domain. Thus, a fast computation is also guaran-
teed for the correlation filter with Gaussian kernels.
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3.2.2 Occlusion Recognition Mechanism

The KCF tracker has been widely employed in tracking tasks. Despite its
success in non-complex scenarios, as its model is always with fixed size and
lacking of occlusion awareness, it can be difficult to track occluded objects.
Considering the fact that the happening of an occlusion is ordinarily sudden,
e.g., a pedestrian/cyclist occluded by a bypassing vehicle on the road, the target
appearance thus experiences incredible change. This impact is further reflected
in the learned appearancemodel of the tracker just as in its classification results.
In light of this supposition, two criteria are chosen to recognize the occlusion:
the peak-to-sidelobe ratio (PSR) and the normalized object difference (NOD).
The PSR value estimates the sharpness of filter response and is calculated as

PSR =
max(f(z)) − µ

σ + ε
, (3.6)

where term µ and σ respectively denote the mean value and the standard
deviation of responsemap obtained by applying classifier f (z) on image sample
z. The small positive value ε is employed to avoid the case of division by zero.
As a non-occluded target is more distinguishable than an occluded one, it is
more probable to yield a sharp peak in the response map without occlusions
(Fig. 3.2 (c)). In this way, the PSR value is correlated with the classification
confidence and decreases if occlusion happens (Fig. 3.2 (e)). In the second
criterion, it calculates differences between the previously utilized appearance
model xpre and the currently exploited xcur , which are further normalized by
the object area A. The calculation can be interpreted by the following equation

NOD =
1
A
‖xpre − xcur ‖2. (3.7)

Thus, high values of NOD imply significant appearance change as well as high
occlusion probability (Fig. 3.2 (f)). The occurrence of occlusion can thus be
determined based on both above criteria, e.g., when their values are found
within specified ranges, which is formulated as

PSR < θP ∧ NOD > θN , (3.8)

where term θP and θN are predefined thresholds and can be learned from
training datasets.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: On the top row are two frames from a sequence of the driving dataset [146]. Image
(a) shows a walking pedestrian at frame 58. Image (b) shows the pedestrian occluded by a vehicle
at frame 62. Image (c) and (d) display the filter response of the full object tracker for both frames.
The related PSR and NOD plots over the whole sequence are given in image (e) and (f) respectively
while the referred frames are marked by red circles.

3.2.3 Part Filter Construction Strategy

The initial step to build part filters is to identify the visible object area. This
task here is accomplished in a backward searching fashion. At first, a storage
for each target is established to spare its appearance models and the corre-
sponding images in the last q frames. For each frame, the strategy presented in
Section 3.2.2 is utilized to detect the occurrence of occlusion. For a positive
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detection, dense feature points are initialized in the currently matched target
region bounded by the detection box.

The feature points are selected from corner points in the image, which exhibit
great variation of pixel value by image shifting and can be detected by the
Harris-Corner-Detector [68]. Given a gray image I (e.g., converted from an
RGB image) and a displacement (∆x,∆y), the sum of squared differences of
pixels within a small patch ω after shifting can be interpreted as

E∆ =
∑

(xi ,yi )∈ω

(I(xi, yi) − I(xi + ∆x, yi + ∆y))2, (3.9)

where (xi, yi) denote the pixel coordinates. According to [68], by leveraging
the Taylor expansion, above equation can be approximated as

E∆ = [∆x,∆y]M

[
∆x
∆y

]
(3.10)

with

M =
∑

(xi ,yi )∈ω

[
I2
x,i Ix,i · Iy,i

Ix,i · Iy,i I2
y,i

]
, (3.11)

where Ix,i and Iy,i respectively denote the derivatives of pixel I(xi, yi) in x and
y directions. For a corner point, eigenvalues of matrix M should be large. In
the method [68], this is equivalent to check the quality score

R = det(M) − ρ(trace(M))2, (3.12)

where parameter ρ is empirically set to 0.04. Local maxima which are greater
than a predefined threshold θR (set to 15 in experiments) are considered as
corner points.

In this approach, the feature points are searched in a grid fashion. The image
region is firstly divided into a number of 10 × 10 grid cells. Then the Harris-
Corner-Detector is applied to each cell to detect corner points. If multiple
points are detected in one cell, only the point with the maximum score is kept.
Afterwards, the non-maximum-suppression operation with a window of 8 × 8
pixels is applied over grid cells to remove closely located points. Furthermore,
points falling into a predefined margin to box boundaries are also removed, so
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that the number of points selected from the background can be significantly
reduced while the points selected from the central area of the box can remain.
This is consistent with the fact that the target is mostly located at the box center.
Thereafter, correspondences are searched for these points in each saved frame
based on an optical flow approach [102]. Here only the points which are shared
across all the searched frames are kept and the rest points which are considered
as outliers are removed (Fig. 3.3 (a)-(b)). The assumption is that, for a camera
with a sufficient frame rate, the non-occluded object parts should be visible
within a certain number of frames.

According to the above mentioned point extraction approach, there are more
points located on the target, i.e., in the central area of the detection box, and
less points near the box boundaries. Since these retained points are usually
with the same motion pattern as the target, the distance between them are
nearly constant. Here it assumes that these points are generated by a Gaussian
Mixture Model with K components. The number K here can be determined
by the Mean Shift algorithm. In this algorithm, a circle window with a radius
rw (empirically set to one third of the smaller dimension of the target box)
is initially placed on each feature point. For each window, its centroid is
calculated with respect to the covered feature points. In the next step, each
window is shifted to its centroid. Above steps are iterated until all window
positions are fixed. In the end, duplicated windows are removed and the
number K is exactly the number of remaining windows.

Parameters of the GaussianMixtureModel can be estimated by theExpectation
Maximization (EM) algorithm. Here we assume that the probability of a point
li = [xi, yi]> drawn from the Gaussian Mixture Model is interpreted as

p(li) =
K∑
k=1

πkN(li |µk,Σk), (3.13)

where µk andΣk respectively indicate themean vector and covariancematrix of
the k-th 2D Gaussian component. Term πk denotes the corresponding weight.
The EM can be divided into two steps: the Expectation and Maximization.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Image (a) and (b) show selected feature points in the green detection box with the
color red and yellow respectively to denote inliers and identified outliers. Image (c) represents the
initialized Gaussian filter, which is then multiplied with learned appearance model, represented
in (d). The resulting energy map is shown in (e). Constructed part filters are displayed in (f).
The last row shows an example with severe occlusion, in which only one part filter is utilized, as
illustrated in (i). Image (g) and (h) respectively represent the inlier feature points and the resulting
energy map.
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In the first step, it calculates the probability of point li belonging to the k-th
component, interpreted as

γi,k =
πkN(li |µk,Σk)∑K
k=1 πkN(li |µk,Σk)

. (3.14)

Thus, the weight can be updated as

πk =
1
N

N∑
i=1

γi,k, (3.15)

where N denotes the total number of points. In the next step, it estimates all
component parameters by maximizing the summed log-likelihood

max
µk ,Σk

N∑
i=1

log

(
K∑
k=1

πkN(li |µk,Σk)

)
. (3.16)

Both steps are iterated until the likelihood converges or the predefined iteration
number is reached. For initialization of Gaussian components, we use the
parameters estimated by the previously utilized Mean Shift algorithm (i.e., the
mean location and covariance matrix of each point cluster). The weight πk is
initialized as equally distributed. In the experiment with severe occlusion, it
is found that in most cases there is only k = 1 component and thus only the
maximization step needs to be executed. The estimated parameters are further
used to create Gaussian filters, which are multiplied with the learned object
appearance model. In this way, the visible parts in the appearance model can
be acquired. The appearance model only with non-occluded object area is then
utilized as an energy map to define the number of part filters. An example of
above procedure with k = 1 component is illustrated in Fig. 3.3 (c)-(e).

In the subsequent step, each part filter is initialized with a rectangular shape
of a predefined size Wp × Hp and consecutively placed over the energy map.
After the placement of each filter, the energy map is updated by removing its
covered pixels. Each filter is put on the location where the sum of its covered
pixel values (i.e., the energy) is maximized. This procedure is repeated until
either the sum of remaining energy falls below a predefined threshold θE or the
maximal filter number θF is reached. Therefore, the filter number is adapted
to the current available appearance of tracked object, as shown in Fig. 3.3 (f).
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3 Tracking with Severe Occlusion

Figure 3.4: Themasking process. From left to right, it respectively presents (a) the Tukey window,
(b) the fore- and background region in the image, (c) the part detection, (d) the foreground likelihood
illustrated by heatmap and (e) the yielded mask for visible parts.

3.2.4 Masking Process

Since occlusion is usually unpredictable, for an improperly selected size or
shape of part filters, it is unavoidable to involve background objects during
learning the appearance model of filters, which further prompts matching
errors and even tracking failures. To alleviate this impact, a masking process is
used for a more precise identification of visible target areas. In this approach,
for each previously stored non-occluded image, both fore- and background
region are defined for the target (respectively denoted by the yellow and blue
bounding box in Fig 3.4 (b)). The foreground region is directly related to
the current detection while the background region is twice as large as the
foreground and is with the target situated at its center.

To extract the foreground region, a 2D Tukey-window with an equivalent size
of the target is utilized, as illustrated in yellow in Fig 3.4 (a). The window
is padded with zeros (denoted in blue) to the same size of the background
region and then multiplied with the corresponding image patch. According
to the definition of Tukey-window, its boundaries are smoothed by a cosine
function to reduce the leakage effect of filtered signal in the frequency domain.
Here the Tukey-window is used to suppress the selection of boundary pixels
in the foreground region, because their probability belonging to the target
is small. Thereafter, the background region is extracted by subtracting the
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foreground from the original image. For both regions color histograms are
calculated and thenceforth normalized by the pixel number. These histograms
are averaged over the saved images in the storage and then respectively packed
into two vectors hF and hB. Given each new detection of the object or its part
(Fig. 3.4 (c)), the foreground likelihood for a pixel Ip is calculated by

LF (Ip) =
BF (Ip)

BF (Ip) + BB(Ip) + ε
, (3.17)

where term BF (Ip) and BB(Ip) respectively indicate the bin value in histogram
hF and hB related to pixel Ip . Term ε is a small positive value to avoid
division by zero. The likelihood of background pixel LB(lp) can be calculated
analogously. The calculated likelihood map LF for the new image patch is
illustrated in Fig. 3.4 (d) with bright colors to indicate high probabilities.
Leveraging the part detection and the likelihood maps, it is possible to mask
the visible area by a segmentation approach such as [89] (see Fig. 3.4 (e)).

The deployed approach [89] conducts segmentation in an EM-like fashion.
Here a pixel is represented by a feature vector vi , which encodes the information
of pixel color and coordinates. Each pixel is assumed to be drawn from a
Gaussian Mixture Model with K ′ components. In this case we set K ′ = 2,
because only two segments are required, which respectively represent the fore-
and background. The probability of pixel descriptor vi is interpreted as

p(vi) =
K′∑
k=1

π′kN(vi |µ
′
k,Σ

′
k), (3.18)

with µ′
k
and Σ′k respectively denoting the mean vector and covariance matrix

of the k-th component. The term π′
k
represents the corresponding weight. In

this segmentation approach, we only consider image patches representing the
detected visible parts (denoted by the bounding box in Fig. 3.4 (c)). For initial-
ization of both Gaussian components, fore- and background pixels are coarsely
identified by comparison between variables LF and LB. Gaussian parameters
are initialized based on these identified points. The weight π′

k
is initialized

as equally distributed. Similar EM-steps as described in Section 3.2.3 are
then iterated to optimize the parameters of all components. Thereafter, pixels,
which are with a greater probability belonging to the foreground than to the
background, are considered as foreground pixels. In a further step, morpho-
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logical operations (e.g., the closing and opening) are performed to fill small
holes and to remove outlier points.

In the segmented image patch, all the background pixels are assigned with
zero values. The filter size is then adjusted to the masked image area (with
non-zero pixel values) by forcing the filter to cover at least 95% of the pixels
of visible object parts. Within this covered image area (i.e., a bounding box),
a conventional feature extraction approach such as the HOG is conducted to
build appearance model for part filters.

3.2.5 Filter Management

Given a number of m part filters, by applying them on an input image z, the
same number of filter responses is acquired. As the evaluation of each part
filter is independent from each other, they can be effectively parallelized, e.g.,
by a multi-threading process. For a fair evaluation on the discriminative power
of various part filters, a weighting approach is adopted and interpreted as

fp(z) =
m∑
l=1

clfpl (z(∆l)), (3.19)

where fp
l
(z) is the evaluation response of part l. The shift vector ∆l aligns

its response map to the object center. The weight cl indicates the discrimina-
tive power of corresponding part filter, which is measured by aforementioned
criteria, interpreted as

cl =
1
cΣ
· PSRl · exp(−NODl), (3.20)

with the normalization factor

cΣ =
m∑
l=1

PSRl · exp(−NODl) (3.21)

to guarantee that the weight sum equals 1. The target location is finally inferred
by the peak point of the aggregated response map fp(z). For each part filter,
the classifier coefficient vector αt

l
and the appearance model xt

l
at frame t are
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updated by the currently learned ones αl and xl in a similar way to Eq. (2.31),
which is mathematically expressed as a linear interpolation{

xtl = (1 − β)x
t−1
l + βxl

αt
l = (1 − β)α

t−1
l + βαl

, (3.22a)
(3.22b)

where learning rate β is set to a small positive value. A similar interpolation
approach with the same learning rate β is also utilized to update the fore- and
background color priors hF and hB.

Since the foreground color prior can coarsely identify the pixels belonging
to the target in new frames (introduced in Section 3.2.4), an idea to further
improve the inference precision of the full object tracker is to incorporate such
information in the final response map fΣ(z), which can be expressed as

fΣ(z) = (1 − γ)f(z) + γfF (z), (3.23)

where f(z) indicates the original response map by evaluating the full object
tracker on image sample z and parameter γ is a small positive merging factor.
The response map fF (z) is generated by matching the foreground color his-
togram of the whole target with that of each shifted version of sample z. Both
the full object tracker and its color priors are updated in the same fashion as
Eq. (3.22). An example of merged responses is illustrated in Fig. 3.5.

(a) (b) (c) (d)

Figure 3.5: Target inference in combination with the foreground color matching. Subfigure
(a) shows the test image with the target denoted in green bounding box. Subfigure (b) to (d)
respectively show response maps (displayed as heatmap) for foreground color matching, original
full object tracker and the merged one according to Eq. (3.23). Image sample is from [167].

To alleviate the increased computational burden caused by additional part
trackers, a dynamic filter management framework is adopted, shown in Fig. 3.6.
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Figure 3.6: Illustration of the proposed tracker management framework. For each frame, the
occurrence of occlusion is checked with respect to the criteria introduced in Section 3.2.2. In
the case of occlusion, part filters are constructed and fine adjusted according to strategies in
Section 3.2.3 and 3.2.4. During occlusion, only part trackers are updated while the full object
tracker is kept unchanged. Simultaneously, the full object tracker is evaluated on the location
inferred by part trackers. If the criteria for occlusion recognition are no longer satisfied, part
trackers are shut down and the update of full object tracker is reactivated again.

In this framework, the full object tracker, which is learned from the previous
frame, is applied on the current frame to identify the target. Simultaneously,
the occlusion detection algorithm introduced in Section 3.2.2 is also executed
for each frame. Once the occlusion is identified, part trackers are constructed
according to strategies introduced in Section 3.2.3 and 3.2.4. The part filters
are learned on previously saved frames and applied on the current frame to
identify the visible parts. During occlusion, only part filters are updated while
the full object tracker is kept unchanged. In the meanwhile, the full object
tracker is evaluated on the location inferred by part filters. If the criteria
introduced in Section 3.2.2 are no more satisfied in s consecutive frames, it
assumes that the occlusion disappears. Thereupon, part filters are shut down
and the full object tracker is activated again. In the meanwhile, the update of
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full object tracker is also reactivated. Since part filters are only constructed
when the occlusion is detected and then deactivated for non-occluded cases,
the tracking approach is efficient.

3.3 Evaluation

In this section, the proposed tracking approach is evaluated in comparison with
several state-of-the-art trackers based on two datasets: the driving dataset [146]
and the OTB benchmark [167]. Simultaneously the effectiveness of proposed
occlusion recognition mechanism is verified and the superior performance of
proposed tracking in dealing with other challenging scenarios is demonstrated.

3.3.1 Experimental Setup

To reveal the performance of occlusion identification process, two versions
of the proposed approach are prepared, depending on whether the masking
process is incorporated or not. Both versions are implemented by the basic
KCF model [71] in C++ programs and respectively denoted as KCF_P and
KCF_PM, where the letter “P” stands for integration of part filters and the
letter “M” represents the utilization of the masking process. Additionally,
we evaluate one more tracker called as KCF_PMP, with the last letter “P”
to indicate the promoted inference by the deployment of foreground color
matching for the full object tracker. For each version of the above employed
trackers, their part filters share the same structure as the KCF. All of them
use FHOG [50] and Color Names [40] as features. The performance of these
proposed trackers is compared with the baseline model KCF as well as with
seven other state-of-the-art trackers, i.e., Struck [65], DSST [36],MEEM[172],
DPCF [1], RPT [99], MUSTer [73] and SRDCF [38]. Among them, the first
three trackers are mainly based on a linear correlation filter. The DPCF and
RPT employ explicit part modeling and are based on the KCF. The last two
trackers are also CF-based but with implicit occlusion handling by enhanced
learning strategies.

Parameters of all evaluated methods are consistent with their original papers.
The test platform is a laptop of a quad-core CPU with a working frequency of
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2.7 GHz and a memory of 8 GB. In the proposed approach, the thresholds are
empirically set to θP = 7 and θN = 0.04. The frame number q and s are set to
4. The learning rate equals β = 0.125. The merging factor is set to γ = 0.3.
The part filter is initialized in a square shape with its size equal to half of the
smaller dimension of the object. The energy threshold equals θE = 0.5 while
the maximal filter number is θF = 2. As the visible part is usually small due
to severe occlusion, this number is found sufficient in the experiments.

The evaluation exactly follows the One-Pass Evaluation (OPE) protocol [167],
where the tracker is triggered at the initial frame and both object location and
size are estimated in subsequent frames. Tracking results are reported by the
precision and the success plots. The first one is calculated according to the
distance between centers of the target and its ground truth while the second
criterion is based on their overlap ratio. Same as in [167], for a qualitative
comparison, trackers are ranked at the threshold of a distance error of 20 pixels
and an overlap ratio of 0.5.

3.3.2 Evaluation on Real Traffic Scenarios

Since this thesis is focused on object tracking applied in traffic scenarios, we
firstly adopt the driving dataset [146] to evaluate the proposed approach. This
dataset consists of video sequences captured by a vehicle with roof installed
cameras driving in the city. The images are recorded with a frame rate of
10 frames per second (fps) and a resolution of 1200 × 712 pixels. The total
recording process takes about 4 hours. These sequences are sorted into three
groups. Each group consists of both labeled pedestrians and bicyclists. The
minimal height of labeled object is 80 pixels. In the first group, more than
60% of an object can be observed in the image. Thus, it can be considered
as a tracking baseline without or only with minor occlusion. The second
group consists of sequences, in which pedestrians and bicyclists are partially
occluded by street vehicles within a short period (up to 20 frames). The third
one includes sequences in similar scenarios with a long time occlusion (up to
70 frames). In the last two groups, less than 40% of an object is observable,
corresponding to the severe occlusion.
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Verification of Criteria for Occlusion Recognition

In the proposed approach, two criteria are utilized, i.e., the PSR and NOD
value, to recognize the abrupt appearance change, which ismainly due to severe
occlusion. Since the criteria for occlusion recognition directly determine the
activation of part filters and further influence the total tracking performance,
the first experiment is aimed to verify its effectiveness. This experiment is
conducted on the driving dataset with three comparison sets: two methods
with each only integrated with one criterion, and the proposed method with
both criteria employed. Only the related trackers, i.e., KCF_P, KCF_PM and
KCF_PMP, are chosen for evaluation. Additionally, one more comparison set
with the naive KCF is added as the baseline. Here only the results on the
sequence groups with short term and long term severe occlusions are reported,
because both criteria are rarely activated on sequences with minor occlusions,
which will make the comparison less reasonable. The quantitative evaluation
is based on the precision value at the distance error of 20 pixels and the success
rate at the overlap ratio of 0.5, which follows the protocol of [167].

All the results are recorded in Table 3.1. It is clear that the naive KCF performs
poorly in both sequence groups. Especially for long term severe occlusion,
its precision value and success rate are under 40%. After integrated with
part filters, even with only one criterion, its performance on both metrics are
significantly improved. Generally, the KCF_PM outmatches KCF_P in terms
of precision and success rate, which can be credited to the masking process,
which provides a more precise identification of visible object areas. The
KCF_PMP performs superior over KCF_PM, which implies the foreground
color matching indeed benefits the target inference. In the short term occlusion
group, the criterion NOD performs slightly better than PSR, which means the
object appearance model is relative more sensitive to variations in this case.
However, the highest score for both metrics is obtained by involving both
criteria, which means the PSR criterion can still help NOD in recognizing the
occurrence of occlusions. For the long time severe occlusion, scores of PSRand
NOD are very close, which means significant changes on both the appearance
model and filter response are captured. Still, the best performance is obtained
when both criteria are incorporated, which demonstrates the effectiveness of
combination of both metrics.
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Occlusion Method
Precision Success rate

None PSR NOD PSR+NOD None PSR NOD PSR+NOD

Short
term
severe

KCF_PMP - 86.8 87.1 88.0 - 83.6 83.4 84.7
KCF_PM - 84.7 85.8 87.9 - 82.5 83.2 84.0
KCF_P - 84.2 84.9 86.5 - 81.3 82.4 83.2
KCF 72.5 - - - 69.3 - - -

Long
term
severe

KCF_PMP - 71.8 72.1 72.9 - 70.2 70.5 71.9
KCF_PM - 70.1 69.8 70.8 - 69.4 69.5 70.1
KCF_P - 68.4 68.5 69.2 - 68.0 67.7 68.7
KCF 38.4 - - - 39.5 - - -

Table 3.1:Verification of criteria for occlusion recognition mechanism on the driving dataset with
score values displayed in %.

Evaluation on Driving Dataset

In this experiment, the proposed approach is compared with the state-of-the-art
trackers based on the driving dataset. Experimental results for each sequence
group are presented in the form of precision and success plot illustrated in
Fig. 3.7. It can be seen, in the case of minor occlusions, all tested methods
exhibit a relative good performance (Fig. 3.7 (a)). It assumes that their appear-
ance models are slightly influenced by the occlusion, thus the classification
power remains stable. For the KCF_P tracker, its precision value is about 2%
higher than the naive KCF approach, which proves the effectiveness of integra-
tion of part filters. By employing the masking process, a further gain of 1.6%
is obtained by the KCF_PM tracker, which is credited to the pixel-level iden-
tification of visible object areas. Similar trend can also be seen in other plots.
Generally, the KCF_PM and KCF_P outperform normal CF-based trackers
like Struck, DSST and MEEM in most cases, which proves the effectiveness
of employing part filters. Although RPT and DPCF also consist of part track-
ers, as the masking process is integrated in KCF_PM, the target identification
by KCF_PM becomes more precise. This effect is more obvious with short
term severe occlusions, where the KCF_PM tracker achieves the second high-
est precision (Fig. 3.7 (b)). Since in the first sequence the occlusion is little
(Fig. 3.8 (1a)-(1c)), activation of part filters is very few. Thus, KCF_P and
KCF_PM perform inferior to MUSTer and SRDCF (with enhanced classifier
learning). However, by color matching, KCF_PMP outperforms all of them.
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Figure 3.7: From top to bottom, the tracking results of the driving dataset on minor occlusions,
short term severe occlusions and long term severe occlusions are presented respectively. For each
case, both precision and success plots are presented. Plot of the proposed method is marked in
bold. In the legend, the ranking list is displayed in a descending order.
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(1a) (1b) (1c)

(2a) (2b) (2c)

(3a) (3b) (3c)
SRDCF
MEEM

MUSTer
Struck

DSST
DPCF

RPT
KCF

KCF_P
KCF_PM

KCF_PMP

Figure 3.8:Three examples of the driving datasetwith each displayed in one row. They respectively
show the case of object tracking with minor occlusion, short time severe occlusion and long time
severe occlusion.

As the occlusion becomes severe in last two sequence groups, part filters are
activatedmore frequently, thus the accuracy ofKCF_P andKCF_PM increases.
In the case of long time severe occlusion, all trackers perform poorly except the
ones integrated with part filters (Fig. 3.7 (e)). In these sequences, the maximal
occlusion rate of an object is more than 85% and the average duration is about
70 frames. As the full object is for a long time unobservable, the appearance
model of most of the trackers is contaminated by background objects and thus
they lose the target right after the occlusion appears (Fig. 3.8 (3a)-(3c)). With
exact awareness of observable parts, proposed approaches perform superior
over them, especially over other kinds of part-based trackers. A similar trend
can be seen in the corresponding success plot (Fig. 3.7 (f)).
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3.3.3 Evaluation on General Tracking Tasks

Although the introduced solution is mainly proposed for object tracking in
traffic scenarios, as the employed tracker model is not limited to specific object
classes, its application in general tracking tasks should also be possible. To
verify this assumption, we resort to another standard dataset, i.e., the OTB
benchmark [167], including two subdatasets: OTB2013 and OTB100. The
first one contains 50 sequences with observed objects of varied sizes, dynamics
and heterogeneous classes including traffic participants as well as small objects
like balls, books and toys. Both indoor and outdoor scenes are captured with
challenges like occlusion and variation of motion or perspectives. The second
dataset includes another 50 sequences with a similar setup as in the first one but
involves more challenging scenarios. Both datasets are considered as difficult
and widely tested in numerous works.

General Evaluation on OTB Benchmark

In the first experiment of this section, the general performance of all compared
trackers (including the proposed KCF_P, KCF_PM and KCF_PMP tracker)
on both OTB datasets is evaluated. Here the same evaluation protocol as in
previous experiments is chosen and the tracking results of compared methods
are reported in Fig. 3.9. It is obvious that for both datasets, by employing part
filters, the precision of naive KCF approach is promoted bymore than 7% in the
KCF_P tracker (Fig. 3.9 (a)-(b)). And the success rate gain is more significant,
about 9%. Although the performance of KCF_P is greatly boosted, it is lower
than the top performed trackers, such as MEEM, MUSTer and SRDCF. Even
integrated with the masking process in KCF_PM, the performance is still less
comparable. The reason can be owed to the structure of KCF tracker itself,
which is a straightforward implementation and strictly follows the learning
rule of correlation filter. In contrast, MEEM chooses expert filter with less
ambiguities from multiple snapshots. Although it is previously demonstrated
not good at dealing with severe occlusion, it still shows robustness against
fast motion, rotation, etc. As for the other two trackers, MUSTer switches
tracking between short and long memories while SRDCF performs spatial
regularization among training samples. These additional manipulations make
them more flexible in handling various tracking conditions. Although the part
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filter is verified effective for handling occlusions, its power can be limited by
simple model structure, e.g., in the KCF tracker, and cannot eliminate such
great performance gap between those top performed ones. In comparison, by
incorporating foreground color matching for the final response map, the tracker
KCF_PMP takes the first place in the ranking for both datasets, which further
proves that the foreground color is an important information and robust against
variation of size, shape, orientation, etc.
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Figure 3.9: From left to right, tracking results of the OTB2013 and OTB100 dataset are presented
respectively. Each column shows the corresponding precision and success plots. Plot of the
proposed method is marked in bold. In the legend of each plot, the trackers are ranked in a
descending order in terms of a location error of 20 pixels and an overlap ratio of 50%.
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Attribute-based Evaluation

In a further experiment, based on provided sequence attributes in the OTB
benchmark, the performance of the proposed approach is explored in more
specific challenging scenarios with eight attributes covering occlusion, motion
blur, illumination variation, in- and out-of-plane rotation, background clutter,
scale variation and fast motion. For each tracker, both the precision and success
rate in terms of a distance error of 20 pixels and an overlap of 0.5 with the
groundtruth are respectively reported in Table 3.2 and Table 3.3.
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SRDCF 84.3 78.9 76.1 76.6 81.8 80.3 77.8 74.1
MUSTer 85.3 69.5 79.5 79.9 85.0 83.1 81.7 69.5
DPCF 86.2 72.3 80.4 75.4 80.7 81.1 75.3 70.1
RPT 76.3 78.6 81.0 80.9 79.6 84.2 78.9 74.7

MEEM 79.9 71.5 76.6 80.0 84.0 79.7 78.5 74.2
DSST 70.6 54.4 73.0 76.8 73.6 69.4 73.8 51.3
Struck 56.4 55.1 55.8 61.7 59.7 58.4 63.9 60.3
KCF 74.9 65.0 72.9 72.5 73.0 75.2 67.9 60.2

KCF_P 78.2 70.9 74.7 76.4 79.9 78.1 73.3 68.8
KCF_PM 83.6 73.3 76.2 77.7 81.8 79.5 78.3 71.8
KCF_PMP 86.6 80.4 81.5 84.8 86.1 84.5 81.9 81.3

Table 3.2: Attribute-based evaluation. Each column represents the precision values (displayed in
%) of compared methods for one attribute. The name of proposed approach and the best value are
displayed in bold.

According to evaluation results, it is clear that the employment of part filters and
masking process can improve the performance ofKCF tracker in all tested cases
with a gain of 2 ~ 10%. Particularly for the occlusion attribute, the KCF_PM
tracker achieves a high precision value (Table 3.2), which is comparable with
other well performed trackers (e.g., SRDCF, MUSTer), further proving the
advantage of part modeling approach. Still, the best performance is achieved
by the KCF_PMP model which is integrated with the color matching.
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SRDCF 79.0 76.2 70.1 70.9 74.0 71.5 71.2 71.1
MUSTer 76.3 66.8 73.6 69.1 74.2 75.0 70.4 65.1
DPCF 79.9 66.6 74.7 69.7 74.6 75.6 68.2 63.8
RPT 64.4 72.0 68.3 70.9 68.2 75.2 63.0 69.3

MEEM 67.8 66.0 63.8 65.0 67.9 73.7 57.0 68.1
DSST 64.6 52.8 68.1 67.9 64.2 62.7 64.0 50.3
Struck 49.3 51.9 49.2 52.9 50.7 54.5 47.1 56.7
KCF 61.7 59.6 58.2 61.5 60.7 67.3 47.7 55.7

KCF_P 69.8 65.6 65.2 66.7 67.0 69.6 62.2 63.7
KCF_PM 76.4 68.5 68.2 69.3 70.9 71.4 68.2 67.1
KCF_PMP 82.7 76.9 77.8 81.0 82.1 79.6 77.5 78.3

Table 3.3: Attribute-based evaluation. Each column represents the success rates (displayed in %)
of compared methods for one attribute. The name of proposed approach and the best value are
displayed in bold.

Although part filters and masking process are originally designed for handling
occlusion, it can be noticed that they can also benefit other scenarios such as
unexpected motion, rotation, scale and illumination variation, etc. In such
cases, the object appearance undergoes significant changes, which are equiv-
alent to the effect by occlusion and thus trigger the activation of part filter.
The part filters are normally placed on the most discriminative object areas
while the masking process further boost the localization precision by removing
background pixels. Hence, in those scenarios, the appearance model becomes
more accurate and therefore the classifier learns better. This demonstrates
the outstanding generalization ability of the proposed approach in heteroge-
neous tracking tasks, which is qualitatively illustrated with some examples in
Fig. 3.10 and 3.11.
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3.3.4 Runtime Performance Analysis

Here the average runtime performance of tested approaches on both datasets
is reported in Table 3.4. The fastest approach is the naive KCF with a speed
of slightly less than 40 fps. It is followed by DSST with a big gap of about 10
fps. On the third place is the KCF_P with a speed of 22.7 fps, due to the fact
that the processing is greatly slowed down by training additional part filters.
In comparison, the overhead of masking process is little, thus the KCF_PM
is only about 2 fps slower. The foreground matching is also fast, only taking
about less than 10 milliseconds (ms). Thus, the speed of KCM_PMP is 17.5
fps. Nevertheless, such speed is still acceptable in most real-time applications
and is much faster than other well-performed trackers such as MUSTer and
SRDCF. Moreover, the corresponding precision gain makes the KCF_PMP
tracker outperform all state-of-the-art approaches in the experiments. However,
there is still chances for further speeding up the proposed approach, e.g., by
utilizingmulti-threading for part filters or implementation on high performance
hardwares such as high-end GPUs.
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speed (fps) 2.3 27.0 37.1 5.3 0.8 1.7 5.47 3.62 22.7 20.4 17.5

Table 3.4: Evaluation of tested approaches on the runtime performance.
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(1a) (1b) (1c)

(2a) (2b) (2c)

Figure 3.10: Two examples of occluded object from the OTB dataset with each displayed in one
row. For each example, from left to right it respectively shows the recognition of full object (marked
in a green bounding box), pixel-level part identification and foreground color prior (displayed in
a heatmap and corresponding to the black rectangular area in the middle image).

(1a) (1b) (1c)

(2a) (2b) (2c)
SRDCF
MEEM

MUSTer
Struck

DSST
DPCF

RPT
KCF

KCF_P
KCF_PM

KCF_PMP

Figure 3.11: Tracking results of two sequences from the OTB benchmark with attributes of
occlusion, fast motion, rotation, scale variation, etc.
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4 Tracking with Deteriorated Vision

Visual tracking approaches represented by the correlation filter and its descen-
dants have shown outstanding performance in general tracking tasks. Lever-
aging well-elaborated strategies, they can even handle complex cases such as
severe occlusion, as demonstrated in Chapter 3. Despite such progress, their
applications, discussed up to now, are mostly related to scenarios with relative
good vision conditions. The adversarial problem - tracking with deteriorated
vision, which is rarely considered in these works, however, is a challenging
problem persistently confronted by the research community. Regarding the
traffic scenario, which is the focus of this thesis, the referred problem fre-
quently occurs in cases where the vision is significantly weakened by the low
illumination (e.g., at night or in the fog) or by adverse weather factors (e.g.,
raindrops). This can yield great challenges for vision-based ADAS or auto-
mated driving systems, where instances, especially vehicles, in the surrounding
of the ego-car may not be accurately identified due to the deteriorated vision,
which can further lead to false maneuver decision of the ego-vehicle and thus
result in traffic accidents.

For a more comprehensive exploration on this topic, the problem of vision
deterioration mentioned here is coarsely categorized into two subgroups: con-
stant and temporally varying vision deterioration. The first one is generally
caused by poor illumination conditions like during the night or in the fog. In
such scenarios the main problem for tracking tasks is the degraded contrast
between the background and foreground objects, as reported in [26]. In low
exposed images, the ordinary visual features utilized for object recognition,
e.g., the size, shape and color information of an object, suffer from various
fading effects and are only partially available [144]. Especially for a vehicle,
its most distinguishable parts are thus the brightest ones, which are usually
from the head- and taillights, turn signals, warning lights and stripes, or other
reflection areas (Fig. 4.1 (a)-(b)). The second subproblem is mostly related to
adverse weather factors, e.g., the rain. In such case the camera imaging can be
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4 Tracking with Deteriorated Vision

interfered by unclear vision condition of the windscreen1 such as mist or water
drops. Although the windscreen can be cleared by devices like rain wipers,
it still leads to short-time visual contamination of tracked targets by scattered
bright areas in the image (Fig. 4.1 (c)-(d)). The corrupted object appearance
can be learned by the tracker, which further leads to tracking drifts and even
tracking failures.

(a) (b)

(c) (d)

Figure 4.1: Image samples of deteriorated vision from [25,144]. Image (a) represents a silver car
with faded contrast against the background in the fog. The only recognizable parts are its taillights
and rear window. Image (b) shows two trucks which are distinguishable by the white trunk and
the warning stripes respectively. Images (c)-(d) represent the visual contamination in the image by
raindrops on the frontal windscreen, with the camera mounted behind it. The light from vehicle
lamps disperses to several bright areas in the image, which are a lot bigger than their original size.
This dispersed light contaminates other vehicle parts, making the recognition of tracked object
much more difficult.

The first subproblem requires the tracker to seek the most discriminative visual
feature of an object while the second one demands outlier rejection for training
samples. With both points in mind, in this chapter, a novel tracking solution
based on the KCF tracker is introduced yet with an improved learning approach

1 Here we assume that cameras are installed directly behind the windscreen which is a common
setup for most of current ADAS and automated driving systems.
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to directly tackle these problems in a visual feature level, which is published
in the work [144]. The organization of this chapter is organized as follows:
Firstly, we introduce state-of-the-art tracking researches on dealing with de-
teriorated vision condition. Afterwards, we present the procedure in dealing
with constant vision deterioration by assembling different feature channels into
several kernelized experts and utilize their estimated reliabilities to build ap-
pearance models. Thereafter, a temporal optimization procedure is introduced
to remove outliers and keep the most reliable training samples. In following
experiments, we show that the classifier, trained by both procedures, not only
focuses on the discriminative image features, e.g., in low illuminated cases,
but also is free from visual contamination by unreliable object candidates,
e.g., caused by adverse weather factors. As the major computation task can
be transferred into frequency domain, we also demonstrate that the proposed
tracker can provide real time performance.

Since the proposed approach is mainly about learning robust classifiers for a
target against the deteriorated vision condition, we only focus on the discussion
about single object tracking in this chapter. Here we omit its application in
cases of multi-object identification, because such topic is more related to
association algorithms, which are addressed in the next chapter.

4.1 State of the Art

In this section we introduce state-of-the-art tracking works that deal with
constant and temporal varying vision deterioration problems. Since solutions
related to the first subproblem are much more diversified, we further sort its
related works into two branches, i.e., enhancing image qualities and improving
object recognition algorithms.

Enhancing Image Quality under Low Illumination

As previously discussed, the constant vision deterioration in traffic scenarios is
usually caused by the low illumination condition, resulting in degraded visual
contrast between foreground and background objects. Thus, an intuitive idea
to solve such problem is to improve the quality of captured images. Typically,
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O’Malley et al. in [118] employ a high dynamic range (HDR) camera with a
specific hardware configuration to control the exposure and color processing
functions at night. By adapted white balance, they segment rear lamps of
a vehicle in the HSV color space and track them with Kalman filters. Al-
though their approach shows robustness against changes in road environments,
difficulty still occurs in estimating the size of a vehicle only based on the in-
formation of tracked rear lamps. Kim et al. in [86] present another approach
by adopting a sonar senor in addition to a normal camera. They interpret the
received ultrasonic signals as an additional chromatic channel to improve the
contrast in low-exposed images. However, their ultrasonic sensor only has a
very coarse resolution and can only measure instances within a limited range,
i.e., about 10 meters. In the recent research [64], an advanced camera system,
which fires ultrashort laser impulses for each pixel, is tested in a foggy scene.
Their penetration depth is demonstrated to be superior over human vision yet
especially for objects with small distances.

Aside from specific hardware configurations, post-processing of low-light im-
ages is also preferred in plenty of research works. Typical procedures to
enhance the contrast of image is the histogram equalization and gamma cor-
rection. The first one balances the distribution of pixel value within the whole
image while the other one shifts dark pixels to higher brightness. Such pro-
cedures are usually followed by denoising operations to suppress the noise
amplified in dark regions. For instance, Malm et al. in [107] deploy an adap-
tive filtering with a kernel which is wide for homogeneous regions and narrow
on pixels of sharp edges. Thus, they are able to efficiently reduce image noise
while preserve object contours. In [69], Hasinoff et al. replace non-confident
patches of one reference frame by confident ones extracted from alternate
multiple frames. By such alignment and merging process, they achieve a
high-quality photograph for a specific scene from an under-exposed image se-
quence. Deep learning approaches are also utilized by Chen et al. in [24] to
learn the contrast enhancement and denoising in an end-to-end fashion, yield-
ing boosted performance. However, its computation load is still high, which is
also a common case for other above mentioned methods.
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Improving Object Recognition under Low Illumination

To the best of our knowledge, there are really few works about systematical
investigation of object tracking under low illumination condition. Most related
works are about tracking a specific object class, especially the vehicle, during
nighttime. As visual features are strongly weakened in such case, most of
the research works prefer to search bright areas of the target in the image.
Representatively, Chen et al. in [26] take advantage of multilevel histogram
thresholding to segment bright image regions resulted by head- or taillights
of nearby vehicles during nighttime. The presence of a vehicle can be easily
verified by a set of predefined rules based on these segments, which is demon-
strated robust against various low-illumination conditions. A similar approach
is employed by Robert et al. in [127] yet decomposed into two stages. The first
stage is to detect vehicles by identifying their lamps through searching bright
blobs while the second stage verifies these hypotheses via a decision tree clas-
sifier testing on other appearance features such as windscreens. This two-stage
detection framework is followed by a Kalman filter module and shows sta-
bility for vehicle tracking in low-exposed images. Aggregated classifiers like
AdaBoost are also exploited by Zou et al. in [176] for nighttime vehicle lamp
detection. Additionally, they use motion information to help search lamp pairs.
Since vehicle lights usually occur in pairs, this pairing process significantly
improves the recognition accuracy.

The common shortcoming of above approaches is that although vehicle lamps
appear as quite discernible in the night, they may not cover all the observable
areas of a vehicle. Other parts with clear form or color are alsoworth being con-
sidered as appearance features to improve the tracking performance. However,
such sort of deep digging on available visual information of a tracked target
is rare to be found in current research works. Aside from above mentioned
approaches, object recognition at night is also guided by additional sensors in
other researches. Representative examples are the works [53, 92], in which
thermal senors are adopted to provide prior knowledge for the presence of an
object and thus to narrow down the search region in the image. Although they
show a more efficient and precise classification result due to shrinked region of
interest (ROI), the performance of their thermal sensors can still be interfered
by unexpected heat sources such as bonfires.
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Suppressing Corrupted Training Samples

The corruption of image samples is a common problem in the visual track-
ing domain and mostly caused by the abrupt change of observed scenes such
as the intrusion of unexpected objects, significant variation of environmental
illumination and the influence of adverse weathers. Since corrupted samples
alway provide an inaccurate or even a fake representation of the target, in-
volving them into the training set, can misguide the classifier on estimating
the distribution of positive samples in the feature space, and further lead to
increased classification errors. Hence, the core idea to tackle such problem is
to distinguish between corrupted samples and their true positives. This point is
already addressed in some recent tracking works. For instance, Nebehay et al.
in [115] break down the target into tiny parts which are represented by key
points. Theymatch these points frame by frame via optical flow and verify their
correspondences through the geometry compatibility between points including
their relative distances and orientations. Although image samples disobeying
such consensus can be easily discovered, key point searching can be difficult
especially in textureless images. In the work [141], Supancic et al. iteratively
revisit previous frames and choose the “good” ones as training samples which
minimize the loss of learning function. Despite a robust appearance model
learned by their tracker, it is extremely time-consuming due to the repeated
evaluation on previous frames.

In other works, approaches joining both the sample outlier rejection and tracker
learning are more preferred by researchers. Representatively, Li et al. in [97]
employs a CNN model to classify the target and introduce “noised labels”2 to
model the reliability of samples based on the quality of detection responses.
Despite the robust temporal sampling achieved, their computational cost is
relative high. Unlike that, correlation filters is deployed by Danelljan et al.
in [37]. They reformulate the learning procedure to jointly optimize both the
target appearance model and the sample weights. Albeit the corrupted samples
are greatly down-weighted, as the circular data structure is damaged in their
approach, it is still inappropriate for real-time applications.

2 In [97], due to prediction error, false positives or unreliable samples are inevitably incorporated
into the training data as positive samples. Such contamination of training data is considered as
“label noise”. In [97], the reliability of each sample label is considered in the training process
by augmenting the loss function with additional terms.
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In contrast to those above approaches, the tracker presented in this chapter
is mainly based on the KCF model and maintains the circular data structure.
Hence, the fast calculation in frequency domain is enabled. Furthermore, it
incorporates a joint optimization over feature channels and temporal training
samples. Thus, it can handle both low illumination conditions and corrupted
sample images.

4.2 Tracking with Joint Reliability Estimation

In this section, a novel tracking approach is introduced to deal with deteriorated
vision condition. This proposed framework is built on the KCF tracker (with a
Gaussian kernel) due to its high tracking accuracy and fast processing speed.
To handle the low illumination condition, in this approach, appearance features
of the target are decomposed into different kernelized experts. Based on the
reliability of each expert, the best features are employed to build appearance
models. By further estimating the reliability of training samples in the time
domain, the classifier is forced to focus on the most confidential samples and
thus down-weight the corrupted ones.

For a simplified analysis yet without loss of generality, we take tracking at
night as the main example to investigate the approach in dealing with low
illumination condition in the following part. However, through experiments, we
still demonstrate the introduced approach is able to handle other low illuminated
cases such as the foggy ones, which are presented later.

4.2.1 Channel-wise Reliability Estimation

From previous chapters, we know that the KCF tracker employs the kernel
function to map sample features into a higher dimensional space to generate
a more distinguishable distribution and thus to facilitate the learning of the
classifier. However, we have only explored the case for single-dimensional
features and implied that it can be generalized to multiple channel features.
For a better understanding of themerits and shortcomings of KCF, we explicitly
derive its multi-channel form right here.
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Since the image sample x is considered to be consisting of multi-channel
features, it can be redefined as x = [x1; . . . ; xC]with a total channel numberC.
Leveraging the multi-channel evaluation form of the correlation filter (2.25)
and the Gaussian kernel definition (3.2), the kernelized dot-product of two
samples xi and xj can be reinterpreted as

κ(xi,xj) = exp

(
−

1
σ2

C∑
c=1

h(xci ,x
c
j )

)
(4.1)

with respect to the channel-wise operation

h(xci ,x
c
j ) = ‖x

c
i ‖

2 +‖xcj ‖
2 − 2xci

>xcj . (4.2)

Leveraging this formulation, the multi-channel form of kernelized convolution
between sample x and z can be rewritten as

kxz = exp

(
−

1
σ2

C∑
c=1

h(xc,zc)

)
(4.3)

with
h(xc,zc) = ‖xc ‖2 +‖zc ‖2 − 2xc ∗ zc . (4.4)

According to above equations, it can be seen that the dot-product (or convo-
lution) for each channel is conducted separately and thereafter accumulated in
the final response. Although such a form brings the possibility for fast cal-
culation, e.g., by employing parallelization approaches, it implicitly assumes
that all the feature channels are regarded with equal contributions in measur-
ing the similarity between image samples x and z. Although this assumption
works well for object tracking in scenarios of good lighting condition, it can
be troublesome to handle object tracking in low illuminated cases, e.g., dur-
ing nighttime. As each feature channel may encode a unique type of visual
information, they can suffer from various fading effects caused by low illumi-
nation condition (Fig. 4.1 (b)). Thus, equally treating them can weaken the
classification power of discriminative channels especially by averaging their
responses. The matching results can then become vulnerable to the noise from
non-discriminative channels. Moreover, features from various channels may
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be represented in different scales. A direct response accumulation can also
induce unbalanced weighting of different feature types.

Figure 4.2: The classifier is decomposed into a number E of kernelized experts with each focusing
on a limited number of feature channels. The filter response of each expert is weighted by its
corresponding coefficient vector and aggregated into the final response map, with its peak to
indicate the inferred location of the target.

To tackle these problems, an intuitive idea is toweight different feature channels
or at least their convolution responses. With this inspiration, the evaluation
result f(z) can be decomposed into a set of sub-evaluation results fe(z) and thus
formulated as

f(z) =
E∑
e=1

fe(z) (4.5)

with a total function number E and each sub-evaluation is in a form of

fe(z) = F −1(k̂xz
e � α̂e), (4.6)
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where corresponding parameters of evaluation function fe(·) are denoted by
subscript e. The vector α̂e here is more like a weighing factor to weight the
convolution response k̂xz

e . In this concept, each sub-function is forced to only
focus on a small number Ce of feature channels (Fig. 4.2), which encode visual
information of the same type or represented in the same scale. Thus, the
corresponding kernelized convolution kxz

e can be restricted to those features,
expressed as

kxz
e = exp

(
−

1
σ2

Ce∑
c=1

h(xc,zc)

)
s.t .

E∑
e=1

Ce = C. (4.7)

Since each sub-function fe(·) only considers a very limited number of feature
channels and shares a similar structurewith the naiveKCF tracker, fe(·) is called
as kernelized expert. Recall that in Eq. (4.6) the convolution resultkxz

e is further
weighted by the coefficient vector αe in Fourier domain, thus the resulted filter
response can be considered as a kind of reliability measurement, with great
sharp values assigned to discriminative experts while non-discriminative ones
represented by small flatten values (Fig. 4.3). In this way, feature channels can
be fairly aggregated in terms of their classification power. Therefore, the rest
problem is to learn a feasible coefficient vector αe for each expert fe(·).

In light of the Fourier formulation of correlation filter (2.21) and the kernelized
evaluation function (2.30), the learning of naive KCF can be interpreted in
frequency domain, which is

arg min
α̂
‖diag(k̂xx) α̂ − ŷ‖2 + λ α̂Hdiag(k̂xx)α̂. (4.8)

However, the above form only considers sample x evaluated by a single clas-
sifier. For evaluation of the case of multiple experts, problem (4.8) should be
rephrased as

arg min
α̂e

‖

E∑
e=1

diag(k̂xx
e ) α̂e − ŷ‖2 + λ

E∑
e=1

α̂H
e diag(k̂xx

e )α̂e

= arg min
â
‖K̂1â − ŷ‖2 + λâHK̂2â (4.9)

72



4.2 Tracking with Joint Reliability Estimation

with reshaped vector â = [α̂1; . . . ; α̂E ], matrices K̂1 = [diag(k̂xx
1 ), . . . ,

diag(k̂xx
E )] and K̂2 = diag([k̂xx

1 ; . . . ; k̂xx
E ]). Here the equal sign indicates

the equivalence between those two optimization problems.

(a)

(b) (c)

(d) (e)

Figure 4.3: In this example, the appearance model comprises of two feature types: the FHOG
features [49] and the color attributes [40], which are respectively integrated into expert 1 and 2.
The tracked target is denoted by a red box in image (a). Image (b)-(c) show the filter responses
for both experts. As the color of the vehicle undergoes great fading effect by low illumination,
the gradient features turn out be more discriminative, which is implied by the sharp peak in the
response map of expert 1. Accordingly, the response aggregated from both experts in image (d)
also exhibits a much sharper shape than that of the ordinary KCF response in image (e).

Since the kernel function is equivalent to amapping function, the vector kxx
e can

be considered as the autocorrelation for specific feature channels of sample x,
which are interpreted in a higher dimensional space (cf. Eq. (2.27)). According
to the Wiener-Khinchin Theorem [23], its Fourier transform k̂xx

e , only contains
non-negative real values. Such conclusion is also valid for matrices K̂1 and
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K̂2, as their non-zero elements only come from the vector k̂xx
e . By calculating

second-order derivatives of objective function in (4.9), its Hessian matrix can
be obtained as

H = K̂H
1 K̂1 + λK̂2. (4.10)

In this equation, the first term is a Gram matrix due to that it only consists of
non-negative real values. Thus, it is positive semi-definite. Since the second
term λK̂2 is a diagonal matrix consisting of non-negative values, the Hessian
matrix H is also positive semi-definite. In this way, problem (4.9) is semi-
convex with respect to vector â. However, by well-designed features, the case
that elements of vector kxx

e all equal zero can be avoided. Hence, the Hessian
matrixH becomes positive definite and the problem (4.9) is convex. Therefore,
the optimum can be obtained at the point with zero derivatives, which can be
formulated as Hâ − b = 0 with{

H =K̂H
1 K̂1 + λK̂2

b =K̂H
1 ŷ

. (4.11a)
(4.11b)

For a better formulation, this equation set can be rearranged as

Hâ = b. (4.12)

To solve this expression of vector â, the approach of SuccessiveOver Relaxation
(SOR) is exploited here. In this method, matrix H is decomposed in the form
of H = D + L + U with a diagonal matrix D as well as the strictly lower and
upper triangular matrix L and U. The approximation error of solution â can
be iteratively reduced by proceeding following operation

(D + ωL)â(j+1) = −(ωU + (ω − 1)D)â(j) + ωb (4.13)

in each iteration j with a positive relaxation factor ω. This procedure stops
if either the maximum iteration number NJ is reached or the approximated
solution converges to a predefined error bound of ‖Hâ(j+1) − b‖2 ≤ εa . Since
â(j) represents the previous result, which is constant in the current iteration,
Eq. (4.13) can be reinterpreted in a compact form as

Lω â(j+1) = bω, (4.14)
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4.2 Tracking with Joint Reliability Estimation

where matrix Lω = (D + ωL) and vector bω represents the right side of
Eq. (4.13). Such form is exactly subject to the Forward Substitution Process.
As bothmatrices K̂1 and K̂2 are block-wise diagonal, the matrixLω also shares
a similar sparse structure. Hence, calculations are performed only on a few
matrix elements. Leveraging this sparsity property along with the Forward
Substitution, equation set (4.12) can be solved efficiently.

4.2.2 Temporal Reliability Estimation

According to the updating procedure (2.31), it is known that the naive KCF
tracker is updated in a linear interpolation fashion and solely depends on the
positive learning rate β. For a not well-selected learning rate, e.g., with a big
value, the updated tracker model can heavily rely on the quality of the sample
extracted from current image. As the behavior of an object is difficult to
anticipate, the target appearance can encounter great changes, e.g., caused by
illumination variation, false classification or unclear vision condition resulted
by adverse weathers (Fig. 4.1 (c)-(d)). Even if these appearance changes may
only happen in a very short period, the learned appearancemodel could become
inconsistent with the real target if these corrupt image samples are included
in the training dataset (which cannot be avoided in most of current tracking
works). This could further result in drifts of predicted object locations and
even tracking failures.

Besides, the fixed learning rate β is insufficient to handle the trade-off between
training samples from different frames. For instance, in tracking static objects,
old image samples should not be quickly excluded from the training set, be-
cause they can also provide valuable information in reidentifying the target in
current frame, particularly when the vision condition is recovered. However, in
tracking objects with rapid deformation or rotation, the recent samples should
exert more influence on the model training so that it fits the current object ap-
pearance better. Thus, a preferred solution for above problems is the dynamic
weighting of historical training samples.

Inspired by the tracking works introduced in Section 4, a joint learning fashion
is also employed here, so that learning the tracker model and evaluating sample
reliability can be conducted concurrently. For simplicity yet without loss of
generality, only the case of one expert is discussed here, i.e., to modify the
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4 Tracking with Deteriorated Vision

objective function in (4.9) by α̂ = α̂e with e = 1. Thus, the problem (4.9) can
be rewritten as minimizing following loss function

J(α̂,xt ) = ‖diag(k̂xtxt ) α̂ − ŷ‖2 + λ α̂Hdiag(k̂xtxt )α̂ (4.15)

with respect to image sample xt at frame t. Here we introduce weights for
samples in a time interval of T frames. Thus, the minimization of loss function
(4.15) can be extended to a joint optimization problem of

arg min
θ, α̂
L(θ, α̂)

= arg min
θ, α̂

T∑
t=1

θt J(α̂,xt ) +
T∑
t=1

θ2
t

pt

(4.16)

subject to
T∑
t=1

θt = 1 ∧ θt ≥ 0, ∀t ∈ [1,T], (4.17)

where L is the joint loss in terms of coefficient vector α̂ and weight vector
θ = [θ1, . . . , θT ]. Term p = [p1, . . . , pT ] is a regularization vector consisting
of positive priors for sample weights. Constraint (4.17) implies that sample
weights should be assigned with non-negative values and their sum equals 1.

Since the regularization vector p greatly influences the distribution of sample
weights, it should be chosen reasonably. In this approach, it resorts to the
memory model of human brain [5], in which the memory follows the paradigm
that the recently captured objects should be always preserved, because they are
with high probability to appear again, while the old ones without presence are
not so important and can be gradually forgotten. This decay of memory can
further reflected by an exponential function, which is called as the forgetting
curve [45]. In light of these models, the prior pt for a sample xt can be
initialized in a similar way, formulated as

pt = µ exp(−
T − t
T h
), ∀t ∈ [1,T], (4.18)

where parameter h is a positive number to control the strength of memory. The
multiplier µ is a normalization factor to guarantee that the sum of all priors
is normalized to 1. Since the exponential function presents the decline of
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4.2 Tracking with Joint Reliability Estimation

memory retention over time, the strongest retention is always obtained at the
current time stamp T .

Introducing Eq. (4.18) into loss function L in (4.16), it can be easily verified
that for any fixed θ or α̂, the remained optimization problem is convex and
thus the joint problem (4.16) is demonstrated as biconvex. Leveraging this
property, the approach of Alternate Convex Search (ACS) [57] can be employed
to solve the joint optimization problem. In this method, it iteratively solves two
subproblems either with fixed θ or α̂. Thus, following two steps are proceeded
in each iteration:

a) Updating the coefficient vector α̂. In the beginning, the weight vector θ
is initialized with as equally distributed. In the first updating step of each
iteration l, sample weights are fixed. By ignoring the last term in (4.16), the
subproblem can be interpreted as minimizing following loss

L(α̂(l)) =
T∑
t=1

θt J(α̂
(l),xt ) (4.19)

with respect to coefficient vector α̂(l). Since this simplified form can be
regarded as summing weighted loss function J(α̂(l),xt ) for each sample xt
with a shared coefficient vector α̂(l), it can be solved by the approach (4.11)-
(4.12) yet with following modifications

H =
T∑
t=1

θt (K̂H
1,tK̂1,t + λK̂2,t )

b =
T∑
t=1

θtK̂H
1,t ŷ

,
(4.20a)

(4.20b)

where subscript t denotes that both matrices K̂1,t and K̂2,t are calculated by
the same sample xt at time t. The acquired solution α̂(l) is then passed on to
the next step to update sample weight vector θ(l).

b) Updating the weight vector θ. In the second update step, given a coeffi-
cient vector α̂ = α̂(l), the loss J(α̂(l),xt ) for each individual sample xt is
constant. Thus, the remaining optimization problem of (4.16) only depends on
the weight vector θ(l), and parameters of the joint loss L(θ(l), α̂(l)) can then be

77



4 Tracking with Deteriorated Vision

reduced to L(θ(l)). Since this simplified function is formulated in a quadratic
form of the weight vector θ(l) subject to constraint (4.17), it can be solved by the
Quadratic Programming method, which is integrated in standard off-the-shelf
solvers such as [51]. The solution θ(l) is reused for updating coefficient vector
α̂(l+1) in the next iteration l + 1.

Above procedure terminates if either the maximum iteration NL is reached or
the joint loss L converges to a predefined error bound, interpreted as

‖L(θ(l), α̂(l))‖2 ≤ εL, (4.21)

where εL denotes the predefined upper limit of approximation error. After
training, samples are sorted according to their weights in an ascending order.
If the amount of training dataset exceeds the predefined upper limit T , samples
with the smallest weights are eliminated, so that both the computational burden
and the memory consumption are bounded. The current appearance model x
utilized in the evaluation function can be updated by aggregating weighted
samples, expressed as

x =
T∑
t=1

θtxt . (4.22)

For a qualitative impression of the whole learning procedure of introduced
tracking approach, an example is illustrated in Fig. 4.4. Here T = 60 historical
samples are kept. From this example, it can be seen that the calculated weights
exhibit a similar trend with the prior curve except at frame 72. In these
frames the vision is unclear due to raindrops on the windshield. The sample
is corrupted and thus assigned with a very small weight. After raindrops are
cleaned and the vision condition is recovered, high weight values are assigned
to the image sample, e.g., at frame 79. Thus, the classifier is only trained
on the most confidential samples, which improves the robustness of tracking,
especially under adverse weather conditions.

4.3 Evaluation

In this section, the proposed tracking approach is evaluated in comparison with
several state-of-the-art trackers which are based on the night traffic dataset [25].

78



4.3 Evaluation

Figure 4.4: In this example, a bus is tracked in a wet night. Here T = 60 historical samples are
kept to train the classifier. Sample weights and the priors are denoted in blue and red respectively.
Since samples at frames 63 and 79 are extracted from a clear vision, they are assigned with big
weights. For the sample at frame 72, because the vision is contaminated by raindrops on the
windshield, target appearance becomes inconsistent with the real one. Thus, the related weight is
set very low.

Firstly the robustness of proposed tracker is verified in dealing with general
low illumination conditions. Thereafter, its effectiveness is investigated in han-
dling tracking scenarios with specific attributes including the adverse weather
conditions, to further prove that it can couple with corrupted image samples.
In an additional runtime analysis, we show that the proposed approach also
enjoys a favorable real time performance.

4.3.1 Experimental Setup

As previously mentioned in Section 4.1, there is rare systematical investigation
about object tracking under deteriorated vision condition and the same problem
is also confronted by most standard datasets. The most related dataset is from
the work of [25], which focuses on recognition and tracking of vehicles under
low illuminated condition, especially during nighttime. This dataset is chosen
for evaluation because this thesis is also focused on object tracking in traffic
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4 Tracking with Deteriorated Vision

scenarios and the low illumination condition definitely fits the motivation of
the development of the proposed tracking approach. In this dataset, images
are recorded by a wide range camera mounted directly behind the frontal
windshield of a moving vehicle at night. Totally, it consists of 119 videos with
a total length of about 3.5 hours and images are with a resolution of 856× 480
pixels. Although this dataset is named with the term “night”, its included
sequences are actually recorded with different time slots (e.g., from nightfall
to the morning), road conditions (e.g., from highways to crowded streets) and
weather factors (e.g., from clear weathers to the ones with raindrops or fogs),
which also helps the evaluation of proposed approach in dealing with corrupted
samples. Aside from that, a lot of vehicles with a rich diversity in color, size,
class and behavior are labeled in the image, which enables the evaluation of
tracking in various challenging scenarios.
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Figure 4.5: Heatmaps (a)-(b) respectively show the tracking accuracy and runtime speed of
proposed approach in dependence of the expert number and evaluated on dataset [25]. The first
metric is measured by the average center distance between estimated target and its groundtruth,
while the second one is given in frames per second. Since the channel number of FHOG [49] and
CN features [40] respectively equal 32 and 10, only the expert number which can equally divide
the channel number is chosen for each feature type. The evaluated tracker is KCF_CR because the
temporal reliability estimation is not related here. The tracker is learned with NL = 4 iterations,
which is proven to be sufficient in Section 4.3.2. The value at zero coordinates corresponds to the
naive KCF tracker.

As different reliability estimations are incorporated in the proposed approach,
for a better reveal of their performance, three versions of KCF tracker are
prepared. The first one is the naive KCF model introduced by [71]. The next
one is named as KCF_CR, which integrates aggregated experts for channel-
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wise reliability estimation. The last one is a combination of both channel-wise
and temporal reliability estimation and is dubbed as KCF_CTR. A common
appearance model is shared by above trackers and is built with the FHOG [49]
and the CN features [40], which is same as the setup in last chapter. Based on
a grid search method (Fig. 4.5), two different experts are utilized, with each
encoding one feature type, because the deployment of more experts can only
improve the tracking accuracy minorly but significantly decrease the runtime
speed, as illustrated in Fig. 4.5. Empirically, the relaxation factor is set to
ω = 1.1. For the temporal reliability estimation, the maximum number of
observed samples is equal to T = 60. The memory strength equals h = 0.5.
The upper bound of approximation error εα and εL are equal to 10−4. Other
parameters of KCF-based tracker are consistent with the default setting in [71].
All experiments are preformed on a laptop platform which is with an Intel
i7-3740QM CPU of 2.7GHz and a memory of 8GB. The proposed approach
is implemented in C++ programs and runs only in a single thread.

4.3.2 Ablation Study on Iteration Procedures

Up to now, there are still two parameters remaining unsettled, i.e., the iteration
number NJ and NL , which respectively control the optimization procedures for
learning the channel-wise and temporal reliability. Since they strongly influ-
ence the performance of proposed tracker, their values had better be determined
by experiments. Here the evaluation exactly follows the OPE-protocol [167]
and the tracking performance is measured by two metrics: the Average Eu-
clidean Distance (AED) and the Success Rate. The first one calculates the
distance between centers of the target and its groundtruth. The upper limit
is set to 20 pixels (as recommend in [167]), so that the negative impact from
outliers caused by loss of the target can be reduced. The second one accumu-
lates the area under ROC-curve with respect to a specific threshold of overlap
between estimated target and its groundtruth, which equals 0.5 in this experi-
ment. For each of those two parameters, experiments are conducted within a
small range of 1 ≤ NJ,NL ≤ 8, so that the approximation error bound will
not be reached.

The evaluated tracker is KCF_CTR but the temporal reliability estimation is
deactivated (which is thus equivalent to KCF_CR) in the first experiment so
that it imposes no influence on investigating the iteration number NJ . The
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4 Tracking with Deteriorated Vision

corresponding evaluation results are reported in Fig. 4.6 (a). It can be seen that
the AED curve for temporal reliability estimation already converges after the
2nd iterationwhile its success rate only becomes stable when reaching the point
of NJ = 3. Since more iterations bring mere benefit for the tracking precision
but can only aggregate the computational burden, the value of NJ is set to
3. In the next experiment, the temporal reliability estimation is reactivated for
KCF_CTR. With fixed NJ value, it only investigates the influence of iteration
number NL . Accordingly, the evaluation results are plotted in Fig. 4.6 (b).
It is obvious that for the channel-wise reliability estimation, the AED curve
decreases significantly in the first half range while it settles down afterwards.
A similar trend can be seen on the curve of success rate but in the contrary
direction: it firstly increases and then slows down after the 4th iteration. With
the same reason on the trade-off between tracking-precision and computational
load, the optimal value for parameter NL is chosen as 4 in further experiments.
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Figure 4.6: Plots (a)-(b) respectively show the evaluation results of tracker KCF_CTR on varied
iteration numbers of NJ and NL . The tracking precision is measured by two metrics [167]: the
AED value and the success rate, which are denoted in blue and red respectively.

4.3.3 General Evaluation on Low Illumination

In the next experiment, the performance of proposed approaches, i.e., KCF_CR
and KCF_CTR is compared with the baseline model KCF as well as with other
seven state-of-the-art trackers, i.e., CT [40], BSBT [139], CXT [43], CSK [70],
CMT [115], SPLTT [141] and SRDCFdecon [37]. Among them, the first four
trackers do no employ explicit strategies to deal with vision deterioration. The
BSBT adopts a boosted classifier while the others are mainly CF-based trackers
and differ in utilized image features. The CMT is a point-based tracker and
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measures sample reliability according to the consensus of point motion while
the SPLTT repeatedly verifies old samples with respect to detector responses.
The SRDCFdecon is similar to the proposed tracker and joins classifier learning
and sample reliability estimation into one framework. The difference is that
it adopts a linear CF model and is learned on big image regions. For a fair
comparison, parameters of those trackers are consistent with their original
papers. Here it follows the OPE-protocol [167] to initialize the tracker at
input frame with a given bounding box and thereupon record its predicted
target location and size in following frames. To better explore the tracking
performance, here two more metrics are employed: the temporal robustness
evaluation (TRE) and the spatial robustness evaluation (SRE)3. In the first
metric, the tracker is triggered at equally distributed time points to simulate
image sequences with varied lengths. In the second metric, the tracker is only
initialized at the first frame yet with a shifted or scaled bounding box, which
can be considered as resulted from an imperfect object detection. The tracking
performance is represented by both the precision and success plots.

Evaluation results of compared trackers are illustrated in Fig. 4.7. For each
plot, trackers are ranked with respect to their precision and success rate at
the threshold of a location error of 20 pixels and an overlap of 50% with the
groundtruth, which is same as in the last chapter. In the ranking list it can
be seen that trackers such as CT, BSBT and CXT generally exhibit a poor
performance in tested cases, which can be reasoned by their deployed simple
image feature, e.g., the raw pixels. As they only employ simple learningmodels
such as CF or boosting, they cannot well handle the great degradation of visual
feature in low illuminated cases. Although SPLTT repeatedly verifies its old
samples, as it is only trained by a normal SVM, even if historical samples are
integrated, its training set is still much smaller than those CF-based trackers,
which take advantage of the circular data structure. Therefore, its performance
is also unsatisfied. Since CSK employs point matching to aid the inference for
target location, it achieves a relative higher precision than most trackers.

3 In last chapter, we did not use the TRE metric, because in most tested sequences, the occlusion
only occurs once. If TRE is utilized, the tracker may be frequently initialized in sub-sequences
without occlusions, which strongly influences the investigation on tracker behavior in occluded
cases. We did not use the SRE metric in last chapter neither, because in some cases with severe
occlusion, the visible target part is less than 10%. In such cases, even a small shifting or scaling
of the bounding box can lead to the risk of excluding visible object parts from the box, making
the tracker initialization or learning impossible.
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Figure 4.7: Performance evaluation on TRE and SREmetrics with each presented in one row. The
first column displays precision value calculated in terms of location error while the second column
displays success rate based on overlap ratio between the predicted target and its groundtruth.
Proposed method is marked in bold. Additionally, trackers are ranked descendingly according to
the precision value at location error of 20 pixels and success rate at an overlap ratio of 0.5.

However, points are prone to noise in low exposed images, thus the precision
of its estimated object size is not high (Fig. 4.7 (b) and (d)). A similar situation
can also be seen for the CMT tracker, since it also models target by dense
sampled points. Due to the benefit of kernel function, the naive KCF tracker
itself already outperforms most of state-of-the-art trackers. However, it still
suffers from the degradation effect, which is reflected by the low precision in
SRE test (Fig. 4.7 (c)). By integrating channel-wise reliability estimation, both
its precision and success rate increase by about 2 ~ 5% in KCF_CR, due to a
better feature weighting. Since SRDCF employs weighting in both spatial and
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temporal domain, it can even handle temporal varying vision deterioration.
Thus, it provides a comparable or even superior performance to KCF_CR.
However, it still performs inferior to the proposed KCF_CTR, which implies
that the proposed joint reliability estimation over both feature channel and
historical samples is more effective.

4.3.4 Attribute-based Evaluation

For a comprehensive analysis of the influence on tracking performance by dif-
ferent factors, five additional experiments are conducted according to attributes
of color, weather, behavior, time and vehicle class. For a fair comparison, only
one attribute is changed in each experiment set while the others are kept the
same or equivalent. For each attributed scenario, sequences with a length of
200 to 1000 frames are chosen and the number of tracked targets is in a range
of 30 to 50. The performance is measured in the same way as before. Test
results are plotted in Fig. 4.8 and 4.9. A detailed description is as follows.

Color: The low illumination causes the fact that bright colors are more rec-
ognizable than the dim ones in the image. Therefore, the average tracking
precision and success rate on white or red vehicles are much greater than those
with gray or black colors, as displayed in Fig. 4.8 (a) and 4.9 (a). Among
the tracker models, the proposed approaches KCF_CTR and KCF_CR always
present a prominent performance, especially in tracking targets with strongly
faded colors (Fig. 4.10 (1a)-(1c)), which demonstrates the effectiveness of
feature weighting in constructing tracker models.

Weather: Here it is related to three cases: clear, rainy and foggy weather. In
the second case, the vision condition is interfered by raindrops, resulting in
contaminated image areas (Fig. 4.10 (2b)). Despite that the corrupt object
appearance is troublesome for most trackers, by removing outliers through
estimation of temporal reliability, both approaches KCF_CTR and SRDCFde-
con can successfully track the object, as illustrated in Fig. 4.10 (2a)-(2c). In
foggy cases, as the visible distance is mostly less than 10 meter and the dis-
tance between target and ego-car varies over time, it results in a severe vision
deterioration, which is also temporally varied. However, both trackers still
accurately identify the target, which further demonstrates the advantage of
dynamic weighting of samples.
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4 Tracking with Deteriorated Vision

Figure 4.10: Examples of vehicle tracking in attributes of color, weather, behavior, time and
vehicle class, with each row displaying one sequence.
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4.3 Evaluation

Behavior: As depicted in Fig. 4.8 (c) and 4.9 (c), tracking turning vehicles
is far more difficult than forward driving ones. The main issue is the turning
signal, which disperses into bright image regions in the dark environment
(Fig. 4.10 (4b)). Because the signal light blinks at a specific frequency, the
dispersing effect appears at non-successive frames, leading to frequent change
of object appearance. Despite that fact, it can be well handled by carefully
learning the tracker according to channel-wise and temporal reliability. Hence,
both KCF_CTR and KCF_CR perform well in this case.

Time: Here it focuses on three scenarios: morning, dawn and midnight. The
first scenario can be regarded as test under regular daylight (Fig. 4.10 (5a)-
(5c)). Since the illumination condition is relative good, the highest accuracy
for all trackers are achieved. In the second scenario, captured images are a
little bit gloomy. However, information like the contour, color and shape of
an object is still observable. Hence, the average tracking precision obtained
is higher than in midnight, where the visual information is strongly weakened
by the darkness. Nevertheless, the KCF_CRT tracker can well handle all these
conditions. Thus, it ranks on the top in all three cases.

Vehicle Class: Evaluation results in Fig. 4.8 (e) and 4.9 (e) imply that tracking
trucks and buses are more difficult than cars under low illumination condition.
The reason is that buses are usually painted with various figures and logos,
e.g., ads, on different sides. This property causes great appearance change
particularly in passing-by scenario, which is hard for most trackers to deal
with. For trucks, the trouble mainly comes from its rear part. If the distance
between ego-vehicle and tracked truck varies over time, reflection stripes of
the truck may not always be reached by the frontal light of ego-vehicle, thus
resulting in changed image pattern (Fig. 4.10 (6a)-(6c)). In spite of both
difficult cases, the proposed KCF_CRT still shows strong robustness, even
with a more accurate size estimation than the SRDCFdecon.

4.3.5 Runtime Performance Analysis

The runtime performance of tested trackers is reported in Table 4.1. On
the top is the CSK approach with a speed of almost 110 fps, owing to its
adopted simple model and feature, yet at the cost of proneness to the noise
in low exposed images. After it follows the naive KCF tracker yet with a
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4 Tracking with Deteriorated Vision

large gap of more than 70 fps. By integration of channel-wise weighting,
the speed of KCF_CR decreases to about 34 fps, but still faster than most
trackers. By further employing temporal reliability estimation, the KCF_CTR
runs at 21.4 fps. Such speed is slower than the CT tracker but much faster
than the rest approaches, especially the ones without utilization of circular
data structure, e.g., the BSBT, SPLTT and SRDCFdecon, which are slower
than 3 fps. Considering the performance gain on tracking precision, the
proposed KCF_CTR tracker shows strong robustness against various vision
deterioration condition. And its speed, i.e., 21.4 fps, can still fulfill most real
time requirements.

Method CT BS
BT

CX
T

CS
K

CM
T

SP
LT

T

SR
D
CF

de
co
n

K
CF

K
C
F_

C
R

K
C
F_

C
TR

FPS 28.0 1.6 9.1 109.3 11.8 0.5 2.2 37.1 33.7 21.4

Table 4.1: Evaluation of runtime performance in fps with proposed approaches marked in bold.
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5 Tracking with Multi-Object
Reidentification

In previous chapters, we already talked about visual tracking under complex
circumstances such as severe occlusion and vision deterioration. However,
all of these scenarios discussed up to now are still related to tracking of a
single object. Thus, there is one question still remained as open, i.e., the target
reidentification for tracking of multiple objects.

To deal with the problem of vision-based multi-object tracking (MOT), one of
the most popular trends is the tracking-by-detection paradigm, which leverages
modern detection technologies [21] and is adopted in most of recent successful
tracking works. In such paradigm, the inputs are only object hypotheses
provided by a detector which is evaluated on each frame of a video sequence.
During the tracking phase, the candidates, which are most similar to the tracked
target are linked together to form its trajectories, i.e., the tracks. Due to
significant progress in the domain of object detection, recent detectors can
achieve an accuracy which is higher even than human beings [121]. This
leads to the fact that given a well-performed detector, the precision of current
tracking approach is mainly dependent on the utilized association technique.
Thus, the multi-object tracking can be cast as solving an association problem
or a set of subordinate ones.

To link detections with the target, most of current tracking methods prefer an
enhanced similarity measurement by incorporating appearance features along
with the location and size information, and pair the ones with the highest
similarity [145, 147]. Although this idea can well solve the association in a
small region or in a short period, it is insufficient to recover long-term lost
targets. For instance, the current location of a target, which is reidentified
after a long time full occlusion, may be far away from where it disappears.
This is also an open question left by previous chapters but cannot be handled
by simple similarity measurement strategies. Another problem is related to
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5 Tracking with Multi-Object Reidentification

dynamic cases, especially when cameras are installed on moving platforms
like automobiles. In these cases, tracks can be easily affected by the camera
motion. Thus, it can yield misestimated target locations by conducting simple
similarity measurements and further lead to association errors. Such a case is
rarely considered in current tracking approaches.

Regarding these facts, in this chapter, a new multi-object tracking approach is
presented, which is published in [104,145,147,175] and won the experienced
tracking level on the UA-DETRAC benchmark [159] and multi-object tracking
task on the VisDrone challenge [174]. For efficiency, the association in this
approach is decomposed into three stages: detections-to-tracklets, tracklets-to-
tracks and tracks-to-tracks. In the first step, detection hypotheses across several
frames are grouped into small tracklets mainly with respect to the similarity
measurement. In the second step, the association is conducted according to the
relative location and motion between tracked objects. This can be considered
as a kind of spatial constraint. To deal with long time full occlusion, the tracked
targets should be observed in a much bigger temporal domain. Thus, in the
last step, tracks belonging to the same target are stitched together with respect
to a specific matching process. This is considered as a temporal constraint.
All three steps are interpreted by graph theory but implemented with different
settings. Details about these steps are introduced in the theory part of this
chapter, which directly follows the introduction of state-of-the-art works. In
the last part, extensive experiments are presented about ablation study of key
procedures aswell as the general performance of proposed approach in different
challenging situations. Through rich experimental results, it demonstrates that
the association problem inmulti-object tracking can be effectively solved by the
proposed approach with joint constraints in both spatial and temporal domains,
which yields a superior performance over most state-of-the-art methods. As
the proposed approach runs online with a small computational load, it admits
real time applications, which is shown at the end of this chapter. To avoid
confusion of the readers, without explicit declaration, all tracking approaches
discussed in this chapter, are multi-object tracking approaches.
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5.1 State of the Art

5.1 State of the Art

Vision-based multi-object tracking has drawn increased attention from the
research community during the last decades and most of the recent success-
ful works follow the tracking-by-detection paradigm [110]. Depending on
the manner how individual detections are processed, multi-object tracking
approaches can be coarsely categorized into two groups: filtering-based ap-
proaches and batch-based ones [95]. Along with the rapid development of
ADAS and automated driving systems, tracking approaches implemented on
moving platforms becomes another active research area. Thus, in contrast to
conventional methods, which focus on static cameras, dealing with dynamic
images becomes an interesting point among recent works. Therefore, for a
better impression about the multi-object tracking, related works herein are in-
troduced in three perspectives: filtering-based methods, batch-based methods
and those dealing with dynamic images.

Multi-Object Tracking with Filtering

In the first category, filtering-based tracking approaches mostly estimate the
current location or size of a target based on its historical states, e.g., by leverag-
ing the Markov theory. Since they only process a few detected objects (usually
one) at a time, the key falls on how to attain high confidential detections for the
target. Representatively, to reduce the influence of unreliable detector outputs
such as false positives or mis-detections, Breitenstein et al. in [19] monitor
the continuous confidence of detector and use it as graded observation model.
Such a classifier is trained in an instance-specific fashion during runtime to
distinguish between different tracking targets. Additionally, it combines with
a particle filter to predict the target location and shows robustness against
object interactions. In an advanced work [94], Lee et al. combine detection
responses with changing point detection algorithm to observe abrupt or abnor-
mal changes in tracked target states. Furthermore, they employ Lucas-Kanade
Tracker (KLT) to calculate the likelihood of foreground object. Relying on pre-
defined motion model, the location of the target is estimated by the method of
Markov Chain Monte Carlo (MCMC). Although the number of tracking drifts
and failures is greatly reduced by their approach, they still have difficulty in
mapping identities between distant tracks. To tackle this problem, Xiang et al.
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5 Tracking with Multi-Object Reidentification

in [168] formulate the MOT as decision making in a Markov Process. Each
state of a target encodes the information of appearance feature, location, size
and all states are partitioned in predefined subspaces. Thus, both the presence
and disappearance of targets are well handled in their method by simulating
the detection and association as state transition between subspaces. However,
the mapping policy between states and actions is required to be learned offline
from training sequences.

Multi-Object Tracking with Batch Processing

Unlike in the first category, tracking by batch-based methods is usually solved
over sequences by graph partition theory. In these approaches, individual de-
tections from different frames are represented as graph nodes and linked by
edges to indicate that they may be triggered by the same target. Each edge
is also disbursed with a cost term with big value to penalize the assignment
between non-similar objects. Thus, a subgroup of connected nodes with the
minimum total cost is assumed with high probability to represent the same
target. According to the problem interpretation, batch-based approaches can
be further divided into two main subcategories [142]: disjoint-path-based ap-
proaches and subgraph-based ones. In the first subcategory, the MOT task
is usually interpreted as a flow network, in which each node can only be
linked with one node at next frame. And the maximal number of incoming
or outgoing edges of one node is constrained to one. Hence, the associa-
tion can be cast as searching a set of shortest paths over the sequence with
minimized dissimilarity cost between their consisted nodes. To solve this
min-cost flow, various recipes are proposed. Representatively, Berclaz et al.
in [16] utilize an occupancy map to reduce false positives and reformulate the
linking step as a convex optimization problem which fits the standard Linear
Programming. Thus, it can be efficiently solved by the k-shortest paths al-
gorithm. In another work [124], Pirsiavash et al. embed pre-processing steps
such as non-maximum-suppression into a greedy algorithm and sequentially
instantiate tracks on net-flow. By a dynamic programming approach, they
achieve a near-optimal result within a linear processing time. Although these
methods mentioned above are demonstrated to be efficient, they still have dif-
ficulties to handle the association between long ranged object hypotheses. In
the subgraph-based formula, undirected subgraphs are created by clustering
individual detections over frames. The nodes inside one subgraph are linked
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with each other. Hence, the association can be solved by searching a set of
subgraphs with the minimum cost. For instance, Zamir et al. in [128] repeat-
edly solve the data association for one object at one time by Tabu-search and a
reformulated version by Integer Linear Programming is adopted by Tang et al.
in [142]. Although their method achieves a low number of ID switches, as
this problem is NP-hard [12], their computation load is relative high. To by-
pass this bottleneck, Ristani et al. in [126] reinterpret the association task as
a Binary Integer Programming (BIP) and approximate it with an online graph
partition solution which is linear to the number of tracked targets. Although a
near real-time performance is achieved, their work mainly focuses on tracking
objects in still images.

Multi-Object Tracking with Dynamic Images

In the first two categories, we already introduced different solutions dedicated
for the association problem at multi-object tracking. However, most of the
above discussed approaches only consider the tracking problem in static scenes.
As more and more vision-related devices are installed on moving platforms,
dealing with dynamic cases, especially caused by camera motion, becomes a
common issue for current tracking researches. A typical solution is proposed by
Pellegrini et al. in [122], which observes the interaction between objects in bird
view from a flying drone. The location of target can be predicted by a dynamic
social behavior model, yet learned offline from training sequences. In [59],
additional feature points are employed by Grabner et al. as supporters. The
location of target can be estimated according to correlated motion between
the feature points and the tracked target, so that the tracking drift resulted
from moving cameras can be greatly reduced. Other than that, Yoon et al.
in [170] observe the relative motion only between tracked target and adopt
such structural spatial information to deal with small camera motion. Their
work is further developed in [169] with spatial information integrated in an
event aggregation step to search the most probable assignments. By doing
this, their approach is demonstrated robust against abrupt camera motion and
association ambiguities by mis-detections. However, as the object behavior is
hard to predict in the image, its motion pattern can significantly differ in short
and long period. Thus, to associate detections with long time lost targets can
still be problematic for these methods. In contrast to them, the to be presented
method aims at a tracking framework which is robust against both camera
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motion and association ambiguity between long ranged object hypotheses. To
tackle this problem, joint constraint is utilized in terms of both spatial and
temporal domains, which is introduced in following section.

5.2 Tracking by Joint Constraints

The association in both spatial and temporal domain usually requires to cal-
culate the similarity between each two objects, which can be computational
expensive or even intractable for large number of objects. Therefore, the pro-
posed approach adopts a divide-and-conquer strategy to decompose the entire
association in three separate stages. Since all of them rely on graph theory, in
the beginning of this section, a brief review is given about the subgraph-based
formula. Thereafter, we respectively introduce each stage, i.e., detections-to-
tracklets, tracklets-to-tracks and tracks-to-tracks, and explain their benefits on
association tasks. The last two stages are respectively called as spatial and
temporal constraint. In the experimental part, it demonstrates that by employ-
ing such divide-and-conquer strategy, the processing efficiency can be greatly
improved while satisfying result can still be obtained.

5.2.1 The Subgraph-based Formula

Leveraging the graph theory, in the MOT problem, the relationship between
tracked targets and their observations (i.e., detection hypotheses) can be in-
terpreted as an undirected graph G = (V ,E,Ω), where V is the set of nodes
standing for individual detections and their similarities are represented by the
edge set E. The set Ω : E → R, contains cost for each similarity measure-
ment, with great value to penalize the assignment between non-similar object
hypotheses. The assumption utilized here is that each target in one frame can
only trigger at most one shot of the detector. This can be achieved by applying
non-maximum-suppression over raw detection results. Thereby, the edge set
can be defined as E = {(ui, v j) | i , j and u, v ∈ V }, where superscript i and
j respectively denote the frame IDs for detection u and v.

In this case, the association problem can be solved by partitioning the graph
G into a set of subgraphs Gs = (V s,Es,Ωs), where each only consists of
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detections with common target identity and can be interpreted by Es = {(p,q) |
∀p,q ∈ V s} and Ωs = {Ω(p,q) | ∀p,q ∈ V s}. As in each subgraph, its nodes
are fully connected (i.e., each node is connected with all the other nodes), it is
called as clique. The problem of partitioning an undirected graph into cliques
can be reformulated as optimizing the following objective function

arg min
X

∑
(u,v)∈E

Ω(u, v) · xuv (5.1)

subject to {
xuv ∈ {0,1}, ∀(u, v) ∈ E
xuv + xvw ≤ 1 + xuw, ∀(u, v), (v,w), (u,w) ∈ E

. (5.2a)
(5.2b)

Here the indicator xuv is a binary encoder of the edge E(u, v) and it is set to 1 if
both detections u and v share the same target identity. In constraint (5.2b)1, the
equal symbol is only then valid, when all detections u, v and w are co-identical,
which means that their corresponding nodes belong to the same clique.

(a) (b)

Figure 5.1: Image (a) displays an undirected graph with its nodes representing individual detec-
tions. Its edges stand for their similarities, with assigned values to indicate the costs. Image (b)
depicts the solution for graph partitioning which consists of two subgraphs with co-identical nodes
displayed in the same color.

1 Such constraint also rejects structures such as rings with a length bigger than 3. Since in the
ring structure, it only requires the similarity between successive nodes, different objects can be
linked in a ring by nodes with ambiguous feature vectors (e.g., due to imperfect detections of
crowded pedestrians). However, in a clique, such case can be avoided, because each object/node
is required to be similar to all the other ones.
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5 Tracking with Multi-Object Reidentification

A feasible solution to problem (5.1) can be interpreted as a set X consisting of
all edge indicators with those for co-identical node pairs set to 1 (see Fig. 5.1).
As only binary values are considered in the objective function, it can be solved
by the BIP algorithm, e.g., with standard solvers introduced in [126,128].

5.2.2 Tracklet Creation

Instead of direct conducting association between individual detection hypothe-
ses, here the MOT is solved based on tracklets due to two reasons. On the one
hand, the linked detections in the same tracklet are of high similarities between
each other, indicating a high probability that they describe the same target.
Thus, further changes to their connections should be rare and more efforts can
be spent on dealing with difficult association ambiguities. In the meanwhile,
since the searching space for data association shrinks, the computational bur-
den can be greatly reduced. On the other hand, a tracklet can be considered as
a set of detections extended over frames, which enables us to extract motion
information to enhance the similarity measurement. Although the target may
suffer from significant motion change in long time observation, its motion in a
short period changes minor and thus can be approximated by a simple model,
e.g., with constant velocity. This information is helpful especially in cases,
where the object matching procedure by appearance feature alone cannot give
a clear solultion.

For creating tracklets, video sequence are first divided into small segments with
each consisting of fl consecutive frames. Each detection is represented by a
parameter tuple D = (ϕ,b, t,v), where term ϕ is a feature vector describing
object appearance and vector b = [px, py,w, h]> denotes the bounding box
including the center location p = [px, py]> and the size z = [w, h]>. The frame
ID is indicated by t and vector v = [vx, vy]> denotes the 2-D velocity. For two
detections D1 = (ϕ1,b1, t1,v1) and D2 = (ϕ2,b2, t2,v2), the appearance affinity
is defined as

sa = corr(ϕ1,ϕ2) (5.3)

by computing the correlation coefficient between their appearance descriptors.
Moreover, their size affinity is defined as

sz = 1 −
z1 − z2
z1 + z2


2
, (5.4)
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where the fraction operation denotes an element-wise division. As detections
are given with different sizes, to calculate the appearance descriptor ϕ, can-
didate image patches are first rescaled to a unified size, e.g., 64 × 64 pixels.
After that, gradient and color features as deployed in previous chapters are
extracted from the image and then concatenated into one vector. To reduce
the influence of background objects especially in boundary regions, the image
patch is multiplied with a 2-DHanning filter. The assumption is that the central
area within the patch has a high probability of belonging to the target, which
is valid for most object classes.

In the proposed approach, it also assumes that the motion of an object in the
image is limited in a small number of frames. This is also valid for moving
cameras with a high frame rate. Under this assumption, the velocity of a
detection hypothesis D = (ϕ,b, t,v) can be estimated with the help of its
nearest neighbor Dk = (ϕk,bk, tk,vk) by

v =
p − pk

t − tk
(5.5)

subject to 
0 < |t − tk | ≤ θt
‖p − pk ‖2 ≤ θp

sa > θa

sz > θz

,

(5.6a)
(5.6b)
(5.6c)
(5.6d)

where θt indicates the predefined small frame interval and θp denotes the
gating radius. Constraints (5.6c)-(5.6d) represent that affinity values sa and
sz should be greater than the predefined thresholds θa and θz . For isolated
detections, they are assigned with zero velocity.

In light of above definitions, the similarity between two detections D1 and D2
can be calculated by

sd = sa · sz · sp (5.7)

with 
sp = max

(
1 − γ(l1,2 + l2,1),0

)
l1,2 = ‖(p2 + (t1 − t2)v2 − p1) /z1‖2

l2,1 = ‖(p1 + (t2 − t1)v1 − p2) /z2‖2

,
(5.8a)
(5.8b)
(5.8c)
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5 Tracking with Multi-Object Reidentification

where sp denotes the position affinity. The positive balance factor γ constrains
the tolerance for the forward location error l1,2, which is defined by the distance
between the location of D1 and the estimated location of D2 at frame t1. Such
a distance is further normalized by object size z1. The backward location error
l2,1 is calculated in a similar way. Afterwards, the affinity value sd is mapped
to an edge cost by

Ω(D1,D2) = − ln(λ · sd) (5.9)

with a small scaling factor λ. IntroducingEq. (5.9) into objective function (5.1),
subgraphs, with each representing a tracklet, can be obtained by applying the
BIP algorithm.

5.2.3 Spatially Constrained Association

In the image plane, a track encodes the trajectory of an object over a video
sequence and its state usually incorporates the object appearance, location, size
and motion information. In this regard, the track state at frame t can be denoted
as St = (ϕ̃t, p̃t, z̃t, ṽt )with the symbol ~ to distinguish its parameters from those
of detections. Given two tracks, each with a state of St

i = (ϕ̃
t
i, p̃

t
i, z̃

t
i, ṽ

t
i ) and

St
j = (ϕ̃

t
j, p̃

t
j, z̃

t
j, ṽ

t
j), the spatial constraint between them can be defined by the

pairwise motion pattern as κt
i, j = κ(S

t
i ,S

t
j ) = [(p̃

t
i − p̃t

j); (ṽ
t
i − ṽtj)]. Presuming

that there is a number M t of tracks at time t, the set of spatial constraints for
track state St

i thus can be formulated as K t
i = {κ

t
i, j | 1 ≤ j ≤ M t }. Note that

the case of i = j is not omitted here, because the motion of object can also be
estimated by its previous states, e.g., with the Kalman filter.

Relying on the spatial constraint, the location of a track i at time t + 1 can be
estimated by

p̂t+∆t
i, j = Fκt

i, j + p̃t
j (5.10)

with respect to a transition matrix

F =

[
1 0 ∆t 0
0 1 0 ∆t

]
, (5.11)

where ∆t indicates the frame difference and here is equal to 1. Thus, the
predicted object status can be approximated as D̂t+1

i, j = (ϕ̃
t
i, b̂t+1

i, j , t + 1, ṽti )

100



5.2 Tracking by Joint Constraints

with the predicted bounding box b̂t+1
i, j = [ p̂

t+1
i, j ; z̃ti ]. Normally, to handle the

association for detections-to-tracks, the predicted object should be matched
with each detection at current frame to search the most similar candidate and
then add it to the trajectory. Thus, in analogy to Eq. (5.7), the similarity
between the predicted object D̂t+1

i, j and the k-th detection Dt+1
k

at frame t + 1
can be measured as

sd(D̂t+1
i, j ,D

t+1
k ) =sa(D̂t+1

i, j ,D
t+1
k ) · sz(D̂

t+1
i, j ,D

t+1
k )

· sp(D̂t+1
i, j ,D

t+1
k ).

(5.12)

In a further step, the similarity is mapped to a cost term as

Ωk
i, j = − ln

(
µ · sd(D̂t+1

i, j ,D
t+1
k )

)
(5.13)

with a small scaling factor µ. Thus, the entire cost for the set of spatial
constraints K i

t can be computed as

Ωk
i =

∑
j

Ωk
i, j . (5.14)

If an object is not assigned to any detection, its cost Ω0
i is set to a constant value

τ = 5. In this manner, the object association can be cast as solving following
optimization problem

arg min
A

∑
i

∑
k

Ωk
i · ai,k (5.15)

subject to ∑
i

k,0

ai,k ≤ 1 ∧
∑
k

ai,k = 1 ∧
∑
i

ai,0 ≤ M, (5.16)

where the solution A =
[
ai,k

]
M×(N+1) is an assignment matrix with binary

elements ai,k ∈ {0,1} while N and M respectively denote the number of
detections and tracks. Here the frame index is omitted for generality. Con-
straint (5.16) indicates that all assignments are bijective except for mis-detected
objects. Therefore, the association problem can be solved by the Hungarian
algorithm [91]. Since the motion pattern between objects is utilized to measure

101



5 Tracking with Multi-Object Reidentification

their similarity, the tracking is robust against camera motion, as demonstrated
in the experimental part.

Based on aforementioned procedures, the spatial constraint can be extended
to deal with association for tracklets-to-tracks. Here a tracklet is denoted as
a tuple T = (D, ts, te), with ts and te respectively to indicate its start and end
frame. The set D = {Dt |ts ≤ t ≤ te} consists of all its linked detections. In a
similar way, here a track is denoted as T̃ = (S, t̃s, t̃e)with its start and end frame
respectively denoted as t̃s and t̃e. And set S = {St |t̃s ≤ t ≤ t̃e} includes all
track states at related frames. Since a tracklet extends over multiple frames, the
main problem is how tomatch the predicted object with the tracklet. Intuitively,
the predicted object can bematchedwith all detections in the tracklet. However,
such idea brings two disadvantages. On the one hand, it extremely aggregates
the computational load, which is linear to the number of detections. On the
other hand, a detection in a long tracklet and from a time point which is far
away from the current frame can significantly differ from the predicted object,
which may lead to matching errors. Regarding these points, in this approach,
following rules are proposed to deal with association for tracklets-to-tracks and
illustrated in Fig. 5.2.

(i) We only check the assignment between a track T̃ and a tracklet T , when
they do not share common frames, which is interpreted as t̃e < ts (see
Fig. 5.2 (b)). This rule coincides with the assumption that one object
can only trigger at most one detection at one frame.

(ii) For efficiency, the predicted object is onlymatchedwith the first detection
of a tracklet validated by rule (i). Comparing with any other detection
in the tracklet, the temporal distance between the predicted object and
the first detection is the shortest, thus their similarity should be high. In
this case, the computational load is proportional to the tracklet number.

(iii) Based on rule (ii), we predict objects at the first frame of each tracklet.
This can be attained by Eq. (5.10) yet with minor changes of ∆t = ts− tk ,
where ts denotes the start frame of tracklet T and the frame index tk
comes from track T̃k , which participates in the k-th spatial constraint of
T . If no common frames between them are found, the index tk is set to
the last frame t̃e

k
. Otherwise, the track state at frame tk = ts is deployed

for object prediction (see Fig. 5.2 (c)).
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(a) (b) (c)

(d) (e)

Figure 5.2: Image (a) shows three tracks T̃1 to T̃3 with three detections D1 to D3. Orange circles
represent track states while detections are denoted in green. Based on affinity measurement,
these detections are linked to form one tracklet T in image (b). In parallel, spatial constraints
are constructed for track T̃2. Each double-headed arrow links a pair of tracks, between which
the motion patterns are considered. The track which is not considered in next association step is
indicated by fainted color. A new object (empty circle) is then predicted for track T̃2 at frame t = 2
in image (c). The root of single-headed arrow indicates based on which track state the prediction
is made. After association, the spatial constraint for track T̃2 is updated in image (d). Image (e)
shows association between long ranged objects by temporal constraint.

(iv) To handle the case with only one object appearing in one frame, the
spatial constraint is extended over multiple frames. For example, for
each state Sti

i of track T̃i , its temporally nearest state Stj
j from another

track T̃j is searched in the time interval
��ti − tj

�� ≤ m with the setting of
m = 3 in the experiment (see Fig. 5.2 (d)). Thereafter, the selected states
are used to construct the spatial constraint κ(Sti

i , Stj
j ).

Since a tracklet may contain non-successive frames, after association, the states
in a track may not be temporally continuous. For those missing track states,
their locations, sizes and velocities can be estimated by spatial constraints. In
the case that more than one spatial constraint is utilized, the median value
is chosen over different estimations. Appearance features for these states are
approximated by a cubic interpolation based on the historical states. For
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5 Tracking with Multi-Object Reidentification

efficiency, in this approach, spatial constraints are only kept for 1 second
(i.e., the buffer size equals the frame rate fr ) and they are updated for each
track directly after the association, which is solved by optimizing the objective
function (5.15). Tracklets, which are without associations, are considered as
new object tracks.

5.2.4 Long Range Association and Online Processing

Since the motion of a target may greatly change in a long period, the spatial
constraint alone, which usually focuses on a short time interval, is insufficient
to recover a long-term lost target, whichmay be temporally or spatially far away
from its disappearing point. To link long ranged objects, additional strategy,
i.e., the temporal constraint, should be applied on the current tracks.

This yields the new association problem: tracks-to-tracks. To solve their
assignments, it can resort to the subgraph-based formula in Section 5.2.1.
The main difference from previous procedures is that here the nodes of a
graph represent tracks instead of individual detections. Leveraging rule (i),
association is only conducted between non-overlapping tracks. For two valid
tracks T̃1 = (S1, t̃s1, t̃

e
1 ) and T̃2 = (S2, t̃s2, t̃

e
2 ) with t̃e1 < t̃s2 , according to the

temporal order, a possible assignment can only exist between frame t̃e1 and t̃s2 .
Hence, the similarity of those two tracks is defined as

sd(T̃1, T̃2) = sa(ϕ̃e
1, ϕ̃

s
2) · sz(z̃

e
1, z̃s2) · sp(S

e
1 ,S

s
2 ), (5.17)

where Se
1 = (ϕ̃

e
1, p̃

e
1, z̃

e
1, ṽ

e
1) indicates the state of track T̃1 at its last frame t̃e1 and

Ss
2 = (ϕ̃

s
2, p̃

s
2, z̃

s
2, ṽ

s
2) represents the track state of T̃2 at its first frame t̃s2 .

Here a polynomial of second order is exploited to approximate the object
location of a track T̃i at frame t, formulated as{

px,i(t) = ax,i · t2 + bx,i · t + cx,i

py,i(t) = ay,i · t2 + by,i · t + cy,i
, (5.18a)

(5.18b)

where p̂i(t) = [px,i(t), py,i(t)]> represents the estimated target location. And
coefficient vector [ax,i, bx,i, cx,i,ay,i, by,i, cy,i]> can be attained by a regression
method, i.e., the Least-Square algorithm. According to Eq. (5.5), velocity ṽe1
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5.2 Tracking by Joint Constraints

and ṽs2 in previous procedures are only estimated by detections in a short time
interval. However, it is inappropriate to directly use them to calculate the
location affinity sp , particularly between long ranged tracks. Since the motion
model with constant velocity may be invalid in such a long period, the affinity
measurement could be erroneous. To improve the accuracy, here both the
forward and backward location error l1,2 and l2,1 are calculated relying on the
new estimated location p̂1(t̃s2 ) and p̂2(t̃e1 ). Hence, Eq. (5.8b)-(5.8c) should be
modified as {

l1,2 = ‖
(
p̂2(t̃e1 ) − p̃e

1
)
/z̃e1 ‖2

l2,1 = ‖
(
p̂1(t̃s2 ) − p̃s

2
)
/z̃s2‖2

, (5.19a)
(5.19b)

where p̂1(·) and p̂2(·) respectively indicate the estimation function for the track
T̃1 and T̃2.

Regarding the application in real world, it is impossible to observe tracks over
the entire time axis, which is infinitely long. Therefore, the association can
only be conducted for tracks in a limited time interval, i.e., in the last ft frames.
The assumption is that much older objects can be ignored, because they have
low probability to appear again. This is also consistent with the memory
model of human brain [5]. For computational efficiency, the association task is
performed in a batch fashion and the batch size corresponds to a time window
of ft = N fl frames. Only the tracks, which are located within this window or
intersect with its boundaries, are processed. Based on measured similarities
between these tracks, assignments are established according to the procedure
introduced above. The batch window is then shifted forward by a constant step,
which is half of its size in the experiment, and the same procedure is performed
again. Here the scaling factor N is set as an even number to reduce the clipping
of tracklets or tracks by a shifted window. As the association only takes place
at specific frames, the average processing time falling on each frame is little.

Similar to creating tracklets, the association for tracks-to-tracks can also be
solved by the BIP algorithm. However, as tracks are observed in a much larger
time domain, the number of possible assignments could be huge. Solving the
association problem by the naive BIP approach, which is demonstrated as NP-
hard [12], may consume large memory and processing time and thus becomes
difficult for applications with real time requirement. For a fast computation,
here the naive BIP is approximated by the algorithm of Adaptive Label Iterative
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Conditional Modes (AL-ICM) [10]. In this algorithm, the association task is
formulated in similar form of objective function (5.1), and interpreted as

arg min
L

∑
(u,v)∈E

Ω ′(u, v) · x ′uv, (5.20)

where binary indicator x ′uv is set to 1 if two nodes are assigned with the
same label. The final output is a label set L = {l1, l2, · · · }. In fact, the direct
solution of problem (5.20) is a matrix X′ consisting of binary elements x ′uv
to indicate optimized associations, similar to the solution in Eq. (5.1). Based
on this matrix, associated objects are clustered together and an unique label is
assigned to each cluster, thus resulting in the final label set L. In the binary
matrix X′, an indicator x ′uv is only then set to 1, when the node u and v are
co-identical, which implies that they are assigned with the same label. The
cost term for each edge in the graph is defined as

Ω ′(u, v) = ln(λ · sd(u, v)), (5.21)

where the scaling factor λ is well selected so that negative cost should be
assigned to a node pair with high similarity and dissimilar node pairs are
penalized with positive cost. Hence, the total cost decreases when similar
nodes are linked and dissimilar ones are assigned with different labels. Since
the method AL-ICM is able to be scaled to large problems with a relative low
computation load, as reported in [126], a fast processing speed can be achieved.

5.3 Evaluation

In this section, the performance of the proposed tracking framework is eval-
uated on publicly available video sequences in comparison with other state-
of-the-art approaches. Here experiments are conducted on three challenging
benchmarks: KITTI [95], MOT16 [110] and UA-DETRAC [159]. On the
first two datasets, the effectiveness of the proposed approach is verified on
tracking objects in scenarios with varied dynamics and platforms. The last
dataset is involved with the impact of environmental illumination and adverse
weather factors. Thus, we evaluate the robustness of the proposed approach as
well as its performance when synthesized with trackers introduced in previous
chapters. Since the proposed approach adopts batch process for computa-
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tional efficiency, its impact on tracking performance is also explored, which
is reported in the beginning of the experimental part. Through an additional
runtime analysis, it shows that the proposed approach can permit a real time
speed in most use cases.

5.3.1 Experimental Setup

Since this thesis focuses on object tracking in traffic scenarios and the main
topic of this chapter is about reidentification of multi-objects, the most re-
lated datasets for evaluation are the benchmarks of KITTI [95], MOT16 [110]
and UA-DETRAC [159]. The dataset of MOT16 consists of video sequences
filmed with cameras installed on varied platforms from a small trolley to trams.
It mainly observes behavior of crowded pedestrians yet with different viewing
angles. In the UA-DETRAC dataset, the camera is installed on high infras-
tructures like poles of traffic lights or street lamps to monitor the traffic flow,
especially the vehicles, yet under different illumination andweather conditions.
In the KITTI dataset, cars, pedestrians and cyclists are all observed in traffic
scenarios. The images are taken from a camera which is mounted on a moving
vehicle for test cases with varied dynamics. In all three benchmarks there are
totally about 27000 images with a resolution in the range of 0.3 ~ 2mega pixels.
All benchmarks provide datasets for both training and test purpose. Reference
detections are also given for the a fair comparison with different approaches.

In experiments, the evaluation follows the CLEARMOT protocol [79] with six
main metrics: the Multiple Object Tracking Accuracy (MOTA), the Multiple
Object Tracking Precision (MOTP), the ratio of mostly tracked (MT) and
mostly lost targets (ML), the number of identity switches (IDS) and the number
of track fragments (FR). The MOTA value takes the number of false positives
Fp(t), false negatives Fn(t) and identity switches IDS(t) as tracking errors and
is interpreted as MOTA = 1 −

∑
t

(
Fp(t) + Fn(t) + IDS(t)

)
/
∑

t GT(t), where
GT(t) denotes the ground-truth at time t. The MOTP value is measured by
the overlap ratio between the estimated object and its groundtruth. These
two metrics (especially the first one) are employed in the vast majority of
research works to evaluate the performance of tracking approaches. Detailed
description about above metrics is provided in Table 5.1.
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Metric Description
MOTA ↑ The accuracy in terms of false positives, missed targets and identity switches.
MOTP ↑ The alignment between matched GT and predicted bounding boxes.
MT ↑ The ratio of groundtruth tracks that are covered by a hypothesis for at least 80%.
ML ↓ The ratio of groundtruth tracks that are covered by a hypothesis for at most 20%.
IDS ↓ The total number that an object switches its matched GT identity.
FR ↓ The total number of times a GT trajectory is fragmented/interrupted.

Table 5.1: Description about evaluation metrics on tracking performance [159]. The symbol of
an up-arrow means that higher values are preferred. And a down-arrow implies that lower values
are better.

Since in real cases like ADAS and automated driving systems the data is mostly
processed online, to fulfill such requirement, an online mode is also employed
for the proposed approach, i.e., in experiments the association is forced to be
conducted only on the frames and detections up to the current frame. For
parameter settings2, in the proposed approach, the velocity of each detection
hypothesis is estimated in a neighborhood of θt = 3 frames. The gating radius
θp is determined by the larger dimension of the object size, which is scaled
by a factor of 2. It empirically sets the parameters λ = 5 and µ = 1. The
thresholds θa and θz are respectively set to 0.5 and 0.3. The balancing factor γ
is equal to 0.5. As the association is always done batch-wisely, if the sequence
length is not an integer number of it, there will be unprocessed frames at the
end of the sequence. To prevent such effect, the last sequence segment is
treated as an additional batch, disregarding the number of its included frames.
All experiments are preformed on a laptop platform with an Intel i7-3740QM
CPU of 2.7GHz and a memory of 8GB. The proposed approach is named as
JCSTD and implemented in C++ and runs in a single thread3.

2 Most parameter settings in the proposed approach are consistent with those approaches using a
similar spatial or temporal constraint. Thus, a fair comparison is guaranteed.

3 In the published work [145], the proposed approach is implemented in MATLAB. For appli-
cation in automated driving system, it is refactored by C++ and the corresponding runtime
measurement is also updated.

108



5.3 Evaluation

5.3.2 Ablation Study on Batch Process

Up to now, there are still two parameters remaining unsettled, i.e., the batch
size fl and ft . However, the selection of both parameters is not trivial, because
they both strongly affect the association accuracy. In the proposed approach,
the batch size fl corresponds to the maximal length of generated tracklet,
with the assumption that the object velocity is nearly constant across included
frames. Therefore, the parameter fl should be well selected to not breach this
assumption. A feasible idea is to determine the batch size fl according to the
frame rate of tested video. As sequences from evaluated datasets are recorded
differently, the optimal batch size fl should be searched based on experiments.
Simultaneously, the optimal batch size ft is searched in the same experiment
due to its relationship with fl (i.e., ft = N fl) revealed in Section 5.2.4. Here
the training data from three benchmarks is utilized due to that groundtruth
labels for their testing data are not available. For each dataset, the parameters
fl and N are respectively tested in a range of 5 ≤ fl ≤ 30 and 2 ≤ N ≤ 12.
The corresponding MOTA values in terms of both parameters are illustrated
by heatmap in Fig. 5.3. From experimental results, it is clear that the optimum
batch sizes for each dataset are strongly correlated with the frame rate, the
camera status and the observed object behavior, discussed as follows:

KITTI: Although sequences are recorded with a unified frame rate of 10fps,
since the camera moves over time, the motion model of constant velocities
for objects in image is only valid in a few number of frames. As a result,
the optimal MOTA value is situated at a very small batch size of fl = 5.

MOT16: Most sequences in this dataset are recorded by frame rate range of
25 ~ 30fps. Since pedestrians are observed in very crowded scenarios, the
motion estimation for long periods can be troublesome due to frequently
occurred inter-class occlusion. Hence, a small batch size fl = 10 performs
better in this case (Fig. 5.3 (f)).

UA-DETRAC: Video sequences in this dataset are recorded with a unified
frame rate of 25fps. As the camera observes the traffic flow, especially
the vehicles on the road which are usually with a high density, the object
number varies quickly over time. Hence, the optimum is located at a small
batch size of fl = 10 .
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Figure 5.3: For each dataset, parameters fl and N are respectively tested in a range of 5 ≤ fl ≤ 30
and 2 ≤ N ≤ 12. Corresponding MOTA values in terms of both parameters are depicted in the
form of heatmap.

Unlike the batch size fl , the optimal parameter N of all datasets is mostly
located in the range of 8 to 10. An explanation is that in tested sequences, the
maximal duration of interrupted case, e.g., the full occlusion, is less than this
length, which enables previously disappeared targets to be reidentified within
such a big window. Hence, the optimal parameter N as well as the batch size
fl is kept for each dataset in further experiments.
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5.3.3 Evaluation on Varied Dynamics

In automated driving systems, camera-based sensors are usually installed on
a moving platform, i.e., the vehicle, and applied in both static and dynamic
scenarios. Thus, this experiment is set to demonstrate the robustness of the
proposed approach in scenarios with different camera dynamics. The related
dataset is the KITTI benchmark. Since in this dataset, both pedestrians and
vehicles are available, the performance of the proposed approach is also eval-
uated on different object classes. The results for each class are respectively
reported in Table 5.2. As mentioned, in this dataset the camera is mounted on
the roof of a moving vehicle and mainly observes its frontal areas. Hence, in
the image, objects which are far away from the camera can be easily occluded
by those in nearby regions. Moreover, the motion of a single object is also hard
to estimate, because it is correlated with the motion of the vehicle. In spite
of these challenging issues, from the results, it can be seen that the proposed
method still surpasses the current top methodMCMOT-CPD [94] by about 2%
in terms of MOTA score for tracking cars. Among those compared methods,
two of them are related to the proposed approach. The first one is the method
SCEA [169]. It employs a similar spatial constraint which considers the lo-
cal relationship between tracked targets. However, as temporal constraints
are not integrated, it performs inferior to the proposed method especially in
associating long ranged objects. The second one is the method SSP [95]
which also batch-wisely processes tracks but within a flow network. Since it
mainly considers association in consecutive frames, compared with proposed
method, it has difficulties especially in dealing with occlusions. For tracking
pedestrians, the method MDP [168] ranks on the top. It is a reinforcement
learning method, which can better learn the complex behavior of targets such
as pedestrians. Since optical flow or deep feature is exploited in NOMT [29]
and MCMOT-CPD [94], they also achieve a higher accuracy than the pro-
posed approach, which demonstrates that high-level features indeed benefit
the tracking of non-rigid targets, e.g., pedestrians. Although in the proposed
method, only hand-crafted feature like the HOG [49] is employed, it achieves
a MOTA value with small gap to the top performing methods and ranks at the
second place in terms of MOTP value. Additionally, the proposed method also
achieves a very low number of ID switches as well as low ML scores, which
further demonstrates the effectiveness of joint constraints.
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Data Method Setting MOTA ↑MOTP ↑ MT ↑ ML ↓ IDS ↓ FR ↓ Time ↓ Hardware
K
IT

TI
C
ar

MCMOT-CPD [94] 78.90% 82.13% 52.31% 11.69% 228 536 0.01s 1×3.5GHz
NOMT [29] 78.15% 79.46% 57.23% 13.23% 31 207 0.09s 16×2.5GHz

LP-SSVM [156] 77.63% 77.80% 56.31% 8.46% 62 539 0.02s 1×2.5GHz
MDP [168] online 76.59% 82.10% 52.15% 13.38% 130 387 0.9s 8×3.5GHz
SCEA [169] online 75.58% 79.39% 53.08% 11.54% 104 448 0.06s 1×4GHz
CIWT [120] online 75.39% 79.25% 49.85% 10.31% 165 660 0.28s 1×2.5GHz
SSP [95] 72.72% 78.55% 53.85% 8.00% 185 932 0.6s 1×2.7GHz

DCO-X [112] 68.11% 78.85% 37.54% 14.15% 318 959 0.9s 1×3.5GHz
RMOT [170] online 65.83% 75.42% 40.15% 9.69% 209 727 0.02s 1×3.5GHz
ODAMOT [54] online 59.23% 75.45% 27.08% 15.54% 389 1274 1s 1×2.5GHz
TBD [171] 55.07% 78.35% 20.46% 32.62% 31 529 10s 1×2.5GHz
CEM [111] 51.94% 77.11% 20.00% 31.54% 125 396 0.09s 1×3.5GHz
JCSTD online 80.57% 81.81% 56.77% 7.38% 61 643 0.07s 1×2.7GHz

K
IT

TI
Pe

de
st
ri
an

MDP [168] online 47.22% 70.36% 24.05% 27.84% 87 825 0.9s 8×3.5GHz
NOMT [29] 46.62% 71.45% 26.12% 34.02% 63 666 0.09s 16×2.5GHz

MCMOT-CPD [94] 45.94% 72.44% 20.62% 34.36% 143 764 0.01 s 1×3.5GHz
SCEA [169] online 43.91% 71.86% 16.15% 43.30% 56 641 0.06s 1×4.0GHz
RMOT [170] online 43.77% 71.02% 19.59% 41.24% 153 748 0.02s 1×3.5GHz

LP-SSVM [156] 43.76% 70.48% 20.62% 34.36% 73 809 0.02s 1×2.5GHz
CIWT [120] online 43.37% 71.44% 13.75% 34.71% 112 901 0.28s 1×2.5GHz
CEM [111] 27.54% 68.48% 8.93% 51.89% 96 608 0.09s 1×3.5GHz
JCSTD online 44.20% 72.09% 16.49% 33.68% 53 917 0.07s 1×2.7GHz

Table 5.2: Evaluation of approaches on tracking cars and pedestrians on the KITTI benchmark
till April 2018. The up-arrow means that higher values are better while a down-arrow implies that
lower values are preferred. The proposed method and best values are marked in bold.

Some tracking examples are presented in Fig. 5.4. In the first sequence, the
vehicle with ID 8 (brown) is displayed in frame (1a) while a few cars are
moving across the intersection and occlude it in frame (1b) and (1c). Despite
multiple occlusions, the vehicle 8 is successfully reidentified in frame (1d)
based on the analysis of motion pattern among objects, illustrated in (1e).
In the second sequence, the camera along with the ego-vehicle sharply turns
right. Consequently, observed objects in the image move towards to the left
boundary (frame (2a)-(2d)). Although object positions change quickly in the
image, since the association is based on pair-wise motion patterns, no target is
lost. In the third sequence, a slowly walking pedestrian with the ID 27 (blue) is
detected in frame (3a), which can be regarded as a nearly static object. As the
vehicle moves forward, pedestrian 27 is occluded by another with ID 16 (pink).
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In frame (3c), the occlusion disappears but the pedestrian 27 is regarded as
a new object with the ID 33 (green). By performing constrained temporal
association, depicted in (3f), it is remapped to object 27 in frame (3d).

5.3.4 Evaluation on Varied Platforms

In the next experiment, the proposed approach is tested on the MOT16 bench-
mark to validate its performance on different platforms. In this dataset, video
sequences are recorded in a big range of view angles: from a small moving
trolley to elevated position on big transportation tools like trams. The main
observed objects are pedestrians walking in crowds. Compared with the pre-
vious experiment, the object density in these images are much higher, e.g.,
up to 70 pedestrians can appear in one frame. To release the computational
burden and maintain a fast processing speed, the maximal number of stored
pair-wise motion patterns for each object is limited to 10 in this experiment. A
random sampling is also conducted to choose these motion patterns. Tracking
results are reported in Table 5.3. According to the results, it can be seen that
the proposed approach achieves an acceptable MOTA score, which is slightly
less than that of the top method FWT [72] and comparable to the second one
NLLMPa [96]. In terms of online methods, the result of proposed method
is more satisfying, which ranks on the top comparing with other state-of-the-
art approaches. Moreover, the proposed approach achieves the best score on
the ratio of mostly lost targets (ML) among all compared approaches, which
implies that most of the targets are identified by the proposed approach. An-
other phenomenon can be seen from the table is that the average number of ID
switches of online methods (including the proposed approach) is higher than
those offline methods such as FWT [72] and NLLMPa [96]. This is due to the
fact that offline methods always consider detection hypotheses over the entire
sequence while online methods only deal with detections up to current frame.
As the observation window is greatly limited in online methods, the average
track length turns out to be much shorter, which can be inferred from those MT
scores and fragment numbers. Hence, the association for tracks becomes sub-
optimal without access to global information. Another fact is that the proposed
method only utilizes a small number of motion patterns to construct spatial
constraints, which also makes the association less robust, particularly for non-
rigid objects like pedestrians. Nevertheless, considering that the MOTA gap

114



5.3 Evaluation

between the proposed approach and the top method FWT is only 0.4%, the
minor sacrifice in accuracy leads to significant boost in run time performance,
i.e., about 10fps, which is suitable for most real time applications.

Data Method Setting MOTA ↑MOTP ↑ MT ↑ ML ↓ IDS ↓ FR ↓ Time ↓ Hardware

M
O
T
16

FWT [72] 47.8% 75.5% 19.1% 38.2% 852 1534 1.67s 8×3.5GHz
NLLMPa [96] 47.6% 78.5% 17.0% 40.4% 629 768 0.12s 1×3.6GHz

MDPNN16 [131] online 47.2% 75.8% 14.0% 41.6% 774 1675 1s 1×3GHz
MCjoint [81] 47.1% 76.3% 20.4% 46.9% 370 598 1.67s 1×2.4GHz
NOMT [29] 46.4% 76.6% 18.3% 41.4% 359 504 0.38s 16×2.4GHz
JMC [142] 46.3% 75.7% 15.5% 39.7% 657 1114 1.25s 1×3.2GHz

MHT_DAM [85] 45.8% 76.3% 16.2% 43.2% 590 781 1.25s 12×3.6GHz
CDA_DDALv2 [9] online 43.9% 74.7% 10.7% 44.4% 676 1795 2s 1×3.1GHz

oICF [84] online 43.2% 74.3% 11.3% 48.5% 381 1404 2.5s 2×2.3GHz
LNF1 [46] 41.0% 74.8% 11.6% 51.3% 430 963 0.24s 8×2.7GHz

EAMTT_pub [133] online 38.8% 75.1% 7.9% 49.1% 965 1657 0.08s 1×3.4GHz
OVBT [11] online 38.4% 75.4% 7.5% 47.3% 1321 2140 0.33s 1×2.5GHz
JCSTD online 47.4% 74.4% 14.4% 36.4% 1266 2696 0.11 s 1×2.7GHz

Table 5.3: Evaluation of approaches for tracking pedestrians on the MOT16 benchmark till April
2018. The up-arrow means that higher values are better while a down-arrow implies that lower
values are preferred. The proposed method and best values are marked in bold.

Tracking examples are displayed in the first two sequences of Fig. 5.5. The
first video is captured by a camera installed on a small trolley. Two pedestrians
respectively with the ID 4 (pink) and 5 (yellow) are crossing each other in
the image. Despite that pedestrian 4 is occluded in frame (1b), leveraging the
spatially constrained motion pattern, it is reidentified in frame (1c) and (1d). In
the second sequence, the camera is installed on a tram in an elevated position.
The tram sharply turns left while objects in the image are moving to the
opposite direction (frame (2a)-(2d)). Despite that, targets are still successfully
tracked, e.g., pedestrian 99 (purple) can be recovered after the occlusion. As
such association can be directly solved by the spatial constraint, the temporal
constraint here is not activated.

5.3.5 Evaluation on Synthesized Approaches

In the previous chapters, we already introduced trackers that can handle severe
occlusion and deteriorated vision conditions. However, they mainly focus on
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tracking of a single target. In this part, we explore their performance for multi-
object tracking by integrating them in the proposed approach of this chapter.
The utilized dataset is the UA-DETRAC benchmark [159], in which the camera
is installed at a very high position to monitor the traffic flow. Since images are
recorded under varying illumination and weather conditions, they are suitable
to test the synthesized tracking approach. Here, we prepare two versions of
synthesized approach, respectively denoted as JSCTD_O and JCSTD_V. The
first version is integrated with the tracker for handling severe occlusion while
the second one is integrated with the tracker for handling deteriorated vision4.
In both versions, we initialize a separate tracker for each target and replace
the matching operation (5.3) in the naive JCSTD with the correlation filter.
The tracker is reinitialized when a new detection hypothesis is associated with
the target. Otherwise, the state of the target is estimated by the tracker. The
tracking results are reported in Table 5.4.

Data Method MOTA ↑MOTP ↑ MT ↑ ML ↓ IDS ↓ FR ↓ fps ↑ Hardware

UA
-D

ET
R
AC

GOG [124] 14.2% 37.0% 13.9% 19.9% 3334.6 3172.4 389.51 4×2.9GHz
CMOT [8] 12.6% 36.1% 16.1% 18.6% 285.3 1516.8 3.79 4×2.9GHz
H2T [160] 12.4% 35.7% 14.8% 19.4% 852.2 1117.2 3.02 4×2.9GHz
IHTLS [42] 11.1% 36.8% 13.8% 19.9% 953.6 3556.9 19.79 4×2.9GHz
DCT [4] 10.8% 37.1% 6.7% 29.3% 141.4 132.4 2.19 4×2.9GHz
CEM [3] 5.1% 35.2% 3.0% 35.3% 267.9 352.3 4.62 4×2.9GHz
JCSTD 17.0% 36.9% 16.6% 17.6% 480.2 1611.5 44.09 1×2.7GHz

JCSTD_O 17.3% 36.8% 16.8% 17.4% 478.4 1603.7 10.25 1×2.7GHz
JCSTD_V 17.8% 37.2% 17.5% 17.0% 473.6 1594.2 13.14 1×2.7GHz

Table 5.4:Evaluation of tracking approaches on the UA-DETRAC till April 2018. To be consistent
with the original benchmark, the run time performance is given in fps. The up-arrow means that
higher values are preferred while a down-arrow implies that lower values are better. The proposed
methods and best values are marked in bold.

From the results, it is clear that the average precision of all tracking approaches
is apparently lower than in the other two datasets. This can be explained by the

4 At the moment, the trackers for handling severe occlusion and deteriorated vision cannot be
integrated together. Because the first one employs a segmentation approach, the recognized
object/part is in a pixel-level precision, which can result in historical samples with greatly varied
shapes and sizes, thus making temporal optimization of the second tracker difficult.
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relatively poor quality of detector utilized in UA-DETRAC. Since the camera
is installed on a high position, the image is captured nearly from a top view.
Hence, detection approaches, mainly learned for frontal views, can only yield
a suboptimal performance. Moreover, vehicles with deformable shapes such
as buses or trucks with multiple sections or containers frequently appear in the
image but are difficult to be precisely detected. In spite of these factors, the
proposed approach JCSTD still outperforms other state-of-the-art methods in
terms of most metrics. By integrating the tracker for deteriorated vision, the
JCSTD_V achieves the top performance in four metrics, i.e., MOTA, MOTP,
MT and ML. Especially in the first and fourth metric, the gain is about 1%,
which is benefited from a better object matching in deteriorated vision (with
examples shown in Fig. 5.5 (3) and (4)). In comparison, by integrating the
tracker with severe occlusion handling in JCSTD_O, the performance is not
much boosted as in JCSTD_V. The reason is that in these nearly top view
images, the occlusion ratio is not so high as in previous experiments and some
partially occluded objects can be directly recognized by the reference detector
(see Fig. 5.5 (3a)-(3d)). Thus, the profit by employing the occlusion tracker
is limited. On other metrics, the DCT method [4] shows the lowest number
in both ID switches and fragments. However, this result is attained at the
cost that only a few objects are persistently tracked (low MT ratio) while a
plenty of true targets are lost (high ML ratio). In contrast, by incorporating the
joint constraint in JCSTD as well as its extended versions, the ratio of tracked
targets is significantly increased while the number of lost objects is little. For
the runtime performance, it can be seen that by integrating external trackers,
the speed of naive JCSTD declines about 30fps in JCSTD_O and JCSTD_V.
However, their speed are still comparable to the naive JCSTD in previous
experiments, which is due to the fact that the object number in UA-DETRAC
is smaller than in the other two datasets. The GOG approach [124] is the fastest
one with a speed of less than 400fps. This approach utilizes a flow network and
searches the min-cost flow by a fast implemented dynamic programming. As
it only considers the motion of a single object and conducts association mainly
between successive frames, more association errors occur, e.g., in ID switch,
than the joint constraint-based method, which further proves the effectiveness
of proposed approach.
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5.3.6 Runtime Performance Analysis

To reveal crucial impact factors on the runtime performance, the average time
cost over all datasets is plotted for each stage of the proposed approach aswell as
for the total procedure in terms of object number in Fig. 5.6. From the second
plot, it can be seen that in the proposed approach the time cost for tracklet
creation is linear to the object number. This is due to the fact that the tracklet
linearly grows with its assigned detection hypotheses. As the maximal time
never exceeds 4 milliseconds, it is negligible in comparison with other stages.
In contrast, the association with spatial constraints is the most time-dominant.
As motion patterns are created pair-wisely, the curve tends to fit an exponential
function along with increased object number (see Fig. 5.6 (c)). As for the
temporal constraint, its processing time is much shorter and almost equals the
half of the time by the spatial constraint, as shown in Fig. 5.6 (d). This can be
credited to the AL-ICM approach, which is capable to solve large association
problem at a relative low computational burden. Regarding the total processing
time, a speed of nearly 10 fps can be achieved if no more than 50 objects are
tracked. Although our approach is not the fastest one in all experiments, it is
still capable to run in real time. Note that the proposed method runs only in a
single core, there is still space for improvement. Considering utilizing multi-
threads or GPU implementation, a faster processing speed is still possible to
be achieved.

119



5 Tracking with Multi-Object Reidentification

objects
0 20 40 60 80

tim
e 

(s
)

0

0.05

0.1

0.15

Average time cost on
tracking

objects
0 20 40 60 80

tim
e 

(s
)

#10 -3

0

1

2

3

Average time cost on
tracklet creation

(a) (b)

objects
0 20 40 60 80

tim
e 

(s
)

0

0.02

0.04

0.06

0.08

Average time cost on
spatial constraints

objects
0 20 40 60 80

tim
e 

(s
)

0

0.02

0.04

Average time cost on
temporal constraints

(c) (d)

Figure 5.6: Plot (a) shows the average time cost of the proposed tracking approach over all
datasets in terms of object number. Plots (b) to (d) respectively show the average time cost for
each individual stage: tracklet creation, association by spatial and temporal constraint.
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This thesis has addressed challenging problems of visual object tracking in traf-
fic scenarios, i.e., severe occlusion, deteriorated vision andmulti-object reiden-
tification. For solving these problems, novel tracking solutionswhich aggregate
the information in various levels from image feature to object parts/groups are
proposed in this thesis. All these solutions are only based on image sequence
captured by a monocular camera and do not require additional sensors.

To track objects undergoing severe occlusion, a novel tracker employing part
filters is presented in Chapter 3. By analyzing the variation of appearance
model and filter response, this tracking approach can successfully recognize
the occurrence of occlusion. Unlike existing approaches, in this tracker, both
the number and size of part filters are determined quite flexibly and thus adapted
to visible areas of the target. Relying on a masking process, this tracker can
provide a pixel-level precision in distinguishing the fore- and background image
regions. A color prior is also embedded into the final response map to boost
the inference of full object tracker. Extensive experiments have demonstrated
that in comparison with state-of-the-art approaches, the proposed tracker has
achieved great success in dealing with severe occlusion, particularly the long-
termed ones. A further study on more generalized scenarios revealed that
the proposed tracker performs outstandingly in tracking various object classes
under varied conditions, which has verified the generalization ability of the
proposed tracker. Since this tracker and its utilized part filters are based on the
technique of the kernelized correlation filter, the vast amount of computation
can be completed by element-wise operation in the frequency domain. In
cooperation with a dynamic filter management framework, the tracker provides
a fast processing speed for real time applications.

In Chapter 4, a novel tracker employing both channel-wise and temporal
weighting is presented for object tracking with deteriorated vision such as
caused by low environmental illumination or adverse weather. The tracker
is tailored from the baseline framework of the KCF but decomposes visual
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features into several small expert filters. Through exploring the reliability of
each expert, the proposed tracker is able to extract the most discriminative
visual features. By searching confidential training samples in the time do-
main and integrating the human memory model, which is interpreted by the
forgetting curve, the tracker can be learned without the influence of corrupted
samples caused by contaminated vision. Both above steps are successfully
incorporated in one learning framework. Due to the biconvexity property of
the objective function, both problems can be jointly solved by the Alternate
Convex Search method. Experiments on image datasets captured under low il-
lumination conditions demonstrate the improved state-of-the-art performance
of the proposed tracker. A more comprehensive study reveals that the pro-
posed tracker performs robustly against various challenging factors such as
color, weather, time, vehicle class and behavior. Leveraging an elaborate de-
sign, the proposed tracker can be directly learned in the frequency domain,
only with little computational burden. Thus, this tracker also permits a real
time performance.

The first two approaches mainly focus on tasks related to tracking of a spe-
cific target, e.g., estimating the trajectory of a partially occluded pedestrian or
following the car ahead of the ego-vehicle during night. In other traffic scenar-
ios, it also requires to analyze the behavior of multiple objects based on their
trajectories, e.g., for surveillance purpose. Such task is related to multi-object
tracking, which can be cast to the object reidentification/association problem,
thanks to recent progress in object detection techniques. However, existing
methods still have difficulties in dealing with camera motion and ambiguities
between long ranged objects. Regarding these issues, a novel multi-object
tracking approach within a unified framework to solve both challenges is pre-
sented in Chapter 5. This approach is based on the strategy of joining both the
spatial and temporal constraints. The first constraint analyzes pair-wise motion
pattern between objects to predict the target locationwhile the second one relies
on a subgraph-based model to recover long time vanished objects. To main-
tain a seamless cooperation between both constraints, a 3-stage scheme within
an alternative optimization fashion is proposed for computational efficiency.
Additionally, new rules are introduced to effectively deal with association for
tracklets-to-tracks, so that the processing time is decoupled from the length of
tracklet. By extensive experiments with setups in varied camera dynamics and
view angles, the proposed approach has been verified with comparable or even
improved state-of-the-art performance. This approach is also successfully in-
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tegrated with trackers presented in previous chapters and exhibits a promoted
tracking precision in more challenging test scenarios. Considering the run
time performance, the proposed approach is able to run online with a speed of
more than 10fps in most cases.

In the future research, deep networks can be utilized to learn a better ap-
pearance representation of tracked targets, especially in the case of occlusion
recognition, as deep features can encode much richer information than con-
ventional hand-crafted ones. Moreover, for a more accurate identification of
visible object parts, convolutional neural networks can also be adopted in the
masking process, since they have achieved more encouraging results for recent
semantic segmentation tasks. For handling deteriorated vision, the presented
tracking approach in this thesis mainly focuses on the algorithmic level, which
is decoupled from the imaging process. Thus, approaches for enhancing the
image quality can be integrated into the proposed tracker to boost the feature
selection as well as learning the classifier. Employing additional sensors such
as the lidar can also provide valuable information to help the target perception
especially in low illuminated scenarios. Normally, surveillance tasks are more
interested in the locations or trajectories of targets in the real world. Hence,
an extension of current multi-object tracking framework is to integrate the 3-D
environmental information based on depth sensors such as the high precision
radar or lidar. Since an automated driving vehicle is usuallymounted withmul-
tiple cameras to perceive its surroundings in a full angle, object tracking across
images by different cameras is a promising direction for further development
of the proposed tracking framework. Nevertheless, the computation amount
increases along with the complexity of the exploited approach, which in turn
negatively impacts its runtime performance. Thanks to the rapid development
of processor industries, this problem can still be solved by deploying advanced
hardware, such as high-end GPUs.
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A AL-ICM Algorithm

The complete AL-ICM algorithm utilized in this thesis is presented as follows:

Algorithm 1 The complete AL-ICM algorithm.
1: Input: Square cost matrix Ω of size n × n, iteration number Niter ;
2: Output: Label vector lout ;

Procedure:
3: Set initial labels l = ones(n,1) and initial iteration i = 1;
4: For each iteration i ≤ Niter , do
5: Generate new labels lnew = ICM(Ω, l);
6: Adjust lnew so that its smallest label is equal to one and

all its labels are successive nature numbers.
7: If lnew equals l
8: break;
9: End
10: l = lnew;
11: End
12: lout = l;
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Algorithm 2 The ICM algorithm.
1: Input: Square cost matrix Ω of size n × n, label vector l with a total

number of n;
2: Output: Label vector lnew;

Procedure:
3: Initialize new label vector lnew = ones(n,1);
4: Get maximum label lmax = max(l);
5: For each column i = 1 : n, do
6: Initial buffer b = zeros(lmax,1);
7: For each row j = 1 : n, do
8: If j = i
9: continue;
10: End
11: ltmp = lnew( j) and v = Ω( j, i);
12: If v < 0
13: b(ltmp)+ = v;
14: End
15: End
16: Set mi = lmax + 1 and mx = 0;
17: For each k = 1 : lmax , do
18: If b(k) < mx

19: mx = b(k);
20: mi = k;
21: End
22: End
23: lnew(i) = mi;
24: If mi > lmax

25: lmax = mi;
26: End
27: End
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Visual tracking techniques have enjoyed a rapid development in recent 
years. However, difficulties still exist in dealing with challenging scenarios 
like severe occlusion, deteriorated vision and long range multi-object 
reidentification. To solve the problem of tracking severely occluded objects, 
a part filter-based tracker is employed, in which the occurrence of occlu-
sion is recognized through the variation of the appearance model and the 
classifier response. The part filter is only learned on the visible object area 
identified in pixel-level precision by a masking process and is demonstrated 
with high robustness in experiments. To handle tracking under deteriorated 
vision, a new tracker is presented, which decomposes visual features into 
several expert filters and searches the most discriminative one based on 
their estimated reliabilities. Additionally, it performs an optimization in 
the temporal domain to filter out corrupted samples. Both procedures 
are integrated in a single learning scheme and the trained tracker yields 
favorable performance in cases with low illumination or adverse weathers. 
To address the multi-object tracking problem, a method is proposed based 
on the strategy of joining both “spatial” and “temporal” constraints. The 
first constraint encodes the relative motion between targets while the 
second one focuses on stitching trajectory pieces in a long time range 
by graph partition. Such frameworks can cope with both camera motion 
and long-time full occlusion and exhibits an improved state-of-the-art 
performance in challenging scenarios. 
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