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ABSTRACT

Flying robots are one of the most important inventions in robot history. Widely known as
drones or unmanned aerial vehicles (UAVs), flying robots have a wide range of applications

and bring major impacts to academia, commercial sectors, government, and society.

Over the past few decades, flying robot research has focused on autonomy, which
includes sensing, control, localization, mapping, and planning, while paying less attention
to the sociability of the flying robots. Focusing on both autonomy and sociability, this
thesis proposes the concept of companion flying robots, where the flying robots are expected
to accompany and interact with us in our daily lives. Among all the challenging tasks
involved, we believe that achieving a safe, intuitive, natural, and social flying behavior is of
vital importance for a companion flying robot. Having this priority in mind, we focus on
three topics to realize the goal of companion flying robots: (i) a holonomic hexacopter for
human-robot interaction (HRI), (i) a general model for human accompanying, and (iii) a

sensing interface for human understanding.

First, we design a new form of hexacopter that has several merits for HRI in companion
flying robots. As opposed to a conventional flying robot, the proposed holonomic hexacopter
is able to maintain attitude while flying horizontally; it does not need to tilt. As a result,
the holonomic hexacopter provides intuitive flight motions from the user’s point of view
and achieves better flight stability from the control perspective. The holonomic hexacopter
also provides a stable video feed for high level tasks such as human detection without the
need of an additional heavy gimbal platform. Moreover, thanks to its six degree-of-freedom
motion, the holonomic hexacopter can produce 3D force naturally in the air and achieves

safer physical interaction with user without a complex dynamic model.

Second, we design a general model to unify various human accompanying behaviors
of a companion flying robot. Human accompanying, including human approaching, fol-
lowing, leading, and side-by-side walking are important behaviors of a companion flying
robot. Robots to-date focus on one or two human accompanying modes; there is no existing
work to unify these modes for robots to achieve natural and rich interaction with humans. In
this work, we propose a two-level model to achieve this goal. At the top level, we adopt
a hierarchical finite state machine (FSM) to organize the behavior flow of a companion
flying robot. The hierarchical FSM has the merits of simplicity and expandability, where

the robot, environment, and human states can be incorporated into the model to achieve a



rich HRI behavior with a person. At the bottom level, we use a relative positioning control
method for robots to achieve smooth and natural accompanying motions. While the top-level
hierarchical FSM alone can be viewed as a rule-based approach, together with the bottom
level relative positioning controller, they form a powerful hybrid approach that is able to

achieve natural and rich HRI behaviors with minimal computational load.

Finally, we design a human sensing interface for companion flying robots to have a better
understanding of user. We study, implement, and improve several human sensing techniques,
such as human detection, human body orientation estimation, hand detection, hand shape
recognition, facial expression recognition, and face alignment. While we only focus on
human detection with our companion flying robot in this work, we aim to integrate multiple

human sensing techniques for a more advanced companion flying robot in the future.
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Chapter 1

Introduction

1.1 Motivation: Companion Flying Robots

John used to jog alone near his house after a long work day. But now things have
changed. Every day, his companion flying robot, Mamoru, jogs with him. Mamoru likes to
follow him during jogging, just like a pet chasing its master. John feels happier and more
motivated when jogging with Mamoru. Sometimes, when the jogging path is more spacious,
Mamoru will fly to his side and jog side-by-side with him. There were a few times where John
ran too far away from his house and got lost. There was no worry as Mamoru could always
guide him back. Today John ran along the river at sunset. Through hand gestures, he asked
Mamoru to fly across the river to take a photo for him. Mamoru did a great job, and John
smiled happily. Interestingly, Mamoru understood his emotion through facial expression
recognition and ‘jumped’ around in the sky to express its happiness. John laughed and had

a deeper connection with Mamoru.

Figure 1.1 illustrates a scene when John is jogging with Mamoru. Mamoru is one kind
of companion robot, which can perform various human-robot interaction (HRI) tasks with
us. In addition to accompanying us during jogging and taking photo for us like a friend,
Mamoru can also accompany our children to school like a bodyguard. We have a vision that
in the near future, everyone will have a companion flying robot in our daily lives, just like

we have a personal computer in our home or a smartphone in our pocket.

While the concept of “companion robot” is not completely new, companion flying
robots has very different features than other companion robots like humanoid robots and
pet robots. Specifically, flying robots have two major advantages. First, they can hover and
move freely in a 3D space. This could be a very useful feature in practice. For example,
imagining a person is walking up stairs. A conventional mobile robot without sophisticated
mechanics that allow it to “climb” up the stairs would have a hard time to continue following
the person. Similarly, a humanoid robot without a robust walking algorithm would have
difficulties to continue following the person. In contrast, a flying robot is not affected by the
stairs and can continue following the person. Second, flying above the ground enables flying

robots to see the surrounding environment with a better field of view and less chance to



Figure 1.1: A sketch of the concept of a companion flying robot.

be blocked by obstacles. This is especially useful when companion robots perform routine

tasks such as detecting a person, performing localization, or planning a path.

1.2 Position of Companion Flying Robots

In literature, researchers have been using many terms that have a similar meaning with
the term “flying robot”. These include unmanned aerial vehicle (UAV), micro-aerial vehicle
(MAV), unmanned aircraft system (UAS), aerial robot, autonomous aircraft, robotic aircraft,
vertical take-off and landing (VTOL) aircraft, multicopter, multirotor, and drone. In this

dissertation, we will use the terms “flying robot”, “UAV”, and “drone” interchangeably.

By defining vertical axis as degree of autonomy and horizontal axis as degree of so-
ciability, we illustrates the position of a companion flying robot in Fig. 1.2. Traditionally,
flying robots are mostly controlled manually by human operators (low degree of autonomy)
and they have low sociability. We call these flying robots “remote control UAV.” Gradually,

along the vertical axis of autonomy, robotic researchers have been improving the autonomy
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Figure 1.2: Position of a companion flying robot (autonomy + sociability = companion).

aspects of flying robots such as better modeling, more robust control, and path planning
algorithms. We call these flying robots “autonomous UAV.” Essentially, autonomous UAVs
are less dependent on human operators and are able to perform some simple flight tasks

autonomously.

On the other hand, along the horizontal axis of sociability, HRI researchers have been
improving the social aspects of flying robots such as designing a flying robot for safer
HRI, developing a motion planning model that is more comfortable to humans for flying
robots, and building an intuitive communication interface for flying robots to understand
humans. We call these flying robots “social UAV.” Different from autonomous UAVs, social
UAVs often have low degree of autonomy. Most HRI researchers solely focus on social

aspects and manually control a flying robot during HRI experiments.

We see companion flying robots as both autonomous and social flying robots. In addi-
tion to the autonomy aspects, such as aircraft modeling, stabilization control, and motion
planning, companion flying robots must also focus on the sociability aspects such as safe

HRI and intuitive communication interface for HRI.



1.3 Challenges towards a Companion Flying Robot

Designing a companion flying robot is not a trivial task. First of all, the companion
flying robot needs to ensure the safety of user, its nearby objects, and the robot itself during
flight operation. In addition, it involves multi-disciplinary knowledge across hardware
design, control engineering, machine learning, social robotics, ergonomic design, and law

enforcement fields.

Safety issue. Compared to a balloon-type flying robot, a rotor-type flying robot has the
merits of higher mobility and less susceptible to wind disturbance during flights. However,
due to their inherent characteristic, a rotor-type flying robot usually needs to roll and pitch
in order to move horizontally. While moving horizontally, since the flying robot changes its

attitude, a few problems rise:

e From the control perspective, the flying robot is less stable (more likely to crash and

injure people around).

e The flying robot is susceptible to wind disturbance (less precise flight and possibly hit

the user) because it cannot generate horizontal thrust to counter the wind disturbance.

e Horizontal flight motions not natural and intuitive. From our experience, novice users

always feel panic when they make the flying robot to move horizontally.

Hardware design. An ideal companion flying robot should have long flight time and be
small to fit in the palm of our hand. However, with today’s battery technology available on
the market, a palm-size flying robot could hardly fly longer than ten minutes. Besides, a
flying robot also has the noise vs. mobility issue. On one hand, the rotor-type flying robot
has high mobility but noises produced by the propellers make users feel uncomfortable and
unsafe. On the other hand, a balloon-type flying robot is quiet but has low mobility and is
strongly subjected to wind disturbance. Robotic researchers are still actively developing new
hardware prototypes, new system modeling, and new control algorithms in order to realize a

more robust flying robot.

Control engineering. Flying robots have a few major challenges in control engineering—it
needs to be actively controlled for flight stabilization. More importantly, most flying robots

have coupled motion control, that is, roll/pitch orientations and horizontal motions cannot



be controlled separately. This is a huge limitation as it makes all the conventional algorithms
developed for ground mobile robots not directly applicable to a flying robot. We believe that
these challenges are the reasons that makes the development progress of a companion flying

robot slow.

Machine learning. Researchers are still actively developing localization, mapping, path
planning, and obstacle avoidance algorithms for flying robots. Current state-of-the-art
methods still have much room for improvements in order to deal with moving objects, sensor

or environmental noises, and flying robots’ limited onboard computational resources.

Social robotics. Current state-of-the-art flying robots focus on autonomy and lack of
sociability. For instance, in the case of Mamoru, instead of always following John at a
fixed distance from behind, Mamoru should accompany John in a natural way like a living
being. When the time is right, either stimulated by the environment context or John’s
direction, Mamoru can fly side-by-side with John, guide John at front, or carry out other

accompanying modes.

Ergonomic design. As flying robot technology advances, the ergonomic design of the
hardware would become more important. For example, instead of designing an optimal flying
robot from the control and engineering perspective, we should also consider its safety and
psychological effect onto the users. This is a very important topic in the HRI field. Without

these considerations, humans and flying robots cannot carry out tasks efficiently.

Law enforcement. Many countries are imposing new laws for flying robots in order
to ensure public safety. For example, in Japan, if a flying robot weights more than 200
grams, it is forbidden to fly the robot in populated area (more than 4,000 people per
square kilometer). In addition, flights are only allowed in the daytime within visual line of
sight. Flight pilot also needs to maintain a certain operating distance between the flying
robot and the human operator or properties on the ground. In general, it is very hard to fly a

robot outdoor without permission and careful consideration in many countries.

1.4 Scope and Contributions of This Dissertation

The multi-disciplinary aspects mentioned in the previous section are the issues that we

need to tackle in order to realize a companion flying robot like Mamoru. Overcoming all of



them at once is difficult, if not impossible. Among the listed challenges, we believe that (i)
safety (of the flying robot and its user), (ii) natural HRI in between the flying robot and its
user, and (ii1) an interface for companion flying robot to understand human are the three
most important topics toward our goal. Therefore, we focus on three main topics in this
dissertation—a holonomic hexacopter, a human accompanying model and a human sensing
interface. In this section, we discuss the relationships between the three main topics and

summarize our contributions in this dissertation.

Figure 1.3 illustrates the contributions of the three chosen topics toward the goal of a
companion flying robot. The holonomic hexacopter enables intuitive flight motions and
possesses enhanced flight stability; the human accompanying model has two levels—the
top level acts as a global behavior controller for companion flying robot to achieve rich
HRI while the bottom level acts as a local motion controller for companion flying robot to
achieve natural and smooth accompanying motions; the human sensing interface focuses
on human/user understanding by using onboard camera and sensors. As shown in the
figure, the three topics are connected to each other. For example, the holonomic hexacopter
provides the robot and environment states for the human accompanying model. Thanks to
the holonomic flight, the hexacopter is also able to provide a stable video feed for the human
sensing interface to perform high-level tasks without the need of a mechanical gimbal. On
the other hand, the human sensing interface provides the human states information for
holonomic hexacopter and human accompanying model. Finally, the human accompanying
model process all the received human, robot, and environment states information and output
high-level commands to holonomic hexacopter and human sensing interface to perform

robot control and human accompanying.

Figure 1.4 illustrates an overview of this dissertation. In the following, we present our

contributions in each chapter of this dissertation:

e Chapter 2

First, we present a research survey on flying robots, focusing on papers published at
four top robotic conferences and four top robotic journals from 2006 to 2016. Interest-
ingly, by categorizing the related papers into several common robotic topics, we found
a pattern that is reminiscent of the mobile robots research. We provide a big picture
of the research trend in flying robots and list up state of the arts achieved by some

autonomous flying robots. After, we review HRI researches on flying robots in detail.
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Chapter 1 — Introduction of Companion Flying Robots Chapter 2 — Literatures Review

Chapter 5 — Human Detection and
Human Body Orientation Estimation

Chapter 3 Chapter 4 - Chapter5,6,7,8
Holonomic Accompanying Human Sensing

Hexacopter Model Interface

Chapter 6 — Hand Shapes Detection

Chapter 7 —Facial Expression Recognition

Chapter 8 — Face Alignment

Chapter 9 — Conclusion

Figure 1.4: Dissertation overview.



e Chapter 3

Most flying robots, such as helicopters, quadcopters, hexacopters, and octocopters,
have coupled motion control; they must perform pitch/roll motion in order to move
forward-backward/leftward-rightward. In other words, horizontal motions cannot be
controlled independently without changing roll/pitch orientations. This is undesir-
able. Instead, we adopt a unique design such that a hexacopter can move horizontally
while maintaining its level orientation. We derive the kinematic model and show
that the new design can achieve holonomic motions. Moreover, it can be viewed
as a generalization of the conventional hexacopter. The holonomic design leads to
three main merits: (i) easier navigation with decoupled control, (ii) stable video feed
without additional gimbal, and (iii) safer HRI.

e Chapter 4

Accompanying a human is an important topic not only for companion flying robots
but also for mobile robots. Different from previous works, where the robots focus on
one single mode, our human accompanying model can be viewed as a generalized
framework that unifies multiple modes such as approaching a person from a distance,
following a person from behind, walking side-by-side with a person, leading a person
at the front, and circling a person. We consider three important aspects in our model—
human’s various states, environmental context, and robot’s states. This model is crucial
for flying robots to achieve a natural accompanying behavior next to a person and

excel in high level autonomy tasks.

e Chapter 5

Human sensing techniques, such as human detection, body orientation estimation,
hand shape detection, facial expression recognition, and facial feature tracking are
indispensable skills for companion robots to understand humans. We believe that
a human sensing interface integrated with multiple human sensing techniques is
imperative for long term development of a robust companion robot. This is not easy
as it involves huge efforts on literature survey, implementation, testing, and system
integration. Developing such a comprehensive human sensing interface is our goal
towards a companion flying robot. We will discuss our contributions in four human

sensing techniques in Chapter 5-8.



In Chapter S, we present our first human sensing technique—a robust technique
to detect a human upper body and estimate human body orientation (HBO) in real-
time. Instead of using multi-class detections or relying on filtering methods such as
particle filters to improve the tracking performance, our method uses random forest
to perform a continuous and full 360° HBO regression. In addition, we find that
since the HBO labels (-180°<6<180°) are not continuous in the regression space, the
estimation results near to the -180° and 180° regions deteriorate significantly. To tackle
this problem, we propose a xy-based random forest regression that could improve
the estimation accuracy in both theory and the actual experiments. Our experiment
results show that the proposed method successfully estimates HBO in real-time with

regression error less than 25° for color images and less than 10° for depth images.

Chapter 6

We present our second human sensing technique—hand detection and hand shape
recognition. Hand detection and hand shape recognition are of vital importance for
HRI. Most previous works rely on image processing approaches such as skin detection
and depth thresholding for hand detection. These techniques are restricted by strong
assumptions and normally have low robustness in actual applications. In this chapter,
we focus on an appearance-based approach and propose a new feature extraction
method based on sparse pixel-pairwise intensity comparisons for hand detection. Our
method can be viewed as a generalized BRIEF descriptor and can be easily adopted
for other object detection or recognition tasks. We perform extensive experiments and
prove that our method achieves comparable results with normal, noisy, and occluded
hand images in term of both test accuracy and ROC. Our contribution includes: (i) a
new and simple feature extraction method that is robust against image noise, cluttered
backgrounds, and partial occlusion; (i1) combined with AdaBoost, we show that the
new feature descriptor is effective for hand detection; (iii) the new feature descriptor
has been rigorously compared with existing feature descriptors with a new hand

database that has very challenging image backgrounds.

Chapter 7

We present our third human sensing technique—facial expression recognition. Facial
expression recognition (FER) is a crucial technique for HRI. Previous methods have

been using different feature descriptors for FER but there is a lack of comparison
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studies. In this chapter, we aim to identify the best features descriptor for FER by
empirically evaluating five feature descriptors, namely Gabor, Haar, local binary
pattern (LBP), histogram of oriented gradients (HOG), and binary robust independent
elementary features (BRIEF) descriptors. We examine each feature descriptor by
considering six classification methods, such as k-nearest neighbors (k-NN), linear
discriminant analysis (LDA), support vector machine (SVM), and adaptive boosting
(AdaBoost) with four unique facial expression datasets. In addition to test accuracies,
we present confusion matrices of FER. We also analyze the effect of combined
features and image resolutions on FER performance. Our study indicates that the
HOG descriptor works the best for FER when image resolution of a detected face is
higher than 48x48 pixels.

e Chapter 8

We present our fourth human sensing technique—tface alignment, which is useful
for flying robots to estimate human head pose and have a better understanding of
human intention. Recently, it has been shown that random forest regressor can achieve
accurate and fast local landmark estimation when coupled with a global face shape
regularizer. In this chapter, we extend this approach and propose a new local forest
classification and regression (LFCR) framework in order to handle face images with
large yaw angles. We analyze each system component through detailed experiments. In
addition to the selection of feature descriptors and several important tuning param-
eters of the random forest regressor, we examine different initialization and shape
regularization processes. We compare our best outcomes to the state of the art and

show that our method outperforms other parametric shape fitting approaches.

e Chapter 9

We summarize our results towards realizing a companion flying robot and discuss

various potential future works and applications.

1.5 List of Publications

Most contributions described in this dissertation have first appeared in the following

publications:
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e Chapter 2

C. F. Liew and T. Yairi, “Quadrotor or blimp? Noise and appearance considerations
in designing social aerial robot,” in Proc. ACM/IEEE International Conference on
Human-Robot Interaction (HRI), March 2013, pp. 183-184.

e Chapter 3

C. F Liew and T. Yairi, “Towards a compact and autonomous hexacopter for human
robot interaction,” in Proc. Annual Conference of Robotics Society of Japan (RSJ),
September 2015, pp. 1-4.

C. F. Liew and T. Yairi, “Designing a compact hexacopter with gimballed lidar
and powerful onboard Linux computer,” in Proc. IEEE International Conference on
Information and Automation (ICIA), August 2015, pp. 2523-2528.

e Chapter 5

C. F. Liew and T. Yairi, “Human body orientation estimation with xy-based random
forest regression (submitted),” in Proc. 23rd International Conference on Pattern
Recognition (ICPR), 2016.

e Chapter 6

C. F Liew and T. Yairi, “Generalized BRIEF: A novel fast feature extraction method

for robust hand detection,” in Proc. 22nd International Conference on Pattern Recog-
nition (ICPR), August 2014, pp. 3014-3019.

C.F Liew and T. Yairi, “A new RGB-Depth hand shape database for natural gesture
interaction,” in Proc. 16th Meeting on Image Recognition and Understanding (MIRU ),
June 2013, pp. 1-2.

e Chapter 7

C. F. Liew and T. Yairi, “Facial expression recognition and analysis: A compar-
ison study of feature descriptors,” in IPSJ Transactions on Computer Vision and
Applications, vol. 7, pp. 104-120, August 2015.

C. F. Liew, “Machine learning techniques for facial expression recognition - A compar-
ison study of feature spaces and classification methods,” Master’s thesis, Department

of Aeronautics and Astronautics, The University of Tokyo, Japan, 2013.
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C. F. Liew and T. Yairi, “A comparison study of feature spaces and classification
methods in facial expression recognition,” in Proc. International Conference on
Robotics and Biomimetics (ROBIO), December 2013, pp. 1294-1299.

Chapter 8

C. F. Liew and T. Yairi, “Robust face alignment with random forest: Analysis of
initialization, landmarks regression, and shape regularization methods,” in /IEICE
Transactions on Information and Systems, vol. E99-D, no. 2, pp. 496-504, February
2016.

C. F. Liew, N. Yokoya, and T. Yairi, “Face alignment by using sparse initialization
and random forest,” in Proc. IEEE International Conference on Image Processing
(ICIP), October 2014, pp. 1-6.
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Chapter 2
Related Works

2.1 Background

Looking back into the past, most of the flying robots are in fixed wing [ 1-3], flapping
wing [4-06], and helicopter [7] forms. These flying robots used to be rare in the research
laboratories due to the high cost of sensors, control difficulties, and high maintenance
cost. However, flying robots started evolving at an unprecedented speed since pioneers
like X-UFO [8], STARMAC [9], and MIT Drone [ 0] adopted the quadcopter form. This
new form of flying robots makes control significantly easier and has lower maintenance
cost compared to fixed wing, flapping wing, and helicopter forms. Furthermore, the cost
of processors and sensors such accelerometer, gyroscope, magnetometer, and barometer
dropped significantly in the late 2000s. Thanks to these reasons, the development progress
of flying robots in all research, industrial, commercial, and Do-It-Yourself (DIY) sectors

have been advancing rapidly over the past few years.

Among the commercial flying robots, DJI [11] and 3DR [12] are perhaps the most
famous companies to date. DJI produces a wide range flying robots, including its Phantom
series that focus on the aerial photography market [ | 3], Matrice 100 platform for the research
community [ 4], and AGRAS MG-1 platform for precision agriculture applications [15]. On
the other hand, 3DR focuses on open source systems such as the Solo flying robots [16]
and the Pixhawk flight controller [17]. In addition to the applications mentioned above,
flying robots have huge possibilities and essentially can be viewed as a flying smartphone
[18]. Potential applications includes package delivery [19], aerial mapping [20], security
enhancement [2 ], fire monitoring [22], infrastructure inspection [23], search and rescue [24],

entertainment [25], robotic education [26], and even drone racing [27].

In this chapter, we provide a big picture view of the research trends in flying robots and
list state-of-the-art achievements by some autonomous flying robots. After, we review HRI
research of flying robots in detail. Table 2.1 summarizes the features comparison in between
our companion flying robot and others. As mentioned in the Sect. 1.4, our companion flying

robot focuses on three main points:

e Achieve safer HRI by designing a holonomic platform with decoupled control and
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Table 2.1: Feature comparison in between our companion flying robot and others.

Decoupled itiz(lik:: Human }Li?;i?az((;iy Accompanying  Obstacle Lishtweicht !
control detection . model detection g &
feed estimation

Joggobot [28] X X A’ X a3 X X
FHR [29] X X X X At X N
Pestana et al. [30] X X A0 X N X X
Higuchi et al. [31] X X A8 X N X X
Papachristos et al. [32] X X al0 X X x X
3DR Solo [16] X Al A2 X X X X
Lily Camera [33] X al3 al2 X a? X X
Hover Camera [34] X X O X N X O
Parrot Bebop [35] X 13 x X X X x
DJI Phantom 4 [36] X o! a4 X a? A s X
Lim & Sinha [37] X X @) X a® al6 x
Naseer et al. [38] X X O X N Als X
Higuchi et al. [39] @) al7 X X X X X
Ours O o' @) ) O Al x

1'Less than 250 grams. 8 Color tracking. 15 Frontal only.

2 Marker tracking. 9 Following and circling only. 16 Subjected to available map.

3 Leading only. 10 Moving objects only. 17 Hard to mount camera.

4 Approaching only. 113p gimbal hardware. 18 Holonomic flight.

3 Balloon flying robot. 12 GPS tracking. 192D, 240° only.

6 Manual initialization. 13 Image processing techniques.

7 Following only. 14 Color & depth tracking.

stable video feed without additional gimbal. (Chapter 3).

e Achieve richer HRI by developing a human accompanying model that could unify
approaching, following, side-by-side walking, circling, and other flying modes
(Chapter 4).

e Achieve better HRI by integrating human sensing interfaces such as human detection
and human body orientation estimation with flying robots (Chapter 5).

2.2 State-Of-The-Art Flying Robots

Figure 2.1 illustrates a pie chart of the topic distribution of flying robots, focusing
on papers published on four top robotic conferences (IEEE International Conference on
Robotics and Automation (ICRA), IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), ACM/IEEE International Conference on Human-Robot Interaction
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(HRI), IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN)) and four top robotic journals (The International Journal of Robotics Research
(IJRR), IEEE Transactions on Robotics (TRO), IEEE/ASME Transactions on Mechatronics
(TME), Robotics and Autonomous Systems (RAS)) from 2006 to 2016. From the chart, we
can observe that there are large amount of hardware papers in the past ten years, including
papers (to name a few) on quadcopters [40—44], hexacopters [39,45-47], octocopters [48—

], coaxial flying robots [51-56], a helicopter [57], a tandem helicopter [58], a bicopter [59],
a Y4 flying robot [60], a trirotor flying robot [61], flying robots with fixed wings [62,63],

rotary wings [64,65], and flapping wings [66—70], and balloon or blimp robots [71,72].

As expected, control papers are closely related to hardware papers and are the second
largest pie in Fig. 2.1. It has been shown that a simple model-free PID controller is good
enough for the basic maneuvers of a flying robot [40,41,43,55,63,71]. For aggressive
maneuvers [73,74] or more complex dynamics with onboard manipulators [75,76], dynamic
models are normally employed. With a precision indoor positioning system, current state-
of-the-art methods have successfully demonstrated formation flights [77], flying inverted
pendulum [78], pole acrobatics [79], ball juggling [80], cooperative operation [81-83], and

failure recovery [34].

In recent years, researchers start to focus on higher level tasks such as navigation
and task planning in flying robots [85—87]. In addition, researchers also pay attention
to visual odometry [88, 89], localization [20-93], and mapping [94—97] applications of
flying robots. More recently, researchers work on obstacle or collision avoidance [98—101],
which is an important topic of flying robots. Current state-of-the-art flying robots could
perform robust image-based six degree-of-freedom (DOF) localization [90], cooperate
mapping [94], aggressive flight in dense indoor environment [98], and flying through a
forest autonomously [99]. From the next section, we review the HRI research that is closely

related to the companion flying robot concept that we propose in this dissertation.

2.3 Human-Robot Interaction in Flying Robots (Platform)

HRI in flying robots is still in its infancy. In 2012, Graether & Mueller developed
Joggobot to support exertion activity such as jogging [28]. Based on a commercial platform
called AR.Drone [25], Joggobot used the built-in onboard camera to track a visual marker

on the jogger’s T-shirt and to maintain a fixed distance in front of the jogger. Upon analyzing
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Figure 2.1: Topic distribution of flying robots from 2006 to 2016. Note: the numbers in each
category’s parentheses are the total number of conference and journal papers respectively.

HRI experiments with Joggobot, Graether & Mueller presented four important preliminary
insights—embodiment, communication, personality, and control. The first two themes are
closely related to our motivation of realizing a companion flying robot. In the embodiment
theme, participants were positive about the idea of having a flying robot accompanying
them while jogging. Compared to other jogging support systems such as smartphones and
sport watches, participants thought that an embodied agent such as Joggobot could be
easier to comprehend. Besides, participants felt that Joggobot can distract them from their
exhaustion and also challenge them to increase their jogging effort. In the communication
theme, participants expressed their need to direct Joggobot using hand gestures, for example,
to tell Joggobot which way to go or change jogging speed. This suggests that a human
sensing interface is crucial for a companion flying robot to have a better HRI with user.

In 2015, Mueller & Muirhead extend the HRI jogging experiment with a new flying
robot and deep analysis [102]. Different from Joggobot, which follows the jogger in an
indoor environment, the new flying robot flies around a preset jogging path at a fixed speed
in an outdoor environment. Mueller & Muirhead conducted a HRI study and analyzed the
jogging experience of thirteen casual joggers via interviews. Most joggers described that the
experience was very interesting and expressed their desire to jog with the flying robot again

in the future. In particular, joggers are able to sense a companionship with the flying robot
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during the experiment; joggers experienced peer pressure from the flying robot and were
motivated to keep running. And interestingly, some technical shortcomings (from robotic or
engineering point of view) of the flying robot are perceived positively by the joggers. For
example, first, some joggers feel that the flying robot is communicating with them (in fact,
it is not) when the flying robot has some small and unstable movements caused by the wind
(hovering instability from robotic point of view). Second, Mueller & Muirhead notice that
the motor noise attracts the joggers’ attention during the experiments. Some joggers also
appreciated that the motor noise help them to distract from their running fatigue. Third, due
to the hardware limitations, the battery needs to be changed from time to time (inconvenient
during experiment). However, joggers feel that the flying robot is working hard too and
share a mutual jogging experience the flying robot. Despite the positive outcomes of the
experiments, some joggers also raised their concerns over the lack of autonomy of the flying
robot; they are not able to control the running path and speed. Moreover, the flying robot

could not sense the jogger and could not have more intimate HRI with the joggers.

The flying humanoid robot (FHR) proposed by Cooney et al. [29] is another exam-
ple of companion flying robot developed for HRI applications. For safety considerations,
Cooney et al. adopt a lighter-than-air platform and design the FHR using three saucer-shaped
balloon modules. In addition to the discussion of design consideration and implementation
details, Cooney et al. describe some interesting scenarios or potential applications of the
FHR such as accompanying children in home, walking with elderly, and taking photos for
users. Nevertheless, FHR focuses on the theoretic model but lacks platform developments

and actual experiment results.

The HoverBall designed by Nitta et al. [103] is closely related to the concept of compan-
ion flying robots. HoverBall is based on a hand-size quadrotor and has a ball shape. It utilizes
several pre-designed motion vocabularies for users to have unique sport experience . For
example, a user can lift the HoverBall slowly upward with his/her hand and the HoverBall
will start hovering in the air, simulating a real ball floating in the air. The user can also
gently push the HoverBall forward and then lower down his/her hand, the HoverBall will
then return to his/her hand, simulating a boomerang motion. The current system relies on an

indoor positioning system to track the position of the HoverBall and user.
The flying lampshades co-developed by Cirque du Soleil, ETH Zurich, and Verity Studios
feature a enchanting choreography where flying robots could interact with humans, such as

react to human gestures and perform flying dances [ 104, 105]. The flying lampshades use an
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indoor positioning system for position tracking and flying movements are preprogrammed
for the choreography. Nevertheless, the flying lampshades demonstrate the potential of flying
robots in HRI. With the improvements of autonomous and sociable capabilities, we believe

that flying robots like flying lampshades can form a deep companionship with humans.

2.4 Human-Robot Interaction in Flying Robots (Human Tracking)

Similar to the Joggobot, Pestana et al. used flying robot’s onboard camera to realize
a human following application [30] by relying on OpenTLD [106] to track a manually
initialized user. Higuchi et al. also performed human following with flying robot’s onboard
camera by using a color-based particle filter to track a user [31]. On the other hand, Pa-
pachristos et al. demonstrated a human tracking application with flying robot’s onboard
stereo camera [32]. All these systems need special requirements, i.e. manual initialization of
the user (person to be tracked) [30], the user have to wear a shirt with a specific color [31],

or the user has to move [32].

Lately, commercial flying robots such as 3DR Solo [16] and Lily Camera [33] claim to
have human following functions. Strictly speaking, they are not following a person but a
GPS device carried by the person. As a result, they have the weakness of a GPS sensor; they
do not work at indoor environment or whenever GPS signal is not available. Commercial
flying robots Hover Camera [34] and DJI Phantom 4 [36] demonstrate human following
applications with computer vision and machine learning techniques.! While the Phantom 4
has a 3D gimbal to obtain stabilized video feeds for human tracking, the gimbal increases
weight unnecessarily. They also do not have a human accompanying model to perform better
HRI. We believe that they could only approach or follow a human but would not be able to

walk side-by-side or switch operating mode based on environment or robot states.

By integrating a visual SLAM technique and a vision-based human tracking algo-
rithm, Lim & Sinha presented a flying robot that can map the human walking path in real
time [37]. On the other hand, Nasser et al. proposed a flying robot that can perform human
following and gesture recognition with an onboard Xtion depth camera [38]. Nevertheless,
both flying robots do not have stable video feeds, could not estimate human body orientation,

and still lack a human accompanying model for HRI applications.

ISince there is no scientific publication, we derive our conjectures from product reviews and online videos.
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2.5 Human-Robot Interaction in Flying Robots (Interface)

Human-robot communication or control interface is another active area of HRI re-
search. In 2013, Monajjemi et al. presented a method to create, modify, and command a
team of flying robots by using face detection and hand gestures [ 107]. More specifically, a
user can add a flying robot into the team by only looking at the flying robot and waving his
left or right hand. To command the team of flying robots, the user has to wave both hands
together. Monajjemi et al. do not claim that their system is intuitive for a naive participant,
but “selecting a robot by looking at it is really fun, and even in our proof-of-concept im-
plementation it is responsive and feels easy and natural” [107]. This insight gained during
the HRI experiment also shows that HRI with flying robots could also be a very good
entertainment application. Similar to their works, Lichtenstern et al. also demonstrate a
system whether a single user can control multiple flying robots using hand gestures and a
RGB-D sensor [108].

Later in 2014, Monajjemi et al. extended their work by commanding a team of two
flying robots using not only face engagement and hand gestures but also voice and touch
interfaces [ 1 09]. The multimodal interfaces are useful when one particular interface fails
to work. For example, before taking off, the flying robot is normally on the ground and
cannot detect human face and hand gestures properly due to the limited field of view. In their
demonstration, the user first select the desired flying robot by using voice commands. By
monitoring the accelerometer readings, the selected flying robot can confirm this selection

when the user gently touches the flying robot.

More recently in 2015, Monajjemi et al. use hand gestures to establish mutual attention
between a user and an outdoor flying robot [ 10]. This task is challenging compared to an
indoor flying robot. An outdoor flying robot is up in the sky, and the user on the ground is
represented by only a few pixels in the image. In this work. Monajjemi et al. use a periodic
waving gesture of both arms as a signal to attract the flying robot’s attention. When the
flying robot detects this salient gesture, it performs a distinctive wobble movement for the

user and hence further interaction can be carried out.

On the other hand, Constante et al. aim to improve the hand gesture interface of flying
robots [ 1 1]. In general, collecting more training data could improve a hand gesture recogni-
tion system but the data collection process is time-consuming. On the other hand, using only

user-specific hand gesture data could lead to bad generalization performance. To solve this
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problem, they propose a transfer learning algorithm that can exploit both online generic and
user-specific hand gestures data, where they first select useful data from the generic dataset
and obtain a trained system with better performance than a system that is either trained with

all generic dataset or with only user-specified dataset.

Burke & Lasenby propose to control a flying robot with pantomimic gestures [ 12]. The
main idea of pantomimic gesture is to use a gesture that is similar to the desired action of
flying robot as a gesture command. For example, to direct the flying robot to take-off, the
corresponding pantomimic gesture would be raising your hand; to direct the flying robot to
circle around an object, the corresponding pantomimic gesture would be circling your hand
in the air. Burke & Lasenby argue that pantomimic gestures are more intuitive and presented

a very fast and simple classification method based on principal component analysis.

Different from works mentioned above, Huang et al. aim to direct a flying robot in a
previously mapped and labeled environment via natural language commands [ 1 3]. Oper-
ating a flying robot in a constrained indoor environment is challenging. Instead of using a
remote controller, where a joystick or buttons are used to control the flying robot, users can
issue a long sequence of natural language commands for the flying robot to operate in a 3D
indoor environment. For instance, if we want the flying robot to go up and fly to Room A,
we only need send the command of “go up and fly to Room A” to the flying robot. While
their system currently only works in a previously mapped and labeled environment, it could

be useful for a companion flying robot in the future.

2.6 Human-Robot Interaction in Flying Robots (Social Study)

Inspired by falconeering, that is, human interaction with birds, Shan & Sharlin studied
the effectiveness of a few hand gestures in commanding a flying robot [ 14]. In line with
the embodiment idea of Joggobot [28], Shan & Sharlin observed that participants of the
HRI experiments were very engaged in having gesture interaction with the flying robot and
spoke to the flying robot like a pet. Besides, they also found that participants like the “stop”
and “come” gestures the most, as these gestures are common and often used.

More recently, in 2015, Cauchard et al. coined the term human-drone interaction (HDI)

and performed a similar HRI experiment; the outcomes suggest that users are very positive

about the idea of a companion flying robot [ 1 15]. Specifically, they carried out HRI Wizard-
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of-Oz experiments’ with nineteen participants, where sixteen participants mentioned that
they interact with the flying robot as if it were a pet. Interestingly, participants even named
the flying robot or assigned an ID number to the flying robot during the experiments. Besides,
several participants mentioned feeling attached to the flying robots. Cauchard et al. also
observed that out of the 216 found unique interactions, 96 interactions are related to body
or hand gestures, 59 interactions are related to sound commands, 53 interactions include
both gesture and sound commands, and 8 interactions are related to touch. Among these
interactions, the most commonly used gestures and sound commands are fly closer, stop by
me, follow me, fly sideways, fly higher/lower, fly to a precise location, get attention, and take
a picture of an object. After the experiments, several participants expressed their concerns
that they would like an interface for emergency landing in case anything goes wrong. In the
end of the paper, Cauchard et al. also share their belief that the idea of a companion flying

robot will be realized as flying robots become smaller and quieter.

Dancers use various kinds of motion to express their emotions. Based on this idea,
Sharma et al. use Laban Effort System, a common method used by artists to express their
emotions, for flying robots to express their affective states [116]. In their work, an artist
was hired to move a quadcopter by hand, imagining that the quadcopter wants to express
certain emotions. The quadcopter motions were captured by a 3D tracking system and later
played back to the participants of the HRI experiments. All eighteen participants like the
idea of robots expressing their emotions through affective motion and perceive most of the
expressed affect correctly. In the end of their paper, they summarize a set of guidelines for

flying robots to communicate their affect via affective locomotion paths.

Closely related to work of Sharma et al. [116], Szafir et al. use the flying robot’s motion
to express the robot’s intention [117]. Specifically, they design a few motion primitives
for flying robots such that user may perceive the robot’s intention better, build up human-
robot rapport, and hence increase task efficiency. One of the motion primitives is to fly
in a more natural arc shape rather than a robotic straight line. Another motion primitive
is to start and stop moving smoothly rather than always move at constant speed. Eighty-
five participants ranging from eighteen to eighty years old are hired and three important
hypothesis are confirmed. First, participants significantly preferred the flying robots with

the designed primitive motions. Second, participants agreed that the flight motions with the

2 A common experiment setting used by researchers, where participants interact with a robot that partici-
pants believe to be autonomous, but in fact it is being manually controlled by a human behind the scene.
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designed motion primitives are more natural, smoother, and intuitive. More importantly,
third, participants perceived that the flying robot with motion primitives are safer and in

control.

In 2016, Cauchard et al. presented a new model for flying robots to express emotions via
movements [ | 18]. Specifically, they proposed a set of eight personalities (emotional states),
namely brave, dopey, sleepy, grump, happy, sad, scared, and shy. Then, they designed the
corresponding flying robot’s movements for each personality. For example, a brave flying
robot would fly quickly, look at a person directly, and never go backwards. A sleepy flying
robot would fly slower, stay low, and respond to commands with delays. Cauchard et al. be-
lieve that encoding these characteristics into movements could help untrained users to
comprehend the internal states of the flying robot. One good example is that, without look-
ing into controller screen, users could identify a flying robot’s state of tiredness (low battery
or in sleepy emotional state) intuitively when the flying robot starts to move sluggishly and

fly low.

In addition to flight motions, LED light is another good option for flying robots to express
their emotion and intent. Arroyo et al. described their early prototype of a social flying robot
called Daedalus, where it can perform four different expressions with head movement and
two color LED eyes [ 1 19]. On other hand, Szafir et al. used a ring of sixty-four color LEDs
as a reliable cue for user to comprehend the goal of the flying robot [120]. In particular,
they found success in a gaze signaling pattern of the ring LEDs, where two regions of
LEDs (reminiscent of human eyes, same size and same interocular distance) toward a
certain direction (where the robot intends to fly to) are lit up. The second useful signaling
pattern is blinker (region of the LEDs that light up in coordination with the robot’s flying
direction), where participants found it easier to tell when the flying robot was off course. As
a future work, Szafir et al. intend to use the LED color space to communicate affect and
interruptibility of the flying robot.

2.7 Human-Robot Interaction in Flying Robots (Operation)

HRI focusing on safety and operational effectiveness is another research area, especially
for flying robots in search and rescue mission, and disaster management applications. During

the following reviews, we focus on the elements that are related to companion flying robots.

Drury et al. presented a decomposition of situation awareness of flying robot from
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the operator’s point of view [!21]. In particular, they described the needs of the operator
(the user in our companion flying robot case) to know the health and status of the flying
robot. For example, the flying robot’s battery level and motors condition are important health
information; flying speed and flying mode are the status information. As we will discover
soon in the next section, companion flying robots could utilize motions and lights to signal

this information to the user.

Murphy et al. analyzed thirty-eight flights of a flying robot during disaster management
and concluded that three distinct roles are necessary to ensure the safety of people and
objects nearby the flying robot and the flying robot itself [ 122]. Murphy also proposed some
experience gained during rescue robotics missions that suggests the importance of obstacle
avoidance and response to failures [ 123]. On the other hand, Morse et al. presented a method
to estimate and visualize the coverage quality maps in a video taken from a flying robot’s

onboard camera during a search and rescue mission [ 24].

2.8 Human-Robot Interaction in Flying Robots (Design)

It is interesting to observe that the design of the flying robots is becoming more socia-
ble. For example, AR.Drone developed by Parrot Company in 2010 [125] and Aibot X6
developed by Aibotix in 2013 [126] have protective hulls made of expanded polypropylene
and carbon fiber, respectively, in order to cover the propellers from users. However, the
top and bottom sides of the propellers of AR.Drone and Aibot X6 are still exposed to the
users. Both Snap [127] and Fleye [128] flying robots developed in 2015 took a step further
and have a case that fully prevents propeller injuries. While these safety designs are not the
main focus of HRI research, it is an important aspect towards realizing a companion flying

robot.

Over the years, various flying robots have been proposed but the noise issue has never
been a significant factor in the design process. Existing rotor-type flying robots such as
helicopters and quadcopters rely on motors to fly and unwanted noise is always generated
during the flight. This noise is measured as high as 82 dB (one meter away from a commercial
quadcopter [25]) and is very close to a hazardous level of 85 dB as legislated by most
countries [129]. Physiology and psychology studies also suggest that noise has a strong
association with health issues such as high blood pressure [ 130], work stress, and increased

risk of accidents [131]. These findings suggest that the noise issue must be seriously
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considered when designing a companion flying robot for long term interaction. Compared to
rotor-type flying robots, we believe that blimp or balloon-type robots are a better platform
for companion flying robots because of their lower noise level (measured as lower than
40 dB at one meter away from a blimp [137], comparable to the noise level in a library)
during flight. Nevertheless, in this thesis, we focus on using rotor-type flying robots in
order to make the companion flying robot more compact, have better flight responsiveness,
and be less susceptible to wind disturbance. Note that a blimp requires a minimum size of
84 cm X 84 cm X 84 cm in order to handle payload of 500 grams, in which the blimp is
very susceptible to wind disturbance but barely supports the overall payloads of the motors,

sensors, and onboard computer.

Appearance design is also another important topic in designing a companion flying
robot. In our preliminary study [132], we performed an online survey on SurveyMon-
key [133] with forty-two participants that include robotic researchers, architects, business
administrators, pharmacists, housewives, and students. Ranging from nineteen to forty-nine
years old, all participants are from Japan, Malaysia, Singapore, and Australia. We showed
three different flying robots to the participants: a penguin-shaped blimp (nature-inspired
design), a ball-shaped rotorcraft (functional design), and an electro-hydro-dynamic (EHD)
flying robot that requires no rotating parts to fly (scientific design). All flying robots are
described briefly to the participants. Surprisingly, the penguin-shaped blimp has the top
ranking, followed by the ball-shaped rotorcraft, and then the EHD flying robot. We expected
the ball-shaped rotorcraft to be at the top rank as it is very useful and possess unique char-
acteristic for it to excel in disaster situation (which was also explained to participants). In
contrast, the penguin-shaped blimp has slower motion but has a charming outlook and is
able to “swim” naturally in the air with very little noise. This finding is coherent with design
concept proposed by HCI researchers [134], suggesting that appearance is an important
factor in designing companion flying robots. Nevertheless, in this dissertation, we focus on
using rotor-type flying robots in order to make the companion flying robot more compact,

have better flight responsiveness, and be less susceptible to wind disturbance.
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Chapter 3

Towards a Better Form of Flying Robot for Human-Robot Interaction

3.1 Introduction

In this chapter, we design a new type of companion flying robot in order to achieve safer
and more effective human-robot interaction (HRI). We aim to design a flying robot with
vertical take-off and landing (VTOL) and hovering capabilities. Hereafter, unless specified

otherwise, we refer to VTOL when we use the term flying robot or UAV.

Conventional flying robots, such as quadcopters, hexacopters, and octocopters, have a
limitation that hinders them from achieving safe and effective HRI. The problem originates
from one of the common characteristics of conventional flying robots—they all have coupled
motion control. Due to their simple mechanical design, in which all the rotors point up to
the top, conventional flying robots cannot produce horizontal thrust. As a result, conven-
tional flying robots cannot perform horizontal motions independently without changing
their roll/pitch orientations. During horizontal motion, flying robots are dynamically more
unstable since they are away from the equilibrium state, i.e., the horizontal position. Due
to the change of roll/pitch orientation, conventional flying robots are also more susceptible
to wind disturbance. Theoretically, the larger the pitch/roll angle (the higher the horizontal

speed), the more unstable and dangerous the flying robot.

In a HRI application, it is also crucial for the companion flying robot to obtain a
stable video feed. Obtaining a stable video feed enhances the flying robot’s performance in
understanding the accompanied person and surrounding environment via computer vision
or pattern recognition techniques. Conventional flying robots use mechanical gimbals to
obtain stable video feeds. However, the mechanical gimbal increases the payload weight and
worsens the flying robot’s weight distribution. Normally the mechanical gimbal is mounted
in front of a flying robot for a better field of view. To counter-balance it, the battery is
mounted at the back of the flying robot. As a result, more weight is spread away from the
center of gravity. This makes it harder for the flying robot to stabilize due to the increased

momentum, especially when the flying robot has large pitch/roll angles.

Aiming for a safe and effective HRI, we adopt a unique design such that a hexacopter

can have decoupled motion control—it is able to move horizontally while maintaining its



26

Table 3.1: Comparison of the features of conventional and holonomic hexacopters.

Holonomic  Intuitive  Decoupled Control ~ Robust  Stable video  Physcial Power
flight flight model stability towind  w/o gimbal HRI efficiency
Conventional hexacopter [45] X X X X X X X O
Holonomic hexacopter ®) O @) (@) O O O A

flying attitude. We call the new flying robot a holonomic hexacopter. As opposed to the
flat structure of a conventional hexacopter, where all the motors are facing to the top of the
aircraft, our holonomic hexacopter has tilted motors; the six motors can generate thrust in
six different directions and achieve three translational and three rotational forces. Since the
modification this small (compared to the conventional hexacopter), the proposed holonomic

hexacopter remains mechanically simple and easy to build.

In a nut shell, we summarize the merits of the proposed hexacopter in Table 3.1. In
contrast to a conventional hexacopter, the proposed holonomic design has the following

characteristics:

e Has six degree-of-freedom (DOF), able to move horizontally without roll/pitch motion;
e Provides more intuitive flight (move horizontally without tilt motion) for users;

e Has decoupled control, horizontal motion can be controlled independently;

e More stable and less susceptible to wind disturbance from the control perspective;

e Provide a stable video feed for high level tasks without an additional gimbal;

e Able to achieve safe physical HRI with generated horizontal forces naturally;

e Compared to a conventional hexacopter, it has power efliciency of about 70-90%,

depending on the tilt angle of the motors.

In the following, we first review some related flying robots that could perform holonomic
flights. After, we derive the kinematic models of a conventional hexacopter and the proposed
holonomic hexacopter. In our analysis, we will also show that the holonomic hexacopter is a
generalization of the conventional hexacopter. Then we describe our hardware implementa-
tion and the controller designs. Last, we present the experiment results and conclude this

chapter by discussing potential future work.
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Table 3.2: Comparison of the features of state-of-the-art flying robots that could perform
holonomic flights. (See text for details.)

No. of . Decoupled Stable Human Human
Simple . . . .
motors desien motion video feed  accompanying sensing
& servos g control w/o gimbal model interface
Our holonomic hexacoper 6+0 @) @) @) @) O
Jiang & Voyles [135-137] 6+0 O O Al X X
Crowther et al. [138] 6+0 O O N x X
CyPhy LVL 1 [139] 6+0 O O Al X X
Tetrahedron hexacopter [39] 6+0 X O A2 X X
Rajappa et al. [140] 6+0 X @) a3 X X
Eight-rotor aircraft [49,50] 8+0 X a4 Ad X X
Omnicopter [141] 8+0 X A4 A2 X X
Holonomic tricopter [142] 3+6 X A© A2 X X
Omni-tricopter [143, 144] 5+3 X a0 a2 X X
Bizcopter [59] 4+2 X A 67 A8 X X
Oosedo et al. [145] 4 +4 X A® A2 X X
Ryll et al. [146] 4+4 x A® a? x x
Omnidirectional blimp [71] 3+3 X A0 O X X
Holonomic airship [72] 6+0 X O a2 X X
Festo flying sphere [147] 8+0 X O A’ X X
! Camera view is blocked by the propellers. 6 Kinematic model changes whenever servo angles change.
2 No onboard camera was used. 7 Could only achieve holonomic flight in one direction.
3 No actual platform was built. 8 Only have upward camera for infrastructure inspection.
4 Involve complex airflow dynamics for precise control. 9 Only have cameras near to the gripper for manipulation control.

5 Only have downward camera for positioning control.

3.2 Related Works

Holonomic flying robot, that is, an aircraft that could fly and move horizontally without
tilt motion, is not a totally new concept. InTable 3.2, we summarize state-of-the-art flying
robots that could perform holonomic flights. Compared to other holonomic flying robots,
which mainly focus on control and autonomy, the novelty of this work is to utilize the
proposed holonomic hexacopter to achieve an intuitive flight (in addition to other merits
mentioned in the previous section) for users. In the following, for review simplicity, we
divide the flying robots in Table 3.2 into five categories: six-rotor', eight-rotor?, tricopter,

quadcopter, and blimp types.

Six-rotor type. Jiang & Voyles [135-137], Crowther et al. [138], and CyPhy company [139]

proposed flying robots that could perform holonomic flight. Similar to our holonomic

! Not necessary a (conventional) hexacopter, could be a tricopter with three lateral motors.
2 Not necessary a (conventional) octocopter, could be a quadcopter with four lateral motors.
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hexacopter, their flying robots have six rotors, simple design, and could achieve decoupled
motion control. However, their flying robots are not designed for HRI and have a few
limitations. For example, the onboard cameras on the flying robots designed by Jiang
& Voyles and CyPhy company are blocked by the propellers (when the cameras point
forward). The flying robot designed by CyPhy company also does not have a protective guard
to ensure safe HRI. On the other hand, Crowther et al. only focus on control experiments
and no onboard camera was used. In addition, all three flying robots have neither a human

accompanying model nor a human sensing interface to interact with a human.

Higuchi et al. proposed a six-rotor flying robot in a double tetrahedron shape that could
perform holonomic flight [39]. Different from ours, their flying robot has a complex 3D
shape and is presumably hard to build. In contrast, one could achieve our holonomic structure
by simply rotating the six propeller arms of a conventional hexacopter. Moreover, they only
focus on control experiments and no onboard camera was used. Recently, Rajappa et al. de-
rived a generalization model of a holonomic hexacopter [ 140]. However, the actual design

becomes more complex and they only validated their design in a simulation environment.

Eight-rotor type. Salazar et al. [49] and Romero et al. [50] have developed flying robots
that could perform holonomic flights by simply attaching four additional lateral rotors to
their quadcopters. While the four lateral rotors could provide decoupled lateral motion
control, the control of the flying robots is challenging due to the increased complexity of
airflow dynamics in between the vertical and lateral rotors. In practice, it is also not easy
to mount the lateral rotors. The resulting platforms are also hazardous for HRI, since the
lateral propellers face toward the accompanied person directly. Brescianini & D’ Andrea
proposed an omnicopter with eight rotors that could perform holonomic flight at any flying
attitude [141]. Similar to the flying robots developed by Salazar et al. and Romero et al.,
the control of the flying robots is challenging due to the increased complexity of airflow
dynamics, which all the eight rotors face toward the center of the flying robot. Furthermore,
the omnicopter has low payload capacity and is less power-efficient, since a large amount of

rotor thrusts cancel with each other in the proposed 3D-symmetry design.

Tricopter type. To achieve holonomic flight, Ramp & Papadopoulos proposed to control
the orientations of the three main rotors of a tricopter [ 142]. Their design is over-actuated,
and the control of the flying robot is more complex than ours since the additional servo

motors change the thrust orientation of the main rotors. Long & Cappelleri proposed a
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flying robot that consists of two coaxial main rotors for main thrust generation, three smaller
ducted fans for level control, and three servo motors to rotate the ducted fans for horizontal
motion control [143, 144]. Since the flying robot is over-actuated, it is big and has limited
payload. Moreover, the rotations of high speed ducted fans generate unwanted gyroscopic

torques and make flight control harder.

Quadcopter type. Kawasaki et al. proposed a flying quadcopter with two connected bi-
copters, where the orientation of the bi-copters could be adjusted with two additional
servos. While their flying robot could change flying attitude along either pitch or roll
direction while still remaining stable, their flying robot could only perform holonomic
flight while maintaining either pitch or roll angle of the aircraft. Aiming for a fully-actuated
flying robot, Oosedo et al. and Ryll et al. added four servos to tilt the four rotors in their
quadcopters. Similar to the tricopter type flying robots, the dual bi-copters and quadcopters
with tiltable rotors have a constantly changing kinematic model and a more sophisticated

controller is necessary for stabilization control.

Blimp type. Burri et al. designed a blimp flying robot that has six degree of freedom (DOF)
motions by using three main rotors and three servos, which it could move and rotate freely in
3D space [71]. Yang et al. also developed a similar blimp flying robot capable of holonomic
flight with six rotors [72] while the Festo company demonstrated a blimp flying robot
capable of holonomic flight with eight rotors [147]. However, all three blimp flying robots
are very large (with diameters of 2.7, 1.8, and 1.8 meters respectively), which makes them
more susceptible to wind disturbance and not suitable for outdoor flight. In the following,
we aim for a more compact flying platform that could handle higher payload and is less

susceptible to wind disturbance.

3.3 Conventional Hexacopter Model

We review the kinematic model of a conventional hexacopter in this section. Formally, a
hexacopter has six identical rotors located at the vertices of a hexagon. Figure 3.1 illustrates
the motor layout of a conventional hexacopter when viewed from the top. We can observe

that all motors face toward the top in a conventional design.

During flights, three rotors—M1, M2, & M6—always rotate counter-clockwise, and
the other three rotors—M3, M4, & M5—always rotate clockwise during flight. This con-
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figuration enables the conventional hexacopter to achieve one translational force and three
rotational moments during flight. For example, assuming that the hexacopter is hovering
above the ground, all motors rotate at equal speed and generate just enough thrust to lift the
hexacopter. Since three motors rotate counter-clockwise and three motors rotate clockwise,
there would be no rotational moment, and the hexacopter can hover stably. To fly the hex-
acopter up/down, one could increase or decrease the thrusts from all motors at the same
time. To rotate the hexacopter forward, i.e. pitch motion along the y-axis, one could increase
M1 & M3 thrusts and decrease M2 & M4 thrusts at the same time. Since the hexacopter
now has higher thrust on the bottom side (viewed from the top as in Fig. 3.1), it would pitch

forward (nose down) and fly forward.

Since all motors face toward the top direction, the relationship between every motor’s
force and the hexacopter’s total translational force F and rotational moment 7 can be easily

written in matrix form as

_fl ]
F, 1 1 1 1 1 1| £
Ty _ —r-cos(a) —-r-cos(a) r-cos(a) r-cos(a@) -r r{lfz 7 G.1)
Ty r-sin(@) -—r-sin(a) r-sin(@) -—r-sin(a) 0 Ol|fa
T, —k -k k k kK —k||fs
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where F_, 7,, 7, and 7, represent translational force along the z-axis and rotation moments
along x-, y-, and z-axis, respectively. On the right hand side of Eq. (3.1), r is the distance
from the center of the hexacopter (assuming center of gravity is at the center of the hex-
acopter) to the center of each motor, « is the angle in between two adjacent motors from
the center of the hexacopter, and & is a constant value that maps the motors’ rotational mo-
ments to the hexacopter’s yaw moment along the z-axis. Note that F, and F, are omitted in
Eq. (3.1) because all motors cannot generate force on x- and y-axes. In addition, since r and
k are non-zero and @ = 60°, the matrix inside Eq. (3.1) is invertible. In other words, desired

inputs of F,, 7, 7, and 7, are controllable by adjusting each motor force. Mathematically,
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this inverse relationship can be written as
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Assuming that each force and moment has a separate controller, each column of the

inverse matrix can be normalized independently and Eq. (3.2) can be simplified and written

as - ) i
Al Tto-05 1 -1
Al 11 —05 -1 -1]|[F,
105 1 1lln
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Equation 3.3 can be used to verify our earlier example to control a conventional hex-
acopter. For example, given a desired non-zero force F, and zero moments in along three

axes, Eq. (3.3) becomes

_fl_ _FZ_
2 F;

;3 = ?” : (3.4)
4 z
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which essentially means that all motors increase or decrease thrust together. Note that the
thrust ratio of the motors is more important, and the overall magnitude of the thrust is taken
care by the thrust controller’s gain. For a second example, given a desired non-zero pitch

moment along the y-axis (positive 7, in order for the hexacopter to fly forward), Eq. (3.4)
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Figure 3.1: Kinematic model of a conventional hexacopter. Left: Motor layout, viewed
from the top of the hexacopter. All six motors are located at the vertices of a hexagon. From
the center, each adjacent pair of motors has an angle of 60°. During flights, M1, M2, &
M6 rotate counter-clockwise, while M3, M4, & M5 rotate clockwise. Right: An actual
hexacopter platform shows that all motors face vertically to the top.
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which essentially means that M1 & M3 thrusts are increased and M2 & M4 thrusts are
decreased, leading to a pitch forward motion. Again, the thrust ratio of the motors is
more important, and the overall magnitude of the thrust is taken care by the pitch con-
troller’s gain. The same procedures can be applied to Eq. (3.5) given desired roll or yaw
motions. When multiple desired inputs exist, the same procedures are still applicable since

Eq. (3.5) has the superposition property.

3.4 Holonomic Hexacopter Model

Figure 3.2 illustrates the motor layout of a holonomic hexacopter viewed from the
top. All six motors locate at the vertices of a hexagon. Similar to the conventional config-

uration, from the center, each adjacent pair of motors has an angle of 60°. During flights,
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Figure 3.2: Kinematic model of a holonomic hexacopter. Left: Motor layout, viewed from
the top of the hexacopter. All six motors are located at the vertices of a hexagon. Similar to
the conventional configuration, from the center, each adjacent pair of motors has an angle
of 60°. During flights, M1, M2, & M6 also rotate counter-clockwise, while M3, M4, &
M35 also rotate clockwise. Right: However, different from the conventional hexacopter, all
motors face up at an angle rotated about the propeller arms.

M1, M2, & M6 always rotate counter-clockwise, and M3, M4, & M5 always rotate clock-
wise. However, different from the conventional hexacopter, all motors face up at an angle
rotated around the propeller arms. For example, considering motor M1, if we use our right
hand to grasp its propeller arm and if our thumb is facing outward, the golden arrows in

Fig. 3.2 imply that we need to rotate to the direction of other four fingers.

Rotating the propeller arms this way has at least two benefits. First, the new configuration
has each motor generating thrust at different orientations. As we will discover soon in the
following analysis, this small modification eventually enables the hexacopter to move
horizontally without tilting itself. Second, compared to the approach of Rajappa et al., our
approach is simpler in both model analysis and hardware implementation. In their work,
in addition to the rotation of motor around the propeller’s arm, they also consider rotation
along the axis perpendicular to the propeller’s arm. While their approach might lead to a

more efficient configuration, it makes the hardware implementation very difficult.

With the rotated propeller arms, now it is possible to generate horizontal forces on the
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hexacopter and the Equation can be extended into
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Note that when 8 = 0, Eq. (3.6) reduces to Eq. (3.1), where the elements of the first
two rows were zeros and omitted. Therefore, our proposed hexacopter can be viewed as
a generalized configuration of a conventional hexacopter. In contrast to the conventional
hexacopter, our proposed hexacopter is able to move horizontally without tilting itself. In
this regard, it can be considered as holonomic, i.e., it can perform six DOF motions in a 3D
space (three translational and three rotational motions) and has a few advantages, such as

decoupled control and smoother onboard video processing without a gimbal.

For simplicity, we substitute real design values of @ = 60° and 8 = 36° into Eq. (3.6)
and find the inverse matrix in order to map desired control inputs into motor thrusts. Note
that the larger the angle S, the higher the power loss of the hexacopter during hovering,
since the generated lateral forces cancel out on the horizontal plane. On the other hand, the
smaller the angle 3, the more difficult for the hexacopter to move horizontally. The selection
of angle S is tuned manually during the flight experiments and could be optimized according
to specific tasks. Similar to the derivation in Sect. 3.3, if we assume that each force and
moment has a separate controller, then each column of the inverse matrix can be normalized

individually and Eq. (3.6) can be simplified and written as
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Note that the last four columns of the matrix in Eq. (3.7) are exactly the same as the
matrix in Eq. (3.3). When F, and F, are zeros, Eq. (3.7) reduces to Eq. (3.1). On the other



35

hand, given a desired non-zero force F',, Eq. (3.7) becomes
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Equation (3.8) implies that in order to move forward, one has to increase M5 & M6
thrusts by 1 unit and decrease M1, M2, M3, & M4 thrusts by 0.5 units. From the holonomic
configuration, we can observe that when the M5 & M6 thrusts increase, there is a surplus
force applied on the x-axis positive direction. Besides, when the M1, M2, M3 & M4 thrusts
decrease, there is a lack of force applied on the x-axis in the opposite direction. Overall, all
motors would generate 4 units of translational forces along the x-axis and move hexacopter
forward. In addition, thanks to the symmetry of design, the total forces applied on the y-axis
remains balanced. The total force applied on the z-axis also remains balanced since M5
& M6 thrusts increase by 2 units while the other motor thrusts decrease by 2 units. By
substituting Eq. (3.8) into Eq. (3.7), we can verify that except F,, all other resulting forces
(F,, F;) and moments (7, 7,, T;) are equal to zero. Similarly, given a desired non-zero 7,
Eq. (3.7) becomes

1
f2 _Fx

Jf% = _;" . (3.9)
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Equation (3.9) implies that in order to move left, one has to increase M1 & M4 thrusts
by 1 unit and decrease M2 & M3 thrusts by 1 unit. From the holonomic configuration, we
can observe that when the M1 & M4 thrusts increase, there is a surplus force applied on the
y-axis positive direction. Furthermore, when the M2 & M3 thrusts decrease, there is a lack
of force applied on the y-axis in the opposite direction. Note that M5 & M6 thrusts have
no effect on the y-axis. Overall, all motors would generate 4 units of translational forces
along the y-axis and move the hexacopter left. In addition, thanks to the symmetry of the

design, the total force applied on the x-axis remains balanced. The total force applied on the
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z-axis also remains balanced since M1 & M4 thrusts increase by 2 units while the M2 & M3
thrusts decrease by 2 units. By substituting Eq. (3.9) into Eq. (3.7), we can easily verify

that except F,, all other resulting forces (F, F;) and moments (7, 7,, T;) are equal to zero.

3.5 Hardware Implementation

We first describe the basic hardware in our design. Then, we explain the use of simple
proportional—integral—derivative (PID) controllers for hovering control in the next sec-
tion. Figure 3.3 illustrates the holonomic hexacopter developed in-house using the Tarot
680PRO carbon fiber frame. We rotate each propeller arm according to the kinetic model
discussed in Sect. 3.4 such that 8 = 36°. The developed hexacopter is equipped with a
Turnigy 5000 mAh (6S, 20C) Lithium-polymer battery. Switching power regulators are
employed in order to convert the input 24 V into 12 V and 5 V that are required by the
onboard flight computer and controller. The overall weight of the holonomic hexacopter is
3.5 kg, including all the systems shown in Fig. 3.3. Note that we use a gimbal to mount a

GoPro camera in order to take onboard flight videos for qualitative evaluation purposes.

The hexacopter also has six identical DJI ES00 propulsion units. Each propulsion unit
consists of one 13x4.5 inch propeller, one brushless direct-current (BLDC) motor with stator
size of 35 X 10mm, and one electronic speed controller (ESC). Figure 3.4 summarizes the
relationship of motor input signal (1000-2000 range), current consumption, and generated
thrust of each propulsion unit, where the blue cross points are our collected data, the red
line is a 4™ order polynomial fitting of the collected data points, and the purple circles are
data taken from the online community [ 148]. During hovering operations, the motor input

commands usually lie within the 1600-1800 region in our design.

The flight controller (FC) is a mid-level controller in our hexacopter, where it serves as a
hub to collect information from all low-level sensors such as the accelerometer, gyrometer,
magnetometer, barometer, and ultrasonic sensor. The flight controller also performs attitude
estimation and sends control signals to each propulsion unit. There are many high-quality
FCs on the market such as Naze32, CC3D, Crius, MultiWii, KK2, Naza, Pixhawk, and
APM 2.6. We select our FC based on a few requirements. In addition to being lightweight
and powerful, the FC should also be open-source since we might need to include additional
sensors in the future. Among the possible candidates, we chose Naze32 in our design since

it is open-source, has a 32-bit 72MHz processor, has all the sensors above (except ultrasonic
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Figure 3.3: Our holonomic hexacopter developed using the Tarot 680PRO carbon fiber
frame.
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Figure 3.4: The relationship of motor input signal (1000-2000 range), current consumption,
and generated thrust of each propulsion unit, where the blue cross points are our collected
data, the red line is a 4" order polynomial fitting of the collected data points, and the
purple circles are taken from the online community [148]. While hovering, the motor input
commands usually lie within the 1600-1800 region in our design.
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sensor), is lightweight (only 8 grams), and is low-cost ($25). Since Naze32 does not come
with an integrated distance sensor, we connect an external ultrasonic sensor to it and mount

the ultrasonic sensor on the bottom of the hexacopter (facing vertically downward).

In our design, Naze32 is flashed with iNavFlight 1.1 firmware [149], where vari-
ous parameters can be configured easily via a configuration app [150]. In general, iN-
avFlight uses a complementary filter to fuse accelerometer and gyrometer data (function
imuMahonyAHRSupdate inside imu. c) in order to compute the hexacopter’s attitude. Based
on the computed attitude, iNavFlight employs PID controllers (function navPidApply2 in-
side navigation rewrite.c) to control the hexacopter’s yaw, pitch, and roll attitudes. We

will present the controller structure in the next section.

Note that we do not use the integrated magnetometer and barometer in the FC due to the
high measurement noise. The altitude of the flying hexacopter is measured by using the exter-
nal ultrasonic sensor. This altitude information is also used to estimate the velocity along the
z-axis (function updateSonarTopicinside navigation_ rewrite_pos_estimator.c).iN-
avFlight also uses a simple P- and PID controller to maintain the flying height of the air-
craft. The first P- controller is used to convert the position error to a desired velocity, and the
second PID controller is used to maintain the velocity of the aircraft. Therefore, in steady

state, both position and velocity errors are equal to zero.

In addition, our hexacopter is equipped with an onboard minicomputer called Odroid-
XU4. Odroid-XU4 has a processor with A15 quad-core 2.0 GHz and A7 quad-core 1.5 GHz
and is the smallest onboard computer that we have surveyed (slightly larger than a credit
card and only weights 72 grams) at a surprisingly low cost of $180. Odroid-XU4 acts as a
high level controller for the hexacopter and runs a multi-threading C++ program in the Linux
Ubuntu 14.04 environment to interface with the Naze32 FC via a serial connection, an Xtion
sensor (color and depth cameras) via a USB connection, a Hokuyo URG-04LX 2D lidar
sensor via a USB connection, and an ADNS3080 optical flow sensor via SPI connection. We
use the Xtion sensor for human detection (Chapter 5). The optical flow sensor will be used
for position holding in the future work. The 2D lidar sensor is used as a failsafe for collision
avoidance. During flights, the hexacopter tries to maintain a two-meter distance from any
detected nearby objects. In case the hexacopter cannot maintain this condition, it will trigger

the auto-landing function automatically for safety purposes.
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Figure 3.5: PID controller structure of the yaw controller in our holonomic hexacopter.

3.6 Controller Design

In this section, we summarize the PID controllers that we are using in our holonomic
hexacopter, including (i) a yaw controller, (ii) pitch and roll controllers, (iii) a height
controller (in velocity and position modes), and (iv) horizontal position controllers. Note
that the first three PID controller structures in this section are derived from the iNavFlight
source codes [ 149] and have I-term anti-windup implementation based on a formal controller

design [151].

3.6.1 Yaw Controller

Figure 3.5 illustrates the PID controller structure of the yaw controller in our holonomic
hexacopter. The yaw controller is the simplest control used in our holonomic hexacopter,
where only the gyro rate along the Z-axis is used as feedback in this controller. Upon tuning,

a non-zero input of 6, can change the yaw motion of the hexacopter smoothly.

3.6.2 Pitch and Roll Controllers

Figure 3.6 illustrates the PID controller structure of the pitch and roll controllers in
our holonomic hexacopter. The pitch and roll controllers have two inner loop, where both
gyro rate and attitude information (by fusing gyro rate and accelerometer measurements
with a complementary filter) are used for stabilization control. The inner loop has the same
structure with the yaw controller. However, the pitch/roll rate is not directly controllable
by the user. The outer loop is a simple P-controller that accept desired roll/pitch angle
input from user. Upon tuning, a non-zero input of 6, can change the roll/pitch angle of the

hexacopter smoothly.
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Figure 3.6: PID controller structure of the roll and pitch controllers in our holonomic
hexacopter.

Figure 3.7: PID controller structure of the altitude controller during position mode in our
holonomic hexacopter.

3.6.3 Altitude Controller

Altitude controller has two modes. When there is no input from the user, altitude
controller will be in the position mode; when there is a non-zero input from the user, altitude

controller will be in the velocity mode.

Figure 3.7 illustrates the PID controller structures of the altitude controller in position
mode in our holonomic hexacopter. Note that the altitude controller in position mode has
the same structure with the roll/pitch controller. The only difference here is that altitude

controller uses altitude information obtained from the sonar sensor as the control feedback.

Figure 3.8 illustrates the PID controller structures of the altitude controller in velocity
mode in our holonomic hexacopter. Note that the altitude controller in velocity mode has the
same structure with the yaw controller. The only difference here is that altitude controller

uses velocity information as the control feedback.

3.6.4 Horizontal Position Controllers

Figure 3.9 illustrates the PID controller structure of the horizontal position controller in
our holonomic hexacopter. The horizontal position controller uses the depth information
from the Xtion camera as feedback in this controller. Upon tuning, a non-zero input of 6,

can change the horizontal position of the hexacopter smoothly.
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Figure 3.8: PID controller structure of the altitude controller during velocity mode in our
holonomic hexacopter.
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Figure 3.9: PID controller structure of the horizontal position controller in our holonomic
hexacopter.

3.7 Experiment Results

3.7.1 Hovering Experiment

We perform an experiment to analyze the hovering stability of the proposed holonomic
hexacopter. For simplicity, we fly the hexacopter with active altitude-holding control (at
height of 80 cm) and manually maintain its horizontal position at the take-off position. Due
to the wind disturbance, sensor noise, and imperfect hardwares, occasionally we need to
move the hexacopter horizontally during this task. We collect the onboard flight information

a analyze the variance of roll-pitch angles after the hovering experiment.

Figure 3.10 illustrates the plots of roll-pitch angles during 1-minute non-holonomic
(left) and holonomic (right) flights with the developed hexacopter shown in Fig. 3.3. We can
observe that the variance of roll-pitch angles on the left figure during the position-holding
task is relatively large (around +2°) compared to the holonomic flight on the right figure
(within £0.5°). With an active and robust position-holding controller, the variance of roll-
pitch angles in a non-holonomic flight could be improved. Nevertheless, this experiment

results show that the developed holonomic hexacopter can achieve stable hovering flight.
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Figure 3.10: Plots of roll-pitch angles during 1-minute non-holonomic (left) and holonomic

(right) flights with the developed hexacopter. The three circles in the plot correspond to
standard deviation of one, two, and three.

3.7.2 Altitude-Holding Experiment

We also perform an experiment to analyze the altitude-holding stability of the proposed
holonomic hexacopter. We fly the hexacopter with active altitude-holding control at 100 cm
and record the altitude data during the experiment.

Figure 3.11 shows the flight heights over about 60 seconds. During the 1-minute flight,
the holonomic hexacopter achieves altitude-holding performance with maximum error of
+2 cm and standard deviation of 0.8159. Note that the developed hexacopter performs
altitude-holding with a simple PID controller with noisy velocity estimates (due to low-cost
sensors) and without dynamic modeling. While the altitude-holding performance might
not be satisfactory for a precision flight application, it is stable enough to perform an HRI
experiment. In fact, a precise flight (e.g., within altitude error of +0.5 cm) might not be
necessary for a natural or social HRI. Analogous to human activities, we indeed do not have

“precise” standing or walking performance while having interaction with others.
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Figure 3.11: Plot of the altitudes in a 1-minute flight with the developed hexacopter.

3.7.3 Holonomic Flight Qualitative Results

We illustrate the onboard time-lapse images during roll motions in Fig. 3.12. In the
first row of images, the hexacopter rolls counter-clockwise (viewed from the back) and
starts moving to the left. Then, in the second row of images, the hexacopter rolls clockwise
(viewed from the back) and starts moving to the right. Finally, in the third row of images,
the hexacopter rolls counter-clockwise (viewed from the back) again and moves back to
the starting point. From the time-lapse images, we can find that without a gimbal platform
(which normally increases the hexacopter payload and deteriorate the hexacopter’s weight
distribution), the video feed is rotated and further image processing is required for high-end

computer vision tasks.

We illustrate the onboard time-lapse images during pitch motions in Fig. 3.13. In the
first row of images, the hexacopter pitches clockwise (viewed from the right) and starts
moving forward. In the second row of images, the hexacopter is still moving forward and
then pitches counter-clockwise (viewed from the right) and starts moving backward. Finally,
in the third row of images, the hexacopter pitches clockwise (viewed from the back) slightly
and tries to stabilize in the air. From the time-lapse images, we can find that without a
gimbal platform, the video feed is tilted and further image processing might be required for

high-end computer vision tasks.

In contrast, we illustrate the onboard time-lapse images during holonomic flight in
Fig. 3.14 (roll-less leftward/rightward motion) and Fig. 3.15 (pitch-less forward/backward



45

Figure 3.12: Onboard time-lapse images during the roll motion, from left to right and then

top to bottom. (See text for details.)

Figure 3.13: Onboard time-lapse images during the pitch motion, from left to right and
then top to bottom. (See text for details.)



46

Figure 3.14: Onboard time-lapse images during the roll-less leftward/rightward motion,
from left to right and then top to bottom. (See text for details.)

motion). We can observe that even without a gimbal platform, the video feed is always

stable (neither rotated nor tilted) regardless of the hexacopter’s motions.

Moreover, according to the user’s feedback, when flying a conventional hexacopter, the
user feels nervous when the hexacopter roll or pitch in order to move horizontally. While
it might be normal for a professional user, it is important to note that novice user expects
flying robot to move leftward/rightward naturally (not “roll” forward/backward) or to move
leftward/rightward naturally (not “pitch” forward/backward). Therefore, the holonomic
hexacopter is not only safer and more stable from the control’s point of view (because it
always stay in or close to the equilibrium point), but also makes user feel more comfortable

and understand the flight motions intuitively.

3.8 Discussion

While the hovering and altitude-holding performance is stable to perform an HRI
experiment, there are several ways to further improve the the developed holonomic hexa-
copter. First, the hexacopter body frame used at the meantime is not rigid and the motor
thrusts are not transfered to the body frame effectively. Second, we are using low-cost sen-

sors and simple low-pass filters to obtain the necessary information for flight control. With
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Figure 3.15: Onboard time-lapse images during the pitch-less forward/backward motion,
from left to right and then top to bottom. (See text for details.)

better sensors (and better hardware damping), we could increase the cut-off frequency of the
low-pass filters and obtain a more responsive and precise flight. Third, we are also using
slower main flight and motor controllers. We believe that the flight performance could be

boosted with faster controllers.

In addition to hardwares, we can also improve the flight performance via controller
softwares. Currently, we are using basic PID controllers in the developed hexacopter. As one
of our future work, we aim to develop a dynamic model for the holonomic hexacopter with
system identification techniques. With the system identification techniques, it is possible to

optimize and even personalize the flight performance more systematically and analytically.

It is also interesting to note that the proposed holonomic hexacopter could become
fully-actuated with an updated kinematic model. By using reversible propeller units and
setting the tilt angles of all motors (8 in Sect. 3.4) to 45°, the proposed holonomic hexacopter
can stabilize itself at different attitude like the omnicopter [ 14 1] and potentially achieve a

new way of interaction with users.

Currently, the only drawback of the holonomic hexacopter is its power efficiency, which
is about 70-90% when compared to a conventional hexacopter (depending on the tilt angle,
). However, since a companion flying robot is likely to be near to its user, it is reasonable

(and technically possible) to supply power to the flying robot via a tether. In addition to
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the merit of enhanced safety (the flying robot’s activity space is limited and could not
fly far away from the user), the tethered companion flying robot is analogous to a real
pet. Moreover, the use of tether in companion flying robots could also potentially help other
nearby people to feel more secure. By further optimizing the hardware design and using a
smaller flying robot in the future, we believe that the concept of tethered flying robot will

even bring more merits to the field of companion flying robots.

3.9 Conclusion

In this chapter, we design a new type of companion flying robot in order to achieve more
effective HRI. We adopt a unique design such that a hexacopter can have decoupled motion
control—it is able to move horizontally while maintaining its flying attitude. Compared to
a conventional hexacopter, the proposed holonomic hexacopter provides safer operation
from the control perspective and offers intuitive flight from the user’s point of view. It also
provides a stable video feed for high level tasks without an additional gimbal. Moreover,
since it always maintains horizontal attitude, it is less susceptible to wind disturbance. While
it is not demonstrated in this work, the proposed hexacopter is also expected to achieve safer

physical interaction with the user by exerting horizontal forces without changing attitude.



49

Chapter 4
Human Accompanying Model for Flying Robots

4.1 Introduction

2

Autonomy has been the main focus in flying robot research in the past, where “autonomy’
includes sensing, control, localization, mapping, planning, and obstacle avoidance. In this
dissertation, our goal is to design a more sociable flying robot. For example, in addition
to the basic autonomy capabilities like attitude sensing and stabilization control, we are
interested in building a companion flying robot that could accompanying a person, where
“accompanying” includes approaching, following, side-by-side walking, leading, and flying
above. We note that robots—including mobile robots—to-date could not achieve natural

and rich human accompanying behaviors.

In this chapter, our aim is to design a general model to unify various human accompany-
ing behaviors of companion robots. Human accompanying, including human approaching
(from a distance away), human following (at the back), side-by-side walking (along with the
user), human leading (at the front), and flying above the person, are important behaviors of
companion robots. To the best of our knowledge, robots to-date focus on one or two human
accompanying modes; there is no existing work to unify these human accompanying modes

in order for robots to achieve natural and rich interaction with humans.

We propose a two-level model to achieve this goal. At the top level, we adopt a hier-
archical finite state machine (FSM) to organize the behavior flows of a companion flying
robot. Hierarchical FSM has the merits of simplicity and expandability. These merits are
useful for companion flying robots to consider the robot, environment, and human states and
achieve a rich interaction behavior with a person. Moreover, hierarchical FSM is lightweight

and computational friendly to the flying robot’s onboard processor.

At the bottom level, we use a relative positioning control method for robots to achieve
smooth and natural accompanying motions. We adopt the idea of steering behaviors proposed
by Reynolds [152] in the computer animation and interactive media fields. Steering behaviors
were developed for autonomous characters to move in a realistic manner by using only local
information. In contrast to global planning and optimization approaches, steering behaviors

are simple, fast, and require no pre-built map to work. In the followings, by using a few
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basic controllers, we show that steering behaviors could help flying robots achieve smooth

and natural accompanying motion.

While the top-level hierarchical FSM alone can be viewed as a rule-based approach,
together with the bottom level relative positioning controller, they form a powerful hybrid
approach that is able to achieve natural and rich HRI behaviors with minimal computational
load. In the following, we first review some previous works related to human accompanying
model and navigation. Then, we describe the hierarchical FSM that we have designed for
our flying robots. After that, we explain the steering behaviors in our companion flying
robot, along with our simulation and experiment results. Last, we summarize this chapter

with some discussion and potential future works.

4.2 Related Works

Human accompanying in flying robots is relatively new; there are only a few flying
robots that could achieve human following and leading at the time of writing (May 2016). To

present a more complete review, we also include related works in mobile robots.

4.2.1 Human Accompanying (Flying Robots)

Human following. As mentioned in Chapter 2, Pestana et al. realized human following
with a flying robot by using a vision-based tracking method [30]. Higuchi et al. also demon-
strated human following with a flying robot by using a color-based particle filter to track
auser [31]. Lim & Sinha presented a flying robot capable of human following by using a
vision-based human tracking algorithm as well [37]. Using a depth camera, Naseer et al. de-
veloped a flying robot that could perform human following and gesture recognition. Recently,
Skydio company demonstrated a flying robot that could avoid obstacles while following a
person riding a bicycle [153]. All the five flying robots focus on human following mode,

and could not perform other human accompanying modes.

Human leading. In Chapter 2, we also mentioned that Graether & Mueller demonstrate a
flying robot that could jog together with a human, where they program a commercial flying

robot to maintain a fixed distance in front of the jogger. Their flying robot also only focuses
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on human leading' and could not perform other human accompanying modes.

4.2.2 Human Accompanying (Mobile Robots)

Human approaching. Dautenhahn et al. developed a mobile robot that could approach a
person who is sitting on an armchair naturally [154]. Satake et al. also presented a mobile
robot that could approach humans in a natural way in shopping mall such that the robots can
initiate conversations with people better [155, 156]. Using the same mobile robot (Robovie),
similar human approaching behavior has also been demonstrated by Kanda et al. [157],

Satake et al. [158], Kato et al. [159], and Ratsamee et al. [ 160] in their HRI experiments.

Human following. Cosgun et al. proposed a path planning algorithm for a telepresence
robot to follow a person semi-autonomously [161]. Jung et al. also designed a high speed
mobile robot that could follow a marathoner [ 162]. On the other hand, Tani et al. developed a
mobile platform to follow oxygen therapy patients [163]. Gockley et al. [164] and Granata &
Bidaud [165] also presented human following behaviors in their HRI experiments with mo-
bile robots. In addition, human following behaviors have been demonstrated with wheelchair

robots developed by Leight et al. [166], Hemachandra et al. [167], and Tsuda et al. [168].

Side-by-side walking. Park & Kuipers designed a mobile robot that could walk side-by-side
with person by using online local trajectory planning, where their method takes the robot,
obstacle, and human states into consideration [ 169]. Morales et al. also developed a mobile
robot that could walk side-by-side with a person by maximizing a likelihood function that
includes robot, obstacle, and human states [ 170, ]. A similar likelihood function model
has also been used by Murakami et al. to demonstrate walking side-by-side with a mobile
robot [172]. On the other hand, Pucci et al. proposed a new nonlinear controller that allow
a mobile robot to walk side-by-side with a person effectively [ 73]. Kobayashi et al. also
demonstrated a wheelchair robot that could walk side-by-side with a caregiver by using a

laser range sensor [ 74].

Human leading.? Jung et al. demonstrated a mobile robot that could perform a human
leading operation [175]. A human leading scenario has also been demonstrated by Garrell

& Sanfeliu with a mobile robot in simulation environment [ | 76]. Specifically, they used a

! Strictly speaking, the flying robot is not leading the jogger, but rather “following” the jogger at the front.
2 A situation where the robot is in front of the user. Technically, a robot could “follow” a user at the front.
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particle filter to track the position of a group of people, and program a few mobile robots
to help people to stay together while moving in group. We note that Garrell & Sanfeliu
also presented a few human accompanying scenarios with an actual robot but the robot was

controlled by teleoperation in each scenario.

4.2.3 Navigation Model

Researchers have been proposing a large variety of navigation models for ground robot
systems in the past. In general, most navigation models in robotic systems can be categorized
into four main approaches: (i) rule-based, (i1) social force model, (iii) utility functions, and
(iv) dynamic path planning approaches.

Many ground robot systems, including humanoid robots, mobile robots, and wheelchair
robots, rely on simple rules to follow a human. For example, the wheelchair robot in [168]
follows a person by adjusting its speed and direction based on the estimated position and
orientation errors. The wheelchair robot in [174] also uses a similar rule-based controller. On
the other hand, mobile robots in [162], [163], and [166] use a basic P-controller to adjust
their speed and maintain a fixed distance with a human. One can also extend these simple

methods to avoid obstacles like the wheelchair robot in [165].

By representing the influences of the human, destination goal, and obstacles as virtual
forces, Ferrer et al. proposed a social force model for the Tibi mobile robot to successfully
accompany a human and avoid obstacles in an urban area [177, ]. Yoshimi et al. also
presented a similar force-based approach for their humanoid robot to follow a human
and avoid obstacles simultaneously [179]. These models are intuitive but have coupled
translational and (yaw) rotational velocity controllers. Compared to social force approaches,

the steering behaviors approach that we are using is easier to implement.

Different from the social force model, Morales et al. proposed a statistical approach
for their Robovie humanoid robot to walk side-by-side with a human and avoid obstacle
simultaneously [170, 171]. Specifically, after analyzing recorded videos of two humans
walking side-by-side, they defined eight utility functions such as relative distance and
relative velocity to characterize the human-human walking in a statistical way. With the
defined utility functions, they can compute a 2D likelihood map of utility values around
the predicted next robot’s position. Therefore, Robovie can approach to the best position

by looking for the maximized utility value. The wheelchair robot in [167] also takes a
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similar approach but only computes the 1D scores at each heading based on the two distance
parameters. While effective, the calibration and tuning processes of the utility function

approaches are time-consuming.

We note that both social force model and utility maximization approaches are reminiscent
of the potential field method [180]. However, since we focus on the human accompanying
application and assume that users can avoid obstacles naturally, both approaches are not
subjected to the well-known local minima problem. Alternatively, one may pursue dynamic
path planning approaches like the telepresence robot in [161] and wheelchair robot in [169]
to accompany a human while avoiding obstacles. While these online path planning methods
have been successfully implemented on mobile robots, it is a challenging task for a flying
robot. A flying robot normally has payload limitations and its onboard processors are less

powerful to perform intensive computations.

4.3 Finite State Machine Framework

In this section, we describe the top-level model—a hierarchical finite state machine
(FSM) that we propose to unify several human accompanying modes in our flying robot. The
hierarchical FSM has the main advantage of combining several simple rules to achieve
complex human accompanying behaviors. Moreover, hierarchical FSM can be extended
easily to consider robot state, environment, and human robot state, with minimal increases

in model complexity and computational loads.

Figure 4.1 shows a hierarchical FSM that we have designed for our companion flying
robot. The hierarchical FSM is designed to consider the user, environment, and robot
states. Note that the list of states in the figure is not exhaustive. In general, user state includes
human position and body orientation, hand gestures, voice commands, movements, emotion,
etc.; environment state includes obstacles, lighting conditions, wind speed, temperature,
humidity, air quality, etc.; and robot state includes battery level, attitude, altitude, position,
flying speed, emotion, etc. In the flight experiments, we focus on using human position to

realize a few human accompanying behaviors.

From the starting point in Fig. 4.1, we expect the flying robot to take-off and start
wandering around. When a nearby user is detected (more details in Chapter 5), the flying
robot would approach the user and have a face-to-face interaction with the user. At this

point, in order to have a better understanding of the user, the flying robot could have various



54

HRI with the user, such as hand detection and hand shape recognition (Chapter 6), facial
expression recognition (Chapter 7), and face alignment (Chapter 8). Moreover, while it is
not our main focus, it is also possible for a flying robot to exhibit intelligence and emotion in
the future. For example, as mentioned in Section 2.6, Cauchard et al. presented a HRI exper-
iments with flying robots expressing emotions via movements [ 1 8]. Cauchard et al. believe
that encoding these characteristics into movements could help users to comprehend the

internal states or understand the intention of the flying robot better.

The star-liked structure in the center of Fig. 4.1 shows the inter-connected human
accompanying behaviors that we aim to realize in our flying robot, which include human
following, human leading, side-by-side walking, flying high, and human circling. Each
flying mode can be switched by either a user, environment, or robot state. For example, if
user signals a “start human circling” gesture (hand shape), the flying robot would start to
circle around the user. If a potential collision is detected during the human circling mode,
the flying robot can automatically go back to the human following mode (inherent collision
avoidance, assuming that the user avoids obstacles by nature). When the flying robot intends
to save battery, it could land on the shoulder of the user while still maintaining an appropriate

altitude to monitor the surroundings®.

With the top-level hierarchical FSM in mind, in the following sections, we focus on real-
izing four accompanying behaviors in simulations and experiments: (i) human approaching,
(i1) human following, (ii1) human circling, and (iv) side-by-side walking. After describing
the control mechanism of each accompanying behavior in the next section, we will present

the simulation and experiment results.

4.4 Relative Positioning Control

We describe the relative positioning control method used by our companion flying
robot in this section. Specifically, we are using the idea of steering behaviors proposed
by Reynolds [152] in the computer animation and interactive media fields. While simple,
these steering behaviors allow the companion flying robot to achieve smooth navigation in a
realistic manner by using simple forces around the flying robot’s environment. (See [181]
for a great tutorial.) Note that for simplicity, we describe the idea of steering behaviors in

the following in 2D space, but it can be generalized to 3D space.

3 We believe that this is possible when flying robots become smaller, safer, more intelligent in the future.
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Figure 4.1: An overview of the hierarchical finite state machine designed for the companion
flying robot. (See text for details.)

Our main idea is to use simple elementary motion controllers (forward speed controller,
yaw orientation controller, lateral speed controller) to achieve natural and smooth accom-
panying behaviors. Different from the steering behaviors proposed by Reynolds, we have
an additional lateral speed controller in flying robot, which allows us to realize a human

circling behavior that is not discussed in the original steering behaviors paper.

In the following, we aim to realize four accompanying behaviors with our flying robot,
namely human approaching, human following, human circling, and side-by-side walking. We
first describe the working processes of the four controllers. Then we discuss the simulation
and experiment results. For safety reason, instead of performing the experiments with a real
person, we apply the human detection and body orientation estimation methods described
in Chapter 5 for a mannequin. While the trained mannequin upper-body detector works
as expected, the mannequin body orientation estimator does not have enough accuracy and
reliability to start the side-by-side walking experiment (the mannequin is put on a mobile
robot and has significant shaking motion noise during movements). Therefore, while we
have four simulation results of different human accompanying behaviors, we only focus on

the approaching, following, and circling experiments.
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4.4.1 Approaching Controller

Figure 4.2 illustrates the approaching behavior of our flying robot, which is analogous
to the seek behavior proposed by Reynolds. In approaching mode, the steering force is
computed from the current velocity vector and the desired velocity vector that is pointing
toward the target. In simulation, we assume the flying robot knows the position of the user. In
the flight experiments, we use a depth camera and a vision-based method to find the position
of the user. The flying robot’s speed and yaw orientation are controlled independently by two
PID controllers of the holonomic hexacopter (Section 3.6). The speed linearly increases with
the distance in between the robot and the target (user), and the yaw rate linearly increases

with the angle difference in between the current velocity and desired velocity vectors.

Similar to the steering behaviors proposed by Reynolds, our flying robot also has a
limited maximum speed and yaw rate. If the desired speed or yaw rate is higher than
the maximum setting, the maximum value will be used. Inspired by the arrival behavior
proposed by Reynolds, we also adopt smooth start and smooth stop behaviors in the ap-
proaching controller. Simply put, the flying robot will gradually increase its speed towards
the target speed during the start stage. Using smooth start helps to achieve a smooth and
natural motion. Similarly, the flying robot will gradually decrease its speed after reaching a

circumference around the user.

While it is not implemented in our experiments, the approaching controller can achieve
some interesting behaviors with some simple tweaks. For example, if the target position is
reset randomly right before the flying robot reach the target, the flying robot would exhibit a
natural wandering behavior. On the other hand, if direction of the desired velocity vector
is reversed, in contrast to human approaching, the flying robot would exhibits a human

avoiding behavior (analogous to flee behavior proposed by Reynolds).

4.4.2 Following Controller

The following behavior showed in Fig. 4.3 is an extension of the approaching behavior—
the target starts to move. While the velocity vectors seem to be more dynamic and complex,
our simulation and experiment results below show that the flying robot is able to achieve a
smooth and natural human following behavior with the same forward speed and yaw rate

using elementary motion controllers.
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Figure 4.2: Controller model of a flying robot in human approaching mode, where the
steering force is computed from the current velocity and the desired velocity that is pointing
toward the target.
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Figure 4.3: Controller model of a flying robot in human following mode, where the steering
force is computed from the current velocity and the desired velocity that is pointing toward
the target.
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Figure 4.4: Controller model of a flying robot in human circling mode. Essentially, the
circling controller is the same with the following controller, but with an additional lateral
force applied to the flying robot.

4.4.3 Circling Controller

The circling behavior showed in Fig. 4.4 is an extension of the following controller—a
constant lateral speed is applied to the flying robot. Together with the same forward speed
and yaw rate elementary motion controllers, our simulation and experiment results below
show that the trio is able to achieve a smooth and natural human circling behavior when the
target is not moving. In addition, when the target starts to move, the trio is able to exhibit

both following and circling behaviors at the same time.

4.4.4 Side-By-Side Walking Controller

The side-by-side walking behavior is a circling behavior plus a constraint—the flying
robot will try to go to the left/right hand side of the user, depending on which side is
closer. Once again, together with the same forward speed and yaw rate elementary motion
controllers, our simulation results below show that the trio plus a simple constraint is able
to achieve a smooth and natural human walking behavior when the target is moving. This
side-by-side walking controller shows that by including a simple constraint, elementary

motion controllers are able to achieve natural and rich accompanying behaviors.

4.5 Simulation Results

We performed all human accompanying behavior simulations in 2D with a real-time
visualization software—Processing 3 [182]. We wrote the code for the four discussed human

accompanying behaviors and summarize their results in this section.
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4.5.1 Approaching Simulation

In the simulation, we assume the flying robot knows the position of the user. The flying
speed linearly increases with the distance between the robot and the target (user). Flying
speeds that are higher than a limit will be truncated to a maximum speed value of three pixels
per simulation cycle. The yaw rate linearly increases with the angle difference in between
the current and desired velocity vectors. Similarly, yaw rates higher than the maximum yaw

rate of 18° per simulation cycle will be truncated.

Figure 4.5 shows the simulation result of a flying robot’s approaching behavior with
eighteen frames. The triplet on the top left corner of every frame represents the horizontal
position, vertical position, and yaw orientation of the flying robot. In the 2D simulation,
the target user has a white cross shape and is set at the center of a square room. The flying
robot, represented as a white circle with an arrow pointing to its forward direction, gradually

approaches the target user at the center.

Figure 4.6 and Fig. 4.7 show two other simulation results of a flying robot’s approaching
behavior. In both cases, the flying robots have starting yaw orientations that are not pointing
towards the target user. The independent yaw rate controller actively turns the flying robot
towards the target user in the center at the beginning of both simulations. While this
approach does not take the shortest path, our main objective is to achieve a smooth and

natural accompanying behavior.

4.5.2 Following Simulation

Figure 4.8 shows the simulation result of a flying robot’s following behavior with thirty-
six frames. The two triplets on the top left corner of every frame represent the horizontal
positions, vertical positions, and yaw orientations of the flying robot and the moving user. In
the 2D simulation, the target user is positioned at the starting point of a white arrow (with the
arrow pointing to his/her walking direction) and is not allowed to move laterally. The flying
robot, represented as a white circle with an arrow pointing to its forward direction, follows
the moving target user. Note that the flying robot is not following the user path exactly. It
has been pointed out by Gockley et al. [164] that following the user’s path is rated unnatural
by participants in their HRI experiments. Our controller uses the latest measurements for

direct human following and does not follow the user path exactly.
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Figure 4.5: 2D simulation of approaching behavior of a flying robot in Processing environ-
ment. (See text for details.)
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Figure 4.6: 2D simulation of approaching behavior of a flying robot in Processing environ-
ment. (See text for details.)
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Figure 4.7: 2D simulation of approaching behavior of a flying robot in Processing environ-
ment. (See text for details.)

Note that in Figure 4.8, when the user moves at a slower speed, the flying robot can still
maintain a preset distance with the moving user. On the other hand, when the user moves at
a speed faster than the maximum speed of the flying robot, the flying robot can still follow

the user smoothly and naturally, even though it cannot catch up the user in the simulation.

4.5.3 Circling Simulation

Figure 4.9 shows the simulation result of a flying robot’s circling behavior with thirty-
six frames. The two triplets on the top left corner of every frame represent the horizontal
positions, vertical positions, and yaw orientations of the flying robot and the moving user. In
the 2D simulation, the target user is positioned at the starting point of a white arrow (with the
arrow pointing to his/her forward direction) and is not allowed to move in this example. The
flying robot, represented as a white circle with an arrow pointing to its forward direction,
circles around the non-moving target user at the center of the room. Note that the flying

robot successfully maintains a preset distance with the user.

Figure 4.10 shows another simulation result of a flying robot’s circling behavior with the

user moving. In this example, the flying robot successfully maintains a preset distance with
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Figure 4.8: 2D simulation of following behavior of a flying robot in Processing environ-
ment. (See text for details.)
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the user while able to exhibit circling behavior at the same time. For safety purposes, the
user is not allowed to move faster than the flying robot; otherwise, collision would happen
when the flying robot is in front of the user, since the flying robot is not able to avoid the
user with a limited backward and lateral speed. When the user is moving slower than the
flying robot, we confirmed that the flying robot is able to avoid the collision, provided that a

provisional backward motion is allowed.

4.5.4 Side-By-Side Walking Simulation

Figure 4.11 shows the simulation result of a flying robot’s side-by-side walking behavior
with thirty-six frames. The two triplets on the top left corner of every frame represent the
horizontal positions, vertical positions, and yaw orientations of the flying robot and the
moving user. In the 2D simulation, the target user is positioned at the starting point of a
white arrow (with the arrow pointing to his/her forward direction) and does not move in the
first six frames. The flying robot, represented as a white circle with an arrow pointing to its
forward direction, starts at a position behind the user. The flying robot then circles around
the user (who is not moving) and its lateral speed decreases gradually when it almost reach
to the side of the user. From the seventh frame, the user starts to move and the flying robot

is able to fly side-by-side with the user.

From the thirteenth frame onwards in Fig. 4.11, the user starts to change his/her body
orientation while moving. Note that a small change of the user body orientation means a
relatively large change of the side position of the user; the larger the distance between the
user and the flying robot, the larger the position change. Since the flying robot has a small
lateral speed, it will assume the circling behavior in order to reach the side of the user. At the
twenty-first frame, the flying robot notes that it is easier to go to the left side of the user and
changes its lateral speed from the right to the left hand side. After that, the user maintains

his/her body orientation, and the flying robot successfully flies along the side of the user.

4.6 Experiment Results

We summarize the experiment results of human approaching, following, and circling
in this section. As mentioned earlier, we use a mannequin (instead of a real person) in our

experiment for safety reason. The mannequin has a height of 150 cm and is put on a Pioneer
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Figure 4.9: 2D simulation of circling behavior of a flying robot in Processing environment
when the target is not moving. (See text for details.)
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Figure 4.10: 2D simulation of circling behavior of a flying robot in Processing environment
while the target is moving. (See text for details.)
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Figure 4.11: 2D simulation of side-by-side walking behavior of a flying robot in Processing
environment. (See text for details.)
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3-DX mobile robot. The mobile robot has an integrated Raspberry Pi computer and can
be controlled wireless via Bluetooth. In addition, we use a tether-powered hexacopter in
our experiment for long time experiments. The working principle of this tether-powered
holonomic hexacopter is same with the battery-powered holonomic hexacopter described in

Chapter 3. The holonomic hexacopter has a Xtion depth camera for mannequin detection.

4.6.1 Approaching Experiment

Figure 4.12 illustrates the first experiment results of the approaching behavior with the
tethered holonomic hexacopter over a 25-second flight. The top plot represents the distance
between the hexacopter (specifically the onboard Xtion depth camera at the center) and the
mannequin. The top plot has a spike at the third second due to the mannequin detection
failure. However, it does not affect the accompanying performance significantly. We plan to
use a simple low pass filter to solve this issue in our future work. The bottom plot represents
the facing direction of the hexacopter towards the mannequin. The sub-figures at the bottom
are the screenshots at the moments of the six red circles in the plot. The vertical white lines

in the sub-figures in the position where the hexacopter is 200 cm away from the mannequin.

From the plots and sub-figures, we can observe that when the approaching controller is
activated at the beginning (sub-figure (a)), both the distance and facing direction quickly con-
verge to their equilibrium points. We set the social distance to 200 cm in our experiments. To
ensure that the flying robot approaches the mannequin responsively, the hexacopter is set to
have a higher horizontal thrust. As a result, we also observe a small overshot (about 20 cm)
in the plot and sub-figure (b). As shown in the sub-figure (b), we find that this small overshot
is acceptable, as long as the hexacopter does not harm the mannequin or an accompanied
person (stay 100 cm away from the mannequin). After, the hexacopter maintains its position

and facing direction towards the mannequin well (sub-figures (c), (d), (e), and (f)).

Figure 4.13 illustrates the second experiment results of the approaching behavior with
the tethered holonomic hexacopter over a 30-second flight. Similarly, the top plot represents
the distance between the hexacopter (specifically the onboard Xtion depth camera at the
center) and the mannequin. Different from the first approaching experiment, the top plot has
no mannequin detection failure and has a nicer plot. The bottom plot represents the facing
direction of the hexacopter towards the mannequin. The sub-figures at the bottom are the

screenshots at the moments of the six red circles in the plot. The vertical white lines in the
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Figure 4.12: First experiment of “human” approaching with a tethered holonomic hexa-
copter. The top plots represent the distance and facing direction between the hexacopter and
the mannequin over a 30-second flight. The sub-figures at the bottom are the screenshots at
the moments of the six red circles in the plot. (Best viewed in color. See text for details.)
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sub-figures in the position where the hexacopter is 200 cm away from the mannequin.

From the plots and sub-figures, we can observe that when the approaching controller is
activated at the beginning (sub-figure (a)), both the distance and facing direction quickly
converge to their equilibrium points (the social distance is set to 200 cm in our experi-
ments). Once again, to ensure that the flying robot approaches the mannequin responsively,
the hexacopter is set to have a higher horizontal thrust. As a result, we also observe a small
overshot (about 20 cm) in the plot and sub-figure (b). As shown in the sub-figure (b), we find
that this small overshot is acceptable, as long as the hexacopter does not harm the mannequin
or an accompanied person (stay 100 cm away from the mannequin). After, the hexacopter

maintains its position and facing direction towards the mannequin well (sub-figures (c)—(f)).

In both experiments, the distance and facing direction plots have noisy measurements. This
is inevitable because the Xtion depth camera used in our experiments relies on structured
infrared lights for depth measurements. As mentioned in the first experiment, we plan to use

a simple low pass filter to smoothen the measurement noise in our future work.

4.6.2 Following Experiment

Figure 4.14 illustrates the first experiment results of the following behavior with the
tethered holonomic hexacopter over a 60-second flight. The top plot represents the distance
between the hexacopter (specifically the onboard Xtion depth camera at the center) and the
mannequin. The top plot has two spikes due to the mannequin detection failure. However,
they do not affect the accompanying performance significantly. We plan to use a simple
low pass filter to solve this issue in our future work. The bottom plot represents the facing
direction of the hexacopter towards the mannequin. The sub-figures at the bottom are the
screenshots at the moments of the six red circles in the plot. The white and green lines in the

sub-figures represent the moving direction of the hexacopter and the mannequin.

From the plots and sub-figures, we can observe that when the following controller (same
with the approaching controller, except that the mannequin is moving in this case) is activated
at the beginning (sub-figure (a)), both the distance and facing direction quickly converge to
their equilibrium points (with a small overshot). We set the social distance to 200 cm in our
experiments. From the sub-figure (b), we start to move mannequin around. At this moment,
the hexacopter only moves slowly since the distance between itself and the mannequin is

small. From the sub-figure (c), the hexacopter moves faster when the distance between itself
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Figure 4.13: Second experiment of “human” approaching with a tethered holonomic
hexacopter. The top plots represent the distance and facing direction between the hexacopter
and the mannequin over a 30-second flight. The sub-figures at the bottom are the screenshots
at the moments of the six red circles in the plot. (Best viewed in color. See text for details.)
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and the mannequin becomes larger. From the sub-figure (d), we move the mannequin in the
reverse direction and the hexacopter is able to maintain the preset following distance of 200
cm within error of 50 cm. While this error seems to be large, the following behavior in the
experiment has less robotic feel (more natural). At sub-figures (e) and (f), we stop moving
and start to rotate the mannequin, the hexacopter is able to maintain its position and facing

direction towards the mannequin well.

Figure 4.15 illustrates the second experiment results of the following behavior with the
tethered holonomic hexacopter over a 60-second flight. Similarly, the top plot represents
the distance between the hexacopter (specifically the onboard Xtion depth camera at the
center) and the mannequin. Different from the first following experiment, the top plot has
no mannequin detection failure and has a nicer plot. The bottom plot represents the facing
direction of the hexacopter towards the mannequin. The sub-figures at the bottom are the
screenshots at the moments of the six red circles in the plot. The white and green lines in the

sub-figures represent the moving direction of the hexacopter and the mannequin.

From the plots and sub-figures, we can observe that when the following controller is
activated at the beginning (sub-figure (a)), both the distance and facing direction quickly
converge to their equilibrium points (with a small overshot). We set the social distance to
200 cm in our experiments. From the sub-figure (b) to (c), we start to move mannequin
around. At these moments, the hexacopter only moves slowly since the distance between
itself and the mannequin is small. From the sub-figure (d), the hexacopter moves faster when
the distance between itself and the mannequin becomes larger. At this point, we also move
the mannequin in the reverse direction and the hexacopter is able to maintain the preset
following distance of 200 cm within error of 50 cm. Similar to the first following experiment,
while this error seems to be large, the following behavior in the second experiment has less
robotic feel (more natural). From the sub-figure (e), the hexacopter is able to maintain its
position and facing direction towards the mannequin well while we continue to move the
mannequin. The maximum error of the hexacopter’s facing direction towards the mannequin
is less than 10°. Considering that we are using a low resolution depth camera and a simple

motion controller in our experiment, we find that this error is acceptable.
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Figure 4.14: First experiment of “human” following with a tethered holonomic hexa-
copter. The top plots represent the distance and facing direction between the hexacopter and
the mannequin over a 60-second flight. The sub-figures at the bottom are the screenshots at
the moments of the six red circles in the plot. (Best viewed in color. See text for details.)
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Figure 4.15: Second experiment of “human” following with a tethered holonomic hexa-
copter. The top plots represent the distance and facing direction between the hexacopter and
the mannequin over a 60-second flight. The sub-figures at the bottom are the screenshots at
the moments of the six red circles in the plot. (Best viewed in color. See text for details.)
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4.6.3 Circling Experiment

Figure 4.16 illustrates the first experiment results of the circling behavior with the
tethered holonomic hexacopter over a 60-second flight. The top plot represents the distance
between the hexacopter (specifically the onboard Xtion depth camera at the center) and the
mannequin. The bottom plot represents the facing direction of the hexacopter towards the
mannequin. The sub-figures at the bottom are the screenshots at the moments of the six red
circles in the plot. The white lines in the sub-figures represent the moving direction of the

hexacopter.

From the plots and sub-figures, we can observe that when the circling controller (same
with the approaching controller, except that a small lateral force is applied to the hexacopter
when it is near to the social distance circumference of the mannequin) is activated at the
beginning (sub-figure (a)), both the distance and facing direction quickly converge to their
equilibrium points (with a small overshot). We set the social distance to 200 cm in our
experiments. At sub-figure (b), the hexacopter maintains its position and facing direction
towards the mannequin. From the sub-figure (c) to (f), a small lateral force is applied and
the hexacopter starts to circle around the mannequin slowly. We apply a small lateral force
in the experiment in order to ensure that the mannequin detectors work reliably. The depth
camera we are using now has a limited field of view (about 30°on one hand side) and the
onboard computer has detection speed of around 10Hz. Increasing the hexacopter’s circling

speed and onboard computer’s detection speed will be considered in our future works.

Figure 4.17 illustrates the second experiment results of the circling behavior with the
tethered holonomic hexacopter over a 60-second flight. Similarly, the top plot represents
the distance between the hexacopter (specifically the onboard Xtion depth camera at the
center) and the mannequin. The bottom plot represents the facing direction of the hexacopter
towards the mannequin. The sub-figures at the bottom are the screenshots at the moments
of the six red circles in the plot. The white lines in the sub-figures represent the moving

direction of the hexacopter.

From the plots and sub-figures, we can observe that when the circling controller is
activated at the beginning (sub-figure (a)), both the distance and facing direction quickly
converge to their equilibrium points (with a small overshot). We set the social distance to
200 cm in our experiments. From the sub-figure (b) to (c), a small lateral force to the left is

applied and the hexacopter starts to circle around the mannequin slowly. As explained in
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Figure 4.16: First experiment of “human” circling with a tethered holonomic hexa-
copter. The top plots represent the distance and facing direction between the hexacopter and
the mannequin over a 60-second flight. The sub-figures at the bottom are the screenshots at
the moments of the six red circles in the plot. (Best viewed in color. See text for details.)
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Figure 4.17: Second experiment of “human” circling with a tethered holonomic hexa-
copter. The top plots represent the distance and facing direction between the hexacopter and
the mannequin over a 60-second flight. The sub-figures at the bottom are the screenshots at
the moments of the six red circles in the plot. (Best viewed in color. See text for details.)



77

the first experiment, we apply a small lateral force in order to ensure that the mannequin
detectors work reliably. From the sub-figure (d) to (f), a small lateral force to the right
is applied and the hexacopter starts to circle around the mannequin slowly in the reverse
direction. In two occasions (at the 22" and 33" seconds), the error of the distance almost
exceeds an error of 50 cm. We believe that this is caused by the slow response of the simple
controller used in our experiment. We aim to incorporate a PID controller into the bottom-
level motion controller and use a downward-looking optical flow sensor for horizontal

velocity control in our future works.
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Chapter 5

Human Sensing Interface I: Human Upper-Body Detection and Orientation
Estimation

5.1 Introduction

Human body orientation (HBO) estimation is an essential method for many human-robot
interaction (HRI) and ubiquitous computing applications. To-date, many existing robots
only detect the locations of humans and perform simple human following applications [ 83,

]. With HBO estimation, we believe that robots and computer agents could achieve more
natural and richer interactions with humans. For example, a flying robot could reasons the

intention of an accompanied person if it knows the body orientation the person.

In this chapter, we present a robust technique to estimate HBO in real-time with either
a color or depth image. To the best of our knowledge, most previous approaches focus on
multi-class classification [ 85—187] or rely on filtering methods such as Kalman filters or
particle filters to improve the tracking performance [ 86—188]. Instead, our method uses a
random forest regressor to perform a continuous and full 360° HBO estimation. Compared

to previous approaches, our approach is not only faster but also more efficient.

Secondly, since the HBO (-180°<6<180°) is not continuous in the regression space, we
find that the estimation results near to the -180° and 180° regions deteriorate significantly. In-
stead of estimating the HBO directly, we propose a xy-based random forest regression (such
that -180° would equal to 180° in the regression space) that could improve the estimation

accuracy in both theory and the actual experiments.

Last but not least, we present a full human upper-body detection and body orientation
estimation framework. This full framework has two main merits: (1) we could use the same
extracted features for both human body detection and orientation estimation and therefore
be able to achieve better efficiency; (2) instead of applying HBO estimation onto only one
detected human upper-body image patch after applying non-maxima suppression (a common
method used to suppress multiple detections near to the target), we apply HBO estimation
onto all detected human upper-body image patches right before the non-maxima suppression
step and take their mean as the final estimation result. As we will discover soon in the

experiments section, this technique could improve the performance significantly.
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Figure 5.1: Our human body orientation (HBO) estimation method produces continuous
and full 360° estimation results.

The rest of this chapter is organized as follows: In Sect. 5.2, we summarize general
approaches that are related to HBO. In Sect. 5.3, we describe the human upper-body
detection method used in our experiment, followed by our HBO estimation method in
Sect. 5.4. In Sect. 5.5, we describe our data collection process and provide experiment
results in Sect. 5.6. Last, we discuss some insights of our method in Sect. 5.8 and conclude

our work in Sect. 5.9.

5.2 Related Works

There are many previous works that are related to HBO detection and tracking. For
the ease of review purposes, we divide related works into four categories: color-based,
depth-based, fusion-based, and lidar-based approaches.
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Figure 5.2: An overview of our human upper-body detection and orientation estimation
pipeline. Depth segmentation is used for performance speedup in the sliding window search
process. Histogram of oriented gradients (HOG) features are used together with a cascade
AdaBoost classifier for human upper-body detection. Note that we do not use non-maxima
suppression. Random forest regression is applied to all detected human upper-body image
patches (same HOG features are used). Regression results of all image patches and all
regression trees in the forest are averaged to obtain human body orientation eventually.

5.2.1 Color-Based Approaches

Color-based multi-class classification using a normal color camera is common. For
example, Weinrich et al. [185] designed multiple support vector machines (SVMs) as binary
decision makers inside a decision tree to perform a 8-class (i.e., 0°, 45°, ..., 315°) upper-body
orientation classification. Similarly, Ardiyanto & Miura [ 88] used random forest to perform
a 8-class upper-body classification and employed an Unscented Kalman Filter (UKF) to

improve the HBO tracking performance.

Instead of using a multi-class classifier, Flohr et al. trained eight detectors to evaluate how
well an image patch corresponds to a specific body orientation and then used the detector
responses for particle filter-based tracking. On the other hand, Chen et al. assumed that a
human upper-body’s histogram of oriented gradients (HOG) descriptor can be approximated
by a small number of training data and used a sparse coding method to perform 8-class
classification. In their following work, Chen et al. [189] proposed a coupled learning method
for head and body orientation estimation but essentially still perform a 8-class classification
to estimate HBO.

Different from previous approaches, Rybok et al. [190] employed a background subtrac-
tion method to extract silhouette information from multiple cameras for a 12-class HBO
classification. While they have finer quantization in their designed multi-class classifier, they
still do not take full advantage of the available information inside an image for a continuous
HBO estimation with regression. Moreover, their method is not directly applicable for most
robot applications. Normally, robots are expected to move and background subtraction

methods could not work reliably.
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5.2.2 Depth-Based Approaches

Using a depth camera, Yang etal. [191] proposed a HBO estimation system that is
similar to our concept in this work. Specifically, they extracted hand-tuned features from a
fixed region inside the detected human upper-body depth image and used a support vector
regressor (SVR) to estimate the continuous HBO. However, their method focuses on frontal
images (-90°<6<90°). In contrast to their method, our method produces a continuous and
full 360° HBO estimation.

Instead of estimating HBO directly, Shotton et al. [192] tackled a more general problem,
namely human pose estimation, where they estimate the locations of body joints from
a single depth image. Note that with the locations of human body shoulder joints, it is
possible to estimate HBO. Based on the same settings, Ye et al. [193], Jung et al. [194],
and Zhang et al. [195] improved the human pose estimation in term of accuracy, speed,
and robustness to partial occlusions, respectively. Compared to their approaches, our HBO

estimation method is more direct and faster.

5.2.3 Fusion-Based Approaches

To reduce the color-based approaches’ sensitivity to cluttered environments or illumina-
tion changes and to reduce the depth-based approaches’ sensitivity to noisy measurement,
Liu et al. [196] proposed a method to take full advantage of the RGB-Depth information
for HBO. However, similar to most previous works (except [191]), they only focus on eight
non-overlapping body orientation classes. Furthermore, their method requires superpixel
extraction and could not achieve real-time performance. Similarly, Shinmura et al. [197]
took advantage of the RGB-Depth information and used a 8-class SVM classifier to estimate
the eight discrete HBO.

5.2.4 Lidar-Based Approaches

In addition to color and depth cameras, 2D and 3D lidar sensors have also been used
for HBO estimation. Based on our survey, all lidar-based approaches rely on filtering
methods to track the HBO. For example, Glas et al. [198] presented a HBO tracking method
based on a 2D lidar sensor by using a particle filter with an adaptive shape modeling

algorithm. Kobayashi et al. [199] also employed a particle filter to track the HBO by
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approximating human body shape with a simple ellipse model. Compared to their approaches,
our method is based on pure regression and does not require the design of likelihood
functions of the filters. Designing likelihood functions can be quite tedious and time-

consuming in Some cases.

On the other hand, by assuming that the human always face toward his/her walking
direction, Shackleton et al. [200] and Shao et al. [201] proposed to track HBO with a Kalman
filter and particle filter respectively. In contrast to their method, our method does not have

this assumption and could estimate HBO and track human walking direction independently.

Lastly, it is also worth noting that Ziegler et al. [202] combined lidar and wearable
sensors information with a particle filter to estimate full human body pose. However, in
contrast to their method, our method requires no wearable sensor. The wearable sensor can

sometimes be an inconvenience.

5.3 Human Upper Body Detection

In this work, we present a full human detection and body orientation estimation frame-
work (Fig. 5.2). Note that we use the same extracted features from the image for both
human upper-body detection and orientation estimation. In this way, we could achieve both
human upper-body detection and orientation estimation at minimal processing time. This
section gives an overview of our human upper-body detection method (the first half of
Fig. 5.2). While it is more common for human full-body detection in the literature, we
focus on upper-body detection because of its robustness to occlusion. In addition, human
upper-body detection can be applied to a wide range of scenarios such as standing, sitting,

and even riding a bicycle.

Similar to the human full-body detection method proposed by Dalal & Triggs [203], we
use HOG features for human upper-body detection. However, we do not use the SVM for
classification since it is time-consuming. To achieve efficient performance, we train a 4-stage
cascade AdaBoost classifier [204]. From the literature, we find that our human upper-body
detection approach is similar to the work by Zhu et al. [205].In the following, we briefly

review the HOG features extraction process and AdaBoost classification process.
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5.3.1 HOG Features Extraction

Histogram of oriented gradients (HOG) features were first proposed by Dalal & Triggs [
for human detection. While being similar to scale-invariant feature transform (SIFT) feature,
HOG represents dense coding of image and possesses a few different implementation details
such as number of histogram bins and local contrast normalization. In a nut shell, HOG

feature can be computed in the following steps:

1. Image is first convoluted with 1-D Sobel filters, i.e. [-1,0,1] and [-1,0,1]7, in order to

compute the horizontal gradient dx and vertical gradient dy at each pixel.

2. With horizontal and vertical gradients, magnitude and orientation at each pixel can be

computed as /(dx)? + (dy)? and tan‘l(%) respectively.

3. Image is divided into 8X8 cells. Orientation values inside each cell are quantized into
a 9-bin histogram, where the magnitude value of each pixel represents the binning

weights, and bilinear interpolate is used during the binning process.

4. Four adjacent cell histograms are locally normalized. Each block has 50% overlapping
with adjacent block and all normalized block histograms are concatenated into a 1-D

feature vector.

5.3.2 AdaBoost Classification

AdaBoost is a useful machine learning algorithm that was proposed by Freund &
Schapire [204]. In general, AdaBoost iteratively looks for the best training feature to build
a weak classifier in each training cycle. After each feature selection, sample weights are
re-adjusted according to the local classification error. The same process repeats until a
certain number of features are selected. Weak classifiers, normally linear decision stumps
with only threshold and polarity parameters, are then combined together to form a strong

classifier. Mathematically, the linear decision stump can be written as

+1, ifp-fy<p-0,
hi(x, p,0) = (5.1
— 1, otherwise .
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Figure 5.3: AdaBoost classifier illustration. AdaBoost select the best feature for one weak
classifier at one time, and then update sample weights based on the local classification error,
and repeat the selection process iteratively. The final strong classifier combines several
weak classifiers in an additive manner, where voting weights of weak classifiers («;) are
determined by the classification error of weak classifier.

where f(x) is a feature descriptor (HOG features in our case), 6 represents a threshold
value, and p represents the direction of the inequality. We illustrate AdaBoost algorithm

graphically in Fig. 5.3 and summarize the essential steps in Algorithm 1.

Algorithm 1 AdaBoost Algorithm

Step 1: Denoted as (x;, y;), training samples consist of a features vector x; and training label y; = {+1, -1} .

Step 2: Given P positive and N negative training data, set the weights of positive and negative samples to
w; = + and w; = 5, respectively.

Fortr=1,...,T:

Step 3: Normalize the weights of all training samples, w; « ka—w .
i=1 "

Step 4: By using Eq. (5.1) with p = 1 or p = —1 and different 6,
compute the error rate ¢ of each decision stump £,(x) .

Step 5: Select the decision stump /,(x) that has lowest error rate.

Step 6: Compute weight of selected decision stump, a; = % ln(%f’) .

Step 7: Update training sample weights, w; « w; - exp(—a,y;h,(x;)) .
Step 8: The final strong classifier is

Hoy<| T G ah()> 350 e,
X) =
! —1, otherwise .

To further speedup the human detection process, we use a cascade of AdaBoost classifiers
that was first introduced by Viola & Jones [206]. The main idea of the cascade AdaBoost
classifier is to design a series of AdaBoost classifiers, where the initial AdaBoost classifiers

are designed to be small and aim to eliminate a large number of negative examples with very



85

Algorithm 2 Cascade Algorithm

Step 1: Select a minimum acceptable detection rate, d;44., and maximum acceptable false positive rate, fiarger
for each layer of AdaBoost classifier.

Step 2: Select an overall target of false positive rate, Fyuqe; and compute the minimum layers of AdaBoost
classifiers, L, such that £}, ,; < Fiarger) -

Step 3: Prepare a set of positive samples, P and negative samples, N.
Forl=1,...,L:

Step 4: Set the number of weak learners, detection rate, and false positive
rate in the current AdaBoost classifierton = 1,d =0,and f = 1.

while f > fiige

Step 5: Setn = n + 1 and use P and N to train a AdaBoost classifier
with n weak learners with Algorithm 1.

Step 6: Evaluate the trained AdaBoost classifier with the validation set
to update detection rate, d and false positive rate, f.

Step 7: Decrease the AdaBoost threshold until d > dyrge; -

Step 8: Evaluate the current cascaded detector on images without positive
target and reset the negative samples set, N with all false detection.

little processing time. Essentially, the initial AdaBoost classifiers eliminate “easy” examples
at the beginning stage and the AdaBoost classifiers at the later stage are only applied to the

“hard” examples that pass through all the previous stage.

Our algorithm is summarized in Algorithm 2. We consider our training algorithm
simpler to the original algorithm summarized by Viola & Jones [206]. The main difference
is that we evaluate the AdaBoost classifier at the current layer. Using the whole cascaded
classifier to evaluate the validation set is not compulsory since we use the same positive
samples set and the same negative images to scan false positive samples. In details, we
select a minimum acceptable detection rate, (d.q;) and maximum acceptable false positive
rate, (fiarger) for each layer of AdaBoost classifier. Then we select an overall target of false
positive rate, F,arget and compute the minimum layers of AdaBoost classifiers such that
the multiplication of false positive rates f of all layers is less than or equal to the overall
target of false positive rate, F;arget. With a set of positive samples and negative samples,
we start to train one AdaBoost classifier with only one weak learner with Algorithm 1. We
then evaluate the trained AdaBoost classifier at the current layer with the validation set

and decrease the threshold until we have a detection rate that is higher than the minimum
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acceptable detection rate. With a lower threshold, the false positive rate is likely to be
higher. If the false positive rate is higher than the maximum acceptable false positive rate,
we will continue to increase the number of weak learners in the AdaBoost classifier at
the current layer. On the other hand, if conditions of both the local detection rate and
false positive rate are met, we use the while current cascaded detector to scan negative
image set. Since there is no positive samples in the negative image set, all the detections
will considered as false positives and will be used the new negative samples to train the

subsequent AdaBoost classifier.

5.4 Human Orientation Estimation

This section gives an overview of our human body orientation (HBO) estimation method,
which is summarized in the second half of Fig. 5.2. Our HBO estimation method has two
points that make it work extremely fast. First, it uses the same HOG features that were
used for human upper-body detection. This enable us to avoid additional features extraction
process and perform HBO estimation at minimal computational cost. Second, we use random
forest regression for HBO estimation. Since random forest regression only requires simple
comparison operations at each branch node, our HBO estimation method works extremely
fast.

In addition to the speed performance, our HBO estimation method also produces accurate
results. Instead of applying HBO estimation onto only one detected human upper-body image
patch (which is common in many detection framework, where non-maxima suppression
method is used to suppress multiple detections near to the target), we apply HBO estimation
onto all detected human upper-body image patches right before the non-maxima suppression
step and take their mean as the final result. It is interesting to note that this process is
reminiscent of a particle filtering process, but our method requires no likelihood computation,
in which the likelihood function could be hard to design in certain case. While the covariance
of the training samples inside the leaf node of a regression tree could be used as a weighting
parameter like the likelihood value in a particle filter, we aim for simplicity and opt not to
do so. Instead, we take the mean of all regression results produced by all human upper-body
image patches and regression trees. In the following, we describe our design process of the

random forest regression in detail.
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5.4.1 Random Forest Regression

Random forest (shown in Fig. 5.4) is an ensemble of several regression trees that was
proposed by Breiman [207]. We trained our random forest in a way that is slightly different
from the original approach. During the training stage, we did not use the bagging process,
where a subset is selected from the whole training dataset with replacement to train each
regression tree. For the ease of program development, we trained a new regression tree with

new data that we collected in a data collection session.

When training each regression tree, we use 10-fold cross validations in order to avoid
overfitting. Specifically, we randomly divide our data into ten subsets and then use the first
nine subsets to grow the tree branches. At each branch node, we examine all the HOG
features and look for a decision stump rule that minimize the regression error, i.e., the mean
squared error (MSE) at two child nodes. The growing of regression tree will stop if a branch

node has less than ten samples or MSE could not be improved further.

In general, this training process will make the regression tree big and overfit the training
data. To avoid this, we use the remaining subset to prune the tree. At every pair of child
nodes with a common parent node, if the MSE of the parent node is smaller than the two
combined MSE of the child nodes, we remove the two child nodes and the same process
continues. After that, we use another nine subsets to re-grow the tree and use the remaining
subset to re-prune the tree. This cross validation process would continue until the MSE
of the tree does not improve. With this technique, the regression tree would have a higher

training error but tend to be less susceptible to the overfitting issue.

During the prediction stage, a HOG vector enters the root node of each regression tree
and continues to go down until it arrives at a leaf node (green circle in Fig. 5.4) by following
the learned decision rules at branch nodes (blue circle in Fig. 5.4). We use the mean value of
all the training samples inside the arrived leaf node as the regression tree result (HBOy, ...,

HBO,). After that, we use the mean value of all regression trees as the random forest result.

! The regression trees figure is taken and modified from the tutorial notes of International Conference on
Computer Vision (ICCV) 2009 by Jamie Shotton.
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Figure 5.4: Random forest illustration.! Random forest is an ensemble of several regression
trees (T, ..., T,), where each tree is trained with a different dataset and has different branch
nodes. During the prediction stage, a HOG vector enters the root node of each regression
tree and continue to go down until it arrives a leaf node (green circle) by following the
learned decision rules at each branch node (blue circle).

5.4.2 XY-Based Orientation Regression

While designing a regressor for HBO estimation seems straightforward, we find that the
difficult point is that the HBO labels (-180°<6<180°) are not continuous in the regression
space while the HBO is obviously continuous in the physical space. It is not wise to train the
random forest regressor directly with the original labels as it would lead to serious errors at
the prediction stage. For example, imagine that we have a test data that is close to +/ — 180°
region. Since the images close to this region are visually similar, it is very likely that the
regression trees would produce estimation results that are close to +/ — 180° region. If we
take the mean of the regression trees results, we end up in a value close 0° due to the plus
and minus signs produced by different regression trees. One possible solution is to first
transform the regression results from polar space into Cartesian space, compute the means in
the Cartesian space, and then re-transform it back to the polar space. While we find that this
process improves the HBO estimation result, in theory, we should regress human upper-body

images that are close to the +/ — 180° region to the same region in the regression space.

To this end, instead of estimating the body orientation using the original HBO labels (-
180°<6<180°) directly, we propose a xy-based random forest regression that could improve
the estimation accuracy in both theory and the actual experiments. Specifically, we first
transform the original HBO labels from polar space into Cartesian space, i.e., 8 — (x, y), and
then train two random forest regressors—the first one for X dimension and the second one

for Y dimension (hence the name xy-based). Since the xy-based labels are continuous in the
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regression space, we hypothesize that this could improve the HBO estimation results signifi-
cantly, especially for test images with HBO labels that are close to the 180° region. During
the prediction stage, we perform two parallel regressions on the X and Y dimensions,
compute their means, and then transform the mean result from the Cartesian space to the
polar space. In the experiment section, we can observe that this method improves the HBO

estimation significantly.

5.5 Data Collection Process

We have designed a system to collect high quality and large amounts of HBO datasets in
order to train the random forest. A C++ program was developed to interface with one Xtion
camera via USB and one IMU sensor wirelessly via Bluetooth. The Xtion camera provides
both color and depth images in 640x480 resolutions at 30Hz. The IMU sensor has an internal
gradient descent algorithm that combines accelerometer and gyroscope measurements and
outputs highly accurate (up to 0.1° accuracy) 3D orientation information [208]. During the
data collection session, we fixed the IMU sensor onto a rotatable chair that is placed in front
of the Xtion camera at about one meter. Participants are asked to sit on the rotatable chair
and face toward the Xtion camera initially (HBO is labeled as 0° when a participant is facing
toward the Xtion). Then, the participant starts to continuously turn their body clockwise
(or counter-clockwise) slowly while the program collects both color & depth images and
IMU orientation outputs once per second. During the data collection process, participants
can move their hands and turn their head slightly but generally did not have large hand and
head movements. On average, participants would finish one full rotation within about three
minutes. Overall, sixty datasets (roughly 200 samples on average) of two participants with
very different body shapes, hair styles, and clothing have been collected at two different
indoor environments with different backgrounds and illumination conditions. We visualize
some of the example data in Fig. 5.5, where color and depth cropped images of two

participants spanning from 180° to -180° are shown.

5.6 Experiment Results

In this section, we summarize our experiment results by using root-mean-square error

(RMSE) between the ground truth HBO labels and the regression results as our evaluation
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Figure 5.5: Human body orientation datasets of two people with color and depth images,
where the human body orientations span from 180° to -180°. Note that the two participants
have very different body shapes, hair styles, and clothing. In addition, the backgrounds and
illumination conditions are different.

metric. Due to the space limitations, we focus on five comparison results. We first compare
the (1) results of direct regression and xy-based regression by using depth images and analyze
the effect of the number to regression trees. We then analyze (ii) the effect of non-maxima
suppression and (iii) the effect of k-means filtering in the HBO estimation. After that, we
compare the (iv) results of depth-based and color-based HBO estimation and present the (v)

generalization performance of our method.

We train our depth-based human detector with data collected from the first person. In
the first four experiments, we use forty datasets of the first person for training and use the
remaining eight datasets of the first person for test. Note that in all datasets, the person
turns his/her body orientation in one full cycle and hence all datasets contain sparse samples
facing to all direction. While all forty-eight datasets have the same person, the person has
different clothing, hand postures, and small head movements in each dataset. Furthermore,

each dataset has different background and illumination conditions.

5.6.1 Direct vs. XY-Based HBO Estimation

Fig. 5.6 summarizes the RMSE results of eight test datasets of the first person, with the
x-axis being the number of regression trees and y-axis being the RMSE values. From the
figure, we can easily observe that the xy-based HBO estimation method performs better
than the direct HBO estimation method by a large margin. Note that for the direct HBO

estimation method, we have first transformed the regression results into Cartesian space
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Figure 5.6: Direct vs. xy-based HBO estimation results of eight test datasets, where the
x-axis represents the number of regression trees and y-axis represents the RMSE.

before computing their means (refer to Sect. 5.4 for more details). If no transformation is

used at all, we expect that direct HBO regression method would perform more poorly.

We can also observe that most regression results become stable when the number of
regression trees is larger than twenty, except in the 6” test dataset. Upon investigation, it is
found that three images with orientation label close to 180° produce large regression errors
of 100° (the three red arrows pointing to these test samples in Fig. 5.7). We believe that

training the regression trees with more data and finer HBO labels could resolve this problem.

5.6.2 With vs. Without Non-Maxima Suppression

We also investigated the results with and without non-maxima suppression before
applying the regression trees for HBO estimation. Without non-maxima suppression, we
have more human upper-body samples for HBO estimation and we use the mean result as
the final result. From Fig. 5.8, we can observe that without non-maxima suppression, the
HBO estimation improves by a large margin. As mentioned before in Sect. 5.4, the process

without the non-maxima suppression is reminiscent of a particle filtering process. However,
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Figure 5.7: XY-based HBO estimation results of the 6" test dataset, where the x-axis
represents the sample indices and the y-axis represents the HBO labels. The three red arrows
point out the three images that have orientation labels close to 180° and produce regression
error larger than 100°.
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Figure 5.8: HBO estimation results with and without non-maxima suppression, where the
x-axis represents the number of regression trees and the y-axis represents the RMSE. Note
that the left/right figure summarizes the mean results of the first/last four test datasets.

our method requires no likelthood computation, in which the likelihood function could be

hard to design in certain case.

5.6.3 Mean Computation vs. K-Means Clustering

During the early experiments, we found a few spiky HBO estimation results produced by
some image patches and regression trees. While apply k-means clustering to the regression
results would improve the result, overall we find that the effectiveness of k-means clustering
starts to decrease when the number of regression trees increase. From Fig. 5.9, we can

observe that both the simple mean computation and k-means clustering produce similar
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Figure 5.9: HBO estimation results with simple mean and k-means clustering, where the
x-axis represents the number of regression trees and the y-axis represents the RMSE. Note
that the left/right figure summarizes the mean results of the first/last four test datasets.

results. Since computing the mean is simpler and faster, we use the mean of all regression

values as the final HBO estimation result.

5.6.4 Depth- vs. Color-Based HBO Estimation

In the following experiment, we study the performance of color-based HBO estima-
tion. For comparison purposes, we use the same depth-based human upper-body detector. In
Fig. 5.10, we can see that color-based HBO estimation does not work as well as the
depth-based HBO estimation. This is reasonable as the collected (color-based) datasets are
relatively small, and we have different backgrounds and illumination conditions. We believe

that with more datasets, random forest could be trained to perform better.

5.6.5 Generalization Performance

We performed a simple experiment to test the generalization performance of our method
and summarized the results in Fig. 5.11. We first applied the random forest model trained
with datasets of the first person onto the test datasets of both people. As shown in the left
figure of Fig. 5.11, the HBO estimation performance of the second person is not as good as
the first person, but this is reasonable, considering that the two people have different body

shapes, hairstyles, and clothing (Fig. 5.5).

We then train a different random forest model with datasets of the second person and test

the performance with datasets of both people. Note that we only have eight training datasets
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Figure 5.10: Depth- vs. color-based HBO estimation results, where the x-axis represents
the number of regression trees and the y-axis represents the RMSE. Note that the left/right
figure summarizes the mean results of the first/last four test datasets.
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Figure 5.11: HBO estimation generalization results, where the x-axis represents the number
of regression trees and the y-axis represents the RMSE. Left: Model (forty regression trees)
was trained with the forty datasets of the first person. Middle: Model (eight regression trees)
was trained with the eight datasets of the second person. Right: The first model and the
second model are combined.

of the second person and we trained eight new regression trees with each training dataset. As
shown in the middle figure of Fig. 5.11, the model works well on the second person but not

as well on the first person due to same reason explained in the previous paragraph.

In the last experiment, we combined the forty regression trees trained with the forty
datasets of the first person and the eight regression trees trained with the eight datasets of
the second person. As shown in the right figure of Fig. 5.11, the test performance of the
first person remains good while the test performance of the second person improves by 30%
with the combined models. With more training datasets of the second person, we believe

that the test performance of the second person could be further improved.
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Table 5.1: Time performance in ms unit by using Xtion camera at 320 x 240 resolution
with three different platforms. Note that both AdaBoost detector and random forest regressor
are able to work in real-time (<5 ms).

Depth Image HOG Feature AdaBoost Direct HBO XY-Based Total

Segmentation ~ Normalization Extraction Human Detection ~ Regression =~ HBO Regression ot
Platform ! 0.372 0.014 0.098 0.001 0.229 0.505 1.219
Platform 2 0.469 0.017 0.140 0.002 0.521 1.016 2.165
Platform 3 1.059 0.027 0.223 0.002 0.711 1.311 3.333

! Intel Core i5-2540M @ 2.60GHz x 4 (64-bit), Ubuntu 14.04.4 LTS.
2 Intel Core 2 Duo @ 2.66GHz X 2 (64-bit), Ubuntu 14.04.4 LTS.
3 Samsung Exynos5422 Cortex-A15 2Ghz, Ubuntu 14.04.4 LTS.

5.7 Real-Time Performance

We also analyzed the time performance by using Xtion camera with three different
platforms and summarized the results in Table 5.1. From the table, we can observe that both
AdaBoost detector and random forest regressor work very fast in every depth image (<5
ms). Combined with depth segmentation technique, we compute the scanning window size
based on the real depth values; we could achieve human upper-body detection and HBO

estimation in real-time in an efficient manner.

5.8 Discussion

While the depth-based HBO estimation works well, combining face detection or head
pose estimation with HBO estimation could potentially improve the results further. Color-
based HBO estimation is also challenging and is an important future work. On the other
hand, we believe that training the regression trees with the whole datasets and bagging

process could improve the accuracy and generalization performance.

5.9 Conclusion

In this chapter, we present a full human upper-body detection and body orientation
estimation framework. The proposed framework works efficiently since the same extracted
features for both human body detection and orientation estimation. We also present a

novel xy-based random forest regressor to perform a continuous and full 360° HBO esti-
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mation. Compared to previous approaches, our method could produce accurate and smooth
HBO estimation without additional tracking process. Moreover, we apply the xy-based
random forest regressor onto all detected human upper-body image patches right before the
non-maxima suppression step and take their mean as the final result. This process serves as
a robust filter (like a particle filter) and our experiment results show that using this technique

with the xy-based regression further improves the HBO estimation results.
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Chapter 6

Human Sensing Interface II: Hand Shape Detection

6.1 Introduction

Hand shape detection is an interesting and challenging application [209] (see Fig. 6.1
and Fig. 6.2). In addition to hand tracking, hand pose estimation, and hand shape recogni-
tion, hand detection has also been utilized for human-robot interaction (HRI) and ubiqui-
tous computing applications. Previous works rely on skin detection [210-215] and depth
technique [216-218] for hand detection. These systems do not work reliably under some
circumstances. For instance, a hand detection system with Caucasian skin model would have
difficulty to detect an African hand due to the difference of skin colors. In addition, a hand
detection system that relies on depth thresholding technique would fail when the hand is not

the closest object in front of the camera.

In this chapter, we focus on an appearance-based approach [219-221], where we first
extract features from test images and perform classification with AdaBoost. To the best
of our knowledge, appearance-based approaches are not the mainstream research for hand
detection. We speculate that this is caused by the usefulness of image processing approaches
(more details in Sect. 6.2) in many human-computer interaction (HCI) applications. In most
HCT applications, image processing approaches such as skin detection and depth threshold-
ing work well since the background and illumination conditions are normally fixed. The
robustness of these approaches would decrease significantly in many HRI applications,

where the robots are expected to move and subjected to very challenging backgrounds.

The rest of this chapter is organized as follows: In Sect. 6.2, we summarize general ap-
proaches that have been adopted for hand detection. In Sect. 6.3, we review the binary robust
independent elementary features (BRIEF) extraction method, followed by our generalized
extraction method (G-BRIEF) in Sect. 6.4. In Sect. 6.6, we provide extensive experiment
results. We discuss some insights of our feature extraction method in Sect. 6.7 and conclude

our work with suggested future work in Sect. 6.8.
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Figure 6.1: Five out of fourteen collected RGB-D hand shape images. Top and bottom
rows show the full color and depth images with boxes overlaid on the hand shape regions
respectively.

Figure 6.2: Seven out of fourteen collected RGB-D hand shape images. Top and bottom
rows show the mean color and depth images of seven cropped hand shapes respectively.
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6.2 Related Works

There are many previous works that are related to hand shape detection. For the ease of re-
view purposes, we divide related works into three categories: image processing, appearance-

based and filtering-based' approaches.

6.2.1 Image Processing Approaches

Skin detection methods have been widely adopted for hand detection in the past few
years [210-215]. In a nutshell, skin and non-skin color pixels are represented with a Gaussian
mixture model [210] or a Bayesian model [21 |-214], followed by skin detection with a
nearest neighbor classifier or a Bayesian classifier. Using skin detection for hand detection is
simple and fast but is susceptible to many practical issues, i.e. face or objects with skin-liked
color would trigger false positive; different color models are needed for different skin colors;

and etc.

On the other hand, recent advances in 3D sensor technology have promoted depth
thresholding in hand detection [216-218]. A hand is normally assumed to be the closest
object to the sensor in this method. With the detected hand tip point, the hand shape is
segmented by thresholding nearby pixels that are within 15~20 cm. Similar to the skin
detection methods, depth thresholding method is simple but has limitation, i.e. more than
one detection is difficult; placing a hand behind some objects would cause a false negative

result; and etc.

6.2.2 Appearance-based Approaches

Mittal et al. proposed to use histogram of oriented gradients (HOG) features for hand
detection. After that, they combined skin detection and super-pixel segmentation to boost
the hand detection performance. Their method achieves good detection rate but requires
long computational time, which makes it unsuitable for real-time applications. In contrast,

our method is faster and more efficient.

Ong & Bowden and Kolsch & Turk used Haar features for hand detection and achieved

I Strictly speaking, filtering-based approaches focus on hand tracking rather than hand detection. They
normally start with hand detection methods and rely on temporal information to perform tracking. They are
included here for comprehensiveness of the review.
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good results [220,221]. However, almost all train/test data used by Ong & Bowden in
their experiments were under simple/plain backgrounds [220]. A hand detection system
trained with this dataset is most likely to fail to detect hands on cluttered backgrounds. The
experiment dataset used by Ong & Bowden has more varied light condition but the number
of images is very small (with only six hand shapes, roughly 400 images/shape) [221]. Fur-
thermore, their final hand detector focuses on one particular hand shape instead of general
hand shapes.

Shotton et al. combined a background subtraction method, a simple depth-based feature,
and a deep random forest classifier to determine locations of body parts [192]. Compared to
their approach, our method for hand detection is more specific and is applicable for both
color and depth images. In this chapter, we focus on hand detection with color images in the

beginning, and then extend it to depth images.

6.2.3 Filtering Approaches

Oikonomidis et al. have proposed an impressive hand shape model for continuous hand
tracking [211, ]. Various filtering methods (such as Kalman filters, particle filters, and
mean-shift filters) have also been proposed for hand tracking [210,213,218,222]. Neverthe-
less, all these methods rely on image processing approaches (either skin detection or depth
thresholding) mentioned in Sect. 6.2 for initial hand detection. Therefore, these methods
would not work reliably when certain assumptions are violated. In this work, we propose to

use the appearance-based approach in order to overcome these limitations.

6.3 Original BRIEF Extraction Method

BRIEF extraction method was first proposed for image matching Calonder et al. [223].
Given an image, it randomly selects a few pixel pairs for binary test and then summa-
rizes the results in binary coding fashion. These processes are straightforward and can be
mathematically written as:

1, if(,-1,)>0.
Jn= _ (6.1)
0, otherwise.
where n represents index of pixel pairs, I, and I, are the intensity values of red cross and

blue circle pixels in Fig. 6.3 respectively. After binary test, the outputs of /s and Os are
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Figure 6.3: BRIEF randomly select five pixel pairs, perform binary test, and output a single
value.

summarized in binary code and subsequently converted into a decimal value, which is

mathematically written as:
N
F= Zf,, Lol (6.2)
n=1

where N represents number of pixel pairs (N = 5 in Fig. 6.3).

BRIEF has been achieving remarkable results despite its simplicity and randomness
during the pixel sampling process. However, we observe that the binary test of the pixel
pairs in Eq. 6.1 may lose some important information during the extraction process, i.€. it
only considers which pixel has a larger value but ignores the value difference between pixel
pairs. This is especially true when the sampled pixel pair has large difference. In this work,

we propose to make use of this information to improve the detection performance.

6.4 Generalized BRIEF Extraction Method

As mentioned in Sect. 6.3, we aim to include the value difference between pixel pairs
into the BRIEF descriptors. On the other hand, only considering the pixels’ difference might
reduce BRIEF’s robustness against image noise. In order to maintain BRIEF’s simplicity
and consider pixels’ difference at the same time, we randomly assign Gaussian weights
for pixels’ difference. Mathematically, we propose to extract feature with the following
equation:

Ju = wal, + wply, (6.3)
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Table 6.1: Differences between O-BRIEF and G-BRIEFs feature extraction methods.

Gaussian Weights | Pixels’ Difference | Binary Coding
O-BRIEF No Binary (1,0) Yes
G-BRIEF1 No Variable Yes
G-BRIEF2 Yes Variable Yes
G-BRIEF3 No Variable No
G-BRIEF4 Yes Variable No

where 1, and I, are the intensity values of red circle and blue circle pixels in Fig. 6.3 (similar
to BRIEF, red and blue circles are randomly sampled from the image), while w, and w,, are
the random weights taken from normal distribution with the zero mean and the standard
deviation of one. After the sampling process, we produce the feature value either in a binary

coding fashion, i.e. Eq. 6.2 or in a basic summation fashion:

N
F=> 1 (6.4)

n=1

where N represents the number of pixel pairs.

We view our extraction method as a generalized BRIEF and hence name it as G-BRIEF
(to make the contrast, we use the term O-BRIEF for original BRIEF). G-BRIEF maintains
the simplicity of O-BRIEF and has minimal increase of computational cost but performs
better. We summarize variants of G-BRIEF in Table 6.1. Note that Gaussian weights, pixels’
difference, and binary coding have certain specific purposes. Firstly, Gaussian weights ensure
robustness against image noise and enlarge the feature space. Secondly, variable pixels’
difference captures more information than conventional binary pixels’ difference. Thirdly,
binary coding carries the sequence information of pixel pairs. It is also interesting to
note that G-BRIEF4 is a sparse random hand feature, similar to full random face feature
in [224]. Among all BRIEF features, we hypothesize that G-BRIEF2 will be the best feature
in the ideal case since it models more useful information. As we will soon discover from
the experiment result, G-BRIEF2 outperforms other BRIEFs significantly and perform
comparably well with the Haar and HOG descriptors.
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6.5 Experiment Settings

In this section, we summarize the experiment details, including the hand shape dataset
and AdaBoost classifier used in our experiments. We carried out repeated random sub-
sampling validation in all our experiments. Specifically, we randomly selected 44% of all
images for training and used the remaining 56% images for testing. These percentages
are the results of three considerations: (1) making the numbers of positive and negative
training samples the same, (2) making the numbers of different hand shape images used
in the training process be the same, and (3) making the sizes of training and test datasets
as close as possible. We repeated this process for five times and report the average test

accuracies and ROC curves in the following.

6.5.1 RGB-D Hand Shape Dataset

Instead of using small hand shape datasets in existing works, we built a high-quality
RGB-D hand shape database [209] to test our algorithm. The hand images were collected
from a calibrated Kinect sensor. In total, we have collected 70,000 RGB-D images for
fourteen specific hand shapes (adapted from American Sign Language) from five partic-
ipants. Participants were requested to move their right hand about 1.5 meters in front of
Kinect cameras. In order to increase variability of the dataset, we encouraged participants to
include different motions such as translation and orientation of hand in 3D space, as well as

body motions during the image collection process.

In the beginning, we use color images in our experiments. To achieve robust classi-
fication, we purposely extract non-hand image patches near to the hand image patches
(hard negative samples) from the original image (Fig. 6.1). In order to save computa-
tional cost, we use 14,840 color hand images and 7,840 color non-hand images for our
experiment. All images are normalized to size of 64x64 pixels. Note that the number of
images used in our experiment is at least four times larger than previous appearance-based
works [219-221]. Furthermore, our dataset have very challenging backgrounds and can be

observed in Fig. 6.4.
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Figure 6.4: Examples of positive (top two rows) and negative (bottom two rows) training/test
images used in our experiments. Note that this dataset has challenging background behind
different hand shapes.

6.5.2 AdaBoost Classifier

AdaBoost combines several weak learners to form a strong classifier [204]. In our case,

we use decision stump as our weak learners h(f, p, 6):

1, ifp- - 6.
h(f,p,0>={ tper<p 6.5)

—1, otherwise.

The decision stump consists of the extracted features f, i.e. O-BRIEF and G-BRIEFs in our
case, a threshold 6, and a polarity value p representing the direction of the inequality. During
the learning step, AdaBoost iteratively select single best training features for each decision
stump. After feature selection, sample weights are re-adjusted according to local classifi-
cation errors. The same process repeats until a certain number of features is successfully

selected (empirically set to 100 in all our experiments).

6.6 Experiment Results

We compare test accuracies and ROC curves of G-BRIEFs with existing feature descrip-

tors in this section. We also examine the design parameters of G-BRIEFs and analyze the
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effect of Gaussian noise or occlusion to various feature descriptors. In addition to the color

datasets, we also report the experiment results with depth images.

6.6.1 Comparison to the Existing Descriptors

We compare variants of G-BRIEFs with the O-BRIEF, Haar, and HOG descriptors. In
this experiment, we set all BRIEF to have 5 pixel pairs and 10,000 features. For Haar, we use
the basic five types of filters in [206]. We also set the filter’s scaling ratio to 4 and shifting
pixels to 8. Eventually, we obtain 10,368 Haar features and hence having a fairer comparison
test. For HOG, we consider two cases with cell size of 8x8 and 4x4 pixels. Eventually, we

obtain 9,864 features and hence having a fairer comparison test.

G-BRIEFs and O-BRIEF. From test accuracies and ROC curves in Fig. 6.5 and Fig. 6.6
respectively, we can observe that G-BRIEFs with Gaussian weights perform significantly
better than counter alternatives (G-BRIEF2>G-BRIEF1 and G-BRIEF4>G-BRIEF3). Fur-
thermore, we can observe that G-BRIEFs with binary coding produces better test accuracies
than their counter alternatives (G-BRIEF1>G-BRIEF3 and G-BRIEF2>G-BRIEF4). Over-
all, G-BRIEF2 that considers Gaussian weight, variable pixels’ difference, and binary coding
perform significantly better than O-BRIEF.

G-BRIEFs and Haar and HOG. Under idea case, we find that the Haar and HOG descrip-
tors perform slightly better than G-BRIEF2 (Fig. 6.5 and Fig. 6.6). However, G-BRIEF
has much lower computational cost and very simple design procedures. During real-time

implementation, neither image normalization nor computation of integral image is required.

6.6.2 Design Parameters Analysis

We examine the design parameters of G-BRIEFs by focusing on G-BRIEF2 here. Fig-
ure 6.7 shows the test accuracies of AdaBoost with different number of weak learners
(decision stumps) in the AdaBoost classifier. We observe that the effect of number of pixel
pairs is insignificant. In practice, 1 pixel pair is the best option since it has the lowest
computational cost.

Figure 6.8 shows the test accuracies of AdaBoost with different number of G-BRIEF2
features, which indicates that using more features could lead to better detection accuracy. In

all other experiments, we use 10,000 BRIEF features for a good balance of detection
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accuracy and computational cost.

6.6.3 Noise and Occlusion Considerations

Figure 6.9 shows ROC curves of the G-BRIEF4, Haar, and HOG descriptors with test
dataset under synthetic Gaussian noise. We set the signal-to-noise ratio to 5 dB. We observe
that despite its simplicity, G-BRIEF4 (without binary coding) can perform comparably well
with the Haar and HOG descriptors. On the other hand, Fig. 6.10 shows ROC curves of the
G-BRIEF4, Haar, and HOG descriptors with test dataset under 25% synthetic occlusion,
that is, a 32x32 random matrix is randomly placed in the test images. We observe that
G-BRIEF4 performs better than the Haar descriptor, indicating that G-BRIEF4 is more

robust to occlusion in the test images.

Despite of the best test accuracies, HOG has much higher computational cost than
G-BRIEFs. Moreover, G-BRIEFs have speed advantage (low computational cost) over HOG
and Haar since G-BRIEFs do not require image normalization and integral map during real-

time implementation. This advantage is especially useful for devices with low computational
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Figure 6.8: Test accuracies of G-BRIEF2 with varied number of features. (Best viewed in
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capability such as tablets or smart-phones.

6.6.4 Color and Depth Modalities

G-BRIEF can be extended directly to the depth images for hand shape detection. Fig-
ure 6.11 shows the ROC curves of G-BRIEF2 with color and depth images for hand shape
detection, which reveals that depth modality produces better test accuracies than color
modality in hand shape detection task. This experiment outcome is reasonable; different
from color images, depth images are not susceptible to color and illumination noises. There-
fore, with the same number of training samples, using depth images for hand shape detection

task can lead to a better test accuracy.

6.7 Discussion

In this section, we discuss the effect of the three terms in G-BRIEF. First, we show that

capturing the variable pixels’ difference is better than capturing the binary pixel (either 1 or
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0). From Fig. 6.5, we can observe that G-BRIEF1 performs better than O-BRIEF. Second,
Gaussian weights ensure robustness against image noise and enlarge the feature space. From
Fig. 6.5, we can observe that G-BRIEF2 and G-BRIEF4 perform better than their counter
alternatives of G-BRIEF1 and G-BRIEF3. Third, we find that binary coding is useful under
ideal case but is susceptible to image noise. When train/test images contain large portion
of noise, we find that G-BRIEF4 (without binary coding) performs better than its counter
alternative of G-BRIEF2.

6.8 Conclusion

In this chapter, we focus on an appearance-based approach for hand detection. We
proposed a new and simple feature extraction method that can be viewed as generalized
BRIEF descriptor. Combined with AdaBoost, the new G-BRIEF descriptor is effective
for hand detection and can be easily extended for other object detection or recognition
tasks. We have compared G-BRIEF with existing feature descriptors with a large hand
shape dataset that has challenging backgrounds. Experiment results show that G-BRIEF
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performs comparably well with the Haar and HOG descriptors. When test images have
partial occlusion, G-BRIEF outperforms the Haar descriptor. Moreover, G-BRIEF has very
low computational cost since no image normalization or computation of integral image is

required during runtime.
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Chapter 7

Human Sensing Interface III: Facial Expression Recognition

7.1 Introduction

Facial expression recognition (FER) [225] has a great potential for improving our life
quality. For instance, FER system is useful for medical applications, such as aiding patients
with facial paralysis disease during rehabilitation treatment. FER system could also be used
to analyze audience’s facial expression for satisfaction survey. A robotic teacher could offer

better learning experience by having a better understanding of students’ feeling.

Designing a FER system is challenging due to the huge variability of face appearance,
head pose, light condition, and partial occlusions due to hairs, sunglasses and masks. Over
the years, researchers have proposed various techniques for robots/computers to recognize
human facial expression. Previous works typically focus on proposing new feature descrip-
tors and new classification methods for FER. In contrast, in this chapter, we aim to identify
the best feature descriptors by performing an extensive comparison study. We empirically
evaluate five popular feature descriptors (Sect. 7.4), namely Gabor [226], Haar [227], lo-
cal binary pattern (LBP) [228], histogram of oriented gradients (HOG) [203], and binary
robust independent elementary features (BRIEF) [229] descriptors. We then examine each
feature descriptor by considering six classification methods (Sect. 7.5), such as k-nearest
neighbors (k-NN), linear discriminant analysis (LDA), support vector machine (SVM), and
adaptive boosting (AdaBoost) with four unique facial expression datasets. In addition to
test accuracies (Sect. 7.6), we present confusion matrices of FER (Sect. 7.8). After that,
we analyze the effect of combined features (Sect. 7.9) and image resolutions (Sect. 7.10)
on FER performance. We also generalized our experiments to other datasets (Sect. 7.11),
analyzed the computational efficiency of each feature descriptors (Sect. 7.12), and visualized
the feature descriptors selected by AdaBoost classifier (Sect. 7.13).

7.2 Related Works

In this work, we focus on appearance approaches, in which we extract features from

facial expression images by using filters or transformations, and apply classifiers to the
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Table 7.1: Facial expression datasets, feature descriptors, and classification methods consid-
ered in our experiments.

Datasets  Descriptors Classifiers

1. CK+ 1. Gabor 1. k-NN
2. MUG 2. Haar 2. RFS + LDA
3. KDEF 3.LBP 3. PCA + LDA
4. JAFFE 4. HOG 4. SVM
5. BRIEF 5. AdaBoost
6. AdaBoost + SVM

extracted features. Our work is similar to a recent study [230] but we have more detailed
analysis, including parameter sensitivity and image resolution analyses, generalization tests,

and visualization of features.

On the other hand, geometric approaches use the locations of salient facial feature points
such as eye corners, nose tip, and mouth corners for FER [231-234]. Geometric approaches
normally require a high-resolution image for accurate localization of the salient facial feature
points. Shan et al. has empirically shown that geometric approaches are more suitable for

FER of high-resolution facial expression images [235].

Hybrid approaches also exist and independent works show that the combined geometric
and appearance features can achieve higher test accuracies [236—238]. During our literature
review process, we find that FER has a trend to combine the geometric and appearance
features to achieve a more robust performance. Sadeghi et al. [239] first mapped the faces to
a standard shape (i.e. geometric normalization) and then extracted appearance features for
FER. Happy and Routray [240] extracted appearance features from salient facial patches
(i.e. geometric features) to perform FER. Similarly, Zheng [24 1] proposed to perform FER
by using sparse SIFT feature extracted from face feature points. Eleftheriadis et al. [242]

also combined geometric and appearance features to learn a Gaussian process model for
FER.
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7.2.1 Feature Descriptors

Gabor descriptor [226] is one of the most common feature descriptors that has been

used for FER [236, , —248]. Haar descriptor [227] is also popular for FER [249,
]. Recently, LBP descriptor [228] has been adopted for FER [235, , , , ]
and HOG descriptor [203] has been examined for FER [252-254]. In this study, we also

evaluate the performance a relatively new feature descriptor called BRIEF descriptor [229]
in FER. To the best of our knowledge, we are the first to consider BRIEF descriptor in
FER. Dense SIFT descriptor [255] has also been used for FER recently [256].

7.2.2 Classification Methods

SVM classifier [257, ] is the most common classifier that has been applied to
FER [ , 247, , —254]. Several works have reported that SVM with linear
kernel produce similar test outcomes when compared to radial basis function kernel
(RBF) [244-247]. These consistent outcomes indicates that feature descriptors such as
Gabor and Haar filters are capable of transforming the original image data into a space with
a higher linear separability between image classes.! On the other hand, AdaBoost [204] has
also been used for FER [245-247, ] and feature selection [235, , , ]. Neural
network approaches, including multilayer perceptron and radial basis function network,
have also been explored in FER [236, , ]. k-Nearest Neightbors (k-NN) classifier has
also been used recently for FER [242]. Given sufficient training data, modern classifiers
can normally achieve satisfactory test results. However, the best feature descriptor and
classification method across different facial expression datasets remains unknown due to the

lack of comparison study.

7.3 Facial Expression Datasets

Our experiments focus on four facial expression datasets, namely Extended Cohn-Kanade
(CK+) Facial Expression Dataset [259, ], Multimedia Understanding Group (MUG)
Dataset [261], Karolinska Directed Emotional Faces (KDEF) Dataset [262], and Japanese
Female Facial Expression (JAFFE) Dataset [263]. All faces in the four datasets were ex-
tracted with face detector of Computer Vision System Toolbox in MATLAB [264]. We use

! This process is conceptually similar to the kernel trick in SVM classifier.
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the detected faces directly for FER without explicitly aligning facial feature points. Lit-
tlewort et al. have reported that explicit facial feature alignment does not improve the

performance significantly [247].

7.3.1 CK+ Dataset

CK+ Database? [259,260] is one of the most widely used facial expression databases. It
has facial expression images of 210 adults aged between 18-50 years old. Participants
were consisted of 69% female. All participants were requested to perform a series of facial
displays with the help from an instructor. With careful selection criterion, 327 sequences
were identified as one of the seven discrete facial expression, namely angry, contempt,
disgust, fear, happy, sad, and surprise. Each sequence begins with a neutral facial expression
and ends with a specific facial expression. For our comparison study, we excluded contempt
class and focused on the Basic-6 facial expression [265]. We selected the first frame of all
sequences as neutral images and used the last frame from all sequences as Basic-6 facial
expression images. Overall, we have obtained 636 facial expression images (angry: 45,
disgust: 59, fear: 25, happy: 69, sad: 28, surprise: 83, and neutral: 327). Figure 7.1 shows a
few example images of CK+ Dataset. The square boxes were obtained from face detector in
MATLAB [264]. Red, orange, yellow, green, blue, indigo, and violet colored boxes represent

angry, happy, fear, neutral, sad, surprise, and disgust facial expression respectively.

It is worth noting that CK+ Database has been used for FER under different set-
ting. Shan et al. have used the first frame of all sequence as neutral images and used the last
three frames of all sequences as Basic-6 facial expression images for FER [235], resulting
in 1254 images (angry: 135, disgust: 177, fear: 75, happy: 207, sad: 84, surprise: 249, and
neutral: 327). We have also tried this setting but found that it produces unfair comparison
results. The last three extracted frames are almost identical to each other and subsequently
cause significant overlapping in the training and test data during cross validation. Therefore,

we opted to use only the last frame from all sequences as Basic-6 facial expression images.

2 We use the term database to refer to the original resources offered by third party while the term dataset
to refer to the images selected from the database for our experiments.
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Figure 7.1: CK+ Facial Expression Dataset.

7.3.2 MUG Dataset

MUG Database [261] records facial expression images from 86 participants with Cau-
casian origin and aged between 20-35 years old. 59% of the participants were male. Some
participants had beard or hair occlusions and 7 participants were wearing glasses. We have
selected 919 facial expression images for our comparison study (angry: 157, disgust: 145,
fear: 118, happy: 164, neutral: 52, sad: 124, and surprise: 159). Example images are not

shown here due to license agreement term.

7.3.3 KDEF Dataset

KDEF Database [262] records facial expression images from 140 amateur actors (70
males and 70 females) at 5 different viewing angles. All actors aged between 20-30 years
old. They have no beards, no mustaches, no earrings, no eyeglasses, and mostly no visible
make-up during photo sessions. For our comparison study, we only consider frontal images,
resulting in 980 facial expression images (angry: 140, disgust: 140, fear: 140, happy: 140,
neutral: 140, sad: 140, and surprise: 140). Figure 7.2 shows some example images from
KDEF Dataset, where red, orange, yellow, green, blue, indigo, and violet boxes represent

angry, happy, fear, neutral, sad, surprise, and disgust facial expression respectively.

7.3.4 JAFFE Dataset

JAFFE Database [263] contains 213 facial expression images of Basic-6 facial expres-
sions and one neutral facial expression. All facial expression images were posed by ten
Japanese female models. We use all 213 facial expression images for our comparison study

(angry: 30, disgust: 29, fear: 32, happy: 31, neutral: 30, sad: 31, and surprise: 30). Fig-
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Figure 7.2: KDEF Facial Expression Dataset.

Figure 7.3: JAFFE Dataset.

ure 7.3 shows some example images from JAFFE Dataset, where red, orange, yellow, green,
blue, indigo, and violet boxes represent angry, happy, fear, neutral, sad, surprise, and disgust

facial expression respectively.

7.4 Feature Descriptors

Our main goal is to identify the best feature descriptor for FER. We empirically evaluate
five feature descriptors, namely Gabor, Haar, LBP, HOG, and BRIEF descriptors in FER. In
the following, we briefly review the computational process and advantages of each feature

descriptor.
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Figure 7.4: Gabor filter examples. First row shows filters with increasing frequency, second
row shows filters with varying orientation, and third row shows filters with varying oscillation
phase.

7.4.1 Gabor Descriptor

Gabor filter theory was first formulated by Dennis Gabor in 1946 [226]. John Daugman
later discovered that Gabor functions can be used to model simple cells in the visual
cortex of mammalian brains [266]. This discovery reveals that Gabor filters is similar to
perception in human visual system and justifies the usefulness of Gabor filters in various
computer vision applications such as iris recognition [267], fingerprint matching [268], and
FER [ , ]. We illustrate a few examples of 2D Gabor filters in Fig. 7.4, where the
first row shows filters with increasing frequency, second row shows filters with varying
orientation, and third row shows filters with varying oscillation phase. As shown in Eq. (7.1)
and Eq. (7.2), Gabor filter has compact functions that relate filter size, oscillation frequency,
orientation, and oscillation phase. From Eq. (7.1), we can observe that the Gabor function
consists of two sub-functions—Gaussian and harmonic functions, where the Gaussian sub-
function (a.k.a. envelope function) is responsible in defining spatial properties (x, y, o, y),
while the harmonic function (a.k.a. carrier function) is responsible in governing oscillation

frequency (1), orientation (), and oscillation phase (¢) properties of the Gabor filters.

72 2.2 ’

Y )cos(2ﬂ% + ), 7.1)

9(x,y,0,7,0,4,¢) = eXP(—T
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/

xX'= (x—x,)cos0 + (y — y,)sinb , (72)
Yy =—(x—x,)sin0 + (y — y,)cosb .

In our experiment, we followed Bartlett et al. [245] and set the spatial resolution (x, y)
in the range of 48x48 pixels, use 8§ orientations (6 = 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°,
157.5°), and 5 oscillation frequencies (1 = 4,4 V2, 8, 8 V2, 16 pixels per cycle). Ellipticity
of the Gaussian function (y) is set to 1 and oscillation phase (¢) is set to 0. Standard deviation
of the Gaussian function (o) is set according to half-response spatial-frequency bandwidths
rule in Eq. (7.3), where the bandwidth () of the Gabor function is set to 0.5.

o 1 [z 2+1
o_1 jfin2 2+1 7
1 2V 72 X2 (7.3

7.4.2 Haar Descriptor

Haar filter was first proposed by Papageorgiou et al. as a general framework for object
recognition in 1998 [227]. Viola and Jones later popularized the Haar filter by showing
its effectiveness along with integral image and cascaded classifiers in face detection prob-
lem [206]. Haar filter is a simple rectangular filter that represents the difference of sum of
pixel intensities inside black and white regions. It has the key advantage of simplicity. Com-
bined with integral image technique, Haar filter can achieve significant fast performance and
make real-time face detection possible [206]. We followed Viola & Jones [206] and used
the same five types of Haar filter in our experiments. Figure 7.5 illustrates the five types of
Haar filter, where each row shows type 1, 2, 3, 4, and 5 filters respectively with different
sizes at different locations. We set the black and white regions to have the same size. We
also increased the size of black and white regions with a step size of 2 pixels. As a result,

we extracted 162,336 Haar values from a 48x48 image.

7.4.3 LBP Descriptor

Local binary pattern (LBP) descriptor proposed by Ojala et al. [228] is a powerful feature
descriptor for image classification. Compared to Gabor or other image filters, LBP has the
advantages of computational simplicity and robustness against illumination variations. LBP

encodes information of local patterns such as edges, lines, and spots in each pixel. Equa-
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Figure 7.5: Haar filter examples. The rows show five types of Haar filter with varying width
and height used in our experiments.

tion (7.4) and Eq. (7.5) summarize the encoding processes in a compact form while Fig. 7.6
illustrates the encoding procedures for a LBPp_g g, operator in details. More precisely, LBP

coding for every pixel is computed as follows:

1. Sample neighbor points, where P defines the number of neighboring points and R

defines the radial distance between the center pixel to neighboring points.
2. Compute the difference of pixel values between center pixel and neighbor points.
3. Threshold the computed differences at zero.

4. Multiply the thresholded values with power of two consequently and sum all the

values.

Note that the LBPg, operator produces 27 possible binary patterns and it has been shown
that some binary patterns contain more information than others [228]. Ojala et al. named
these binary patterns as uniform patterns, where they contain at most two bitwise transitions
from O to 1 or vice versa (considering binary pattern in circular). For instance, 00000001,
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Figure 7.6: Coding procedures of LBPp_g g-,, where P stands for number of neighbors and
R stands for radial distance between the center pixel and neighboring points.

11001111, and 11110011 are uniform patterns while 10100000, 00011101, and 11001100
are non-uniform patterns. Ojala et al. found that about 90% of all binary patterns are uniform
and they proposed to accumulate all non-uniform patterns into single bin. Therefore, the
original 28 = 256 bins is reduced to 59 bins. We followed this practice in our experiments,

similar to previous facial expression study [235] and face recognition study [269].

After LBP coding of every pixels, LBP values of pre-defined cells (Fig. 7.7) are stored
in histogram form and eventually concatenated into a 1D feature vector. More precisely, we
start with a window size of 12x12 pixels, compute the histogram of LBP values inside the
window, and continue the process by shifting the current window to the right hand side by 3
pixels. If the right corner is reached, window will be shifted to the bottom side by 3 pixels
and be restarted from the left hand side. Normalization of histograms is optional. In our case,

we did not carry out normalization since all the considered windows are in the same size.

P-1
LBPpg = s(gp —gc) - 27 (7.4)
p=0
I, ifx=>0
s(x) = (7.5)

0, otherwise.
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LBP Operation

l 2. Feature Vector

LBP Operation

1. Face Image

Figure 7.7: Face description with LBP descriptor. A face image [270] is first divided into
cells and followed by LBP operation on each cell. Histogram of each cell is concatenated
into a feature vector.

7.4.4 HOG Descriptor

Histogram of oriented gradients (HOG) feature was first described by Dalal et al. for
human detection [203]. While being similar to scale-invariant feature transform (SIFT)
descriptor [271], HOG represents dense coding of image and have some unique details such
as using different number of histogram bins and different image block size [203]. HOG

descriptor can be computed in the following five basic steps:

1. Gradient computation—image is convoluted with two Sobel filters, i.e. [-1,0,1] and [-
1,0,1]7, to form horizontal and vertical gradient maps. Following the common practice,

smoothing and gamma normalization are omitted [203].

2. Magnitude and orientation computation—magnitude and orientation maps are com-
puted based on the obtained horizontal and vertical gradient maps. Taking dx and dy
as gradient value of pixel in the horizontal map and vertical maps, magnitude and ori-
entation are calculated as: Magnitude = \/m and Orientation = tan“(%).

3. Cell division—image is then divided into smaller cells. For example, we are using
face images with size of 48x48 pixels in our experiments. These images are divided

into 6x6 cells where each cell has size of 8x8 pixels (Fig. 7.8).

4. Cell quantization—the orientation values of each cell is quantized in histogram

form with 9 orientation bins, where the magnitude represents voted weights, and we
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HOG Operation

l 2. Feature Vector
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T

HOG Operation

1. Face Image

Figure 7.8: Face description with HOG descriptor. A face image [272] is first divided into
cells and followed by quantization of gradient orientation on each cell. Histogram of each
block of four adjacent cells is then locally normalized and concatenated into a full feature
vector.

Figure 7.9: Visualization of HOG descriptors with divided cells. (a) An example face
image [272]; (b) HOG visualization of 6x6 cells; (¢) HOG visualization of 12x12 cells.

interpolate votes bi-linearly between neighboring bin center.

5. Block normalization—four adjacent cells form a block with 16x16 pixels (every block
has 50% overlapping with the adjacent block). Orientation histograms of each block

are locally normalized and concatenated into a feature vector.

Figure 7.9(a) shows an example face image in size of 48x48 pixels; Fig. 7.9(b) shows
the corresponding HOG descriptors under 6x6 cells configuration (with cell size of 8x8
pixels); and Fig. 7.9(c) shows the corresponding HOG descriptors under 12x12 cells
configuration (with cell size of 4x4 pixels). Overall, the standard HOG descriptor used in
our experiments has a dimension of (5x5x4x9 + 11x11x4x9) = 5256.
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7.4.5 BRIEF Descriptor

Binary robust independent elementary features (BRIEF) descriptor [246, ] was
first proposed for image matching with random forest [246] and random ferns classi-
fiers [273]. BRIEF descriptor has the lowest computational cost among Gabor, Haar, LBP,
and HOG descriptors because it only performs simple binary comparison test and uses Ham-

ming distance (instead of Euclidean or Mahalanobis distance) for image classification [223].

BRIEF descriptor has two setting parameters — the number of binary pixel pairs and
binary threshold. We used five binary pixel pairs and zero binary threshold in all our
experiments. Figure 7.10 illustrates computation process of a BRIEF descriptor. Firstly, five
binary pixel pairs are randomly chosen from a given image. Secondly, binary pixel pairs are
subjected to binary test,

£ = 1, ifl,-1,)>0 7.6)
0, otherwise.
where I, and [, are the intensity values of red circle pixel and blue circle pixel in Fig. 7.10,
respectively. Thirdly, the binary values of five binary pixel pairs are summarized in binary
code and subsequently converted into decimal value, which can be summarized in the
following form,

F =

n

f,-2m (7.7)

5
=1
In all our experiments, we use 10000 BRIEF values for FER.

7.5 Classification Methods

After feature extraction, we applied six different classifiers with the feature descrip-
tors. We first considered k-NN classifier, followed by LDA classifier. Thirdly, we used PCA
to reduce the size of feature descriptors and used LDA for FER. Fourthly, we used SVM
and AdaBoost classifier for FER. Last but not least, we used AdaBoost for feature selection
and SVM for FER.

We used two-class classifiers in all experiments. Specifically, we built seven one-vs.-all
classifiers that are responsible in recognizing seven facial expressions, namely angry, disgust,

happy, fear, neutral, sad, and surprise. We used common voting practice and combined seven
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2. Pixel Intensities
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Figure 7.10: Face image [274] and its BRIEF descriptor. Five random pixel pairs are
selected, followed by binary tests on pixel intensities, and conversion from binary code into
decimal value.

test results in the end [235, ]. For example, an image identified as positive by angry
classifier will get +1 point for angry label and -1 point for other labels. Similarly, the same
image identified as negative by neutral classifier will get -1 point for neutral label and +1
point for other labels. In order to avoid possible classification ties, each label is initiated
with a random positive number that is smaller than 1. Label with the highest points after

combining seven voting results will be elected as the final test label.

7.5.1 Kk-Nearest Neighbors (k-NN)

Given a test data in a feature descriptor space, 1-NN classifier tries to find a training
data that is the closest to the test data, and consider the label of that training data as the
test label. Similarly, given a test data in a feature descriptor space, k-NN classifier tries
to find k training data that are the closest to the test data, and consider the label with the
largest occurrence as the test label. In our experiments, we considered Euclidean distance
and used exhaustive search. Denoting a particular training data as x; and test data as x,
the squared Euclidean distance between the training and test data can be computed as

dy = (x — )" (x — x).

7.5.2 Linear Discriminant Analysis (LDA)

LDA assumes facial expression images to follow multivariate normal distribution model

and all classes C have the same covariance matrix. During training process, LDA estimates
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the means p. and covariance matrix 2, of every class ¢ and tries to look for an optimal linear
boundary between classes [275]. Given a test data x € RP*!, the test label can be predicted
by maximizing

¢ = arg max P(clx) . (7.8)

The posterior probability in Eq. (7.8) can be computed by using Bayesian rule

P(x|c)P(c)

f’(clx) = P0r)

) (7.9)
where the P(c) is class prior, the P(x) is a normalization constant, and the likelihood can be

computed by
1 1 a
P(3le) = ————exp( = 506 1) 5 = 1) (7.10)

VE2mPLZ|
In practice, the number of our training data is smaller than the dimensions of feature
descriptors. This condition would trigger singularity issue when we invert the covariance
matrix during the training process. Moreover, the inversion of covariance matrix has large
computational load due to the large feature descriptors (about 90,000 for Gabor descriptor
and more than 160,000 for Haar descriptor). To maintain simplicity of LDA as well as

comparison with PCA at later stage, we randomly selected two hundred features from each

descriptors for FER.
While LDA is always used interchangeably with Fisher LDA (FLDA), we follow the
naming convention in [275-277] to avoid confusion. We consider LDA as a classification

method while FLDA as a dimensionality reduction method. Formally, LDA fits data with
multivariate normal function with the assumption that each class shares a same covariance
matrix. On the other hand, FLDA tries to maximize classes’ separability by finding an
optimal linear projection. Under this point of view, “LDA” mentioned in the previous facial
expression studies [235, ] are in fact FLDA method. For more details, please refer to
Chapter 4.2.2 (LDA) and Chapter 8.6.3 (FLDA) in [275] or online resources [276, ].

7.5.3 Principal Component Analysis (PCA)

In the previous section, we used random feature selection (RFS) to reduce the number

of features in order to avoid singularity issue in LDA classifier and save computational
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cost. In this section, we performed dimensionality reduction more systematically by using
PCA [278]. In theory, PCA finds an orthogonal projection plane in a lower dimensional space
that minimize the data projection error. From another point of view, PCA also maximizes
the variances between data while projecting data to a lower dimensional space. Principal
components can be computed by using eigen decomposition or singular value decomposition
methods. In practice, the first few principal components normally capture most of the
information in the original data. We used the first 200 principal components (retaining more
than 98% of information) for LDA classification. In our experiments, we used power method

of PCA [279] to reduce the computational load and speedup performance.

7.5.4 Support Vector Machine (SVM)

SVM was originally proposed by Vapnik and Lerner in 1963 [257] and the concept of
soft margin in SVM was formulated by Cortes and Vapnik in 1995 [258]. Unlike LDA, SVM
assume no prior knowledge about the distribution of the samples. As shown in Fig. 7.11,
SVM looks for an optimal hyper-plane that maximizes the margin area between the two

classes’ closest training sample points (support vectors).

In practice, we have to decide a kernel function, such as linear, polynomial, or RBF
for SVM [280,281] and there is no analytical way to decide which kernel function works
the best for any particular datasets. In this study, we focus on SVM with linear kernel
(linear SVM) for two main reasons. Firstly, Littlewort et al. and Shan et al. have reported
that SVM with radial basis function (RBF SVM) does not perform significantly better than
linear SVM [235,247]. These outcomes indicate that facial expression datasets are highly
linear-separable upon feature transformation. Secondly, linear SVM has only one tuning

parameters (soft margin) and has a lower computational cost than RBF SVM.

With linear SVM, we tuned the soft margin parameter by performing a grid search
over range of 1072,107!,10°, 10!, 10 and identified the parameter that leads to the best
performance. Datasets were normalized prior to the classification. We used svmtrain and
svmclassify functions in MATLAB Statistics Toolbox [282]. We also used sequential min-
imal optimization (SMO) method [283] since it performs significantly faster and produces

similar results with the quadratic programming method.
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Figure 7.11: SVM classifier illustration. SVM find an optimal hyper-plane that maximizes
the margin area in between two classes of data.

7.5.5 Adaptive Boosting (AdaBoost)

AdaBoost was formulated by Freund and Schapire in 1995 [204, 284]. While SVM
tries to find the training samples that are the most difficult to classify (support vector) and
form optimal hyper plane based on these training samples, AdaBoost looks for the best
training features that are useful for its weak classifiers. AdaBoost iteratively select the
best training feature on each training cycle. After each feature selection, sample weights
are re-adjusted according to the local classification error. The same process repeats until a
certain number of features are selected. Weak classifiers, normally linear decision stumps
with only threshold and polarity parameters, are then combined together to form a strong

classifier. Mathematically, the linear decision stump classifier can be written as

+1, ifp-fx)<p-0,
hy(x, p.6) = prfD<p (7.11)
— 1, otherwise .

where f(x) is a feature descriptor, 6 represents a threshold value, and p represents the

direction of the inequality. We illustrate AdaBoost algorithm graphically in Fig. 7.12 and
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Figure 7.12: AdaBoost classifier illustration. AdaBoost classifier selects the best feature
for each weak classifier / at one time, and then update the sample weights a based on the
local classification error €.

summarize the essential steps in Algorithm 3.

Algorithm 3 AdaBoost Algorithm

Step 1: Denoted as (x;, y;), training samples consist of a vectorized facial expression image
x; and training label y; = {+1, -1} .

Step 2: Given P positive and N negative training data, set the weights of positive and
negative samples to w; = 5 and w; = 1 respectively.
Fort=1,...,T =80:

Step 3: Normalize the weights of all training samples, w; « Z"L .
i=1 Wi

Step 4: By using Eq. (7.11) with p = 1 or p = —1 and different 6,
compute the error rate € of each decision stump /4,(x) .

Step S: Select the decision stump /,(x) that has lowest error rate.
Step 6: Compute weight of selected decision stump, @, = % ln(%f’) .
Step 7: Update training sample weights, w; « w; - exp(—a,y;h,(x;)) .

Step 8: The final strong classifier is H(x) = sign[ >./5% a,h,(x)] .

7.5.6 AdaBoost with SVM (AdaBoostSVM)

AdaBoost is a special classifier as it performs feature selection and classification simul-
taneously by combining numerous weak classifiers in an additive manner. Useful features
are identified by weak classifiers during the training process. A number of weak classifiers
and features are then combined to form a strong classifier to carry out the image classi-

fication. Since SVM and AdaBoost design a robust classifier from different perspectives,
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1.e. SVM selects training samples to be support vectors while AdaBoost identifies the best
training features for weak classifiers, we expect that the integration of SVM and AdaBoost
will lead to an even stronger classifier. One possible way is to use SVM as the weak classifier
in AdaBoost. However, this would possibly increase both the training and test times in
practice. Moreover, there is no guarantee that SVM will outperform decision stump since
each weak learner only considers one feature. In contrast, we use AdaBoost to select the best
training features and use SVM for classification. Specifically, all the features selected by all
weak classifiers, i.e. decision stump, during the AdaBoost training process are adopted as
the features for training the SVM classifier. Our concept is similar to [235,237,247,249] but
we fixed the number of selected features at 80 in our studies, which is close to the number
of support vectors in our SVM classifiers. Note that we could only determine a very rough
estimate of the number of support vectors since we are performing multiple one-vs.-all

experiments in 20 validation cycles.

7.6 Classification Results

We report experiment results of each feature descriptors with six classifiers: k-NN,
RFS+LDA, PCA+LDA, SVM, AdaBoost, and AdaBoostSVM classifiers in this section. We
carried out repeated random sub-sampling validation in all our experiments. Specifically, we
randomly selected 90% of all images for training and used the remaining 10% images for
testing. We repeated this process for 20 times and report the mean and standard deviation of
test accuracies in the followings. In the meantime, we focus our discussion on experiment
results of CK+ Dataset. In Sect. 7.11, we will generalize our test results to the remaining
datasets (MUG, KDEF, JAFFE Datasets) and a combined dataset (CK+ & MUG & KDEF
& JAFFE).

7.6.1 Kk-Nearest Neighbors (k-NN)

Table 7.2 summarizes the test accuracies of five feature descriptors with k-NN classifiers
applied to the CK+ Dataset. We tested performance of 1-NN, 5-NN, 10-NN, and 20-NN
classifiers with an exhaustive search. While the overall performance is the worst among
all classifiers, we found an interesting pattern in k-NN classification results. We find that

when the number of nearest neighbors is small, LBP descriptor tends to produce the best
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Table 7.2: Test accuracies of k-Nearest Neighbors (CK+ Dataset).

Descriptors 1-NN 5-NN 10-NN 20-NN

Gabor 57754 505+73 595+£57 609+5.6
Haar 527+49 41.1+65 473+51 473+5.1
LBP 60.2+51 581+7.7 605+68 593+6.3
HOG 565+44 523+59 664+43 684=+3.6
BRIEF 55654 51.1+6.6 57.7+£56 57.6+6.0

results. On the other hand, when the number of nearest neighbors is large, we find that HOG
descriptor tends to produce the best results. Moreover, the larger the number of nearest
neighbors, the higher the test accuracies. However, a larger number of nearest neighbors
would lead to a higher computational cost. In short summary, we considered 20 as the largest
number of nearest neighbors in this experiment and identified HOG descriptor as the best

feature descriptor for FER in k-NN classifier.

7.6.2 Linear Discriminant Analysis (LDA)

Table 7.3 summarizes the test accuracies of five feature descriptors with RFS+LDA
and PCA+LDA classifiers applied to the CK+ Dataset. First of all, we observe that the
performances of both RFS+LDA and PCA+LDA classifiers are better than all k-NN clas-
sifiers. Secondly, as expected, PCA performs better than RFS as PCA reduces the size of
feature descriptors while capturing the most important information systematically. Last but
not least, we find that HOG descriptor produces the best test accuracies in both RFS+LDA
and PCA+LDA classifiers.

7.6.3 Support Vector Machine (SVM) and AdaBoost

Table 7.4 summarizes the test accuracies of five feature descriptors with SVM, AdaBoost,
and AdaBoostSVM classifiers applied to the CK+ Dataset. We observe that once again, HOG
descriptor produces the best test accuracies in all the three classifiers. Here, we examine
the classifiers more carefully. First, we find that linear SVM classifier produces the best test

accuracy among all the six classifiers in our experiments. Second, out of our expectation,
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Table 7.3: Test accuracies of Random Feature Selection+LDA and PCA+LDA (CK+
Dataset).

Descriptors RFS+LDA PCA+LDA
Gabor 79.4+5.2 82.7+3.4
Haar 80.8 £4.9 834142
LBP 66.4 + 6.0 86.4 + 2.6
HOG 825 +4.1 90.9 + 3.2
BRIEF 67.2+£59 83.7+34

we find that AdaBoost classifier performs slightly worse than linear SVM classifier. Third,
contrary to previous studies [237, ], we find that in most cases, AdaBoostSVM classifier
produces worse result than both linear SVM and AdaBoost classifiers. We believe that this
discrepancy is caused by the uses of different experiment datasets, different tuning practices

in SVM classifier, and different weak learners in AdaBoost classifier.

In addition to the test accuracies, we also analyzed the influence of the soft margin
(hence the number of support vectors) on the SVM performance, as well as the influence
of the number of weak learners on the AdaBoost performance. We focused on the HOG
and BRIEF descriptors in order to save computational time. In the experiments, we varied
the soft margin parameter over the range of 1072, 107!, 10°, 10', 102, 10°, 10*, co and found
that all the settings produce similar test accuracy results (within £0.5%). This indicates that
the facial expression images are highly linearly separable upon the feature extraction or

transformation.

In the AdaBoost experiments, we varied the number of weak learners over the range
of 40, 80, 120, 160, 200. Figure 7.13 shows the training and test accuracies of AdaBoost
classifier at different number of weak learners (decision stump) with HOG (left) and BRIEF
descriptors (right). We can observe that both descriptors start to achieve 100% training accu-
racies when the number of weak learners equal to 80. We also find that the test performances
of HOG and BRIEF descriptors start to saturate when the number of weak learners are equal
to 120 and 160 respectively. While we fixed the number of weak learners to 80 in the (de-
fault) comparison experiments, the differences between default and the best test accuracies
are not large (less than 1% in HOG case and less than 2% in BRIEF case). Nevertheless,
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Table 7.4: Test accuracies of Linear SVM and AdaBoost (CK+ Dataset).

Descriptors Linear SVM  AdaBoost AdaBoostSVM

Gabor 83.6 +34 81.1 £5.8 79.5 £4.0
Haar 80.2 + 3.5 78.0 £ 4.1 747 + 4.6
LBP 86.0 £ 4.0 81.2+39 829+ 46
HOG 91.2 + 3.2 85.7 + 3.0 85.9 + 4.0
BRIEF 83.2+34 79.7 £+ 44 789 +4.9
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Figure 7.13: Training and test errors of AdaBoost classifier at different number of weak
learners with HOG (left) and BRIEF descriptors (right).

these results suggest that we could increase the number of weak learners from 80 to 120 (in
the HOG case) and to 160 (in the BRIEF case) in practice in order to achieve more accurate

performance.

7.6.4 Opverfitting Consideration

Since the CK+ Dataset that we are using is relatively small when compared to the
dimensions of feature vectors, overfitting issue should be analyzed in order to consolidate
the classification results. In addition to the previously mentioned repeated sub-sampling
validation procedures, we further performed an overfitting test by plotting the training error
and validation error as a function of the size of the training dataset. Since performing the

experiments with all feature descriptors is time-consuming, we focused the overfitting test
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Figure 7.14: Training and test errors of SVM classifier at different percentage of training
data with HOG (left) and BRIEF descriptors (right).

on HOG and BRIEF descriptors with SVM classifier. We chose HOG descriptor because it
has the best test performance among other feature descriptors. We chose BRIEF descriptor
because it has an out-of-expectation result in Sect. 7.10, where its classification performance
outperform LBP and HOG descriptors when the image resolution is lower than 24x24
pixels. Note that the dimensions of both HOG and BRIEF descriptors are larger than the
size of the training dataset. On the other hand, we chose SVM classifier because it does not

perform feature selection and considers the full feature vector during the image classification.

Figure 7.14 shows the training and test accuracies of SVM classifier at different per-
centage of training data with HOG (left) and BRIEF descriptors (right). Note that all the
experiment settings remain the same. We randomly sub-sample 10% of the full data for test,
and vary the percentage of the remaining data to train the SVM. We repeated all experiments
for 20 times and report the mean error results. From the plots, we can observe that both
descriptors always have 0% training errors and have decreasing test errors, indicating that
no overfitting occurs in our experiments. Moreover, the results suggest a lack of training
data. With more training data, we expect an increase of training errors and further decrease

of test errors.

7.6.5 Discussion

In this section, we focus on the basic version of all feature descriptors. From this point

of view, we observe that most of the time HOG descriptor produces the best test accuracies
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(except 1-NN and 5-NN classifiers). Compared to other descriptors, HOG descriptor is more
powerful as it considers a few important feature extraction processes, such as the uses of

image gradient, overlapping blocks, and histogram normalization.

The performance of Gabor descriptor in our experiments is also slightly different with
works of Bartlett et al., possibly due to the use of different dataset® and different cross-
validation approach [245]. Here, we use 20-round repeated random sub-sampling validation

while Bartlett et al. use leave-one-subject-out cross validation.

7.7 Parameters Sensitivity Analysis

As described in Sect. 7.4, all Gabor, Haar, LBP, HOG, and BRIEF descriptors have a
number of parameter choices that may significantly affect our experiment performances. We
varied a few important parameters during the feature extraction processes in our exper-
iments and report their sensitivities in this section. For all feature descriptors, we focus
on PCA+LDA, SVM, and AdaBoost classifiers. All other experiment settings remain un-
changed unless mentioned otherwise. Note that some results in this section are not exactly
the same with the results in the previous section because we are using repeated random

sub-sampling validation in our experiments.

7.7.1 Gabor Parameters

As shown in Eq. (7.1), Gabor filter has five parameter choices, where the differences in
oscillation frequency (A1) and orientation (6) can result in very different filters. In Sect. 7.6, we
extracted Gabor descriptors by using 5 oscillation frequencies (1 = 4,4 V2, 8, 8 V2, 16 pixels
per cycle) and 8 orientations (6 = 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°). Here,
we denote this setting as f = 5 and o = 8. We varied these two parameters individually by
first using 3 oscillation frequencies (1 = 4, 8, 16 pixels per cycle) or 1 oscillation frequency
(1 = 8 pixels per cycle). Then, we used 4 orientations (6 = 0°, 45°, 90°, 135°) or 2
orientations (6 = 0°, 90°) to extract Gabor descriptors.

We summarized the classification results of the three classifiers in Table 7.5, where f
and o represent the number of oscillation frequencies and orientations mentioned in the

last paragraph. From the first three rows, we can observe that all three classification results

3 We use the latest version of CK+ Database.
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Table 7.5: Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset) with varied
oscillation frequencies and orientations when extracting Gabor descriptor. (See text for
details.)

Gabor PCA+LDA SVM AdaBoost

f=1,0=8 779+44 733+£6.7 7T753+6.2
f=3,0=8 832+59 80.1+6.1 788+47
f=5,0=8 833+47 834+55 798+44
f=5,0=4 813+41 788+65 79.0+4.6
f=5,0=2 784+43 73857 77053

improve steadily, indicating that increasing the number of oscillation frequencies has a
positive impact towards the performance. From the last three rows, we can also observe that
all three classification results improve steadily (from bottom to the third row), indicating
that increasing the number of orientations has a positive impact towards the performance. In
a short summary, these two parameters have high sensitivity towards the classification
performance. While further increase the numbers of both parameters might continue to
improve the classification performance, we limit f = 5 and 0 = 8 in our experiments in

order to save computational cost.

7.7.2 Haar Parameters

Compared to Gabor filter, Haar filter has less parameter choices. In Sect. 7.6, we
extracted Haar descriptors with 5 types of Haar filter and with a step size of 2 pixels. Here,
we denote this setting as s = 2 and # = 5. Similar to the Gabor filter case, we varied these
two parameters individually by first using step sizes of 4 or 3. After that, we used the first 4

types or the first 2 types of Haar filter (please refer to Fig. 7.5) to extract Haar descriptors.

We summarized the classification results of the three classifiers in Table 7.6, where
s and ¢t represent the number of step size and number of types of filter mentioned in
the last paragraph. From the first three rows, we can observe that all three classification
results improve steadily, indicating that increasing the number of step size has a negative
impact towards the performance. Out of our expectation, from the last three rows, we

observe that using more types of Haar filter indeed does not improve the results of all
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Table 7.6: Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset) with varied
step sizes and filter types when extracting Haar descriptor. (See text for details.)

Haar PCA+LDA SVM AdaBoost

s=4,t=5 829+54 759+63 649+59
s=3,t=5 84.0+53 781+60 70.6+£6.5
s=2,t=5 83.7+4.2 788+57 76.7+53
s=2,t=4 83.1+46 79458 77.6=+6.3
s=2,t=2 83.1+50 79.7+50 775+54

three classifiers. While more types of Haar filter could be helpful in differentiating face and
non-face images [206], we find that using the first two types of Haar filter (the simplest Haar
filter) is the best for FER. In a short summary, one should use a step size of 2 pixels of and
use the first two types of Haar filter for FER.*

7.7.3 LBP Parameters

LBP descriptor has two parameter choices. In Sect. 7.6, we extracted LBP descriptors
with 8 neighboring pixels at radial distance of 2 pixels. Here, we denote this setting as p = 8
and r = 2. Similar to the previous cases, we varied these two parameters individually by
first using 6 or 4 neighboring pixels. After that, we used the radial distance of 3 or 4 pixels

to extract LBP descriptors.

We summarized the classification results of the three classifiers in Table 7.7, where p
and r represent the number neighboring pixels and radial distance. From the first three rows,
we can observe that all three settings produce the best results when p = 6. From the last
three rows, we find that PCA+LDA and SVM classifiers perform the best at r = 2 and
r = 3 while AdaBoost classifier perform similarly and appears to be independent of radial
distance. In contrast to a previous study [235] and our default parameter settings, one should

use 6 neighboring pixels and different range of radial distance depending on the classifiers.’

4 Since we perform this analysis at the later stage of our comparison study, we keep the results of the
original setting, i.e. s = 2 and # = 5 in all other sections. Note that this does not affect our conclusion that
HOG is the best descriptor for FER since different ¢ produce similar test results.

> Similarly, we keep the results of the original setting, i.e. p = 8,7 = 2 in all other sections. This does
not affect our conclusion since the LBP descriptor with the latest settings still does not outperform HOG
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Table 7.7: Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset) with varied
neighboring points and radial distances when extracting LBP descriptor. (See text for details.)

LBP PCA+LDA SVM AdaBoost

p=4,1=2 86.8+47 86552 77.8+48
p=6,r=2 89.2+3.7 883+39 793142
p=8,r=2 858+45 85454 794+5.0
p=8,r=3 889+40 859+50 789=x55
p=8,r=4 874+42 839+47 795+5.1

7.7.4 HOG Parameters

As described in Sect. 7.4, HOG descriptor is compact and has only one parameter
choice—its cell size. In Sect. 7.6, we extracted HOG descriptors with cell sizes of 8 and
4, and stacked the two feature vectors together eventually. Here, we denote this setting as
¢ = 8 and ¢ = 4. Different with the previous cases, we varied the cell size and analyze the

test accuracies by using individual feature vector or stacked feature vectors.

We summarized the classification results of the three classifiers in Table 7.8, where ¢
represents the cell size in pixel values. The rows with multiple c represent stacked feature
vectors with different cell sizes. From the first three rows, we can observe that all three
classification produce the best classification results when ¢ = 4. When ¢ = 4, the resulting
number of blocks and dimension of HOG descriptor is larger and can potentially capture
more detailed edge information from the facial expression images. From the last four rows,
we find that all classifiers produce similar (PCA+LDA and AdaBoost) or slightly better
(SVM) test accuracies than HOG descriptor with one cell size. Note that we use ¢ = 8
and ¢ = 4 as our default experiment settings, which has similar outcomes to the best test

accuracies in Table 7.8.

7.7.5 BRIEF Parameters

BRIEF descriptor has two parameter choices—the number binary pixel pairs and number
of BRIEF values. In Sect. 7.6, we extracted 10000 BRIEF values with 5 binary pixel

descriptor.
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Table 7.8: Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset) with varied
cell sizes and combination when extracting HOG descriptor. (See text for details.)

HOG PCA+LDA SVM AdaBoost
c=8 84.7+62 84.1+44 80.8+64
c=6 90.6 +3.5 89.1+39 84.1+5.0
c=4 91.6 -+ 3.6 90.7+39 86.0+3.9

c=8, c=06 89.8+3.6 898+35 838+54
c=8,c=4 912+32 913+40 852+50
c=6, c=4 90.6 £3.7 90.6+45 853+5.8
c=8,c=6,c=4 91.2+4.1 91.6+3.7 848+43

pairs. Here, we denote this setting as b = 5 and f = 10000. Similar to the Gabor, Haar, and
LBP cases, we varied these two parameters individually by first using 2 or 8 binary pixel
pairs while extracting 10000 BRIEF values. After that, we fixed binary pixel pairs to 5 and
extracted 5000 or 2000 BRIEF values.

We summarized the classification results of the three classifiers in Table 7.9, where b
and f represent the number of binary pixel pairs and number of BRIEF values. From the first
three rows, we can observe that PCA+LDA and SVM perform the best when b = 5 while
AdaBoost performs the best when » = 8. From the last three rows, we can observe that the
test accuracies deteriorate with decreasing number of BBIEF values. In general, one should
use a larger f if the computational cost is not an issue. On the other hand, we find that using
b = 5 has a good balance in between computational cost and accuracy performance (except

for the AdaBoost case, but nevertheless the difference is small.)

7.7.6 Advanced Variants

In addition to the analysis of feature parameters, it is also worth testing some advanced
variants of the classic feature descriptors. We further compared the FER performance by
extracting LBP histogram Fourier (LBP-HF) descriptor [285] and Gaussian BRIEF descrip-
tor (G-BRIEF) [286] . The LBP-HF descriptor is a rotation invariant descriptor computed
from Fourier transforms of LBP histogram. It has been reported that LBP-HF descriptor
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Table 7.9: Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset) with varied
number of binary pixel pairs and descriptors when extracting BRIEF descriptor. (See text
for details.)

BRIEF PCA+LDA SVM AdaBoost

b=2, f=10000 83.1+5.8 826+55 80.6+4.2
b=5,{=10000 83.6 +4.8 83.0+44 795+5.0
b=8§, f=10000 829+53 83.0+49 80.9+4.0
b=5,f=5000 82.7+5.1 822+54 775+5.6
b=5,f=2000 80.1+55 80952 764+52

Table 7.10: Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset) with LBP
and LBP Histogram Fourier descriptors.

PCA+LDA SVM AdaBoost

LBP 864 +2.6 86.0x+4.0 81.2=+3.9
LBP-HF 82.1+62 80.6+44 73.6+49

outperforms classic LBP in texture classification and face recognition tests [285]. Table 7.10
summarized the test results of the classic LBP and LBP-HF descriptors. Based on our exper-
iments, we find that the LBP-HF descriptor produce worse test results when compared to
the classic LBP descriptor. We speculate that the LBP-HF descriptor will perform better on
datasets with in-plane rotations. Since our current datasets always have the same head pose,

the LBP-HF descriptor does not prove to be very useful.

Table 7.11 summarizes the test results of the classic BRIEF and G-BRIEF descrip-
tors. Based on our experiments, we find that the G-BRIEF descriptor perform slightly better
than the classic BRIEF descriptor only in the case of SVM classifier. It has been reported
that G-BRIEF is good at dealing with image Gaussian noise and partial occlusions. We
speculate that G-BRIEF will performs better if there is Gaussian noises or partial occlusions
in our FER datasets. To this end, we find that HOG descriptor is still the best descriptor for

FER in consideration of the test accuracy.
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Table 7.11: Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset) with BRIEF
and Gaussian-BRIEF descriptors.

PCA+LDA SVM AdaBoost

BRIEF 83.7+34 832+34 79744
G-BRIEF 81.7+5.7 839+4.7 783=+6.1

7.8 Confusion Matrices

We present confusion matrices of HOG descriptor applied with SVM classifier in order
to identify the weak points of feature descriptors. Table 7.12 presents the confusion matrix
of HOG descriptor with linear SVM classifier applied to the CK+ Dataset, with An, Di, Fe,
Ha, Sa, Su, and Ne represent angry, disgust, fear, happy, sad, surprise, and neutral facial
expressions respectively. From Table 7.12, we observe that the happy class performs the
best and achieves accuracy of nearly 97%. On the other hand, the sad classifier performs
the worst and achieves accuracy of only about 44%, where most of the sad class images
are mis-classified as neutral class. We find that this bad performance is caused by the small
number of training samples in sad class. Note that the fear class also has a small number
of training samples and performs second worst. In order to prove our speculation, we run
the same experiment with KDEF Dataset, in which it has same number of images in all
classes. Table 7.13 presents the confusion matrix of HOG descriptor with linear SVM
classifier applied to the CK+ Dataset. From the table, we observe that the sad classifier
performs much better with the KDEF Dataset, proving that our speculation is correct. In
Sect. 7.11, we will present more experiment results on KDEF, MUG, and JAFFE Datasets.

7.9 Feature Fusion Investigation

Since all feature descriptors possess different characteristics, one common question
would be “Could the test accuracies be further improved by using multiple feature descrip-
tors for image classification?”. We have analyzed this issue by considering the following
experiment. We combined the LBP, HOG, and BRIEF descriptors and tested the outcomes
with AdaBoost classifier. It would be also interesting to realize this experiment by using SVM

or other techniques such as multiple kernel learning (MKL) [287,288]. Similar to AdaBoost,
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Table 7.12: Confusion matrix of HOG descriptor with linear SVM classifier (CK+ Dataset).

% An Di Fe Ha Sa Su Ne

An| 764 68 1.1 1.1 1.1 23 112
bi| 19 94 10 19 00 19 29
Fe | 36 18 713 36 18 36 143
Ha| 00 00 00 971 00 07 22
Sa | 102 68 51 85 440 00 254
Su| 00 00 12 00 06 934 438
Ne| 07 00 06 05 07 02 973

Table 7.13: Confusion matrix of HOG descriptor with linear SVM classifier (KDEF
Dataset).

% An Di Fe Ha Sa Su Ne

An | 787 7.1 64 14 1.1 25 28
Di | 41 807 41 22 22 45 22
Fe | 50 40 656 43 57 43 11.1
Ha| 07 10 04 952 07 10 1.0
Sa | 11 04 04 1.1 938 14 18
Su| 31 58 62 27 50 760 12
Ne| 03 10 63 07 33 16 868
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Table 7.14: Test accuracies of AdaBoost classifier with combined features in CK+ Dataset.

Descriptors AdaBoost
LBP 81.2+3.9
HOG 85.7+3.0
BRIEF 797+ 4.4

LBP+HOG+BRIEF 87.3 +3.8

Table 7.15: Percentages of feature selected by AdaBoost in 20 validation cycles with CK+
Dataset.

Descriptors An (%) Di(%) Fe(%) Ha(%) Sa(%) Su(%) Ne (%)

LBP 30 24 35 29 24 28 33
HOG 40 54 35 35 41 42 42
BRIEF 30 22 30 36 35 30 25

MKL has the ability to perform feature selection and classification simultaneously. However,
our main objective is to analyze the description power of the feature descriptors by explicitly
counting the number of feature descriptors selected by AdaBoost. To this end, we chose to
consider MKL as our future work for FER.

Table 7.14 summarizes our experiment results. From the table, we can observe that the
combined LBP & HOG & BRIEF descriptors perform the best, followed by HOG descriptor,
LBP descriptor, and BRIEF descriptor. In addition, Table 7.15 shows the number of feature
descriptors selected by AdaBoost during the combined-features experiment. We observe
that HOG descriptor almost always have the largest number of selection, indicating that
HOG descriptor has more description power than other feature descriptors in the AdaBoost

classification experiment.

7.10 Image Pre-processing Investigation

In this section, we investigate the effects of image pre-processing towards the FER

test performances. Specifically, we investigated the effect of image resolutions towards the
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test performances. In addition to the effect of image resolutions, we also compared the
results under normal pre-processing, i.e. face detection and cropping procedures described
in Sect. 7.3, to the results with additional pre-processing steps. We considered histogram
equalization (HE) and median filtering (MF) in our experiments. HE could potentially
enhances facial features that are not obvious in the low contrast images. On the other hand,
MF could filter the image noises and smoothen the facial images. Note that we do not
consider illumination normalization since the datasets we are using now are collected under

controlled settings (i.e. have same illumination within datasets).

7.10.1 Effect of Image Resolution

We investigate the effect of image resolution on test accuracies in this section. Looking
for an optimal image resolution that produces high test accuracy and low computational
cost is important but is not commonly focused in research analysis. Table 7.16 summarizes
the size of all the five feature descriptors used in our experiments under different image
resolution settings. The fourth column (48x48 = 2304) is the original setting in our previous
experiments. Specifically, LBP operator has size of 12x12 pixels and shift horizontally and
vertically by 3 pixels, resulting in a feature vector with size of 13x13x59 = 9971. HOG
operator has two combined settings—block size of 16x16 pixels and 8x8 pixels respectively,
resulting in a feature vector with size of (5x5+11x11)x36 = 5256. BRIEF descriptor
was set to have 10000 values, which is close to the LBP descriptor size of 9971. We only
considered LBP, HOG, and BRIEF descriptors in this section. The dimensions of Gabor
and Haar descriptors of images at higher resolution are too large and significant amount of

computational resources are required for the experiments.

Figure 7.15 summarizes the test accuracies of CK+ and KDEF Datasets under different
image resolutions with AdaBoost classifier. Test results of both datasets are consistent. We
observe that LBP and HOG descriptors produce test accuracies higher than BRIEF descrip-
tor at high resolution images (> 48x48 pixels). In contrast, BRIEF descriptor produces
higher test accuracies than LBP and HOG descriptors at low resolution images (< 48x48
pixels). Furthermore, BRIEF descriptor can produce surprisingly good test accuracies across
all different image resolutions despite its much lower computational cost. We also observe
that HOG descriptor almost always performs better than LBP descriptor across all image

resolution settings. In practice, we recommend to normalize a high resolution image (>
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Table 7.16: Comparison of size of feature vectors at different image resolution.

Descriptors 12x12 = 144 24x24 = 576 48x48 = 2304 96x96 = 9216
LBP 3259 = 531 82x59 = 3776 132x59 = 9971 192%59 = 21299
HOG (1242536 = 180 (22+5%)x36 = 1044  (52+11%)x36 = 5256  (52+112+23%)x36 = 24300
BRIEF 2500 5000 10000 20000
100 100
> ] > 80 1
2 2 60 /71
3 60 | —LBP 3 A —LBP
—BRIEF 40/ —BRIEF
l HOG ' HOG
40 20
12x12 24x24 48x48 96x96 192x192 12x12 24x24 48x48 96x96 192x192
Image Resolution Image Resolution

Figure 7.15: Test accuracies of AdaBoost classifier under different image resolution settings
in CK+ Dataset (left) and KDEF Dataset (right).

48x48) to size of 48x48 pixels (because higher image resolution would produce similar
performance) and use HOG descriptor for FER. When original image resolution is lower

than 48x48 pixels, we recommend to use BRIEF descriptor.

7.10.2 Effect of Image Filtering

We find that comparing the results of HE and MF with the results of normal process-
ing is challenging because their results strongly depend on the feature descriptors and
classifiers. For the ease of understanding, we summarized the test results in five tables
(Tables 7.21-7.25), in which each of them corresponds to Gabor, Haar, LBP, HOG, and
BRIEF descriptors. For Gabor descriptor, we find that HE always produces the best test
results, while MF always produces the worse test results in all three classifiers. This is
reasonable as HE could enhances facial features that are not obvious in the low contrast

images while MF smoothen the facial features and would deteriorate the test results.
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Table 7.17: Test accuracies of Random Feature Selection+LDA and PCA+LDA.

. MUG Dataset KDEF Dataset JAFFE Dataset
Descriptors
RFS+LDA PCA+LDA RFS+LDA PCA+LDA RFS+LDA PCA+LDA
Gabor 76.7+43 803 +5.0 69.2+43 715+34 629+ 113 79.1+82
Haar 75451 794 +5.1 68.8+46 702+3.5 65.0 +11.2 76.0+ 109
LBP 56.7+51 77.8+3.7 524+43 720+43 343+94 633+6.2
HOG 71.7+48  82.6 +4.5 68.0 +47 771 +3.7 543+11.2 85.5+6.6
BRIEF 541+66 745+3.6 506 +4.7 699 +3.8 374+ 133 693 +82
Table 7.18: Test accuracies of SVM and AdaBoost.
. MUG Dataset KDEF Dataset JAFFE Dataset
Descriptors
SVM AdaBoost SVM AdaBoost SVM AdaBoost
Gabor 82.7+34 775+41 726 +55 71.3+3.1 824 +7.1 69.0+10.3
Haar 78.6+47 73.5+4.6 69.0+64 67.6+50 77.1+£102 674 +12.5
LBP 79.0+42 679+5.6 747+52 66.7+3.9 557+9.8 495+96
HOG 853+42 77.0+53 80.2+41 752+4.0 895+63 64.0=x11.0
BRIEF 814+42 7T1.7+44 73.4+57 68.8+54 72.6 £+ 104 62.1 +13.0

Table 7.19: Test accuracies of Random Feature Selection+LDA and PCA+LDA.

Combined Dataset

CK+ Dataset

Descriptors

RFS+LDA PCA+LDA RFS+LDA PCA+LDA
Gabor 55227 56.6+24 794 +£52 827+34
Haar 554+28 58.6+34 80.8+49 834142
LBP 470+35 63.7+21 66.4+60 864+26
HOG 60.5+3.5 68.1+3.2 825+41 909 +3.2
BRIEF 440+32 593 +35 672+59 837134
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Table 7.20: Test accuracies of SVM and AdaBoost.

Descriptors Combined Dataset CK+ Dataset
SVM AdaBoost SVM AdaBoost
Gabor 61.6+24 628 +3.1 83.6 3.4 81.1+5.8
Haar 599+28 60.0+3.6 80.2+3.5 78.0+4.1
LBP 70.5+2.7 59.6 +3.0 86.0+4.0 81.2+39
HOG 73.3+3.3 63.2+3.2 912 +3.2 85.7+3.0
BRIEF 73.0+27 593+25 832+34 79.7+44

Table 7.21: Test accuracies of Gabor descriptor (CK+ Dataset) by using PCA+LDA,
SVM, and AdaBoost classifiers with normal, histogram equalization, median filtering pre-
processing.

PCA+LDA SVM AdaBoost

Normal 82.7+34 83.6+34 81.1+5.8
HE 84.4+34 84.7+48 825=+4.7
MF 80.0+53 80.1+45 788+438

For HOG descriptor, we find that all three classifiers produce the best results without
additional pre-processing. Different to Gabor filter, this indicates that HOG descriptor could
capture the edge features in the facial images efficiently even without additional HE. This
again would lead us to favor HOG descriptor in FER. For Haar, LBP, and BRIEF descriptors,
the test performances vary depending on the chosen classifiers and we could not make a

clear conclusion.

7.11 Generalization Tests

We performed three types of generalization test in this section. First, we applied the same
experiments to the MUG, KDEF, and JAFFE Datasets. Second, we combined all the CK+,
MUG, KDEF, and JAFFE Datasets into a large dataset (totally 2748 images), performed the
same procedures, and report its test performance. Third, we trained the PCA+LDA, SVM,
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Table 7.22: Test accuracies of Haar descriptor (CK+ Dataset) by using PCA+LDA,
SVM, and AdaBoost classifiers with normal, histogram equalization, median filtering
pre-processing.

PCA+LDA SVM AdaBoost

Normal 834+42 802+35 78.0+4.1
HE 845+43 811=+6.1 77.1=+6.1
MF 827+4.6 T17+£56 T45+£56

Table 7.23: Test accuracies of LBP descriptor (CK+ Dataset) by using PCA+LDA,
SVM, and AdaBoost classifiers with normal, histogram equalization, median filtering
pre-processing.

PCA+LDA SVM AdaBoost

Normal 86426 86.0+4.0 81.2+39
HE 87.1£53 84.6+49 81.3=+5.0
MF 88.0£47 844+54 756+6.7

Table 7.24: Test accuracies of HOG descriptor (CK+ Dataset) by using PCA+LDA,
SVM, and AdaBoost classifiers with normal, histogram equalization, median filtering
pre-processing.

PCA+LDA SVM AdaBoost

Normal 90.9+3.2 91.2+3.2 857+3.0
HE 889+55 88.6+x40 820x53
MF 883+4.0 87.1+60 83.1+438
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Table 7.25: Test accuracies of BRIEF descriptor (CK+ Dataset) by using PCA+LDA,
SVM, and AdaBoost classifiers with normal, histogram equalization, median filtering pre-
processing.

PCA+LDA SVM AdaBoost

Normal 83.7+34 832+34 79.7+44
HE 82.8+£50 83.5+45 794+3.8
MF 83.0+55 83.0+53 80.6+5.7

and AdaBoost classifiers with all CK+ Dataset images and tested classifiers’ performance
with all MUG, KDEF, and JAFFE Datasets.

7.11.1 MUG, KDEF, and JAFFE Datasets

Table 7.17 summarizes the test accuracies of five feature descriptors with RFS+LDA and
PCA+LDA classifiers applied to the MUG, KDEF, and JAFFE Datasets. Again, as expected,
PCA performs better than RFS because PCA reduces the size of feature descriptors while
capturing the most important information systematically. We also find that HOG descriptor

produces the best test accuracies in PCA+LDA classifier.

Table 7.18 summarizes the test accuracies of five feature descriptors with SVM and
AdaBoost classifiers applied to the MUG, KDEEF, and JAFFE Datasets. We observe that
SVM classifier performs better than AdaBoost classifier across all the three datasets and
HOG descriptor produces the best test accuracies in SVM classifier. Moreover, we find that
SVM classifier performs better than the PCA+LDA classifier in Table 7.17.

7.11.2 Combined Datasets

Table 7.19 summarizes the generalization performance of RFS+LDA and PCA+LDA
classifiers in the combined dataset (we also repeat the test results of CK+ Dataset for direct
comparison purpose). While the combined dataset is about 4 times larger than CK+ Dataset,
we observe that both RFS+LDA and PCA+LDA classifiers perform worse in the combined
dataset. This is not surprising, as the four datasets are collected under controlled indoor

environment with different backgrounds and light settings. Moreover, the four datasets
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have different demographical settings, e.g. CK+ Dataset was collected in North America,
MUG and KDEF Datasets were collected in Europe, while JAFFE Dataset was collected in
Asia. Our generalization test performance conforms with previous FER studies, suggesting
that we need to collect more FER images in the wild in order to achieve a more robust
FER [235,245].

Table 7.20 summarizes the generalization performance of SVM and AdaBoost classifiers
in the combined dataset (we repeat the test results of CK+ Dataset for direct comparison
purpose). Similar to the preceding discussion, we observe that both SVM and AdaBoost
classifiers perform worse in the case of combined dataset, suggesting that we need to collect

more FER images in the wild in order to achieve a more robust FER.

7.11.3 Cross Datasets

In addition to the combined dataset, we also trained the PCA+LDA, SVM, and AdaBoost
classifiers with all CK+ images and tested classifiers’ performance with all MUG, KDEF, and
JAFFE images. We summarized the test accuracies of the three datasets in Table 7.26. From
the table, we can observe that in general, all test performances are much worse than the
performances of individual CK+ Dataset and combined datasets cases due to the reasons
discussed in Sect. 7.11.2. By referring to the dataset images (Fig. 7.1-7.3), we can observe
that each dataset was collected under very different controlled indoor environment, which
eventually lead to these unsatisfactory results. Similar to the previous sections, these test
results suggest us to collect more FER images in the wild in order to achieve more robust
FER.

In addition, we also observed that JAFFE Dataset produces much worse cross-dataset
results than MUG and KDEF Datasets. Upon careful investigation, we found that JAFFE
Database has a few ambiguous facial expressions posed by models. Figure 7.16 illustrates
a few faces with ambiguous facial expression. For instance, the first image has a label of
angry but may be potentially perceived as sad expression. Since JAFFE Database is small,
these ambiguity represents about 5% of the all 213 images. We believe that this is the main

reason that JAFFE Dataset performs the worst in our cross-dataset experiments.



151

Images

~

o -7

ﬁ

Disgust Surprise Angry Disgust

Labels Angry Fear Surprise Disgust

Perception Sad Happy Angry Happy Sad Happy Neutral Neutral Neutral Sad

Figure 7.16: Ambiguous facial expression labels in JAFFE Dataset.

Table 7.26: Test accuracies of MUG, KDEF, and JAFFE Datasets (the 1st, 2nd, 3rd numbers
in all the triplets) with PCA+LDA, SVM, and AdaBoost classifiers by using CK+ Dataset
as training data.

PCA+LDA SVM AdaBoost

Gabor 24.6/24.0/11.7 29.6/249/155 262/229/16.0
Haar 27.6/27.0/150 31.2/322/169 333/31.3/16.0
LBP 269/30.2/14.1 28.1/27.6/13.6 26.4/26.6/20.7
HOG 319/353/13.6 29.5/355/18.8 27.8/33.3/23.0
BRIEF 27.5/263/11.7 29.4/25.1/150 29.1/26.1/17.4
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7.12 Computational Efficiency

Feature descriptor should be computationally efficient while leading to the best classifi-
cation results. In this section, we analyze the computational cost of five feature descriptors
in term of number of multiplication (NOM) and summation (NOS) operations. We first list
up a few assumptions and describe our calculation process. In all five feature descriptors,

we consider a grayscale image with size of 48x48 pixels.

Among the five feature descriptors, Gabor descriptor has the most expensive computa-
tional cost because it involves 48x48 summation and 48x48 multiplication operations. On
the other hand, taking the computational cost of integral image into consideration, Haar

descriptor has computational cost of only

NOS poor = 15 X numberO fS electedFeatures + imageS ize* X 3. (7.12)

The computation of LBP descriptor involves thresholding, binary mapping, and his-
togram binning operations. For simplicity, we assume one binary thresholding operation
is equivalent to one summation operation. Besides, we assume that binary mapping is real-
ized with Lookup Table (LUT) technique and is considered as one summation operation as
well. We also assume that histogram binning operation is equivalent to one summation opera-
tion. Under these assumptions, our implementation of one LBP descriptor has computational
cost of

imageS ize

NOS 1pp = (T)Z X@+1+1). (7.13)

The computation of HOG descriptor involves convolution, square-root, arctangent,
histogram binning, and normalization operations. However, it has surprisingly low com-
putational cost when LUT technique is employed. Convolution process (by applying 1-D
horizontal and vertical Sobel masks) seems to be expensive but it is in fact equivalent to one
summation operation for each gradient map computation process. Square-root and arctangent
operations can also be replaced with LUT technique since there are only 511x511 possibili-
ties for an 8-bit grayscale image. Hence, we count these as two summation operations for
every pixel when calculating gradient magnitude and gradient orientation maps. Subsequent
histogram binning operations is considered equivalent to one summation operation. Local

normalization involves 35 summation and 72 multiplication operations for each block. Under



153

these assumptions, our implementation of one HOG descriptor has computational cost of

: i
NOS yog = ((WY X(2+2+1)+35), NOMyog =72.  (71.14)

BRIEF descriptor is well-known for its simplicity and fast computation. It involves
only five comparison operations (equivalent to five summation operations) and one binary
mapping operation (counted as one summation operations). BRIEF descriptor is also the only
feature that has computation cost independent of image size. Overall, our implementation of

one BRIEF descriptor has computational cost of

NOSBRIEF:(5+1)- (715)

In descending order, Gabor descriptor has the most expensive computational cost, fol-
lowed by HOG, LBP, Haar, and BRIEF descriptors. Assuming that one multiplication
operation is equivalent to ten summation operations, we show two interesting plots in
Fig. 7.17. We investigated the number of summation operations by varying the number of
selected features and changing the image size. We observe that all feature computational
costs increase approximately linearly when number of features increase. On the other hand,
LBP and HOG descriptors have exponentially increasing summation operations when im-
age size increases. Nevertheless, all features have very low computation cost in modern
computers. For instance, it takes less than 15 us to compute one LBP and HOG descriptor
respectively in MATLAB (C & C++ implementations). Note that Haar and BRIEF descrip-
tors have even lower computational cost in the two cases shown in Fig. 7.17. Haar descriptor
has a low computational cost thanks to the integral image technique while BRIEF descriptor

has a computational cost independent of the image size.

7.13 Feature Visualization

Figure 7.18 and Fig. 7.19 visualize Gabor and Haar descriptors selected by AdaBoost
classifiers in CK+ Dataset. These figures show some insights about the size and position
of the descriptors selected by the AdaBoost classifier. We can see that most Gabor and
Haar descriptors are small and concentrate at the image center. In Fig. 7.20, we overlap

all 80 feature descriptors selected by AdaBoost classifier. We can observe that all feature



154

5 x 10
3 x 10 8 -
£y P
g 25 ~== Haar © === Haar .
5 "o LBP g 6 .0-LBP g
=3 HOG o) &
2 2 + BRIEF 2 5 HOG
S S + BRIEF Py
= =5 B
g 15 1 £ 4 R
€ o 1S A
=1 o > .
@ . a3 X
- 1 50 = 0
S) I 3 o o
3 .0° g 2 Cal
2 .ot -g o
E 05 e € 4 -
z L0® =z .o
[ 0t —
0 4 . 0 aL .
0 20 40 60 80 100 0 20 40 60 80 100 120
Number of Adaboost-selected Features Size of Images

Figure 7.17: Number of summation operations of feature descriptors with varied number of
features (left) and varied size of images (right).

descriptors concentrate at the image center. The observation also suggests us to put more
weights on these location when we extract the feature descriptors from the face images. This
concept is similar to the idea in [235], when LBP descriptor is extracted with different

weighting effect based on their extraction location.

7.14 Conclusion

In this chapter, we empirically evaluate five feature descriptors, namely Gabor, Haar, LBP,
HOG, and BRIEF descriptors in FER. We examine each feature descriptor by considering
six classification methods, such as k-NN, LDA, SVM, and AdaBoost with four unique facial
expression datasets. In the end, we identified HOG descriptor as the best feature descriptor
for FER when image resolution of a detected face is higher than 48x48. On the other hand,
when the image resolution of the detected face is smaller than 48x48, our experiment results
show that BRIEF descriptor performs the best. In general, Gabor descriptor performs well but
has a higher computational cost. In addition to the test accuracies, we presented confusion
matrices of FER. We analyzed the effect of combined features and image resolutions on
FER performance. We also generalized our experiments to other datasets, analyzed the
computational efficiency of each feature descriptors, and visualized the feature descriptors

selected by AdaBoost classifier.

In this study, we only consider frontal facial expression images. The use of facial



155

= i = \\
s

b k\\\
‘mﬂ % W

== M-
Vo s = =

Y

Z =\ W\ Wz

\\\\\

WW
mm

" I

7%

Figure 7.18: Visualization of Gabor descriptors selected by AdaBoost classifier. Each

column represents the first five Gabor descriptors selected by angry, disgust, fear, happy,
sad, surprise, neutral classifier respectively.

Figure 7.19: Visualization of Haar descriptors selected by AdaBoost classifier. Each column

represents the first five Haar descriptors selected by angry, disgust, fear, happy, sad, surprise,
neutral classifier respectively.
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Figure 7.20: Visualization of 80 overlapping Gabor, Haar, LBP, HOG, and BRIEF descrip-
tors (row-wise) of angry, disgust, fear, happy, sad, surprise, neutral classifier respectively.

expression dataset under different head poses is necessary to consolidate our findings. We
also focus FER on single image. Temporal information provides strong clues about facial

expression and should be carefully considered in the future.
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Chapter 8

Human Sensing Interface IV: Face Alignment

8.1 Introduction

Face alignment, a process of locating facial feature points (Fig. 8.1), has been an active
research topic because of its usefulness in vast applications such as face recognition and head
pose estimation. However, automatic and real-time face alignment is very challenging due to
the large variations of face shape, head pose, illumination, facial expression, and occlusions
such as glasses or mustaches. A widely used approach for face alignment is parametric
shape fitting, where each facial feature points are first estimated with independent local
landmark estimators and then a global shape model is used to regularize the estimated local
landmarks. Active shape model (ASM) [289,290] and constrained local model (CLM) [291,

] are two typical frameworks. In these frameworks, local landmark estimators can be
any classifiers or regressors while point distribution model (PDM) [292,293] is normally
used as the global shape model. Recently, sparse representation model (SRM) [294-296]

has also been proposed as the global shape model.

8.1.1 Our Approach

To the best of our knowledge, using the random forest regressor as local landmark
estimators and using the PDM as global shape model [293] is currently the best framework
among all parametric shape fitting approaches. Its training process is relatively simpler
than other boosted regression approaches, and yet able to achieve accurate, fast, and robust
alignment results. However, we find that it does not generalize well to face images with yaw
angle larger than +15°. In this chapter, we propose to solve this problem by using a new local
forest classification and regression (LFCR) framework. In particular, we add an additional
classification step prior to the regression step. Verified by our experiments, we find that this
additional classification step is useful in rejecting outliers prior to the regression step and
improve the alignment results. We also further improve the LFCR framework by analyzing
each system component, including the choice of feature descriptors, tuning parameters of

random forest regressors, as well as the shape initialization and regularization processes.
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Figure 8.1: Face alignment, a process of locating facial feature points, has been used in
various applications such as face recognition, facial expression recognition, and head pose
estimation. Seventeen selected facial feature points are plotted on images taken from BiolD
Dataset [297].

8.1.2 Our Contribution

Our contributions in this chapter is threefold. First, we propose a new LFCR framework
for facial alignment that can generalize well to face images with yaw angle larger than
+15°. Second, we examine different initialization methods (such as sparse initialization and
two-stage initialization), as well as different shape regularization methods (such as PDM
and SRM) in our experiments. Third, we demonstrate the effectiveness of LFCR over state-
of-the-art methods with two widely-used face alignment datasets—BiolD Dataset [297] and
MultiPIE Dataset [298].

8.2 Related Works

8.2.1 Parametric Shape Fitting Approaches

Parametric shape fitting are the most common approaches in face alignment problem,
where the facial feature points are first estimated locally and the resulting face shape is
regularized with a global shape model. These approaches are normally performed iteratively
until convergence and are shown to be effective in practice. ASM [289,290] and CLM [291,
292] are two typical approaches. In general, both ASM and CLM and their variants optimize
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an objective function consisting of appearance likelihood and shape constraint. The shape
constraint is typically represented by using PDM, i.e. X = X + Pb, where X is a mean shape
of training data, P contains ¢ eigenvectors (eigenshapes) of the covariance matrix of training
data, and b is a ¢ dimensional vector. While being effective in practice, these approaches are
widely known to be very sensitive to shape initialization. Parametric shape fitting approaches
are normally initialized with mean shape X and would likely to be fail if the face being
aligned has a true shape that is very far away from the mean shape. It is tempting to enlarge
search window of local landmark estimator but this would increase the computational cost

exponentially and hinder real-time performance in practice.

In addition to PDM, SRM [294-296] has also been proposed as the global shape
model. Instead of representing a face shape with mean shape eigenshapes computed from
the training data, SRM represents a face shape with face shapes taken from the training
data directly. Therefore, SRM has an advantage of representing a face shape that is not
statistically significant in the training data. For example, if a test image has a true shape of
fully-opened mouth while most training data have closed mouth, eigenshapes would most
probably contain face shapes with only closed mouth and it would be difficult for PDM to
regularize the face shape. In contrast, since SRM takes face shapes from the training data
directly, SRM would still contains face shapes with closed mouth and is able to regularize

face shape effectively.

8.2.2 Boosted Regression Approaches

In contrast to the parametric shape fitting approaches above, boosted regression ap-
proaches [299, 300] performs holistic face alignment, where features extracted from the face
box are mapped to the facial feature points vector directly and the face shape constraint is
implicitly modeled by the holistic regressors. Dantone et al. [301] proposed Conditional
Random Forest to estimate facial feature points holistically by using appearance, gradient,
and Gabor features. Xiong et al. [302] proposed Supervised Descent Method to optimize
facial feature points search by using SIFT features. Sun et al. [303] and Zhou et al. [304]

also proposed deep convolutional networks for face alignment.

Cao et al. [300] perform multiple initialization and consider mean of all results as
final landmark location. In contrast, our method evaluates the quality of each initialization

candidate with an objective function inspired by sparse model and carry on subsequent
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processes with only the identified best candidate.

Valstar et al. [305] and Chen et al. [296] first detect prominent facial landmarks and then
align mean shape to these landmarks with similarity transformation. However, this approach
is not sufficient as facial landmarks could be occluded and possible false detection could

lead to worse initialization.

8.2.3 Deformable Shape Approaches

The basic idea of deformable shape approaches [306—310] is to represent a face by
a collection of face feature parts arranged in a deformable shape configuration. Specifi-
cally, the appearance of each face part is modeled separately while the deformable shape
is represented by spring-like connections between pairs of face parts. In contrast of para-
metric shape fitting approaches, deformable part approaches optimize local appearance
and shape deformation cost simultaneously. As a result, it normally can produce better
convergence results but is more time-consuming. Felzenszwalb & Huttenlocher. [306] first
demonstrated the idea of deformable shape (which they called it Pictorial Structure) in face
alignment. Uricar et al. [307] treated the pictorial structure as a structured output problem
and solved it with structured output Support Vector Machine. Aiming to capture face pose
variation, Everingham et al. [308] improved the deformable shape approach by using a
mixture of Gaussian trees. Zhu & Ramanan [309]. further extended the idea of mixtures of
trees with a shared pool of parts. Instead of using all densely distributed facial feature points,
Yu et al. [310] proposed a group sparse learning method to select the most representative
facial feature points to improve the tracking speed performance. Ghiasi & Fowlkes [311]
proposed a hierarchical deformable shape approach for face alignment that explicitly models

occlusions of parts.

8.3 Framework Overview

Similar to previous parametric shape fitting approaches [293], we perform three major
steps in our framework: (1) shape initialization, (2) local landmarks regression, and (3)
global shape regularization. Figure 8.2 illustrates this basic face alignment pipeline. We
first describe the two shape initialization methods that we are using in our experiments in

Sec. 8.3.1. Then, we explain the design process of local landmark regression in Sec. 8.3.2. Af-
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Figure 8.2: Framework overview. During the test, our system starts from shape initialization,
followed by local landmark searching and global shape regularization.

ter that, we explain two global shape regularization processes in Sec. 8.3.3.

8.3.1 Shape Initialization

We compare two types of shape initialization in our experiments: the mean shape
initialization and sparse shape initialization [312]. Mean shape initialization uses the mean
shape computed from the training data as the initialized shape. While being effective most
of the time, it would most likely to fail if the face being aligned has a true shape that is
very different or far away from the mean shape. On the other hand, sparse initialization
method has been proposed to solve this problem [312]. Figure 8.3 illustrates the sparse
initialization method with one test image. Specifically, one performs initialization with n
shape candidates that are selected heuristically within the face space of training data. By
evaluating an objective function with response maps obtained from local landmark detectors,
we are able to determine the best initialization shape candidate and enhance the alignment

performance.

While one can randomly initialize a few possible shapes within face space by either
varying elements in vector parameter b in PDM (hereafter PC-shape) or directly selecting
available training shape (hereafter AT-shape), this is not effective in practice as most selected
shapes might be similar. Instead, we select shapes within the face space based on simple
heuristic. We select the first shape randomly and then select the second shape that has the
largest Euclidean distance with respect to the first selected shape. After that, we select
the third shape that has the largest Euclidean distance to the nearest shape among those
previously selected (i.e. maximin strategy). The process continues until we obtain n required

initialization shapes.
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Figure 8.3: A process flow of sparse initialization for face alignment [312]. By optimizing
an objective function inspired by sparse model, sparse initialization can identify the best
candidate and enhance alignment performance.

8.3.2 Local Forest Regression

Random forest [207] is a powerful ensemble learning method for both classification and
regression that works by combining outcomes of multiple decision trees. Cootes et al. [293]
proposed to use random forest regressors to estimate the location of each facial feature point
independently. Similarly, we design one random forest regressor for each landmark. However,
prior to the regressor, we add one random forest classifier for each landmark. Since image
patches are randomly sampled at each landmark, there is a chance where the sampled image
patches contain significant occluded objects or belong to backgrounds. We find that the
added classifier is good at rejecting these patches, where the patches essentially carry no
useful information for the subsequent regressor. With the added classifier, the face alignment

performance can be improved substantially.

During the training process, we sample k square image patches P, around each ground
truth facial feature point with a random displacement vector d; € R>. We consider normal
image patches as positive samples, while image patches that contain significant occluded
objects or belong to backgrounds as negative samples. We then extract feature f; from
these image patches and learn a classifier. After that, we use the same features extracted
from positive samples to learn a regressor ¢(f;) — d; that map the extracted features to the

displacement vector. In this work, we report performance of both HOG features and BRIEF
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Figure 8.4: Image patches’ sampling process around an eye corner point. (a) An image
patch (the green square) is sampled around the ground truth point with a random displace-
ment vector (the yellow line). (b) Pairs of image patches and displacement vectors are
randomly sampled during the training. (¢) Image patches are randomly sampled around the
initialization point during the test. (d) Raw voting map by all image patches. (e) Filtered
voting map after applying KDE.

descriptor. Fig. 8.4(a)-(b) show the image patches’ sampling process around an eye corner
point. During the test, image patches can be randomly extracted around the current facial
feature point (Fig. 8.4(c)).

During the test process, we sample k' square image patches P, around the initial-
ized/current updated landmark with random displacement vectors d; € R*. We then extract
feature f] from the sampled image patches. With the pre-trained classifier, we can deter-
mine whether the sampled image patches are positive samples. All image patches that are
considered as negative samples will be ignored thereafter. With the pre-trained regressor ¢,
we then estimate the displacement vector ¢(f/). We use a single vote per tree per sampled
image patch as suggested by [293]. All votes are accumulated in a 2D voting grid/map
(Fig. 8.4(d)). Selecting the best regression location that has the most votes in the 2D voting
map is one potential way [293] but the prediction might be prone to error. Chen et al. [296]
avoid this error by taking the mean of landmark location (MLL) estimated by all random
trees. In the experiments below, we select the peak density after applying kernel density
estimation (KDE) with 5x5 average kernel to the 2D voting map (Fig. 8.4(e)). In Section 8.4,
our empirical results indicate that KDE approach outperforms MLL approach.

8.3.3 Global Shape Regularization

After the local landmark search, we perform the global shape regularization with two
purposes. First, global shape regularization lets strong landmarks such as eye and mouth

corner points to guide weak landmarks such as eyebrow and nose tip points. Second, it
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corrects strange alignment results and ensures that the final aligned shape stays within the

face space of the training data.

We investigate two different shape regularization methods in our experiments, namely
PDM [292, ] and SRM [294-296, ]. In PDM approach, the aligned shape is recon-
structed with the representative eigenvectors (computed from PCA) of face shapes of the
training data. On the other hand, in SRM approach, the aligned shape is reconstructed
directly with the face shapes of the training data. While PDM approach is faster, we find that
SRM approach can represent the face space of the training data better, especially when there
are some face shapes that are statistically insignificant in the training data. For example,
PDM approach would have difficulty in reconstruct a face shape that has yaw angle of +45°
if there is only a very small number of similar face shapes in the training data. However,
SRM approach could reconstruct the face shape better than PDM approach, provided that

the face shapes used for reconstructed have been selected properly.

8.4 Experiment Results

We start our experiments by first comparing each component in LFCR rigorously. In
particular, we show that LFCR can obtain good performance over face images with yaw
angle up to +£45°. We also compare the HOG [203] and BRIEF [223] feature extraction
method explicitly. After that, we examine the effects of search window and image patch size,

number of image patches, and number of trees toward the final alignment results.

Dataset. We carry out experiments by using the widely used MultiPIE Database [298]. The
database consists of more than 750,000 images of 337 people under 15 view points and 19
illumination conditions. We select 4,478 near-frontal face images (within +£45° yaw angle) in
the following experiment. Note that MultiPIE images do not have large in-plane rotation. We
augment the original images by randomly rotating the face images up to +45°. We also
applied random scaling and random shifting effect, up to 10% and 5% of the face box size
respectively, onto the selected 4,478 near-frontal face images. Augmented face images that
cannot be detected by face detector [206] are re-augmented. All face boxes detected by the
face detector are enlarged by 100% to ensure sampled image patches stay within the face
box boundaries. We then normalize the face box to size of 240 x 240 pixels. These processes

ensure that our dataset is very challenging, which includes large in-place rotation, scaling
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and shifting variations with respect to the face boxes. From this dataset, we select and fix

50% of the full data as our training dataset in the following experiments.

Implementation details. In our experiment, image patches have size of 25 x 25 pixels!
while searching window has size of 17 x 17 pixels, i.e. horizontally and vertically 8 pixels
away from the current point. We set the number of patches k to 20 during both training and
test processes in the beginning to save computational time. We use 10 random regression
trees. In order to avoid overfitting problem, the random trees are fully expanded and then

pruned to have lowest mean square error with respect to 10-fold cross validation loss.

Evaluation metrics. Following previous works [293, ], we measure the alignment
performance by computing the mean error of 17 facial landmarks shown in Fig. 8.1 as a
percentage of inter-ocular distance (IOD). Denoted as m,7, this measure is invariant to face

size and is widely used in face alignment study:
7o
= — ——l(xi, i) — (%, §)ll2, 8.1
niz ;:1 17IODII(X yi) — (X, gl (8.1)

where (x;,y;) and (X;, ;) are coordinates of the estimated and ground truth facial feature

points respectively.

8.4.1 LFCR Results

Figure 8.5 shows the mean errors of 17 facial feature points in 5 cycles with and without
a classification step prior to the regression step, as well as the cumulative distribution function
(CDF) of my; error with and without a classification step. Both results show consistently
that the additional classification step can improve the localization accuracy of the feature
points. In the following experiments, we always include the additional classification step
since its computational cost is small.

We also compare the localization accuracy of the feature points with HOG and BRIEF
descriptors. As shown in Fig. 8.6, HOG descriptor perform slightly better than BRIEF

descriptor. Since BRIEF descriptor has lower computational cost, we continue to use BRIEF

! Starting from the image patch center, we expand 12 pixels evenly to the top, bottom, left, and right
directions, resulting in a singular number. When extracting HOG features, we normalize the image patches to
24 x 24 pixels to meet the cell size requirement.
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Figure 8.5: Left: Mean errors of 17 facial feature points in 5 fitting cycles with and without
the classification step. Right: Cumulative distributions of m;; error with and without the
classification step.

descriptor in the following experiments.

At the end of the regression of every feature points, all votes are accumulated in a 2D
voting grid/map and the best regression location is identified with a filter. As shown in
Fig. 8.7, our experiment results empirically show that the KDE filter outperforms MLL filter

in both mean errors and CDF plots. We use KDE filter in all of the following experiments.

We find that the sizes of local search window and image patch are also critical to the
LFCR performance. Figure 8.8 shows the results of varied sizes of local search window
and image patch. When the search window size is fixed, image patch size of 12 performs
better than 6 because more information is available to train the regression trees. When
the image patch size is fixed, window size of 8 performs better than 16 because of the
lower uncertainty. We choose the image patch size and search window size to be 12 and 8

respectively, in line with the suggestions by Cootes et al. [293].

Next, we examine the effect of number of image patches during the training and test
phases (Fig. 8.9). As expected, increasing the number of image patches during the training
and test phases improves the performance. We keep the number of image patches during

both the training and test phases to 20 in order to save computational time.

We also examine the effect of number of trees in the random forest (Fig. 8.10). For
simplicity, we set the number of trees in the training and test phases to be equal. We find

that increasing the number of tree does not improve the performance significantly. We keep
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Figure 8.6: Left: Mean errors of 17 facial feature points in 5 fitting cycles by using HOG
and BRIEF descriptors. Right: Cumulative distributions of m;; error by using HOG and
BRIEF descriptors. AUC represents the Area Under the Curve.
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Figure 8.7: Left: Mean errors of 17 facial feature points in 5 fitting cycles by using KDE
and MLL to filter fitting response maps. Right: Cumulative distributions of m,; error by
using KDE and MLL to filter fitting response maps.
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Figure 8.8: Left: Mean errors of 17 facial feature points in 5 fitting cycles with varying
search window size (W) and image patch size (P). Right: Cumulative distributions of m,;
error with varying search window size (W) and image patch size (P).
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Figure 8.9: Left: Mean errors of 17 facial feature points in 5 fitting cycles with varying
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distributions of m;; error with varying numbers of training patches ('Tr) and test patches (Te)

in each image.
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Figure 8.10: Left: Mean errors of 17 facial feature points in 5 fitting cycles with varying
number of decision trees. Right. Cumulative distributions of m;; error with varying number
of decision trees. AUC represents the Area Under the Curve.

the number of trees in both the training and test phases to 5 in the following experiments in

order to save computational time.

8.4.2 Comparison of Shape Initialization Methods

In this section, we examine six different shape initialization methods, such as the conven-
tional mean shape initialization [293], sparse initialization [3 | 2], multiple initialization [300],
and two-stage initialization. In the conventional mean shape initialization method, the mean
shape of all training data is used as the initialized shape directly. In the sparse initialization
method, both PC-shapes and AT-shapes are computed from the training data and then the
optimized initialized shape will be selected by maximizing an objective function [312]. In
multiple initialization method, random training shapes are used as initialized shapes and the
median of fitting results are taken as the final results. In the two-stage initialization method,
LFCR is first performed on the test image with lower resolution (120 x 120), followed by
a second round LFCR on the original image (240 x 240). In the two-stage-pa method, an
additional Procrustes analysis step is included in between the first and second round of
LFCR. Specifically, after the first round LFCR on the test image with lower resolution, the
original image is transformed (with rotation and translation) based on the fitting result. After

that, the second LFCR is performed on the transformed original image.

From Fig. 8.11, our findings show that two-stage initialization methods produce the



170

0.8

c

S

5

0

S 06

2

4]

2 04 - — Mean Shape, AUC=0.9382

= PC-shape,  AUC=0.9399

£ — AT-shape,  AUC=0.9407

Y02 Multiple, ~ AUC=0.9297
— Two-stage, AUC=0.9413
— Two-stage-pa, AUC=0.9471

2 4 6 8 10 12 14 16
m17 Error (%l0D)

Figure 8.11: Cumulative distributions of m;; errors with different shape initialization
methods.

best results in term of alignment accuracy and performance efficiency. With the additional
Procrustes analysis step, we observe an additional boost of performance. Sparse initialization
methods perform similar with the two-stage initialization method and slightly better than
the mean shape initialization method, similar to the experiment results observed in the
original paper [312]. Overall, the multiple initialization method perform the worse in term of
area-under-the-curve (AUC) in Fig. 8.11. Multiple initialization method is good for boosted
regression approaches due to their special consideration of random shape initialization in

the training process but is not effective for parametric shape fitting approaches.

8.4.3 Comparison of Global Shape Regularization Methods

In this section, we compare two types of global shape regularization methods—PDM
and SRM regularization. In the PDM regularization method, the LFCR fitting results are
projected into the PCA space and then reconstructed with the principal components in
PDM. In other words, the LFCR fitting results are filtered with the PCA. On the other
hand, in the SRM regularization method, the LFCR fitting results are reconstructed with
the training shapes directly under a sparsity constraint. From Fig. 8.12, we find that SRM

regularization method performs slight better than PDM regularization method.
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8.4.4 Comparison to State of the Arts

In this section, we compare our results to the state-of-the-art results. We first report
the comparison results on the BiolD Dataset [297]. Figure 8.13 shows the face alignment
results of LFCR, Stasm [290], FaceTracker [292], BoRMaN [305], and LEAR [314]. From
the figure, we can observe that LFCR performs the best, followed by Stasm, FaceTracker,
LEAR, and BoRMaN. This indicate that LFCR is more effective than other approaches for

frontal face alignment.

We also report the comparison results on the MultiPIE Dataset [298] for near frontal
face alignment. Figure 8.14 shows the face alignment results of LFCR1 (with mean shape
initialization), LFCR?2 (with two-stage-pa initialization), IntraFace [302] (boosted regression
approach), and Zhu & Ramanan [309] (deformable shape approach). Note that the models
of all methods are trained with MultiPIE Dataset. While IntraFace (boosted regression
approach) produces the most accurate results, our LFCR method (parametric shape fitting
approach) can be parallelized naturally (and hence achieve a speed advantage) thanks to the
independent local forest classifiers and regressors. In contrast, IntraFace extract features
directly from the whole face image and perform face alignment globally with pre-learned

regressors, which makes them inherently difficult to parallelize. On the other hand, we find
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that the deformable shape approach of Zhu & Ramanan do not perform well. We find that
the model is good for face detection and achieve good alignment results around the face

boundary, but not good for accurate face alignment on the me,; points.

8.5 Conclusion and Future Works

In this chapter, we propose a new LFCR framework for face alignment in order to
handle face images with large yaw angles. Our framework is based on a recently proposed
random forest regressor, where it is used as local landmark estimators and has robust
performance when coupled with a global face shape regularizer. We analyze each system
component through detailed experiments. In addition to the selection of feature descriptors
and several important tuning parameters of the random forest regressor, we examine different

initialization and shape regularization processes.

We also compare our best outcomes to the state of the arts and show that our method
outperforms other parametric shape fitting approaches. This indicates that LFCR is effective
in estimating local landmark and outperforms other local discriminative approach. Besides,
its implementation is relatively easy and has very low runtime cost. The computation cost of

random forest regressor can also be parallelized to achieve even faster performance.
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Nevertheless, LFCR has some limitations, in particular it does not explicitly consider
occlusions during the face alignment process. In our experiment, we also observe that
boosted regression approaches, where all the feature extraction and face alignment processes
are performed globally, produce more accurate results than LFCR.This indicates that face
region that is far away from a face part also carries useful information for accurate face
alignment. Combining features from multiple parts for local alignment could potentially

boost accuracy of LFCR in the future.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, we propose the concept of a companion flying robot and discuss several
challenges towards realizing this goal. Among the listed challenges, which includes topics
on hardwares, control, robotics, machine learning, human-robot interaction (HRI), and
design, we believe that (i) safety (of the flying robot and its user), (ii) natural HRI in between
the flying robot and its user, and (iii) an interface for companion flying robot to understand

human are the three most important topics towards our goal.

In the beginning of this work, we choose to use a multirotor-based flying robot over a
blimp-based flying robot because a multirotor-based flying robot can handle more payload,
has more responsive flights, and is less susceptible to wind disturbance. In order to enhance
the safety of the companion flying robot, we develop a new holonomic hexacopter that
could move horizontally without roll and pitch motions. From control’s point of view, since
the holonomic hexacopter always stay at or very close to the equilibrium point (hovering
state), it is more stable and therefore safer for HRI theoretically. We verified our conjecture
in actual flight experiments. We also received comments from novice user that flying
holonomic hexacopter is more intuitive than a conventional flying robot, because it can

move horizontally naturally like a car without roll and pitch motions.

In addition to the safety considerations, we develop an accompanying model based on a
hierarchical finite state machine (FSM). The hierarchical FSM serves as a top-level model
to unify several important HRI behaviors such as human approaching, human following,
human circling, human leading, and side-by-side walking. To date, most companion mobile
robots are equipped with only one human accompanying mode and it is rare for a companion
flying robot to perform more than one accompanying mode. Therefore, we believe that
hierarchical FSM is useful for our companion flying robot to perform rich human accompa-
nying behaviors. Combined with a developed bottom-level relative positioning controller,

our holonomic hexacopter can have a smooth and natural HRI with its user.

Last but not least, a companion flying robot needs to understand its user to achieve

a meaningful HRI. We study and improve several computer vision techniques that are
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useful for a companion flying robot, including human detection and body orientation
estimation, hand shapes detection, facial expression recognition, and face alignment. We
aim to integrated all the investigated computer vision techniques; however, due to the limited
onboard computational resources, we focus on using human detection and body orientation

estimation in the actual flight experiments.

9.2 Discussion and Future Works

While we focus on three topics toward realizing our goal, companion flying robotics is a
broad research theme that involves many topics. In this section, we further discuss the safety

and regulation issues, as well as some potential future works of companion flying robots.

9.2.1 Safety Considerations

Developing a holonomic hexacopter for companion flying robot is one step towards a

safer HRI. In this section, we discuss three other possible ways to enhance the flight safety.

First, one natural way to enhance the flight safety is to make a smaller and lighter air-
craft. We built a bigger aircraft in the beginning with the purpose to mount additional sensors
onto the aircraft for various experiments. Therefore, we could optimize the design by only
considering the necessary components. Moreover, in the current holonomic configuration,
the motors are mounted on the upper side of the frame for test convenience. Mounting the
motors on the bottom side of the frame would make the propellers less exposed to the users
and therefore enhance the flight safety.

Second, there are several complaints reported by commercial drone users that their
drones erratically fly away. Without a physical and tangible failsafe, it is very dangerous
for a companion flying robot to fly along user in public space. We believe that attaching
a tether to a companion flying robot is a potential solution to this problem. Attaching a
tether to the flying robot does not only prevent the companion flying robot from erratically
flying away (and then potentially hit nearby people), but also able to enable longer flight by
supplying power through the tether. Moreover, combining the concept of tethered power and

companion flying robot enables new HRI, reminiscent of a human walking with his/her pet.

Third, as mentioned in Section 1.3, a rotor- and a balloon-type flying robot are com-

plementary to each other—the rotor-type flying robot has the merits of higher mobility,
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compactness, and less susceptible to wind disturbance while the bolloon-type flying robot
has the merits of more silent, safer, and longer flight. While we focus on a rotor-type flying
robot in this thesis, designing a hybrid flying robot, e.g., using small balloons to create partial
lifting thrust for multirotors, could help to enhance flight safety. With balloons, smaller
propulsion units can be adopted and lighter aircraft is possible. Moreover, with balloons, the

impact of the flying robots during emergency landing could be greatly reduced.

9.2.2 UAV Regulations

It is said that the current state of flying robots is similar to the state of automobiles back
in 1900, where their rapid advancements lead to new regulations and laws. In this section,
we discuss several drone regulations in United States, European Union, and Japan. Knowing
these emerging regulations is important as we can ensure the flight safety by using the
regulations as a safety checklist. Note that UAV regulations is a relatively new and broad
topic. As UAV technology become more mature, reliable, and autonomous, we believe that

the authority will amend the existing laws accordingly.

In USA, the Federal Aviation Administration (FAA) announced in December of 2015 that
all flying robots weighting in between 250 g and 25 kg must be registered online. The regu-
lations are different for commercial and recreational drones; in general, flying a companion

flying robot at outdoor must adopt to the following guidelines [315,316]:

o the UAV must weigh less than 25 kg,

e the UAV must operate during daytime and remain within visual line-of-sight,
o the UAV must stay within ground speed of 160 km/h (100 mph),

e the UAV must stay within altitude of 120 m (400 feet),

no flight is allowed near airports and crowded places,

pilot must have a remote pilot airman certificate,

Aiming to encourage technology innovation, EU has more flexible regulations [317-319]
compared to USA. Depending on the level of risk, EU has separate regulation for three

different categories. In general, as long as:

e the drone is less than 25 kg,
e the flight is within direct visual line-of-sight (500 m),
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o the flight is within 150 m (above the ground or water),

e the flight is outside of specified areas like airports,

the flight is considered as a low risk drone operations and neither flight approval nor pilot
license are required, even for commercial operations. Literally, this means that a companion
flying robot, which is highly unlikely weigh more than 25 kg, can be flown freely in EU, since
it always accompanies the user (within visual line-of-sight and height of 3 m). Nevertheless,
drones must comply with industry standard such as having adequate safety measures when

it is flown in populated area.

Compared to USA, Japan also has more flexible drone regulations [320,321]. Essentially,

neither registration nor approval is required as long as the flight operation:

e is 9 km away from airports,

e is outside of populated area,

e is within flight altitude of 150 m

e is within visual line-of-sight,

e is during daytime,

¢ is 30 m away from people, buildings, or other objects,
e does not carry dangerous object,

e does not drop ojbect from the UAYV,

Similar to the case in USA, flying a companion robot in Japan is prohibited unless the user

is staying at rural areas.

9.2.3 Multiple Flying Robots Interaction

In this work, we consider the case of one companion flying robot. It would be interesting
to use multiple flying robots for more comprehensive HRI. For example, imagine we have
three companion flying robot interacting with one user together: the first flying robot can
guide (lead) the user in new place, the second flying robot can help to determine the user’s
position and share the information wirelessly with other flying robots, while the third flying
robot can have face-to-face and closer interaction with the user. In addition, the companion

flying robots can also have interaction with each other.
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Multiple flying robots also enable new autonomy challenges that are technically in-
teresting. For example, with wireless information sharing, companion flying robots can
potentially localize the user like a GPS system. With Bayesian filtering or other similar
techniques, the user position estimated from the GPS-liked multiple flying robots system
can also be fused with the position information estimated from a vision-based system. On
the other hand, each flying robot also has to know the position of each other in order to avoid
collision in the air. Knowing positions of all the flying robots also enhances the performance

of collaborative mapping and 3D reconstruction.

Furthermore, the multiple flying robots can also equipped with different sensors for
task cooperation and system optimization. In general, it would be hard or make the aircraft
undesirably bigger if we mount all the sensors onto one flying robot. Instead, for example,
we can mount a high resolution color camera onto the first flying robot, a depth camera or
lidar sensor onto the second flying robot, and a thermal camera or high-speed camera onto
the third flying robot. By doing so, we could separate the payloads to multiple flying robots

and potentially achieve the tasks cooperatively with some dynamic planning algorithms.
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