835 research outputs found

    Assessing Rehabilitation Strategies Of Urban Drainage Systems Based On Future Scenarios Of Urbanization

    Full text link
    Population growth and urbanisation are creating a big need to improve the planning processes and management of urban infrastructures. Urban drainage networks are one of the vital services needed for any urban area, modelling its growth and expansion is a challenge because of the dynamics of the system. This work describes the integration of a cellular automata model, to simulate urban land use changes, with algorithms to deduct the future layout of the drainage network and with SWMM 5.0 as the hydraulic engine to assess the performance of the drainage systems in the current condition and in the future. The model was built using Dinamica EGO to simulate the land use changes in the future. The model was setup using a set of two land use maps for the municipality of Birmingham in the UK, for the year 2000 and 2006. The model was connected with the NSGAII algorithm to handle the calibration process. Once the model is calibrated three scenarios of future population growth and urbanization are run for the year 2040. The future generated map is then used to classified and cluster the areas of new developments that are suitable to expand the drainage network. Two algorithms are used to predict the future layout of the network. Once the new layout of the network is defined, the system can be connected to the existing urban drainage network and the performance of the expanded network can be assessed. To upgrade the system several rehabilitation strategies are tested to improve the capacity of the system. The integration of these models allows the exploration of several planning scenarios, in this way is possible to help the decision makers with tools and methods to anticipate bottlenecks and solutions in the urban drainage system

    Combining evolutionary algorithms and agent-based simulation for the development of urbanisation policies

    Get PDF
    Urban-planning authorities continually face the problem of optimising the allocation of green space over time in developing urban environments. To help in these decision-making processes, this thesis provides an empirical study of using evolutionary approaches to solve sequential decision making problems under uncertainty in stochastic environments. To achieve this goal, this work is underpinned by developing a theoretical framework based on the economic model of Alonso and the associated methodology for modelling spatial and temporal urban growth, in order to better understand the complexity inherent in this kind of system and to generate and improve relevant knowledge for the urban planning community. The model was hybridised with cellular automata and agent-based model and extended to encompass green space planning based on urban cost and satisfaction. Monte Carlo sampling techniques and the use of the urban model as a surrogate tool were the two main elements investigated and applied to overcome the noise and uncertainty derived from dealing with future trends and expectations. Once the evolutionary algorithms were equipped with these mechanisms, the problem under consideration was defined and characterised as a type of adaptive submodular. Afterwards, the performance of a non-adaptive evolutionary approach with a random search and a very smart greedy algorithm was compared and in which way the complexity that is linked with the configuration of the problem modifies the performance of both algorithms was analysed. Later on, the application of very distinct frameworks incorporating evolutionary algorithm approaches for this problem was explored: (i) an ‘offline’ approach, in which a candidate solution encodes a complete set of decisions, which is then evaluated by full simulation, and (ii) an ‘online’ approach which involves a sequential series of optimizations, each making only a single decision, and starting its simulations from the endpoint of the previous run

    Modelling shared space users via rule-based social force model

    Get PDF
    The promotion of space sharing in order to raise the quality of community living and safety of street surroundings is increasingly accepted feature of modern urban design. In this context, the development of a shared space simulation tool is essential in helping determine whether particular shared space schemes are suitable alternatives to traditional street layouts. A simulation tool that enables urban designers to visualise pedestrians and cars trajectories, extract flow and density relation in a new shared space design and achieve solutions for optimal design features before implementation. This paper presents a three-layered microscopic mathematical model which is capable of representing the behaviour of pedestrians and vehicles in shared space layouts and it is implemented in a traffic simulation tool. The top layer calculates route maps based on static obstacles in the environment. It plans the shortest path towards agents' respective destinations by generating one or more intermediate targets. In the second layer, the Social Force Model (SFM) is modified and extended for mixed traffic to produce feasible trajectories. Since vehicle movements are not as flexible as pedestrian movements, velocity angle constraints are included for vehicles. The conflicts described in the third layer are resolved by rule-based constraints for shared space users. An optimisation algorithm is applied to determine the interaction parameters of the force-based model for shared space users using empirical data. This new three-layer microscopic model can be used to simulate shared space environments and assess, for example, new street designs

    Modelling urban spatial change: a review of international and South African modelling initiatives

    Get PDF
    August 2013Urban growth and land use change models have the potential to become important tools for urban spatial planning and management. Before embarking on any modelling, however, GCRO felt it was important to take note of, and critically assess lessons to be learnt from international experience and scholarship on spatial modelling, as well as a number of South African experiments that model future urban development. In 2012, GCRO initiated preliminary research into current international and South African modelling trends through a desktop study and telephone, email and personal interviews. This Occasional paper sets out to investigate what urban spatial change modelling research is currently being undertaken internationally and within South Africa. At the international level, urban modelling research since 2000 is reviewed according to five main categories: land use transportation (LUT), cellular automata, urban system dynamics, agent-based models (ABMs) and spatial economics/econometric models (SE/EMs). Within South Africa, urban modelling initiatives are categorised differently and include a broader range of urban modelling techniques. Typologies used include: provincial government modelling initiatives in Gauteng; municipal government modelling initiatives; other government-funded modelling research; and academic modelling research. The various modelling initiatives described are by no means a comprehensive review of all urban spatial change modelling projects in South Africa, but provide a broad indication of the types of urban spatial change modelling underway. Importantly, the models may form the basis for more accurate and sophisticated urban modelling projects in the future. The paper concludes by identifying key urban modelling opportunities and challenges for short- to long-term planning in the GCR and South Africa.Written by Chris Wray, Josephine Musango and Kavesha Damon (GCRO) Koech Cheruiyot (NRF:SARChI chair in Development Planning and Modelling at Wits

    Practical guidelines for modelling post-entry spread in invasion ecology

    Get PDF
    In this article we review a variety of methods to enable understanding and modelling the spread of a pest or pathogen post-entry. Building upon our experience of multidisciplinary research in this area, we propose practical guidelines and a framework for model development, to help with the application of mathematical modelling in the field of invasion ecology for post-entry spread. We evaluate the pros and cons of a range of methods, including references to examples of the methods in practice. We also show how issues of data deficiency and uncertainty can be addressed. The aim is to provide guidance to the reader on the most suitable elements to include in a model of post-entry dispersal in a risk assessment, under differing circumstances. We identify both the strengths and weaknesses of different methods and their application as part of a holistic, multidisciplinary approach to biosecurity research

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    PEMODELAN SPASIAL PERKEMBANGAN FISIK KOTA JAMBI BERBASIS CELLULAR AUTOMATA

    Get PDF
    Kota Jambi sebagai salah satu kota besar di Pulau Sumatera mengalami perkembangan fisik di sisi-sisi luarnya akibat munculnya pusat-pusat pertumbuhan baru di daerah pinggiran kota. Hal ini berakibat pada meluasnya batas morfologi fisik Kota Jambi hingga menembus batas yurisdiksi administrasi ke dalam wilayah Kabupaten Muaro Jambi. Fenomena ini dikenal sebagai under bounded city dan berpotensi menimbulkan permasalahan pengaturan pembangunan bagi pemerintah setempat. Perluasan fisik Kota Jambi ke arah Kabupaten Muaro Jambi juga berpotensi memicu alih fungsi lahan pertanian. Penelitian ini bertujuan untuk membangun pemodelan proyeksi perkembangan fisik Kota Jambi di tahun 2033 dengan menggunakan algoritma Cellular Automata

    Comparing the structural uncertainty and uncertainty management in four common Land Use Cover Change (LUCC) model software packages

    Get PDF
    Research on the uncertainty of Land Use Cover Change (LUCC) models is still limited. Through this paper, we aim to globally characterize the structural uncertainty of four common software packages (CA_Markov, Dinamica EGO, Land Change Modeler, Metronamica) and analyse the options that they offer for uncertainty management. The models have been compared qualitatively, based on their structures and tools, and quantitatively, through a study case for the city of Cape Town. Results proved how each model conceptualised the modelled system in a different way, which led to different outputs. Statistical or automatic approaches did not provide higher repeatability or validation scores than user-driven approaches. The available options for uncertainty management vary depending on the model. Communication of uncertainties is poor across all models.Spanish GovernmentEuropean Commission INCERTIMAPS PGC2018-100770-B-100Spanish Ministry of Economy and Competitiveness and the European Social Fund [Ayudas para contratos predoctorales para la formacion de doctores 2014]University of Granada [Contratos Puente 2018]Spanish Ministry of Science and Innovation [Ayudas para contratos Juan de la Cierva-for-macion] 2019-FJC2019-040043University of Cape Town (Centre for Transport Studies
    corecore