2,240 research outputs found

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Biorenewable value chain optimisation with multi-layered value chains and advanced analytics

    Get PDF
    A crucial element of the quest of curbing carbon dioxide emissions is deemed to rely on a biobased economy, which will rely on the development of economically and environmentally sustainable biorefining systems enabling a full exploitation of lignocellulosic biomass (and its macrocomponents such as cellulose, hemicellulose, and lignin) for the co-production of biofuels and bioderived platform chemicals. The thesis aims to develop comprehensive modelling frameworks to provide, through optimisation techniques, holistic decision-making regarding the strategic design and systematic planning of advanced biorefining supply chain networks. Therefore, the modelling of the entire value chain behaviour, involving both upstream and downstream aspects within a temporal and geographical context, is of great importance in this study. A deterministic, spatially explicit, multi-echelon and multi-period Mixed Integer Linear Programming prototype modelling framework is developed for the identification of profitably optimal strategic and operating decisions regarding a full supply chain system, integrated with a technology superstructure of multiple biomass feedstocks, bioproducts and processing portfolios. The potential dimensionality reduction of the resulting large-scale optimisation problem is explored by utilising a bilevel decomposition algorithm. The financial sustainability of such biobased supply chains is further analysed through two-stage stochastic optimisation and risk management models, incorporating biomass cultivation yield uncertainties and expected downside risk, respectively. Finally, greenhouse gas emission factors are added to the prototype modelling approach through a multi-objective optimisation scheme to steer decision-making on biorefining supply chain systems under both economic and environmental criteria, comparing two different solution procedures. The developed models are applied to a Hungarian case study of lignocellulosic biorefining production systems. An additional case study in a Southeastern Romanian region and Marseille, regarding a first-generation biorefining supply chain for the production of castor oil, is undertaken to further examine the compatibility and efficiency of the generic deterministic model.Open Acces

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Integrated network design for forest bioenergy value chain - decisions support system for the transformation of the Canadian forest industry

    Get PDF
    Les usines de bioénergie devraient jouer un rôle important dans la production d'énergie verte à partir de la biomasse forestière. Pour intégrer l'usine de bioénergie dans la chaîne d'approvisionnement forestière, l'industrie a besoin de nouveaux investissements ainsi que de la conception et de la gestion de la chaîne de valeur. D'un autre côté, les incertitudes associées aux nouveaux produits sur le marché peuvent ajouter des risques supplémentaires à un investissement aussi important dans la chaîne d'approvisionnement forestière instable. Par conséquent, l'objectif principal de cette thèse est d'étudier la conception du réseau de bioénergie forestière dans un contexte déterministe et stochastique. La première partie de la thèse propose une plate-forme expérimentale pour intégrer la conception et le pilotage de la chaîne de valeur puisque le nouveau design ne sera réalisable que s'il considère au préalable la planification. La plateforme a inclus plusieurs actions collaboratives entre tous les partenaires impliqués dans la chaîne d'approvisionnement. Cette plateforme est la base d’un nouvel outil éducatif appelé jeu de transport. Ensuite, la plate-forme a été utilisée pour concevoir un réseau optimisé de bioénergie forestière. La chaîne d'approvisionnement forestière de Terre-Neuve, composée de quatre acteurs majeurs de l’industrie forestière, a été considérée comme notre étude de cas. La rentabilité de l'ajout de nouvelles installations de bioénergie ainsi que de nouveaux terminaux dans plusieurs emplacements potentiels ont été évalués. Enfin, à la troisième partie de la thèse, nous repensons le réseau bioénergétique en tenant compte de l'incertitude de la demande et des prix de tous les produits finaux de la nouvelle chaîne de valeur. Plusieurs bioprocédés potentiels avec différentes technologies ont été évalués dans notre étude de cas. Pour fournir une solution tenant compte du risque, nous avons développé deux nouveaux modèles de gestion des risques. Les résultats dans les trois parties ont clairement démontré l'impact de la planification intégrée, des usines de bioénergie et de la collaboration sur l'amélioration de la performance de la chaîne d'approvisionnement forestière. En général, le travail accompli dans ce projet permettra une transformation en douceur de la chaîne d'approvisionnement forestière en tenant compte des risques d'investissement. En ce qui concerne les résultats obtenus grâce aux études de cas, nous croyons que la plateforme et les approches proposées dans cette thèse peuvent être considérées comme des outils novateurs et pratiques pour le problème de la conception des réseaux de bioénergie forestière.Bioenergy plants are expected to play an important role in green energy production from forestry biomass. To incorporate bioenergy plant in the forest supply chain, the industry requires new investments as well as new value chain design and management. On the other side, the uncertainties associated with demand and price of new products in the market may add risks to such large investment in current forest supply chain. Hence, the main objective of this thesis is to analyze and to propose new design of the forest bioenergy network in both a deterministic and a stochastic context. The first part of the thesis has proposed four optimization models for strategic, tactical and operational planning levels of the supply chain. The models have included several collaborative actions between all involved stakeholders of the supply chain. They have been integrated in a new educational tool called hierarchical transportation game. In the second part of the thesis, we have integrated the developed optimization models to propose an integrated value chain design and value chain management optimization model. This model has been used to analyze a forest bioenergy network in Newfoundland. Newfoundland forest supply chain comprising four major stakeholders was considered as our case study. The profitability of adding a new bioenergy plant as well as new terminals in several potential locations have been evaluated. Finally, in a third part of the thesis we have proposed the bioenergy network taking into account uncertainty on demand and price of all final products of a new value chain. Several potential bioprocesses with different technologies have been evaluated for our case study. To provide a risk-averse solution, we have proposed two risk management models. The results from the three parts of the thesis have demonstrated the impact of integrated planning, bioenergy plants and collaboration on improvement of forest value chain. In general, the work in this thesis can support an efficient transformation of the forest supply chain considering investment risks. The optimization models and approaches proposed in this thesis are novel and practical for the forest bioenergy network design problem

    Designing a clothing supply chain network considering pricing and demand sensitivity to discounts and advertisement

    Get PDF
    none3These days, clothing companies are becoming more and more developed around the world. Due to the rapid development of these companies, designing an efficient clothing supply chain network can be highly beneficial, especially with the remarkable increase in demand and uncertainties in both supply and demand. In this study, a bi-objective stochastic mixed-integer linear programming model is proposed for designing the supply chain of the clothing industry. The first objective function maximizes total profit and the second one minimizes downside risk. In the presented network, the initial demand and price are uncertain and are incorporated into the model through a set of scenarios. To solve the bi-objective model, weighted normalized goal programming is applied. Besides, a real case study for the clothing industry in Iran is proposed to validate the presented model and developed method. The obtained results showed the validity and efficiency of the current study. Also, sensitivity analyses are conducted to evaluate the effect of several important parameters, such as discount and advertisement, on the supply chain. The results indicate that considering the optimal amount for discount parameter can conceivably enhance total profit by about 20% compared to the time without this discount scheme. When the optimized parameter is taken into account for advertisement, 12% is obtained as total profit.openPaydar M.M.; Olfati M.; Triki C.Paydar, M. M.; Olfati, M.; Triki, C

    Proactive management of uncertainty to improve scheduling robustness in proces industries

    Get PDF
    Dinamisme, capacitat de resposta i flexibilitat són característiques essencials en el desenvolupament de la societat actual. Les noves tendències de globalització i els avenços en tecnologies de la informació i comunicació fan que s'evolucioni en un entorn altament dinàmic i incert. La incertesa present en tot procés esdevé un factor crític a l'hora de prendre decisions, així com un repte altament reconegut en l'àrea d'Enginyeria de Sistemes de Procés (PSE). En el context de programació de les operacions, els models de suport a la decisió proposats fins ara, així com també software comercial de planificació i programació d'operacions avançada, es basen generalment en dades estimades, assumint implícitament que el programa d'operacions s'executarà sense desviacions. La reacció davant els efectes de la incertesa en temps d'execució és una pràctica habitual, però no sempre resulta efectiva o factible. L'alternativa és considerar la incertesa de forma proactiva, és a dir, en el moment de prendre decisions, explotant el coneixement disponible en el propi sistema de modelització.Davant aquesta situació es plantegen les següents preguntes: què s'entén per incertesa? Com es pot considerar la incertesa en el problema de programació d'operacions? Què s'entén per robustesa i flexibilitat d'un programa d'operacions? Com es pot millorar aquesta robustesa? Quins beneficis comporta? Aquesta tesi respon a aquestes preguntes en el marc d'anàlisis operacionals en l'àrea de PSE. La incertesa es considera no de la forma reactiva tradicional, sinó amb el desenvolupament de sistemes proactius de suport a la decisió amb l'objectiu d'identificar programes d'operació robustos que serveixin com a referència pel nivell inferior de control de planta, així com també per altres centres en un entorn de cadenes de subministrament. Aquest treball de recerca estableix les bases per formalitzar el concepte de robustesa d'un programa d'operacions de forma sistemàtica. Segons aquest formalisme, els temps d'operació i les ruptures d'equip són considerats inicialment com a principals fonts d'incertesa presents a nivell de programació de la producció. El problema es modelitza mitjançant programació estocàstica, desenvolupant-se finalment un entorn d'optimització basat en simulació que captura les múltiples fonts d'incertesa, així com també estratègies de programació d'operacions reactiva, de forma proactiva. La metodologia desenvolupada en el context de programació de la producció s'estén posteriorment per incloure les operacions de transport en sistemes de múltiples entitats i incertesa en els temps de distribució. Amb aquesta perspectiva més àmplia del nivell d'operació s'estudia la coordinació de les activitats de producció i transport, fins ara centrada en nivells estratègic o tàctic. L'estudi final considera l'efecte de la incertesa en la demanda en les decisions de programació de la producció a curt termini. El problema s'analitza des del punt de vista de gestió del risc, i s'avaluen diferents mesures per controlar l'eficiència del sistema en un entorn incert.En general, la tesi posa de manifest els avantatges en reconèixer i modelitzar la incertesa, amb la identificació de programes d'operació robustos capaços d'adaptar-se a un ampli rang de situacions possibles, enlloc de programes d'operació òptims per un escenari hipotètic. La metodologia proposada a nivell d'operació es pot considerar com un pas inicial per estendre's a nivells de decisió estratègics i tàctics. Alhora, la visió proactiva del problema permet reduir el buit existent entre la teoria i la pràctica industrial, i resulta en un major coneixement del procés, visibilitat per planificar activitats futures, així com també millora l'efectivitat de les tècniques reactives i de tot el sistema en general, característiques altament desitjables per mantenir-se actiu davant la globalitat, competitivitat i dinàmica que envolten un procés.Dynamism, responsiveness, and flexibility are essential features in the development of the current society. Globalization trends and fast advances in communication and information technologies make all evolve in a highly dynamic and uncertain environment. The uncertainty involved in a process system becomes a critical problem in decision making, as well as a recognized challenge in the area of Process Systems Engineering (PSE). In the context of scheduling, decision-support models developed up to this point, as well as commercial advanced planning and scheduling systems, rely generally on estimated input information, implicitly assuming that a schedule will be executed without deviations. The reaction to the effects of the uncertainty at execution time becomes a common practice, but it is not always effective or even possible. The alternative is to address the uncertainty proactively, i.e., at the time of reasoning, exploiting the available knowledge in the modeling procedure itself. In view of this situation, the following questions arise: what do we understand for uncertainty? How can uncertainty be considered within scheduling modeling systems? What is understood for schedule robustness and flexibility? How can schedule robustness be improved? What are the benefits? This thesis answers these questions in the context of operational analysis in PSE. Uncertainty is managed not from the traditional reactive viewpoint, but with the development of proactive decision-support systems aimed at identifying robust schedules that serve as a useful guidance for the lower control level, as well as for dependent entities in a supply chain environment. A basis to formalize the concept of schedule robustness is established. Based on this formalism, variable operation times and equipment breakdowns are first considered as the main uncertainties in short-term production scheduling. The problem is initially modeled using stochastic programming, and a simulation-based stochastic optimization framework is finally developed, which captures the multiple sources of uncertainty, as well as rescheduling strategies, proactively. The procedure-oriented system developed in the context of production scheduling is next extended to involve transport scheduling in multi-site systems with uncertain travel times. With this broader operational perspective, the coordination of production and transport activities, considered so far mainly in strategic and tactical analysis, is assessed. The final research point focuses on the effect of demands uncertainty in short-term scheduling decisions. The problem is analyzed from a risk management viewpoint, and alternative measures are assessed and compared to control the performance of the system in the uncertain environment.Overall, this research work reveals the advantages of recognizing and modeling uncertainty, with the identification of more robust schedules able to adapt to a wide range of possible situations, rather than optimal schedules for a hypothetical scenario. The management of uncertainty proposed from an operational perspective can be considered as a first step towards its extension to tactical and strategic levels of decision. The proactive perspective of the problem results in a more realistic view of the process system, and it is a promising way to reduce the gap between theory and industrial practices. Besides, it provides valuable insight on the process, visibility for future activities, as well as it improves the efficiency of reactive techniques and of the overall system, all highly desirable features to remain alive in the global, competitive, and dynamic process environment

    A Comprehensive Optimization Framework for Designing Sustainable Renewable Energy Production Systems

    Get PDF
    As the world has recognized the importance of diversifying its energy resource portfolio away from fossil resources and more towards renewable resources such as biomass, there arises a need for developing strategies which can design renewable sustainable value chains that can be scaled up efficiently and provide tangible net environmental benefits from energy utilization. The objective of this research is to develop and implement a novel decision-making framework for the optimal design of renewable energy systems. The proposed optimization framework is based on a distributed, systematic approach which is composed of different layers including systems-based strategic optimization, detailed mechanistic modeling and operational level optimization. In the strategic optimization the model is represented by equations which describe physical flows of materials across the system nodes and financial flows that result from the system design and material movements. Market uncertainty is also incorporated into the model through stochastic programming. The output of the model includes optimal design of production capacity of the plant for the planning horizon by maximizing the net present value (NPV). The second stage consists of three main steps including simulation of the process in the simulation software, identification of critical sources of uncertainties through global sensitivity analysis, and employing stochastic optimization methodologies to optimize the operating condition of the plant under uncertainty. To exemplify the efficacy of the proposed framework a hypothetical lignocellulosic biorefinery based on sugar conversion platform that converts biomass to value-added biofuels and biobased chemicals is utilized as a case study. Furthermore, alternative technology options and possible process integrations in each section of the plant are analysed by exploiting the advantages of process simulation and the novel hybrid optimization framework. In conjunction with the simulation and optimization studies, the proposed framework develops quantitative metrics to associate economic values with technical barriers. The outcome of this work is a new distributed decision support framework which is intended to help economic development agencies, as well as policy makers in the renewable energy enterprises
    corecore