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Abstract 

Continuous technological development in modern societies has increased the quality of life and 

average life-span of people. This imposes an extra burden on the current healthcare infrastructure, which 

also creates the opportunity for developing new, autonomous, assistive robots to help alleviate this extra 

workload.  

The research question explored the extent to which a prototypical robotic platform can be created 

and how it may be implemented in a hospital environment with the aim to assist the hospital staff with 

daily tasks, such as guiding patients and visitors, following patients to ensure safety, and making 

deliveries to and from rooms and workstations.  

In terms of major contributions, this thesis outlines five domains of the development of an actual 

robotic assistant prototype. Firstly, a comprehensive schematic design is presented in which 

mechanical, electrical, motor control and kinematics solutions have been examined in detail. Next, a 

new method has been proposed for assessing the intrinsic properties of different flooring-types using 

machine learning to classify mechanical vibrations. Thirdly, the technical challenge of enabling the 

robot to simultaneously map and localise itself in a dynamic environment has been addressed, whereby 

leg detection is introduced to ensure that, whilst mapping, the robot is able to distinguish between people 

and the background. The fourth contribution is geometric collision prediction into stabilised dynamic 

navigation methods, thus optimising the navigation ability to update real-time path planning in a 

dynamic environment. Lastly, the problem of detecting gaze at long distances has been addressed by 

means of a new eye-tracking hardware solution which combines infra-red eye tracking and depth 

sensing. 

The research serves both to provide a template for the development of comprehensive mobile 

assistive-robot solutions, and to address some of the inherent challenges currently present in introducing 

autonomous assistive robots in hospital environments. 
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Chapter 1 
 

1 Introduction 

In the last 20 years, the development of modern societies, including the advances in technology, 

have significantly extended the overall longevity of the population. People around the world have 

increased their lifespan by 6 years, with children born after 2011 having 33% chances of reaching 100 

years of age. In Europe alone, it is expected that by 2020, 25% of all population will be at least 60 years 

of age [1]. 

The ageing of the population, however, creates new challenges that current healthcare 

infrastructures in most western societies are not prepared to deal with. Elderly patients often develop 

chronic conditions over their lifetime that require extra care during their admission in the hospital. In 

addition to the ageing population, patients with disabilities also require extra assistance throughout their 

treatment. In the UK alone, it was recorded that nearly 12 million people with at least one type of 

disability in 2012 [2]. The types of disabilities recorded can be seen in Figure 1.1. 

 

Figure 1.1 – List of different disabilities in UK population in 2012 [2] 

Elderly patients and patients with some form of physical or cognitive impairment often require 

extra staff to help them move, eat, and manage their activities of daily living. These patients often 

cannot walk for themselves or require walkers and tend to perform tasks at very slow rates. They also 
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require more periodic checks from staff to make sure they are not at any risk to themselves. This extra 

care creates an excessive workload for current healthcare systems, which tends to worsen as more 

patients with chronic conditions are admitted. As the population ages, with the elderly expected to 

constitute 29.5% of the European population by 2060 [3], new solutions need to be devised to prevent 

declining care stands in terms of care-provision.  

1.1 Assistive Robotics in Healthcare 

The field of robotics has grown rapidly in the last few decades, moving past exclusive industrial 

applications to more general consumer roles. Robotics applications in today’s healthcare mainly consist 

of intelligent tools designed to augment specialists’ actions and perceptions, as is the case with the 

introduction of the da Vinci® Surgical System, first launched in 1999 by Intuitive Surgical® [4]. The 

introduction of the da Vinci System represented a leap in minimally invasive surgery, as it allowed 

surgeons to operate from a sitting position at a distance using gravity-compensated hand controllers. 

The da Vinci® Surgical System was originally designed for cardiac surgeries but today it is used in 

various general minimally invasive surgeries; in particular, it is highly requested for prostatectomies 

due to the higher level of precision it gives the surgeon while removing the target tissue [5].  

Another area developed in healthcare robotics is the introduction of robots deployed to provide 

telepresence, such as the remotely controlled RP-7 robot, which was first unveiled in 2007 [6]. These 

robots are operated by medicals specialists and are used to examine patients without the need for the 

specialist to be on-site. Such technology allows specialist knowledge to be shared at multiple sites 

without the need for travelling from one medical centre to another. This permits broader access to highly 

specialised diagnoses and permits staff with less training and expertise to perform various necessities 

with the confidence of the remote specialists. Such an arrangement offers time savings and cuts lead-

times to a fraction of what they would be were the medical specialist required to travel to multiple sites.  
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(a) Da Vinci Surgical System [1] (b) RP-7 Telepresence Robot [2] 

Figure 1.2 – Examples of robotics in current healthcare. (a) Da Vinci robot and its master station, used in robotic assisted 
surgeries. (b) RP-7 telepresence robot used by clinicians to assess patients remotely 

Telepresence robots can be deployed in almost any hospital environment, but it always requires 

one person to operate it. The future mobile assistive robot envisioned in this research will take roles 

that will alleviate the workload of the current healthcare workforce in hospitals by taking on some of 

the tasks that require little to no expertise from staff, thus liberating nurses and other staff to focus on 

vital tasks such monitoring patients that require special care and attending to emergency situations. 

 

Figure 1.3 – Common roles an assistive mobile robot may take in a hospital environment including, but not limited to, 
guiding persons, delivering goods and checking on patients periodically  

Some of the possible scenarios where the new assistive robot can be employed are depicted in 

Figure 1.3. The envisioned assistive robot will be able to receive ad-hoc deliveries (a) and deliver them 

to the patient’s bed (d). The robot will also be able to move across the environment without disrupting 

1 Image from  http://www.davincisurgery.com/da-vinci-surgery/da-vinci-surgical-system/ 
2 Image from  https://www.roboticstoday.com/robots/rp-7 
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walking visitors or staff (b) and receive voice commands with visual cues from staff in case tasks need 

to be changed (c). Furthermore, the assistive robot will also be able to perform autonomous periodic 

checks on patients to detect if they are out of their bed and/or need assistance (e). Lastly, body-sensor 

networks may be deployed into the standard patient monitoring procedure, thus allowing the robot to 

directly collect data from the patient at close range (f). 

1.2 Structure of the Thesis 

This thesis is organised in a hierarchical way, where each chapter lays the foundation for the next. 

The diagram shown in Figure 1.4 shows how the contents are linked together.  

 

Figure 1.4 – Hierarchical thesis structure based on how the contents of each chapter build upon their successors. 

The hardware design sits at the bottom as a prototype of the robot had to be built before further 

development could take place. Next is a summary of the contacts for each of the upcoming chapters. 

Chapter 2 presents a review of the current state of robotics in healthcare, along with an overview of 

the most relevant literature in each of the major areas relevant to the development of the assistive robot 

envisioned in this research. 

Chapter 3 describes in detail the design stages involved in the development of the mobile assistive 

robot platform used in this research, from its initial concept to its final assembled form. First, the 

advantages of different holonomic bases are compared and verified with prototypes. Then, the overall 

design of the robot is presented along with the placement of the sensors required for both world mapping 

and people detection. Details of its electrical construction and power supply are also provided. Finally, 
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the kinematics and control method used on the motors are presented, followed by an overview of the 

final robot prototype.  

Chapter 4 explains how the assistive robot platform is able to classify the type of floor underneath it 

while it moves around in real time. An IMU unit attached to the robot’s chassis is used to collect the 

vibration signal while the robot moves; a method for extracting features and classifying them is 

presented in detail. Results demonstrate that accurate floor-type classification can be drawn from a two-

second sample window. The robot is capable of differentiating between four common types of surfaces 

inside a hospital environment. 

Chapter 5 demonstrates how a current state-of-the-art Simultaneous Localisation and Mapping 

(SLAM) method for static environments can be used to map dynamic environments by adding people-

detection as a pre-processing stage. The proposed people-detection algorithm segments Lidar data and 

uses a machine learning–based classifier to identify which segments only represent the static 

background.  

Chapter 6 introduces several improvements to dynamic navigation by building upon the localisation 

methods presented in Chapter 5 and improving the performance of state-of-the-art dynamic path 

planning. A new geometric method for detecting collision is introduced, which substitutes a previous 

multi-dimensional occupancy state search by a cell-to-cell collision check using only visible obstacles. 

Chapter 7 shows in detail the development of a new eye tracker designed for detecting the direction of 

gaze in subjects more than 60 cm away from the robot. The new eye tracker combines IR eye tracking 

with depth sensing to achieve a more accurate estimation of the subject’s position of the eyes in space, 

and therefore a more accurate gaze direction estimation. The hardware development, including the 

prototyping stage, is covered in detail. A series of experiments is also related showing the new eye-

tracker performance compared ground-truth tests is performed and against state-of-the-art gaze 

estimation methods. 
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Finally, Chapter 8 presents a summary of the technical achievements presented in each of the main 

chapters.  

1.3 Relevant Publications 

A. Vicente, J. Liu and G. Z. Yang, Surface classification based on vibration on omni wheel mobile 

base, 2015 IEEE/RSJ International Conference on Intelligent  Robots and Systems (IROS), Hamburg, 

2015, pp. 916-921 

1.4 Research Contributions 

Overall, this thesis proposes a number of improvements on the mobile assistive technology. Firstly, in 

the context of the intended hospital and healthcare environment where the outlined technology would 

be deployed, the hardware innovations are few but significant. While other individual research focuses 

on isolated aspects of the development of assistive robotics, this thesis combines multiple fields (e.g. 

mechanics, electronics, mapping, navigation object-detection and gaze-tracking) synergistically, to 

create one unitary prototype which can then be used to conduct analyses on various aspects of software 

development. As such, this thesis serves to demonstrate how it is possible to integrate a 

multidisciplinary solution into a single robotics solution. The contributions of each of the core chapters 

are as follows: 

 Mobile Robot Hardware Design: A complete working prototype for the envisioned assistive 

robot is comprised of a circular omni-directional base with two Lidars, depth sensors, two on-

board computers, a self-contained battery with its own recharging system, and a passive 

suspension. The latter ensures that all four wheels maintain contact with the floor at all times – 

a requirement for using more than three omni-wheels effectively. 

 Floor classification: A new method for classifying floors using vibration-only measurements 

generated by the rotation of the omni-wheels at the base. Previous floor-classification methods 

only covered classification using rubber wheels. 
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 Dynamic Mapping: An advance in dynamic mapping methodology which is achieved by 

combining two algorithms, a state-of-the-art SLAM techniques and machine learning-based leg 

detection, in order to create a novel method for accurately mapping 2D environments with 

people, whether there are moving or stationary. 

 Dynamic Navigation: A six-fold increase of processing speed for real-time path planning 

which is based on current state-of-the-art dynamic path-planning methods, modelling a real-

world situation of deployment in an actual populated environment. 

 Sensor Fusion for Long-Range Gaze Estimation: A sensory fusion solution that increases 

the accuracy of long-range gaze direction estimation by combining three-dimensional sensing 

with hardware-based IR eye-tracking. 
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Chapter 2 
 

2 Background 

2.1 Introduction 

The role of robotics in healthcare originated as tools for surgery as well as rehabilitation exercises 

and assisting with everyday activities. Today, robotics can be seen in multiple areas of medicine, 

ranging from surgery to therapy. Six of most influential areas of robotics in healthcare [7] could be 

divided into two groups, according to the nature of their Human-Robot-Interaction (HRI). The first 

group is comprised of intelligent robotic tools, which can either function on or in the body 

autonomously, in the case of intelligent prosthesis and endoscopic medical capsules, or be operated by 

an expert during a procedure or therapy session, as in robotic assisted surgical procedures and motor 

rehabilitation sessions. The second group consists of robotic platforms capable of interacting with the 

patient as an independent entity. They are able to perform various functions via receiving and 

interpreting human speech, visual cues and sometimes touch. These robots can be driven remotely, like 

the telepresence robots used by doctors for monitoring patients remotely, or autonomous, in the case of 

cognitive therapeutic robots.  

Robotic Tool Robotic Agent 
• Smart endoscopic medical capsules 

• Robotic assisted surgical instruments 

• Rehabilitation therapy 

• Intelligent prosthetics 

• Patient monitoring and support 

• Assisted mental, cognitive and social therapy 

 

Table 2.1 – Seven of the major areas of healthcare robotics divided into two groups: Robotic Tools and Robotic Agents 

Another broad research area that is closely related to healthcare robotics is the AI assisted 

diagnostics. This area has the potential to be integrated into autonomous robotic agents in order to detect 

possible abnormal conditions on the patients and alert the necessary staff. In the past, machine learning 

techniques, such as Bayesian networks, have been used for diagnosing diseases based on patient data 
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collected by the clinician [8]. Today, after the advent of deep learning methods, AI assisted diagnostics  

is now being used in medical imaging, for example in detecting different diseases in retinal scans [9].   

The focus of the research presented in the thesis, however, is at improving the autonomous 

capabilities of current state-of-the-art agent-type robots in order to alleviate the workload of hospital 

staff. The first type of autonomous agents evaluated were social and cognitive assistive robots. This is 

a relatively new field in robotics where research started appearing in the literature throughout the 1990s. 

Whilst it continues to be developed, this field predominantly focuses on various forms of Human-

Robot-Interface (HRI), which lent themselves particularly well to treating individuals who live with 

cognitive impairments such as autism and dementia.  

A Socially Assistive Robot (SAR) tends to have an anthropomorphic or animal shape in order to 

facilitate interaction with the patient. One of the first SARs was dubbed Paro, a seal-like robot 

introduced in the late 1990s that can react to touch, light, sound, temperature and detect how it is being 

handled [10]. To this day, Paro continues to assist with individual and group therapies of elderly 

patients.  

In the 2000s, a new generation of SARs with anthropomorphic features was introduced. Notable 

mentions include Bandit, an anthropomorphic robot comprised of a head, torso, and two arms on wheels 

that can talk back to the user and demonstrate a variety of facial expressions [11]. Other SARs were 

also designed to assist with communication therapies, for example Silbot and Mero [12], which were 

equipped with wheels, an anthropomorphic face capable of displaying various expressions, and a screen 

used for telepresence in remote therapy.  

In the 2010s, new SARs were created to help people with dementia. These new robots included the 

JustoCat, a cat-like robot similar in sise to a real cat and capable of purring, meowing and responding 

to stroking [13], and doll-like SARs like Nodding Kabochan, a child-like doll robot that can sing, nod 

and play verbal games [12]. With advancements in actuator miniaturisation, small humanoid robots 

were also designed to aid children with autism and other social-skills impairment, like NAO, a fully 
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articulated 58 cm humanoid robot capable of walking, talking and interacting with people 

autonomously. 

The SARs represent an important role of robotics in healthcare as they not only help the patient to 

cope with his/her disease but also provide insights over long periods of time on the cognitive state of 

the person to the specialists. The social and cognitive assistive field requires expertise and is often a 

tailored solution for each patient (regarding which type of robot to use and what settings to enable).  

Simultaneously, another strand of development was emerging. To facilitate patient monitoring, 

guiding visitors and delivering goods by means of agent-type assistive robots, prototypes were created 

to facilitate various forms of human interaction in health and social care environments, unlike the 

therapeutic environments in which SARs tend to be deployed. 

In 1998, MINERVA was designed as a museum tour-guide assistive robot [14]. Equipped with 

sonars and an upright camera, it was able to navigate amongst people and localise itself in the museum 

regardless of crowds moving around it. In 2002, Pearl, another prototype, was designed as an assistive 

robot situated in the setting of elderly homes. It was able to guide residents and visitors around the 

building, whilst also delivering medicine, reminding patients of their tasks, and assisting them with safe 

transfer to chairs and beds [15]. Similarly, in 2011, Care-o-Bot 3 was designed to assist elderly patients 

with their everyday routines. Most of its workflow processes involved delivering medicine and small 

objects to and from tables using a robotic arm. It could also use its tablet-tray to play games that exercise 

the memory and mental health of the patients. Care-o-Bot 3 was a great improvement when compared 

to previous assistive robot prototypes.  

The ensuing years were marked by the introduction of telemedicine robotic. For example, 

InTouchHealth manufactured two prototypes specifically designed for hospital environments in rapid 

succession. Firstly, the RP-7 [6] was launched in 2012. A year later, its successor RP-Vita [16] resulted 

in a set of improvements. What these robots permitted was the ability for doctors to visually examine a 

given patient from a remote locale, whilst also supervising nurses and interns on duty. The remarkable 

success of the RT series ignited a very real interest in robotics as a means for providing telemedicine, 
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in which a small team of doctors can remotely monitor a portfolio of hospitals simultaneously. An 

honourable mention is the humanoid robot Peper, designed by SoftBank Robotics Corp. and Aldebaran 

Robotics SAS and launched in 2014 [17]. Pepper was originally designed to be an entertainment-type 

robot; therefore, it is lightweight (28Kg); it is equipped two arms for performing gestures, an 

anthropomorphic head, a touch screen on its ‘chest’ and a holonomic based to allow it to easily 

manoeuvre freely through crowd. Pepper has also been used as a tele-presence educational agent to 

teach new languages to children through interactive lessons remotely [18].  Figure 2.1 shows a timeline 

of some major mobile assistive robots from recent years. 

 

 Figure 2.1 – Mobile assistive robot evolution over the years. From left to right, Minerva, Pearl, Care-o-Bot 3, RP-7, RP-
Vita and Pepper. 

 Largely due to the tripartite influence of cheaper components, 3D printing, and the accessibility 

of online information, the need for a common development platform became an urgent priority in the 

decade leading up to the present. In response to such influences, a collaborative project between the 

Willow Garage and Stanford University brought to fruition a fully open-source operating system, and 

one which was amenable to use in most types robots. The 2007 launch of what is known as the Robot 

Operating System (ROS), made it much easier and accessible to build and test robots without having 

to ‘reinvent the wheel’ each time a new robot platform was created. As a meta-operating system 

1 Image from https://www.cs.cmu.edu/~minerva/press/nyt/nyt.html 
2 Image from https://www.cmu.edu/cmtoday/issues/dec-2004-issue/feature-stories/human-health/index.html 
3 Image from https://www.care-o-bot.de/en/care-o-bot-3/download/images.html 

4 Image from https://www.roboticstoday.com/robots/rp-7 

5 Image from https://intouchhealth.com/ 
6 Image from https://www.softbankrobotics.com/emea/en/press/gallery/pepper 
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running on Linux, ROS provides drivers for direct hardware interaction, tools for development of new 

robotics platforms, and libraries that permit the sharing algorithms and solutions.  

The Robot Operating System (ROS) heralded what amounted to an entirely new phase of robotics 

research [19]. This is because ROS permits developers, researchers and hobbyists alike to start at a level 

playing-field in terms of hardware support whilst building upon the collaborative work of hundreds of 

active contributors that continue to shape and evolve ROS. At the time of this research, ROS has proven 

central to the support and development of numerous prototypes and commercial products, serving as 

the most popular open-source platform for robotic development in both research and industry centres. 

2.2 Mapping and Localisation in Mobile Robotics 

One of the earliest problems encountered in mobile robotics was that of creating a map of a given 

environment whilst simultaneously locating itself within it. The common term used to describe this 

problem is known as Simultaneous Localisation and Mapping (SLAM). 

There are many different types of SLAM, each designed for a particular set of conditions, but they 

all have the goal of locating the robot within a set of known references. As the robot moves into 

unknown areas, new references are added and related to the previous references, as demonstrated in 

[20]. In 2D mobile robot mapping, most SLAM implementation uses occupancy grids [21] to represent 

a finite area around the robot, whose individual cells represent the probability of being empty or not. 

As the robot navigates and acquires more samples from the environment, the occupancy map is updated 

as well as its own global position relative to where it started. 

The complexity of the SLAM problem is defined by factors such as the type of sensor, the number 

of sensors used for fusion, and the sise and/or resolution of the environment to be mapped. SLAM-

based methods usually rely on the Kalman filter [22, 23] and/or a particle filter [24-26] to keep track of 

the robot’s whereabouts by combining multiple acquired samples into a representation of the 

environment. The relative location of the robot is calculated by the degree to which the samples acquired 

by the sensors match the previously-seen samples of the environment. 
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However, purely Kalman-based SLAM methods often run into performance bottlenecks as the 

array of samples increases. This impediment is an inherent characteristic of Kalman-based methods in 

that every newly-acquired sample must be checked with previous samples in order to estimate a 

Bayesian posterior probability of the match. In turn, particle-based methods have the limitation of 

requiring hundreds of particles to simulate sampling of the map in memory. Although more capable of 

localising the robot when initialised at a random location, this method requires considerably more 

processing power. This is because it is necessary to update all particles at each sensor update, which 

can require the detection of thousands of data-sets in the case of complex environments. 

Sonar-based SLAM was one of the earliest forms of SLAM, where arrays of sonars were mounted 

around the robot’s chassis and fired in sequence in order to measure the approximate shape of the 

environment [27, 28]. Due to their inherent limited resolution and multipath echo characteristics, the 

use of sonars in mapping could not produce accurate maps. That said, they served to aid the development 

of the inverse sensor model [29], which allowed a more accurate approximation and faster computation 

of maps. As such, today, sonars are no longer used for mapping; instead, they are deployed, in mobile 

robots, to complement the use of cameras and light-based distance-sensors when measuring obstacles 

in order to detect glass walls. 

With the introduction of Lidar sensors, modulated IR laser distance finders, SLAM method became 

more accurate due the new sensor’s increased accuracy and low latency while sampling. Notable Lidar 

manufacturers, Hokuyo and SICK, are currently dominant in the market. Lidar-based 2D SLAM 

techniques, such as GridSLAM, FastSLAM and Gmapping [24-26], rely on a large number of samples 

per scan and on the robot’s odometry, estimated by the encoders, to constantly update the map and the 

robot’s position. Recent SLAM techniques such as the ICP-SLAM [30] are able to keep a constant 

estimation of the robot’s odometry by matching previous and current scans as the robot moves around. 

Unlike particle methods used in previous SLAM implementations, HectorSLAM [31] uses an iterative 

method to align the new scan with the current map. These SLAM methods so far were designed based 

on the assumption that the environment is static or sparsely populated, which simplifies the problem of 
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mapping. When considering moving obstacles, tracking must be taking into account, like in 

SLAMMOT [32], a method developed to undertake dynamic environments as it adds tracking to 

detection of reference points and is able to differentiate moving objects from walls and static objects. 

The challenges of mapping environments in three dimensions were both computationally and 

resource-wise unviable for many researchers until approximately 10 years ago, when 3D depth sensors 

became cheaper and mobile processors started to process stereo-vision in real time. Some of the first 

depth cameras used Time-of-Flight technology, like the MESA SR3000, to create a 3D estimation of 

the scene in front of them. They were as expensive as high-end Lidars today and had very low 

resolutions. 

In the 2010s, sensors like the Microsoft Kinect [33] and the Asus Xtion Plus were introduced in 

the consumer market; signalling the beginning a new generation of low cost depth sensors. These 

sensors use structured lighting to estimate the depth of a scene by projecting IR dot patterns onto the 

environment which are then detected by an IR camera; their distortion is correlated to the distance. 

These depth sensors became very popular among hobbyists and robotics researchers alike, including 

being present in final products such as the tele-presence robot RP-Vita [16]. Structured-lighting sensors, 

however, tend to perform poorly in outdoor environments, due to the extra IR light from the sun, and 

have a limited range, between 3 to 5 meters. Autonomous cars and other types of large mobile robots 

have more reliable 3D depth sensing that can more than 100 meters ahead in order to give the system 

enough time to detect an emergency situation and react in time. One solution is using multi-channel 

Lidars, such as the ones produced by Velodyne [34]. These Lidars cost four to five times as much as 

the single channel 2D Lidars but possess as many as 64 independent lasers, in the case of the HDL-64E, 

which is capable of generating a 360-degree point clouds of the environment with up to 120m range.  

Vision-Based SLAM is a more complex problem, as it deals with estimating 3D position and 

orientation from a 2D image of the world. Many different solutions for this mapping problem have been 

proposed for both indoor [35-38] and outdoor environments [39] with variables on both mono and stereo 

implementations. More recently the introduction or omni-directional camera lenses allowed for a 360 
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degree visualisation and mapping of the environment with relative reduced hardware specifications 

[40]. As the main method for mapping and localisation employed in this research is laser based, the 

exploration of more topics in vision-based SLAM is outside the scope of this thesis. 

Method Advantages Disadvantages 

GridSLAM 
Pioneer method using occupancy grid 
for localisation. 

Slow and complexity for feature matching 
grows almost exponentially 

FastSLAM 
Improvement over the GridSLAM with 
efficient feature association 

Still requires large memory footprint for 
storing all features 

GMapping 
Improvement in pose estimation by 
combining the robot’s movement and 
particle observation 

Not accurate for large scale mapping  

ICP-SLAM 
Produces odometry by matching two 
scans 

Can produce larger drift over time 

HectorSLAM 
Mapping and localisation achieved by 
aligning new scan with current 
occupancy map 

Cannot accommodate dynamic objects 
detection 

SLAMMOT 

Can track moving objects by 
introducing uncertainty states for 
elements that may be dynamic on the 
map 

Cannot differentiate dynamic objects if they 
stand still 

Table 2.2 – Summary of relevant SLAM techniques 

2.3 People detection  

The mobile assistive robot envisioned in this research must be able to locate people in a crowded 

environment in order to avoid them as it moves towards its goal. The method for detecting people 

directly relies on what sensors are available on the robot platform. Cameras are a very popular choice 

of sensors because of their low price and versatility in terms of shape detection. Haar features [41] and 

Histogram of Gradients (HOG) [42] are two of the most common set of image features used for 

classifying faces and bodies in images, respectively.  

Haar features are used with a cascade classifier that is trained with many positive and negative 

samples. These samples include edge, line and corner features that compose the object of interest in the 

image, and in this case, a person’s face. Each feature within a sample window is the result of the 

difference between the sums of various regions of the sample window.  

The HOG detector requires far more operations to be calculated compared to the Haar features but 

is able to provide values that more accurately describe the direction of the edges of a sample. For a 
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sample patch, usually an 8 by 8 patch, a histogram of edge direction between 0 and 180 degrees is 

created and later on normalised. These features, like the Haar classifier, are used to train a binary 

classifier to detect the objects of interest. The main disadvantage of image processing methods in 

general, however, lies on the relatively high requirement for processing power in order to run the 

detector in real time. 

Unlike image-based methods, Lidar-based people detection can more accurately estimate 

someone’s position relative to the robot, but only have a fraction of the amount of data image-based 

methods to reach the same results. Some of the earliest popular methods for detecting legs in a Lidar 

scan were based on the geometric arrangement of the points. The work published by Xavier et al. [43] 

demonstrated how legs could be extracted by identifying arcs with a radius between 0.1 and 0.25 metres. 

A more robust approach for leg classification was later proposed by Arras et al. [44] using boosted 

features for classifying a wider range of leg segments. The 2D scan is slip into segments according to 

the distance between their consecutive points. If two points are further away than 10 cm, a new segment 

is created. Next, geometric and statistical features from each of the segments, such as linearity, 

circularity and mean distance between points, are used by an Adaboost classifier. 

The use of multiple layers of Lidars has been proposed as an attempt to increase the people-

detection accuracy by providing a more three-dimensional data format. A method using two pairs of 

Lidars positioned at different heights on the robot (knee and torso heights of an average adult) was 

proposed by Carballo et al. [45]. Two overlapping Lidars were set to guarantee 360 degrees of coverage, 

and both torso and knees are associated to classify people standing and walking in the environment.  

More recent methods for people detection are based on long distances using multi-layer Lidars, 

like the Velodyne 3D Lidars. These Lidars, originally designed for autonomous vehicles, can contain 

16, 32 or 64 lasers that can reach up to 60m in all directions. In the work presented by Shackleton et al. 

[46], people are detected by removing the ground plane and segmenting the remaining point cloud into 

clusters by proximity. SPIN images are then created for each sub-cluster and used to train the classifier. 

A more accurate classification method was presented by Spinello et al. [47], where instead of extracting 
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the SPIN images from the remaining sub-clusters, each sub-cluster was sliced into 2D clusters at 

specific heights. 2D features (e.g. boundary length, width, circularity) are extracted from each layer and 

concatenated into one single feature vector for that cluster. 

Hybrid methods that combine Lidar and cameras were also explored, for example, in an image and 

shape pattern classification of legs in scans which was presented by Bellotto et al. [48]. The detector 

looks for three distinct shape signatures representing both legs visible, one leg visible, or one leg visible 

with the other partially visible. The system also uses a camera facing the direction of the Lidar sensor 

and associates any faces detected by the Haar filter with the leg candidates found by the Lidar algorithm. 

One  of the most recent and popular methods combining both RGB and depth (RGBD) information 

for detecting people was presented by Munaro et al. [49] and further developed in [50]. Like the 3D 

Lidar methods, the detection also removes the ground plane and separates the remaining clusters in the 

point cloud by distance. The HOG for each cluster is calculated and used to detect people. The tracking, 

also present in the detector, uses the histogram of colour information of each of the clusters to track 

their movement in the scene. This detector is readily available in ROS and is widely used in the robotics 

community. It does, however, require a powerful processor (i5, i7 or Xeon) to run it in real time and 

has a range limitation of around three metres for accurate detections.  

Method Sensor type Summary 

Haar  Camera 
Binary cascade classifier trained on positive and 
negative image samples like lines and textures. 

HOG Colour Camera 
Similar to Haar, but uses 8 x 8 patches to calculate mean 
gradient orientation 

Xavier et al. [43] Single 2D Lidar Legs are detected by matching arcs to scan segments 

Arras et al. [44] Single 2D Lidar 
Adaboost classifier trained on geometric descriptors of 
consecutive scan segments 

Carballo et al. [45] Multi 2D Lidar People are detected by matching torso and leg scan segments 

Shackleton et al. [46] 3D Lidar 
Floor is removed from 3D point cloud leaving clusters 
representing people and other objects which are converted to 
SPIN images for classification 

Spinello et al. [47] 3D Lidar 
Clusters of points left after the floor has been removed are 
sliced into 2D segments and classified as a group to detect the 
person 

Bellotto et al. [48] 
Colour Camera 
and 2D Lidar 

Leg detection and face recognition are used to confirm when 
a person is detected 

Munaro et al. [49] 
Depth Camera 

and Colour 
Camera 

Point cloud processing is combined with the colour histogram 
of clusters in order to more accurately identify individuals 
based on their shape and appearance 
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Figure 2.2 – Summary of relevant people-detection techniques 

2.4 Navigation 

The new assistive robot is expected to find its way to the desired location in any known map and 

be able to manoeuvre through any moving obstacles in it. As the robot itself can only manoeuvre on a 

plane, only 2D navigation is considered in this thesis. Navigation can be divided into global and local 

planning, which are both illustrated in Figure 2.3. 

 

Figure 2.3 – Representation of global and local planning on a map scale. The green squares represent all available free 
space where the robot cam move. The grey squares represent obstructed space, such as a wall. The ed area around the robot 

represents its local planning space. 

2.4.1 Global Planning 

Global planning describes the process of calculating the path, or paths, that connect the robot’s 

current location to its target location. In path planning, the path between the robot and its target location 

is represented by nodes on a graph, where the graph represents all known locations on the map. The 

edges on the graph represent the possible transition to and from different locations. In the case of 

occupancy grids, nodes are the cells on the grid, where each cell is connected to its immediate 

neighbours, and the graph is the grid itself. 

The Dijkstra algorithm is one of the simplest graph transversal techniques. It employs a depth-first 

search strategy, which is better than brute force, and is certain to attain the shortest path; however, it is 

still very inefficient for 2D occupancy grids. 
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The A* algorithm is a well-known technique for finding the shortest path in a graph as it 

outperforms Dijkstra by using a heuristic search that prunes the search area as it moves through the 

graph. The heuristic employed in an occupancy grid minimises the current distance between the robot 

and the target. A* is also guaranteed to find the shortest path, provided that there is at least one path 

connecting the robot to its target. 

The Theta* [51], also known as “any-angle path planning” is yet another variation of the A* 

algorithm which reduces the minimum path by connection visible nodes rather than obeying the normal 

8-way route on a grid. It represents an improvement of the Field D* [52] method, as it has similar 

complexity to the original A* method, but with an overall shorter path. 

The previous three methods mentioned were designed for static environments, but in order to 

account for constant modification of the routes, new conditions had to be introduced during the planning 

phase. An example is the Safe Interval Path Planning (SIPP) [53], which introduces time intervals when 

paths are blocked in order mitigate the constant need for route re-planning. The algorithm uses A* for 

the global planning and an estimated trajectory of the person is calculated to detect possible collisions. 

If a collision is detected, the robot uses a time interval to wait for the person to move and re-evaluates 

the viability of the original planned path. An extension of this method that allows “any time” action, 

rather than only during intervals, was presented by [54]. 

A graph-based method for re-planning the global paths was introduced in [55]. It uses people’s 

common routes in an environment to create nodes on a graph representing the most likely places to 

avoid and follow. The robot initially follows the human instructor around the environment observing 

what routes they take and assigning nodes to all locations visited by the instructor. Once the initial tour 

is complete, the graph is optimised and the robot is ready to navigate. During normal operation, A* is 

used to find the shortest path most likely used by people using the graph. The local placement of the 

nodes visited by the instructor also ensures that the robot does not bump into obstacles not previously 

detected by its sensors. 
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Geometric approaches for global path planning were also explored, for example, with the chance-

constrained optimisation introduced in [56]. This method uses a series of convex obstacles rather than 

an occupancy grid. Concave obstacles are represented by multiple convex shapes arranged together. 

The path planning is done using a third-party software with a proprietary algorithm. Other noteworthy 

methods include the use of Gaussian Processes (GP), proposed in [57], to model people’s trajectories 

while moving in a dynamic environment, and the use of Rapid exploring Random Tree (RRT), for 

concatenating all possible paths. A variation of the same method was presented in [58] using a Chance 

Constrained RRT (CC-RRT) for the planning phase.  

Variations of classical global planning methods also include the introduction of Machine Learning, 

for example, by [59] which uses Inverse Reinforcement Learning (IRL) to learn how to move through 

the environment from common paths taken by humans. As IRL requires all variables of all samples to 

be known during the training phase, Gaussian Mixture regression models [60] were used to estimate 

unknown or uncertain values, such as the number of people in the crowd and each person’s velocity, 

that could not be seen at all times inside the sensor’s field-of-view. A summary of all presented methods 

can be found in Table 2.3 below. 

Method Environment Summary 

Dijkstra Static 
Extensive search with complexity O(n2) on 2D occupancy 
grids 

A* Static Guaranteed to find shorted distance within node constraints 

Theta* Static 
An “any-degree” approach to the A* method which yields 
shorter paths and doesn’t follow node constraints 

SIPP Dynamic 
Introduces safe time intervals to wait for people to move 
around before resuming navigation 

CC-RRT Dynamic 
Enables more accurate state prediction of moving obstacles by 
simulating them prior to executing subsequent manoeuvres 

GP based Dynamic 
Describes a more fluid path prediction for people by using 
Gaussian Processes 

RL based Dynamic Learns how to better navigate based on trial and error 

Table 2.3 – Summary of relevant global planning methods 
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2.4.2 Local Planning 

Unlike global planning, local planning focuses on how to avoid and manoeuvre around immediate 

obstacles surrounding the robot. Local planning is necessary to ensure that the robot can adapt to small 

environments changes, such as a moved object on the floor or even people walking around. 

Potential field-based methods, Khatib et al. [61], assign a repulse vector field to obstacles and an 

attractor point to the robot’s goal. The robot itself behaves a particle on the field and its target velocity 

is dictated by the vector sum of all nearby field gradients. This method, however does not take into 

consideration the robot’s own dynamic constraints and may lead to the robot being stuck on a local 

minima in the potential field. 

The Vector Field Histogram (VFH) method) by Borenstein  et al. [62], presents an alternative to 

obstacle avoidance by creating a polar histogram of sampled distances measured by the laser range 

finder. In this histogram, empty spaces are represented by high peaks and obstacles by valleys. The 

algorithm calculates the robot’s heading and speed by detecting the position and sise of the optimal 

peak on the histogram. This method also suffers from local minima, but variations of the VFH which 

try to remedy its short planning phase by adding a further exploration step, Ulrich et al. [63]. 

Compared to the previous methods, the Dynamic Window Approach (DWA) by Fox et al. [64], 

demonstrated higher stability by introducing the robot’s locomotion constraints while calculating its 

velocity. The DWA effectively creates a velocity control space where only admissible velocities, I.E. 

velocities in which the robot is certain to reach its destination within the time window, are considered. 

Variations of the DWA also incorporated navigation functions in order to predict the optimum path on 

a larger scale than local planning [65-68]. The DWA was not originally designed to handle dynamic 

objects moving around the robot, therefore several techniques have been developed [69, 70] to 

overcome this limitation. One drawback of the DWA is its overshooting characteristic when the robot 

increases speed and must make a sharp turn. Since the resulting speed of the robot is calculated using 

vectors, one vector can bias the robot’s final direction. The Nearest Diagram (ND) by Javier  et al. [71], 
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was a new geometric algorithm introduced in that used reactive and physical-based rules to avoid 

obstacles around the robot. 

The previously mentioned methods work well on guiding the robot around unexpected static 

obstacles, however, when dynamic obstacles are introduced, such as walking people, a collision can 

occur; hence, a different set of rules must be used to take the obstacle’s velocity into account. The 

Velocity Obstacles (VOs) by Fiorini et al. [72],   were introduced as areas inside the robot’s 

configuration space that should be avoided in order to prevent future collisions. The VOs are calculated 

using the position and velocity of both the robot and obstacles in the immediate surroundings. The 

algorithm described in [72] selects an action that will move the robot closer to its final goal while 

maintaining a safe distance from the VOs. An improved version of the VO algorithm was later presented 

by Gal et al. [73], where a time limit is used to ensure that the robot stops before any collisions happen. 

Another type of local navigation strategy called the Elastic Band method was introduced by [74]; 

it used a finite number of circular areas within the robot’s configuration space to quickly change its 

trajectory when unexpected obstacles are encountered. The trajectory can be re-traced to any other 

trajectory that is contained in the pre-determined circles in the configuration space. 

The Inevitable Collision States (ICSs) method, introduced by Fraichard et al. [75], tackled the 

collision problem within the robot’s configuration space by delimiting and avoiding areas that denote 

immediate collision, similar to the VO method. If the position and velocity of all moving elements 

within the scene are known, the robot will not crash into anything as long as its trajectory does not cross 

an ICS. In practice, due to the limitations of the sensors, not all obstacles can be detected at all times 

thus some collisions can still happen. The Breaking ICSs was introduced by Bouraine et al. [76] as a 

way of mitigating collisions where both the robot and the person are moving was proposed. This method 

takes into consideration the limitations of the sensors’ field-of-view when predicting future collisions 

and ensures that the robot completely stops prior to any collision with a moving obstacle. 

Probability collision states (PCSs) by Althoff et al. [77, 78], were introduced as an alternative 

method for including obstacle uncertainty into the trajectory planning method of ICS. During the 
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planning phase, the probability of collision is used as a cost function. The robot’s next movement is 

selected by sampling the cost for different possible movements for every situation and selecting the 

lowest cost. A simulated cost for all moving obstacles’ movements is also added into the process to 

maximise the chances of finding an optimal solution. Another benefit of adding simulated object 

movement is to avoid conditions where the robot’s own movement may force a person into a collision. 

Method Advantages Disadvantages 

Potential Fields 

Uses Maxell’s potential field equations 

to create a reactive obstacle avoidance 

based on the repulsive forces from the 

obstacles and attractive force of the 

goal 

The robot can get stuck in a local minimum 

created by a concave arrangements of 

obstacles. 

VFH 

simple to implement  as it creates a 

histogram of scan measurements 

representing empty spaces where the 

robot can go 

This method also suffers from local minima, 

allowing the robot to get stuck in between 

obstacles 

DWA 

Uses the robot’s kinematics constraints 

to calculate possible velocities for the 

base within a sampled window from 

the environment 

Tends to overshoot when the path takes a sharp 

turn, like rolling into a room from a 

perpendicular hallway 

Nearest 
Diagram 

Employs reactive and physical-based 

rules to avoid obstacles around the 

robot in order to avoid kinematic 

“traps” 

Not straight-forward to port the control from 

robot to robot, as it must be tuned and 

configure to each robot’s kinematic model 

Velocity Object 

Creates avoidance areas in the robot’s 

planning stage that represent 

immediate collisions with incoming 

moving objects 

Requires more processing power for the cost 

function to run for each of the detected 

obstacles 

Elastic band 

Using circular areas along the global 

path, the robot re-calculates its local 

trajectory within these safe areas to get 

to its destination 

Not always guaranteed to reach optimal path, 

and usually used in conjunction with other path 

planning methods 

ICSs 

Similar to VOs, ICSs define areas that 

must be avoided to avoid immediate 

collision 

Requires accurate detection of all elements 

within proximity, including those out of sight 

Horizon Control 

Introduces a short simulation time 

before making decisions that reduces 

the possibility of collisions in the 

future 

Higher processing power requirements 

Table 2.4 – Summary of local planning methods 

The methods described by Toit et al. [79, 80] used a closed-form approximation of the probability 

distribution of the moving obstacle’s position and velocity while evaluating its trajectory. This closed-

form term allowed a fast calculation of the probability of collision given a specific trajectory. A receding 
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Horizon Control scheme along with a chance constrain optimisation were used to find the optimal 

trajectory. A probability of collision threshold is used to determine whether a trajectory is safe or not.  

Another solution for the obstacle avoidance problem was proposed by Tychonievich  et al. [81], in 

which detecting collisions is achieved by finding the roots of a polynomial function. The robot’s 

physical constraints and movements are approximated into Chebyshev polynomial functions and RRT 

is used to find the manoeuvres which will lead to a collision-free trajectory. 

2.5 Environment Perception 

In addition to being able to map the environment in 2D and 3D, mobile robots can also be used to 

detect attributes of the environment that may not be identifiable by the naked eye, for example, the 

presence of high levels of carbon dioxide in the air, abnormal room temperature or even radiation 

leakage. Periodic inspections by these autonomous robots would help identify possible health hazards 

that otherwise would be left unchecked. One of the focus areas of this research is in identifying floor 

types where the assistive robot will operate in order to better adjust speed for noise levels and detect 

possibly damaged floor patches.  

The introduction of the Pioneer 3-AT [82] off-road robot base, equipped with four rubber wheels 

and differential drive configuration, allowed many research groups to explore ground classification in 

outdoor environments.  

 

Figure 2.4 – The Pioneer 3-AT robot platform; used in different research on outdoor surface classification  

 Previous floor-classification methods on mobile robots mainly relied on robots equipped with 

rubber tires to collect the data, which dampens the vibration due to soft contact of the wheels [83-85]. 
1 Image from https://www.generationrobots.com/en/402397-robot-mobile-pioneer-3-at.html 

[1] 
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An omni-directional robot equipped with omni or Mecanum wheels would introduce extra noise due to 

the contact points of the rollers while the robot is moving. This would, in theory, significantly reduce 

the signal-to-noise ratio of the vibration signal from the floor, thus increasing the difficulty of this task. 

 Over the years, different methods for classifying surfaces were developed based on different 

sensing technologies. One popular method is to use accelerometers. The vibration created during the 

movement of the robot over a surface can be measured as a one-dimensional acceleration signal 

perpendicular to the surface over time. Such signals can be further processed for feature extraction and 

surface identification. An accelerometer attached to a “tail probe” touching the ground can provide clear 

enough features from vibration to efficiently classify multiple surfaces [86]. One advantage of this 

method is that the signal measured relies on the direct contact to the ground texture. However, it also 

hinders the robot’s range of motion and creates undesired noise from the probe dragging on the floor. 

A different approach requires the vibration sensor to be firmly attached directly to the chassis of 

the robot in order to measure the vibration on the robot’s body. Most works using this method focused 

on off-road robots [84, 87] equipped with rubber wheels and moving on surfaces such as grass, gravel 

or asphalt.  

A variant of this method introduced a speed invariant classification [88] but with poor accuracy. 

The chassis-mounted sensor method is ideal for most scenarios as it does not interfere with the robot’s 

design, nor introduce extra disturbances to the environment; however, the vibration measured by the 

sensors is greatly dampened by the mass of the robot’s body itself, effectively reducing the signal-to-

noise ratio of the texture vibration. 

Microphones have also been used to sense the sound generated by the wheels while the robot is 

moving to classify the type of surface. In the work presented by Roy et al. [89], a boom microphone 

was mounted near the wheels and pointing downward. Despite its high classification rate on three 

different floors, this method is sensitive to external sound sources, such as ambient noise, which could 

bias the final classification results. 
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One of the early steps in the development of tactile sensors for texture recognition was inspired by 

the human finger. Embedded strain gauges were used to measure the mechanical stress of the sensor 

generated by friction when moved over a surface [90, 91]. Further development led to the use of sliding 

movements as a way to characterise surfaces with more precision [92]. One of the latest methods for 

texture-classification employs a multi-sensor-equipped artificial finger that is capable of detecting 

different surfaces via vibration and elasticity of the fingertips [93]. These methods were aimed at small 

controlled environments, where the sensor was always placed at an ideal position and with ideal 

pressure over the texture to be classified. These conditions are rare to non-existent in a normal, real-life 

scenario with a mobile robot.  

2.6 Human-Robot-Interaction (HRI) 

Human Robot Interaction (HRI) is the area of cognitive robotics that studies the interactions 

between humans and robots in different roles and tasks. HRI is a relatively new field in robotics research 

that only began real development in early 2000s [94] and is a successor to Human Computer Interaction 

(HCI), which started more than 40 years ago [95]. 

There are, however, key differences between HCI and HRI. Unlike computer platforms, assistive 

robots require a physical understanding of the world in order to interact with it and the user. Robots 

also present a certain degree of uncertainty, unlike simulations, that prohibit two identical robots to 

perform the same tasks identically. This includes nonlinearities of sensors and mechanical 

failure/wearing of actuators [96]. Robots also can perform different roles when interacting with humans 

and other robots, which is restricted from human-computer interaction [94]. 

2.6.1 Interaction roles 

It was proposed by [96] that humans and robots interact in five different types of roles, where a 

human may carry more than one role simultaneously and multiple humans may interact with the same 

robot. However, for most applications of assistive robotics, only one user interacts with one robot at 

time, therefore this is the scenario assumed for all interactions. The roles proposed by [96]are: 
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 Supervised: The human oversees the robot teammates and requires an overall model of the 

current state of the task. 

 Operated: The human directly operates all robot’s functions (often referred as “telepresence”) 

or issues goals depending on the level of autonomy of the robot. 

 Teammate: The robot is treated by the human as part of the team and goals and responsibilities 

are shared. 

 Mechanic: The human has to diagnose and fix, if possible, any problems that occur with the 

robot in the given task 

 Bystander: No direct relationship between the human and the robot. Both co-exist within the 

same environment carrying out their own tasks. 

2.6.2 Robot safety 

Safety is always a concern in Human-Robot interaction as in any other environment with humans 

and machines. The most common, and perhaps most reliable, way of preventing human injury when 

interfacing with a robot is by implementing workspace segregation [97, 98]. 

Safety Strategy Advantages Disadvantages 

Human pain threshold 

limitation 

• Allows continuous interaction between human 

and assistive robots even under pressure from the 

human 

• Threshold has to be reset for the 

elderly and individuals with lower 

pain threshold 

• In case of software failure, joint 

becomes non-compliant 

Force detectable artificial 

skin 

• Allows precise pinpoint of the contact area 

along with amount of pressure 

• Preferable way for jointing both haptic signal 

perception and safety detection using one type of 

sensor 

• Skin must cover all movable parts of 

the robot, which can require careful 

coating and large areas of artificial 

skin may be required  

• Safety measure is only triggered after 

contact. Delay in reaction from the 

robot may cause human injury 

Controllable compliant 

joints 

• Compliance allows for a safe environment 

when in physical contact with humans 

• Different levels of compliance can be set for 

different performances and level can be changed 

on the fly 

• In case of software failure, joint 

becomes non-compliant  

Mechanical compliant 

joints 

• Compliance allows for a safe environment 

when in physical contact with humans 

• Compliance is independent from software, 

hence no coding error can jeopardise the safe 

operation of the joint 

• Compliance cannot be adjusted by 

software; hence, further control 

strategies are required to accurately 

model the compliance of the actual 

joint.  

Back-drivable joints 

• Allow torque consistency with the advantage of 

mechanical compliance when torque exceeds 

determined threshold with no damage to the 

mechanism 

• Compliance is completely software 

independent, hence 

• Requires extra sensors for position 

feedback when the safety mechanism 

is under stress 

Table 2.5 – Safety strategy comparison table 
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Industrial robots are not allowed to operate when humans are within its workspace, and safety 

measures such as walls, fences and emergency switches are implemented to stop the robot in case a 

human opens the door/hatch to the robot’s workspace. 

In mobile assistive robotics, however, close proximity between the human and the assistive robot 

when the robot is operational is an unavoidable condition that must be dealt with using new safety 

measures. If robots are strong enough to assist limb movements and move people from one place to 

another, they are also strong enough to cause an injury in the case of accidental failure. 

Several strategies have been developed over the years for preventing human injury while 

interacting with assistive robots. These strategies include pain tolerance limit [99], which allows the 

robot to move as long as the detected pressure does not exceed the pain threshold set in the controller, 

and force detectable artificial skin, where deformation on the artificial skin surface indicates points of 

contact with pressure information to the controller. 

Compliant joints can simulated actively [100, 101], by sensing the torque applied on the arm using 

a strain gauge and the deflection of the position of the joint using a position encoder, thus enabling the 

controller to vary the torque applied by the servo on the joint accordingly, and passively, via the use of 

springs used between the servo axis and the load  and back-drivable joints [102]. 

2.6.3 Gaze Detection 

People often use gaze as a means to convey focus and intention to other parties during a 

conversation, either by looking at the person for whom the speech is meant or looking at an area/object 

of interest. The other parties in the conversation can then estimate the speaker’s intention by where or 

at whom the speaker is looking. In HRI, gaze estimation can provide the robot more information about 

where the human participant’s attention is directed. 

Gaze estimation techniques involves two main processes: eye-detection, via image processing, and 

Infrared (IR) pupil detection, which requires extra hardware for detecting the pupils. The former only 
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works well on a very short range whereas the latter requires much more processing power to perform 

head and eye detection in real time. 

The use of head orientation to increase the accuracy of gaze estimation was initially demonstrated 

by Kaminaga  et al. [103]. Using two cameras in stereo-system configuration, they extracted the 

intensity and disparity of the regions corresponding to the head and eyes to make the estimation. A 

single camera version of the same method was later proposed by Nickel et al. [104]. Both 

implementations presented by Kaminaga et al. and Nickel  et al. used the Viola-Jones Face Detection 

algorithm [105] on the intensity image from the cameras, using a fixed-sise bounding box to track the 

person’s head. More rencent developments also include a more accurate estimation of gaze direction 

based on low resolution images by using intensity interpolation and shape matching [106]. 

Gaze detection was used in surveillance systems [107], where the head of the individuals was 

detected using HOG [42] descriptor, and tracking of each of the heads was achieved via Kalman 

Filtering. Gaze orientation angles are one of the equally divided forty-five-degree regions, where the 

region selection was done via a Randomised Ferns classifier. A mixture of HOG and average colour of 

the area of interest demonstrated the most accurate results. The presented work of Benfold et al. [108] 

tackled the same problem but on low-resolution videos. Hidden Markov Modems (HMM) were used to 

ensure temporal consistency during the tracking due to quantisation noise. 

In HRI applications where there is more than one human participant, it is often desirable to detect 

people’s gaze direction in order to know if they are talking between themselves or with the robot. In the 

work by Benfold et al. [109], gaze estimation was used on a humanoid NAO robot to allow it to ignore 

other conversations and verify if participants were talking to it. Using the estimated head orientation, 

the proposed “visual focus of attention” was constantly updated using an HMM per individual, with the 

Gaussian distribution’s mean set at the target head orientation. Results of this work demonstrated a 

more consistent angle estimation compared to other techniques that employed a Gaussian Mixture 

Model (GMM) instead [110]. 
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Gaze estimation techniques that rely on pupil detection use the light reflected by the ocular fundus, 

also known as the red-eye effect (Stiefelhagen et al. [111]) to indicate the exact position of the pupils 

relative to the camera. A common implementation of this method requires two light sources: on-axis, 

where light comes from the camera’s location and pupils reflect it; and off-axis, where light comes from 

a source away from the camera. In an ideal scenario where the intensity of the two light sources match, 

subtracting the images captured from the different lighting conditions results in only the pupils being 

visible on the final image. 

The work presented by Hodgkinson et al. [112] utilised the red-eye effect on the visible light 

spectrum to track the person’s pupils using a single camera. As the visible light was not filtered by the 

camera, an adaptive threshold model was used to compensate for the noise left in the subtracted image. 

For close-range gaze detection, around 50 cm or less, IR illumination can be used to detect reflections 

from both the lenses and cornea [113] if the image of the eye has enough resolution. These reflections 

are known as Purkinje images and can be used to provide additional reference points to improve the 

accuracy of the direction estimation.  

The use of the first Purkinje image, commonly known as the “glint”, along with the pupil 

reflections is one of the most common methods for short-range gaze detection applications [114-116], 

like tracking a person’s gaze when looking at a screen. The method proposed by Zhu et al. [116] used 

two off-axis vertical LED arrays on both sides of the camera and required the head to be static due to 

its inability to be calibrated for each individual user. In order to compensate for these drawbacks, neural 

networks were used to create a regression model for the glint position so that gaze could be estimated 

for different users and even small head movements [115]. 

The use of two reflections for gaze detection was demonstrated by Czy  et al. [117] using a head-

mounted camera and IR light source. The IR light source produced the first and fourth Purkinje images, 

and the pupil centre was estimated using edge detection on a threshold-passed image. The depth of the 

eye relative to the camera was estimated by using a neural network on a few training images per user. 
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The final geometric position and orientation of the eye relative to the screen coordinates was then 

estimated using a geometric transformation. 

The method presented by Lee et al. [118] utilised four Purkinje images to detect gaze estimation 

on a screen. An LED light source was attached to each of the four corners of the screen. Two cameras 

were used, one on each side of the screen, to compensate for head movement. The first camera detected 

the person’s face using a face-detection algorithm while the second camera was set with a much 

narrower field of view to be able to focus on the eyes; hence, it was mounted on a pan-and-tilt base. It 

also had an on-axis light source to detect the pupil reflection. The four reflections, detected by the 

second camera, were mapped to the co-planar light sources on the screen through a calibration 

procedure to allow the gaze position and direction to be calculated relative to the screen. 

2.6.4 Intention recognition 

Intention is largely accepted as “a plan of action the organism chooses and commits itself to the 

pursuit of a goal—an intention thus includes both a means (action plan) as well as a goal”[119]. There 

are various approaches and methods for understanding and demonstrating intention for the assistive 

robot. In this topic, brief descriptions of some of the commonly used concepts in intention recognition 

are explained. 

As proposed by Tomasello  et al. [120], there are effectively three types of recognition: keyhole 

recognition, intended recognition and obstructed recognition. In the first type, the observed agent is 

unaware of the observer, and proceeds executing the plan without any special consideration for the 

observer. In the second type, the observed agent is aware of the observer and actively cooperates in the 

recognition, for example, by ensuring that crucial parts of the demonstration are not obstructed. In the 

third type, the observed agent is again aware of the observer but is actively trying to disrupt the 

recognition process and hide its intentions [120]. Humans can perform well in recognising intention in 

all three cases, but in assistive robotics, keyhole recognition is a more preferable scenario. Ideally, 

humans should be able to act naturally without worrying about explicitly demonstrating intentions to 
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the assistive robot when performing their actions. It is the robot’s task to identify the user’s intent from 

its fluent actions. 

Recognising intention and goals from the actions performed by the human agent is a classic model-

matching problem. The robot agent, via the use of sensors, measures the human agent’s states at all 

times at a fixed sampling rate. The data collected can then be analysed using two different approaches: 

descriptive and generative [120]. 

The descriptive approach bases its assumptions on explicit information. It characterises patterns 

through selecting a number of low-level features and setting restrictions at the feature level, for example 

through Markov Random Fields [121] or deformable Models [122]. The robot agent matches the 

observed data against representations in its database, and according to the nature of the current task, it 

generates the actions corresponding to those representations. The representations in the database can be 

labelled as goals, beliefs and intentions to characterise their execution. This approach corresponds to 

the “action-effects association” method for intention interpretation [120]. 

The generative approach bases its assumptions on implicit information. It uses a set of hidden 

variables that are responsible for producing the observed data. The hidden variables represent the many 

degrees of freedom underlying the observed subject (human agent) and usually employ probabilistic 

density distributions to infer beliefs upon the observed model. In order to use these variables for a 

recognition process, the parameters for the probability distributions for each variable must be changed 

until the generated data can be easily compared against the observed data [120]. These generative 

models are used broadly in the machine learning field, with many variations [123, 124]. 

Generative recognition has been largely used in the robotics community and variations with motor 

constraints have also been developed [120]. The internal models created by employing the hidden 

variables assume the form of forward and inverse models as well as behaviours [125] and schemas [126, 

127]. These models can be used as an internal simulation of perception [125], just like in the forward 

model representation in the Theory of Mind, which allows one to rehearse the action mentally and imply 

intentions on other observed actions. 



  
 

 
  

54  

2.7 Conclusions 

This chapter presents an overview of related methods to the development of the next generation 

mobile assistive robot prototype in hospital environments. First, an overview of the major methods for 

mapping environments was presented, in the context of which type of sensor was used. Real-time 

mapping and localisation was investigated, presenting the current trends in SLAM and the advantages 

and disadvantages of each method for both static and dynamic environments. The most relevant SLAM 

methods rely on 2D Lidars and are designed for static environments. With regards to sensors, depth 

sensors are now much cheaper and able to provide more information about the environment but suffer 

from limited range and accuracy. 3D Lidars have also been recently introduced by are prohibitively 

expensive. One SLAM solution was found that is capable of taking into account moving obstacles, but 

it is unable to detect people when they are stationary. The problem of mapping an environment whilst 

people are in it is still an open problem. 

Second, different methods for detecting people in the environment were investigated. The ability 

to detect people is essential for an assistive robot to plan its course without causing major disruption 

and recognising people as distinct from the background whilst mapping the environment. Camera-based 

methods demonstrated good accuracy but require significantly more processing power to run in real 

time compared to other methods and have a narrow field-of-view. Colour and depth cameras combined 

(RGBD) provide an even higher accuracy but at the cost of even higher processing power. 

On the other hand, Lidar-based people detection methods require a fraction of the processing power 

to run, as they provide a one-dimensional array of distance values and cover almost 360 degrees of 

view. People detection using a single Lidar focuses on detecting legs, and some methods use Lidars at 

different heights to associate the torso and legs at the cost of a more expensive system. Recently 

introduced 3D Lidars are able to generate a 3D point cloud representation of the environment, which in 

turn allows for a more accurate detection, but are far more expensive than 2D Lidars and rarely used 

indoors. Given the detection accuracy of the methods overviewed in the literature, a 2D Lidar-based 
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method would be most suitable for a hospital robot due to its low processing power requirements and 

opportunity for integration with dynamic mapping. 

Third, various methods for path planning and navigating static and dynamic environments were 

investigated. Global path planning methods are designed for static environment whereas local path 

planning methods are more focused on avoiding nearby obstacles. One of the main challenges found in 

local planning is trying to determine the best route to take when an obstacle is moving in the 

environment. Different methods used object tracking and trajectory prediction to attempt to avoid 

collisions but were unable to provide an optimal solution for multiple moving obstacles. One path 

planning method, however, demonstrated how to combine global and local planning into a single 

search-space divided into discrete states representing time windows. This solution allowed an A* search 

to find a viable path amongst moving obstacles in both space and time. This method, however, requires 

knowledge of all moving obstacles, visible or not, in a simulated environment, which is impossible to 

provide in a real-world environment. Some improvements could be made to reduce the overhead 

processing required for state-space updates in order to update the robot’s path in real time. 

Fourth, vibration-based floor classification methods were investigated as possible expanded 

sensing-capabilities of the envisioned prototype intended as part of this research programme. Detecting 

different types of floors can allow a robot to adjust its movements in pursuit of reducing noise levels 

and even detecting faulty floor-patches.  

The investigated methods encountered in this literature review relied on the data acquired by a 

single 3-axis accelerometer that was either mounted on a "tail-like" probe or fixed directly onto the 

chassis. None of the reviewed methods attempted to classify different types of hard floor using omni 

wheels or Mecanum wheels. Omni wheels can be used in a holonomic configuration which, unlike a 

robot platform equipped with rubber wheels, enables various manoeuvres in tight spaces. This is despite 

causing significant vibration to the chassis, which must be addressed. Notwithstanding the need to 

address vibration, the absence of consideration of the relative strengths of a holonomic configuration 

appeared to be a gap in the literature which was ripe for investigation. 
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And finally, a broad overview of Human-Robot-Interaction (HRI) was presented, which included 

a taxonomy of the various roles involved in HRI. Safety is the foremost concern when introducing direct 

contact between humans and robots, both physical and social. This was evident in the literature, in that 

the focus was generally placed on safety and intention-recognition.  

Whilst investigating various levels of interaction between humans and robots, including gaze-detection, 

it became apparent that new assistive robots should be capable of anticipating and preventing collisions 

with humans whilst maintaining a safe distance at all times. Intention-recognition, a central aspect of 

anticipating potential collisions, is often linked to human-robot collaboration work, but also allows for 

a more proactive form of helping in environments such as that which forms the operational context of 

this research. 
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Chapter 3 
 

3 Mobile Robot Hardware Design  

3.1 Introduction 

One of the cornerstones of this thesis was to improve the capabilities of the current robotic platform 

in both sensing and mobility. The available research platform, codenamed EO3 within the Hamlyn 

Centre, was built on a Pioneer 3-DX [128] robot base, a non-holonomic differential wheel base with 

one laser range finder and one Kinect depth sensor. 

 

Figure 3.1 – Previous assistive robot prototype, codename EO3. This prototype was equipped with an off-the-shelf 
differential wheel base 

The new design should incorporate the following: 

 The base profile of the robot should be compact enough to allow it to move through 

commercial sise doors and narrow passages without compromising its stability while turning. 

The narrowest space specification is shown Figure 3.2, amd determines that the robot should 

have a turning radius of no wider than 60cm. 

 The robot must be capable of holonomic movement to reduce the number of manoeuvres 

necessary to reach a certain position on the floor. 
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 The robot must also be able to travel at an average adult’s walking speed to follow or guide 

people. 

[129] 

Figure 3.2 - NHS Hospital Building specification based on the Department of Health. The smalles corridor should allow for 
a wheelchair and a person to pass, where the robot would have to fit the same space as the person (600mm). 

These physical requirements led to a 3-month research phase and development of different 

holonomic designs and their respective implementations that would satisfy the points listed above and 

prove to be both mechanically sound and relatively simple to implement. 

3.2 Mechanical Design 

The mechanical design stage of this project represented an interactive development of concepts of 

the holonomic base until the most cost-effective design was reached. Table 3.1 shows the four main 

wheel configurations considered, including an example photo to better illustrate how the 2D diagram 

translates as a real robot platform base. 

The sise requirement for the robot was to be able to fit within 60 cm diameter circle, which is based 

on the width of a commercial sised-door in the UK (80 cm). Hospital doors meant to be used by patients 

are up to 100 cm wide in order to allow easy wheelchair access, however, it is imperative that the robot’s 

footprint is small enough to allow it to reach areas reserved for staff in order to perform deliveries and 

collections. 
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 Example Diagram Perceived Advantages Actual Liabilities 

(a) 

  

• No movable parts 
necessary 
• Circular footprint 

• Reduced traction 
• Minimal internal space 
for components 

(b) 

 
 

• Easy to make 
• Optimises internal 
volume for components 
due to its rectilinear shape 
• Rectangular shape is ideal 
for Mecanum wheels 

• Square footprint 
increases minimum 
rotation radius 
• Requires suspension 

(c) 

 
 

• Circular footprint 
• Holonomic movement 
with cross configuration 
Mecanum wheels 
• Increased ground traction 

• Only uses two motors 
to move forward, 
making 50% of motors 
redundant 
• More vibration due to 
the reduced number of 
rollers in each wheel 
• Requires suspension 

(d) 

 
 

• Using four motors to 
move forward increases 
likelihood of achieving 
higher acceleration, thus 
improving overall control 
• Less vibration while 
moving 

• Vibration, while 
reduced, is still 
noticeable and affects 
camera tracking 
• Requires suspension 

Table 3.1 – Comparison between types of holonomic base configuration considered during the design phase 

The first base configuration considered was three omni directional wheels in an equilateral triangle 

arrangement (Table 3.1 (a)). This configuration has been used for robots like the home assistant robot 

prototype Armar-III [130]. The greatest advantage of this base is that it does not require any suspension 

to ensure all wheels touch the ground. With only three points of contact, the movement of each point is 

independent of the others, thus allowing it to overcome small irregularities on the floor while 

maintaining constant contact of all wheels. However, if the robot is pushed back, three wheels in a 

triangular configuration provide less traction due to the vectorial force decomposition. In addition, the 

hexagonal base design would provide less internal space for components compared to other solutions. 

The next base configuration was the classical Mecanum base design (Table 3.1 (b)), which allows 

holonomic movement while maintaining a parallel wheel arrangement. This square base is also 

optimised for placing components with a cuboid shape, like batteries. The main disadvantage of using 
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four Mecanum wheels is that a suspension is required in order to maintain all four wheels in contact 

with the floor at all times. In an ideal scenario, four co-planar wheel axes would all touch a perfectly 

flat surface, but since the chassis can bend due to mechanical stress and not all surfaces are perfectly 

flat, a suspension is required to decouple two or more wheels in order to maintain contact. The 

suspension design and details are discussed in subtopic 3.3.4. The square perimeter of the base, when 

inscribed in a 60 cm circle, produces a much smaller internal space due to the corners of the square. 

In order to overcome this sise limitation, an octagonal shape was considered (Table 3.1 (c)). 

Adopting a cross-wheel configuration with Mecanum wheels has not been attempted before, but it 

represented potential new advantages to be explored. The base would work in the same way an omni-

wheel-equipped base would, given only 45 degrees of rotation on its forward kinematics for each wheel.  

This configuration was tested and worked as expected, however two drawbacks were discovered: 

First, the contact transition between the rollers created an excessive vibration on the base, which created 

more noise while the robot was running — an undesired effect for a service robot in a hospital. Second, 

the front of the robot is directed between the wheels of the robot, which forces the robot to move forward 

using only two diametrically opposite wheels. Using only two motors to move forward while facing the 

front would be energy inefficient as this is the main intended way of travel of the robot. 

The final wheel configuration (Table 3.1 (d)) consisted of swapping the Mecanum wheels from the 

cross-wheel configuration base and using the omni wheels instead. The omni wheels available had two 

rows of rollers, which reduced the gap between roller transition and the overall vibration of the robot. 

In addition, if the robot is moving forward whilst facing forward, all four motors are used, which reduces 

the load for each motor. 

 

3.3 Base Kinematics 

The base kinematics are directly dependent on the type of wheels and how they are attached to the 

base. A representation omni wheel used in our assistive robot is shown in Figure 3.3.  
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 Omni Wheel Mecanum Wheel 

3D Diagram 

 
 

2D Diagram 

 
 

Figure 3.3 – A comparison between omni wheel and Mecanum wheel regarding the floor contact force. Blue arrows 
represent the direction of the floor reaction for. Red arrows represent the wheel’s rotation axis (X axis). Green arrows on 

the 2D diagram represent the Y-axis. 

The red and green arrows represent the respective X and Y axes of the wheel’s reference frame. 

The blue arrow indicates the direction where the wheel applies its ground velocity when it spins anti-

clockwise around the X-axis (right-hand convention). The velocity vector is only present along the 

rotation axis of the bead touching the floor, hence the 45-degree direction offset on the Mecanum 

wheel diagram. 

3.3.1 Forward and Inverse Kinematics 

The forward kinematics of the base holds describes the conversion from the linear wheel speeds 

on the ground to the angular speeds used to control the motors. Figure 3.4 shows a diagram of the 

octagonal base design equipped with omni wheels (a) and Mecanum wheels (b). The position and 

orientation of each wheel’s contact point is represented by the reference frame shown by green and red 

arrows. The blue arrows labelled Wn indicate which direction that respective wheel will contribute to 

the base’s velocity when rotated forward. 
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(a) Original omni wheel kinematics 

 
(b) Original Mecanum kinematics  

Figure 3.4 – Normal base orientation for the omni wheel (a), and the Mecanum wheel (b) versions of 
the base  

The forward kinematics are composed of three individual equations that describe the linear and 

angular speeds of each of the wheels’ contacts points. 

�� = 0.5�� − 0.5�� 
( 3.1 ) 

�� = −0.5�� + 0.5�� 
( 3.2 ) 

� = −0.25
(�� + �� + �� + ��) 

�
 

( 3.3 ) 

Where �� and �� are the respective X and Y linear speed components and �  is the angular speed, 

the constant � is the distance between the contact point of the wheel on the ground and the centre of the 

base. Equations ( 3.1 ), ( 3.2 ) and ( 3.3 ) are then combined into the forward kinematics matrix shown 

in equation ( 3.4 ). 
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The Mecanum wheel forward kinematics matrix is also derived from the similar set of equations 

( 3.5 ), ( 3.6 ) and ( 3.7 ). 

�� = −0.25�� + 0.25�� + 0.25�� − 0.25�� 
( 3.5 ) 

�� = −0.25�� − 0.25�� + 0.25�� + 0.25��  
( 3.6 ) 

� = −0.25
(�� + �� + �� + ��) 

�
 

( 3.7 ) 

The final matrix can be seen in equation ( 3.8 ).  
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The last step is to rotate the initial orientation of the base so the front side of the base is aligned 

with the X-axis. The result of rotating the base can be seen for both wheels in Figure 3.5.  

 
 

(a) Rotated omni wheel kinematics (b) Rotated Mecanum kinematics 

Figure 3.5 – Rotated base orientation for the omni wheels (a), and the Mecanum wheels (b) 
versions of the base. When the frames of reference are rotated, they align with the robot’s X axis. 

The modified forward kinematic equations for the omni and Mecanum wheel can be seen in 

equations ( 3.9 ) and ( 3.10 ), respectively. 
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The value of � is 0.291 metres, which simplifies equations ( 3.9 ) and ( 3.10 ) into equations ( 3.11 ) 

and ( 3.12 ). 
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3.3.2 Inverse Kinematics 

The inverse kinematics provides the exact reverse operation of the forward matrix by converting 

the linear and angular velocities into linear wheel speeds. Equations ( 3.11 ) and ( 3.12 ) are inverted 

using the Moore–Penrose pseudoinverse. The final inverse kinematic for the omni wheel can be seen in 

equation ( 3.13 ). 

�

��

��

��

��
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0.707 0.707 0.291
−0.707 0.707 0.291
−0.707 −0.707 0.291
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��
��
�
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And the inverse of the Mecanum wheel type can be seen in equation ( 3.14 ). 
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3.3.3 Base Velocity Close Loop Control 

The kinematics equations are employed in the close loop control of the base velocity. The control 

of the robot’s velocity utilises a motion planner node that dictates that current target velocity to the base 

controller node which converts the base velocity vector to the wheel speed vector using the inverse 

kinematics equation. The base controller node is also responsible for the PID control of each motor 

controller. It sends the intended motor speed to the desired motor controller, and in return receives the 

change in encoder counts on that motor periodically. The base controller node adjusts the amount of 

power used to keep each wheel at the desired speed and also reports the current velocity of the base 

back to the motion planner. The motion planner uses the velocity vector provided by the calculated 

robot’s path to generate individual wheel speeds using the forward kinematics equation. A diagram with 

the entire speed control pipeline is shown in Figure 3.6 

 

Figure 3.6 – Base velocity close loop control with software (in white) and hardware (in grey) elements.  
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3.3.4 Prototypes and Suspension Test 

Small indentations and saliences on the surfaces combined with the small bending on the chassis 

caused by mechanical stress can cause one wheel to leave the ground, thus compromising control of the 

robot. Rubber wheels do not suffer from this effect on planar surfaces as they are able to deform and 

compensate for height variations. On the other hand, hard material wheels such as the Mecanum and 

omni wheels need a suspension to adapt their clearance to the ground in order to maintain full contact. 

Three different ideas were tested to verify the viability, relative merits and drawbacks of each type 

of suspension. First, a no-suspension scenario was used as a control. Four Dynamixel MX-28 motors 

were connected together in a rigid frame configuration and four small-scale 3D printed Mecanum 

wheels were used to test the control of the base. Despite the reduced scale of the test, it was noticeable 

that the model could not be steered towards the desired direction due to slippage and lack of wheel 

contact. Different surfaces were tested, including carpet and wood, and extra weight was added to 

increase the friction between the surface and the wheel, however, similar results were observed. 

The second possible solution was to use an independent suspension design. This solution is very 

common in the automotive industry for its high effectiveness and quick response to different types of 

terrain, but it comes with a great increase in the overall design complexity of the system. A LEGO 

prototype was constructed in order to test the independent suspension concept and was tested on the 

same surfaces. The second prototype demonstrated more control than the first prototype with no 

suspension, and it was even able to move over small obstacles such as thin magazines without any 

significant change in its course. 

The last prototype consisted of a 3D-printed scaled version, with which the wheels of the robot 

would be inside the 60 cm diameter circle intended as the robot’s maximum footprint. The prototype 

had a rotation axis around its centre, allowing half of the robot to incline while moving over an 

indentation or bump on the ground. Compared to the second prototype with independent suspension, 

the swivel suspension performed just as well on the same surfaces. One noticeable drawback, however, 

is that the main body of the robot would have to be fixed to one-half of the base. If a wheel from the 
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half where the main body is attached to, rolled over a bump on the surface, the entire body of the robot 

would incline in the opposite direction. 

 Example Perceived Advantages Actual Liabilities 

Rigid 

 

• Simplest construction, as 
it doesn’t use a 
suspension 

• Prototype demonstrated 
impaired control of 
movement due to 
momentary loss of contact 
with surface 

Independent 

 

• Highly adaptable to 
irregular surfaces with 
small height variation 

• Capable of maintaining 
vertical axis near 
perpendicular to the 
ground when overcoming 
small obstacles 

 

• Very complex to design and 
manufacture an independent 
suspension system from 
scratch 

• Internal space compromised 
to allocate suspension arms 

Swivel 

 

• Considerably simpler to 
build compared to the 
independent suspension 

• The main body of the robot 
has to be fixed to one half of 
the suspension, which causes 
it to tilt when that half is 
overcoming an obstacle 

 

Table 3.2 – Summary table comparing different types of suspension tested 

After comparing all three prototypes, it was decided to adopt the swivel suspension in the final 

base design. The extra mechanical complexity of the independent suspension system greatly 

outweighed the advantages of maintaining a somewhat more perpendicular position of the robot’s body 

compared to the ground plane when moving over small bumps and indentations. Error! Reference 

source not found. summarises the advantages and disadvantages of the three prototypes previously 

discussed. 

3.4 CAD Designs of the Chassis 

Once the type of suspension was selected, the next development stage was the 3D CAD design of 

the robot’s chassis. Maximum mass, speed and acceleration were taken into account when selecting the 
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motors and the shape of the frame for the base. The selected motors have a 30-watt peak power, with 

192 RPM maximum output shaft speed and 1.4 Nm rated torque. 

 

 

 

(a) Isometric view (b) Front view (c) Top view 

Figure 3.7 – First suspension design concept. The base can be seen from an isometric view (a), a 
front view (b) and a top view (c) 

The first base design was inspired by the Mecanum base seen in Figure 3.7 (a). It used 8” low 

vibration Mecanum wheels and had a square ground. However, in order to accommodate these large 

wheels and still maintain stability, the sise the frame would be larger than then sise requirements. This 

solution presented maximum internal space for housing electronic components, and the square metal 

frame around the base provided extra rigidity at the cost of increasing the clearing radius of the turns. 

The design had to be changed to fit a 50x50 cm-limit sise, which created problems when trying to stack 

components vertically and removing the external metal square frame.  

 

 

 

(a) Isometric view (b) Front view (c) Top view 

Figure 3.8 – Second suspension design concept. The base can be seen from an isometric view (a), a 
front view (b) and a top view (c) 

The second base design, Figure 3.8, used a new set of Brushless DC motors for its small volume to 

power ratio and allowed the addition of electrical brakes on each wheel’s axis. The brakes were intended 

to prevent the robot being pushed back if physically interacting with a human, but they were deemed 

not essential for the first prototype of the robot. Further versions of this robot will aid people standing 
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up from chairs or beds, and electrical brakes will be more useful in these situations. The top section of 

the design was reduced to an octagon for both aesthetic purposes and reducing the overall volume of 

the robot. Despite the more compact design, it was decided that the ideal robot footprint would be 

circular, which introduced an extra degree of challenge to the mechanical design. 

 
 

(a) Isometric realistic rendering 

 
(b) Top view 

 
 (c) Wheel connection side view 

Figure 3.9 – Third and final design. Pre-rendered view (a) along with the top view (b) and side 
view (c) showing the two parts of the suspension in pink and blue. 

The third and final design, Figure 3.9, was based on a complete octagonal profile as it better 

resembles a circle while still maintaining opposite sides for the perpendicular axis configuration. The 

swivel suspension was created by introducing a 20 mm diameter, 2 mm thick steel tube through the 

centre of the base. 

Figure 3.9 (a) shows a realistic rendering of the base used as the final design for the project 

committee while Figure 3.9 (b) shows top view of the robot base. The symmetry of the design also 

contributed to keep the centre of gravity of the robot at the geometric centre of the base. The design 

used a symmetric passive suspension, where the top half of the structure is fixed to the rear of the 

structure. Figure 3.9 (c) shows a colour-coded side-view diagram of the robot base. The red section 

represents the back structure of the base along with the connected back wheels. The front structure is 

shown in blue along with the connected front wheels. The back and front wheels can move 

independently around the central axis created by the steel tube.  
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3.5 Suspension test 

Once the base frame was completed and all necessary components to control it were added, a series 

of tests took place to evaluate how the suspension would perform under various conditions.  

(a) Close-up picture of front wheel over the obstacle. The 
swivel suspension adjusts to the height of the notebook. 

 

 
(b) Front wheel over obstacle 

 
(c) Back wheel over obstacle 

Figure 3.10 – Demonstration on how the swivel suspension works. Notice that the front wheels rotate around the centre 
axis, all four wheels maintaining contact on the floor and obstacle 

Figure 3.10 shows images of the passive swivel suspension in action on a hardcover notebook. On 

a fully flat terrain the omni-directional nature of the suspension frame creates the desired situation in 

which all four wheels touch the floor. If any of the four wheels momentarily stops making contact with 

the floor whilst the robot is in transit, however, that wheel’s speed-contribution to the overall velocity 

vector would be nullified, thus altering unhelpfully the robot’s direction and speed of travel. It stands 

to reason that in terrain in which an obstacle is encountered, as much as is reasonably possible this 

phenomenon should be avoided.  

The nature of the obstacles likely to be encountered were considered to be limited and of negligible 

risk of toppling the robot. Therefore an inherent compromise was accepted, in context of the function 

of the suspension frame and the omni-directional wheels. In conditions in which the robot encounters, 
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for example, a floor change whilst traveling in a forward direction (in the simulation above this was 

depicted by means of a notebook), the front wheel(s) is/are raised but the base remains parallel to the 

floor. This ensures that the robot remains plumb at ninety degrees to each varying surface, whilst also 

ensuring that all four wheels are making full contact.  

In the instance of an upward or downward inclining ramp it was hypothesised that with sufficient 

distance between the chassis and the floor, the robot would use the built-in IMU unit to recalibrate the 

sensors in context of the ramp’s degree of inclination. It was accepted that obstacles were unlikely to 

be encountered firstly on the back wheels so the inherent limitations of the chassis structure were 

permitted to remain as-is, in that  they do not result in the base remaining parallel to the floor. This is 

because the back wheels are affixed to the robot’s chassis, whereas the front wheels were designed to 

accommodate slight changes in floor plane and the construction of the chassis permits the front wheel 

to pivot by means of the steel tube axle. This can be seen diagrammatically in Figure 3.9 (c). 

3.6 Electrical and Electronic Design 

3.6.1 Power Grid system 

The power system of the robot was designed to provide both versatility when using it on mobile 

and stationary experiments, along with greater autonomy compared to its predecessor. Figure 3.11 

shows a simplified diagram of the new robot’s power system with all its major components and 

connections. One of the main differences between the new and old design is the transition between 12V 

to 24V as the primary power source voltage. At 24V, drive motors are significantly more efficient and 

achieve higher speeds compared to their counterparts running in 12V. In addition, future servo 

actuators, e.g. for a robot arm, run predominately at 24V DC. 



  
 

 
  

71  

 

Figure 3.11 – Simplified power diagram grid. Brown and blue lines indicate LIVE and NEUTRAL line when connected to a 
power outlet. Red lines indicated 24V and yellow lines indicated 12V. 

The previous robot prototype, EO3 shown in Figure 3.1, was equipped with on-board batteries but 

no internal charging system. This resulted in having to carry an external charging unit to any location 
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the robot had to operate for more than 1 hour, as it would run out of battery. The new design, seen in 

Figure 3.11, addressed these limitations by carrying both an on-board high-power battery charger and 

a high-power supply unit. Recharging the batteries could now be done by connecting the base AC input 

socket to the mains socket via a normal power cord. When the robot is connected to 240V AC, the 

power supply and the battery charger are turned on and the batteries start charging automatically. At 

the same time, a relay disengages the batteries from the rest of the power grid and engages the power 

supply unit, thus providing power for the robot without draining the batteries. This feature is specifically 

useful when the robot is required to be online for extended periods of time for debugging without 

needing to move. The internal power supply was selected to be powerful enough to keep the robot 

running indefinitely while stationary, while the batteries can provide running autonomy for up to four 

hours under normal conditions. 

The last addition to the new robot’s power system was its hardware-based emergency stop button. 

Previously, the robot’s motors were stopped via the software embedded into its Pioneer base. The new 

emergency stop system (Figure 3.11) cuts the power of the motors via an emergency relay controlled 

by the emergency button. Once the button is pressed, it latches into an open state, thus disengaging the 

power into the motor controllers. Once the button is reset, the relay is re-engaged and motors are re-

activated. This is a safer solution because it is independent from software error. 

3.6.2 Batteries 

The batteries used in the new robot design were supplied by Green Motor Sports Ltd, a battery 

supplier for electric car manufacturers in the UK. The Li-Ion batteries supplied have twice the energy 

density of a normal lead-acid battery commonly found in cars with internal combustion engines. These 

batteries can provide a 24V DC output with a constant 48Ah power output. A lead-acid battery with the 

same power output would weigh twice as much and would require 8–12 hours to charge from empty, 

compared to the quick two hours required by these batteries. One of the main advantages of this battery 

management system is that an entire profile of the battery usage can be visualised in real time with an 

external laptop through a USB connection. 
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(a) Close-up picture of front wheel over the obstacle 

 
(b) One pack of four cells 

provides 12V DC 

 
(b) Individual cell management 

unit 
Figure 3.12 – Pictures of the battery management system and its components in detail. 

 
The BMS control module is responsible for adjusting the voltage of each battery cell while 

charging, by using a shunt resistor on the control PCB of each board. Figure 3.13 shows a picture of the 

user interface of the software provided with the BMS module that reads individual battery cell voltage 

levels and temperature.  

 

Figure 3.13 – Voltage and temperature levels of individual battery cells through the BMS 
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The BMS interface is used to log battery usage, control internal temperature levels, set individual cell 

voltages, as well as more specific functions regarding overall maintenance of the cells. 

3.6.3 Sensors 

The type of sensors and their location on the robot’s body play a fundamental role in determining 

the robot’s degree of accuracy in perceiving the world and its moving obstacles. The previous robot 

prototype had one single Lidar, which provided 270 degrees of coverage from the robot’s centre up to 

30 metres away from it. The new design platform received two identical Lidars placed on diametrically 

opposite sides of the robot’s base in order to achieve 360 degrees of coverage. Figure 3.14 shows a 

diagram with the major navigation and reconnaissance sensors. 

 
(a) Side view 

 
(b) Top view 

Figure 3.14 – Sensor positions and sensing regions on the robot. The side view shows the depth camera’s field 
of view and the Lidar’s scanning plane parallel to the ground. The top view shows the angle coverage of both 

Lidars, although with their range radius reduced to fit the diagram. 

In Image (a), a side view of the robot is depicted, with a horizontal red line representing the laser 

range finder and a blue trapezoid representing the Kinect’s vertical field of view. The top view, in Image 

(b), shows the coverage of both Lidar sensors. The addition of multiple depth sensors was also 

considered but later declined, as this would increase the amount of real-time data to process and 

consequently decrease the amount of time left for core computations. The current choice of sensors 

allows the robot to sense obstacles and rotate when necessary to face the depth sensor to analyse any 

object in more detail. 
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3.7 Conclusions 

This chapter described the major milestones in the design process of the new assistive robot 

platform. The design started with the initial specifications based on the working environment in which 

the robot was intended to be used. Different holonomic driving mechanisms were compared and the 

cross-wheel configuration on an octagonal base frame was selected as the best compromise between 

internal space and flexibility to try different types of wheels. Next, three solutions for suspension were 

tested with the aid of prototypes, and the swivel suspension was demonstrated as the most cost-effective 

solution for maintaining four wheels on holonomic drive on a flat surface at all times. The major CAD 

design ideas were discussed, followed by the electrical and electronic design stages. Finally, a 

suspension test was conducted showing how the robot was able to overcome small obstacles on the 

ground up to 20 mm high. 

The final robot platform can be seen in Figure 3.15 equipped with omni wheels. The decision to 

use omni wheels over the Mecanum wheels at the end of the hardware design phase was based on two 

factors: 

1. Vibration and noise levels: The Mecanum wheels have 15 rollers each compared to the 28 

rollers arranged in two rows of 14 rollers on each omni wheel. Both wheels have overlapping 

rollers but the extra number of rollers in the omni wheels end up reducing the gap between the 

rollers thus creating a smoother motion. The Mecanum wheels produced more sound while 

rolling compared to the omni-wheels; the difference was noticeable to any bystanders. 

2. Motor control when moving forward: Due to the physical orientation of the robot’s front side 

relative to its base, only two motors are required in order to move the robot forward and 

backward when the Mecanum wheels are used; four are required when omni wheels are used. 

Moving in diagonals inverts the number of motors. The problem arises when the robot is 

required to move forward for the majority of its travel distance. In this case, only two motors 

would be used, thus compromising the robot’s top acceleration and maximum speed.  
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A comparison table of the robot’s physical characteristics compared to the state of the art can be 

seen in Figure 3.15 below.  

 

 
 

 

 

Category RP-Vita New Assistive Robot Pepper 
Height 168 cm 121cm 120 cm 

Footprint 58cm x 58cm 60cm x 60cm 42.5cm x 48.5cm 
Weight 79.4kg 58.2 kg 28kg 

Top Speed 1.5 ms-1 1.2 ms-1 (limited) 0.89 ms-1 
Battery Autonomy 4-5 hrs 4-6 hrs 12 hrs 

Figure 3.15 – Comparison table between the physical characteristics of the proposed New Assistive Robot and two of the 
latest assistive robots used in hospital environments 

What can be noted from Figure 3.15 above are a number of matters of interest. Firstly, the new 

assistive robot is mid-range in nearly all of the categories, save for footprint of the prototype. 

Nonetheless, even with this this footprint the prototype meets the recommendations presented in a 

document published by the Department of Health [131] as can be seen in Figure 3.2. Next, in terms of 

battery autonomy, the new assistive robot exceeds the RP-Vita prototype by 1 hour, depending on its 

in-situ deployment and range. And finally, whilst the Pepper is a comparatively light-weight assembly, 

the new assistive robot compares favourably, even as a prototype, to the RP-Vita. It can be seen that 

even before optimising choice of materials, it is 27% lighter than the RP-Vita as a brought-to-market 

product. This is in context of the fact that the new assistive robot is only (software-limited) 20% slower 

at top speed than the market-ready RP-Vita. It is anticipated that materials optimisation would improve 

both weight and, in turn, top speed. 
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Chapter 4 
 

4 Floor classification 

4.1 Introduction 

New research groups and companies such as InTouchHealth [6] have already started introducing 

new tele-operated robotic assistants to hospitals and office workplaces as the need for a new automated 

workforce grows. These new robots often have a holonomic drive in order to minimise their movement 

footprint when moving through crowds, so as to reduce the disruption to people in the environment.  

Robots designed to operate in outdoor environments are usually equipped with large rubber wheels 

to allow them to cross irregular terrain, whereas robots designed for indoor applications are equipped 

with smaller plastic wheels and have no suspension.  

When a robot equipped with omni wheels or Mecanum wheels is moving, a noticeable vibration 

comes from the impacts between the edge of the rollers and the floor while the wheels are spinning. 

This vibration can create loud noises on hard surfaces, which can then be minimised by reducing the 

speed of the robot. On soft surfaces such as carpets, the rollers tend to “sink” a few millimetres on the 

carpet, thus creating extra drag and reducing the robot’s overall speed and performance. If the robot is 

able to identify what type of surface it is moving on, it could re-adjust its speed and path planning 

parameters to better cope with different surface conditions. 

The literature on identifying different floor types presented in Chapter 2 has demonstrated that 

classifying a vibration signal requires the least expensive hardware and processing power overall. This 

led to the addition of a single IMU unit directly attached to the chassis of the assistive robot, as shown 

in Figure 4.1.  
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Figure 4.1 – IMU unit in detail and its location on the robot's chassis. The Z arrow on the IMU indicates the vertical 
direction of the vibration. 

Unlike previous floor classification research, which relies on rubber tires [83-85], the use of omni 

wheels introduces significant noise to the vibration signal as the speed of the robot increases. Since the 

nature of the noise itself depends on too many variables, pre-processing the noisy signal would most 

likely remove some of the features from the vibration signal itself. Instead, the raw signal is used to 

directly generate all the features to be used by the classifier. The complete data processing pipeline can 

be visualised in the diagram in Figure 4.2. 

First, the raw signal is recorded by the IMU, which is split into overlapping 1024-sample sliding 

windows. Next, two sets of features (statistical and Power Spectrum Density (PSD)) are extracted from 

each window. After that, both sets of features are concatenated into a single 523 feature set, which is 

then simplified using Principal Component Analysis into 10 components. Finally, the 10 components 

are normalised and used as training parameters for the Extreme Learning machine neural network 

classifier.  



  
 

 
  

79  

 

Figure 4.2 – Complete data processing and classification pipeline. The features extracted from the sample in the shifting 
window are reduced and normalised before being used for training. Visualisations of the data in each stage are shown to 

illustrate the process, but their meaning is covered in detail in the subsequent sections. 

4.2 Data collection 

The sensor selected for detecting the ground vibration was the accelerometer inside a 9-axis 3.3V 

IMU unit set to a 446 Hz sampling rate determined by the maximum bandwidth between the 

microcontroller board and the computer. The IMU unit was connected to an mBed NXP LPC1768 

development board which was programmed to read the raw data and transmit it via a serial link to the 

main robot’s computer.  

The signal in Figure 4.3 depicts 72 seconds of vibration signal recording, where the robot is 

performing a variety of manoeuvres, including moving in a straight line and rotating. The respective 

recorded vibration for each of the actions is clearly labelled on the figure. The sensor was positioned 

parallel to the ground on the chassis in order to reduce any cross-talk between axes during recording. 

The measurement of the Z-axis of the sensor corresponds to the full extent of the chassis. 
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Figure 4.3 – Example of vibration recorded by the IMU during recording stages: (A) robot not moving; (B) robot moving in 
one direction; and (C) robot rotating 

When considering that both the type of the floor and the linear and angular speeds of the robot can 

affect the vibration signal, a series of manoeuvres with different speeds were designed to capture a wide 

range of possible movements the robot may perform at any time. 

 

Figure 4.4 – All four types of movement were executed on each floor to ensure coverage of all degrees of freedom of the 
base. Orange arrows indicate the front side of the robot 

Movements m1, m2 and m4 consisted of moving the robot for 10 seconds back and forth on 

vertical, horizontal and diagonal directions, respectively, at speeds from 0.2 to 1.0 ms-1 spaced at 0.1 

ms-1. These movements were selected to explore the effects of vibration on linear movement. 

Movement m3 consisted of rotating the robot clockwise for 10 seconds at 0.6, 0.9, 1.2 and 1.5 rads-

1. This movement was selected to explore the effects of vibration on angular movement. Due to space 
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constraints, combining both angular and linear movement at different speeds was not possible, as it 

would drive the robot in larger and larger circles.  

Four different surfaces were selected for the data collection: carpet, PVC (plastic), wood and 

granite, as shown in Figure 4.5, along with a four-second sample signal of their respective measured 

vibrations. These four floors are commonly found in both offices and hospital environments. As such, 

they represent a wide range of hardness, ranging from soft to hard, better illustrating the overall 

accuracy of the methods presented.  

    
(a) Carpet (b) PVC (c) Wood (d) Granite 

Figure 4.5 – The four different type of floors used for training and validation. Carpet (a), PVC (b), Wood (c) and Granite (d) 

The data was collected at 446 samples per second over approximately two hours of recording. 

Subsequently, data was manually segmented so as to extract valid regions of the signal for further 

processing. The valid regions were then sliced into rectangular windows of 1024 points that were moved 

in steps of 64 points (0.14sec) along the signal. Data collection resulted in roughly 30 minutes of valid 

data recorded. 

4.3 Feature Extraction 

Notice that in Figure 4.5, despite the clear difference in their physical properties, the recorded 

vibration from all floors appears very similar in shape. In order to differentiate the floors, a broader set 

of features was selected based on previous works and tests performed during the experimental phase. 
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4.3.1 Statistical Features 

Several techniques for classifying different surfaces using vibration recorded by an IMU were 

discussed in the literature survey in Chapter 2, each with their own set of statistical features selected to 

yield the highest accuracy during classification. The list below shows the features that provided the best 

differentiation amongst different types of floor across all reviewed publications. 

1. Energy 
2. Variance 
3. Standard deviation 
4. Mean 
5. RMS 
6. Mean distance between max and min values 
7. Number of peaks 
8. Number of dips 
9. Zero crossings 
10. Maximum distance between peaks 
11. Peaks and troughs variance 

 
Different combinations of statistical features were tested, leaving these 11 features as the optimal 

combination for differentiating the vibration signal recorded while the robot was moving on different 

surfaces. However, the overall accuracy using only statistical features was around 83%, due to the low 

SNR introduced by the wheel rollers touching the floor during the robot’s movement.  

4.3.2 Frequency-based Features 

The Power Spectrum Density (PSD) features are frequency-based features introduced in an attempt 

to improve the overall accuracy of the classification. The PSD features demonstrated that more features 

could be detected from the floor type almost independently from how fast the wheels were spinning. 

The graph in Figure 4.6 shows how the amplitude of the PSD features changes depending on the robot’s 

base velocity, and by extension, the wheel’s velocity. The PSD features were extracted using a 1024-

points FFT resulting in a 446-feature vector equally distributed between frequencies from 0 to 223Hz. 
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Figure 4.6 – Power Spectrum Density of signal recorded while the robot performed the  
same movement at different speeds - shown in different colours 

From 0.25 ms-1 to 0.75 ms-1, there is a steady increase on the overall amplitude of the signal. As 

the wheels spin faster, the point of contact on the roller’s edge hits the ground with higher speed, thus 

generating more vibration. When the robot is moving at 1.0 ms-1, however, there is a slight decrease in 

the overall signal amplitude. This is explained by the slipping of the wheels due to the high-speed 

rotation. As the wheels rotate faster, some edges of the rollers miss contact with the floor, and this 

phenomenon results in an overall “smoother ride”. For a robot moving within a caring centre or hospital, 

1.0 ms-1 is too fast for safe operation, hence the nonlinearities of omni wheels slipping and skidding are 

not a concern for this scenario. 

4.3.3 Final PCA Feature Set 

The final phase of the feature extraction stage is combining both statistical and frequency-based 

features into one single feature vector. Both statistical and frequency features combined added up to 

523 (11 statistical and 512 PSD frequency features); hence, dimensionally, reduction was necessary to 

speed up the training phase. Principal Component Analysis (PCA) and Kernel PCA were tested to 

evaluate which represented the data more accurately. PCA was selected as it was able to represent data 

with 95.81% of its original variance using only the first 10 components and required much less time to 

process during training and fitting, which is depicted in Figure 4.7 below. 
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Figure 4.7 – Cumulative percentage explained by the principal components. Statistical and PSD features, in blue and green 
respectively, are converted into PCA components whose 10 first components can recreate 95% of the original features 

In order to visualise how the vibration signal is perceived by the classifier, the first 25 PCA components 

for the vibration generated by each of the four types of floor can be seen in Figure 4.8. The four mosaic 

images represent 11 windows (columns) consisting of 25 components (rows) where a dark red colour 

indicates a value of 1 and a dark blue colour indicates a value of 0. 

 

Figure 4.8 – PCA feature comparison between the four types of floors. The four rectangular patches represent the first 25 
PCA components of 11 sample windows for each floor. Values are visualised as colours, where zero is dark blue and one is 

dark red 
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4.4 Training and Classification 

Three different classification techniques were used to determine whether a linear or non-linear 

approach would be more suited for classifying this data. The first is Extreme Learning Machine [132] 

(ELM), a feed forward neural network work model that uses the Moore-Penrose inverse to efficiently 

calculate the weights of its output layer. For a set of data points composed if an input feature vector and 

output label vector (xi, ti): 

�� = [���,���,⋯ ,���]
� ∈ �� 

�� = [���,���,⋯ ,���]
� ∈ �� 

( 4.1 ) 

Where n and m represent the number of dimensions/features of input data points and the output 

label vector for that input point, respectively. The classification process uses an activation function g(x), 

in this work g(x) = sig(x), to create a new label vector based on the linear relationship between input xi, 

wi, bi and βi, expressed by Eq. (2): 

������ � ∙�� + ��� = ��,� = 1,… ,�

�

���

 ( 4.2 ) 

The number of hidden neurons is defined by L. wi is the weight vector between the input neurons 

and the ith hidden neuron, bi is the bias of the ith hidden neuron and βi is the weight vector between the 

output neurons and the ith hidden neuron. Eq. (2) is used for generating the label vector T during data 

classification and can be re-written in matrix format (Eq. (3) below) in order to simplify the calculations: 

� = �
�(�� ∙�� + ��) ⋯ �(��∙�� + ��)

⋮ ⋱ ⋮
�(�� ∙�� + ��) ⋯ �(��∙�� + ��)

�

�×�

 ( 4.3 ) 

and 

� = �
��
�

⋮
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�
�

�×�
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�

⋮
��
�
�
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which yields the final Moore-Penrose solution for the B matrix: 
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� = �� 
( 4.4 ) 

ELM has proven to be very effective on non-linear classification [133, 134] and represented a good 

alternative for future real time surface classification applications. Different training sessions with 

different numbers of neurons were used to identify how it would impact the final classification result. 

Other classifiers used, such as the Linear Discriminant Analysis (LDA), Quadratic Linear 

Discriminant (QDA) and Support Vector Machine (SVM), were selected to test if the data could be 

linearly separated in PCA space. These results would also allow benchmarks to be set for comparison 

with other methods in the future.  

The last classifier used was the Gaussian Mixture Model (GMM), which represented a Bayesian 

approach for separating the data. With one single Gaussian mixture per class, initial results using 60 

components yielded up to 98% accuracy on individual speed sets. 

4.5 Results 

4.5.1 Classifier Performance 

The last stage of the floor classifier’s development was selecting which classifier would best suit 

the set of features presented. A cross-validation test was devised using all data collected for the four 

floors (including all speeds and manoeuvres on each floor) in a 9-to-1 training to test ratio.  

Next, the settings for the classifiers were determined according to how much they would impact 

the time required during classification. With the LDA and QDA, no adjustment was necessary. The 

GMM used only one mean and variance per components whereas the SVM used 10 support vectors. 

For neural networks, like the ELM, the number of neurons sometimes affects the accuracy of the 

classification at the cost of processing time, therefore, ELM used four different amounts of hidden 

neurons: 150, 200, 250 and 300. Figure 4.9 shows the results of the cross-validation test. 
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Figure 4.9 – Final overall classification using all data points from all recorded speeds and movements combined. ELM 
shows a higher classification accuracy with only 10 data components compare to the other classifiers 

The compassion graph shows that for the GMM, LDA, QDA and SVM, the accuracy increases 

with the number of features (components) used. However, ELM reaches its plateau around 20 features 

and starts to overfit around 30 features. The overfitting of ELM classifiers is a known drawback of the 

technique that can be overcome with variations of the ELM itself or tuning of the features used for 

training. In this experiment, the ELM with 200 hidden neurons demonstrated 87.5% accuracy in 

classifying all four floors with a classification time of 650 microseconds, thus making it a good solution 

for real-time classification. From a technical point of view, slower classifiers could be used, as only one 

floor sample is classified every 250 ms due to the moving window; however, using more resources than 

necessary could end up restricting resources at later stages of the software development of the assistive 

robot. 

The ELM with 200 hidden neurons was selected as the final classifier for the floor detection, and 

its performance on the cross-validation test was presented as a confusion matrix, shown in Figure 4.10 

below, in order to better visualise which types of floor are more often misclassified.  
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 Carpet PVC Granite Wood 

Carpet 92.91% 3.29% 3.8% 0% 

PVC 1.2% 89.09% 4.62% 5.09% 

Granite 0.4% 6.27% 91.05% 2.28% 

Wood 0% 11.86% 2.69% 85.45% 

Figure 4.10 – Confusion matrix generated using the Extreme Learning Machine classifier using 200 neurons 

4.5.2 Real Scenario Validation 

In order to validate the classification accuracy on a real-life situation, the robot crossed a hallway 

between offices with two different surface types to classify. A map of the space was reconstructed by 

the robot and can be seen in Figure 4.11. 

 

Figure 4.11 – Map of the robot's trajectory on the floor; green colour indicates carpet and blue indicates plastic surface 

The carpet floor can be seen in green, and the plastic floor in blue. The robot was controlled using 

a wireless Xbox360® controller, where the maximum speed was set to 0.5 ms-1. The trajectory started 

on the carpet on the right side of the map and traversed into PVC before returning back to the carpet 

area. At the moment the robot reached the division between floors, the operator recorded the transition 

using the controller by pressing a button. Doing so ensured an accurate recording of the ground truth 

floor transition in the timeline of the robot. 
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Figure 4.12 – Recorded floor classification over time. The detected floor (red) is compared to the ground truth (blue), where 
the peaks and dips on the red plot represent mis-classifications 

4.6 Conclusions 

In this chapter, a new method has been presented for accurately classifying different surfaces 

employing a single ELM neural network using a one-dimensional vibration signal. Four types of 

flooring commonly found in a hospital environment were used for the training, where different 

manoeuvres at different speeds were performed to collect vibration data from each of them. The 

classifier managed to compensate for extra noise added by the omni wheel rollers, with no pre-

processing required. The classifier was able to correctly identify the floors with an overall accuracy 

between 85% and 92%. The overall accuracy of the classifier is ultimately correlated to how close the 

current speed of the robot is while manoeuvring on the floor compared to speed of the robot during data 

collection. At very low speeds, and at the robot’s top speed, the classification accuracy fell under the 

50% mark, which indicates that more data could be used for further training of the classifier. 
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Chapter 5 
 

5 Dynamic Mapping 

5.1 Introduction 

Environment mapping is one of the most quintessential characteristic of mobile robotics, and 

perhaps the hardest task for a robot to accomplish on its own. There have been several works presented 

in Chapter 2 which demonstrated how a robot can effectively and accurately create a map of the 

environment as it is crossed; however, it is important to mention that most algorithms designed for 

simultaneous mapping and localisation do not take into account moving obstacles.  

 

 

Figure 5.1 – The raw scan is segmented in to into clusters of nearby points that are then classified as a person, and used for 
tracking, or as part of the background, and used for mapping  

Amongst the mapping algorithms developed, a few that take dynamic obstacles into account, but 

the shape of the object itself is ignored. This results in detecting people walking simply based on their 

constant movement. If a person remains still prior to the robot entering the room, this person would 
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most likely be registered by the robot as part of the environment. A possible improvement on the current 

dynamic mapping would be to detect what shapes, detected by the sensors, correspond to a person, and 

disregard them when creating the map. 

This chapter proposes a method for adding a pre-processing stage to the Lidar scan data pipeline, 

designed to separate people from the background by detecting people’s legs on the scan. A diagram of 

said pipeline is depicted in Figure 5.1. The raw scan is processed into groups of segments that are 

classified according to their shape as either “person” or “background”. The segments classified as the 

“person” are further processed to provide a tracking of the moving persons (to be covered in Chapter 

6). The remaining segments of the scan represent the background and are sent to the mapping module 

to be used by the SLAM algorithm.  

5.2 HectorSLAM 

HectorSLAM was selected as the primary mapping algorithm for this research due to its higher 

accuracy compared to other recent methods [31]. This approach is based on optimising the laser scan 

end-point alignment with the current map created up to that point in time; this idea is based on the image 

processing template matching using the Gauss-Newton method presented by [135]. Each new scan is 

projected onto the map based on the robot’s last known position and orientation and the scan is 

iteratively aligned with the rest of the map. Once the alignment is completed, the difference in rotation 

and translation between the robot’s current and previous position is checked against a threshold to 

determine whether the robot has moved enough to update the map. 

A major drawback with using a finer resolution for the occupancy map for scan alignment, like 

0.025 m per cell for example, is that it tends to lose alignment with the map, and by extension the robot’s 

relative position if the robot moves too quickly. HectorSLAM solves this problem by introducing 

different levels of detail for the occupancy map and aligning the scan from the coarsest to the finest 

level. The end position and orientation achieved from a coarser level is carried out as the starting 

alignment position for a finer level. Figure 5.3 shows an example of the three levels of resolution for 

the same part of a map. 
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(a) 0.025 m per cell (b) 0.05 m per cell (c) 0.1 m per cell 

Figure 5.2 – Different resolution maps created using HectorSLAM. The larger the cell sise, the lower the level of detail of 
the map 

The first scan is imprinted on all three levels directly, and all subsequent scans use the current 

cell values to adjust the scan’s position relative to the map. 

 

Figure 5.3 – Bilinear interpolation of the occupancy map [31] 

The process starts from the coarsest to the finest level of detail in order to prevent loss of 

convergence. The Gauss-Newton process relies on using the map value and the derivative of the 

interpolated cell where the measured scan ends. The actual value of the cell shown in Figure 5.3 (a) is 

calculated by ( 5.1 ): 

�(��)≈
� − ��
�� − ��

�
� − ��
�� − ��

�(���)+
�� − �

�� − ��
�(���)�

+  
�� − �
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�
� − ��
�� − ��

�(���)+
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�� − ��
�(���)� 

( 5.1 ) 

Where �(��) is the value for an interpolated point, �� , which is calculated via a bilinear 

interpolation of its closest points on the occupancy map, ���, ���, ��� and ���. The derivatives for Eq. 

( 5.1 ) can be calculated by equations     ( 5.2 ) and ( 5.3 ) below: 
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The goal is to calculate a rigid transformation � = (��,��,�) that minimises the error in Eq. ( 5.4.  

�∗= ��������[1−�(��(�))]
�

�

���

 ( 5.4 ) 

This transformation effectively aligns the laser measurements with the relative position of the 

robot: 

��(�)= �
cos(�) −sin(�)

sin(�) cos(�)
��
��,�
��,�

�+ �
��
��
� ( 5.5 ) 

Function �(��(�)) returns the probabililty value at the cell indicated by Lidar scan ��(�) at sensor 

position �. The algorithm seeks to minimise the alignment error by finding a Δ�, given an initial �. 

�[1−�(��(� + Δ�))]� → 0

�

���

 ( 5.6 ) 

Using the Taylor Series expansion in the implicit variable �(��(� + Δ�)) in Equation ( 5.6 ), we 

derive 
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 ( 5.7 ) 

 

Which can be minimised by setting the partial derivative with respect to Δ� to zero, thus producing: 
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Solving Δ� in Equation ( 5.8 ) yields the Gauss-Newton equation for finding the absolute minimum 

error: 

Δ� = �����∇�(��(�))
���(�)

��
�
��

���

[1−�(��(�))] ( 5.9 ) 

Where: 
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The map gradient can then finally be calculated by the following derivative: 

���(�)

��
= �

1 0 −sin���,� − cos���,�
0 1 cos���,� − sin���,�

� ( 5.11 ) 

5.3 Leg Detection 

In the process of selecting which leg detection method to use for this research, the method proposed 

by [44] was initially considered due to its advantages previously discussed in detail in Chapter 2. This 

method is effective for detecting independent segments, rather than associating two leg segments as one 

person. Detecting people from the leg segments requires one extra step to associate the pair segments 

to one person on the scan. When one of the legs cannot be seen, it adds an extra level of difficulty to 

the association step; therefore, a simpler solution was adopted in this research. 

A newer method based on generic distance-invariant features, proposed by [136], uses a built-in 

clustering step that connects nearby segments before the classification step. This not only simplifies the 

overall detection algorithm but also allows it to detect other shapes such as walkers and wheelchairs as 

“people”. 

The feature histogram from every cluster of points in the scan is then classified as either a “person” 

or “background” by a binary Adaboost classifier [137]. The initial training of the classifier involved 

manual labelling of the clusters by a human expert, but due to the large number of labels required, the 

final training process used recordings where the robot was stationary and a pre-determined polygonal 

area was created to determine where people would walk. The clusters located inside the areas were 

classifies as “person” and those outside as “background”. 

5.3.1 Segmentation and Clustering 

Each newly acquired scan is an array of 872 points (in our Lidar configuration) where each value 

of the array is the distance in meters from the Lidar to its respective collision with the laser beam. By 

knowing the angle between the beams and where to start counting around the circumference of the 
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Lidar, the world coordinate positions can be calculated by simple trigonometry, as shown in Figure 5.4 

(a). 

Once the world coordinates are calculated, the points are then split into segments. Each segment 

starts with a point n and adds point n+1 if their Euclidian distance is shorter than a threshold (10 cm in 

our implementation). If the distance is larger than the threshold, the current segment is closed and the 

next points are added to a new segment. At the end of the segmentation process, only a stream of points 

is left belonging to the same segment (Figure 5.4 (b)). 

The next stage is clustering close-by segments in case they are legs of person standing. This stage 

reduces the overall complexity of the tracking system by reducing the number of tracked segments to 

one. It is simpler to combine two leg segments into a cluster and track that cluster than track each 

individual leg segment and try to associate both trajectories as one single person. 

The original segmentation method proposed in [136] uses Delaunay Triangulation to identify close 

segments and combine them into one single cluster. A uniform-grid was used instead of the Delaunay 

Triangulation for its higher performance while inserting and accessing nodes in its data structure. Whilst 

a normal Hash table is boundless, as input coordinates can be truncated, therefore fitting any coordinate 

in a finite number of cells, a uniform-grid has delimited boundaries and uses the input coordinates of 

the objects as their actual locations in the table. 

In this implementation, a two-dimensional uniform-grid with virtual sise of 200 x 200 meters and 

cell resolution of 0.5 x 0.5 m was used. Each cluster of points is treated as a particle whose input 

coordinates to the grid is equal to the mean coordinates of its points — the centre of mass. Once the 

centre of mass is calculated for each segment, it is rounded to the closest grid point and added to the 

uniform-grid. The O(1) complexity of accessing the uniform-grid outperforms the Delaunay 

triangulation in search time. 
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(a) Original scan (b) Segmentation by distance 

(c) Grid occupancy (d) Clustering 

Figure 5.4 – Step-by-step of segment clustering algorithm using a uniform-grid. Segments are separated and added to the 
uniform-grid before being clustered into the final clusters representing possible detected people. 

In order to verify this claim, both methods were timed in the code along one entire map leg 

detection scan. The timing includes creating a brand-new data structure for each of the clusters detected 

in the scan. The results in Figure 5.5 show that the uniform-grid is more than twice as fast as the 

Delaunay triangulation under the same conditions for clustering segments. 
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Figure 5.5 – Speed comparison between uniform-grid clustering and Delaunay triangulation clustering in terms of speed 

The clustering process, however, creates the undesirable effect of combining legs of multiple 

people as one single target. This effect can be seen in Figure 5.6 (a) when two people are walking side-

by-side at the right side of the image, and all their legs are clustered together.  

  

(a) Two people wrongly added as one on the right (b) Two people correctly separated 

Figure 5.6 – Two people walking side-by-side are identified as one single individual if normal distance clustering is used 

A simple solution found to this problem is limiting the sise of each cluster to two segments. This 

is based on the assumption of the fact that the majority of people moving around will be standing on 

their two legs. The search-for-neighbours in the uniform-grid finds all the neighbours within the radius 

threshold and adds only the closest neighbour to the cluster. That cluster is then finalised and the 

algorithm moves to the next one. The result of the implemented solution can be seen in Figure 5.6 (b).  

In practice, this solution does not work every time but it greatly minimises the number of false 

positives. In the case of single-leg segments or leg segments from multiple people still clustered together 
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passing through to the tracking stage, it is later dismissed by the multiple object tracker, which is 

covered in Chapter 6. 

5.3.2 Cluster Classification 

The last stage of the pre-processing pipeline is classifying each of the segments as a person or 

background. The classifier is trained using the same set of features proposed by [136]. These features 

consist of the values of small histograms containing the distance between each point in the cluster to an 

imaginary axis, perpendicular to the robot’s line of sight. This method is illustrated in Figure 5.7 below. 

 

Figure 5.7 – Leg detection based on features from 2D clusters. Green areas A and B represent where the cluster of points 
represent legs are located. The blue dot represent the first point e each of the segment clusters.  

The diagram above depicts a scenario where two people, A and B, are standing in front of the robot 

in a small room. The red lines and green lines represent Lidar laser beams that touch the background 

and the people in the scene, respectively. Each blue point represents the beginning of a cluster of points 

and the variable ∆� represents the distance between points used to determine when the next point 

belongs to a new cluster – already explained in previous subsections. The mean point of each cluster of 

points is calculated and an axis is constructed (the solid black line in each rectangle), which is 

perpendicular to the vector between the Lidar and the mean point (the dotted black line). For simplicity, 

only two green rectangles are shown, one for each person, but each cluster of points passes through the 

same procedure.  
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The distance between each point within the cluster is projected onto the cluster’s axis as the Y 

value, and a histogram of eight features is created along the X-axis, with width equal to the difference 

between the projections of the first and last point onto the axis. Examples of histograms belonging to 

legs in different positions can be seen in Table 5.1. 

Leg segments on Scan Segments Clustered Feature Histogram 

  

 

  
 

  

 

Table 5.1 – Examples of type of features for different representations of leg arrangements 

The first column shows the red circles representing the shape of the legs. The second column shows 

the first and second stages of clustering where the blue rectangle represents the consecutive points in a 

sub-cluster, and the green rectangle represents the cluster composed of nearby sub-clusters. The third 

and final column shows the feature histogram extracted by the described method. 
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5.4 Results 

5.4.1 Detecting people 

A total of 173 frames, comprising of 566 clusters were manually labelled as either “person” or 

“background” by the author and used to train and test the Adaboost classifier described in [136]. The 

result of the ROC curve can be seen in Figure 5.8. 

 

Figure 5.8 – Recall to precision graph (ROC) for leg detection using the Adaboost classifier 

The training set was split into ten subsets where nine subsets were used for training, and one for 

testing. The following confusion matrix in Table 5.2 shows the results of the validation. 

 Person Background 

Person 90.91% 9.09% 

Background 6.8% 93.2% 

Table 5.2 – Confusion matrix for leg classification  

It is important to mention that these tests were performed with only two classes, as the original 

work presented in [136] already demonstrated that this method works similarly well for classifying not 

only legs, but also wheelchairs, walkers and crutches.  

5.4.2 Improvement on Mapping by filtering persons in a real-world scenario 

As mentioned at the start of this chapter, dynamic obstacles in a highly-populated environment can 

obstruct the Lidar, causing the robot to miscalculate both its relative position and its orientation during 
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the mapping stage. In order to evaluate the possible improvements in mapping accuracy by introducing 

the leg-detection pre-processing stage, scan data was collected in a real dynamic environment. The 

venue in which the data collection took place was an exhibition centre comprised of a suite of rooms 

on the second floor of the London-based Royal Academy of Engineering, in which an excess of 100 

people were in attendance. A picture of the event can be seen in Figure 5.9. 

 

Figure 5.9 – An actual room in which, whilst occupied, data was collected for  
verifying the possible improvements of the proposed new mapping method 

The robot was manually guided across several connected rooms within this facility, during which 

delegates were socialising and roaming from room to room. Most of these spaces were outfitted with 

an array of tables and chairs in which wide open spaces were left in the centre of the rooms for people 

to circulate. The robot was driven around the second floor for a 45-minute duration in order to avoid 

disrupting the event attendees. 

The challenge of this particular scenario was that, with numerous people surrounding the robot at 

any given time, its Lidar field-of-view was completely obstructed at times. What this meant in practice 

was that no wall segments could be detected. The inability to detect fixed features in the background 

represents a perennial challenge for mapping algorithms, rather like driving a car in the fog, as the 

circulating people are interpreted as part of the environment — even when the robot is stationary. One 

solution to this problem is to use odometry to prevent drifts on the robot’s relative-position estimation. 

However, adding odometry messages would have the effect of increasing the complexity of the 

messaging system, when the aim is to simplify it. 
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The data was then processed using two versions of HectorSLAM: the original unadulterated 

version and that which is proposed, namely an altered version of HectorSLAM which introduces leg-

detection at the pre-processing stage. Due to security restrictions and intellectual property concerns, it 

was not possible to obtain either an accurate layout or a scaled floorplan of the Royal Society of 

Engineering’s Prince Philip Room. Nonetheless, it can be seen that the robot’s navigation loop is closed, 

as demonstrated by the spatially-coherent version; Figure 5.10 (b); of the proposed Hector SLAM with 

leg detection method. The results of both versions can be seen in Figure 5.10 which follows: 

  

(a) Original HectorSLAM 
(b) Proposed HectorSLAM with leg-detection pre-

processing  

Figure 5.10 – Side-by-side comparison between two versions of HectorSLAM: (a) Original HectorSLAM and (b) Proposed 
HectorSLAM with leg-detection pre-processing 

The first noticeable difference between the two maps is the special coherence of the generated map 

in (b). The original HectorSLAM used the raw scan data to recreate the map, which resulted in a loss 

of orientation and position in the main rectangular room at the left of the map. This is due to the large 

number of people surrounding the robot at certain points in its path, which were also added as parts of 

the map various locations as small artefacts in the middle of the white spaces. On the other hand, the 

proposed leg-detection pre-processing stage allowed HectorSLAM to recreate a more realistic 

representation of the 2nd floor of the building. Not all people were correctly identified, as demonstrated 

by a few artefacts in the middle of the white spaces, but all the removed scan segments representing the 
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legs were removed, thus allowing HectorSLAM to focus almost entirely on segments that represented 

walls and tables to create the map. 

5.5 Conclusion 

This chapter presented a new method for combining SLAM and machine learning for mapping 

crowded environments. The method improves upon HectorSLAM by adding the ability to identify 

people, moving or stationary, in the environment and excluding their signature from the mapping 

process. 

First, the Lidar data was segmented, then clustered into groups of points that are likely to represent 

legs of people walking around. The clustering stage was able to correctly cluster leg segments together 

when people are walking at least 0.5 m apart but tended to group multiple people together when they 

walk at closer distances. A solution to reduce the number of incorrectly grouped segments was to create 

clusters with only two segments (as only people walking/standing with two legs were considered in this 

case), starting from the closest to the furthest segment in a connected row during the clustering phase. 

Next, a feature histogram was created based on the distance between the cluster’s points and their 

projection on an imaginary axis perpendicular to the robot’s line of sight. An Adaboost classifier was 

used to classify the clusters as either a person or background, and the segments representing the 

background were used to map the environment. A real scenario with tens of people in a social event 

was used as a possible worst-case scenario to demonstrate how the modified HectorSLAM, with a leg-

detection pre-processing stage, compared against the original HectorSLAM. Unlike the original 

method, the proposed method was able to successfully close the map loop and the final map represented 

fewer artefacts created by people standing by and roaming around. 
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Chapter 6 
 

6 Dynamic Navigation 

6.1 Introduction 

Future roles assigned to the new mobile assistive robot may include following nurses to and from 

patient rooms, guiding patients and visitors across the ward, and delivering meals to rooms. These 

scenarios will require efficient real-time path planning to both avoid collision and react to any changes 

in the environment in a timely manner. This is largely because people will be constantly moving around 

the robot and changing their paths. Such matters represent a considerable challenge for the assistive 

robot due to the unpredictability of the environment and the limited amount of processing power 

available to search for optimal paths through a dynamic crowd.  

Chapters 4 and 5 investigated new methods for classifying the floor and mapping a populated 

environment. The data collected during the experiments performed throughout the research of those 

chapters was acquired by the prototype robot under the remote control of a human operator, the author. 

Once a solution for mapping a dynamic environment was achieved, the next stage was to enable the 

robot to autonomously navigate the dynamic environment without colliding with anyone or anything. 

To that end, this chapter presents two improvements on current dynamic navigation methods aimed at 

reducing the overhead processing requirements of tracking its position in the map over time and 

updating its path according to changes in the environment. In addition, an improvement in performance 

to the localisation system is proposed by using the scan-alignment technique from HectorSLAM 

previously introduced in Chapter 5 in a state machine combination with Adaptive Monte Carlo 

Localisation (AMCL).  
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6.2 Position Initialisation State 

During the assistive robot's normal operation cycle, it is expected to be switched on from its 

charging station, perform its tasks and finish its routine by returning to the same charging station. As 

the position and orientation of the charging station is fixed in the real world, the robot always knows 

where it is after being switched on, which allows it to move to its path planning phase and start following 

its pre-calculated path.  

In the event of an error that requires the robot to reboot or an emergency shutdown triggered by 

pressing the emergency button, the robot would restart at an unknown position. As a safety measure, an 

initialisation stage was created to check whether the robot was powered on at its charging station or at 

an unknown location. If the location is unknown, the robot then performs a quick scouting routine to 

get its approximate location and orientation on the map. 

 

Figure 6.1 – Assistive robot’s main localisation routine. The continuous scan matching is used when the robot knows where 
it is, otherwise, the AMCL method is used to located the lost robot  

Figure 6.1 shows a flowchart of the robot’s operation. Upon being initialised, the robot acquires a 

laser scan of the environment and compares it a model scan taken at the charging station. The scan is 

pre-process and app clusters classified as legs are removed. If the scans are similar enough, the robot 
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assumes it started at the charging station and the system moves to the “Localised” state; otherwise it 

assumes it could be anywhere on the map and moves to the “Lost” state. 

At the “Localised” state, the robot uses the HectorSLAM’s scan alignment sub-routine to update 

its current position and orientation on the map. After the update, a new scan is acquired and the process 

repeats itself. Throughout the testing and development, the robot did not lose track of its position while 

moving or being stationary, not even once. 

At the “Lost” state, the robot uses the Adaptive Monte Carlo method (AMCL) [138] to estimate 

its position and orientation by roaming around, scanning the environment using the Lidar. The position 

estimation is updated by reshuffling the particles around the environment and increasing the weight on 

the particles whose simulated scan more closely match the current scan been detected. The algorithm 

itself can be described be Eq. (6.1), and is divided into two steps: 

�(��|��:�,��:���)= � �(��|��)��(��|����,����) �(����)����� ( 6.1 ) 

 Prediction Step: Given a previous action, ����, a new sample is drawn for each previous sample 

according to the robot’s movement model, represented by the distribution �(��|��−1,��−1). 

 Correction Step: The new observation �� is added to the sample set by resampling the weighted 

likelihood  �(��|��) of observing �� given the robot’s current position ��. 

Details of the full set of equations and how the algorithm is executed are provided on the original 

paper. When the overall particle distribution reaches a minimum variance (determined empirically), it 

is assumed that the robot's current position is close enough to the real-world position, and so the 

localisation state switches from ‘Lost’ to ‘Localised’. 

6.3 Continuous Localisation Using Scan Alignment 

When the robot is operating inside the ‘Localised’ state, only the scan-matching sub-routine from 

the HectorSLAM is used to update its position and orientation. At every new scan, its position and 

orientation are updated with no odometry information required. The scan alignment method has been 
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found to be reliable for speeds under 1.8 m/s and rotation speeds around 120° per second, which is 

above the assistive prototype robot’s normal operation speeds. 

The AMCL method on the other hand, despite being a very common solution for continuous 

localisation, only provides a position and orientation update when the robot moves beyond a certain 

distance or rotates beyond a certain angle threshold. Real-time updates are provided by odometry 

estimation, unlike the HectorSLAM scan matching, which provides updates at every new scan. AMCL 

also requires a large number of particles in order to increase its chances to converge its estimate to the 

robot’s real position, which increases the processing cost for each update. 

6.4 Tracking Position and Movement of People 

In Chapter 2, different techniques for tracking multiple moving objects were presented and 

discussed, and the Probability Hypothesis Density (PHD) filter demonstrated a good trade-off between 

ability to track multiple objects and the complexity of its calculations compared to the standard Kalman 

Filter approach. Although there have been improvements over the years on the filter itself, the initial 

proposed implementation of the Gaussian Mixture PHD filter (GM-PHD) [139] was found to be more 

than adequate to handle tracking of multiple people moving around the robot. 

The PHD filter is designed based on the Random Finite Sets (RFS). Due to the noisy nature of the 

Lidar sensor and the limitation of the leg segment clustering algorithm, some of the measurements may 

be false positives. The finite set of � elements �� represents all the states ��for each tracked obstacle at 

time �. Likewise, the finite set of � elements �� represents all the sensor measurements �� at time �. 

Supersets ℱ(�) and ℱ(�) represent all the possible states and measurements respectively. The finite 

sets can be expressed as the following: 

�� = {��
�,… ,��

�} � ℱ(�) ( 6.2 ) 

�� = {��
�,… ,��

�} � ℱ(�) ( 6.3 ) 

The state of the system at time � is estimated from its previous state � − 1 by the expression: 
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�� = ��|���(����)∪ ��|���(����)∪ Γ� ( 6.4 ) 

Where 

 ��|���(����) represents the spatial movement of the targets that survive from time � − 1 

 ��|���(����) represents the birthing of new targets between times � and � − 1 

 Γ� represents the birthing of new targets at time � 

The evolution of the states of the system is denoted by the “multi-target transition density” [139] 

��|��� (�|����), and the “multi-target likehood” [140] ℎ(��|��). Both terms are used in Eq. ( 6.5 and 

its posterior estimation in Eq. ( 6.6. Notice that X and Z denote sets of particles of variable sise from 

iteration to iteration.  

��|���(��|��:���)= ���|���(��|�)����(�|��:���)��  �� ( 6.5 ) 

��(��|��:�)=
�
�
(��|��)��|���(��|��:���)

∫��|���(��|�)����(�|��:���)��  ��
 ( 6.6 ) 

The PHD filter recursion reduces the inherent complexity of combining multiple distributions, 

commonly used in the multiple target Bayesian tracker, by propagating the density of the distribution 

to further time steps. 

��|���(�)= ��
�,�
(�)��|���(�|�)���� (�)�� + ���|���(�|�)���� (�)�� + �

�
(�) ( 6.7 ) 

��(�)= �1− ��,����|��� (�)+ �� ���
�
�,�
(�)ℎ�(�|�)��|�−1(�)

��(�)+ � ∫ ��,�(�)ℎ�(�|�)��|�−1(�)��
 ( 6.8 ) 

6.5 Path Planning Methods 

Path planning is the area concerned with determining future positions of the robot in order to avoid 

physical obstacles. Robot arms use path planning to predict the positions of the actuators and space 

whereas mobile robots, like the assistive robot proposed in this research, use path planning to plot all 

waypoints to be followed in order to reach the destination without bumping into anything or anyone. 



  
 

 
  

109  

The path planning methods to be discussed below do not track obstacles in real time but rely on third-

party systems to provide information as to where all the objects are. 

The A* search heuristic is a commonly used path-planning method for finding the lowest cost path 

in a graph search, due to its robustness and simple implementation. It is, however designed for static 

environments, as recalculating the entire path every time someone moves renders the method 

prohibitively expensive for real-time applications. 

A variation of the A* algorithm that reduces the processing time by sacrificing the shortest path 

guarantee is the weighted A-star. This variation simply uses a coefficient to change the final cost for 

each cell, thus biasing the search towards a more directed path towards the goal. Figure 6.6 shows a 

comparison between the results obtained from different weighing coefficients. 

 
(a) Weighted A* with ε = 2.5 

 
(b) Weighted A* with � = 1.0 

 
Figure 6.2 – Comparison between different weights for A*. The higher the coefficient epsilon, the faster the path is to 

compute, but the less optimal it becomes 

A coefficient, �, of 1.0 (original A* configuration) produces a path of 12.66 m in 171 ms, whereas 

a coefficient of 2.5 produces a path of 13.68 m in 100 ms. A higher coefficient produces a longer path 

in less time, and a coefficient of 1 will produce the optimal path at the longest time. The exchange 

between path length and time required to process it is a desirable trade-off when pursuing a real-time 

path planner.  

This idea was further explored in the Anytime Repairing A* (ARA*) [141] method, which uses a 

series of Weighted A* searches to produce a path solution within an allocated time. The first search has 

the highest coefficient and requires the least amount of processing time to produce a sub-optimal 
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solution with lowest processing requirements, followed by subsequent searches with shorter and shorter 

path lengths and respectively higher and higher processing times.  

6.5.1 Safe Interval Path Planning (SIPP) 

The Safe Interval Path Planning (SIPP), introduced in [53], presented a different method for 

handling dynamic obstacle avoidance during the path planning phase. The SIPP method, based on the 

HCA* algorithm [142], executes its path search in current and future states of all cells on the map. SIPP, 

like the HCA*, guarantees an optimal solution at the expense of a longer processing time. It assumes 

that the robot is able to wait in place without falling over and that inertial constraints, such as 

acceleration and inertia, are negligible. In the case of the assistive robot, this assumption is valid as the 

robot is capable of standing in place on its four wheels and is able to reach its target cruising speed in 

hospitals in a few hundred milliseconds, which are negligible in journeys which typically last tens of 

seconds. 

SIPP vastly improves upon HCA* by reducing the search space from a large array of continuous 

fixed-time intervals of an unchanged state to a single time interval representing the availability for a 

cell between two time periods. A safe interval is defined as the continuous period of time when the cell 

is not occupied by any moving obstacles. The time is divided into time steps which are concatenated 

into a single time interval defined by the first and last time steps in which the cell is unoccupied. A 

collision interval is defined by the first moment an object moves into a cell to the last moment when he 

leaves. If the obstacle remains in the cell until the end of the search time, the interval’s duration is 

assumed to be infinite.  

Figure 6.3 shows a simplified example of how SIPP creates time intervals based on the availability 

of the cells at any given time. In this example, the robot and the moving obstacles are treated as particles 

that occupy one cell at time. The robot, located at (6,5) has to reach (3,5) without colliding with any of 

the moving obstacles O1 and O2, which are moving east and south, respectively. The world state for 

each of the eight time steps, T0 to T7, shows how the robot moves out of the way of O1 at T3 and moves 

out of the way of O2 at T5, finally reaching its destination at T7. 
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Figure 6.3 – Collision diagram showing robot and moving obstacles in their respective trajectories, and key points 
indicating delimitations of collision interval over time 

The entire manoeuvre happens in eight time steps in this example, but in the real world, each time 

step would be 250 ms in duration, which considerably increases the total number of states to search for 

a path. The SIPP method compresses the total number of states for each cell-to-time interval, shown at 

the bottom of Figure 6.3, where the central cell’s availability over time, shown in eight time steps, is 

compressed to five time intervals. Cells that are never occupied by any moving obstacles have only one 

time interval because all time steps are labelled as “free”.  

In a real-world scenario, making the real dimensions of a cell large enough to accommodate the 

physical body of the robot and the people would generate a low-resolution representation of the 

environment. However, in order for the robot to be able to plan its path amongst moving obstacles, a 

finer resolution of the space state of the map is required. The solution is to represent the body of the 
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robot with multiple cells of smaller sise, like in the original SIPP method. Figure 6.4 (a) below shows 

an example of all the cells that a robot, denoted by a circle with radius equals to 0.3 m, would occupy 

in a 10 cm per cell resolution. At every time step, a new filled circle is drawn on the next layer of the 

volumetric space representing the total state-space. If the robot is moving on one direction, the 

overlapping of the occupied cells over time by the robot could take the shape, for example, like the one 

shown in Figure 6.4 (b) below. 

 

 
(a) (b) 

Figure 6.4 – Real-world representation of the robot's footprint discretised into cells (a) and same footprint, depicted over 
time, showing the robot moving in a straight line (b)  

The original SIPP method used a robot equipped with a differential drive for its results, which 

requires using a lattice planner to generate all viable actions at any given point. These viable actions 

are defined by the robots’ own kinematics, and in the case of differential drive, it is a non-holonomic 

configuration. The prototype assistive robot, however, is equipped with a holonomic base that allows it 

to move in X and Y whilst being able to rotate at the same time. Given that the prototype robot does not 

move at excessive speeds, dynamics of the movement are not considered and therefore the robot can 

perform any of the orthogonal movements on a dime. This means that the lattice planner is not necessary 

to determine the viability of its motions, but rather its viable actions can be approximated by the cells 

around its position at any given time — provided it is not moving at its top speed. 
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SIPP uses a modified version of A* that incorporates searching in future states for each of the cells 

without changing the A* core heuristics. The modified search algorithm can be seen in Figure 6.5. 

1 g(sstart) = 0; OPEN = [] 
2 insert sstart into OPEN with f (sstart) = h(sstart); 
3 while(sgoal is not expanded) 
4   remove s with the smallest f-value from OPEN; 
5   successors = getSuccessors(s); 

6   for each s′ in successors 

7      if s′ was not visited before then 

8        f (s′) = g(s′) = 1; 
9      if g(s) > g(s) + c(s; s0) 

10        g(s′) = g(s) + c(s, s′); 
11        updateTime(s′); 
12        f (s′) = g(s′) + h(s′); 
13        insert s0 into OPEN with f (s′); 

Figure 6.5 – Modified A* Algorithm with Safe Intervals in place [53]  

In the algorithm above, every state � in the map has a variable g(s) that represents the path with 

the lowest cost from the beginning of the origin to the state �. The A* heuristic function ℎ(�) is an 

estimated cost from current state � to the goal of the robot. The cost of taking an action, like moving to 

an adjacent cell or waiting in place, is defined by �(�,��), where � is the state prior to the action, and 

�′denotes the final state. 

Upon initialisation, the SIPP algorithm is run once to determine a valid path to the goal. The subroutine 

getSuccessors, shown in Figure 6.6, returns all possible actions that can be performed at each point in 

time, including the amount of time required to complete them. 

1 getSuccessors(s) 
2   successors = [] 
3   for each m in M(s) 
4     cfg = configuration of m applied to s 
5     m_time = time to execute m 
6     start_t = time(s) + m_time 
7     end t = endTime(interval(s)) + m time 
8   for each safe interval i in cfg 
9     if startTime(i) > end_t or endT ime(i) < start t 
10      continue 
11    t =earliest arrival time at cfg during interval i with no collisions 
12    if t does not exist 
13      continue 
14    s0 = state of configuration cfg with interval i and time t 
15 insert s0 into successors 
16 return successors; 

Figure 6.6 – “getSuccessors()” subroutine used in the modified A*[53]  
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In Figure 6.6, function �(�) returns all the viable actions that the robot can take at any state �. Each 

action has a cost to it, which takes into account how long the robot has to wait before starting the acting 

as well as the how long it takes to execute it. The start and end times for a safe interval � are represented 

by variables ���������(�) and �������(�). For every future state �� from a state �, a new successor 

state is generated, as long as the time in which the robot arrives and the time the robot leaves that state 

do not overlap with a collision interval. In order to create a path that arrives at its destination at the 

earliest possible time, each new action starts at the earliest possible time in its interval that is guaranteed 

not to enter a collision interval after the robot moves. If necessary, the robot has to wait in place until 

such time becomes available.  

During path search using the original A* algorithm, a current path is replaced by another path 

whenever the combined cost of the most recent state indicates a shorter path. In the modified A* 

algorithm used in SIPP, the same principle holds, however, that the path with the earliest arrival time is 

the one considered the shortest path. 

An improvement over the original SIPP method is the Anytime Safe Interval Planning (ASIPP) 

[54] which combines the near-real-time replanning capabilities of ARA* with the SIPP method. ASIPP 

relies on the same assumptions inherent to the use of SIPP, namely that the acceleration is negligible 

and that the robot can wait in place if necessary, and adds the use of a time horizon, originally introduced 

by the Time-Bound Lattice method [143], to limit the search depth of SIPP in order to comply with the 

time restrictions imposed by the ARA*.  

 

Figure 6.7 – Diagram showing the hierarchical dependency of the path finding methods discussed in this chapter.  

The diagram shown in Figure 6.7 illustrates how SIPP relates to all the previously discussed path 

planning methods. ARA* requires Weighted A* in order complete searches in different time windows. 
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In turn, Weighted A* requires the original A* method with the addition of a coefficient to alter the cost 

for the cells. By combining SIPP and ARA*, ASIPP is capable of returning path solutions of various 

lengths in real time, depending on the available processing time.  

One of the major drawbacks of the ASIPP is that, like its predecessor SIPP, it also requires 

knowledge of where each obstacle is and where they are going at all times. In the original published 

work, the final results were presented from a simulation where the robot had access to the position and 

velocity of all moving obstacles at all times. In a real-world scenario, like in a hospital, keeping track 

of every moving person at every accessible area would require a highly complex visual tracking system 

to be installed in each hospital.  

6.6 Anticipated Improvement Over Previous Methods: Dynamic Safe 

Interval Path Planning (DSIPP) 

The proposed method for this chapter focuses on improving two major limitations found in both 

SIPP and ASIPP: The need to access a large memory volume to determine the availability of all map 

cells at all times, and the need for knowing the position and velocity of all obstacles on the map at all 

times. We introduce a collision detection based on detecting the intersection between the 2D footprint 

of the robot and the moving obstacles’ current trajectory, represented by a vector in order to both remove 

the need for discretising the collision space and resuming the overhead cost of re-calculating the 

collisions whenever an obstacle changes its path. 

6.6.1 Trajectory Update 

At every update, the last 10 consecutive known positions of every visible moving person are used 

to determine the person’s respective mean direction and velocity. This direction is considered the 

estimated trajectory vector, with origin set to the position where the person was first seen or the last 

time they changed their direction and/or speed. 
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Figure 6.8 – Example of how a moving obstacle is tracked throughout its trajectory. The person is represented by the blue 
and their estimated trajectory is represented by the vector T 

Figure 6.8 shows an example of how the moving obstacle is tracked along its estimated trajectory. 

The moving person is represented by the circle cantered at � with radius ��. The person’s trajectory is 

represented by the trajectory vector � . As the person moves further along their path, the distance 

between the person and the estimated trajectory is the perpendicular vector dthres, calculated by 

projection point O onto the trajectory �.  

First, if the distance dthres is found to be beyond 0.1 m, the trajectory is updated to reflect the current 

deviation from the estimated course. The threshold of 0.1 m was determined after many trials using 

varying distances for updates, ranging from 0.05 m to 0.25, and 0.1 m was found to be a good 

compromise between resilience to noise introduced by position estimation and accuracy in term of 

trajectory prediction.  

Next, if the person changes their speed, �� , the projected speed along the predicted path, �′�, 

also changes, which can trigger another path-planning update if the new speed is 0.15ms-1 faster or 

slower than the original recorded speed of the person at the time the trajectory was predicted.  

Finally, if new people are detected by the robot, or any of the previously visible people are lost for 

more than a few seconds, a path update is also triggered. The tracking algorithm used in this case, the 

PHD filter, plays a major role in determining if a new update should take place, as it keeps tracks of all 

visible moving obstacles and associates their positions over time, even when some readings are 

erroneous or missing. Since only the Lidar is used to track people legs, it is more probable that 

misclassifications happen when compared to using an image identification system.  
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One specific scenario that could represent problems for the path planning is when the robot is 

required to backtrack in order to let a person pass by, in narrow corridors, for example, and the line of 

sight between the robot and the person is broken. If a path planning update was set to be triggered 

whenever the current number of people being tracked changes, a “loop scenario” could be created 

accidently in situations when the robot had to move away from the person’s view in order to let them 

through. This “loop scenario” was verified in the simulation and is illustrated in a simplified diagram 

in Figure 6.9. 

 

Figure 6.9 – ‘Loop scenario’ where the person moves in and out of sight, forcing the robot to re-plan and repeat. This is 
fixed by adding a wait condition before re-planning. 

At (a) the robot has no visual contact with the person coming from the west and is about to turn 

the corner towards its goat at (2,5). When line-of-sight is created between the robot and the person at 

(b), shown as the red line, the new path plan is to move away from the person’s linear trajectory and 

wait for him to pass. However, when the robot moves to (7,4) at (c), a new path planning update is 

triggered and, since no people are in sight, the robot resumes its original path. At (d), the same scenario 

in (b) is repeated, and this causes the robot to move back and forth between positions (7,4) and (7,5). 

This repeats until the person is always in sight and the updates stop. In practice, the robot moves back 

and forth a few centimetres, just enough to occlude the Lidar sensor from the moving object. 
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This problem could be solved by simulating the person’s movement when out of sight for long 

periods of time, assuming constant velocity, and re-matching their predicted and actual position. 

However, a simpler solution found was to disable any path update until the robot finishes its next 

waiting period. If implemented in Figure 6.9, after the robot detected a moving person at (b), its path 

plan would be to move out of the trajectory and wait, but all line-of-sight updates would be disabled 

until it finishes that wait time. In practice, this simple solution proved very effective in many different 

scenarios.  

6.6.2 Geometric Collision Detection  

The geometric collision detection is a proposed solution to reduce the time required to detect 

collision states on each cell by detecting the time and duration of each collision, thus providing 

collision-intervals directly. The original SIPP or ASIPP would generate a three-dimensional volume of 

cells (as the orientation of the robot is not a dimension, given the holonomic drive) with width and depth 

equal to the map’s dimensions, and depth equal to the number of time-steps allocated to discretise the 

availability of each cell over time. Converting time-steps of a cell to time-intervals to be used by the 

A* algorithm would require traversing every single layer of the three-dimensional volume for each of 

the cells being checked on the map. In addition, the exact moment of collision is determined by the 

resolution of the time-step. Reducing the sise of the time-step can increase the time accuracy of the 

collision; however, it also increases the amount of memory required and time taken to check all the 

extra layers of the map. 

In comparison, the geometric collision detection is achieved by testing if the perpendicular distance 

between the robot and the moving obstacle’s linear trajectory is shorter than the sum of both the robot’s 

and the obstacles radii. This not only dismisses the need to transverse a three-dimensional volume of 

cell states, but also returns the exact moment in time the collision occurs. An example of how the 

geometric collision detection works is demonstrated in the figure below (6.10). 
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Figure 6.10 – Collision detection using a line and circle intersection method. The points C1 and C2 represent respectively 
the beginning and end of the collision between the robot and the person, should the person maintain their trajectory 

In Figure 6.10, a person (blue circle) and the assistive robot (green circle) are seen near each other, 

where the vector starting at the centre of the blue circle indicates the direction the person is moving. 

The diameter of the circles represents the person and robot’s collision distance. A collision is detected 

when both circles overlap. The position of the robot is not necessarily the actual position of the robot, 

but rather, a possible position of the robot in one of the map’s cells at a point in time being tested by 

the A* algorithm. An initial collision is detected at point C1, and the collision continues should the 

person remain in their linear trajectory, until point C2. Points C1 and C2 can be calculated by detecting 

the intersection of an imaginary circle with radius equal to the sum of both the person and the robot’s 

collision radii, �� + ��, and the estimated trajectory of the person. The trajectory is a vector with origin 

equal to the person’s position when the trajectory was estimated. The respective points representing the 

person and the robot’s centre are: 

������� = [��,��] 

������ = [��,��] 

Using these points, the following parameters can be calculated to detect where the collision(s) 

between the line and the circle happen, if any. 

�� = �� − �� 

�� = �� − �� 
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�� = ���
� + ��

� 

� = �
�� ��
�� ��

� = ���� − ���� 

The intersection solution is the same as a quadratic equation, yielding zero, one or two solutions, 

depending on the value of the delta function: 

∆= (�� + ��)
���

� − �� 

Where if ∆< 0, there is no intersection and therefore no real solution; if ∆= 0, the circle and the 

line are tangential; and if ∆> 0, there are two intersection points. The x and y values for C1 and C2 can 

be calculated by: 

� =
��� ± ���(��)��√∆

��
�  

( 6.9 ) 

� =
−��� ± ������√∆

��
�  ( 6.10 ) 

Eq. ( 6.11 can return no points in case of no collision; one point – tangent circle to line – indicating 

an infinitesimally short collision between the robot and the person; or two points (the most common 

outcome), indicating a continuous collision over time. The duration of a detected collision can be 

defined as the time interval between t1 and t2: 

�� =
�

���������
 ( 6.11 ) 

�� =
� + ��

���������
 ( 6.12 ) 

The duration of this continuous collision is equal to the collision-interval of this cell where the 

robot is placed. If more obstacles collide with the robot at that position, more collision intervals can be 

calculated and added to that cell’s states. A comparison between the two methods can be seen in the 

example depicted in Figure 6.11, where two moving obstacles collide with the robot at different points 

in time. 
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Figure 6.11 – Comparison between discrete time based and geometric based collision detection. The continuous time-step 
holds the entire duration of the occupied state, whereas the discrete method requires an iterating through each time step. 

The diagram above shows how the geometric collision detection method (top) is able to accurately 

compress all the collision data in two time intervals during the collision detection stage. In contrast, the 

time-step discretised space (bottom) consists of 20 cells that need to be transverse and compressed into 

two collision intervals at the time-interval stage.  

6.7 Experiments and Results 

In order to quantify the difference in performance between the collision detection used in both 

SIPP and ASIPP, and the new geometric-based method used by the proposed DSIPP, a series of 

simulated test scenarios were created. The use of simulation was necessary to provide a deterministic 

repeatable scenario, whereas it would be virtually impossible to recreate the same states running the 

experiment in the real world.  

The experiments were based on the scenario described in the state-of-the-art solution [54], which 

is constituted by a 300 by 300 cell area with various moving obstacles roam around. The time-step was 

set to 100 ms and the robot was instructed to cross an area avoiding all the moving obstacles. Path 

planning updates for both ASIPP and DSIPP were triggered by obstacles that moved in and out of sight. 

Error! Reference source not found. shows the scenario configurations used for the experiments.  

In the case of many moving obstacles, obstacles further away would sometimes be obstructed by 

obstacles nearby in the same line-of-sight. Obstacles that moved in and out of line-of-sight were tracked 

using the PHD filter, but extra path planning updates would still be generated due to the high visually 

obstructed region around the robot. The robot and the obstacles can be seen as the green and red circles, 
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respectively. The blue path is the current path the robot has calculated to avoid all moving obstacles 

within sight, and the magenta trail lines represent the last position that each of the obstacles have been 

within 5 seconds. As the obstacles were set with different velocities, the length of their trails vary. 

 

Figure 6.12 – One of the scenarios with the robot (green circle) avoiding 15 people moving across the map. The robot’s 
calculated path can be seen in blue, and the person’s trajectory vectors can be seen in magenta. 

Two main variables were selected for their direct effect on the performance of both methods: the 

time horizon for ASIPP and the number of moving obstacles for the proposed DSIPP. The ASIPP 

introduced the concept of a time-horizon threshold as a limit to how far the robot can plan ahead before 

it has to re-plan its path. The larger the time-horizon, the longer it takes to populate and search the 3D 

volume containing the collision states of the cells before the time-interval stage. On the other hand, the 

number of moving obstacles directly affects the performance of DSIPP — instead of populating a 

volume with the state of every cell before running a weighted A* algorithm, each cell searched by A* 

has to be tested for collision with all visible obstacles. The higher the number of obstacles, the longer 

it takes to check every cell. 

A combination of a number of obstacles, varying from 2 to 30, and time intervals, varying from 5 

to 25 seconds, was used, and the time taken for planning each path was recorded for each run. The 

results for both ASIPP and DSIPP methods can be seen in Figure 6.13. The 3D plots show the number 

of obstacles and time horizon duration on the bottom X and Y axes, and the processing time taken to 

plan the path is shown on the Z-axis. 
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(a) ASIPP (b) DSIPP (proposed) 

Figure 6.13 – Time taken for each update for each person that entered the robot's line-of-sight. ASIPP becomes slower as 
the time horizon increases, whereas DSIPP becomes slower as the number of visible moving obstacle increases 

In Image (a), the ASIPP method, as the length of the time horizon increases, more cells need to be 

accessed for registering the movement of all moving obstacles. The number of cells that need to be 

accessed grows in a cubic progression to the number of time steps in the time horizon. With a time 

horizon of five seconds, all planning is completed within around 10 ms; however, in cases where the 

robot has to wait, 5 seconds is not enough. A 20-second time horizon was found to be more adequate 

to handle real and simulated scenarios with realistic corridor width. Additionally, the number of moving 

objects has little effect on the time required to re-plan, as the collision detection stage is done prior to 

the weighted A* path search. 

In Image (b), varying the length of the time horizon has no significant effect on the proposed DSIPP 

method as it does not have a pre-process all collision cells before creating the time-intervals. Instead, 

DSIPP creates collision time-intervals for every cell, and checks them during the weighted A* by using 

the geometry-based collision detection introduced in 6.6.2. On the other hand, the time required to 

finalise the path search in the DSIPP method increases with the increasing number of moving obstacles. 

It is also possible to see that the longest processing time is still less than 10 ms, compared to the 40 ms 

of the ASIPP method under the same conditions. In order to better visualise the speed improvement 

between the previous and the proposed planning methods, two ratio plots were generated in Figure 6.14 

below. 
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(a) Ratio plot 3D (b) Ratio plot 2D – Side view 

Figure 6.14 – Performance improvement between ASIPP and proposed DSIPP methods shown in a 3D plot (a), and on a 2D 
plot (b). The blue line and red lines on the 2D plot represent the mean and one standard deviation of the number of moving 

obstacles for each time horizon 

The result of dividing the processing time from both methods is a 3D slope, seen at Image (a), that 

is mostly affected by the increase in length of the time horizon. This effect was expected as the DSIPP 

is not affected by the time-horizon, thus keeping its processing time nearly constant, while the time 

required by ASIPP increases. The number of obstacles that influenced the slope of Image (b) in Figure 

6.13 does not appear to have any effect here due to the much smaller magnitude when compared to the 

time values in the ASIPP plot. Therefore, as the number of moving obstacles causes little to no variation, 

a 2D version of Image (a) from Figure 6.14 was created as Image (b).  

In Figure 6.14 (b), the blue line indicates the mean value of the 3D plot on 2D dimensions (Ratio 

and Time Horizon) and the red line indicates one standard deviation of the combined 3rd dimension 

values. Figure 6.14 (b) shows a clear improvement in performance in favour of the proposed DSIPP 

method as the time horizon increases. At a 25-second time horizon, the proposed DSIPP method is 4.5 

times faster than the ASIPP, thus making the DSIPP a more suitable candidate for real-time applications 

in dynamic path planning. 

6.8 Conclusions 

This chapter presents two contributions in the areas of real-time localisation and dynamic path 

planning. The first contribution is a way for combining the scan alignment sub-routine from 

HectorSLAM into a finite state machine that uses AMCL to locate the robot in case it is lost and 
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switches it over to the scan-alignment system when the robot is certain of its location. The scan 

alignment uses the data processed by the leg detection system (Chapter 5) which makes it less prone to 

drift when around many moving obstacles. This method also requires a fraction of the processing power 

compared to particle-based methods and doesn’t require any odometry information, which saves space 

in the robot’s internal messaging system. 

The second contribution of this chapter is an improvement in both speed and memory usage on the 

dynamic path planning method, Anytime Safe Interval Path Planning (ASIPP). Tracking dynamic 

moving obstacles is achieved by using the Probability Density Filter (PHD), which is more suited for 

tracking many moving obstacles compared to combined Kalman filters of Joint probability distribution 

filters for its reduced processing overhead requirements. The key difference between the proposed 

Dynamic Safe Interval Path Planning (DSIPP) and SIPP/ASIPP is the removal of the pre-processing 

collision detection stage, where the cells that the moving objects occupy at any time must be populated 

into a 3D array with width and depth equal to the map dimensions, and height equal to the length of the 

time horizon in time-step units. 

The new method dismisses any memory pre-allocation and instead generates direct time intervals 

from checking collisions with every visible obstacle at every cell evaluated by the Weighted A* 

algorithm. The collision detection is achieved by a simple circle-to-line intersection, which is both 

computationally inexpensive and provides a continuous value for the boundaries of the time interval. 

Several experimental simulations were run, varying the number of visible moving obstacles, and the 

length of the time horizon and the proposed DSIPP demonstrated to be between 1.5 times (at 5 second 

time horizon) to 4.5 times (at 25 second time horizon) faster than the previous state-of-the-art solution. 

Future improvements to the DSIPP could be focused on the line-of-sight update condition. 

Currently, the “loop condition”, in which the robot enters a re-planning loop when moving objects leave 

its sight in certain situations, is fixed by only allowing further path planning updates after reaching the 

next waiting period. A possible path for development could be to introduce an internal simulation of all 



  
 

 
  

126  

moving obstacles with the aid of the implemented PHD filter and synchronise its predicted state with 

its real state at every new scan. 
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Chapter 7 
 

7 Sensor Fusion for Long Range Gaze Estimation 

7.1 Introduction 

Some of the roles the future hospital assistive robot could undertake include delivering goods to 

and from rooms and guiding patients and visitors in the hospital. Whilst delivering goods is a task that 

relies heavily on following a path and avoiding obstacles, guiding people would introduce a human 

element to the path-following and obstacle-avoidance problem. The assistive robot should, in theory, 

be able to verify if the person is not deviating from the path (adjusting accordingly if necessary), to wait 

for the person if they stop, and to assess if the person is paying attention to any instructions given on 

the screen. In addition, people following the robot would present various degrees of cooperation and 

cognition, which would make designing a robust method for guiding anyone in any scenario a challenge 

far larger the scope of this chapter. Instead, this chapter focuses on improving the perception of subtle 

visual cues that would help the assistive robot determine the person’s intention during a task and adapt 

accordingly. 

In Human Robot Interaction (HRI), gaze detection in the wild is a difficult challenge due to many 

environmental factors, such as lighting conditions, crowds, and hardware limitations of the sensors. In 

the reviewed literature, two main types of gaze detection were presented: Image processing and Infrared 

(IR) based. Image processing relies on detecting the position of the heads on the image, following the 

eyes’ relative position on the face in order to estimate a gaze direction. These methods are 

computationally expensive and performance varies depending on lighting conditions. The gaze 

direction estimation is not very accurate and tends to be noisy due to the resolution of the image. 

Processing images from a high-resolution camera would require expensive parallel processing hardware 

to run it in real time. Methods that use IR are mainly hardware based and rely on illuminating the 

person’s face with IR light to cause the pupils to reflect part of the light back, thus making the only the 
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eye visible on an IR camera. Detecting the position of the eyes in space is achieved through simple 

image-processing and trigonometric operations. These methods often only work on short distances (less 

than 60 cm) and require previous calibration, which render them difficult to implement on general 

populations. 

An example scenario where a mobile assistive robot is guiding an elderly person through the 

hospital can be seen in Figure 7.1 above. In this scenario, the robot’s sensory ability to detect the 

person’s gaze would enable it to be more proactive in its actions and verify if any new on-screen 

instructions have been seen by the person. 

   
(a) (b) (c) 

Figure 7.1 – Illustration of a scenario where the robot is guiding an elderly patient using gaze tracking to enhance its 
response: (a) Robot detects that the patient is looking at it and maintains course, speed and distance from the person; (b) If 

the person diverts their gaze for some time, the robot can detect the person’s change in focus and reduces its speed to 
prepare to wait for the person in case they stop; (c) The robot waits for the person to look back at it before resuming 

guidance. 

 In Image (a), the robot is seen moving at the same speed of the person being guided, shown as the 

blue arrows, and maintaining a fixed distance, shown in the green arrow-determined spacing between 

them. At this state, the robot is also able to determine that the person is looking directly at it and any 

instructions displayed on its screen are visible to the person. If the person fixes his gaze somewhere 

else for more than a short period of time, as depicted in Image (b), it is safe to assume that the person 

is now focused on someone or some event besides the robot. Without gaze tracking, the robot would 

still be able to detect if the person slows down or stops (adjusting its own speed accordingly), but it 

would not know if the person is able to see the screen, read new instructions or even distinguish if any 

gestures are directed at the robot itself or someone else. In Image (c), both the robot and the person have 

come to a complete stop as the person seems to be engaged in a conversation with someone outside the 
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frame. The robot can wait for the person to finish his conversation and return focus to the robot, or 

perhaps even try to intervene if too much time has passed by moving to the centre of the person’s line-

of-sight.  

This chapter proposes a hardware implementation of a gaze detector to be used in ranges beyond 

60 cm by combining an IR camera, IR illumination and a depth sensor. The idea is to combine the eye 

detection by the IR eye-tracker with the real position of the head detected by the depth sensor. With two 

sources for the position of the eyes, the final position is expected to be less noisy and therefore more 

reliable. Several experiments were conducted to evaluate the accuracy and limitation of the hardware 

in a range of scenarios. The methods and results presented in this chapter were devised, planned and 

implemented collaboratively with fellow student; now Doctor; Stephen McKeague; the accompanying 

hardware solution was wholly designed by the author as a specific requirement of this research. 

7.2 Gaze Detection System Design 

The design of the gaze tracker was based on the successful implementation of the previous works 

presented in Chapter 2, and further expanded to incorporate a depth sensor to improve accuracy. Figure 

7.2 shows the 3D CAD model of the eye-tracker built for the experiments. The complete gaze tracker 

shown on the CAD model consists of one camera with a visible light filter, three sets of IR lights (two 

off-centre and one on the camera), and one Kinect depth sensor. Both eye tracker and Kinect cameras 

are registered so that each pixel on the eye tracker camera can be projected on the Kinect’s point cloud. 

A local linear interpolation is used in cases where pixels on the eye tracker camera do not directly 

correspond to pixels on the Kinects depth camera to ensure a smooth depth estimation. 
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Figure 7.2 – 3D model of the final assembly version of the eye tracker. The IR camera was fixed on an aluminium extrusion, 
with the on-axis illumination source mounted inside the camera’s lens’ rim. The off-axis illumination sources are mounted 

on both ends of the bar, and the Kinect sensors is fixed at the bottom 

The eye tracker has two groups of LEDs that alternate flashing between frames of the camera. The 

off-centre group consists of two panels of LEDs located at either end of the aluminium bar that generate 

an IR image of the subject when lit. The on-centre group of LEDs generate a nearly identical image as 

the off-centre LEDs’, with the main difference being that the pupils appear much brighter. The Kinect 

depth sensor is used to acquire a 3D point cloud of the environment to be used during the sensory fusion 

stage. The actual construction of the eye tracker used 3D printed parts to firmly secure the cameras on 

the frame, as any translation or rotation would require a recalibration between the cameras. 

Given that the average distance between the robot and the people it would be interacting with is 

expected to be beyond 60 cm, only the pupil reflection would be reliably detected; therefore, the gaze 

direction could be approximated to a vector perpendicular to the vector connecting both pupils in space. 

This would be a valid approximation of where the person is looking, as people unconsciously adjust 

their head orientation to align with their gaze in order to minimise eye muscle strain. 

Figure 7.3 shows all the major processing stages for extracting the position of the eyes in the image 

space. Two images are taken by the eye tracker camera under different IR lighting conditions, one with 

the on-axis and one with the off-axis LED lights. This produces two images of the person’s face where 

the one taken with the centre lights shows brighter pupils. Since the same camera is used to generate 



  
 

 
  

131  

 

Figure 7.3 – Major stages of detecting the pupils using the IR camera setup. Images takes using different illumination 
sources are subtracted to reveal the position of the pupils. Subject of the images is a colleague that volunteered for the 

experiment 

both images, an image subtraction generates a nearly completely black image with only the pupils and 

minor artefacts left. The image is then converted from grey scale to black-and-white, and each of the 

white blobs are detected through a blob-detector operation. The minor blobs are removed and the ones 

left are connected according to their likelihood of being two pupils next to each other (anatomical 

annotation). 

 

Figure 7.4 - 3D Point cloud capture by the kinect of two subjects walking towards the robot. The pupils detected by the IR 
camera are projected onto the 3D point cloud in order to get a real-world depth estimate of there the eyes are in space. 

 Figure 7.4 shows the detected pupils form the IR camera onto a point cloud captured by the Kinect 

depth sensor. The colours represent the height of each point relative to the floor, and the dark grey areas 
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are not visible by the Kinect. Once the pupils are projected on the point cloud, the closes point in space 

is used to centre the pupil position, in this case represented by white spheres. 

7.2.1 Control Board Design 

A control board had to be created from scratch in order to drive the LEDs on the IR eye tracker in 

synchrony with the camera signals. The first components selected for the gaze detector were the camera, 

a Point Grey Flea ®3, a 1.3Mp (1328x1048pixels) USB 3.0 camera (Model FL3-U3-13S2M-CS) and 

the lenses (Fujifilm model DV3.4x3.8SA-SA1). The selected camera was equipped with a General 

Purpose Input/Output (GPIO) connector that provided logic level signals for the images that were taken, 

which is very useful to control the on- and off-axis illumination directly without software intervention.  

 

Figure 7.5 – Electronics circuit diagram for the control board, responsible for controlling both on- and off-axis light 
sources and interfacing with the camera  

The selected lenses were equipped with zoom, focus and electronic shutter control. Zoom was set to its 

widest angle and focus to infinity, while the shutter was locked at a constant “open” position. Next, an 

IR filter Edmund Optics (model number: 43-949) was used to block all visible light, letting only the IR 

illuminated scene to be visible by the camera. 

The circuit board is composed of two symmetrical LED controllers, one for each illumination 

source, as shown in Figure 7.5. The camera’s GPIO provides two square waves, 180 degrees apart, 
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synchronised with the half the capture rate of the sensor. This effectively provides two logic signals 

where their ON state represents alternating frames on the camera which are used to directly drive the 

LEDs with no software required. The GPIO cable from the camera is split into individual wires, which 

are connected to their respective terminals in the control board. 

Each of the wires that carries a square wave signal are connected to terminal J2, with the on-axis 

signal in pin 1 and off-axis in pin 2. The signals do not drive the MOSFETs directly, which are 

responsible for the turning on the IR LEDs; instead, they control a transistor that acts as a buffer to 

ensure that only a minimal amount of current is being drained/sunk from/into the GPIO line. Notice that 

the visible light red LEDs on the control board were added for debugging purposes. The LEDs from the 

on- and off-axis sources were then attached to terminals J1 and J3, respectively.  

7.2.2 Prototypes 

Once the structure of the data collection and the electronics design were completed, a first 

prototype was needed to prove the validity of the idea. The number of LEDs required for the on- and 

off-axis light sources, as well as the distances between the LEDs and the camera, were still unknown, 

and therefore some adjustments would be necessary through prototype iterations. Figure 7.6 shows the 

first prototype with its different light sources illuminated one at time. The first prototype used 24 LEDs 

placed around the camera lenses for the on-axis illumination and 36 LEDS, 18 on each side, for the off-

axis illumination. The goal was to make each light source illuminate the scene equally, with the only 

major difference being the pupil reflection on the on-axis source. However, the LEDs needed to be 

placed even closer to the camera’s CMOS sensor in order to detect any noticeable differences on the 

pupils. Distances and angles of the off-axis light sources were determined empirically by comparing 

the illuminated scene from the on-axis with the one illuminated from different positions of the off-axis 

sources. The pictures of all three prototypes can be seen in Figure 7.7. 
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(a) On-axis LEDs illuminated  (b) Off-axis LEDs illuminated  

Figure 7.6 – IR light from centre and off-centre IR LEDs captured by a mobile phone camera. CMOS sensors, like the ones 
in mobile phones, are able to capture both visible and infrared light. 

The second prototype used 3D printed parts in order to move the on-axis LEDs inside of the camera 

lenses. This resulted in much brighter pupil reflection, however, it came with the cost of reducing the 

camera’s view angle to around 35 degrees (+/-17.5 degrees from the screen centre point) due to the 3D 

printed piece inside the lenses. A new 3D support piece for both off-axis light sources was also added.  

(a) First prototype (b) Second prototype (c) Third prototype 

Figure 7.7 – Different prototypes of the eye tracker. The first prototype was built in a day as proof of concept. The second 
and third one used 3D-printed parts and represented several minor interactions in design. 

The third prototype retained the previous 3D-printed parts and added four new brackets in order to 

secure the Kinect sensor to the gaze detector’s support beam, thus making it into one single structure. 

The last step in the development of the gaze tracker prototype was to register the Kinect’s depth camera 

to the pupil detector’s camera after mounting it on the robot. After initial tests with the moving robot, 

it was noticed that the calibration between cameras started to drift due to the vibration introduced by 

the omni wheels. After only a few short-distance runs, the cameras would move apart ever so slightly, 

thus rendering the recorded data useless for the sensory fusion. Despite the fastened brackets and 

screws, it would be necessary to create an entirely new single 3D-printed support piece that could secure 

both cameras firmly. Due to time constraints, however, it was decided to mount the eye tracker on an 
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older robot platform equipped with air filled rubber wheels, which acted as vibration dampeners for 

when the robot was moved around for data collection. 

7.3 Depth-Based Gaze Estimation 

The depth image provided by the Kinect sensor can be converted into a 3D point cloud with very 

little operations overhead, which opens the possibility for ample post-processing for detecting people. 

A common approach for detecting people in point clouds is splitting the cloud into clusters based on 

their points adjacency and classifying the clusters as people or not. However, since the eye tracker 

camera and the depth camera from the Kinect are registered, pupils detected in the IR gaze-detector 

image can be correlated directly to their respective 3D points in the depth image. This means that no 

anatomical-constraint-based search algorithms are necessary to find the position of the eyes in 3D space. 

Their position can also be used to find other areas on the face in the point cloud in order to better 

estimate one’s gaze along the floor place.  

In addition to the proposed sensor-fusion method for combining gaze information, three other gaze 

estimation methods were implemented using only the anatomical features extracted from the point cloud 

sub-cluster representing the person’s face. These other methods were used to explore different 

approaches that could be implemented in order to achieve more accurate results. All three extra methods 

are described in subsections 7.3.1 to 7.3.3 below. 

7.3.1 Eyes Gaze Vector 

The first gaze estimation method uses the corresponding 3D points on the point cloud from the 2D 

positions of the detected pupils in the IR image to calculate the gaze direction α, as shown in the top-

view diagram in Figure 7.8. Once the pair of image blobs representing the pupils is identified, their 

centre is calculated and used to retrieve the corresponding depth from the depth image. The centre of 

the blob is often in between pixels, hence, the neighbouring pixels on the depth image are used to 

interpolate its position in space. Figure 7.8 depicts how the vectors and angle α are all related relative 

to the subject’s face. 
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Figure 7.8 – Top-view diagram of gaze estimation using the 3D position of the left and right eyes and nose. The robot 
reference frame can be seen on the left, and angle α corresponds to the XZ-plane angle of the person’s gaze. 

The gaze direction of interest lies on the XZ plane, the floor plane, therefore the gaze angle can be 

calculated using Eq. ( 7.1 ). 

� = tan�� �
�� − ��
�� − ��

� ( 7.1 ) 

7.3.2 Nose Gaze Vector 

The second method assumes that the person’s head is facing forward, or at a small-pitch angle — 

as it would normally be when looking at someone of similar height. The first step for detecting the nose 

is detecting the eyes in space, which was covered in the previous subsection 7.3.1. Next, all points that 

fit within a vertical cylinder 6 cm in front of the eyes are tested to find the tip of the nose, as shown in 

Figure 7.9. The radius of the cylinder was set to 1 cm, the top was set at the eye height, and the bottom 

at -5 cm from the eye height. Assuming the vectors representing the eyes in space are ����� =

[��,��,��]
�  and ������ = [��,��,��]

� , and the vector connecting the eyes is ��⃗ = ����� − ������ , the 

midpoint between the eyes can be found using ��⃗������ = ��⃗���� + 0.5��⃗ . Last, the centre of the cylinder 

is calculated using a dot product to find the normal vector between the eyes and placed it 6 cm along it 

from the middle point, ��⃗���� = ��⃗������ + �[−��⃗ �,��⃗ �,��⃗ �], where � = 0.06 ���⃗ �⁄ . The last stage is 
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finding the point with furthest distance from ��⃗������ among all points within the cylindrical volume 

representing the nose (i.e. the nose tip point P).  

 

Figure 7.9 – Top-view diagram of gaze estimation using left and right eyes and nose. The robot reference frame can be seen 
on the left, and angle α corresponds to the XZ-plane angle of the person’s gaze. 

The final nose vector can be calculated by the angle of the vector connecting the middle points to the 

nose tip point: 

� = tan�� �
�� − ��
�� − ��

� ( 7.2 ) 

7.3.3 Forehead Gaze Vector 

The third gaze estimation method is a variation of the second method where the gaze angle 

corresponds to the angle of a plane fitted on the 3D points representing the person’s forehead. The 

points are selected using the same volume intersection method as in the second method, however, the 

cylinder is moved to where the forehead would be, given the known position of the eyes. 
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Figure 7.10 – Top-view diagram of gaze estimation using left and right eyes and forehead. The robot reference frame can be 
seen on the left, and angle α corresponds to the XZ-plane angle of the person’s gaze. 

To fit a plane on the 3D points that lie within the cylinder, a linear fitting was done, which in this 

case was done by calculating the principal components of the plane. The perpendicular component is 

the least important component of the three in terms of contribution, but it is the one component that 

denotes where the person’s face is pointed. First, the mean of all points is calculated: 

� 
�
�

�

 � =
�

�
∑ � 

��
��
��
 ��

���     for � points  

Each coordinate of each point is then subtracted by its respective mean, resulting in a zero mean � × 3 

matrix �: 

� = �
�� − � �� − � �� − �

⋮ ⋮ ⋮
�� − � �� − � �� − �

 �    for � points  

Next, the 3 × 3 covariance matrix � is calculated using the new zero mean matrix �: 

� = ���  

Finally, the eigenvalues (��) and eigenvectors (��) of the covariance matrix are calculated: 

�� − ������ = 0   for   � = 1,… ,3   

The smallest Eigen vector is then the perpendicular vector, from which we can calculate the angle αf. 
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7.4 Proposed Sensor Fusion Gaze Estimation 

The IR camera for the gaze detector and the Kinect sensor are complementary in terms of spatial 

sensing. While the IR camera has a higher resolution of 1328x1048 pixels, it lacks the depth estimation. 

On the other hand, the Kinect sensor has a lower resolution of 640x480 pixels, and it has an approximate 

12-cm depth variance error at 2.5 m, makes determining the position of the eyes for long range at longer 

ranges unreliable.  

In order to achieve a more accurate gaze angle estimation than the one achieved by either method 

independently, the higher image resolution of the pupil detection was combined with the estimated 

depth of the pupils to more accurately estimate the gaze angle. Figure 7.11 shows the diagram of the 

data provided from both sensors. 

 

Figure 7.11 – Diagram of how the position of the eyes in space are projected on the IR camera’s image plane 

The projection of the pupils on the IR camera’s image plane is shown as ����� and ������, and can 

be calculated using the equations presented below [144]: 

����� = −
��
��
� ������ = −

��
��
� 

 

( 7.3 ) 

In order to reduce the effects of the noisy depth measurements of the Kinect sensor, the middle 

point between both eyes is used as the relative reference for the gaze in space. First, the middle point is 
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calculated, as demonstrated in subsection 7.3.2; next the ‘filtered’ position of the eyes in space is 

calculated using the middle point, finally, the position of the pupils is estimated using the equations in 

( 7.4 ) [144], where L is the fixed distance between pupils in the real world: 

�� = �� +
�

2
cos(�) �� = �� −

�

2
cos(�) 

�� = �� −
�

2
sin(�) �� = �� +

�

2
sin(�) 

 

( 7.4 ) 

If equations in ( 7.4 ) are used to replace their respective terms in ( 7.3 )[144], the distance between 

both pupils on the IR image plane can be written as: 

����� − ������ =
�� −

�
2
cos(�)

�� +
�
2sin

(�)
� −

�� +
�
2
cos(�)

�� −
�
2sin

(�)
� = 4��

�� cos(�)+ �� sin(�)

�� sin(�)� − 4��
�  ( 7.5 ) 

The distance between pupils, or interpupillary distance, �, may vary from person to person, which 

could affect the final results; however, studies have determined that an average interpupillary distance 

for an average adult is 67 mm [145]. 

With the interpupillary distance as a constant, the only variable left is the gaze angle �. Since the 

real distance between the eyes is much smaller than the distance from the eyes to the camera, or � ≪ ��, 

Eq. ( 7.5 ) [144]can be further simplified. In addition, the equivalence term ������� = ����� − ������, was 

introduced for convenience, hence: 

������� =
�� −

�
2cos

(�)− �� −
�
2cos

(�)

��
� ( 7.6 ) 

Finally, the gaze angle from the sensory function can be calculated using Eq. ( 7.7 ) [144]. 

� = cos�� �
������� ��

��
� ( 7.7 ) 

Notice that the distance of the subject from the centre of the camera, ��, is not necessary when 

calculating the gaze angle as per Eq. ( 7.7 ) [144] in practice; however, the closer to the centre of the 

camera the person is, the more accurate the estimated angle is calculated, and whenever �� > 0.5, a 

valid gaze angle cannot be calculated. This effect was noticed as ������� �� ≪  ��, which estimates a 

near 0 corrected gaze angle in all cases. 
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Since the analytical solution for the angle was not reliable, a non-linear solution was used. The 

Newton-Rhapson method was selected for its fast convergence in finding the roots of real function. Eq. 

( 7.5 ) was then re-written as a function of � [144]: 

�(�)=
�� cos(�)+ �� sin(�)

�� sin(�)� − 4��
� −

�������
4��

 ( 7.8 ) 

 And its derivative in respect to � [144]: 

���(�)�

��
= 4�����

sin(�)� − 2sin(�)

(sin(�)� − 2��)
�(sin(�)� + 2��)

�

+ 4��
−cos(�)sin(�)� ���

� + 4sin(�)��
� − 4cos(�)����

�

(sin(�)� − 2��)
�(sin(�)� + 2��)

�
 

( 7.9 ) 

A visual representation of function �(�) is shown in Figure 7.1. Real data was collected to serve 

as valid parameters for the function plotting, and a top view representation of the person in each scenario 

shows their relative position and orientation from the camera. All plots are limited to +/-40 degrees 

because that is the actual horizontal range of the IR camera after the on-axis LED ring was installed. 

The plots show that when the person is facing the camera, �(�) only has one root, whereas when facing 

any other angle �(�) has two roots. This is true for any detectable gaze within the camera’s horizontal 

range, as verified by empirical testing. When facing the camera directly, the single root of �(�) is the 

actual estimated angle; however, when facing anywhere else, �(�) returns two roots: one that 

corresponds to the actual angle of the gaze while the other is either its mirrored value, if the person is 

standing at the centre of the view, or a shifted value, when the person is standing elsewhere.  

The Newton-Raphson method converges to the nearest local minimum to the starting point of the 

search derivative function ( 7.9 ), hence it is unable to return all the roots of the function ( 7.8 ). In order 

to return both roots, two searches are performed from different starting points, namely -40 and 40 

degrees. If both searches converge on the same point, it is assumed only one root exists and that is the 

final angle. If both searches diverge, the last stage is determining which root corresponds to the real 

angle, which can be done by using an estimated angle from another method. In this implemented 
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solution, the gaze angle estimated by the forehead vector is compared to both angles found via the 

Newton-Raphson, and the closest angle is the one selected at the end. 

   

[144] [144] [144] 

(a) -30o Centre (b) 0o Centre (c) 30o Centre 

  

[144] [144] 

(d) -30o Off-Centre (e) 30o Off-Centre  
 

 
Figure 7.12 – Gaze angle estimation at different positions in front of the gaze detector. Depth and eye positions used to 

generate graphs were collected from a real volunteer. 
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7.5 Experiments and Results 

The gaze tracker was mounted on the new assistive robot for the experiments, however, after a few 

initial runs, the vibration created by the omni wheels caused the Kinect and the eye tracker camera to 

move on the frame. The effect of the vibration was to the degree that it was impactful on the initial 

readings. As such, it became necessary to re-register the cameras for almost every new experiment, 

rendering previous datasets invalid for subsequent camera registrations. This introduced a practical 

obstacle: namely, that the experiment meant to capture valid data as a consequence of the robot moving 

was not possible.  

It was necessary to mount the gaze tracker on a previous assistive robot prototype equipped with 

rubber wheels, previously shown in Figure 3.1 in Chapter 3, in order to minimise vibration on the gaze 

tracker frame. This allowed experiments to be performed where the robot had to move towards the 

people. Two sets of experiments were designed to evaluate the accuracy of the gaze-estimation methods 

made reference to in Sections 7.3 and 7.4 above. The first set consisted of keeping the robot still while 

the subject stood at 1.5 m, 2 m and 2.5 m away from it whilst facing nine markers placed on the wall so 

that the subject’s face angle relative to the robot would be at intervals which ranged from -40o to +40o, 

given 10o increments. Figure 7.13 shows a top view of the relative position of the robot and the subject 

during the experiments. 

 

Figure 7.13 – Diagram of how the experiments were conducted. Subjects would stand at distances of 1.5, 2.0 and 2.5 m from 
the robot and look at wall-markers to ensure ground-truth gaze direction. 
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The second set of experiments consisted of creating scenarios in which the subject walked toward 

the markers whilst his gaze was held at a pre-determined marker. This set of experiments was intended 

to ascertain the extent to which the motion of the subject might interfere with the accuracy of the robot’s 

gaze-estimation capabilities.  

7.5.1 Experiments for Depth-Based Gaze-Estimation  

The results from the three experiments in which the robot maintained a stationary position indicate 

that as the subject moves away from the robot, the accuracy of the gaze-estimation decreases. The bar-

graphs shown in Figure 7.14 show the error of the depth-based gaze estimation methods in degrees for 

each of the nine gaze directions in each of the three measured distances. 

 

(a) 1.5 m 

 

(b) 2.0 m 
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(c) 2.5 m 

Figure 7.14 – Results from static experiments. Overall errors for each distance indicate that the accuracy is inversely 
proportional to the distance. 

The height of the bars indicates the mean error of the session and the red lines indicate the standard 

deviation of the error. It is clear that as the person moves away from the robot, the overall mean error 

and standard deviation error increases for all measured gaze angles. The forehead gaze estimations 

present an overall lower mean error compared to the eye- and nose-vector methods throughout the 

experiments.  

 

Figure 7.15 – Average performance of the gaze detector when subjects moved towards the robot. The forehead vector 
estimation presented the lowest error margincompared to the eyes and nose vectors 

This is due to the number of points used to approximate the gaze vector from the forehead, 

compared to two points for the eyes on the other methods. It is also possible to notice a skewed error 
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accumulation on the negative angles which is expected due to the displacement of the dot-projector 

from the Kinect. Using a time-of-flight camera could reduce the skewed error, but it would also interfere 

with the eye IR tracking, as the time-of-flight requires its own IR illumination source. 

The moving-robot experiment was averaged over the three distances and the results can be seen in 

Figure 7.15. In practice, the moving robot and moving person scenario demonstrated similar results, 

with the only difference being the higher noise caused by the vibration of the robot’s chassis while 

moving 

7.5.2 Sensor Fusion Results 

Using the sensor fusion method presented in sub-section 7.4, the IR image with the detected pair 

of eyes was combined with the depth information for all sets of experiments recorded. For comparison, 

the forehead-vector gaze estimation method, the most accurate of the three previous methods, was added 

to the results. 

 
(a) 1.5 m 
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(b) 2.0 m 

 
(c) 2.5 m 

Figure 7.16 – Results of the sensor fusion method compared to the forehead vector. The proposed sensor fusion method 
consistently demonstrated higher accuracy in estimating the angle of gaze 

The results in Figure 7.16 show the mean error as bars and standard deviation as red vertical lines 

for each of the three distances and all nine angles tested. The sensor fusion method demonstrated an 

overall lower mean error compared to the forehead vector, with errors smaller than 5 degrees for up to 

2 meters. For the scenario where the person is moving towards the robot, the fusion method still 

outperformed the forehead vector, as shown in Figure 7.17. 
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Figure 7.17 – Sensory fusion results for a moving scenario compared to the forehead vector estimation method. The 
proposed sensor fusion method still outperforms the forehead vector estimation in a moving scenario 

7.5.3 Real-World Evaluation 

In the previous subsections, 7.5.1 and 7.5.2, the accuracy of the gaze tracker was measured under 

specific test conditions, where both the distance and orientation of the people were known; however, 

testing the gaze tracker under un-scripted conditions was necessary to ensure its effectiveness in the 

wild. Without reference cards to look at, the direction of the person’s gaze within the field-of-view had 

to be compared against the general orientation of their faces. In addition, multiple people were included 

in these scenarios. 

The originally intended real-world evaluation was that of using the gaze tracker on a moving robot, 

however, the vibration created by the omni wheels caused the cameras to drift out of registration within 

a few minutes. In lieu of the intended evaluation, several scenarios were recorded with people talking 

and walking in proximity of the robot, while their gaze directions were detected in real time and later 

assessed for correctness using the general direction of the person’s face compared to the estimated 

direction of the gaze. Three of the many scenarios recorded are shown in the images below. In each 

scenario, the estimated angle of the gaze was filtered using a Kalman filter to reduce the jittering 

resulting from the noise introduced by the IR and depth-sensor cameras. 

In the first example (Figure 7.18 below), three people were within 2 m of the robot and chatting 

amongst themselves while casually gesturing at the robot. This scenario was designed to demonstrate 
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how the robot would perceive people who were purposely trying to interact with it in a real situation. 

The robot can detect the direction of the gaze of persons B and C, shown as red arrows, as both their 

pairs of eyes are visible in Image (a). Person C is located within 1.5 meters of the robot and looking at 

the general direction of the robot whilst waving his hand at the robot. This would represent a situation 

whereby an individual can choose to initiate an interaction with the robot, in this case, by simultaneously 

gesticulating and looking at it. 

 

Figure 7.18 – Example of three subjects within 1.5 m of the robot. Gaze is detected using sensory fusion and processed 
through a Kalman Filter to reduce jitter. 

The second example (Figure 7.19 below) depicts a static environment in which three people are 

talking within 2.5 m of the robot. In Images (a) and (b), the red arrow represents gaze-direction 

estimated for person B, as both his eyes are visible to the IR eye-tracker. The gaze of persons A and C 

are not detected in this scenario, as pairs of eyes must be fully visible to validate the detected gaze. 

During the recording of the scenarios, the gaze-direction of person B was consistently detected as he 

diverted his gaze from person A to C, and vice-versa, throughout the conversation.  

  

(a) (b) 

Figure 7.19 – Static scenario with three people chatting near the robot. The gaze of persons A and C is not detected since 
both eyes must be visible to the gaze tracker 
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In the third example (Figure 7.20 below), three individuals are walking in front of the robot. 

Persons A and B are chatting whilst walking side-by-side, and person C is walking by himself, 

momentarily stopping to look around from time to time. In Image (b), person B is seen looking at the 

robot directly, which causes the red arrow to resemble two circles due to perspective projection. Person 

C’s gaze is not detectable as he is not looking in the vicinity of the robot, and person B’s gaze cannot 

be detected as only one eye is clearly visible. 

  
(a) (b) 

Figure 7.20 – Dynamic scenario with three people. Persons A and B walk by whilst engaged in conversation, and person C 
is walking by himself. 

These three examples illustrate some of the commonly found scenarios in most populated 

environments. The direction of the arrow superimposed over the images closely approximates the 

direction of gaze of the person, judging by the images. In a future version of the assistive robot, HRI 

could be initiated at the moment a person looks at the robot, even during a conversation with other 

people, by briefly looking at the robot and gesticulating. The images featured in Figure 7.18 to Figure 

7.20 serve to demonstrate that the gaze tracker is already capable of detecting when such an interaction 

is likely to occur. 

Lastly, a comparatively unstructured scenario was devised in which random people would simply 

approach the robot at their normal speed eventually passing by it, without prior awareness of its 

presence. The purpose of devising this scenario was to evaluate the degree to which varying the walking 

speed relative to the robot’s might affect the gaze tracker. Figure 7.21 below illustrates the recorded 

scenario where people were leaving a lecture hall. People are seen looking directly at the robot due to 
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their own curiosity, which presents an optimal condition in which to evaluate how closely the robot can 

detect gazes that may be intended to initiate an interaction. 

   

   

Figure 7.21 – Dynamic scenario in which people are walking along a corridor whilst the robot remains stationary. The 
arrows represent people’s estimated gaze-direction up to 2.5 metres from the robot. 

It is, however, noticeable that both the position and orientation of the red arrows in this scenario 

are not as closely correlated to those of the person’s own eye position and gaze direction, respectively. 

Prior to the recording of this scenario, the robot had to travel across the building to get to the lecture 

hall, which may have added a small drift in the registration between the cameras. In addition, the error 

in the angle effect is partially explained by the relatively low 30Hz refresh rate of the depth camera. At 

30Hz, the electronic shutter of the CMOS sensor inside the depth camera cannot capture a frozen 

instance of the movement, but rather a small portion of the movement itself is captured, thus causing a 

blurring effect. This blurring effect on the depth camera manifests itself as a larger volume representing 

travel of the moving object between frames. As a result, the depth estimation position is skewed and 

the gaze angle is not as accurate compared to slow moving or stationary persons. 

7.6 Conclusions 

A detailed development of the long-range IR eye tracker was presented in this chapter, from initial 

concepts, hardware schematics, prototypes and improvements on gaze detection accuracy via sensory 
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fusion. The motivation for designing the long-range gaze tracker was to allow the robot to determine 

whether people are looking at it from a distance, in order to be able to pro-actively approach people 

and/or initiate HRI.  

The IR tracker was built using a Kinect, an IR camera and two sets of IR LEDs to illuminate the 

subject’s face. A custom driver board was made to synchronise the IR camera frame signal with the IR 

LED illumination so that alternating frames were captured with centre and off-centre IR light exposure. 

By subtracting the two images from the alternating frames, only the pupils were detected in the IR 

camera high resolution image. After processing the final image for blob-detection and anatomical 

feature association, the position of the pupils could be determined.  

The IR gaze tracker is capable of detecting people’s gaze direction at 30Hz up to 2.5 meters away, 

with mean errors less than 10 degrees and a standard deviation of 5 degrees. This tracker was capable 

of detecting angles ranging from -40o to +40o at different positions ranging from 1.5 m to 2.5 m. Another 

important feature of this tracker is that no calibration is required.  

In order to achieve higher accuracy, the higher image resolution of the IR camera and the depth 

position from the Kinect-generated point cloud was combined through an analytical solution for pupil 

detection given the distance from the camera and their pupil distance on the image. The angle of the 

estimated gaze approximated via solving for the roots of the analytical non-linear equation using the 

Newton-Raphson method. 

Future improvements on the IR gaze tracker would consist of designing a new frame for both 

cameras and IR illumination that should prevent cameras from drifting due to vibration coming from 

the omni wheels while in motion. A current limitation of the gaze tracker is also its narrow field of view 

(about 35 degrees). The centre IR LEDs had to be placed inside the camera’s lens housing to achieve 

the desired pupil reflection effect. A future version of this system could also incorporate reflective 

housing for the LEDs around the camera in order to focus the light and allow more free space for the 

camera’s sensor. 
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Chapter 8 
 

8 Conclusion 

In the United Kingdom alone, an ageing population is cared for by a decreasing number of assistive 

staff in hospitals and general practices. This phenomenon, projected to continue, is one of the main 

driving forces of the advancement of an array of assistive technologies. At the present time, the field of 

assistive robotics nonetheless requires a number of years of development before it becomes a widely 

adopted technology; one which, it is hoped, will someday be as ubiquitous as mobile phones are at the 

present.  

This research sets out to provide some form of guidance with regard to the development of future 

mobile assistive robots, while presenting plausible, relevant and market-aware solutions for common 

problems which are found in each of the main development areas explored throughout the research. The 

hardware solution itself is comprised of an autonomous platform, made out of commonly found 

components which are easily replicable.  

The inextricably-linked software solutions which operationalised the various tasks performed by 

the hardware were designed in context of the Robot Operational System (ROS). This approach serves 

to maintain an inherent openness to integration with a number of other software modules designed and 

developed by other institutions. Such an open-source approach toward software development ensures 

that innovation is likely from as many contributors as possible, thus accelerating the continuous 

development of synergistic hardware-and-software solutions. 

This thesis thus presents a holistic and sufficiently detailed design, in which navigation, path-

planning, floor-classification and gaze-detection were all operational elements of the mobile assistive 

robot which is the protagonist of this research programme. The contribution to knowledge of this thesis 

has been to plan, design, and create a working prototype on which the development of future 
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autonomous assistive robots for indoor dynamic environments may be based. The task of designing an 

operational prototype from the initial planning stages involves detailed enquiry and breadth of analysis 

aspects of mechanical, electrical, electronics and software domains.  

Each chapter of this thesis is thus envisaged as a layer in a progressively hierarchical structure, one 

which serves to demonstrate how and why an array of unrelated systems can be synergistically 

integrated so as to result in a working prototype of an autonomous mobile assistive robot. Firstly, a 

working prototype was designed and constructed to allow holonomic movement, to minimise vibration 

and to enable both 2D and 3D sensing.  

The eventual omni-wheel solution chosen for the prototype generated a level of vibration which 

could then be used to identify various floor-surfaces on which the robot would typically traverse. 

Information about in-situ floor-surface variation led to hypotheses about challenges likely to be of 

concern in typical medical-care settings. An example of this would be the likely need to adjust the PID 

parameters on the motor controller in order to reduce slippage when moving from carpet to wood. This 

information could also be used to add floor information to various preliminary mappings of an array of 

static and dynamic environments.  

During the mapping of the environment, a leg-detection method was used to locate people in the 

environment. Such people, over intervals of time, were tracked in terms of their unpredictable direction 

and speed of travel. This permitted the robot to make more accurate assessments of where to position 

itself in order to avert collision intervals. Eye-tracking capabilities would enhance the ability to make 

accurate assessments of unpredictable direction and speed of travel, in that a person’s gaze direction, it 

was theorised, could be combined with location-detection data, and thus heighten accuracy in terms of 

predicting a given person’s likely direction of travel.  

Throughout the entirety of the robot prototype’s development, several problems spanning multiple 

disciplines were thus addressed. There were, however, a number of areas of enquiry which will be the 

subject of future research. Firstly, the leg-detection algorithm, introduced in the pre-processing phase 

of the dynamic mapping, presented a higher amount of false positives when assigning legs of randomly-
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distributed groups of people. A possible solution might be to introduce depth and/or colour features into 

the classification step. Secondly, the dynamic path-planning algorithm uses a linear extrapolation of 

each person’s current trajectory in order to predict their future position.  

By introducing a data-based Bayesian model of human path-planning, it is theoretically possible 

to reduce several extra trajectory re-planning calculations triggered whenever a tracked individual 

started to move in a non-linear trajectory. Lastly, the IR eye tracker has a narrow field of view of 

approximately 35 degrees; this is due to the required centre-based LED illumination which needs to be 

positioned as closely as possible to the camera. Further research could be carried out on different types 

of cameras, so as to allow for wider and shorter telescopic lenses to be used. In addition, using two IR 

cameras with different zoom levels could allow for both a course and fine gaze-direction estimation. 

At the time of publishing this document, the field of mobile assistive robotics in hospitals is still 

an emergent one, and it faces both great technical and social challenges. On the technical side, the ever-

changing scenario of fully-functioning hospitals; with patients of various levels of cognition and 

physical aptitude, busy schedules, and a multitude of physical layouts; proves a great challenge to the 

field in terms of both sensing and modelling tasks on the part of the robot agent. On the social side, the 

introduction of robotic assistants in hospitals is presently construed as a means of demonstrating future 

technologies, rather than a concrete solution for current problems such as under-staffed hospital 

facilities. 

8.1 Technical Contributions of Thesis 

Chapters 1 and 2 offered the reader an introduction and overview of development of the last most 

relevant milestones in assistive robotic technology, along with a core research in several disciplines 

used in today’s mobile assistive robots. These chapters set the scene for a contextual understanding of 

the various technical contributions of the thesis, each of which is presented in turn as follows:  

Chapter 3 presented all the major steps in the hardware development of the new assistive robot. 

The final design incorporated an omni-directional base with a passive swivel suspension capable of 
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maintaining all four wheels in contact with the floor at all times. Other assistive robots are equipped 

with a non-holonomic differential drive which limits their manoeuvrability in crowded environments. 

The assistive robot does not require external power supplies or charges as all components are fit 

inside, which makes it an idea platform for testing and development. Two Lidars were added to the 

provided 360-degree coverage of obstacles and walls around it. Depth sensors were later added for 

future object and people recognition.  

Chapter 4 presented a new method for identifying types of surfaces based on the chassis vibration 

generated by the robot while driving. Unlike other surface classification methods that rely on vibration 

generated on rubber wheels, this method developed is capable of processing the noisy vibration signal 

created by the rolling of the omni wheels. Four different floors commonly found in hospitals were used 

for training the classifier: granite, wood, plastic (PVC) and carpet.  

Different robot speeds and manoeuvres were used to create the wide range of training data. The 

features extracted from the two-second window sample of the vibration consisted of 523 statistical and 

Power Spectrum Based features, which were then reduced to 11 features through PCA projection. 

Several classifiers were compared and the Extreme Learning Machine was able to classify the four 

different types of floors, regardless of the speed and manoeuvre used, with a minimum 85% of accuracy. 

Chapter 5 presented a new method for mapping dynamic environments by combining leg 

detection and SLAM. The core mapping algorithm follows the HectorSLAM method, where each scan 

is aligned with the current map in order to keep track of odometry, and the map is updated whenever 

the robot moves or rotates above a certain threshold. The alignment uses the Gauss-Newton non-linear 

approximation method and multiple grid levels to increase resilience to large steps.  

In order to avoid adding people’s legs to the map during the mapping phase, leg detection was used 

to separate clusters of points that represented legs and the rest of the environment. All clusters not 

classified as legs were used to update the map. The final experiment consisted of running the robot in a 
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large crowded environment, where the proposed method generated a more accurate version of the map 

compared to the original HectorSLAM. 

Chapter 6 presented to a minor contribution to localisation and a major contribution to path 

planning in dynamic environments. The first contribution is a way for combining the scan alignment 

sub-routine from HectorSLAM into a finite state machine that uses AMCL to locate the robot in case it 

is lost and switches it over to the scan-alignment system when the robot is certain of its location. This 

method uses a fraction of the processing power compared to particle-based methods and it doesn’t 

require any odometry information, which saves space in the robot’s internal messaging system.  

The second contribution of this chapter is Dynamic Safe Interval Path Planning (DSIPP), an 

improvement over the Anytime SIPP. The key feature of the proposed method removes the pre-

processing collision detection stage using discretised cells to represent the map in both time and space. 

The new method dismisses any memory pre-allocation and, instead, generates direct time intervals from 

checking collisions with every visible obstacle at every cell evaluated by the Weighted A* algorithm. 

The collision detection is achieved by a simple circle-to-line intersection, which is both 

computationally inexpensive and provides a continuous value for the boundaries of the time interval. 

Several experimental simulations were run, varying the number of visible moving obstacles and the 

length of the time horizon; the proposed DSIPP demonstrated to be between 1.5 times (at 5 sec time 

horizon) to 4.5 times (at 25 sec time horizon) faster than the previous state-of-the-art solution. 

Chapter 7 proposed a new method for combining eye tracking and depth sensing estimation to 

achieve a more accurate gaze estimation. The IR tracker was built using a Kinect, an IR camera and 

two sets of IR LEDs to illuminate the subject’s face.  

A custom driver board was made to synchronise the IR camera frame signal with the IR LED 

illumination so that alternating frames were captured with centre and off-centre IR light exposure. By 

subtracting the two images from the alternating frames, only the pupils were detected in the IR camera 

high resolution image. The pupil position was then fused with the depth estimation of the eyes from the 
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points cloud to achieve higher gaze accuracy at distances at to 2.5m away from the robot. This gaze 

tracker was tested in both static and dynamic scenarios and was able to estimate gaze from -40o to +40o 

with mean errors of less than 10o.  

8.2 Future Work 

This thesis has presented a complete design process of an open assistive robot platform to be used 

in hospitals and other indoor care centres. Several improvements to current state-of-the-art techniques 

from different areas were proposed, but more work can still be done to produce more robust solutions. 

The hardware design of the robot was conceived to allow for a plenty of space for future 

development, by adding new sensors or new structures to the aluminium chassis. The addition of gas 

and temperature sensors, even a thermal camera, would allow the robot to perform periodic checks on 

the environment’s condition during its patrol and present a report of any variations in temperature in 

the rooms or undesirable concentration of gases in any particular area. One particular sensor that would 

benefit the robot would be a Velodyne 360-degree 3D Lidar. The addition of this Lidar would remove 

the need for the two existing Lidars and allow a much more complete view of the environment, 

especially of objects below the Lidars that cannot be seen during the mapping phase. 

During experiments when the prototype robot had to run on extra thick carpets, the additional drag 

created under the rollers made it difficult for the robot to move for prolonged periods of time without 

overheating its motor drivers, as more electrical current was constantly required to break the friction 

force. In hindsight, the gear ratio of the motors’ gearboxes should be reduced to increase the maximum 

torque generated. This would reduce the top speed, however, during all experiments conducted where 

the robot had to move along with a person, 65% of its top speed was more than enough to perform all 

tasks efficiently; therefore, no changes in speed would be noticeable during its normal operation. 

The proposed method for mapping dynamic environments only accounted for detecting legs, which 

demonstrates the effectiveness of the solution, but it could be expanded to detect other shapes. the 

original leg detection method proposed by [136] was also trained to detect wheelchairs and walkers, 
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none of which were available during the training phase and were not included in the final results. Future 

work could include detecting a variety of assistive walking devices as well as trolleys.  

In this thesis, all experiments were conducted in a controlled laboratory setting. Further research 

needs to investigate the robot’s action and ability to navigating around autonomously in a hospital 

environment. With a user interface and scheduling system in place, the robot could be deployed in a 

real hospital to be tested by actual staff. One possible interface method would be via the use of mobile 

phone apps or even adding a touch screen to replace the current monitor on the robot. In addition, adding 

a proper cover would both improve its appearance to the patients and protect its internal components 

against objects or liquids being dropped on them. 

It is for certain that the use of mobile assistive robotics in clinics and home environment will be 

on the rise. As mentioned in a recent article of Science Robotics [146] in terms of the future grand 

challenges of robotics, social interaction that understands human social dynamics and moral norms 

represent a major research direction. This requires the development of robotic technologies that can be 

fully integrated with our social life, showing empathy and natural social behaviours. The work presented 

in this thesis in terms of intention detection via gaze detection can be regarded as a first step towards 

this goal. As the hardware performance of the robots continues to improve, it is envisaged that these 

mobile assistive robots will become pervasive in our daily life. I feel privileged to be able to investigate 

some of the key issues related to the future applications of such robots and will continue to do so for 

my future career.   
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