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Abstract

Urban-planning authorities continually face the problem of optimising the alloca-
tion of green space over time in developing urban environments. To help in these
decision-making processes, this thesis provides an empirical study of using evolution-
ary approaches to solve sequential decision making problems under uncertainty in
stochastic environments. To achieve this goal, this work is underpinned by developing
a theoretical framework based on the economic model of Alonso and the associated
methodology for modelling spatial and temporal urban growth, in order to better
understand the complexity inherent in this kind of system and to generate and
improve relevant knowledge for the urban planning community. The model was
hybridised with cellular automata and agent-based model and extended to encompass
green space planning based on urban cost and satisfaction.

Monte Carlo sampling techniques and the use of the urban model as a surrogate
tool were the two main elements investigated and applied to overcome the noise
and uncertainty derived from dealing with future trends and expectations. Once
the evolutionary algorithms were equipped with these mechanisms, the problem
under consideration was defined and characterised as a type of adaptive submod-
ular. Afterwards, the performance of a non-adaptive evolutionary approach with
a random search and a very smart greedy algorithm was compared and in which
way the complexity that is linked with the configuration of the problem modifies
the performance of both algorithms was analysed. Later on, the application of
very distinct frameworks incorporating evolutionary algorithm approaches for this
problem was explored: (i) an ‘offline’ approach, in which a candidate solution encodes
a complete set of decisions, which is then evaluated by full simulation, and (ii) an
‘online’ approach which involves a sequential series of optimizations, each making
only a single decision, and starting its simulations from the endpoint of the previous
run.
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Chapter 1

Introduction

1.1 Overview

Green areas can be seen as green lungs that significantly contribute to a varied range

of social, economical and environmental aspects in densely populated areas (Chiesura,

2004; Bowler et al., 2010a). Numerous studies highlight how human interactions

with nature are beneficial for physical, social, and mental wellbeing (Sop Shin, 2007;

Takayama et al., 2014), their crucial impact on the economy, quality of life and in

the local climate of the cities (Costanza et al., 1998; Nowak and McPherson, 1993)

among others. Currently the necessity of open spaces is recognised more intensively

by the society due to the appearance of new social values and the rising standard

of living (del Saz Salazar and Garćıa, 2007). Due to that, the study of mechanisms

that can mitigate the ecological degradation that is invariably linked with urban

expansion is one of the most urgent research issues within the broad field of urban

planning.

1.2 Motivation

Pressure on green spaces close to or within city boundaries is significant and likely to

grow (Glickman, 1999). These areas have been increasingly recognised as important

components of urban ecosystems, providing various kind of important environmental
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and social services (Haviland-Jones et al., 2005; Takayama et al., 2014) as was

reviewed previously. Hence, it is vital for planners and decision-makers that the

provision of these areas is performed maximising the impact, the benefits and the

attractiveness of each of the selected parcels (Uy and Nakagoshi, 2008) in compliance

with a sustainable urban development.

However, to fully understand the interactions of the involved complex phenomena

and be capable of dealing with a large number of environmental and socio-economical

constraints, scientists need a better and larger set of ecologically meaningful methods

that can be applied to spatial multi-criteria evaluation and conservation decision

making. In this regard, the use of models and interactive computer-based sys-

tems (Church, 2002) can be mentioned. These models could both explore and

extrapolate the dynamics of the system to infer future trends or also understand the

nature of the processes within it.

1.3 Research aims & Objectives

The primary objective of this study is to evaluate how evolutionary algorithms

can be applied to dynamical location-allocation problems under uncertainty, with a

special focus on urban green spaces. This question is intended to be addressed from

a spatial and temporal dimension to be able to help in planning decision-making

processes. This research is performed primarily from a methodological and theoretical

perspective using simulation techniques and different types of planning procedures.

A solution to the problem analysed in this thesis yields a useful tool to urban

planners and decision-makers, who can first study and develop efficient conservation

designs that can capture the nature of the process involved in their own complex

decision-making objectives. After the construction of that schedule with a suitable

list of land purchases, the policy can be executed to obtain the most cost-effective

and efficient implementation of that design.

This dissertation will be guided by the following central questions:

• Can the evolutionary algorithm be defined to be able to deal with the uncer-

tainty derived from creating urban plans where future conditions are taken

2



Chapter 1: Introduction

into account?

• Can the evolutionary algorithm be configured to outperform intelligent greedy

algorithms that take advantage of the adaptive submodularity that correspond

with some of the configuration of the problem under consideration?

• Could we use different planning approaches, where the decisions are taken at a

time and beforehand to come up with accurate solutions?

1.4 Contributions

This multidisciplinary thesis has led to contributions in both, computational intelli-

gence and computational sustainability fields. These contributions can be summarised

as follows:

1.4.1 Computational Intelligence

• In this thesis, new algorithms are designed for the task of sequential decision

making under uncertainty in complex, stochastic environments, where the

effects of earlier decisions have a highly non-linear relationship with the value

of later decisions. More specifically, an ‘offline’ algorithm and an ‘online’

algorithm are designed and evaluated for interconnected sequential location-

allocation problems. These algorithms are applied to a case study in urban

development, which is underpinned by a complex simulation environment full

of inter-connected uncertainties.

Each of these algorithms hybridises evolutionary search with a Monte Carlo

sampling strategy in order to mitigate the uncertainty involved in the system.

This information is required for the potential effects of each decision and their

fitness evaluation.

– The offline algorithm addresses the planning problem by searching the

space of complete decision sequences. It is shown that the approach, more

traditional in style, can be applied successfully to such type of problems
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as long as a suitable sampling strategy is involved to provide necessary

structure to the search space.

– In contrast, the ‘online’ algorithm involves a sequence of optimisation

runs; each run in the sequence searches the space of ‘next’ decisions,

informed by the decisions that have been fixed by earlier runs. The online

algorithm is more unusual in style, and (on the case study examined)

is significantly faster without significant loss of solution quality. The

online algorithm therefore brings us closer to an approach that would be

usable by practitioners in cases where such tools had not been previously

available due to the time complexity of suitably sophisticated simulations.

• The characterisation of the ‘offline’ algorithm as Adaptive Submodular and

the consequences of this property for the performance of different types of

optimisation strategies are analysed. The conclusions show that this effect is

linked to the level of complexity of the topological configuration of the city

along with the level of uncertainty of the problem. The phenomenon can shed

light into the problem of creating effective plans under uncertainty for the

urban community.

1.4.2 Computational Sustainability

• A related contribution is the urban growth model itself. The model described

and developed in this thesis is a theoretical variant of a reduced open version of

the published in Murray-Rust et al. (2013), and it has been extended primarily

with new components and rules to reflect the value (and dynamics of that

value) of green spaces in the context of the urban spatial structure theory

of Alonso (1964). These extensions add to those other models, where Alonso’s

theory has been incorporated, knowledge particularly in terms of ecological

valuation and the effect of connectivity between green areas.

• The solution to the urban planning problem analysed in this thesis would yield

a useful tool for urban planners and decision-makers. One of the problem faced
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by such professionals involves the design of suitable policies for green-space

allocation that will lead, in each of the short, medium and longer terms, to

urban plans that, while growing and changing, remain effective and positive for

all stakeholders. Simulation tools in themselves provide helpful instruments for

analysing the effect of hand-designed policies; however, optimisation techniques

wrapped around such tools have the potential for much greater contributions

to the planning world. In this thesis, it is contributed two such algorithms,

which we have shown to be effective (specially the online one) for discovering

good-quality sequences of decisions in reasonable time for a complex urban

model. Meanwhile, the findings of experiments with the online and offline

algorithms reveal that the algorithms use interestingly different strategies, and

this in turn reflects the usefulness of such a model as a discovery engine for

urban planners. Finally, our results show that, to the extent that Alonso’s

model (and the implementation in this thesis) is valid, the spatial clustering

of parks tends to correlate with higher levels of satisfaction from visitors, in

contrast with the satisfaction levels reported for a large number of scattered

green areas. This finding is at odds with received wisdom in the urban planning

world, and is potentially a valuable contribution to debate in that area.

1.5 Outline of the Thesis

The following list provides the organisational structure for the remaining chapters of

the present thesis, which covers:

1. Chapter 2 provides the theoretical background information regarding the major

conceptual elements that the thesis uses in the different parts that this research

presents. This conceptual outline includes a description of urban models,

types and evolution. This is followed by the definition of Alonso’s economic

urban model and its related centricity concept. Afterwards, the use of a

Cellular Automata as a tool to represent spatio-temporal dynamics along with

Agent-Based Systems, which are able to depict population dynamics based on

heterogeneous individual choices are presented. The conceptualisation of two
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types of problems: the Location Allocation problem and a dynamical variant,

that can be considered a Sequential Decision Making problem, are introduced.

Finally, the general concepts about Evolutionary Algorithms in its single and

multi-objective optimisation version with special attention to their previous

use in urban studies are summarised.

2. Chapter 3 depicts the theoretical urban growth model used in this thesis as

a tool to understand different problems by using simulation techniques. The

chapter includes information about its different elements named population,

urban, rural and ecological dynamics and how the interactions between them

create different types of non-linear relationships that will critically affect the

different optimisation processes.

3. Chapter 4 illustrates multiple variants of noise and uncertainty that evolutionary

algorithms can face and different tools to overcome them. An especial focus on

fitness approximation and Monte Carlo sampling is done since these techniques

are used in the algorithms described in this thesis. The data gathering and

the statistical data generation are depicted in detail, along with the different

sources of uncertainty covered in the theoretical model. Finally the way the

techniques are applied and the statistical significance of the generated results

are also described.

4. Chapter 5 is aimed at the description of the methodology used to support

the spatial allocation planning of green spaces in an urban area, using a non-

adaptive version of an evolutionary strategy for optimisation purposes under

uncertainty. The chapter starts with the formal description of the problem and

of its submodular nature. It continues with the analysis of the consequences for

the optimisation techniques that this adaptive submodularity property implies.

Specially how an offline evolutionary algorithm may be outperformed by simple

intelligent greedy algorithms in some simple versions of the problem is shown

and explained. Finally, different scenarios are selected to test multiple levels of

complexity in relation with different parameters of the model. The generated
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results serve to further understand how the different optimisation techniques

behaves under different topological circumstances and levels of uncertainty.

5. Chapter 6 investigates how evolutionary algorithms can also be implemented

using, in this case, an online perspective to search for more efficient urban

planning strategies. The online approach has to tackle the problem from

a different perspective, having to deal with less level of uncertainty, with

additional constraints in terms of computational time used in each generation,

can be used to analyse the problem from a different perspective. The comparison

of the results from using the offline version help us to further understand the

problem, highlighting the role of the budget that it is provided each turn by

the corresponding governmental entity and how the optimisation process is

strongly dependent on the saving of financial resources. This budget, that it is

received periodically, has an accumulative nature since the amount that it is

not used when it is received, is added to the funds available for land purchasing

purposes. The discovery of the most convenient moments in which these funds

should be used could be a major additional factor to study as well as the

acquisition of patches of land.

6. Chapter 7 concludes with a list of the main findings and the inclusion of the

most important extensions and refinements that the model and the optimisation

procedure could undertake. From the sustainability point of view, the aspects

that may prevent visitors going to a given park and the enrichment of the

agents profile to study different usability profiles will be discussed. On the

other hand the computational intelligent aspects of the present thesis could

be extended with the development of the multi-objective optimisation version

of the algorithm, with the concrete focus on the development of a new fitness

function aimed at preserving the patches of land with more ecological value in

the area under consideration.
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Chapter 2

Background

2.1 Introduction

In this chapter we introduce various background theory and concepts which underpin

the research in the remainder of the present thesis. The first section presents a

description of green spaces and their related benefits along with the general concept

of modelling as a widely used tool in the context of urban systems. Here, the related

theory about urban models is discussed, including the conception of a city as a

complex system, and a discussion of the most notable types of urbanisation models

and their evolution. Key elements that will be introduced are the macroeconomical

model of Alonso, and the concept and consequences of the ‘centricity’ assumption.

The usability and scope of theoretical models will be also covered.

The second section then focuses on computational implementations of the back-

ground theory. Concretely, we introduce and formulate a framework comprising

Cellular Automata and Agent-Based Systems, which is typically applied in the

context of urban development to study the spatial and temporal dynamics and

patterns of land-use, land inhabitants, and their inter-relationship. The chapter

continues with a description of the two major optimisation tasks investigated in this

document: (i) the location-allocation problem, which is focused on the optimisation

of the placement of certain facilities according to a set of pre-defined goals, and

(ii) the sequential decision-making problem under uncertainty, which captures the
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notion of determining a planning policy for a given time horizon, despite significant

uncertainty about how the environment will develop over time.

To conclude the chapter, we introduce and discuss Evolutionary Algorithms and

their applications in general terms, covering both single-objective and multi-objective

optimisation scenarios, focusing specifically on the application of the Pareto-archived

Evolutionary Algorithm (PAES) as an algorithm to solve multi-objective problems

in an urban context.

2.2 Green Areas

Natural landscape covered with natural or man-made vegetation inside or close to

urban zones covers concepts like county parks, areas of outstanding natural beauty,

natural reserves, forest parks or crown lands (Allison, 1975). However, not all natural

landscapes located close to urban or peri-urban areas are protected with the only

purpose of maintaining the biodiversity in a large scale. There are other types of

land configuration which can be included into the previous list contributing at small

scale. This areas include street trees, lawns/parks, urban forests, cultivated land,

wetland, lake shore/seashore, streams and golf courses (Bolund and Hunhammar,

1999). These small patches, normally isolated from each other by a urban matrix,

are considered as an independent ecosystem called a city ecosystem (Ahern, 1995).

2.3 Benefits of Green Spaces

The conservation and the promotion of green spaces that are located close to or

within urban areas cannot be fully understood without summarising the amount of

benefits derived from them. This wide range of advantages can be grouped according

to different type of services they generate. In this regard, these services can be

classified into three sections namely ecosystem services, social and recreational factors

and economic benefits. An explanation of each type is summarised in the following

list:
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2.3.1 Ecosystem services

• Urban areas are considered as one of the main sources of pollution. Green areas

serve as a pollution control by affecting gas cycles (Lebel et al., 2007; McHale

et al., 2007), by absorbing part of green-house gasses and by fostering carbon

sequestration (Balvanera et al., 2005; Niemelä et al., 2010). These positive

effects are mainly caused by the presence of trees, especially in the case of

forests (Bernatzky, 1983). In this regard, an empirical study conducted by the

Spanish Environmental Ministry (Ministerio de Medio Ambiente, 2000) shows

that one hectare of Mediterranean forest is capable of absorbing 3.7 tonnes

of CO2 per year (global emissions from fossil fuel and industry: 36.3 ± 1.8

Gigatonnes of CO2 in 2015 (Le Quéré et al., 2015)). Another significant

example of this role is the fact that in certain cases green areas can filter more

than 80% of air pollutants (Bolund and Hunhammar, 1999; Zhou and Rana,

2012). Hence, green areas and forests can be a real measure against the spread

of these noxious gasses and the negative impacts of climate change (Donovan

and Butry, 2009; Bowler et al., 2010a).

• Green areas have a potential to regulate air temperatures, creating a cooling

effect and combating the Urban Heat Island (UHI) effect at a city level by

means of shade, evapotranspiration and with the enhancement of local wind

breath (Jo and McPherson, 2001; Doick et al., 2014). This is produced by the

beneficial effects spread beyond the boundaries of the green area (Taha et al.,

1989; Saito et al., 1991). Another consequence of this effect is the decrement of

the risk transmission of infections diseases. When urban temperature growths,

this might accelerate the development of some animals, reducing their larval

period and the scales at which they will be spread.

• The increment of impermeable surfaces like paved areas can provoke severe

problems of flooding. Forest and green plants may regulate rainfall and improve

water retention by interception and evapotranspiration processes (Bolund and

Hunhammar, 1999; Guo et al., 2000; Nosetto et al., 2012) which can make cities
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less vulnerable to these natural hazards. Another consequence of the spread

of these surfaces is the emission of storm water run-off pollution like nitrates

(NO−3 ) where green plants can aid to remove or retain them by 30% (Wise,

2008).

• These areas also help maintaining the level of humidity in the atmosphere and

restraining soil erosion. Mentionable is also their role in noise abatement by

means of reducing the level of noise and mitigating the effect of light pollution

which causes disturbances in biota rhythms.

• Wetlands, which are considered a type of green area, support water protection

and improve its quality (Smith et al., 2002) by fostering groundwater supply,

reducing the runoff, increasing the level of infiltration of the soil, suspension

and storage (Brauman et al., 2007).

2.3.2 Social and recreational factors

People with different profiles characterised by their gender, age and socio-economic

status may differ in how they use and perceive green areas (Burke et al., 2009; Eisler

et al., 2003). Consequently, it is a complex task to properly fulfil the diverse range

of demands that can arise from them. However, multiple social and recreational

benefits that green spaces provide to their potential visitors were highlighted:

• Green areas can improve the quality of life of the visitors by fostering physical

and mental fitness including the practise of sports and games (Payne et al., 2005;

Bedimo-Rung et al., 2005). Takayama reported higher vigour and subjective

improvement of vitality even in short-term walking (Takayama et al., 2014).

• People who visit parks regularly are more likely to improve both perceived

and objective general health (Bowler et al., 2010b; Lee and Maheswaran,

2011), specially in young and elderly people (Godbey et al., 1992) and in

pregnant women (Dadvand et al., 2012, 2014). Besides, frequent users exhibit

longevity (Takano et al., 2002; Maas et al., 2006) even if the relationship

between both factors is not completely understood yet (Health Council of
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the Netherlands and RMNO, 2004). Besides, in the presence of green views,

patients tend to improve their recovery process in different ways (Park and

Mattson, 2008; Ulrich et al., 1991). Additionally, visiting green areas fosters

the immune system (Li et al., 2007a), decreases the blood pressure (Park

et al., 2009) and reduces incidence of allergies in children (Hanski et al., 2012).

Also these areas can balance socioeconomic health inequalities in deprived

population (Mitchell and Popham, 2008; Ward Thompson and Aspinall, 2011).

• From the point of view of the psychological aspects that visitors can get advan-

tage from these facilities it can be mentioned that parks can provide relaxation

and relief from stress (Ulrich, 1981; Health Council of the Netherlands and

RMNO, 2004; Li et al., 2007b), sense of freedom and refuge, silence, emotional

peace, psychological equilibrium (Kaplan, 1985) and positive mood (Haviland-

Jones et al., 2005; Pretty et al., 2005; Barton and Pretty, 2010) by means of

the contact with and enjoyment of nature (Furlan, 2004). It is also reported

the improvement of the level of anxiety and depression in individuals (Maas

et al., 2009), facilitating psychological restoration (Bodin and Hartig, 2003;

Bowler et al., 2010b). There are studies that go further stating the spiritual

component linked with this areas. From this point of departure, green areas

can be included into a metaphysical or spiritual dimension (Ward Thompson,

2002), inspire a moral attitude to connect humans with nature and serve as an

energy source (Chiesura, 2004).

• Regarding the mental benefits associated with green areas it can be mentioned

that they produce attention restoration (Hartig and Staats, 2003), reduce

mental fatigue, improve problem-solving skills and concentration (Kaplan,

1990; Herzog et al., 1997). Here, their potential can be also included as a tool

for educational and scientific activities and the accumulation of knowledge that

these areas can provide (Millenium Ecosystem Assessment, 2003; Bolund and

Hunhammar, 1999).

• They are also considered as a place for social encounters, which foster commu-
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nity integration (Coley et al., 1997; Kuo et al., 1998; Leyden, 2003; Kawachi

and Berkman, 2000) as a result of the practise of activities like picnicking,

dog walking, bird watching, family activities, or photography among others.

Reduction in crime rates are also reported (Kuo and Sullivan, 2001) by being

responsible for lower anger and aggression scores (Hartig et al., 1991).

• With reference to their aesthetic benefits, green areas provide balance from

the visual urban impact, which allows visitors the contemplation of a pleasant

atmosphere, enhanced views and scenery. They can be also seen as a source

of preservation of scenic views, historical and archaeological sites and rich

environmental areas for future generations.

2.3.3 Economic benefits

Green areas have a positive impact on the economy in many ways. In this section,

the most important factors are summarised:

• Cities with highly valuable recreational areas can be promoted as an attractive

tourist destination to visit due to their nature-based attractions (Cebal-

los Lascurain, 1996; Chiesura, 2004). From a touristic perspective, these areas

can generate multiple business opportunities including tour guides services,

overnight visits and commercial activities within them like food concessions,

kiosks, cafés and so on.

• The beneficial effects over the health of the population may save substantial

health costs in the long term (Ward Thompson, 2002).

• The saving in electricity consumption from reducing air conditioning usage

and heating energy due to the cooling effect and the trees capacity of reducing

wind speed (McPherson and Simpson, 2003) can be also mentioned.

• The increment in productivity and the reduction of level of stress in employees

that have their working place equipped with nature views (Kaplan and Kaplan,

1989; Lewis, 1996; Leather et al., 1998; Sop Shin, 2007) were reported.
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• Green areas are the source of provision of goods such as timber, food and

water (Brauman et al., 2007) and, from this perspective, they also contribute

to the economy.

2.3.4 Urban Planning

A key element in the study of urban evolutionary patterns is the peri-urban areas.

A peri-urban area can be defined as a transition zone where different land types

like agricultural and forestry coexist with urban residences, industry, transportation

and leisure areas. In the long term, this urban-rural fringe tends to be transformed

rapidly into new built-up zones and consequently additional peri-urban areas emerge

around them, which provokes a phenomenon called urban sprawl (Mills, 1981)

characterised by low-density, dispersed and discontinuous land development in the

urban fringe. The continued use of peri-urban transition zones for the construction

of new settlements entails the fragmentation and segregation of open areas that, in

certain cases, can allocate very valuable resources. This unsustainable process of

natural land degradation should be controlled by nature conservation plans and green

belt legislations, based on the fact that high speed processes in land-cover change are

associated with negative effects and rapid shifts in the original biodiversity (Grimm

et al., 2008). One of the facts that makes this control process particularly difficult is

that the urban expansion dynamics need to be analysed at many time-scales to be

able to accomplish effective and acceptable results.

However, the rapid growth of urban population worldwide (World Health Orga-

nization (WHO), 2013), spatial densification planning policies and lack of previous

provision, not only may provoke a narrowing of park areas (Glickman, 1999; Polat

and Yilmaz, 2013), but also can seriously threaten ecosystem services (Tyrväinen

and Väänänen, 1998; Borgström et al., 2006). This unsustainable process should

be controlled by nature conservation plans and green belt legislations. The conse-

quences derived from the application of a range of possible planning approaches and

regulatory policies lead us to envisage the evolution of multiple hypothetical future

scenarios. The analysis of the plausible implications of each of them can give support
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to experts, planners and political decision-makers to understand the socio-economics

and biophysical driving forces involved in this complex system (Alberti and Marzluff,

2004; Boyd, 2008) in order to elaborate guidelines or other kinds of legal mechanisms

to mitigate the negative effects of urban development over biota and human beings.

Among other important functions, public open space planning allows local au-

thorities to protect certain areas from the urbanisation process, and thus foster the

formation of healthier urban environments. From this point of view, local and central

governments play perhaps the most crucial regulatory role (more so than national

governments or international organisations) in the control of land-use change in

the longer term. These areas should be conceived as a valuable municipal resource,

even though from a pure economic point of view, green areas can be perceived as

a less tangible short-term benefits and savings good (Chen and Jim, 2008). In a

cost-benefit analysis, their advantages are often underestimated (Kremen and Ostfeld,

2005) and complicated to quantify because of our incomplete knowledge (Vatn and

Bromley, 1994). However, apart from the human dependence on nature (Bolund and

Hunhammar, 1999), a utilitarian approach can be used here to justify the existence

of these areas based on the favourable effects derived from the services offered and

the fulfilment of immaterial necessities of the population (Maruani and Amit-Cohen,

2007).

However their distribution and location should be carefully studied by developing

an adequate, long-term planning strategy. One possible option for maintaining

a healthy urban environment is by reserving a collection of arbitrary areas to

transform them into recreational parks. However, the time planning and geographic

distribution of these spaces need careful consideration to ensure the quality and

quantity of environmental services provided to the surrounding community (Forsyth

and Mussachio, 2005). There is a lack of agreement about how to implement a given

planning process and which measures should be selected. The most important points

to discuss are:

• How to select adequate planning criteria.

• Deciding the most suitable size for the open space according to the current
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and expected necessities.

• Where the open spaces should be located and how they should be accessed.

• The design of the potential activities for these areas according to different age

groups and cultures.

A problem that arises when these issues are tackled is that there exist a variety of

approaches with clear contradictory main goals. Among all of them, the present work

follows a demand approach where the planning process should be based on attributes

of the specific target population. The necessity of provision of a set of services defines

the pressure over the available open space. This pressure can be measured by means

of the analysis of features related to the urban population including size, density and

distribution and also by collecting data related to subjective personal preferences for

multiple non-homogeneous population groups. An advantage of this method is the

simplicity, since it does not need further information about the ecological value of

the selected areas.

To help in this complex decision-making process, an urban framework was created

that could represent a paradigm of allocation of resources within a dynamical location-

allocation decision-making simulator. The type of facilities aimed to spatially optimise

is green areas, due to the level of importance these locations have for the society

from multiple perspectives. The model represents a city in expansion, where a

set of actions can be taken, modifying the dynamics and relationship of different

elements that are included into the urban model. The model, and the subsequent

strategies applied to optimise the location of this kind of facilities, is a very useful

tool to further understand the dynamics and the interconnection of the processes

implemented within it.

2.4 Modelling

Reality cannot be totally formalised. Modelling uses mechanisms such as theoretical

abstractions and simplifications of real world entities to identify and replicate their

essential features. These mechanisms allow us to find solutions to real-world problems
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where it is impossible or undesirable to experiment with the real system itself. For

instance, very commonly the analysis of how a system responds, which is performed

by designing studies and experiments, entails expensive costs that can be partially

reduced by the use of this technique. Modelling is normally implemented in computer

environments and can be applied from a twofold perspective: to predict the behaviour

of a system or to enhance the understanding of its dynamical processes and emergent

patterns before final decisions about implementation are made.

The process of modelling starts with an abstraction phase, where theory or

observations based on the study of real historical information are taken and mapped

into a formulation. These observations, that describe or test how the system evolves

in time, can be analysed to find an optimised solution to the problem and/or to

create feasible future projections. Finally, another mapping process is carried out

where the solution previously found is translated into the real world in the form of a

set of strategies, which may fulfil the expected future needs.

However, it is very challenging for the model to properly capture non-intuitive

relationships among processes. One of the key factors, which contributes to the

generation of successful modelling results, is the search for an appropriate level of

aggregation. Here, ‘level of aggregation’ refers to the level of detail incorporated

into the model, which is required for addressing the question of interest. Each

additional degree of freedom represents a significant increment in the efforts required

to structure and understand the model. If the level of detail is too low, the resulting

model is not rich enough to synthesise an effective and realistic solution; if there is

too much detail, the result is a cumbersome model, requiring perhaps immense levels

of computational resources to run, and perhaps leading to only marginal benefits

in outcomes. The granularity needed to transfer the proper amount of information

from the real world into the model is an empirical question that depends on the

underlying characteristics of the particular problem and the selected method to build,

study and optimise the system (Friesz, 1985; Barker, 2014).

Normally, the ‘micro-scale’ in a model refers to discrete individual behaviours,

possibly under the effects of several constraints. On the other hand the macro-
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scale is characterised by a limited number of aggregated variables, perhaps each

representing a population of individuals. Since the representation of different scales

alters the model predictions (Bovy and Jansen, 1983), selecting multiple levels and

analysing their outcomes can be a desirable strategy. However, due to limitations in

computational performance, not all aggregated levels can be considered.

2.4.1 Urban models

Cities can be defined as urban political units that play a significant role in socio-

economic development on a global scale. However, they can also be the source

of many problems, such as environmental pollution, traffic congestion, reduced

open space, crime, diseases and social marginalisation (Lee, 2008). Their study as

entities with their own dynamics is a very challenging task. Furthermore, urban

and regional studies are, by nature, interdisciplinary areas of knowledge that can

be faced from different angles. From this perspective, cities and regions can be

analysed as non-linear spatially complex systems composed of many inter-related

processes and socio-economic interactions and therefore can be difficult to understand

in isolation (Jacobs, 1961). They exhibit characteristics such as fractal dimensionality,

self-similarity across scale, self-organisation and emergence (Batty and Longley, 1994).

Fractal dimensionality refers to the fact that urban patterns are arranged in regular

distributions that are characterised by a fractal geometry nature, which has been

reported and confirmed in multiple studies (Batty and Longley, 1994; Frankhauser

et al., 2012; Frankhauser, 2015). Self-similarity is a property presented in systems

with a degree of regularity in the generated patters. These regularities appear due to

their scale-independent nature (Wolfram, 1994). The study of the self-organisation

processes, which governs its evolution, involves multiple and highly complex levels of

organisation. Changes occur over many years at an aggregate level of individual and

collective choices, which mainly depend on the predominant characteristics of the

time and on changes in external circumstances. This is the reason why real urban

phenomena are so difficult to understand and replicate; the research community

recently considered cities as one of the most complex elements ever created by human
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beings (Barredo et al., 2003) and even a science on its own (Batty, 2013).

In the context of urban development, the understanding of urban systems is a

hard task, which is often full of uncertainty. With the support of modelling and

simulation it is possible to reduce the level of uncertainty and facilitate a good degree

of understanding. Modelling in this context can be viewed as a systematic approach

to explore cities in different contexts. As such it can shed light on the major drivers

of their evolution which could give rise to different plausible future alternatives. It

can also help explain the topological structure of cities and their related growth

dynamics.

If the model is focused on prediction and forecasting, a scenario-based approach

can be used to provide multiple descriptions of alternative futures. Based on these

scenarios, models can be also used as a tool to provide the necessary understanding

to create feasible urban policies and explore the consequences of different strategies,

addressing at the same time the problem of the inherent uncertainty of dealing with

future projections (Wilkinson and Eidinow, 2008).

2.4.1.1 Theoretical Models

Urban models can be designed to analyse real-world urban development processes in

a concrete region with the use of real data and methods such as photogrammetry

and laser sensing data (Santé et al., 2010; González et al., 2015), or can be designed

as theoretical laboratories to deepen the understanding of urban concepts by the

representation of a mix of elements of real cities and idealisations (Johnson-Laird,

1980). In general, this latter approach is focused on the creation of conceptual

experiments within a simulated study area where a city is constrained within finite

dimensions. Most such models are configured as a regular lattice, to simulate land

use changes from non-urban to urban states, which can be used to test the viability

of different urban development hypotheses or to explore a set of future scenarios.

The use of a theoretical model as a ‘what if’ laboratory has been explored by

several researchers. Wu (2000) replicates some urban development configurations

without including people’s decision-making choices to distinguish between sponta-
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neous or self-organising urban growth processes. Semboloni (2000a) analyses the

suitability of a three dimensional Cellular Automata to model the dynamics of a

monocentric city. Couclelis (1997), on the other hand, uses a theoretical model to

pursue a more formal conceptualisation of regional models via geo-algebra mathe-

matical expressions and the study of the proximal space concept in the context of

linking Geographical Information Systems (GIS) data with these regional models.

Meanwhile O’Sullivan (2002) uses a theoretical approach to explore the gentrification

process in urban areas. The concept of gentrification can be defined as the renewal

of certain urban areas produced by the settling of upper- or middle-income families

or individuals in poor deteriorated urban areas. Liu and Phinn (2003) develop a Cel-

lular Automata model of urban development incorporating fuzzy-set and fuzzy logic

techniques in order to study the differences between an unconstrained urban area

and a topological constraint scenario using a transportation network. Recently Sfa

et al. (2015) uses this technique to construct a learning model to study land-use

changes with the use of multiple advanced economic indicators.

2.4.2 Types of Urban models

A huge amount of varied models have been defined and developed to abstract urban

phenomena which can be broadly classified into two different groups according to the

process of abstraction used; a centralised top-down perspective and a decentralised

bottom-up approach.

2.4.2.1 Top-Down approach

In the 1950s-1960s the traditional planning methodology evolved into a more scientific

perspective by the use of Large Scale Urban Models (LSUMs) (Lee, 1973). These

models attempt to simulate the transformation of patterns of land use into an entire

specific urban area. They can be characterised by their static and descriptive nature

and, in general, by an unnecessarily level of complexity which makes them very hard

to understand (Lee, 1994). The lack of transparency also contributes to difficulty

in replicating results (Batty, 1979; Torrens, 2000). In summary, these models have
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failed to produce coherent results despite their great costs.

Top-down approaches are the result of conceiving cities as one type of social

and natural phenomenon explainable by the use of traditional methods based on

Urban Economic theory (Mills and MacKinnon, 1973), Urban Ecology (Dendrinos

and Mullally, 1985) and Mathematical Geography (Wilson, 1972; Wilson and Kirkby,

1975; Allen and Sanglier, 1979).

Urban ecological modelling, for instance, proposes that the evolution of urban

population dynamics towards an equilibrium state can explain the development of a

city. This population can be considered, from a mathematical point of view, as a

continuous function of time that shows growth and decline behaviour corresponding

to the birth and death rates of individuals. By means of a deterministic strategy and

simple associations at an aggregate level, the technique searches for global patterns

at various time-scales. This approach mainly assumes a closed world, where no

interaction with other cities occurs, and where variation in the population depends

only on the current population (with no immigration or emigration, for example).

Another traditional and well-studied approach is based on urban economic models

that use neoclassical microeconomic theory at an urban scale. The urban model

proposed by Von Thünen (1966), derived from his agricultural land rent theory,

the concentric model of Park et al. (1925) based on the spatial arrangement of

Chicago city, and the urban spatial structure theory of Alonso (1964), all suggest

that the major factors influencing the topological arrangement of residential areas are

transport costs and distance to the city centre (Getis and Getis, 1966; Ullman, 1941).

The approach assumes monocentricity and the maximization of a utility function

(Molotch, 1976) which is considered the basis for the modern urbanization process

and its associated economic growth. This approach also uses microeconomic concepts

like perfect competition and total rationality, but it is limited by the simplification

that spatial processes only result from individual choices and not from relationships

between the elements involved.
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2.4.2.2 Bottom-up approach

Due to their difficulty with representing non-linear dynamical factors and bifurcation

behaviours, top-down approaches cannot properly replicate urban phenomena (Lee,

1973; Su, 1998; Cheng, 2003). With a deeper and more complete understanding of

urban phenomena, urban modelling evolved from a centralised approach characterised

by top-down models, to a decentralised, dynamical and disaggregated perspective as

an attempt to study cities as a highly complex system.

This new ‘bottom-up’ approach has developed alongside advances in computer

processing speed and capacity, the emergence of complex systems theory, and the

birth of more powerful artificial intelligence techniques like Matter-Element Models

(MEMs) (Gong et al., 2012), Artificial Neural Networks (ANNs) (Park et al., 2011),

Cellular Automata (CA) theory (Itami, 1994; Ligtenberg et al., 2001; Mahiny and

Gholamalifard, 2007) and Genetic Algorithmss (GAs) (Porta et al., 2013) among

others. These systems are based on the assumption that microlevel decisions in

individual land parcels generate changes at macro-level scale, producing consequent

spatial land use patterns that cannot otherwise be modelled or understood. This

decentralised perspective also allows the application of new geometrical elements

linked to chaotic behaviours and fractal structure (Wong and Fotheringham, 1990;

Frankhauser et al., 2004).

There are growing examples of hybridisations of, and/or comparison between

these two modelling paradigms. Wu and Webster (2000) proposed a combination of

neoclassical urban economic theory with complex systems using a cellular GIS model

for modelling urban processes, where transition rules are inferred from processes

of the property market. Additionally, Schieritz and Milling (2003) conducted a

study which compares a top-down approach, System Dynamics, with the bottom-up

strategy Agent-Based Modelling, to model the dynamics of forests.

2.4.3 Alonso’s Model

The theory of Alonso (1964) called Urban Land Market Theory is a static, uniform and

continuous description of land use that was based on a refinement of the ideas of the
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Von Thünen model, developed in the 19th century. The residential location model of

Alonso is centred around the concept of bid-rent function, see Fig. 2.1, of a household,

which can be defined as the maximum rent paid for a unit of land at a concrete

distance from a unique CBD, which maintains a certain level of utility (Hoover and

Giarratani, 1984). The concept of utility is based on the idea that satisfaction at

individual level is associated with the consumption of certain goods or services.

Figure 2.1: Bid-rent curves (Scenario1, Scenario2, Scenario3) for one household,
which depict a set of combinations of land prices and distances from the CBD (d1, d2)
associated with a different level of utility. Among these options the household can
select its residential location. The gradient of current rents in the city is given by R.

The micro-economic decision problem assumes that urban pattern formation

is the consequence of individual urban residence choices in the selection of a new

dwelling subject to budget constraints. Residential selection can be characterised by

the generation of an economic competitive equilibrium for space between housing

and commuting costs, which depends on the distance to the CBD. Daily residents

commute to the CBD at a cost per unit distance. At this point the system achieves

an equilibrium state, which yields the same utility level for all individuals. The

approach assumes the existence of a densely radial road system, unemployment equal

to zero, and the assumptions that all inhabitants earn the same income and have

perfect knowledge of the market.
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Formally, the choice of a household regarding the level of housing consumption

and the location is the solution to the following utility function U , which is derived

from consuming different combinations of goods, in this case z, q and t, in such a

way that:

Max : U = U(z, q, t) (2.1)

where z represents the amount of all other commodities, q refers to land housing

prices and t is the distance from residence to work site. This maximisation is subject

to the budget constraint.

In this scenario the population density and rent both tend to reduce with move-

ment from the city centre to the suburbs, which can be approximated by a smoothly

declining negative convex function. However, in real cases this population distribu-

tion tendency may fail if commute costs are high compared to wages, and also in

the case that the distance from the household to the CBD is large. This effect can

also cause segregation dynamics in the spatial distribution of low and high income

groups (Brueckner et al., 1999).

The main limitations of this approach are that it is based on information that

is incomplete and on unrealistic assumptions, such as those listed in the following

points:

• In a real-world scenario, the resident market is always imperfect and affected

by different forms of externalities (Batty, 2009; Cooke, 1983). Residents have

to decide among a set of distinctive buildings, each of them with a varied range

of heterogeneous properties.

• The concept of monetary maximization could be confounded by other factors of

the landscape, which are likely to influence spatial patterns, such as accessibility

of transport routes or heterogeneity of the landscape.

• It is difficult to collect real measurements of the utility function, and its real

effects on the system, when important factors like congestion and commuting

time are ignored. Political and governmental forces are also not included.
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Because of these flaws the use of this utility function has been questioned

(Hamilton and Röell, 1982).

• Most often, employment centres tend to move from the CBD to the suburbs

due to the decentralisation of economic activities. Under these circumstances

Alonso’s predictions are significantly affected because residential decisions are

partially subject to the expected workspace choice. Waddell et al. (2015)

developed a residence-workplace location model specification to study the

interdependence between residence and workplace choices for single-worker

households and concludes that 80% of household decisions are conditioned to

the job location.

2.4.4 Centricity

Spatial distribution of activities and facilities are important factors in urban mor-

phology (Romanos, 1976). Centricity characteristics in urban areas are linked with a

certain level of population and activity agglomeration, normally captured by the use

of density functions. From the multiple types of possible dispositions, monocentricity

is the arrangement that has been used the most in modelling urban patterns. This

kind of layout is characterised by the existence of a unique point-wise CBD, physically

located in the centre of the city where jobs and commercial activities are mainly

concentrated and it is radially accessible from any other point of the city.

From a morphological formation perspective, monocentricity is considered a

normal topological characteristic of industrial cities. Meanwhile multicentric arrange-

ments, where each centre competes among the others, typically arise by a twofold

mechanism. Firstly, cities mostly developed in a post-industrial age normally show

spatial layouts with multiple CBDs that can be dispersedly developed in parallel by

natural pattern formation and secondly it is also possible that by a merging process,

several industrial cities close enough to each other may evolve into the same final

spatial pattern.

In land-use change, the forces that cause centralisation and decentralisation

phenomena, and, hence, changes in urban morphology, are called centrifugal and

27



Chapter 2: Background

centripetal. Centripetal tendency is linked with the idea that residents concentrate

in the centre of the city to get benefits from the service accessibility. On the other

hand, centrifugal forces exert pressure on business and services to leave the centre

of the city and settle in the suburban fringe (Pitzl, 2004). In real circumstances

these forces do not affect the dynamics of the city independently; instead, multiple

different centripetal and centrifugal forces are normally acting in an urban region

simultaneously.

Figure 2.2: Different types of urban forces: centrifugal dynamics which cause
movements to the outskirts of the city and centripetal dynamics that provoke the
opposite behaviour, the concentration of activities towards the centre.

In modern times and in the majority of developed countries, most monocentric

cities have experienced a suburbanisation and decentralisation process, which has

caused the development of new metropolitan forms. This effect has derived in a

general tendency towards the evolution from monocentric structures to polycentric

dispersed cores, where centripetal forces are replaced by centrifugal ones. These

dynamics lead to a population density decay in the most crowded inner areas of the

city. Meanwhile, in outer suburbs, the density tends to rise as the city grows (Berry,

1977, p. 108). This pattern originates from the desire of people to reduce their

commuting times, and from the displacement of job opportunities to other areas

of the city. The latter comes from flexibility in the production, where businesses

benefits from lower land costs and location, avoiding competition among CBDs in a
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single city. The result is a multicentre city with multiple cores and various housing

price gradients.

Since spatial centricity was an element included in the first urban models (Mills,

1967; Muth, 1969) the monocentric assumption has received noticeable empirical

support (Clark, 1951; Frankhauser, 1998) and still partially dominates current urban

models (McMillen, 2006). However, numerous authors state that this feature could

be a limitation in capturing the fundamental characteristics of the city (Wheaton,

1979; Berry and Kim, 1993) because of its simplicity and the existence of various

market failures including the interlocation relationships between agents (Irwin and

Bockstael, 2002), among other factors. All of these flaws make this framework

insufficient to explain real world complex spatial structures like mixed space and

scattered development (Caruso et al., 2007).

The application of monocentric assumptions to urban models characterised by

multiple economic cores produces a distorted panorama of the distribution of urban

elements (Romanos, 1977). However it is a useful analytical tool and the basis to be

applied in the modelling of polycentric cities (McMillen, 2006) because it shares the

same principle, namely that agents’ choices determines the urban spatial distribution,

and it is sufficiently robust to explain other kind of spatial patterns, including single

and multiple clusters and dispersion (Irwin and Bockstael, 2002). Even if nowadays

it is assumed that the island-city no longer exists (Fontaine, 2010), this simplification

is still used because it avoids the need to include interurban factors into the model.

Apart from that, Bertaud (2004) states that, in the real world, urban areas are not

purely monocentric or polycentric.

2.4.5 Limitations of Modelling as a technique

In this section a list of drawbacks that the model has to face due to different

characteristics of the system is illustrated.

Time horizon of the model. Modelling spatial processes and dynamics require

us to envision possible future conditions. In this regard, the defined time horizon

of the model is a crucial parameter to take into consideration. The reason behind
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this is that it is not possible to construct reliable predictive long-term models simply

by extrapolating from current characteristics of the system, since this is inherently

biased, boosting the likelihood of only one future scenario based on inaccurate

assumptions over plausible future evolution.

The predictability problem. The predictability problem states that a massive

number of possible futures exist (Greeuw et al., 2000). A process can evolve in different

ways due to associated stochastic elements that cannot be controlled and foreseen.

However, in the real world only one present and one future emerge. Validating models

against a single reality may not be accurate enough to derive acceptable assessments

of their rationality (Brown et al., 2005). These non-linearities and variability can be

tackled by deciding which of those patterns is the most representative for the goals

of the agents (Batty and Torrens, 2005).

The inference problem. Fotheringham and Brunsdon (2004) stated that in

spatial data analysis and spatial modelling, a given pattern can be the final result of

different processes, and that different types of evidence result in multiple kinds of

inference that can be also valid.

Level of detail. The Bonini’s paradox (Bonini, 1963) consists of the accuracy

- comprehensibility trade-off that said that, as a simulation model moves toward

representing the full complexity of a real system, it forgets its comprehensibility and

transparency. To achieve a high level of sophistication, the required assumptions

become so complex and their inter-relationships so obscure, that the model may not

be easier to understand than the real system itself.

Calibration of the model. The calibration of a model is normally carried out

using historical data, however land use models often include randomness to simulate

complex processes. Bifurcation and emergence are intrinsic characteristics of urban

dynamics (Batty, 2007) and results are generally path dependent (different outcomes

can be generated by the same model (Brown et al., 2005)), which implies that a given

outcome may represent plausible dynamics even if it does not match the actual land
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use change. Consequently some authors argue that accuracy assessment is not the

most appropriate strategy to measure the quality of the simulation results (Parker

and Meretsky, 2004; Power et al., 2001; Remmel and Csillag, 2003). An alternative

method to assess the suitability of a model is pattern based measurements including

patch characteristics (Riitters et al., 1995), polygon matching (Power et al., 2001) or

fractal analysis (Frankhauser, 2004).

2.5 Cellular Automata

CA were proposed in the late 1940s by John von Neumann and Stanislaw Ulam

with the name of ‘cellular spaces’ for discrete space-time representation of complex

dynamical problems which obey their local physics (Von Neumann, 1966). In this

work, the ambitious aim of the authors was to create a system that was capable

of simulating idealised biological systems, with a special focus on modelling self-

reproduction phenomena. For that purpose, they use a set of 29 different states and

a neighbourhood composed by four adjacent cells.

In the context of complex analysis, the simple ecological model developed by

the Cambridge mathematician Conway (1970) called the ‘Game of Life’ is the

perfect example of the use of a CA for representing artificial life. In this work, he

defined a two-dimensional CA with two states (dead or alive) with the main goal

of finding a simple rule that generates complex behaviour. With the definition of

only two transition rules, the model turns out to have an unexpected potential for

representing rich behaviour. Another remarkable study of the abilities of a single

one-dimensional CA was the one created by Wolfram (1984), who also demonstrated

that CA has the capability of modelling complex natural phenomena. By studying

the rules of an one-dimensional cellular automaton in detail, it was concluded that

this system can show stability, stochastic instability or chaotic behaviour.

CA can be applied to a huge range of areas including natural sciences, mathematics,

and computer science. In this regard, Lafe (2012) groups the areas of applicability

of CA into four main categories:

• as powerful computational engines (Conway, 1970).
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• emulation of discrete dynamical systems in simulation.

• as conceptual tools to analyse pattern formation and complexity (Wolfram,

1984).

• as the basis for modelling fundamental physic behaviours, such as ising models

(model of ferromagnetism in statistical mechanics) (Creutz, 1986) or turbulence

phenomena (Chen et al., 1988).

In general terms, a CA consists of a regular discrete lattice of cells, where each

of them has associated an internal state selected from a finite set of possible values.

The dynamics are managed by a set of decision rules, which defines how cells can

evolve from one state to another. These dynamics are based on the assumption

that, by means of local aggregated interactions generated by these simple transition

rules, the model is capable of representing complex phenomena. This aspect that

characterises complex systems, in which a small number of local actions are capable

of generating complexity by an aggregate process, is called emergence.

The non-linearity nature of the iterative evolutionary process of a CA can lead

to the generation of regular fractal patterns (Batty and Longley, 1994; Longley and

Mesev, 2000), which is a frequent characteristic in fields like urban environments.

By the use of this technique, experts can therefore gain insight into the appearance

of such complex spatial phenomena in the real system. Meanwhile in this context,

the CA is an excellent tool to explore complexity of this kind at multiple time-scales.

A traditional CA can be defined as a finite-state machine, in which the state

of each cell at time t + 1 is dependent on two factors: its state at time t and its

neighbours according to a set of transition rules. Formally, this can be expressed as

follows:

St+1 = f(St,Ω, T ) (2.2)

where St and St+1 are the sets of all possible states at time t and t+1 respectively,

and Ω is the neighbourhood of all cells. Both aspects provide input values for the

transition function T that defines the change of the state from t to t+ 1.
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(a) Visual representation of the
Moore’s neighbourhood.

(b) Illustration of the cells arranged
according to the Von Neumann’s
neighbourhood.

A neighbourhood can be defined as the cell itself plus a certain configuration

of cells around the examined cell at some distance (Torrens, 2000). The size of

the neighbourhood determines the amount of surface information that is considered

in the neighbourhood process. In a two-dimensional CA, the two more famous

neighbourhood are the Moore’s and the Von Neumann’s neighbourhood represented

in figs. 2.3a and 2.3b.

Transition rules are the key element in the evolution of a CA. They are mathemati-

cal expressions that define the changes in behaviour of each cell in the lattice. Usually

represented by a set of ‘IF–THEN’ statements, transition rules can be static, proba-

bilistic or use more advanced methods to evolve. Advanced versions of non-linear

transition rules are capable of allocating self-modifying cells where they automatically

evolve towards more efficient states using optimisation techniques like GA (Mitchell,

1998), Ant Colony Optimisation (ACO) (Liu et al., 2007), Support Vector Machine

(SVM) (Yang et al., 2004) or Markov Chain Analysis (MCA) (Mitsova et al., 2011).

The use of EA to calibrate them has been also investigated in Shan et al. (2008).

The CA process starts with a predefined initial configuration of cell states. This

configuration refers to the spatial patterns over the entire lattice defined by these

local states. Traditionally, in discrete time-step systems, when the state of every cell

in the lattice is updated, these changes are synchronous. This means uniformity in

the update process of the cells.

33



Chapter 2: Background

The advantages of this technique are numerous. In the next list, some of the

most important factors are highlighted:

• Transition rules are intuitive and easy to understand.

• It can be easily implemented on computer platforms.

• Its configuration and evolution are independent of any given statistical distri-

bution.

• The technique is good at performing spatial simulations; the process and its

outcomes can be visualised immediately with spatial analysis tools like GIS,

raster-based data and remote sensing (Couclelis, 1997; Wagner, 1997). These

factors allow the inclusion of high-resolution spatial data.

• Due to its computational structure, CA well supports efficient parallelisa-

tion (Gibson et al., 2015), facilitating their use in large-scale simulations of

scientific models or image processing.

Meanwhile, Ward et al. (2000) have questioned the validity of the global patterns

generated by a CA. They highlighted the necessity to extend the CA modelling

mechanisms based on self-organisation processes at a local level to introduce some

broad-scale factors to constrain and modify these local aggregated dynamics.

2.5.1 Cellular Automata in Urban Scenarios

CA have been shown to be powerful qualitative tools for modelling, not only urban

phenomena (Batty et al., 1997; Benenson and Torrens, 2004; Ligmann-Zielinska et al.,

2005; Matthews et al., 2007; Santé et al., 2010) but also for addressing other spatial

simulation problems such as robot path planning (Ferreira et al., 2014), pedestrian

modelling (Crociani et al., 2015) or fluid dynamics (Lafe, 2012). Tobler (1979) was

the first who used CA techniques to model geographical phenomena. In the concrete

field of urban development, CA was also used to explore the driving forces of urban

development (Arsanjani et al., 2013; Leao et al., 2004), analyse urban growth patterns

(Aguilera et al., 2011; Moghadam and Helbich, 2013), support policy analysis and
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land use planning (Geertman and Stillwell, 2004) and explore scenarios for future

development (Barredo et al., 2003; Engelen et al., 2003). In these two-dimensional

models, changes in land-use are depicted mostly as urban cells which spread out

from a determined point to adjacent neighbouring points (Santé et al., 2010).

To make CA applicable for land use modelling, the strictly defined elements are

frequently relaxed. In this regard, urban growth simulations within a CA context are

normally limited by the size of the predefined area under consideration. To avoid this

constraint and create an unlimited area of study, an infinite line can be represented

by a circle if the framework is configured in a single dimension or, in the case of

two-dimensional scenario, an infinite plane can be represented by a torus, a finite

rectangle whose opposite edges are connected. Other methods use a variable grid to

aggregate more remote areas by means of generating field approximations. When

required, the model is able to enlarge a specific neighbourhood to include cells at all

distances by using a hierarchical representation of space (White, 2006).

Another element to consider is the dimensions of the defined grid. In urban

development, CA is most commonly defined as a two-dimensional lattice, however

Semboloni (2000a) analysed the behaviour of a city using a three-dimensional CA as

an extension that permits the inclusion of richer parameters in the model that are

problematic to consider in a normal CA. As such, the model represents population

density variations and mix of land uses by including information that represents land

height, in the case of non developed land or number of floors for urban areas.

The characteristics of cells have also been investigated since raster-based data

shows some limitations in term of geographical representation, even when they are

fitted with high-resolution data (Benenson and Torrens, 2004). A raster can be

defined by a matrix of cells or pixels arranged into a structure of rows and columns

forming a grid. The raster representation of an area eases the definition of the

neighbourhood and its subsequent relationships. Irregular tessellations are more

appropriate for real representation of the land.

Traditionally the shape of cells within the grid is square, however Iovine et al.

(2005) proposed the use of hexagonal cells in order to obtain a more homogeneous
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neighbourhood layout. The use of non-identical cells was covered by O’Sullivan (2002)

who proposed a graph-based CA, where each node with irregular spatial tessellation

was an entity of interest located in a defined point of the lattice. In Shi and Pang

(2000) this option was investigated along with the use of Voronoi polygons. A Voronoi

polygon is a polygon whose extension is made up by all points in the plane which are

closer to a given particular point in the lattice than to any other. The use of this type

of geometrical structure was also included in other urban studies (Semboloni, 2000b;

Shiyuan and Deren, 2004). Another example of the use of advanced geometrical

techniques is the case of the proposed Delaunay triangulations (O’Sullivan, 2001a,b).

Finally, the definition of cadastral parcels instead of regular cells, which leads to

a more realistic representation of urban phenomena was analysed by Stevens and

Dragićević (2007).

The cell space has been also extended to include non-uniform features with land

attributes such as slope, existing land cover, elevation, accessibility and the angle

of the area. Consequently, in this case the cell space is not uniform, which entails

that some cells are more suitable for certain land uses than others (Wahyudi and

Liu, 2013).

The selected neighbourhood defines the amount of land that can exert influence

on the parcel under consideration, and its effect depends normally on the type

of land-use and the distances between these parcels of land. In this context, the

previous formulations significantly affect the definition of each neighbourhood and

their interactions, which may require significant revision. For instance, the concept

of neighbourhood could also be defined as a non-static parameter when it is used in a

graph representation (O’Sullivan, 2009; Barreira-González et al., 2015). In this case

the neighbourhood can be defined by the adjacent units within a specified distance

or by a Voronoi spatial model.

In a traditional CA, only directly adjacent cells are included in the neighbourhood.

In the real world, different land-uses are affected by dynamics that may happen

at greater distances, even if typically this effect decreases with distance. Hence,

larger neighbourhood configurations have been used to model these kinds of land-use
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relationships (White and Engelen, 1993; Barredo et al., 2004; van Vliet et al., 2009).

However, such configurations include more information, so the required computation

time to deal with this extra amount of information may increase dramatically, because

the number of cell-to-cell relations grows with distance. To incorporate the effects

derived from operating over larger distances, Gravity-Based Regional models (White

and Engelen, 2000) or a more complete hierarchical conceptualisation of the space

(Andersson et al., 2002) can be used.

States can be also differently defined, from the most simple approach as binary

values which can represent urban and non-urban areas, to qualitative values of

multiple land use types or quantitative values that could represent population

density (Li et al., 2003), degree of development (Yeh and Li, 2002), the value of

buildings (Cecchini and Rizzi, 2001), or a vector that includes several attributes

(Portugali and Benenson, 1995).

Regarding the nature of the transition rules, the approaches most commonly used

are non-linear or probabilistic. The application of these kinds of strategies assume

that new developments are transformed from available land according to a certain

probability. On the other hand, Wu (1996) investigates a linguistic simulation

approach, where a set of fuzzy transition rules are aimed at selecting the most

appropriate type of land-use using the highest grade of membership of the fuzzy set.

Li and Yeh (2002) proposes the use of a three-layer ANN to calculate the conversion

probabilities that allow the evolution of multiple land uses types by using observation

data collected from remote sensing sources, and White et al. (1997) use the transition

potentials from previously calculated calibration data. These implementations reflect

more realistically that different land developers in different locations can vary the

way they apply their financial resources to the construction of urban areas, and

how they react to the different market conditions. Such an extension breaks the

spatial symmetry, generating the development of clusters with irregular edges that

are much more close to the characteristics observed in real cities. Apart from the

multiple range of possible definitions, Brown et al. (2005) highlight the problem that

transition rules can be differently adjusted according to alternative explanations of
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the same phenomena.

The spatial heterogeneity represented in different parts of the city should be

addressed by different transition rules. Besides this, spatial heterogeneity has some

effects on the morphology of the neighbourhoods. Realistic modelling should be

described with neighbourhoods of different shapes and sizes (White and Engelen,

1993). These extensions allow the model to better capture the spatial interactions

among urban structures.

Finally, variations in the duration of the time steps can be also studied. Irregular

time steps, varying with the cell under consideration, has been analysed in Stevens

and Dragićević (2007). Another less frequent variant is the use of variable time

steps to model events of different lengths of time (Couclelis, 1997). Couclelis (1984)

critiqued the inability of CA to deal with stochastic behaviour due to the updating

synchronicity of the urban environment at each iterative step. Real cities violate this

assumption due to their inner chaotic behaviour.

2.5.2 Examples of Cellular Automata-based Urban Models

The SLEUTH model, proposed by Clarke et al. (1994), is an adaptive CA-based

urban growth prediction model that can be considered the most widely used by

the urban community, due to the fact that it has been applied to over 66 different

cities and regions(Clarke, 2008). This broad level of acceptance is mainly due to

the incorporation of advanced characteristics like back-casting, the use of historical

data for calibration of variables, a successful implementation at regional scale and

its capability of simulating both urban and non-urban dynamics.

The framework comprises two modules, the Urban Growth Model (UGM) and

the Landcover Deltatron Model (LCD) that can simulate land-use change dynamics.

The model also includes thirteen metrics used to assess the best fit growth coefficients.

SLEUTH allows the definition of multiple features such as slope, land-use types,

urban extent, exclusion, transportation accessibility and hill-shade. The first study

involving the SLEUTH model was focused on the historical urban growth development

of San Francisco Bay and it was implemented by Clarke and Hoppen (1997). Silva
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and Clarke (2005); Wu et al. (2009); Akın et al. (2014) are some examples of modern

applications of this model.

An advanced version of the SLEUTH model, called SLEUTH-3r was introduced

by Jantz et al. (2010). The approach improves the performance in terms of memory

consumption and its applicability by enhancing the calibration process with the

inclusion of new fit statistics. Jantz identified a bias behaviour towards edge growth

which may affect the dispersed development in detailed resolution data. This

advanced version also implements a functionality which allows the model to identify

the most promising areas where urban growth may occur. This advanced model has

been demonstrated to be five times more computationally efficient than its previous

version, reducing memory usage by 65%. Examples of the application of SLEUTH-3r

include Belyea and Terando (2010) for the South Atlantic Migratory Bird Initiative

(SAMBI) region or Jawarneh et al. (2015) for the study of future land development

in central Arkansas (USA).

Metronamica (van Delden et al., 2005) is another dynamical CA-based land

use-transportation model developed in the Netherlands by the Regional Integration

Knowledge System (RIKS) company. Its main objective is to explore the effects of

multiple socio-economic and physical policy configurations to aid in a broad range

of decision-making processes. The model is composed by three main elements that

cover distance decay functions, GIS integration and constrained cell transitions that

are defined by calculating a ranked score for each cell. This framework has been

proven to be very generic and flexible for a variety of spatial and temporal scales

levels. Metronamica was applied to different regions (Daneke, 2013; Linke, 2008)

and compared with the SLEUTH model in (Kim and Batty, 2011).

Another recent CA-based urban growth model that has appeared in the literature

is iCity. iCity, that stands for Irregular City, was developed by Stevens et al.

(2007). It is a predictive urban growth model that extends the functionality from

a traditional CA by including an irregular lattice and an asynchronous updating

behaviour of the cells. iCity was also the basis of another urban study, where

a similar implementation supported the capability of the model to assist urban
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planners (Jjumba and Dragićević, 2012).

SimLand is a CA model used for simulation purposes based on the integration of

a Multi-criteria Evaluation (MCE) model to derive behaviour-oriented rules for the

transition among states that includes Analytical Hierarchy Processes (AHPs) (Saaty,

2008). The model was introduced by Wu (1998) and the most noticeable strengths

include easier retrieval of spatial data, the use of GIS technologies to map multiple

data layers and the integration of multicriteria evaluation methods. Based on that,

the model achieves a more realistic definition of its AHP-derived transition rules.

The Canadian Agent-Based model system called Integrated Land Use, Trans-

portation, Environment (ILUTE) was developed by Miller et al. (2004) as a tool

to replicate the evolution of an entire urban region over a defined time horizon.

The model analyses the demand-supply interactions of three type of agents namely

landowners, households and developers in a residential and commercial real estate

market. The ILUTE model was successfully applied in different scenarios (Salvini

and Miller, 2005; Chingcuanco and Miller, 2012). Another Agent-Based residential

model designed to study the urban land market was the one developed by Parker

and Filatova (2008) which was focused on the interactions and relationships cre-

ated between multiple trading agents including household agents, developers and

rural-land owners in the pursue of a profit maximization objective.

Other models are designed applying hybrid strategies that combine a CA approach

with other advances techniques. In this regard, the work of Al-Kheder et al. (2008)

applies a fuzzy inference process to provide common semantic and linguistic knowledge

to the urban growth model, simplifing the set of transition rules. Using satellite

images the framework guides a CA to determine the potentiality of each pixel to be

urbanised. Wang and Li (2011) applied a Radial Basis Function Neural Network

Model (RBFNN) to generate the conversion probabilities from the initial urban cell

to each objective land use type. The approach faces a problem due to the limitation

of the ANN technique, which cannot explicitly identify the contribution of each

variable. The consequence is that less important variables may be included into the

model. To overcome this limitation, Kocabas and Dragicevic (2007) also investigates
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a Bayesian Network variant of the model, where land use factors and probabilities

can be clearly interpreted in comparison with the Neural Networks weights. The

calibration of the weights used in the transition rules were also determined using an

adaptive Monte Carlo sampling taking information from historical data of the urban

growth (Chen et al., 2002).

2.5.3 Calibration and Validation of Cellular Automata

models.

Calibration and validation of CA models have been two of the most critical issues in

order to consider a CA as a reliable method for urban growth modelling. Calibration

can be defined as the process of generating the best fit for the model in order to

recreate a determined behaviour that mimics certain dynamics of the objective

system. However, it is a crucial factor in such simulations in which the parameter

values or weights are evolved, so that realistic results are included into the model (Wu,

2000).

CA logic is mostly based on the values of the transition rules. Most of the

times these values are assigned relying on an intuitive understanding of the changing

process of the cell status. The problem is that the number of possible transition

rules that give rise to structured global patterns is almost unlimited. Identifying an

appropriate rule among a huge amount of alternatives is very complicated. Some

attempts have been investigated to formalise a reliable procedure to apply the CA in

an urban scenario. As such, Takeyama and Couclelis (1997) proposed a mathematical

geo-algebra language for CA that is capable of formalising and generalising multiple

dynamic spatial models. Xie (1996) also developed the Dynamical Urban Evolutionary

Modelling (DUEM) model as a generic paradigm to construct dynamic geographic

models to contribute to the understanding of urban phenomena like the simulation

of different forms or simulating sprawl phenomena with the final goal to aid in

decision-making processes. The model was applied to multiple real systems like the

city of Buffalo (Batty and Xie, 1994) and Lanzhou in China (Xu et al., 2007).

Historical empirical data can be used as a tool to find suitable parameters values
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using techniques like MCE (Wu and Webster, 1998). Calibration has been also

addressed by intensive computation simulations, using iterative processes with allow

the model to run and test with different combinations of parameter values (Clarke

and Gaydos, 1998), applying Fuzzy Logic (FL) (Liu and Phinn, 2003), training an

ANN (Li and Yeh, 2001) or using GAs (Li et al., 2013). The two latter methods are

capable of automatically generating the parameter values, even if these values may

be complicated to understand and interpret.

On the other hand, to create a validation process for CA models is still a challenge.

The validation procedure should be able to measure whether the model can capture

the general trends and dynamics of urban land-use or not. The method most often

used is to carry out a visual comparison to confirm the validity of the simulation

results. This performance should be analysed only in relation to the specific pursued

goals of the specific problem under consideration. In this regard, Clarke and Gaydos

(1998) used four statistical indices to assess the accuracy of the simulation, Li and

Yeh (2001) explores a conversion matrix and Li et al. (2013) uses the coefficients

resulted from different density functions.

An additional possible method is the use of the trends and patterns retrieved

from other models to measure the validity of an external model. However, comparing

the performance among planners is generally a very hard task. Furthermore, most of

the factors that hinder comparison are out of the scope of the prediction process,

such as focusing on different operators and criteria to characterise the same reality,

facing missing, incomplete or inconsistent empirical data in the form of inaccurate

diagrams and poorly organised descriptions, or dealing with multiple optimisation

procedures and configurations, and hardware characteristics.

2.6 Agent-Based Modelling

Agent-Based Model (ABM), formulated in early 1970, is a powerful simulation

modelling technique that is composed by a collection of heterogeneous entities called

agents with decision-making behaviour that can be arranged in different levels of

organisation (Ferber, 1999; Parker et al., 2003). These autonomous entities can
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represent an heterogeneous community, capable of interacting among them and with

their own environment locally, acting and adapting their behaviour accordingly. This

local characteristic refers to normally agents do not interact indiscriminately with

the rest of the agents, but only with their neighbours.

Each agent, that can exist at different scales or levels of granularity, is capable of

assessing its current situation and making decisions according to a set of rules that

defines their behaviour. These rules, that can be static or dynamic, allow agents to

perform a change of state, phase or activity that the agent is engaged in. Mubasher

and Jaffry (2015) investigate a case of dynamical behaviour in agents’ rules, where

five different agent profiles evolve through time by using the feedback produced by

the environment in a Cognitive Driver Model (CDM).

The ABM technique has been used to understand the interconnections, interde-

pendences and feedbacks created among a set of individual entities in order to fulfil

their goals within a designed environment (Rounsevell et al., 2012). By the study of

these simple repetitive and aggregated interactions, it is possible to interpret future

socio-economical and ecological trends and global patterns in the form of distribu-

tions and their correlations (Gimblett et al., 2001). The knowledge gathered can be

translated by experts in order to create a set of feasible strategies. Finally these

strategies would be applied to the real-world problem. ABM has been widely applied

to simulate complex systems in different fields ranging from economics (Hokamp,

2014; Hamill and Gilbert, 2015) to language (Pitt and Mamdani, 1999), social sci-

ence (Ronald et al., 2012), ecology (Bert et al., 2011), biology (Bogle and Dunbar,

2010) and engineering (Pipattanasomporn et al., 2009).

The major advantage of this technique is that it operates from a bottom-up

perspective by providing a mean to incorporate individual-level dynamics, which

confers a natural description of the system. This feature allows the exploration of

dynamics out of the scope of pure mathematical techniques (Epstein and Axtell,

1996; Axelrod, 1997). Multiple agents are able to interact leads to a highly dynamic

and non-deterministic environment able to capture emergent phenomena and self-

organisation patterns (Heath et al., 2009). Furthermore, the model can be considered
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an across-level technique since changes at the individual agent level may cause

unexpected behaviours in the entire system. Remarkable is also its capability of

integrating a broad set of knowledge sources and the ability of supporting the

representation of different rich individual profiles that can be parametrised from

quantitative surveys. Benenson and Torrens (2006) also add that the use of ABS

does not require the full understanding of the phenomena under consideration.

Agents can be assisted by heuristic methods in learning from previous choices in

order to achieve more efficient decisions to accomplish their objectives in the future.

Some techniques have demonstrated significant potential including evolutionary

algorithms (Manson, 2005; Bennett and Tang, 2006) and reinforcement learning (Bone

and Dragicevic, 2010). In this regard, Tang (2008) concludes that evolutionary

approaches are specially suited for gathering knowledge from a group of agents.

Validation and parametrisation is one of the main research challenges in the

field of ABM. Commonly, the resulting models can strongly depend on the initial

conditions of the individual entities and their simulated environment, and the way

processes and events are scheduled within different submodels. As a consequence,

most often formal ABMs descriptions are descriptively lengthy and incomplete, which

makes replicability very hard or even impossible (Grimm and Railsback, 2012) and

avoids transfereability of knowledge between models (Hales et al., 2003). From this

perspective, several works address the pursuit of designing a standardisation process

in the design of ABM. In this regard, Boero and Squazzoni (2005) developed a

methodology to be followed in order to perform an empirical validation of ABMs.

They created a taxonomy of models and a subsequent classification according to

their intrinsic nature. They divide the models into three categories namely case-base

models, typifications and theoretical abstractions. Afterwards, they analyse the

empirical data needed and the validation strategies available in each case, creating

a ‘best practices’ list for each of them. Richiardi et al. (2006) proposed a three-

stage protocol to define the methodological standards for agent-based simulations

in the social and economic field. They use questionnaires and the interaction of

working groups to be able to design an initial set of recommendations to lead to
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a methodological standard for agent-based simulations. Other approaches are less

ambitious and are based on the idea that replicability by different models and on

several platforms can be seen as a way of being more confident of the veracity of the

results (Gilbert and Troitzsch, 2005).

2.6.1 Agent-Based Modelling in Urban Scenarios

In the field of urban development, agents could represent civic or local government

decision-makers, real estate developers, farmers or a recent arrived immigrant making

iteratively endogenous decisions about the sale, purchase and development of patches

of land. These individuals can be also grouped together in organisations and interest

groups where they may exert extra influence over the system (Tian et al., 2011).

Based on simple actions and interactions, such systems are broadly able to model

urban growth, cooperation processes and a given scenario with a concrete land-type

distribution developed over time. The inferred plausible properties and patterns

can give support to decision-makers and policy-makers to understand these complex

social process. Future socio-ecological trends like the emergence of urban patterns can

be derived from their cooperational behaviour, their endogenous economical choices

and their direct and indirect interactions. For some authors ABM is considered more

like a mechanism to explore different types of dynamics of a system rather than

generating predictive results (Brown et al., 2006).

In the past 40 years and since the first studies were published (Schelling, 1971;

Sakoda, 1971), ABMs have been commonly used in the geographical and land-

use sciences. More recently this technique was applied to compare micro-macro

urban phenomena (Schieritz and Milling, 2003), to study different modelling spatial

patterns to maximise society’s well-being by capturing Thünen’s assumptions (Sasaki

and Box, 2003), to simulate residential relocation processes and price evolution in

housing markets in a not spatially explicit model where agents’ decisions are based

on perceptions probabilities (Ettema, 2011), to mimic traffic simulations within

cities (Balmer et al., 2004) and also in the field of air traffic flow management

(Agogino and Tumer, 2012) in order to analyse the complex interaction developed
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by the aircraft, airports and traffic controllers or in other areas of ecology such as

population dynamics and movements of social animals, dynamics of plant population

and ecosystems (Grimm and Railsback, 2013).

Torrens and Benenson (2005) conclude that the use of ABMs in conjunction

with CA produces better simulation results. Together, these techniques create a

conceptual framework which incorporates human decision making and spatially

explicit representation of land use in addition to all their combined driving factors.

ABMs, along with CA taking the role of representing land-use change dynamics, have

been applied broadly to study land-use and land-cover change (Parker et al., 2003) and

urban growth phenomena (Batty, 2007; Matthews et al., 2007) like rapid urbanisation

processes (Xie et al., 2007) in the analysis of crowd dynamics (Mordvintsev et al.,

2014; Luo et al., 2010) and as a tool to aid stakeholders for decision-making purposes

and create suitable spatial planning policies with the use of future plausible scenarios

(Ligmann-Zielinska and Jankowski, 2007). Mentionable is its use in the analysis of

residential selection within a non-stationary housing market (Devisch et al., 2009;

Parker and Filatova, 2008; Otter et al., 2001; Brown and Robinson, 2006). Zellner

(2007) studied the water-use and land-use patterns derived from different policy

alternatives by means of the Water-Use and Land-Use Model (WULUM). Filatova

et al. (2009) applied these tools to analyse how land prices affect the behaviour or

households in an urban environment. Robinson and Brown (2009) proposed a GIS-

agent-based model called the Dynamic Ecological Exurban Development (DEED)

model that evaluates the effects of lot-size zoning caused by municipal land-acquisition

policies on available forest stands by the use of hypothetical scenarios. Finally, Miller

et al. (2004) studied the role of transportation in the evolution of an urban region

and Ehlert and Rothkrantz (2001) the evolution of human-like driving behaviour in

agents which can exhibit different driving styles.

2.6.2 Repast Simphony as a modelling tool

Repast Simphony (RS) (REcursive Porous Agent Simulation Toolkit) is an agent-

based modelling and simulation toolkit commonly used in the CA-ABM community.
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The framework is free, open access and it has been under continuous development

for about 15 years. The version 2.0, used in this thesis, was released on March 5,

2012 as a second-generation environment that builds upon the previous Repast 3

library (North et al., 2006). The framework uses Eclipse as its primary development

environment that runs under Microsoft Windows, Apple Mac OS X, and Linux.

With a strong focus on well-factored abstractions, RS is the result of a highly

modular plug-in architecture that allows the interconnection of individual components

including networks, logging, and time scheduling. Each module can be connected or

disconnected as required. Its design is structured to separate specification, execution,

data storage, and visualisation. 2D and 3D OpenGL-based allow that the same

agent to be displayed simultaneously in a variety of topologies. The framework

also includes the integration with third-party applications, such as the R statistical

package (Hornik, 2012), JUNG network analysis system (O’Madadhain et al., 2005)

and the free GIS software GRASS (Neteler and Mitasova, 2013). Data collection is

designed to gather and store information in running time typically from both, the

state of the simulation and for each agent at each time step.

Previous publications have validated the software in different contexts (Artel

et al., 2011; Parry et al., 2006; Griffin and Stanish, 2007).

2.7 Evolutionary Algorithms

EAs are popular and powerful stochastic metaheuristics that mimic the behaviour of

natural selection postulated by the English naturalist Charles Darwin in the 19th

Century (Darwin, 1861). This strategy, not based on neighbour search, is established

under the assumption that nature evolves by the course of new generations, preserving

the specimens more suited to their environment while the unfavourable individuals

tend to perish. To accomplish that behaviour, the method uses a set of individuals,

each encoding a possible solutions of the problem. This structure of the encoding

corresponds to the biological genotype and each of the possible realisations to the

phenotype. A genotype can be decomposed into units of heredity called genes. The

different set of values that genes can store, also termed as alleles, are taken from
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a generic alphabet. The position of each gene in the chromosome is called locus.

A set of robust operators are capable of exploring the search space in order to

guide the current population towards more efficient areas of the search space. These

operators, named selection, reproduction, crossover and mutation, are tools with a

problem-specific implementation (Datta et al., 2007) and their particular structure

influences the way the information is modelled. By the application of these operators,

which try to emulate those found in nature, the strategy simulates the evolution of a

population of solutions.

Figure 2.3: Example of a landscape commonly used to test the efficiency of evolution-
ary algorithms for two variables. The Rastrigin function first proposed by Rastrigin
(1974), is a non-convex, non-linear multimodal function typically used as a perfor-
mance test due to its capability of representing a large search space with numerous
local minima.

The design of the algorithm should balance two factors: exploration and exploita-

tion. If exploration is over-developed, the search process becomes inefficient; if the

search is mainly focused on exploitation, it can easily reach premature convergence,

losing diversity and getting trapped in a local optimum. This balance is pursued by

controlling different search factors, such as selection pressure or operator design.

EAs are appropriate for large and high-dimensional solution spaces with both a
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continuous or a discrete nature, and particularly good in cases where prior knowledge

of the space of solutions is limited. EAs have also been shown to be a flexible and

powerful tool to solve non-continuous, non-linear, non-convex, multi-modal, non-

separable, high-dimensional and non-differentiable objective functions with single or

multiple objectives (Anagnostopoulos and Mamanis, 2010; Davis, 1991; Goldberg,

1989). In this regard, EAs are generally superior to other search techniques, which

are limited by the continuity, differentiability, and unimodality of the evaluated

functions.

There are multiple main branches of EAs that have been developed in parallel,

largely independently one from each other. A list of the most important classes:

• Evolutionary Strategy (ES) (Rechenberg, 1973). This method, developed in

Germany, was specially orientated to solve optimisation problems. It can be

characterised by the use of string representations and the enhancement of both

mutation and recombination operators. The selection operator is deterministic

and the amount of population among generations is not constant. Typically

ESs do not include a population of solutions but a single individual which

evolves through successive application of the mutation operator and guided by

the fitness function.

• Evolutionary Programming (EP) (Fogel et al., 1966). The intended area of

applicability was the study of the evolution of finite state machines. The main

characteristics of this approach is the emphasis on the mutator operator, the

complete lack of recombination and a defined selection operator of probabilistic

nature. The mutation operators were used to alter the states that were being

evolved for the given tasks.

The use of this strategy was insignificant for many years until its rebirth in

the 1990s (Fogel, 1992) with much similarity to evolution strategies. EP, along

with ESs are normally focused on continuous optimisation problems.

• GA (Holland, 1975). GA may be considered the most recognised form of

evolutionary algorithms. The approach emphasises the effect of selection,
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recombination and mutation on the genotype, highlighting recombination

(crossover) over mutation as the central operator. Mutation is only applied

with a very small probability, typically less than 1%. The selection operator

is probabilistic and it is called proportional selection and in its traditional

representation uses a fixed-length binary chromosome. GA is considered more

specifically suited to discrete and combinatorial optimisation problems.

• Genetic Programming (GP) (Koza, 1990, 1992). GP is another important

sub-type of evolutionary computing that represents a major change in the way

that solutions are encoded. The approach was explicitly aimed at constructing

an evolutionary methodology for automatic programming which allows the

design of the structure of the computing approach, instead of as a parameter

optimisation method. Programs are normally very specific and small in size.

The most widely used form is the Koza trees-based GP (Koza, 1991), also

known as syntax trees or parse trees. Areas of applicability include the design of

circuits, programmatic expressions and symbolic regression to fit a mathematical

expression to data. A major problem in the GP paradigm is what is called

‘bloat’, which refers to the tendency for trees to grow large during evolution

in a quadratic complexity that may lead to inefficient and uninterpretable

programs (Langdon, 2000). In this regard, Luke and Panait (2006) analyse a

series of bloat control methods for GP.

2.7.1 Single-objective Approaches

Starting from the initial set of individuals using a chromosome-like data structure,

which are normally generated randomly, the algorithm tries to improve the population

of solutions by evolving them over successive iterations based on the values of their

fitness function. Each iteration corresponds to a new generation. To move from

one generation to another, a new intermediate population, which forms the mating

pool, is created taking information from the current population. By applying the

crossover and mutation operators, reproduction is performed. In this exchange of

information, the sources are called parents and the new individuals are their offspring.
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The number of parents can be a fixed number or can vary. Once the new offspring is

created, a replacement mechanism defines the evolution of the population, deciding

on the survivors for the next generation.

As the process continues, a sequence of generations evolves, increasing the average

fitness of the chromosomes until any stopping criteria are met. Once the algorithm

is halted, the final returned chromosome is the individual with the best fitness of the

population.

Figure 2.4: Basic structure of the evolution flow corresponding to a generic EA
algorithm.
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2.7.1.1 Population

One of the most important differences between EA and other traditional methods

is that EA manages a set of candidate solutions that is called a population. This

population, created randomly or by a constructive algorithm, allows the exploration

of promising areas of high performance of the search space. Population size has a

deep impact on the performance of the algorithm. It is a parameter that can be

maintained constant or can vary during the execution of the algorithm. A large

population may result in a very slow rate of convergence, but at the same time

contributes to the avoidance of suboptimal solutions. Small populations may easily

lead to premature convergence but also have a quick rate of convergence.

Each of these solutions is called an individual or a chromosome, and can be

seen as an abstraction from a biological DNA chromosome, consisting of a set of

elements named genes. In biological terms, the representation of a given solution as

a codification of a solution is called the genotype and in the search space phenotype.

EAs offer a very flexible range of ways to represent solutions. Each particular

representation, that is problem-dependent, is referred to as the encoding. The

encoding can use different elements such as bits, numerical values, trees, arrays, lists

or any other more advanced objects. The type of operators that can be applied to

the chromosome depends on the type of encoding selected.

The significance of each element in the chromosome can depend on its value,

its value and position like a binary encoding and only in its position. Since the

traditional encoding for GA was binary encoding (a string of 0’s and 1’s), this is

one of the most common used. This type of encoding is simple and allows the use

of multiple implementation of crossover and mutation operators. When only the

position in a sequence is important for the solution, the encoding is called permutation

and it is used mainly in ordering problems. Permutation encoding permits the use

of inversion and crossover versions that, in general, are complicated to implement.

Tree encoding is the typical choice for evolving expressions in genetic programming.

Depending on the encoding and the type of operators applied, infeasible solutions

can be present in the population. An infeasible solution is a solution that cannot
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be realised as an actual solution to the problem at hand. Sometimes, instead of

dismissing these kinds of solutions, a penalty function is designed and applied to

punish a solution that is not feasible. Other methods use repair algorithms to convert

the infeasible solutions into feasible ones that occupy the feasible space F. Repair

is an ad-hoc mechanism that can be seen as a sub-state of the evolution process.

The encoding structure is a critical decision that has multiple consequences on the

performance of the algorithm, since a bad chromosome representation can increase

the size of the search space or slow down the algorithm if too many repair operators

are needed to ensure the chromosome is valid.

A review of methods to handle different constraint techniques can be found

in Michalewicz (1995). Yeniay (2005) presented a review about multiple penalisation

functions and Miettinen et al. (2003) compared some of the penalty-based techniques.

2.7.1.2 Fitness

Every possible individual has an associated objective function value, calculated

by the fitness function, defined to measure the optimality of a candidate solution

through the adaptation to its environment. By inheriting positive genetic information

between one generation to the other, the average quality of the population improves

with time. Without this element, the evolutionary process would not be capable

of progressing towards better areas of the search space. The posterior ranking of

the population according to its fitness value is used to assess the suitability of the

chromosomes, to implement the elitist mating and to select the final best solution.

Different kinds of metrics can be used in the definition of this function according to

which aspects are required to be emphasised within the system.

2.7.1.3 Selection

The selection operator chooses individual solutions from the population using the

fitness value, to include them in the mating pool as parents of the new offspring.

If elitism is added to the selection strategy, the process tries to emphasise better

solutions within the population by prioritising individuals with the better fitness

over the rest. Without selection pressure, the search becomes more random and
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cannot emphasise more promising areas of the search space (Li et al., 1992). How-

ever, the overuse of selection pressure can provoke a narrowing of the population

diversity (Whitley, 1989) which can lead to premature convergence which hinders

the efficiency of the algorithm. On the contrary, too little pressure causes random

search behaviour (Eshelman and Schaffer, 1991; Goldberg, 1989).

To determine which individuals can be more appropriate to give information to

the next generation, a neighbourhood function is associated with the population P in

such a way that it can be formalised as follows:

N : P → ρ(P ) (2.3)

where ρ(P ) is the set of the subsets of P . Each individual e has a subset N(e)

of P called neighbourhood that is the different individuals that can be created in

one generation with the application of the available operators. These relationships

between parental individuals are symmetric: e1 ∈ N(e2) implies e2 ∈ N(e1).

A variety range of selection schemes has been developed, each characterised in

different ways. A review of the most important methods can be found in Bäck et al.

(1997). Some of the methods are characterised by the following features:

Tournament Selection Tournament selection is a robust selection mechanism

which is easy to implement and commonly used in evolutionary algorithms. In each

generation a number N of chromosomes are chosen uniformly at random, and the

best of these is placed in the intermediate population. N denotes the tournament

size of the selection method. In expectation, this produces a linear ranking with a

bias related to the tournament size toward the best individual.

The number of chromosomes selected in the tournament has a direct influence on

both the diversity and the convergence rate. It is also defines the selection pressure.

The bigger the tournament is, the faster the convergence is achieved. However, this

comes with a premature convergence risk which could lead the algorithm towards

local minima. The flexibility of this selection scheme lies in its capability of adjusting

to different domains and problems by varying this tournament factor. This selection
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scheme introduces noise due to the random selection of individual solutions for the

tournament, allowing that average quality or poor solutions may have children.

Roulette Wheel In this scheme, each individual of the population has a probability

of being chosen, proportional to their relative fitness. This probability is calculated

as a proportion of the sum of the fitnesses of the entire population. Then, better

individuals have higher chances to be selected and reproduce. The roulette wheel has

N equally spaced pointers that are going to simultaneously pick the same number of

individuals. The probability pi that the i-th member being selected is the following:

pi =
fi∑M
k=1 fk

(2.4)

where fi represents the fitness of the i-th individual and M is the total number

of individuals in the population. The resulting selection is unbiased (Baker, 1987).

Stochastic Universal Sampling (SUS) SUS is a non-bias, sequential and single

phase method developed by Baker (1987) that selects explicitly each individual a

number of times proportionally to the expected value of its fitness. The method

creates N equally spaced pointers, instead of a single one used in the roulette wheel

method, where N is the number of individuals to be selected in each generation.

Afterwards, the population is shuffled randomly and a single random number k is

selected by generating a uniform random number in [0, 1/N ]. The final N individuals

are selected by generating N pointers, starting in k and spaced by 1/N , and choosing

the individuals whose fitness falls on the positions of the pointers.

2.7.1.4 Crossover

The crossover operator is a recombination mechanism inspired by the recombination

of partial structured genetic material that occurs in nature to form the genotype of

an offspring during reproduction. This exchange of characteristics is used to explore

new parts of the search space with the intent of improve the fitness value of the

next generation. In the mating process different members of the population (usually

two), the parents of the new generation, combine the most desirable set of features
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in normally one new offspring. Crossover is applied according to a probability value

pc, called the crossover probability. If this operator is not included, then the variable

pc is equal to zero.

One type of crossover commonly used is one-point crossover, see Fig. 2.5, where

a position in the range (0, N − 1) is selected with a homogeneous probability, where

N is the length of the chromosome. The new offspring chromosome is formed by

using the characters from the first section of the parent until the point indicated

by the position of the crossover, filling the rest with the characters of the second

parent. Other possible methods include two-point and multi-point crossover (N-Point

crossover), uniform crossover, cut-splice crossover and three parent crossover.

Figure 2.5: One-point crossover operation

If the crossover rate is too high then highly promising areas of the search space are

discarded faster than the selection mechanism can produce improvements. However if

the crossover rate is too low, the search may be stagnated due to the lower exploration

rate (Grefenstette, 1986).

2.7.1.5 Mutation

The mutation mechanism works by slightly modifying the structure of a chromosome

and it is used to maintain the diversity and prevent premature convergence to local

optima. The operator introduces stochastic perturbation in the new offspring by

adding into them completely new information. This perturbation reintroduces back

genetic diversity into the population and allows the presence of chromosomes that

belong to unexplored areas of the search space. The mechanism also contributes to

preventing convergence of the solution to a local optima.
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Mutation is generally applied at a gene level. The random mutation selects

randomly a gene within the chromosome with a probability pm to alter it to a new

value selected from the whole range of possible values. On the contrary, the non-

uniform mutation changes the values from a predefined distribution. Mutation rates

are commonly very small and depend on the length of the chromosome. Consequently,

after applying the operator the mutated chromosome will not be very different from

the original one.

2.7.1.6 Replacement & Stopping Criteria

After the offspring is created, the old population can be deleted to make space for

the new generation. In the case the whole population is changed in each individual

generation, the replacement is called generational replacement. Otherwise if typically

at most one new solution is added to the population, and one is removed then the

process is called incremental/steady state (Whitley and Kauth, 1988). In the case of

a steady-state, for a population size of η, if λ is the number of individuals replaced by

new offspring, the population gap denoted by λ
η

defines the percentage of replacement.

Whitley and Kauth (1988) reported higher convergence speed in the incremental

method compared with the generational method.

The replacement strategy can follow different criteria like fitness-based (selecting

the worst), age-based (the oldest) or simply choosing a random individual. The

replacement condition indicates whether or not the replacement will be finally carried

out. A common way to perform the substitution is to replace the parent only if the

new individual has a higher fitness (Wakunda and Zell, 2000). In Goldberg and Deb

(1991) is suggested to substitute the worst in the population to achieve a higher

selective pressure.

The condition of termination can be defined following different criteria such as:

• Number of generations: The algorithm is finished when a predefined maximum

number of generations is reached.

• Elapsed time: The halting condition is triggered when a concrete amount of

time has passed from the beginning+ of the algorithm.
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• No change in fitness: The genetic process will end if no change to the popula-

tion’s best fitness or any of the fitnesses of the population occurs for a specified

number of generations.

2.7.2 Multi-objective Problems

Individuals, organisations and communities have different objectives and aspirations,

with different views about the importance of factors such as ecological conservation,

social rights and economy and the way of pursuing these goals. In order to maximise

their point of view very commonly these stakeholders may organise themselves in

pressure groups to influence decision-makers.

Therefore, many real problems can be more naturally defined by multiple objec-

tives, usually conflicting with each other, that have to be considered simultaneously.

Decision-makers, policy-maker and planners are willing to find a perfect solution that

simultaneously optimises every defined objective, however often this is an impossible

task. The procedure should be defined as the capability of managing a varied range

of objectives together in order to find an acceptable trade-off among them. Never-

theless this is usually rather more complex than dealing exclusively with single and

independent goals.

In a single objective problem the best single solution is the goal, however in a

multi-objective problem frequently there is not a single best solution and, in the

absence of further information, it is not possible to assess which one is better than

the others. Therefore, in this case the goal is to select one solution from a set of

promising ones. A promising solution should be good enough for all the objectives

into consideration. The set of all feasible solutions F is referred to as the Pareto

optimal set (Tušar and Filipič, 2015). In each Pareto optimal set, the solutions that

cannot be improved with respect to any objective without worsening at least one

of the other objectives are called the Pareto front or frontier (Fig. 2.6). For many

problems, the number of Pareto optimal solutions is huge and the search of solution

optimality is computationally intractable. Therefore, a practical approach consists

of finding the best-known Pareto set that best approximate the Pareto front in a
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way that there should be evenly distributed over the Pareto front in order to show a

real perspective of trade-offs to the decision-makers.

Figure 2.6: Pareto set/domain in a bi-objective space

Formally, the dominance relationship for a maximisation problem can be defined

as follows: if f1, f2, . . . , fk ∈ IRk are the objective functions of a given problem,

then it can be said that solution xi dominates xj which is denoted as xi ≺ xj if the

following conditions are met:

fm(xi) > fm(xj) ∀m ∈ {0, 1, 2, . . . , k} (2.5)

and

fm(xi) > fm(xj) ∃m ∈ {0, 1, 2, . . . , k} (2.6)

where k is the total number of solutions. These constraints means that xi should

not be worse than xj in all objectives and it should be better than xj in at least one

objective. Based on this concept of dominance, if X ⊆ IRk is a set of vectors, then

the Pareto set X∗ of X can be defined as follows:

X∗ = {xj ∈ X | @xi ∈ X : xi ≺ xj} (2.7)

The goal of the algorithm is to minimise the distance to the Pareto-optimal front,

maximising the diversity of the generated solutions in terms of parameter values.
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Typically classical optimisation methods have dealt with these kinds of problems

by converting the multiple objective problem into a single objective one via methods

such as utility theory or a weighted sum. The main advantage of this type of strategy

is that normally the implementation is straightforward. For instance, in the weighted

sum approach, it is required to associate different weights wi to each normalised

objective function z
′i(x) in order to combine them into a single scalar objective

function as follows:

min z = w1z
′1(x) + w2z

′2(x) + . . .+ wkz
′k(x) (2.8)

where z
′i(x) represents the normalised objective function zi(x),

∑
wi = 1 and

k is the number of objectives considered. In the case that the particular problem

requires the algorithm to return multiple solutions, the function has to be solved one

time per solution needed using different weight combinations.

Classical methods following this approach include Linear Programming (LP) (Schri-

jver, 1998) which has been used, for example, to optimise different land-uses (Maoh

and Kanaroglou, 2009). For further information, the survey about multiple objective

integer programming of Figueira et al. (2005) can be mentioned, where different

scalarisation techniques are reviewed. Other studies generate a unique objective

underpinning the use of metaheuristics. In this regard, Hajela and Lin (1992) ap-

plied weighting-based Genetic Algorithms that focus on the design of structural

and mechanical systems. Additionally, random weighted Genetic Algorithms were

investigated in Murata and Ishibuchi (1995) where the multiple objective functions

were randomly specified for each selection.

The major problem of such approaches is that they critically depend on the way

the weights are defined (Masoomi et al., 2013). Besides, small perturbations in the

weights may produce rather different solutions. Furthermore, not all Pareto-optimal

solutions can be investigated. Optimality in non-convex Pareto front solutions cannot

be calculated by minimising linear combinations of objectives (Cao et al., 2011).
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2.7.2.1 Multi-Objective Evolutionary Algorithms

As previously mentioned, in recent years, methods have been developed for problems

in which trade offs need to be found among multiple objectives simultaneously. Using

Multi-Objective Evolutionary Algorithms (MOEAs) to deal with such problems

has been extensively studied by multiple authors (Fonseca and Fleming, 1995; Deb,

2001). The main advantage of EAs to address multi-objective problems is that it is

a population-based algorithm that deals with a set of individual solutions that can

search for many non-inferior solutions in parallel. This confers the ability to find

multiple Pareto-optimal solutions in one single simulation run and makes EAs very

attractive for solving multi-objective problems.

Since the appearance of the first multi-objective Genetic Algorithm study, con-

ducted by Schaffer (1985) and introduced with the name of the vector evaluated GA, a

number of different EAs methods were suggested to solve multi-objective optimisation

problems. The most significant approaches include Non-dominated Sorting Genetic

Algorithm (NSGA) created by Srinivas and Deb (1994), Multiple Objective Genetic

Algorithms (MOGAs) developed by Fonseca and Fleming (1993) and the Niched

Pareto Genetic Algorithm (NPGA) by Horn et al. (1994). These first approaches

suggested the necessity of supporting the algorithm with additional operators in

order to convert a single objective EA into a MOEA. Firstly, the measurement of

the fitness within the population allows sorting each individual solution by the use

of their domination value and secondly preservation of the diversity among solutions

of the same non-dominated group it is used a niching strategy.

The next advance in MOEAs was the introduction of elitism techniques to

facilitate convergence (Zitzler et al., 2000). Implementing elitism mechanisms in

MOEAs is not as straightforward as in single objective optimisation. The main reason

behind that is the large number of possible elitist solutions. However, its inclusion

generally allows the algorithms to outperform their non-elitist counterparts (Zitzler

and Thiele, 1999; Van Veldhuizen and Lamont, 2000). This elitist mechanism can

be implemented using two different conceptions (Jensen, 2003): the maintenance of

elitist solutions can be done in the same population or in an external secondary data
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structure, where they are kept until the posterior reintroduction.

From this elitist perspective, a new list of MOEAs was developed. Mentionable

are the following well-studied elitist MOEAs: the Strength Pareto Evolutionary

Algorithm (SPEA) developed by Zitzler and Thiele (1998) with an improved version

called Strength Pareto Evolutionary Algorithm II (SPEA2) (Zitzler et al., 2001), the

PAES introduced by Knowles and Corne (1999), the improved version of NSGA,

called NSGA-II, proposed by Deb et al. (2000), the Micro-Genetic Algorithm (µGA)

developed by Coello and Pulido (2001) and the Rank-Density based Genetic Al-

gorithm (RDGA) presented by Lu and Yen (2003). For more detail refer to the

numerous surveys related to MOEA (Xiujuan and ZhongKe, 2004; Coello, 1999,

2000).

2.7.2.2 Pareto Archived Evolution Strategy

PAES (Knowles and Corne, 1999) is a simple MOEA algorithm that combines the

use of local search techniques with a hill-climbing and random mutation strategy.

The calculation of the quality of new candidate solutions is supported by means

of the information provided towards a set of diverse non-dominated population

solutions. In its original variant called (1 + 1)-evolution strategy, the algorithm uses

a unique-parent and a single-offspring that are compared in each iteration. The

creation of the offspring is generated by the use of binary strings and a unique

bitwise mutation operator which is compared with its unique parent. This latter

factor differentiates this approach from other MOEAs that maintain a population of

solutions. The strategy uses an archive of previously visited non-dominated solutions

to estimate the dominance rating of the new solution. A maximum size of the archive

refers to the desired number of final solutions. Based on that structure, the algorithm

is capable of distinguishing between good and bad quality solutions.

The operation of the Algorithm 2.1 goes as follows. The algorithm starts with the

generation of an initial individual and its evaluation using the multiobjective fitness

function. In each iteration this new candidate solution and a mutated offspring copy

must be compared for dominance. If the offspring dominates the parent, then it
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is selected as the new parent. If the parent dominates the offspring, the offspring

is discarded and the search of a new mutated offspring is performed. Finally, the

information stored in the archive is used to compare them when both solutions are

mutually non-dominating. If the offspring dominates any member of the archive,

then this offspring is accepted as the new parent and all the dominated solutions are

removed from the archive.

The pseudocode of the implementation of the PAES is depicted in Algorithm 2.1.

Algorithm 2.1 PAES algorithm

1: global variables
2: Max iter
3: end global variables
4: local variables
5: Int sol
6: Current sol
7: New sol
8: end local variables
9: procedure paes

10: Generate Int sol, repair it at set it as Current sol
11: Evaluate fitness values of the Current sol
12: Add Current sol to archive
13: for i = 1 To Max iter do
14: Randomly select one scenario for neighbourhood operation;
15: Randomly select one case between (swap, reversion, insertion);
16: Generate New sol by neighbourhood operation in Current sol, then repair

it;
17: Evaluate fitness values of the New sol
18: if New sol dominates Current sol then
19: Set New sol as Current sol
20: Update archive
21: else
22: if Current sol dominates New sol then
23: Discard New sol
24: else . Current sol and New sol do not dominate each other
25: Update archive using New sol
26: Select solution in the lesser crowded region;
27: end if
28: end if
29: end for
30: return Non-dominated solution
31: end procedure

In Algorithm 2.1, . represents comments in the code, Int sol is the generation

of the initial solution, Current sol is the solution that is currently being evolved,

New sol is the offspring solution generated by applying a mutator operator over the
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Current sol and finally Max iter is the maximum number of generations that the

algorithm is able to run. The time complexity of the algorithm is O(an), where n is

the number of generations that the solution is evolved and a the number of solutions

in the archive (Knowles and Corne, 2000).

However, in the cases where the offspring does not dominate any member of the

archive and if the archive could exceed its maximum size, both parent and offspring

can be included into the archive if they add diversity to the problem. In order to check

this factor, a metric is used which is focused on the nearness among solutions stored

in the archive. If the offspring is located in a least crowded region of the current

search space in comparison to the rest of the members of the archive, it is accepted

as a parent and a copy is added to the archive. The crowding factor is calculated

recursively by dividing the entire search space into dn equal-sized hypercubes, where

d is the depth parameter and n is the number of decision variables involved in the

problem. A solution A is located in a less crowded area of the search space than B

if A′s hypercube includes less individuals than the hypercube of B. The algorithm

continues until a predefined and fixed number of iterations is reached.

In general terms, performance comparison among MOEA algorithms is a very

complicated task (Knowles and Corne, 2002). However, PAES performance seems to

be better in problems with a non-uniform density of the search space (Knowles and

Corne, 1999).

2.8 Location-Allocation Problems

One tool widely recognised in the field of land-use change is spatial optimisa-

tion (Church, 2002). Models could be aimed at optimising the topological layout of a

kind of resource (industrial plants, warehouses, health centres, wells, etc.) within a set

of finite geographical candidate sites, to serve a set of spatially distributed customers.

The final arrangement of facilities should meet a set of long-term goals that can

cover concepts like ensuring proper accessibility to a type of service, maximising

the coverage of the customers, or minimising the number of facilities, the associated

costs or investment. The problem can be also formulated to anticipate the needs of
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a certain good in the future. In all of these scenarios concepts like distances, times

or costs between customers and facilities are measured by the use of a given metric.

Figure 2.7: Example of a Location-Allocation problem where a set of three facilities
are located to satisfy the necessities or entities represented as a blue circles.

Such problems were first introduced by Cooper (1963) with the name of LA

problems. Commonly the allocation of such facilities implies large fixed investments

and time-consuming activities associated with the opening, relocating and closing

execution of a real estate transaction where in some cases, this operation also implies

irreversibility (Antoni, 2002; Irwin et al., 2006). Consequently, allocation decisions

should account for anticipated future conditions of the system under consideration.

However, these future conditions are typically uncertain, and forecasts are frequently

unreliable and subject to revision, so to produce quality predictions can be a very

difficult task.

One way of subdividing the broad spectrum of location model is considering its

space of representation(Daskin, 2008). Regarding this criterion LA problems can be

divided into four categories, see Fig. 2.8. The easiest version is the analytic models,

where the demand is homogeneously distributed and facilities can be placed anywhere.

Typically these problems are solved using very simple techniques (Daganzo, 2005)

like iterative LA algorithm, minima location model or median methods.

In the continuous version, the demand is not homogeneous any more. Instead

it is only available at n discrete defined points. The classical Weber (Weber, 1909)

problem can be included in this class. The problem is to find the location of a unique
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facility to minimise the total distance between the facility and the customers. This

problem can be solved by using simple iterative numerical procedures (Hamacher

and Drezner, 2002) like the Weiszfeld algorithm (Weiszfeld, 1937).

Figure 2.8: Taxonomy of location models based on the space in which LA problems
are modelled.

In the network variant, facilities normally are located at the nodes of a network.

When the demand rises, new locations can be found anywhere in the network. The

main focus of this type of problem is to find polynomial time algorithms. Tansel et al.

(1983) can be consulted for a review on this topic. Finally, in the discrete models,

Cartesian metrics like Euclidean (Gray, 1997) and Manhattan distance (Krause,

2012) or Minkowski distance (Shahid et al., 2009), a generalisation of both are used

to measure the distance or costs between locations. Generally, the placement of

facilities is also restricted to a finite set of candidate sites. According to the taxonomy

of Daskin (2008), this type of problem can be sub-divided into covering-based, median-

based, and other types that do not fall into either of these two categories like the

case of the p-dispersion model (Kuby, 1987).

Covering based models are characterised by a critical coverage distance or time

within which demands must be fulfilled adequately. Such models are typically used for

emergency services like fire stations. Median-based models are focused on minimising

the average distance between a demand node and the assigned facility. Such models

are essentially used for minimising the total transport cost. Finally, there are cases

that the model cannot be included into any of these categories like the p-dispersion

66



Chapter 2: Background

model intended at locating undesirable facilities (Kuby, 1987).

One model in the median-based setting is called the p-median problem, which

has been extensively studied (Daskin, 1997; Hamacher and Drezner, 2002; Revelle

and Eiselt, 2005). In this case, the configuration can be illustrated as the selection

of a certain number of facilities subject to the minimisation of the total distance or

costs in order to fulfil the customers’ demands. In spite of its simplicity, Kariv and

Hakimi (1979) demonstrated that p-median on a general network is NP-hard. The

problem is additionally characterised by features like a single-period planning horizon,

a deterministic set of parameters in terms of demands and costs and the allocation

of single type of facility. Normally, such problems always consider full-connected

paths between each customer and facility with a transportation cost equal to the

travel distance.

One key factor of this type of problem is the distance to a given facility. Close

surroundings have a stronger influence in land-use than more remote surroundings.

This spatial relationship was numerously confirmed by empirical analysis of neigh-

bourhood structure (Verburg et al., 2004). In this regard, long travel distances result

in higher travel costs. If this cost reaches a certain critical threshold, people are less

likely to use the service, searching instead for alternatives if they exist. This factor

gives rise to two kind of allocation problems.

Following previous characteristics, in the uncapacitated LA problem introduced

by Scott (1971), the capacity of each facility is unconstrained. This means that the

nearest facility can always satisfy an unlimited number of customers (Mirchandani

and Francis, 1990; Revelle et al., 2008). However, in a capacitated LA problem,

customers’ demand can be higher than that supported by the most convenient facility

and hence it is not necessary that users select the nearest facility (Sridharan, 1995).

However, to model more realistic situations many extensions to the definition

of the basic facility location problem have to be considered to overcome these

insufficient and unrealistic settings. The model can be extended by the inclusion

of stochasticity in any of the elements of the model(Snyder, 2006). The lack of

deterministic behaviour can affect future customer demands, costs, the capacity
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of a determined location or any other element that needs to be inferred by the

prediction of the future conditions of the system which implies always a certain level

of uncertainty. In this context, Durmaz et al. (2009) considered the problem of finding

the expected distances between the capacitated facilities and the customers using

stochastic customer locations and deterministic customer demands and Mousavi et al.

(2013) uses a mathematical model for the capacitated multi-facility LA problem

where customers locations and demands are determined probabilistically.

Another important extension was intended to relax the single-period planning

feature and consider instead a planning horizon divided into several time periods

(Melo et al., 2006). As such, multi-period location problems, also called dynamic

location problems, have been proposed to face situations where plans over several

time periods are required to abate the entailed financial burden of such projects.

The uncapacitated version was studied in Chardaire et al. (1996) and Galvao and

Santibanez-Gonzalez (1992), meanwhile examples of works focusing on multi-period

in a capacitated context are Fong and Srinivasan (1986) and Lee and Luss (1987).

Apart from that, Owen and Daskin (1998) provides a more realistic model by giving

an overview on facility location where is considered both previous extensions, time

and uncertainty in some parameters.

An additional and crucial aspects is when the problem needs to deal with the

arrangement of multiple heterogeneous facilities which may play different roles

according to the relationships created among them. These facilities can be considered

individually, or can be grouped into some kind of inner hierarchy (Şahin and Süral,

2007). The latter problem is called Hierarchical Facility Location Problem (HFLP)

which aims to determine the most efficient and effective location of a range of facilities

in a way that facilities at a higher level can serve those at a lower level. In this

context, efficiency is related to financial objectives and effectiveness is linked with the

idea of accessibility. This hierarchical representation is the general case of health-care

systems (Farahani et al., 2014).

LA problems have been successfully applied to multiple disciplines like the location

of disaster recovery centres(Dekle et al., 2005), train terminals (Horner and Grubesic,
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2001), fire stations (Badri et al., 1998), coffee supply chain depots (Villegas et al.,

2006), park-and-ride sites (Faghri et al., 2002; Farhan and Murray, 2008) among

others. On the other hand, Malczewski (1991) investigated the environmental aspect

of public facility location problems, studying the susceptibility of pollution in the

context of paediatric hospital sites.

2.8.1 Solving Location Allocation problems

Standalone LA problems have been tackled using various traditional optimisation

techniques, especially linear, non-linear and integer programming (Moore and Revelle,

1982; Ligmann-Zielinska et al., 2005), and branch-and-bound methods (Daskin,

2011; Kuenne and Soland, 1972; Malczewski, 1999). However, exact solutions are

not computationally tractable for real-world problems because they may require

exponential time to find the optimal solution, even for small instances of the problem.

Besides, the amount of constraints and multiple objectives involved can cause that

worst-case instances of the problem being NP-Complete (Ibaraki and Katoh, 1988;

Zhang, 2002). For more information about complexity, refers to Gary and Johnson

(1979).

But even if an optimal solution was found in reasonable time, there is no guarantee

that the best exact modelling solution is also the best solution to the underlying

real world problem. The fixed mathematical model for an exact method may not

encompass sufficiently the real necessities of the environment. Heuristics, nevertheless,

are more flexible and capable of copying with more realistic constraints.

As such, research on these problems over the past 20 years has mainly focused

on robust meta-heuristics such as EAs (Shariff et al., 2012), Simulated Annealing

(SA) (Murray and Church, 1996) and Tabu Search (TS) (Brimberg and Mladenovic,

1996; Ohlemüller, 1997) amongst others. Studies comparing these approaches on

different tasks have reported contradictory results (Bettinger et al., 2003; Pukkala

et al., 2004). However, formulation, implementation and parameter settings can

significantly affect the final performance of the algorithms, which could introduce

bias in the analysis (Crowe and Nelson, 2003).
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2.8.2 Green Space Allocation

One of the most common interests in the urban community is the dynamics of urban

growth, which is linked with the relative distribution of different industrial, cultural,

recreational and commercial facilities, which may play an important role in a given

urban environment. Their location has a direct economical and social impact on

quality-of-life issues and on the broad strategies that are necessary to establish for

creating an efficient land-use management (Robinson et al., 2012).

Public central facilities such as parks, libraries, schools, sports and health centres

are characterised by people have to travel to receive the service offered. A major

piece of research is done in finding the best placement for these central facilities in

order to provide a proper service to the entire set of potential customers at minimum

cost. This optimisation process is, in general, very sensitive to the distribution of

population density and to its level of accessibility.

In the discipline of urban ecology, urban parks are considered one of the most

important components in urban sustainability (Munro et al., 1991). They provide a

healthy environment and promote quality of life to the urban population (Chiesura,

2004). However, the provision of public open space is in rivalry to other urban

land-uses, simply because it consumes physical space. Apart from that, other factors

can constrain the proper provision of these sites like limited funds for maintenance,

personnel and supporting facilities (Boone et al., 2009). In spite of the importance of

the problem, and while much research has been focused on the allocation of a varied

set of different facilities, the green space allocation problem, as such, has received

very little attention so far, with just a few exceptions.

Sefair et al. (2012) proposes a multi-objective location model that, by interacting

with a GIS system, is capable of determining which parcels of land should be trans-

formed into new parks using five indices: spatial coverage, number of beneficiaries,

accessibility, nearby facilities and cost. Zucca et al. (2008) conducted a multicriteria

analysis to select the best metropolitan parcels of land for being designated as green

areas over four candidates, considering several factors including economic, social,

and environmental criteria. Tajibaeva et al. (2008) developed a discrete-space urban
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model to analyse the optimal size and location of open green areas. They also

analysed the effect of these green areas on the spatial and density urban development

and the evolution of property values. The study is limited to cases with (5 × 5)

neighbourhoods. Following the same logic, Quaas (2007) investigates efficient urban

spatial structures using a close-monocentric urban economics model that includes

environmental amenities from public open space. Neema and Ohgai (2010) created

a multi-objective model to determine the best location of urban green areas using a

non-constraint and continuous area of study, selecting the most convenient parcel

independently of its availability. The study includes as criteria the population density,

the air pollution, noisy areas and the under-provision of green spaces.

The model of Wu and Plantinga (2003) is a representative example of the use of a

theoretical model which follows Alonso’s assumptions to study the allocation of green

spaces. Specifically, the model analyses several predefined arrangements of green

areas in a city to study the consequences of a determined urban spatial structure

policy like the appearance of leapfrog phenomena. The development of leapfrog is

characterised by a scattered form of urbanisation which is interspersed with green

areas. Related to that topic, Brown et al. (2004) evaluates the effectiveness of other

important green area structures such as greenbelts that are located close to emergent

developed areas.

2.8.3 Value of Open Spaces

Green areas are public goods without a direct market price. However, following an

empirical approach and indirect methods, econometric tools including hedonic pricing

and contingent valuation can be used to measure the value of green areas (Brander

and Koetse, 2011).

Hedonic pricing is a valuation method used to measure the value of urban park,

estimating the impact on prices of residential properties located in the proximity of

a green area (Tyrväinen, 1997; Bengochea Morancho, 2003). The method requires

the collection of observations on property values. Contingent Analysis is a method

applied to the valuation of green areas (Riera, 1993; del Saz Salazar, 2000; del

71



Chapter 2: Background

Saz Salazar et al., 1999; Breffle et al., 1998) which asks directly to people how much

they will consider to pay for the use or maintenance of a particular good. However,

in the case of open areas, both models provide only a partial quantification of the

entire amount of economic benefits. This kind of land supports many services that

may not be perceived as a market value (Mahan et al., 2000; Brander and Koetse,

2011).

The technique demonstrates that urban market shows green externalities because

prices of properties increases with the proximity of urban parks (Tyrväinen and

Miettinen, 2000; Thorsnes, 2002; Bolitzer and Netusil, 2000; Lutzenhiser and Netusil,

2001) and wetlands (Mahan et al., 2000; Luttik, 2000; Acharya and Bennett, 2001).

Other factors could also exert influence (Tyrväinen, 1997), including the size of the

urban park, and whether or not the total number of open areas in the region is scarce.

Moreover, prices can be also modified by market expectations related to the future

uses of surrounded undeveloped land (Smith et al., 2002).

Regarding the quantification of this relationship, the studies show different figures.

Brander reported that residences increased their values by 0.1% when they are located

10 metres closer to an open space (Brander and Koetse, 2011). Tyrvainen, on the other

hand, shows an average decrement in market price of 5.9% per kilometre (Tyrväinen

and Miettinen, 2000). In Mahan, it is stated that prices increase by $24.36 per acre

and by $436.17 per 1000 feet (Mahan et al., 2000).

When size of the green space is included in the study, it seems that price per

area drops with the larger parcel size, which means that there is a decrement in the

marginal value of the size. Brander shows that 10% larger parcel implies 8% lower

price per hectare (Brander and Koetse, 2011). However there is a general willingness

to pay more for dwellings close to larger areas of open space (Smith and Osborne,

1996).
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2.8.4 Location-Allocation problems with a temporal

dimension

Extending a location-allocation problem to incorporate a temporal dimension, cover-

ing the allocation of facilities during a period of time, received multiple names in the

literature including multistage allocation problem, dynamic facility location problem

or multi-period location problem (Warszawski, 1973; Van Roy and Erlenkotter, 1982).

The problem introduced by Ballou (1968) was focused on locating and relocating

a single warehouse over a period of years, and its solution was implemented by means

of dynamic programming with backward recursion. Other earlier studies worthy

of mention include the work of Erlenkotter (1981) who reviewed the use of other

heuristics for deciding when to add a facility capacity expansion so that demands in

all periods may be satisfied, and Roodman and Schwarz (1977) which aimed at the

study of declining or shrinking markets. da Gama (2002) and Wang et al. (2003)

additionally include a budget constraint which limits the number of possible opening

and closing operations.

Different time horizons can be considered in this type of problem. The essential

scenario deals with forecast horizons, where population should be served from

the beginning of the planning period (Albareda-Sambola et al., 2009). However,

commonly problems are based on the allocation of non-essential facilities, where

the horizon is defined at the end of the period considered. In some problems the

idea is to seek an ε-optimal forecast horizon, since proving that a policy is strictly

optimal for any finite duration planning period cannot be done efficiently (Daskin

et al., 1992).

A concrete version of this problem deals with situations in which parameters

change over time in a predictable way. However, when stochasticity is included into

the system, the problem can be addressed from the perspective of a Sequential Deci-

sion Making Problem (SDMP) (Howard, 1960). Generally speaking, a discrete-time

finite sequential decision process can be defined as follows: there is an environment

which can be described as a state-space set S with distinguished initial state s0 and

an action set A where S and A are both finite. Each state s ∈ S is dependent on
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the previous state of the system and the action a ∈ A taken. The transition function

δ controls how actions modify the state of its environment.

st+1 = δ(st, a) (2.9)

We define a policy Pi such that the mechanism in charge of selecting the next

action is based on the current perception of the environment. This perception can

be total or partial:

Pi : S → A

Pi(st) = at (2.10)

In turn, the action a influences its environment, causing a change of the current

state. The process starts in the state s0 and by means of the sequential application

of the policy Pi, further actions are chosen. The final sequence of decisions, one for

each period, will be called a policy. An optimal policy for either a finite or infinite

horizon problem should minimise the value of all present and future costs.

Several approaches have been applied to solve sequential decision problems, includ-

ing Decision Trees (DTs) (Garcia and Sabbadin, 2006; Jeantet et al., 2012), Influence

Diagrams (IDs) (Guezguez et al., 2009) or more commonly Markov Decision Processes

(MDPs) (Bellman, 1957). The family of MDP algorithms is considered the most

traditional approach to solve such problems. By observing the different states of the

system, a central controller which has access to complete state information, searches

for an optimal strategy by means of tools like rewards and punishments (Puterman,

1994). If the process is controlled by multiple cooperating distributed agents, each

with possibly different information about the state, the problem is called a Decentral-

ized Partially Observable Markov Decision Process (DEC-POMDP) (Amato et al.,

2013), which is a generalisation of Partially Observable Markov Decision Processes

(POMDPs) (Sabbadin, 1999). The main drawback, in these cases, is that such

strategies cannot be generally scaled to large problems, since to properly represent

these kind of problems, the number of required states grows exponentially (Pineau
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et al., 2006; Smallwood and Sondik, 1973).

2.8.5 Green Space Planning

The main purpose of planning, in the context of urban and other land-use, is to

improve the community’s quality of life by creating a better social, economical and

physical environment by means of allocating land for specific purposes. Green areas

and parks located close to urban areas are patches of land composed by greenery

and trees normally formed by non-native species (Byomkesh et al., 2010) that are

designed to provide amenities to residents in the form of recreational benefits.

In order to maintain enough provision of this type of land-use, new disciplines

arise. In this sense, urban sustainable development can be defined as the preservation

and the enhancement of positive qualities of the city, avoiding sort-term measures in

order to perpetuate the characteristics of the system (Throsby, 1995). This concept

is conceived as a central key to solve world environmental and social problems on a

global scale. In this regard, the research community working in this area needs to

examine the interactions between ecological and social dynamics, which can be seen

as the trade-off between over-exploitation of land for profit, and assuring nature’s

resilience against perturbations.

Open space planning is a kind of facility planning which concretely deals with

the management of natural areas and the development of social and environmental

services. A proper strategy for open space planning is not only important because

of its aesthetical aspects, but also as a part of the promotion of urban sustainable

development (Sanesi and Chiarello, 2006; Jim and Chen, 2006) and ecosystem

services provision. In fast-growing urban areas, it is required to build additional

public facilities to address increasing demand for services in areas of population

growth, while the opposite process of closing of facilities may be needed in areas

of population decline. However, for implementing an optimal locating process, the

study and forecast of the demands and costs involved is necessary. Demand could

fluctuate over time, requiring opening and closure of new facilities. Consequently,

decisions on when, where and the quantity of land are not independent of each
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other (Manne, 1967).

Recently, green space planning, and the advances in our ability to predict future

trends and patterns to guide decision making, have gained increased attention in

the research landscape. From the planning perspective, open space management

is a challenging task that should be analysed as a complex system (Boyd, 2008),

due to different plausible policies and management objectives may lead to multiple

future scenarios. Many factors contribute to the complexity of open space planning,

including the inherent ill-structured nature of the problem, the existence of spatial

dependencies, the presence of multiple conflicting objectives, non-linear relationships

between decisions and their consequences and varied forms of uncertainty (Janssen

and Rietveld, 1990).

In urban land-use allocation, the consequences of allocating a land-use type

to a particular area are highly context dependent. For instance, the dynamics of

mixed land-used parcels like residential and commercial are linked with employment

location by the defined transport network (Deitz, 1998). In the concrete case of

green spaces, spatial relationships between residential locations and adjacent natural

environmental units create dependencies amongst activities in surrounding areas; in

turn, these introduce new non-linearities (Stewart et al., 2004). Another example

of these relationships is the case of the application of urban densification strategies,

which creates complex relationships between urban development and the quality, as

well as the quantity, of urban green space (Arnberger, 2012).

These types of complex dependencies and uncertainties often presented in objective

functions, constraints and system predictions, may severely affect the robustness

of the underlying allocation processes. This could result in sub-optimal or even

infeasible green area network designs, with the outcome being a significantly reduced

overall level of provision.

Another issue that complicates the provision of green areas is that currently

there are no available adaptive planning tools that can realistically scale to current

conservation scenarios (Xue et al., 2012). Hence, it is necessary to develop a type

of sustainable planning that tries to recognise and anticipate how patches of land
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influence urban patterns, their dynamics and further consequences for the population

that its distribution entails, since the availability of patches most probably change over

time. Furthermore, globalisation contributes to the promotion of new management

structures, privatisation processes, and prioritisation of commercial objectives that

can be potentially harmful and restrict democratic practices linked with the use of

green areas (Littke, 2015). These effects are caused by the application of design

policies that excludes some collectives of people (Low et al., 2009) and also these

facilities are frequently conceived as invisible assets (Mayor of London, 2009).

According to Savas (1978), the evaluation of a determined allocation planning

specially for public services should be based on three primary criteria: effectiveness,

efficiency, and equity. Effectiveness can be conceived as the level to which this resource

allocation accomplish to meet the needs of the objective individuals. Efficiency can

be defined by the ratio of outputs or costs to inputs or benefits given a particular

resource allocation. Finally, equity may be depicted as synonymous with fairness.

Carr (1992) highlighted five characteristics that open spaces within cities must

offer, namely comfort, relaxation, accessibility, public ownership, and freedom. In

this regard, governments can adopt a wide range of interventionist mechanisms to

restrict the ownership over the land and control its use, acting as a response to

social requirements over gardens and parks to provide a set of services based on the

proximity to potential users. Among these measures, local authorities can assume

the ownership of the land and assign them partially or totally the function of urban

green spaces like the case of Stockholm city. The capital of Sweden is world-renowned

for its protective environmental and sustainable urban planning, possessing huge

areas of urban green space (Passow, 1970; Littke, 2015).

In the concrete case of parks and green areas, a successful allocation strategy

should be based firstly, on finding the amount of parcels which ensures enough space

provision and secondly, on how efficiently these areas are distributed. Even if there

is a lack of consensus about how to achieve these goals (Maruani and Amit-Cohen,

2007), a trade-off between the available budget and the selection of the most expensive

areas with expected highest impact on population should be found. This would
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achieve, through the time period considered, a higher service reward for the current

and future urban population. Budget constraints typically make it difficult to achieve

complete coverage of the population for each period, and therefore a sub-optimal

plan is inevitable, which needs to maximise the partial service coverage at minimum

cost over the entire planning period.

To fulfil these requirements, planners should decide which parcels to select from

a noticeable large number of candidates. The number of possible subsets may

imply a vast number of choices. In addition, due to the presence of constraints and

multiple criteria, like for example to provide multiple services to the society and the

conservation of biological sources, the choice of multiobjective optimisation would

seem a good strategy to follow.

Nowadays, to find an optimal or near-optimal solution is not the unique possible

objective. With the increased involvement of stakeholders, optimisation models are

more often used as tools to support design of robust decision policies, rather than a

strategy to generate the best alternative. These decision support-systems require

short response times from the algorithm in order to adapt its solutions with the

inputs from the stakeholders.

In land use planning, due to the changing nature of the land dynamics, only

short term predictions can be securely applied (Cheng, 2003). The accuracy of the

projections resulting from the use of models and simulation techniques is expected

to decrease over time due to far projections further beyond the period for which

the model was validated. These projections not only encompass great amount of

uncertainty (Pontius et al., 2004; Tattoni et al., 2011) but also they depend on

stakeholder needs and variations in economic pressure and related legislation.

2.9 Evolutionary Algorithms in Urban Scenarios

2.9.1 Single-objective

EAs have proven to be an efficient and effective tool for solving different geographical

problems (Xiao et al., 2007) which is capable of finding near-best solutions in a
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reasonable time. Numerous studies have selected this type of technique to investigate

spatial land-use problems.

EA can provide to the policy-makers the capability of evaluating alternative land-

use configurations (Stewart et al., 2004), calibrate parameter values and transition

rules within a CA framework that studies spatio-temporal urban growth (Tang et al.,

2007; Garćıa et al., 2013) and improve the accuracy of the model (Clarke-Lauer and

Clarke, 2011; Li et al., 2013). For other land-uses, EA has been applied to analyse

land use planning in the field of forest structure optimisation (Venema et al., 2005),

in Porta et al. (2013) where a parallel high-performance EA is used to deal with

planning problems with a huge number of possible land category combinations and

in Lehmann et al. (2013) where an agricultural land-use problem was studied by the

development of a bioeconomic whole-farm model to support farmer’s decision-making

under different climate and price scenarios.

2.9.2 Multiple-objective land-use planning

Land-use planning is by nature a multi-objective problem. In a real-life urban

planning scenario, these objectives conflict with each other, and optimising a single

objective without respect to the others can produce non-valid results. Besides, it is

very difficult for planners to numerically quantify their relative weight or importance,

especially in a dynamic scenario. This can produce the situation that the highest

priority objectives at one given time may not be the most important ones in a

relatively close future. Then, to achieve a set of trade-offs based on the relative

importance of each objective against the rest, we must look at the use of Pareto-sets.

One advantage of this would be that these sets are usually independent of the relative

importance of objectives considered (that is, this relative importance does not need

to be pre-specified), and suitable for complex applications such as land-use planning.

A number of traditional optimization techniques have been proposed for the

computation of multiple land use problems (Wright et al., 1983). In the field of

land-use change we can mention its use in forest management (Ducheyne et al.,

2006), land use planning (Stewart et al., 2004), urban planning (Balling et al.,
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1999), resource allocation (Datta et al., 2008) or determining the most convenient

location of undesirable facilities (Rakas et al., 2004). Cao et al. (2011) investigate the

development of optimal land-use scenarios using three objective functions: minimising

conversion costs and maximising the accessibility and the compatibility level between

land uses by implementing NSGA-II. Cao et al. (2014) uses also a NSGA-II approach

to calibrate a cellular automata used to understand rural–urban land conversion

processes. Melachrinoudis et al. (1995) developed a multi-objective version of the

capacitated multi-period LA problem for landfill facilities where garbage can be

disposed. Yang et al. (2007) investigates a fuzzy version of a Genetic Algorithm to

optimise the location of fire stations. The work proposed by Sefair et al. (2012) uses

a lexicographic order of the evaluation criteria and a maximum deterioration of the

objectives with higher priority to support decision-making process to city planners

regarding the location of new urban parks in Bogotá.

Other powerful heuristics were also studied in this context. Ma et al. (2011)

selects Particle Swarm Optimization (PSO) to optimize the suitability allocation of

land uses minimising costs and (Semboloni, 2004) developed a Simulated Annealing

(SA) method to optimize both residential and commercial facilities.

2.10 Conclusions

This chapter has introduced the background theory and concepts that underpin the

research work of this thesis. Starting with a discussion of green spaces, urban planning

and urban models, it was previously argued that cities tend towards decentralisation.

This tendency is also reflected in the evolution of urban models over time, which

has changed from early top-down approaches to more recent bottom-up strategies.

One of these bottom-up strategies to model such dynamics is CA. This tool has

the intrinsic ability to represent spatio-temporal complexity and, in consequence,

it is commonly used for the representation of land-use phenomena. Additionally,

ABM is a technique commonly combined with a CA to include heterogeneous entities

which spatially interact at an aggregate level within the model. This element allows

us to include human behaviour into the urban model. Additionally, this model is
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hybridised with the inclusion of the classical economical model of Alonso, to address

how agents select the most convenient household to settle down. The canonical

model of Alonso provides a fast and simple way of including different factors of

preference for a theoretical implementation of population dynamics. In Chapter 3,

the implementation of the urban model and its components using these techniques is

described and discussed in detail.

The chapter continues with the presentation of the two central optimization

problems addressed in this thesis: the location-allocation problem and a dynamical

planning extension of it, which can be seen as a SDMPs under uncertainty. The

first is defined by the spatial optimisation of a set of facilities, while the second is a

discrete planning problem where the outcome is influenced by the uncertainty linked

with the future dynamics of the system. All of these elements are illustrated with

examples in the context of urban development.

Finally, the metaheuristic used to solve such problems, evolutionary algorithms,

are described in general terms. The application of EA in planning problems under

uncertainty is not common in the literature, since it requires further tools to be able

to deal with the uncertainty. Hence, the application of this concrete technique to this

area of research is innovative. This thesis also investigates a mechanism to aid EA

to cope with the uncertainty using Monte Carlo sampling. The description of the

developed method is depicted in Chapter 4 and applied in Chapter 5 and 6.
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Urban Growth Model

3.1 Introduction

In this chapter we describe a computational model of urban growth, built using a

cellular automaton and an agent-based system, which is based on Alonso’s widely

adopted theoretical framework for urban growth and land economics (Alonso, 1964).

The chosen modelling approach can be viewed as a hybrid between top-down and

bottom-up strategies. The model will be the basis for simulating urban growth in the

context of planning decisions, and therefore play an essential role in evaluating the

consequences of those decisions. The model incorporates a real estate market, and a

dynamic collection of agents who operate in that market, interacting and moving in

time and space. These agents represent families who wish to settle down in the city.

Assuming that such a model can be characterised as a complex self-adaptive system

that is capable of simulating land-use dynamics, the model allows us to analyse

urban growth, population density and environmental dynamics and the way they

interact as complex, interconnected phenomena. In this context, urban development

includes both new development and urban redevelopment.
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3.2 Model Description

The proposed theoretical urban growth model was implemented as a computer

program in Java & RS (North et al., 2005) for analysis and visualisation purposes.

The CA-ABM framework selected to model the city is a discrete-event system,

used to simulate neighbourhood interactions to mimic land dynamics. These dynamics

rule the growth behaviour of a city, the rural areas which surround it along with

the distribution of the population living within it. The physical layout of the city

is configured by a two-dimensional regular discrete lattice of 50 × 50 contiguous

squared cells with i- and j-axes in an Euclidean space IR2 arranged within a canonical

mono/multicentric framework. Land transformations are ruled by a set of stochastic

transition rules that are applied on a cell-by-cell basis. The type of neighbourhood

selected Ω is made up by the eight adjacent cells that define the Moore neighbourhood,

see Fig. 2.3a. The use of the Moore neighbourhood allows the integration of diagonal

and perpendicular dynamics. The evolution of the city is ruled by an internal schedule

with a determined time-horizon of finite duration. Time gap has no substantial

meaning. Each single time span determines one iteration of the CA where all changes

are applied synchronously.

Every cell of the lattice corresponds to the surface of a physical unit area of the

landscape under consideration S. It is assumed for simplicity that for all dwellings,

the land occupied S is fixed to a positive constant S̄. Each of these patches of land

can be identified by its location (i, j) and by a unique land-use class whose value is

dynamic through time. This land-use type represents the predominant land-use at

that location. The general classification of land types under consideration comprises

urban, rural and protected areas which, in turn, can be subdivided into more specific

types.

Each cell in the model represents a unit of the landscape identified by its location

(i, j) and by a unique land-use class whose value is dynamic through time.

Let C be the set of all single parcels of land in the considered geographic area

represented in the CA, then the more general land-use subdivisions N t
U , N

t
R, N

t
P ⊆ C
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can be summarised by the following set of cells: N t
U denotes all the urban parcels in

the grid, N t
R groups the type of rural land units and N t

P represents the open spaces

protected at a determined time step t. All subsets are always mutually disjoint,

which can be formalised as:

ctk(i, j) ∈ {0, 1} (3.1)

where k ∈ K is the land use type, K is the set of all possible land uses states

{U,R, P}. Then, at a determined time t the variable cell ctk(i, j) is equal to 1 if the

land-use k is present at location (i, j) and 0 otherwise. Those values are dynamic

through time and influence other internal characteristics of the cell, such as its price

and its ecological value. The city and its hinterland are modelled in such a way that:

N t
U +N t

R +N t
P = NC ∀t = 0, 1, 2, . . . , T (3.2)

where NC is a constant value that represents the total number of cells in the

grid and T is the maximum time horizon of the simulation.

Assuming that the city is located in a featureless and flat terrain, the model

can depict an urban development with one or several CBDs (Fig. 3.1) where central

cells tend to absorb most of the population. These cores represent not only employ-

ment centres, but also shopping points generated by consumer decisions, business

interdependences and clustering of jobs.

Each urban cell can be populated by more than one family unit that, in turn,

comprises an adult agent and its offspring. Then, every set of agents that compound

a family are always located in a specific place (i, j) within the boundaries of the

city, at a certain distance x to the edge of the urban area (̃ı, ̃). The model can be

defined as an open-city framework with perfect mobility where flows of incoming

endogenous population can be accommodated within the city. This positive flow is

based on urban migration is attracted by potential urban employer offers where job

opportunities are large in number and hence develop faster.

The model starts with a completely undeveloped grid, where every transformation

of activity is new to the land parcel under consideration. A similar initial configuration

84



Chapter 3: Urban Growth Model

Figure 3.1: Simulation of a city in expansion. The grid layout is configured with three
CBDs that grow in parallel. Green areas are represented in blue, urban developed
land in green, new land under construction in white, land that was just transformed
to an urban type, ready to be built in red and rural land in grey.

was used in previous models (Church, 2002, p. 10; Ogawa and Fujita, 1989), while

other approaches start with an initial landscape arrangement (Nalle et al., 2002;

Ligmann-Zielinska et al., 2005). The individual aggregated decisions and the defined

transition rules combine to lead the city to stochastically expand its peri-urban

boundaries through time until a determined time horizon is reached. By the use

of its transition rules, the cellular automata is potentially able to change the state

of every cell in each time step. These transition rules, that represent land spatial

relationships within the urban development process, are conditioned by different

probability values which introduce stochasticity into the system.

Following an extension of the classical canonical economic model of Alonso (1964),

where multi-centricity and green externalities are included as model extensions,

householders modelled by an ABM look for an economic competitive equilibrium

85



Chapter 3: Urban Growth Model

between housing space and commuting costs. Green externalities are defined as

the spatial relationships created between green areas and household prices (del

Saz Salazar and Garćıa, 2007), which induce preferences for housing locations close

to green amenities and, consequently, modifies urban patterns in the long term.

In conclusion, the dynamics of agents and cells allow the model to evolve among a

set of predefined one-directional states at each time step. The individual aggregated

decisions and the defined transition rules of the city to stochastically expands its

peri-urban boundaries through time. The final topological patterns and the speed of

the urban process depend mainly on the CA transition rules, the residential choices

of the inhabitants and the location of green areas within the city, where people

generally prefer to live (del Saz Salazar and Garćıa, 2007). From this perspective,

the model is therefore dynamic in time and space, and each simulation run will yield

a different result.

3.2.1 Extension from previous model

3.2.1.1 Software Design

An in depth review and transformation of the class structure and component was

performed to follow the standard Object-Oriented Programming (OOP) convention.

This process included: access to member variables, also called fields, from input

output methods instead of direct access; adding a system of exceptions, instead

of managing errors by using boolean variables to avoid the abrupt finishing of

the program in case of an unexpected failure; changing the scope of the member

variables to private to enhance the level of encapsulation of the code and adding

static behaviour to the system to allow the interchange of constant values and avoid

redundancy.

Some composite classes were added to divide the code related to the common

behaviour of multiple objects that belong to the same class. Concretely, a class that

unifies all the cells in the grid called Lattice was added. Additionally other classes

that manage only the part of the grid related to a specific land-use type were also

implemented. These classes were City that groups all the urban cells in the grid and
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GreenArea, which does the corresponding with the rural and protected cells. This

strategy was followed in the case of the population. A corresponding Demographic

class was implemented to gather the common behaviour from each agent of the grid.

The accessibility among classes was restricted to enhance the composite classes act

as interfaces to the rest of the system.

After the inclusion of these classes, relationships between classes that were not

directly affected by an inheritance or composition relationship were minimised, using

always the most general class to perform exchange of information (input and output).

Connections among classes formed a graph that was almost fully-connected. Due

to that, an effort was made to remove the non-necessary dependencies without

modifying drastically the code.

An attempt to lighten the code was performed by removing redundant information

from the system in different ways and reimplementing some critical functions. The

preliminary code stored their neighbourhood in each object cell. This requires an

additional eight cells with the corresponding constants and data structures. This

approach is very demanding in terms of memory usage, requiring eight times more

memory to store the complete lattice, since the neighbourhood defined in the system

is composed of eight cells plus the centre cell. Then, if the size of the grid is 25× 25

then, the number of cells constantly loaded in memory is 2500× 8. The code was

changed to calculate dynamically these cells each time the neighbourhood of a single

cell is required. Since the area under consideration was enlarged from the previous

piece of software, these kind of cleaning and restructuring operations were crucial to

avoid the collapse the system at the end of the simulation, when more objects are

created in the model.

3.2.1.2 Discovery and management of errors in the code

The code was reviewed and several problems were fixed:

• A general review of the code that control the generation and release of agents

in the system were done. Commonly, agents were not always created, evolved

into different states and released properly, being kept in the memory after
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they died. This creates problems analysing the amount and distribution of

the population, which is crucial for the system in posterior optimisation steps.

Some of the examples found were the following:

– Mature agents can die and have a child in the same time step.

– The cell was wrongly released if an agent becomes old.

– When an agent becomes old, its corresponding mature one was not deleted

properly.

– Old agents can die by chance and die again in the same time step because

they are too old.

– Young agents can die but, if at the same time they become mature because

they reach the corresponding threshold, then the system tries to create a

mature agent.

– Indirect methods to populate the city, like Agent::MoveOrEmigrate, did

not assign a cell to the corresponding agent. Then, this behaviour creates

problems when the calculation of the population size is performed and

also if the agent is removed from the system after its death.

– The implemented method, which returns the cells according to the Moore’s

neighbourhood, only retrieved the half of the neighbourhood.

• Errors were found in the system that generates the event-drive paradigm by

including methods in the schedule. This capability is implemented in Repast

Simphony using annotations. Any method that has to be called each time step

automatically by the system needs to have a corresponding annotation in its

declaration. Additionally, the class of the method must be included in the

schedule at the starting point of the program. All methods were revisited, since

some of them have annotations, but they were never called by the schedule.

Concretely, methods in the classes Demographics and City included annotations

but the classes were not in the schedule.

• The age of the cell was not always updated in each time step, creating incon-

sistencies in the evolution of the city.
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3.2.1.3 Implementation of extra functionality

The model was extended in multiple ways, adding further functionality in different

areas. A brief summary of the most important elements are introduced below:

• The goal of the model was modified to study the construction of policies aimed

at protecting ecological areas. A layer of ecological information was added

to the CA. The construction of the landscape was designed to assign to each

cell a stochastic value which represents its environmental value. Additionally,

a mechanism of feedback was implemented to mimic the ecological influence

of its surroundings over the objective area. This feedback can be positive or

negative.

• The dynamic of the ecological degradation caused by urban sprawl was also

included in the model. Changes in the state of the rural areas and relationships

created between rural prices were also added.

• Due to the theoretical nature of the developed framework, the traditional

economic model of Alonso was selected to guide the agents to select a cell to

settle down. This was done by the modification of the utility function of each

agent to comply with the basis of this model: a trade-off between housing

prices and distance to the city centre.

• In the initial version of the model, each cell had a predefined maximum capacity

related to the number of agents that could settle down on it. This capacity was

fixed, equal to one, and homogeneous for all the urban cells in the lattice. This

means that each cell could allocate only one agent along with their offspring.

When a young agent becomes adult, it tries to find their own cell in the model.

If there is no free space, the agent is removed from the model.

This management of the population could give problems when this threshold

is reached and agents have new offspring. Besides, by adding this constraint

to every cell, a bias is introduced in the system, even if this factor can be

represented by a random value in a defined range. Under these circumstances,
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the pure implementation of Alonso model could be compromised, since this

restricts the capacity that cells in the city centre can reach in a short amount

of time. Then, capacities where changed to a system based on growth, led

by the dynamics of supply and demand of land price. The implementation of

these concepts are more in line with the theory behind the economic model

of Alonso, where no removal of agents due to a limited capacity of the city is

performed.

• The dynamic nature of the population was increased by implementing the

initial population and migration randomly.

• The initial model was a pure urban model with no management of cells located

out of the bounds of the city. In the extension of the model, the characterisation

of different land-use types were added. These cells were classified into forest

and agricultural cells. Also, multiple price gradients that were affected by

different properties of the system were included. The CA was extended from

Fig. 3.2 to cover land-use types which can represent the different states of rural

land. EMPTY cells are characterised by FOREST and AGRICULTURAL and

a new type that represent a protected green area/park is called PROTECTED.

Figure 3.2: Basic state machine of the life-cycle of a cell in the grid without ecological
characteristics, from the creation of the cell at the beginning of the simulation until
the cell is urbanised.

• The size of the grid was enlarged from 25× 25 cells to 50× 50 cell, see Fig. 3.3.

Larger configurations where rejected due to the limitations in performance of

the project, which should be able to run on a conventional PC.
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Figure 3.3: Basic state machine of the life-cycle of a cell in the grid without ecological
characteristics, from the creation of the cell at the beginning of the simulation until
the cell is urbanised.

3.3 Population Dynamics

Every time that a new family wants to settle down in the city, they should decide

the best place to live according to their personal preferences and restrictions. The

new families can originate from another family that was already located within the

city, or by incoming migration. These incoming flows create a rising demand for

housing which boosts the development of new urban areas. The idea that the city

expands from its centre to balance the housing demand to its supply was proposed

by Muth (1969). The economic equilibrium is achieved by the aggregated individual

negotiations based only on local information.

Positive migration is attracted by major opportunities for economic growth caused

by the local demand for labour. In the model, the migration factor is managed by

a variable called migrationRate that controls the amount of adult agents that are

externally included in the model. This factor is defined stochastically to allow a

different and unknown number of people to arrive in each lapse of time. migrationRate

is always positive with a maximum bounded defined by the 2.9% of the current

population and an absolute limit called maxMigration equal to 1000.

Each cell has the capacity of allocating multiple families. There is no restriction

defined in the system about the number of families living within a given cell because
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Figure 3.4: Visual representation of the population distribution using age as classifi-
cation criterion. Young agents are represented in blue, adults are depicted in red
and old in green.

each cell has enough capacity to allocate an unlimited number of agents. This means

that the density of a neighbourhood is unbounded and it is only affected by a higher

residential demand and the consequent increment in housing prices. In the long

term, the high prices will drop the attractiveness of this concrete area, reducing the

demand of land.

The selection of a residence involves interaction among different parameters. As

in real-world cases, living in a property entails some expenses including a rental cost

and transportation cost to commute daily in the model. The number of offspring

is not taken into account when these costs are calculated. To afford these costs,

the model is configured in such a way that each family receives a different gross

household income α. For each family this value is fixed for all the time the adult

agent is employed. The function which determines the salary α is defined for each

new adult agent ai that wants to find a new household in the city as follows:

α(ai) =
1

n
×

n∑
i=1

pt(c
t
i)× SF (3.3)
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where every cell cti ∈ N t
U are the elements of the set of urban cells in the system

in a determined time step t, p is the function that returns the price of an urban cell

at this time t and SF is the constant called Salary Factor that is equal to 1.7. This

constant value is defined based on a similar urban models developed by Wu and

Plantinga (2003), where it is conceived that in the Alonso’s model after commuting

costs, each agent spends one-half of its budget in housing. The values chosen for

their model are consistent with empirical evidence gathered from census of the USA.

According to the same previous formula, since urban prices increase with time, see

Fig. 3.6a, income is also positively adjusted with time.

For simplicity and following the assumptions of Alonso’s model, it is assumed that

there is zero unemployment for all the population at any moment of the simulation.

The housing market is assumed to be in equilibrium, where all the population

is allocated inside the urban area. This requires that residents optimise their

choices based on the prices of other sample locations. Agents select their preferred

household following the classical microeconomic equilibrium model of Alonso (1964)

searching for a trade-off between their personal preferences and their economical

restrictions assuming global knowledge of the current offer. Concretely, they look

for the maximisation of a utility function in the pursuit of an economic competitive

equilibrium between housing space and community costs in which externalities, in

the form of green areas have been introduced. The introduction of externalities in the

form of local public infrastructures and open spaces was previously analysed (Fujita,

1989). Thus the utility function can be formulated as:

maxU =(w, z, d, p : w > 0, z > 0, d ≥ 0, p > 0)

such that: w − z −K ∗ d+ p = 0

(3.4)

where d represents the distance from the household to the corresponding CBD

that, in the case a monocentricity configuration is located in the centre of the lattice.
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This distance can be calculated as:

d =

√(
(x− u) + (y − v)

)2
(3.5)

w is the wage received monthly calculated as shown in formula 3.3. This value

does not change throughout the adult life of the agent. z is the price of using the

residential property, which is constant for the entire life of the agent once the value

is agreed and K is the constant marginal community cost with a value stored in the

variable transportRate equal to 25. Travel cost k considers only commuting from

the job centre (x, y) which is located in the corresponding CBD to the residential

location at (u, v) and it can be defined as:

k = K ∗ d (3.6)

Finally, p represents the agent’s preference for dwellings located close to green

areas, which implies their acceptance to pay more for this kind of residential unit;

this increases the demand for the nearest dwellings and, as a consequence, provokes

the modification of urban patterns. Since, not all agents share the same desire to

live close to these areas, p can add an extra value in function of this factor and the

distance to the closest green area. Concretely, a variable called greenSpacePreference

takes a random value from 0 to maxGreenPreference, which is equal to 10%.

p = greenSpacePreference× (4−minGreenDistance) (3.7)

where minGreenDistance return a positive value only if the distance to the green

area is lower than 4.

The personal preference for green spaces p is parametrised by applying a uniformly

random process U(0, 1) over the population. Following this utility function, agents

populate the urban cells of the grid. By selecting a concrete residential location

households are also choosing a level of green services and amenities and a rental

price.

94



Chapter 3: Urban Growth Model

The pseudocode of the implementation of the search that each agent performs

for a household to live according to Alonso’s model is the following:

Algorithm 3.1 Agent’s search for a household

global variables
WAGE FACTOR = 1.7
PENSION RATE = 0.9

end global variables
procedure findNewLocation

require cell, salary
Cell cell = null;
salary = 0;
if agent instanceof Mature then

salary = ((Mature)this).getWage();
else

if agent instanceof Old then
salary = salary * PENSION RATE;

else
System.err.println(”A child trying to find a flat on his own”);

end if
end if . Select the cell according to the salary
cell = lattice.evaluateCell(salary, agent.greenSpacePreference);
if cell == null then

System.err.println(”Agent didn’t find any available residence”);
else

((Mature)agent).setRent(cell.getPrice());
cell.incrementDemand();

end if
end procedure
procedure getWage

require WAGE FACTOR
return getAvgUrbanPrice() × WAGE FACTOR;

end procedure

In the algorithm 3.1, WAGE FACTOR and PENSION RATE are constants that

represent the spent in housing and the correction factor between a salary and the

corresponding pension. cell is the cell selected as a household for the agent and

salary is the salary of the agent. The complexity of the function is O(n), where n is

the number of individuals that are searching for a new household in each time step.

3.3.1 Agent’s Life cycle

During its entire life in the system, each agent has associated a unique state value

that can change through time. The possible set of state values defined for the
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population includes: YOUNG, ADULT and OLD and the complete flow that allows

the transitions between them is depicted in Fig. 3.5.

Figure 3.5: Life-cycle of an agent

The evolution of the states of each entity depends exclusively on the age of the

agent and on the possibility that the agent dies this turn. The agent can die in each

state, but the probability is higher when the agent is older. The concrete values are

0.1% for young agents, 2% for adults and 8% in the case of old agents. If the agent

dies, all their children and themselves will disappear from the model. An agent is

not capable of living more than 100 years.

Agents are capable of having offspring when they become adult; that occurs when

young agents reach 20 years old. At this time they leave their parents searching

for their own dwelling. The probability of having a child, which is defined by the

parameter BirthRate is 4.5% in each year. There is no limitation on the number of

possible children that each agent can have, but they only have the potential of being

a parent during adult life. Once the agent achieves 50 years old and becomes OLD

this capability disappears. The idea behind the transition to an old status is that

this agent retires. At this point the agent does not have to pay transport costs any

more and additionally its salary is reduced by a 10%.

In Figure 3.4 the distribution of the population at a determined instant of the

simulation is plotted. There we can distinguish the evolution through time of the

total number of agents settled down in the city according to their age, grouped into

three kinds of citizens: young, adult and old.
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Table 3.1: Population Variables

General Population Dynamics
Name Value Description

migrationRate 2.9% of current population External incoming population coming from migration
maxMigration 1000 Maximum value of migrationRate
salaryFactor 1.7 Amount of salary invested in housing each month

Agent Dynamics
Name Value Description

YOUNG <20 Agents are young when their age < 20
ADULT (20-49) Agents are adult meanwhile their age is between 20 and 49

OLD > 49 Agents become old when age > 49

death(young) 0.1% Likelihood of death for young agents
death(adult) 0.2% Likelihood of death for adult agents

death(old<100) 0.8% Likelihood of death for old agents with age < 100
death(old=100) 100% Likelihood of death for old agents with age = 100

offspring(age<20) 0 Likelihood of having offspring for agents with age < 20
birthRate 4.5% Likelihood of having offspring for agents with age between 20 and 50

offspring(age≥50) 0 Likelihood of having offspring for agents with age ≥ 50

transportCost(old) 0 Retired agents do not have to pay transport costs since they do not require to work
salaryReduction 10% Retired agents suffer a reduction in their income

greenSpacePreference ran(0-9) Quantification of the preference of an agent to live close to a green area
maxGreenPreference 9 Maximum boundary for the variable greenSpacePreference
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A summary of the variables used to model population dynamics are described in

Table 3.1. Values described in this section were selected based on empirical analysis.

Test and error techniques where used to mimic the desired behaviour of the model.

3.4 Urban Dynamics

Housing is a complex, multidimensional and abstract commodity which comprises

multiple elements. In the present model, houses are represented by urban cells. Urban

cells are a type of landscape that has been transformed from native ecosystems into

impermeable surfaces. This transformation occurs when cells receive the permission

to be urbanised, which figuratively means that dwellings are constructed. Once

dwellings are built, they can allocate population who evolves at an aggregate level.

In the real-world, there exist specific factors that trigger the construction of new

developments and consequently cause urban growth. Among them, the phenomenon

by which a noticeable number of people prefer to reside in one specific area of a city

is selected as the most important driver in the model.
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Figure 3.6: Urban prices and salary share the same growth tendency to allow the
settlement of new families in the model.

In each time period, different flows of incoming population search for a suitable

household to settle down, causing an increment in the demand for the development

of new urban areas. These urban needs can be fulfilled by the transformation of new
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patches of land which exert pressure over the remaining open areas located in the

fringe of the city.

Once an area is selected for urbanisation and the infrastructure is created, it

remains in this state until the end of the simulation. Even if redevelopment is

included as a possible change of state within the urban cells, the model does not

allow that the current urban land areas can lead back to open space. The reason

behind this is that, in practice, it is very likely that once an area is urbanized it

typically remains in that way (Nalle et al., 2002; Silberstein and Maser, 2013).

3.4.1 Urban Cell Life Cycle

In Fig. 3.7, each circle represents the different states allowed for each patch of

land represented in the model. The defined states include: EMPTY (FOREST or

AGRICULTURAL), AVAILABLE, NEW, OLD and PROTECTED. The directed

arcs or connections correspond to possible valid transitions among them, which

summarise how the state of the cells can change over time. All transition rules

are probability-based except PROTECTED, in which its selection is based on the

application of a range of more advanced methods. The selection of the final procedure

depends on the current optimisation baseline applied within the model.

Figure 3.7: State machine of the life-cycle of a cell in the grid, from the creation of
the cell at the beginning of the simulation until the cell is protected or urbanised.

All cells start the simulation with an EMPTY state that represents the concept
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that the area has not been urbanised and maintain more nature-like characteristics.

This state can be subclassified into AGRICULTURAL or FOREST according to

its environmental value. This value is assigned globally at the beginning of the

simulation but can vary with the time. The evolution of this values are related to a

degradation process that it is provoked by urban sprawl.

When an empty area is close enough to an urbanized cell, at distance equal to

one, it can be transformed into the state of AVAILABLE with a probability of 10%.

This change of state represents transitions between open areas to terrains where

urbanisation is permitted but its development was not carried out yet. Once a patch

of land is available for urbanisation, any other type of activity is not allowed under

this land any more.

The process to construct new urban settlements, meaning the change of the

status of the cell form AVAILABLE to NEW, is restricted by the constraint that the

group of urban cells that comprise its neighbourhood must have at least one family

living on it. This requirement is imposed to control the exponential growth of the

city where, by means of the current transition rules, new non-populated areas were

constructed without being required from the current urban population needs. Once

this condition is met, the cell status can be changed with a probability of 30%.

Once that the cell is finally populated by a family who selected it as its best

choice to live, the cell changes finally to an OLD state. Identically, when an OLD cell

achieves an age threshold it can be renewed and become again NEW. This stochastic

process starts with an age of the cell of 30 and it is checked and applied annually

with a probability of 20%. In the renewal process, all the agents allocated on the

cell are evicted and they should look for another placement to live.

3.4.2 Growth Behaviour of the City

In Fig. 3.7 it is illustrated how the urban cells defined in the model, denoted in the

equation 3.2 by NU can be sub-divided into three categories namely available, new

and old.

N t
U = N t

A +N t
N +N t

O (3.8)
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where NA (available) represents patches of land available to be urbanised, NN

(new) depicts cells that have been just built and NO (old) are units areas within

the city with developments constructed and inhabited in the past. Consequently,

equation 3.2 can be rewritten by adding more specificity to the N t
U component as

follows:

N t
A +N t

N +N t
O +N t

R +N t
P = NC ∀t = 0, 1, 2, . . . , T (3.9)
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Figure 3.8: Evolution of the state of the urban cells within the lattice for the entire
length of the simulation. These dynamics correspond to the system configured under
a normal level of demand.

In this formula is illustrated an important characteristic of the growth dynamic,

which is its one-directional nature. Available patches of land transform to new

development and, from this, to established development in such a way that NR(t)→

NA(t) → NN(t) → NO(t). The diffusion effect provides available land to the new

development by using the adjacent available Moore cells of its neighbourhood. The

other transition leads to a mature state when new development is surrounded by

new or old developed land.
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Figure 3.9: Evolution of the state of the urban cells within a lattice that represents
a city without enough demand of new urban development. The number of new cells
transformed is not enough to make the city grows, which implies the fall into a stasis
state.

New developments are the consequence of an expected economic profit resulting

from the future demand of households who desire to move to these premises. These

households should find these new settlements more interesting than the available

inner spaces previously built in terms of economic, number of services offered, social

conditions or amenities. In this regard the developed model includes three different

methods to populate the city with new adult agents:

• The initial population of adult agents. The number of individuals varies in

each simulation. The range of values assigned goes from 1 to initialMatures,

that is equal to 5.

• A variable amount of emigration of adult people coming to the city in each

time step, the concrete number of which depends on the current population as
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specified in the following formula:

Mt =
( Nt∑
i=1

ai

)
×migrationRate (3.10)

where Mt is the number of new agents coming to the city to settle down in

time step t. The total number Nt of urban citizens of the city ai at time t is

used as a metric to calculate the migration rate, due to the fact that the model

assumed the hypothesis that as the population within a city grows, more job

opportunities are expected to appear and this is one of the positive factors to

consider in migration (Todaro, 1969). Finally, migrationRate is a constant that

links the population with the amount of migrants and it is equal to 0.029.

• The new offspring of the adult population of the city. This value is stochastic

and its dynamics depends on the total amount of adults.

In general, population dynamics in the system can be summarised in the following

formula:

Pt = Pt−1 +NBt −Dt +Mt (3.11)

where current population P at time t depends on the population at time t− 1

plus the newborns NB, the input flow due to migration M and the elimination of

agents that have died from the system D.

If the city does not receive enough new citizens by migration mechanisms or by

inner new births, the growth of the city can be severely limited, not requiring new

urban developments due to a lack of demand. In this case, the scarce urban growth

behaviour could be depicted by Fig 3.9.

The pseudocode of the implementation of the transition rules used in the urban

model is depicted in Algorithm 3.2.

In the variable section, the constants used to transition between urban states

are depicted (RELEASE PROBABILITY, DEVELOPMENT PROBABILITY, RE-

DEVELOPMENT RATE and REDEVELOPMENT AGE ). Additionally, state and
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nextState represent the current and the future state of the cell for the next time step

of the simulation.

Algorithm 3.2 Implementation of the transition rules in the urban model

1: global variables
2: RELEASE PROBABILITY = 0.1
3: DEV ELOPMENT PROBABILITY = 0.3
4: REDEV ELOPMENT RATE = 0.2
5: REDEV ELOPMENT AGE = 30
6: end global variables
7: procedure update
8: require state, nextState
9: switch cell.state do

10: case ‘EMPTY’
11: if nextState ! = CellState.PROTECTED then
12: if getDevelopedNeighbours() > 0 &&
13: Rand.nextDouble() < RELEASE PROBABILITY then
14: setState( CellState.AVAILABLE )
15: urbanisedCell(cell)
16: end if
17: end if
18: case ‘AVAILABLE’
19: if DEVELOPMENT PROBABILITY < Rand.nextDouble() &&
20: !Lattice.isCellsEmpty() then
21: setState(CellState.NEW );
22: build();
23: end if
24: case ‘NEW’
25: if this.agents.size() > 0 then
26: setState(CellState.OLD);
27: end if
28: case ‘OLD’
29: if age >= REDEVELOPMENT AGE) then
30: if Rand.nextDouble() < REDEVELOPMENT RATE then
31: redevelop();
32: end if
33: end if
34: end procedure

3.4.3 Prices of Urban Cells

According to Alonso’s conception, urban land prices increase as long as they get

closer to the CBD where jobs are concentrated and the population prefers to live in

places that avoid commuting costs. The price of an urban cell represents the amount

of money that agents have to pay regularly as a rental cost or mortgage, which can
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represent half of their income after commuting costs on average (Wu and Plantinga,

2003). In the model, the price of each household varies with time and is dependent

on other factors that were included as an extension of the model. The following list

includes the elements considered:

• The Demand: The demand for certain preferred locations causes the increase

of their price. The demand is defined according to the number of families living

in a given cell. According to this general conception, the dynamic behaviour of

the urban prices can be summarised in the following points:

At the beginning of the simulation the city is comprised of a single cell with

the status of NEW which is empty of agents. The initial rent for the first

habitable settlement in the system is a constant value called initUrbanPrice

always equal to 500 monetary units. These areas are the initial CBDs in the

system and its number depends on the configuration of the system.

When the city increases its population and a new agent wants to find a new

household to live in, this action can occur under different circumstances. If the

agent is the first to be allocated in the cell, the price of the cell is calculated

taking the average of the urban cells, which form its neighbourhood. Since the

city grows by diffusion mechanisms there is always at least one urban cell in

its neighbourhood.

Let Ωci be the function which represents the neighbourhood of a determined

cell ci, that is the square of 3× 3 cells that compounds a Moore neighbourhood

of range r = 1. This configuration comprises the R = (2r + 1)2 − 1 cells

surrounding the objective cell c(x0,y0) in such a way that:

Ωc(x0,y0)
= {(x, y) : |x− x0| 6 r, |y − y0| 6 r} (3.12)

Then, the price p for an agent who selects an empty urban cell ci ∈ NN to live

in is the following:

p(ci) =
1

R
∗ p
(

Ωci

)
∀c ∈ NO (3.13)
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where R is the constant which represents the number of cells of the neighbour-

hood and NO is the set of urban cells with developments constructed. After

the price of the cell is calculated, the updating procedure does not use again

the information about the neighbourhood of the cell, instead it is based on the

posterior demand of the location which follows these rules:

– For each new family who wants to live in the same area ci, the current

price is increased due to an increment in the demand for this particular

location.

p(ci)t = p(ci)t−1 × urbanDemandPriceStep (3.14)

where urbanDemandPriceStep is equal to 0.5%.

– In turns where a family moves to another location or dies and its dwelling

is released, the demand decreases slightly and consequently the new price

for this area is also reduced:

p(ci)t = p(ci)t−1 × lessPopulationPriceStep (3.15)

where lessPopulationPriceStep is equal to 0.1%.

– Finally, if there is a continuous drop in the demand on this cell for a

period of time, which is defined in the model when the cell is undemanded

for more than three time steps (maxTimesUndemanded), then the price

is further decreased by:

p(ci)t = p(ci)t−1 × undemandedPriceStep (3.16)

where undemandedPriceStep is equal to 1%.

• The proximity to a green area: The proximity of a green area is a factor

which affects the final price of the houses. A green area is considered close

enough to modify the prices of the houses if the distance to any green area
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Figure 3.10: Distribution of urban prices in a monocentric configuration of the model.
White values represent cells with the highest price and black areas depict the cheapest
dwellings in the model for time step equal to 300.

is between 1 and 3 cells. A visual representation of this area of influence is

depicted in Fig. 5.4. Currently, this factor increases the money each agent is

willing to pay for their dwelling by a maximum of 10%. See Eq. 3.7 for more

details.

Once the price of the cell is agreed for a given agent, the model assumes that

landowners cannot change the prices of its property while the same family is living

in this dwelling.

Finally, as a consequence of the application of these rules, urban housing prices

are determined in a spatial market equilibrium. Fig. 3.10 shows the final spatial

pattern created by this urban prices configuration in a city composed by a single

CBD.
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Table 3.2: Land Variables

Urban Cells
Name Value Description

AVAILABLE 10% Likelihood an EMPTY cell changes to AVAILABLE
NEW 30% Likelihood an AVAILABLE cell changes to NEW
OLD #agents 6= 0 A NEW cell changes to WHEN when any agent settles down on it

redevelopmentRate 20% Likelihood of redevelopment of the cell if age of the cell > 30

Price of Urban Cells
Name Value Description

K 25 Rate of change in prices of land in function of the distance from the CBD
initUrbanPrice 500 Initial urban price of the cells selected as CBDs

demand 10% increment of the price due to the demand
demandPriceStep 0.5% Increment the price of the cell for each family who select it to live

lessPopulationPriceStep 0.1% Drop in the price when a family leave a cell
undemandedPriceStep 1% Drop in the price of a cell when it is undemanded for a period of time
maxTimesUndemanded 3 Times a cell needs to be undemanded to trigger a drop in its price

Rural Cells
Name Value Description

forestLimit 0.7 Minimum ecological value of a forest
urbanLimit 0.3 Maximum ecological value of an urban area

bioValueStep 0.01 Feedback value added to a cell due to the ecological influence a neighbour

Price of Rural Cells
Name Value Description

Pe 100 Profitability estimator of the earning received from the transformation and selling of urban land
Pbc 5 Corrective term of the weight that forest and agricultural land have in the final price or a rural cell
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A summary of the variables used to model population dynamics is described in

Table 3.2. Values described in this section were selected based on empirical analysis.

Test and error techniques where used to mimic the desired behaviour of the model.

3.5 Rural & Ecological Dynamics

Non-urban cells are the type of cells that have not undergone any urbanisation trans-

formation. These rural areas can be defined by their ecological characteristics and

their current price. Both concepts, ecological value and price, are also inter-related

in such a way that the price could change if the current ecological characteristics are

externally modified. According to the ecological value, these cells are divided into

forest and agricultural cells. The agricultural areas are patches of land with arable

land and forest cells are represented by stands of trees with higher ecological value.

Figure 3.11: Initial ecological configuration of random environmental values assigned
to each parcel of land in the grid. Light green cells represent areas of the lattice with
the highest ecological values, meanwhile patches of land represented by black colour
depicts areas of low ecological interest.
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3.5.1 Ecological Value of the Cells

At the beginning of the simulation, the model assigns a stochastic value called

ecoValue to the entire set of non-urbanised cells. This parameter, generated by a

uniformly random process U(0, 1), represents the ecological value of this parcel of

land. A visual representation of the generation of these values in the grid can be

seen in Fig. 3.11.

Algorithm 3.3 Feedback dynamics of the ecological values within the model

1: global variables
2: FOREST LIMIT = 0.7
3: URBAN LIMIT = 0.3
4: BIOVALUE STEP = 0.01
5: end global variables
6: procedure ecovalue
7: for each cell c in lattice do
8: ecoValue(c) = ran(0,1);
9: for each cell cn in neighbourhood(c) do

10: if ecoValue(cn) >= FOREST LIMIT then
11: ecoValue(c) += BIOVALUE STEP;
12: end if
13: if ecoValue(cn) <= URBAN LIMIT then
14: ecoValue(c) -= BIOVALUE STEP;
15: end if
16: end for
17: end for
18: end procedure

In the algorithm 3.3, FOREST LIMIT and URBAN LIMIT are constants that

represent the minimum ecological value of a forest land and the maximum value

of an urban area respectively. BIOVALUE STEP is a value added as a positive

or negative feedback to a cell due to the influence of the cells that belong to its

neighbourhood. All of these values where manually selected based on the empirical

testing of their effect on the model. The complexity of the algorithm is O(nm),

where n is the number of cells in the lattice and m is the number of cells in their

neighbourhood.

However, the final measurement of the ecological richness of a patch of land is

not an isolated concept. This value is also influenced by the ecological values of the

surrounding land. In this case, this concept is represented by the cells that form its
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neighbourhood and the positive or negative influence of each cell is represented by

the constant BIOVALUE STEP, which is initialised to 0.01. The implementation of

the generation of these values is shown in the algorithm 3.3.

The final ecological value of a cell stored in the ecoValue variable is used to

identify different rural land-use types within the model. If the concrete value is

higher than the value of the constant FOREST LIMIT, which is 0.7, then this cell is

classified as a forest cell, otherwise it is considered agricultural. The belonging to

each category is dynamic over the time.

The ecological dynamics of the model are mainly characterised by an uninter-

rupted bio-degradation process due to the continuous urban expansion and the

transformation pressure on the peri-urban areas of the city. These urban transfor-

mations provoke changes in the rural land use due to the spread of the negative

feedback of these urban areas to the surrounding, which cannot have an ecological

value higher than 0.3 (threshold value stored in the constant URBAN LIMIT ). Then,

if any preventive protection measures are implemented, rural cells tend to transform

with the time from forest to agricultural state.

3.5.2 Prices of Non-Urban Cells

Transformation of rural patches of land to be urbanised normally involves important

capital gains. The first studies which tried to analyse this process used models

constructed on the basis of Ricardo (1891) capitalisation formula, P = R/i, where

land price is calculated with the use of the discounted differential rent. R, in this case,

is the annual differential rent or the absolute rent and i is the discount rate (Arnott

and Lewis, 1979). However, due to its simplicity the validity of the method has

been questioned (Weersink et al., 1999). Other methods are based on hedonic price

equations (Chicoine, 1981), land rent gradients (Capozza and Helsley, 1989; Plantinga

and Miller, 2001) or gravity models (Shi et al., 1997).

Furthermore, even if land revenue in the calculation of rural land prices is a

significant factor, it is not the only determinant to take into account (Latruffe and

Le Mouël, 2009). Ricardo’s approach is based on the assumption of the existence
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of a competitive market. The reality, however, is that externalities and market

imperfections are important factors to influence the final land price (Ciaian et al.,

2012). This is the case of non-farm investors (Shiha and Chavas, 1995), who increment

cost transactions and the regulative role of institutions, which create agricultural

subsidies, environmental regulations and other land regulations (Latruffe and Minviel,

2012). The problem is that little is known about how these types of regulations of

land transactions affect rural land prices (Latruffe et al., 2013).

These economical models assume population density growths and the extension

of urban boundaries. In peri-urban areas non-urban prices fall with distance from

cities due to the expected substantial capital gains from a future urban development.

These land rents are determined not only by intrinsic agricultural factors but also by

the potential future residential rent and the time horizon where the transformation

from agricultural to residential use is planned.

Non-urban prices have opposite behaviour in comparison with the rural coun-

terpart. Rural land dynamics are more expensive when they are located in the

physical boundaries of the city, decaying with distance. Plantinga and Miller (2001)

postulated that agricultural prices are influenced by the agricultural exploitation

and by the expected future urban transformation profitability. For our purposes and

based on a Plantinga’s simplification of formula 9, the final price of a protected cell,

P P
t (z) located in cell z with coordinates (x, y) at time t is the following:

ρUt (z∗(t)) = PU
t (l) · Pe

P P
t (z) =

(Pbase
Pbc

+ ρUt (z∗(t))
)
· e−α[z−z∗(t)] (3.17)

where PU
t (l) is the price of the urban cell l most recently urbanised in time t, α

is the Change Rate that measures the declining urban rent gradient from the CBD.

Pe is the profitability estimator that measures the earnings from transforming and

selling a rural cell into an urban area. z− z∗(t) defines the physical distance from the

cell z to z∗(t) where z∗(t) is the placement of the peri-urban area at time t such that
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Table 3.3: Prices per cell

Type of Cell Area x Price Final Price

1 cell forest 51.8 ha x £6,600 = £854,700
1 cell agriculture 51.8 ha x £3,000 = £388,500

z > z∗(t). ρUt (z∗(t)) depicts the estimation of the profitability of the future urban

transformation. Finally, Pbase is based on rural land prices (agricultural and forest)

in the UK (Riley, 2002), see Table 3.3 and Pbc is a corrective factor that controls the

importance of the Pbase term in the final price of the land.

Apart from the price dynamics at a given time, prices of the entire set of non-urban

cells increase with time as the total number of rural cells becomes less numerous due

to urbanisation and the consequent decrease in supply.
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Figure 3.12: Rural Prices dynamics: Distribution of the prices within the lattice in a
single tick of the clock. The grid is divided into concentric annuli or rings and rural
prices are averaged accordingly (top). Rural prices of the entire lattice are averaged
for each tick of the clock (bottom).

In Figure 3.12 is depicted the evolution of non-urban prices during the simulation

period. The critical growth in prices that occurs at the end of the simulation is

noticeable. This is due to the the demand for a scarce number of available cells
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drastically raises their value.

Some researchers include other variables like the parcel size. Cavailhès and

Wavresky (2003) calculates that the price-size relationship can be determined by the

following characteristics: prices of large parcels, more than 1 Hectare, are constant

around e3000. Prices slopes steeply increase when the size is close to zero.

Agricultural economics states that large parcels of land entail higher productivity.

However, in real market conditions, prices of agricultural land per hectare decline

with size. To explain this dichotomy Colwell and Munneke (1997, 1999) investigated

the relationship between urban land prices and sizes and they concluded that the

structure of land prices is convex as a result of the subdivision costs (Colwell and

Sirmans, 1978).

3.5.3 Degradation Process

The formula used to reproduce the ecological degradation effect due to urban expan-

sion is applied over all the non-urban cells at the same time as the transition rules.

The equation used is summarised as follows, ∀c ∈ NR:

EcoV alue(c)t+1 =EcoV alue(c)t −



0.1 if δ(a, x̄) = 1

0.05 if δ(a, x̄) = 2

0.01 if δ(a, x̄) = 3

0 otherwise

(3.18)

Where δ is the distance from the cell c to the boundaries of the city x̄. This

dynamic can change the state and the priceBase of the non-urban cells that are closely

located to the city and hence, can influence the purchasing process of protected areas

that it is restricted to our current budget (see Table 3.3).

Once the entire set of BioCellValue parameters are updated, the algorithm 3.3

is run again to update the ecological feedback processes among cells. In this way,

cells located close to the boundaries of the city are more affected by the degradation
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Figure 3.13: Environmental values and the effect of the urbanisation process in the
grid. The range of colours from green to black depicts the ecological values of the cell.
Notice that in the centre where the city is located, the black eco-values represent the
biological degradation of the metropolitan area.

process in the cells which form the peri-urban belly of the city.

3.5.4 Protection for Conservation

In a free market scenario, open spaces can be classified as a kind of public good. This

type of facility has always been associated with the cases of non-optimal markets

characterised by the appearance of several market failures(Weimer and Vining,

2005), such as externalities and information asymmetry, which implies inefficient

resource allocation and under-provision in the absence of any kind of government

intervention(Tolley, 1974; Alterman, 1999; Kotchen and Powers, 2006). Available

space is generally limited in city centres, and the application of a set of concrete

policies can mitigate the continuous pressure to convert the available open space into

building sites (Glickman, 1999) which is a typical consequence of urban sprawl.

Public open space planning allows local authorities to boost the protection

of certain areas from the urbanization process, and foster welfare and the forma-

tion of healthier urban environments (Gillham, 2002). Real-world examples of
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Figure 3.14: Protection effect caused by the location of open areas within the city.
The figure shows the ecological values of an urban area, illustrating the role of
protectionism which is able to maintain some valuable ecological areas in the centre
of the city.

planning strategies based on public-ownership are Australia, Sweden, China and

India (Acharya, 1987). Based on the premise that public institutions can play an

important role in the protection of green areas by means of acquiring parcels of land

to be transformed into parks, the model delegates the responsibility of selecting the

best non-urbanised stands to a new special agent called Municipality. This special

agent does not interact with the rest of the agents as usual. Instead, their main goal

consists of managing the open space protection policy to support land conservation

by the sequential purchase of green areas within the city, using a monetary income

called budget received periodically and should be used effectively.

The green space provision is performed by a land banking mechanism where

the purchase of parcels is done in advance, according to the expected population

distribution and density projections. This approach was also included in other models

that investigate the allocation of green areas (Wu and Plantinga, 2003). From a land

banking perspective, and in order to provide the services of the foreseen residents
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that will be located in old or new neighbourhoods, land purchase decisions could

be mainly based on the assumption that the economic benefit achieved buying non

urban land far from the CBD can lead to a qualitative and quantitative improvement

in the future green configuration of the city once the city grows.

The planning strategy can follow multiple approaches. According to Maruani

and Amit-Cohen (2007), public open space planning can be divided into two main

categories: a demand and a supply approach. A demand approach assumes that

people get benefit from the presence of recreational areas in the surroundings of

their residences. In a supply approach the strategy aims at protecting the existing

landscape and biodiversity from an ecological point of view. The selection of the

areas should be performed prioritising high-quality and uniqueness environmental

properties in an attempt to preserve the most vulnerable areas. Prices of parcels,

ecological value of the land, distance to the boundaries of the city along with their

availability are the major factors to consider when the land purchase strategy is

planned.

This selection process can be formulated as follows: C is defined as the finite set

of cells included into the lattice, R the subset of rural cells both agricultural and

forest, each of them with a corresponding purchasing cost α that varies with the

time. P the subset of cells that are protected and U the urbanised cells such that

{R,P, U} ⊂ C and R ∩ P ∩ U = ∅, then the condition that a candidate cell has to

hold in a given time step t to be included into A that is the set that contains the

candidate cells available for purchasing such that A ⊂ R, can be defined as:

∀ cell c ∈ C

if α(c)t < budgett ∧ ct /∈ {P,U} =⇒ ct ∈ A
(3.19)

Once the candidate set is defined, the purchasing and protection phase can be
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formalised as:

∀ cell a ∈ A, max
strategy

δ(a)t

=⇒ at ∈ P∧at /∈ A ∧ update(budgett)
(3.20)

The function δ represents the metric that measures the level of accomplishment of

the policy. Every subset of selected cells has associated a level of success. The model

should select the configuration of green areas which achieves the highest possible

level of reward according to the restrictions of the system during the considered

period of time.

Once the purchase is concluded, the state of the cell is changed to protected and

the future construction of urban facilities within its boundaries is forbidden. An

example of the effect of ecological protection in the model is shown in Fig. 3.14.

3.6 Conclusions

In this chapter, it has been presented a multi-featured computational model of urban

growth, which builds on Alonso’s theoretical framework for urban growth and land

economics. The developed computational model comprises a Cellular Automaton

and an Agent-based System, which work together to simulate the dynamics of a city

that grows in terms of both, population and land development.

The model incorporates and reproduces a varied range of interacting processes.

One such process, forming the focus for this thesis, is the nexus of activities which

lead to, and follow on from, the acquisition and protection of a new green space.

This aspect of the land-use forms the key point of interaction between optimisation

algorithms and the model. The further application of this model for planning tasks

and optimisation is the core topic of later chapters. Concretely, in the next chapter,

it is considered how optimisation methods, when tasked with discovering what inputs

to the model will lead to the best outcomes, can be engineered to be able to handle

the non-linearities and uncertainty inherent in such a complex model.
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Evolutionary Algorithms under

Noise and Uncertainty

4.1 Introduction

EAs are biologically-inspired algorithms for search and optimization that have

received much attention as tools applicable to a very wide range of problems. The

technique involves artificially ‘evolving’ a population of solutions to a problem, and

this in turn requires the repeated evaluation of a fitness function, which estimates

the quality of a candidate solution. In many cases, the fitness function needs to

be used thousands or hundreds of thousands of times during the process, and the

technique relies on the estimates provided by the fitness function, in order to guide

the algorithm efficiently towards good solutions. However, for many real-world

problems, several aspects of the fitness function present challenges to the process.

To take a pertinent example: if the quality of a candidate solution depends on future

events that are difficult to predict, the fitness function will necessarily be noisy and

unreliable.

Furthermore, the nature of the fitness may be challenged even for conventional,

otherwise accurate fitness functions. This can be the case when the fitness function

is available but very computationally expensive to compute, as in, for example,

structural design optimisation problems (Ong et al., 2003). The goal in the latter
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paper, common to much similar work, is to use the real (expensive) fitness function

for a limited number of fitness evaluations, in conjunction with an approximate

but much faster fitness function, which is used in all other cases. The combination

of this model-based fitness, built from a small number of samples of the original

function along with the approximate function, is normally called evolution control.

In other cases, an explicit fitness function may not even exist, as in, for example, art

design or music composition. The approach followed here is often to focus on the use

of interactive methods, in which one or more humans become part of the process,

supplying their opinions, which then take place of the fitness function. (Biles, 1994).

In the concrete context of urban planning, the uncertainties present in objective

functions and constraints are significant, and would present a fitness landscape that,

intuition suggests, would be extremely difficult for a standard optimization method

to navigate successfully. Hence, if the application of EA techniques to solve urban

planning problems is to be considered, suitable mechanisms need to be taken on

board in order to cope with these difficulties.

However, not all types of uncertainties should be approached in the same way.

Jin and Branke (2005) differentiates among four types of uncertainty that can affect

the performance of EA techniques. These variants are named: noise, robustness,

fitness approximation, and time-varying fitness. We will discuss each of these, but

with a special focus on those forms of noise and uncertainty that are most relevant

in an Agent-Based System scenario.

Following review of the multiple strategies that have been applied to cope with

these types of uncertainty, we will describe and justify the main approach taken in

this thesis. As we will see, the latter approach is essentially a carefully constructed

approximate fitness function, which is designed to efficiently capture signals of likely

future dynamics of the full model simulation. Effectively, our approach builds a

statistical model of the agent based system’s behaviour, which is able to support

rapid approximation of the full fitness function. This approach requires a limited

number of prior simulations of the objective function that are averaged and used as

an estimate of the real objective value. Then, this procedure allows the application
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of an evolutionary algorithm to optimise urban growth policies, where the quality of

a policy is evaluated within a highly noisy and uncertain environment.

4.2 Evolutionary Algorithms under noise and

uncertainty

As previously mentioned, EAs can face some issues of applicability when confronted

with real-world problems. In the field of optimisation, this strategy, in both single

and multiple objective versions, can be characterised as a significant robust method

when it has to deal with noisy environments (Büche et al., 2002; Hughes, 2001).

Noise means environments where the fitness function is only an approximation of

the real fitness function. This advantage is mainly caused by its intrinsic use of a

population of solutions to solve the problem under consideration that acts as a filter

for noise when the average performance is computed (Arnold and Beyer, 2003).

Sources of noise can be varied. It can be caused by measuring errors related to

the representation of sensors and actuators, by the inherent stochasticity of some

techniques such as multi-agent simulations, by the propagation of uncertainty in the

input data, or by the aggregate behaviour of different factors.

In a noisy environment with a certain degree of randomness, typical of stochastic

simulation models, predictability is challenged by the fact that under the same initial

conditions and input parameters, results may vary every time they are generated.

In Fig. 4.1 this effect is graphically shown. In systems where these variations are

inherent and irreducible, data can be represented as a probabilistic distribution.

However, if this randomness can affect the system after the evaluation is performed

because the current solution is disturbed, then this specific type of noise is denoted

as relating to Robustness. Lack of robustness means that the solution may have been

evaluated as good, but cannot be used, perhaps due to manufacturing tolerances,

which for example directly affects structural design problems (Barthelemy and Haftka,

1993).

In scenarios where noise is present, the selection operator within the EA can
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Figure 4.1: Illustration of the variation in fitness values due to noise in a general
system. For repeated measurements of the same specific problem, the objective
fitness function f changes. In this case, these perturbations are considered to be
ruled by a normal distribution.

deliver unstable results and the convergence of the solutions may be adversely affected,

propagating inferior solutions (Syberfeldt et al., 2010). In these cases, it is convenient

to quantify the probability that the operator generates wrong decisions (Hughes, 2001).

This occurs when the fitnesses of the solutions A and B are f(A) < f(B) but their

expected distribution values are the contrary dv(B) < dv(A). These distributions

can be constructed by performing multiple evaluations for each chromosome, which

is very expensive in terms of computational costs. A less demanding approach would

be to perform different evaluations in a single random chromosome to estimate

the entire distribution, assuming that it can be extended for all the population of

solutions. This method will decrease the number of final evaluations, limiting the

extra computational resources used.

Another possible risk is the existence of epistemic uncertainty in the system.

Galbraith (1973) defines this type of uncertainty in terms of the difference between

the amount of information necessary to perform a given task and the amount of

information already known. The sources of this type of uncertainty come from

scarcity in the amount of experimental data collected, lack of accuracy in the

approximations and assumptions selected to simplify the system, significant missing

factors not included in the model or even a poor understanding of the processes

involved (Oberkampf et al., 2004). To avoid any kind of confusion, from this point
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irreducible and random uncertainty will be named as noise and epistemic uncertainty

will be denoted simply as uncertainty.

In systems characterised by the presence of uncertainty, the definition of the

problem under consideration could have a lack of accuracy in objectives values or

in the parameters that describe the system. Under these circumstances, a pair of

successive evaluations of the same individual solution will retrieve the same objective

values and not different ones, as in the previous case. However, these values may not

be totally accurate. The complexity in this case arises when two chromosomes are

compared. Due to the inaccurate evaluations caused by the uncertainty, solutions

can be also misclassified. Generally this uncertainty can be reduced by increasing

the knowledge within the system.

Apart from the problem of prioritising the best solutions, the presence of noise

or uncertainty in the objectives causes a slower rhythm in the evolution of the

population of solutions, since the system may not be able to retain what it learns

and fitness does not evolve monotonically, even when elitims is applied (Di Pietro

et al., 2004). Hence, taking into account all of these circumstances, for a classical

implementation of the evolutionary algorithm, its use and performance have been

questioned (Rieser et al., 2011; Wu et al., 2006). From a computational point of

view, it is important to mention that epistemic uncertainty is more challenging to

cope with than random noise (Oberkampf et al., 2004).

In order to enable the EAs to solve these kind of problems it is necessary to include

external tools and mechanisms to support the process. Existing methods that can

be applied to evolutionary systems, which work in uncertain and noisy environments

include approximation techniques such simplified computational simulations and

meta-models (Jin, 2005). However, even if these techniques can aid the EA to be

considered suitable for this purpose, an exhaustive search in the literature provided

very short number of studies focused on applying EA techniques to Dynamical

Planning (DP) or to a SDMP under uncertainty. Instead, this type of problem

has been solved traditionally by the family of MDPs. These methods allow the

modelling of complex systems based on their preceding state where the objective
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problem is defined by a predefined set of states and a transition matrix that stores

the probabilistic rate of transition among them. The drawback in this case is that

such strategies cannot be generally scaled to large problems (Krause et al., 2014).

4.2.1 Multi-objective Optimisation

In many practical applications where noise is present, a multi-objective algorithm

requires not only to be able to cope with multiple optimisation objectives that can

be complex and non-linear, but also with the stochastic noise that is generated as a

consequence of uncontrollable variations in the system (Jin and Branke, 2005).

Concretely, in a multi-objective scenario, the system no longer generates two

possible outcomes from the comparison between two solutions. Instead there is a

triple possible composition that is, f(A) < f(B), f(A) > f(B) and the possibility

of non-dominance f(A) ≡ f(B) where the solutions are incomparable, and different

decision makers may express a different preference. This extension makes the filtering

of noise a harder task. One reason for this increment in complexity is that uncertainty

and noise in multi-objective systems changes the nature of the solutions within the

Pareto front, which are transformed from points in the search space to hypercubes,

see Fig. 4.2.

Noise may alter the dominance relationship between different solutions in such a

way that it could be possible that dominated solutions may become non-dominated

or vice versa (Tan and Goh, 2008). Consequently, the application of the selection

operator may be also misled, eliminating good solutions or reproducing inferior ones.

This effect may produce a reduction in the convergence rate and a poor quality set

of final solutions (Beyer, 2000; Arnold, 2002; Branke and Schmidt, 2003).

Apart from this aspect, the fitness calculation process may produce outlier

solutions whose values are placed at an abnormal distance from the rest of solutions

in the search space. In this case, the optimization algorithm might get stuck in one

of the solutions which dominates all present solutions (Büche et al., 2001). The

appearance of outliers can be caused by insufficient sampling or by the disparity in

the distance to the Pareto front among objectives (Babbar et al., 2003).
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Figure 4.2: Graphical depiction of the difference between the representation of a
solution within the Pareto front in scenarios with and without noise. The normal
point representation in a standard search space (solutions A, B and C) is transformed
in an uncertain environment into a hypercube. This hypercube is represented in this
case by grey areas surrounding the point solutions.

Different approaches have been investigated for such multi-objective scenarios.

In this regard, a modified Pareto ranking scheme adapted from Goldberg (1989) has

been proposed to deal with the presence of noise. There are two major ranking scheme

versions that have been studied: one which focuses on probability techniques and

another based on clustering methods. The probability-based Pareto ranking schema

of Hughes (2001) uses a probabilistic ranking process to take noise into consideration

by defining probabilities of dominance between noisy solutions (Teich, 2001). The

standard deviation of each evaluation for the entire population of solutions can be

used to correct the noise. In this technique, the probabilistic rank of an individual is

calculated by the sum of the probabilities of those solutions that this chromosome

dominates. Finally, in the clustering variant (Babbar et al., 2003), the Pareto front is

formed by the best found solutions plus solutions that belong to their neighbourhood.

The neighbourhood calculation takes into account a user-defined restriction factor

and the standard deviation for each objective.

Additionally Büche et al. (2001) proposed a modification of the (µ, κ, λ) algo-

rithm (Bäck et al., 1991) to minimise the effect of noise and outliers. The Domination
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Dependent Lifetime (DDL) method assigns a maximal lifetime κ to each individual

based on the number of solutions it dominates, in such a way that the lifetime

value k will be shorter if the number of chromosomes in the population is large.

This feature contrasts with the effect of elitism which may preserve solutions for an

infinite amount of time by limiting the impact of inferior new individual solutions.

However, to prevent the elimination of good solutions, the approach is complemented

with a mechanism that allows the re-evaluation at the end of the lifetime of the

expired solutions. If these solutions are good enough they will be added again to

the pool of solutions with new objective values resulted from a new re-evaluation.

This procedure, however, will only replace previous good solutions with other noisy

samples.

4.3 Fitness Approximation

In an uncertain and noisy context the fitness function, which is evaluated by means

of statistical, conceptual or physical simulations, is normally the most computation-

ally intensive element of the given application (Nicklow et al., 2009). This high

computational requirement has led to the development of approximative alternatives

to alleviate the corresponding cost. Surrogate models, also known as metamodels,

are used to replace costly simulation models (Barton, 1994). These models lead to a

more efficient exploration and exploitation of the search space.

There are different types of techniques that can be used as a modelling tool for

function approximation, aimed at replacing computationally intensive models. This

is the case of the use of ANNs (Funahashi, 1989; Hornik et al., 1989; Chambers and

Mount-Campbell, 2002), Least Squares Support Vector Machine (LSSVM) (Van Ges-

tel et al., 2001; Wan et al., 2005) or Kriging interpolation (Ratle, 1999) or response

surface methods which uses least-squares regression based on low-order polynomials.

See (Giunta and Watson, 1998; Simpson, 2000) for an extensive comparison between

these techniques. The critical issue in this approach is to find a good quality approx-

imation strategy in such a way that the behaviour of this approximation is similar

enough to the original model. Otherwise, the final system could experience a severe
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negative impact when errors are evaluated (Jin et al., 2002). Each method should

deal with the avoidance of over- and under-fitting, to capture enough complex casual

relationships in highly dimensional problems.

Formally, if the real representation of the problem under consideration is the

following:

y = f(x) (4.1)

the corresponding surrogate model is an approximation of the form:

ŷ = f̂(x) (4.2)

in such a way that y = ŷ + E, where E is an additive error term.

Surrogate models can be built by an iterative online process, using only the data

points that belong to the local neighbourhood of the point of interest (Ong et al.,

2003) or taking information acquired in the past. The latter is called Memory Based

Fitness Estimation (MBFE) (Sano and Kita, 2002). In this strategy, a stochastic

model that is capable of gathering data about the uncertainty of the fitness function

is used. Sampled values of the fitness function are acquired and stored in a memory-

based system forming the search history of the problem. Finally, when the fitness

value of an individual needs to be estimated, statistical techniques over this repository

are used of information to retrieve the corresponding value. This approach was

selected for this thesis as a method to deal with uncertainty.

4.4 Sampling Fitness Function

The manner in which noise influences the fitness value can vary. In additive noise,

additional values are randomly added to or subtracted from the real fitness value.

Formally, this type of additive fitness function can be defined as such: if ρi is the

fitness function that is defined based on a determined configuration of the problem

for a determined chromosome i, then the noisy fitness function ρ′i can be described
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as:

ρ′i = ρi + rnd[N(µ, σ2)] (4.3)

where ρ is the noise–free fitness function and [N(µ, σ2)] denotes the assumption

that the noise can be approximated by a normal distributed noise component added

in each evaluation. As a facilitator assumption which is reasonable for many domains,

it can be also assumed that noise is unbiased [N(0, σ2
N )]. Additionally, the uncertainty

set U of ρi can be defined as:

U(ρi) = {ξ ∈ Rn : ρi −4 ≤ ξ ≤ ρi +4} (4.4)

where 4 = (41,42 · 4n)T ∈ Rn is the aggregate uncertainty, ξ is the neighbour-

hood created by the uncertainty and n is the dimension of the decision space. The

size of ξ is defined by the internal boundaries [ρi −4, ρi +4].

The use of a normal distribution is very common (Büche et al., 2002), however

the nature of the source of noise can be characterised by other types of distribution.

Based on the central limit theorem, the sampling mechanism reduces the amount of

noise by calculating the mean of multiple function evaluations.

ρ∗i,n =
1

n

n∑
j=1

ρ′i,j (4.5)

where ρ′i,j is the sampling realisation number j of the individual i and ρ∗i,n is the

distribution of ρ resulting from the mean of n samples of ρ′. As the sample size n is

increased, the standard deviation is reduced.

In order to generate the analytical values required to define the fitness by approxi-

mation, four basic strategies have been introduced, namely explicit averaging, implicit

averaging, fitness inheritance and selection modification (Jin and Branke, 2005). All

methods assume that the search space is characterised by a known and homogeneous

noise distribution, most commonly a uniform or a normal distribution type. It is also

considered that an estimation of its magnitude is possible to calculate (Bui et al.,

2005). However, these assumptions limit the effectiveness of the selected approach
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due to, in general, the effect of noise is not spread homogeneously over the search

space and the absence of knowledge regarding the level of noise are the most common

characteristics of real-world problems.

Explicit averaging, also called static resampling, was introduced by Miller (1997)

and it is the most commonly used method for coping with noise. The strategy consists

of generating a determined number of times the sampling of the objectives, followed

by the averaging of the generated values (Fitzpatrick and Grefenstette, 1988). In a

sample size of n, this operation allows a proportional reduction of the variance by

a factor of
√
n. Additionally it also means scaling up the required computational

effort used by a factor of n (Jin and Branke, 2005). To avoid extra evaluations, the

fitness from the neighbourhood can be used (Branke, 1998; Sano and Kita, 2002).

Another possible approach is to apply a statistical model constructed beforehand

with historical data to model the fitness using techniques such as local regression and

adaptation (Branke et al., 2001). Sampling is a popular method to reduce noise and

estimate unknown information. If the approximate model is generated by an offline

training process before the optimisation is run, it is common to use Monte Carlo

techniques to generate these samples. However, if evaluating the fitness function is

significantly time-consuming, this strategy may not be viable.

In the implicit averaging method, on the other hand, sample size is defined as an

inverse function of the population size (Fitzpatrick and Grefenstette, 1988). The idea

behind this interpretation consists of that in systems defined with a large population

of solutions, it is very common for there to be numerous chromosomes that are very

similar to each other. The frequent evaluation of these related areas of the search

space reduces the noise.

Bui et al. (2005) introduced a technique to solve this problem based on the idea

of fitness inheritance. They proposed that the offspring created in each generation

additionally inherits two variables from its parents: µ that represents the mean

of the objective value and σ that corresponds to the standard deviation. These

variables will control whether a new resampling is required or not. The resampling

operation consists of calculating the new fitness by performing a predefined number of
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evaluations where the final values µ and σ correspond to the mean and the standard

deviation of these evaluations. When a new child is evaluated, a resampling is only

required if its objective values fall outside the confidence interval. Otherwise, the

inherited fitness is assigned. Consequently the evaluation of solutions characterised

with higher noise will result in larger standard deviation values which facilitate the

fitness acceptance in its children.

Finally, the modification of the selection operator is another method investigated

to cope with the noise when the fitness reevaluation is too costly. Teich (2001)

defined a selection and ranking procedure that takes into account some conditions

like the probability of dominance to compensate the noise. Another similar strategy

uses a threshold value when fitnesses are evaluated to overtake the effect of the

hypercubes in a multi-objective scenario (Markon et al., 2001). A useful survey of

such mechanisms appears in Jin and Branke (2005), while a brief update of the state

of the art was shown in (Qian et al., 2013).

4.4.1 Monte Carlo simulation

Monte Carlo simulation is a technique that was developed in the 40s by Metropolis

and Ulam (1949). Since then it became a widely used and effective tool for those

problems whose analytical solutions do not exist or have a high level of complexity

to be easily obtained. By means of random sampling, the strategy allows the study

of the properties of random-nature systems when analytical solutions are not easily

available. To recreate properly the desired dynamics and patterns of the studied

system into the model, it is common to use real information gathered from this

objective system. However, in some cases the information collected in this way has

not enough quality or cannot be easily measured and structured as a probabilistic

distribution. It can be also possible that even if this information exists, its application

in a large stochastic model could be a very challenging task (Huang et al., 1992; Li

and Huang, 2009; Lv et al., 2010).

The number of draws used within the sampling should be defined according to

the level of noise and uncertainty which characterises the search space of the problem.
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In general, very noisy scenarios will require extra samples to come up with the

same level of robustness than in more deterministic search spaces (Syberfeldt et al.,

2010). However, each new sample will increase the computational effort required for

generating a single evaluation. If Monte Carlo techniques are used along with an

EA approach, an alternative option to manage the noise is to increase the number

of individuals that forms the population of solutions (Harik et al., 1999; Miller,

1997). However, it could be hard to know a priori, the most efficient size for the

population, because this aspect depends on several factors including the level of

noise, formulation and problem-specific parameters (Harik et al., 1999; Miller, 1997).

At this point, there is controversy surrounding the trade-off created between the

role that these two factors plays in decreasing the level of noise (Cantú-Paz, 2004).

Fitzpatrick and Grefenstette (1988) and Arnold and Beyer (2001) highlighted the

size of the population to increase the robustness against uncertainty over the sample

size. Meanwhile, Beyer (1995) and Hammel and Bäck (1994) favoured the sample

size instead. However, these conclusions strongly depend on the definition of the

problem. In this regard, these authors state that for the (µ/ρ, λ)-ES (Beyer et al.,

2002) an increment in the population of solutions is preferable when the parameter

called truncate ratio µ/λ is calibrated appropriately. However for (1, λ)-ES (Oyman

et al., 2000), averaging over multiple samples is the best option. In this type of

problem, µ refers to the size of the parent population, ρ is the number of parents

involved in the mating of a single offspring, and α denotes the number of offspring

per generation.

Under these circumstances, it is challenging to exactly know before the algorithm

is empirically tested, the reliability or level of robustness of a determined formulation.

For single objective problems, Miller and Goldberg (1996) inferred a lower bound of

the optimal sample size and suggested that, in a system with uncertain parameters,

the EA solutions only require the generation of a small number of samples. They

stated that a limited number of Monte Carlo draws, that can range from 5 to 20

per population member, should be enough to compute their average fitness. This

assumption is based on the idea that in EAs new samples are included in the
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population in each generation by the application of elitist operators that highlight

good solutions. As a direct consequence of this mechanism, this process will have

the side effect of implicitly increasing the number of Monte Carlo realizations.

A proposed extensions of this approach is the introduction of an operator that

limits the age of the solution, which control the survival of fit members. By the use

of this element it is possible to further reduce the number of Monte Carlo draws

in the fitness evaluation (Hilton and Culver, 2005; Kapelan et al., 2005; Wu et al.,

2006).

4.5 Description of the problem

In a dynamical location-allocation problem where a set of urban green areas have

to be allocated during a determined period of time subject to some constraints, the

major objective to achieve can be defined as satisfying the needs of the population.

This satisfaction can be measured in terms of the distance from households to these

green areas, since access and frequency of use are mainly determined by the distance

between the dwelling to the park (Giles-Corti et al., 2005). The availability of parks

at a close distance provides varied types of beneficial services and amenities that these

green facilities offer to the population from different perspectives such as aesthetic,

physical, social and environmental (Chiesura, 2004; Bowler et al., 2010b,a). The

model does not include the option of using any means of transport to arrive at the

green area in the case it is far from their residence. The search can be extended to

cover other objectives like environmental protectionism, level of connection between

areas and profitability among others. This conflicting set of goals, more typical of

real-world problems, arguably needs multi-objective techniques to be appropriately

solved.

A ‘policy’, in this context, amounts to the city authorities’ planned schedule for

protection of a specific set of green spaces maximising the objectives selected in both,

short and long-term. In these scenarios, financial resources are normally accessible

periodically. However, because of governmental purchase decisions are subject to the

availability of parcels of land and this factor changes over the time, the capacity to
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provide green spaces during the construction of new urban developments in cities is

normally limited. Hence, careful planning studies should be carried out in advance.

Computational optimisation techniques can be applied to the search for an ideal

policy in the face of budget constraints. It is worth mentioning that the budget may

normally be quantitatively much lower than current prices of the patches of land that

are significant for the new areas under construction. Additionally, since land prices

generally increase with time because of multiple factors, including the rise in the

demand of these spaces, scarcity of available land and other related economical factors,

current acquisition policies should take into consideration not only the present status

of the system but also a reliable projection of future necessities. However, dealing

with future conditions implies that we need to cope with epistemic uncertainty due

to a lack of knowledge about the future.

In this regard, there is much active research in designing long-term feasible public

open space plans, whereby researchers interested in urban planning and sustainability

have investigated a range of agent-based systems and similar mechanisms to explore

the consequences of different green-space allocation strategies (Parker et al., 2003;

Sasaki and Box, 2003; Sanders et al., 1997).

In general, the application of modelling techniques is another element that

aggregates epistemic uncertainty, mostly inherited from the selection of the model

and the subsequent structural changes required to adequate the system to the

considered problem. Apart from that, due to the use of a CA-ABM framework that,

this work applies as a modelling technique, it should be noted that these concrete

technologies implicitly add noise to the system into consideration. Consequently, the

applied EA algorithm should be robust enough to be able to cope with both factors

at the same time, in order to provide valid and usable results.

In such a context, a method that effectively obtains a model-driven approximation

of the simulation to lead the evolutionary algorithm towards policies that yield much

improved satisfaction levels than unoptimised policies is investigated. By collecting

the knowledge needed for optimisation by the simulation process, we can consider

using a rapidly accelerated model of the agent-based simulation in place of the real
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knowledge. This requires a limited number of prior simulations of the agent-based

urban growth system, and then allows the use of an evolutionary algorithm to

optimise urban growth policies. This strategy is based on the fact that, even if

approximate models do not have the capability of creating new information, they

can gather useful information from the history of the optimisation and prevent its

loss (Ratle, 1999).

4.5.1 Statistical Data Generation for Sampling

Specifically, the EA algorithm requires to receive, as input parameters, concrete

information about the scenario in which the algorithm is operating. However, if

some of these elements that characterise such a system are totally or partially

unknown, then an external mechanism should generate the information about these

uncertainties. The way in which this is performed will have a significant impact on

the feasibility of the proposed solution.

In this concrete problem, this lack of information occurs due to the complexity

resulting from the multiple interactions between the different processes involved

in the stochastic growth of the urban development model, that cannot be foreseen

beforehand. The relationships among these factors can lead to the development of a

varied range of future scenarios.

Data sampling techniques used to create the approximation model could cover

both online and offline learning. The online approach collects and updates the system

during the optimisation, meanwhile the offline version performs a training process

beforehand, incorporating prior knowledge. One of the advantages of using non-

adaptive techniques is that, once it is demonstrated that the sample size describes

a function that is Pareto-optimal in relation with the speed and the accuracy of

the algorithm (Srinivas and Deb, 1994), the offline procedure permits the system

to focus mainly on the accuracy factor. This is based on the idea that the offline

process can invest all the time it is required to generate the set of samples to achieve

the best accuracy since the speed is a non-significant factor.

If the sample set will be generated by an offline process, the number of samples
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collected will be decided beforehand and the statistical model will remain constant

for the entire optimisation process. Other approaches define a variable number of

samples for different individuals or for different phases of the optimisation process.

Aizawa and Wah (1994) focus on minimising the expected estimation error, sampling

from the best individuals in the population and Branke and Schmidt (2003) take

further samples from individuals included in the mating pool which where selected

using a Tournament Selection technique.

After that, the required information that the EA will use is sampled 20 times each

for every factor analysed, to form an initial estimate of the amount of noise. This

number was selected because it was empirically calculated that further samples do

not add new significant information to the set. The factors analysed are the amount

and distribution of the population, prices of rural land and urbanised areas. Based

on the collected samples, the mean and sample standard deviation are calculated.

This process is equal for single and multiple-objective scenarios. The difference

when passing from a single to a multi-objective paradigm is that the amount of data

gathered can be different if there is enough uncertainty involved in any of the new

objectives considered.

Miller and Goldberg (1996) stated that this sampling technique makes the EA

algorithm highly reliable, performing even better without extensive sampling. The

reduced number of samples has a computational advantage compared to other

approaches that require the generation of a much larger number of samples to achieve

good results (Murray and Church, 1995).

4.5.2 Sources of Uncertainty

In this urban scenario, the uncertainties and variabilities arise mainly from the

following sources: (1) multiple choices for transforming rural areas into green parcels;

(2) uncertainty about urban growth evolution; (3) lack of knowledge of the future

total population and its distribution; (4) uncertainty regarding urban and rural land

prices dynamics; (5) land resource availability.

Other works investigate the influence of a non-deterministic budget in the planning
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policy, where the availability of future resources is unknown in advance (Golovin

et al., 2011).

Some factors which actively contribute to the increment of the level of uncertainty

are further described below:

4.5.2.1 Urban Property Prices & Green Areas

By using hedonic prices and contingent analysis techniques, it has been widely

demonstrated and analysed in the literature that green spaces exert a direct positive

influence on the prices of the surrounding residences (Tyrväinen and Miettinen, 2000;

Thorsnes, 2002). This aspect is included in the model as the general desire to live

close to one of these areas and it is represented by the agent’s acceptance to pay

more for any of these specific locations. The inclusion of this personal inclination in

the utility function used by the agents causes a significant growth in the demand

of these areas and subsequently in their price. This non-homogeneous population

concentration within the city affects the normal rhythm of urban spatial spread

which is sped up in these areas.

4.5.2.2 Ecological Degradation & Non-Urban Prices

From the perspective of the set of non-urban cells, one of the two main parameters

which involves a high level of uncertainty is the relationship created between the

non-urban price dynamics and the cells’ ecological value. Recalling two stochastic

characteristics of the model, firstly that ecological changes in a specific area of the

lattice influences its neighbourhood, spreading in all directions, (see the behaviour

of the bioValue Algorithm 3.3 on page 111) and secondly that the urban growth

process depicted by the expansion of its boundaries to new peri-urban areas provokes

an ecological degradation of the entire area (see Formula 3.18). As a consequence

of both factors, the ecological value of the open areas declines irrevocably as the

boundaries of the city expand.

Furthermore, this non-deterministic ecological degradation process affects in turn

the prices of non-urban areas. In formula 3.17, that controls the price of these

underdeveloped areas, one of its terms, called Pbase, is a constant factor whose value
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varies if the cell is classified as agricultural or forest. In the model, this classification

is not static, instead it depends on the ecological value of the cell under consideration

that varies through the time.

4.5.2.3 Urban Growth

The underlying process of urbanisation is in nature partially random and mainly

determined by three factors:

• The transition rules of the cells defined within the CA are based mostly on a

set of preselected probabilities. See algorithm 3.2.

• The amount of the new population that wants to settle down in the city which

mainly controls the transformation speed of peri-urban areas into new urban

cells.

• The amount of green areas located within the limits of the city that causes an

attraction effect over the demand of the surrounding areas from new potential

inhabitants in comparison with other possible candidate areas.

However, the relationship created between urban and green areas is bidirectional.

Knowledge of the urbanisation process is crucial for the selection of green areas

because the set of candidate cells to be protected is restricted to the cells that are

underdeveloped and, hence, a cell that is already urbanised cannot be transformed

into a park. The system, subject to this restriction, needs to know the complete

state of the cells in each time step in order to properly select and protect non-urban

cells in advanced.

4.5.2.4 Flows of Population

Another significant characteristic of the model is that the city is a non-closed-system.

This means that there is an external flow of new population coming from migration

as well as new offspring resulting from the current settled population. The dynamics

of these flows and the density of each future neighbourhood are not fixed and easily

137



Chapter 4: Evolutionary Algorithms under Noise and Uncertainty

predictable even if there exists a general preference to live close to the city centre in

line with the Alonso (1964)’s model.

Consequently we are not able to know in advanced the percentage of population

directly affected by a determined location of a new green area and hence, the final

satisfaction achieved by a determined configuration of green spaces.

4.5.3 Model Application

As was seen in Eq. (5.12), page 168, independently of the nature of the planning

(online or offline) or the number of objectives considered, if the satisfaction of the

population is included in the calculation of the fitness, the expected population

distribution needs to be inferred. Considering that it is impossible to know in advance

the future spatial configuration of the population within a city and that such a city

is a system with complex spatial and temporal dynamics (Jacobs, 1961) then, in

order to be able to measure the distance from each agent to the closest green area,

external tools are necessary to incorporate into the EA. These tools will allow to

assess the appropriateness of the defined set of candidate solutions.

To assign values to this uncertain parameter, a Monte Carlo sampling strategy

is adopted to recreate a plausible population distribution that is used to compute

the fitness. This method can be seen as an offline sampling fitness function (Smalley

et al., 2000).

In the model, the fitness sampling is implemented using the generation of a sample

set of equally likely realisations that captures the spatial population dynamics through

time (Rada-Vilela et al., 2014). The source of these realisations is an equivalent

version of the same model that is statistically similar to the actual site without the

inclusion of green externalities. Excluding this type of externalities implies to remove

possible non-linearities resulted from the relationships created between urban prices

and green areas (Wu and Plantinga, 2003), residential preferences and parks (del

Saz Salazar and Garćıa, 2007) and the ecological degradation and the dynamics of

the non-urban prices, but keeping the general evolution of the urban growth system.

These perturbations are particular to each individual realisation. In this thesis, this
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(a) Lattice with the information used to
calculate the fitness approximation for the
time step 300.

(b) Lattice with the information used to
calculate the fitness approximation for the
time step 600.

Figure 4.3: Representation of two different time-steps of the simulation, where the
amount and distribution of the agents used to construct the approximative fitness
function is visually depicted. The population distribution is represented in a range
of red colours, where darker tones represent, in relative terms, the most crowded
areas of the system and lighter colours unpopulated zones.

simpler version of the urban model will be named a surrogate model and it will only

be used before the optimisation process starts.

Matrices are formed by collecting samples of the values of the probable quan-

tification of the analysed dynamic, in each of the cells of the grid, for every time

step of the simulation. This dynamic will correspond, in the case of the fitness

function, to the position of each agent. Matrices will store the accumulative value

of running the surrogate model n times, along with the number of runs. A single

division will be done when each value is finally used, in order to avoid any loss

of precision in the final value. The value of n will not be less than 20 in order to

properly mimic the richness of the dynamic. A set of 600 matrices, one per time

step are created for each data type required in the problem into consideration as it

is shown in Fig 4.4. Once this information is available, they will be used as inputs

for the different optimisation algorithms. A visual representation of these matrices is

depicted in Fig. 4.3a and 4.3b, where the range of values are normalised and assigned

to a range of colors with similar tonality.
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Figure 4.4: Sources of data collected to support the EA optimisation process in the
urban environment.

As such, the fitness function is estimated for each considered time step by using

the information gathered by Monte Carlo sampling. The noise of each chromosome

X∗ is reduced by calculating the fitness function of individuals which belong to

a similar search space which was previously evaluated in an offline process. This

approach increases the estimation accuracy without the necessity of performing extra

online evaluations.

The same gathering method has been successfully applied in other fields including

dialogue systems (Rieser and Lemon, 2011), in environmental studies (Kennedy

et al., 2006) or emulators for managing uncertainty in complex models, such as

the Multilayer Urban Canocopy Model (MUCM) that simulates the features of the

urban climate (Kondo and Liu, 1998; Crucifix and Rougier, 2009). By means of

such method, these systems are capable of gathering the required data by an offline

sampling mechanism.

Different sources of data are collected to support the EA optimisation process,

see Fig. 4.4. These data can be divided into two groups according to the role they

play within the urban model. They can serve as a constraint when the rural area

is selected or be involved in the calculation of the fitness. In the single objective

version of the model, two sources of data, the prices of the non-urban areas and how

the urbanisation spreads over the grid, are constraints and the population density
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and its distribution are used in the calculation of the fitness. In a multi-objective

version of the framework, additional factors could be included in the calculation of

the fitness to cover other aspects of the optimisation process such as environmental

values that assess the ecological richness of a given patch of land.

The design an nature of the optimisation algorithm determine the amount of

data needed. As already mentioned, in the discrete model studied in this work

the selection of green locations is performed sequentially in each time-step which is

economically limited by the current budget of aggregate nature, and the configuration

of the lattice in the precise moment the decision is made. These restrictive factors do

not include information regarding the satisfaction achieved by the population. If only

the current needs of the population should be taken into account, the information

related to satisfaction can be collected in the same way as the constraints. However,

if future long-term conditions are taken into account to develop present policies, a

different approach should be followed.

4.5.4 Significance of Results

To test the appropriateness of the method, the collected population distribution was

compared with the data gathered from an instantiation of the model used for testing.

The collection of the test data is performed at the end of the simulation, once the

optimisation terminated, using the same module responsible for testing the offline

policy and checking the feasibility of the policy. The concept behind this is to use

this instantiation of the testing model as a ‘real’ data, that is the real outcome that

happens when the green policy is in use. The final results generated in this ‘real’

execution depend on both, the intrinsic effect of random noise (introduced in 4.2)

and the values of the parameters involved in the study. The significance of the results

will be calculated using the distribution gathered from the Monte Carlo sampling

and the same distribution generated by the ‘real’ outcome.

In order to calculate the degree of similarity between these two distributions, cor-

relation analysis was used. By means of canonical correlation techniques, it is possible

to estimate a symmetric measurement of the congruence of two matrices (Ramsay
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et al., 1984). A canonical study implies the analysis of variables that are not directly

observed but that represent the ones that are directly observed. In this concrete

case, Pearson’s linear correlation matrix is selected to measure the strength of the

association between the two matrices: the Monte Carlo pregenerated matrix M ′ with

the matrix composed by the ‘real’ population distribution M .

Since the goal of the problem is to study the system during a period of time,

instead of having two matrices corresponding to the values of these two distributions,

the problem is represented by a series of matrices, one per time step. Then, the

first step in the calculation will transform this set of matrices into a single matrix,

combining all of them within a unique data structure. The result is two matrices,

one with the sampling data an another with the ‘real’ data, both with dimensions

600× 2500, resulting from vectorising the grid of (50× 50) values that represents

the population within the city in each time step. T = 600 is the time horizon

considered and each column will store the value of a cell of the lattice in the time

step represented by its row. Every value of M and M ′ is based on averages of 20

different observations (simulation runs) for each time step considered. The resulting

correlation matrix calculated from the real population distribution (M) and the

simulated sampling distribution (M ′) is 0.7634. Fig. 4.5 shows a visual representation

of the data, where the values of the two distributions are plotted along two axes.

This value shows a strong correlation between both sources of data. To validate

this conclusion, the matrix of p-values for testing the hypothesis of no correlation

between both matrices was calculated. P-values is a statistical method of testing

hypothesis, measuring the strength of the association between the two matrices.

In this case, the p-value is equal to 0.0000, which means that it can be concluded

that the assumption that the correlation is due to chance can be rejected. Conse-

quently, the use of the approximate fitness function within the EA algorithm makes

the final results reasonably reliable in comparison with real fitness evaluations, if the

system is supported by a robust and consistent urban model. It is also concluded in

other comparable studies that an evolutionary method performs even better without

extensive sampling (Miller and Goldberg, 1996; Vallejo et al., 2013). The reduced
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number of samples is a computational advantage compared to other approaches

that require the generation of a much larger number of samples to achieve good

results (Murray and Church, 1995).

Since our noisy fitness function uses sources of information generated by Monte

Carlo sampling, the fitness function can be seen as a type of sampling fitness

function (Smalley et al., 2000) even if this sampling procedure is done offline.
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Figure 4.5: The four scatterplot figures shown here is a bi-variable representation
of the data gathered in the model. The sampling and real distribution are plotted
one against the other for four time steps of the system (150, 300, 450, 600). X-axis
represents the ‘real’ data and Y-axis the one gathered by Monte Carlo sampling. A
range of colour gradients represents the position of the point in the grid. The darkest
blue corresponds to the cell(1,1) and lighter yellow the cell(600,600).

4.6 Conclusions

In this chapter, we have looked at a subset of difficulties that EA techniques may

face when they are used in real-world problems with noise and epistemic uncertainty.
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Different kinds of uncertainty were described, along with approaches that have been

used to handle them in the optimization literature, considering both single and

multiple objective optimization. Afterwards, we returned to the central optimization

problems addressed in this thesis, and discussed them with a focus on the sources

and types of uncertainty inherent in them. We then introduced and discussed the

method designed in this thesis to enable the optimization methods to cope effectively

despite these uncertainties. In short, this is done by means of Monte Carlo sampling

used to inform a model of the agent-based system, which is able to deliver efficient

information about the future consequences of planning decisions.

In the next two chapters, the proposed optimisation method is applied, using

the techniques discussed here, to a typical urban growth simulation, in which the

overall goal is to find policies that maximise the ‘satisfaction’ of the residents. The

strategy is applied to the problem with different configurations of the EA. In its

single-objective version, an offline EA methodology is applied within a set of different

scenarios where multiple levels of complexity are considered. This is followed by the

application of the same techniques cast into a more efficient ‘online’ approach, where

a series of optimizations each makes a single planning decision.
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Optimisation of green spaces

allocation

5.1 Introduction

One of the most common themes in the field of urban planning is to study the

dynamics involved in urban growth, which is linked with the relative distribution of

urbanised areas, industrial facilities and green spaces. The final configuration of an

urban environment, and how that depends on the broad strategies put in place for

managing the evolution of different types of land-use, have a significant impact on

quality-of-life issues (Robinson et al., 2012).

One of these key land-use types is urban green spaces. Green spaces play a crucial

role in the provision of healthy environments in densely populated areas (Groenewegen

et al., 2006). In this regard, one of the most urgent research issues within the field

of urban sustainability is the study of mechanisms that can mitigate the ecological

degradation that is linked with modern urban expansion, a phenomenon called urban

sprawl (Mills, 1981), while at the same time ensuring a proper level of provision for

the city’s population. To meet the population’s present and future needs, public direct

land acquisition is one possible tool that can be used (Acharya, 1987; Heimbürger,

1976).

However, this land acquisition process is far more complex than, for example,
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arbitrarily choosing a random number of patches of land to be transformed into green

areas. Planners must consider a variety of things that tend to significantly restrict

the space of possible acquisitions. Among these are: influential stakeholders who may

have conflicting goals, limited budgets and other external factors that may narrow the

possible set of options. In some cases, due to the intrinsic level of complexity of these

decisions, experts may delegate their spatial assignment choices to computational

models, which can be tasked with applying exact optimisation techniques in order

to find the optimal distribution of facilities. However, in real-world situations, the

complexity and the high computational time that such an exhaustive search could

entail, will typically mean that these methods cannot be used at all. Hence, normally,

other types of optimisation strategies such as metaheuristics are used instead.

Another factor that complicates the allocation process is the uncertainty linked

with long-term plans. In this regard, when a sequential set of decisions has to be taken

in advance with no information about the state of the environment at these times,

restrictive conditions and unexpected dynamics can easily arise. Comprehensive

long-term plans need to be designed under a handleable range of unpredictable future

scenarios (Rounsevell and Metzger, 2010). The crucial issue here is how to figure out

which are the most likely scenarios.

In this chapter we address the problem of solving dynamically a sequential decision

making process in which new financial resources become available over time and where

decisions depend on choices taken previously and on most probable future conditions.

Concretely, we apply an evolutionary algorithm to solve this problem, analysing how

the level of complexity of the selected configuration of the urban area can affect the

performance of the final solutions, and how, under certain circumstances, a simple

greedy heuristic can find an optimal solution more easily than the proposed more

elaborate method.

5.2 Problem Definition

The general objective of the problem consists of designing an offline planning process

which leads us to find the optimal subset of green spaces out of a set V = {1...n}
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of locations along with the corresponding time schedule of each of the purchase

decisions. The offline nature of the selected planning approach means that the policy

construction step will be done entirely before the plan is executed.

Each element within the set of different purchasing plans P includes a set of

parcels of land T ⊂ V located within a given geographic area close to or within a

city, that are intended to be acquired for conservation and/or social purposes. For

the sake of simplicity each patch of land has a homogeneous size and shape. Each of

them is considered an independent unit and no clustering techniques to group them

are implemented in the model. We also assume that once an open area is selected

and transformed into a park, it remains protected from urbanisation until the end of

the planning horizon.

Formally a certain purchasing plan p ∈ P is depicted by a set of parcels of land

τ ∈ T and a purchase schedule ψ ∈ Ψ which can be defined as a mapping from the

parcels contained in T to a series of purchase times in ψ = {0, 1, · · · , H}, where H

is the maximum time horizon considered in the plan.

Commonly each candidate patch of land τi has associated with it its own cost

ct(τi) which covers the acquisition and the restoring/transforming process from a

rural patch of land into a green space. This cost is calculated at time t, which is the

moment when the area is purchased, and it is defined for this specific problem as a

monetary cost. The value of this cost, which is always strictly positive, is not static

and could vary over time. After that step, no further maintenance costs over the

area are considered. Under these circumstances, every purchase schedule included

in Ψ is linked with a corresponding non-decreasing cost function CΨ for the entire

conservation plan. This 2-tuple (Ψ, CΨ) describes the purchase history in relation to

the accumulated cost of the land in such a way that:

CΨ(H) =
H∑
t=0

ct(τ) (5.1)

where t0 is the starting point in time in which acquisitions can be done and H is

the maximum time covered in the planning process. Since budgets that can cope with

single purchasing transactions involving large extensions of land are normally rather
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unlikely in real-world scenarios, to afford these purchasing investments, financial

resources in terms of individual budgets bi ∈ B are available periodically. As a

result, the acquisition process is restricted by this financial constraint that has to be

respected always by the total cost.

In summary, the goal of an individual static acquisition problem is to select an

optimal plan p̂, while at the same time respecting the budget constraint on the total

cost CΨ(H). This could formally be expressed as:

p̂ = arg max
p∈P

{F(pi), CΨ(H) 6 B} (5.2)

where arg max are the arguments of the maxima. These comprise the points of

the domain of P at which the function F is maximized. Since a plan is comprised by

a schedule and a subset of cells, the final goal can be also defined as the finding of a

schedule ψ ∈ Ψ and a subset of green areas τ ∈ T ⊆ V that effectively use the budget

b ∈ B in order to maximise a predefined objective function F which assesses the

utility of the corresponding plan. This function F quantifies how well the pursued

goal is accomplished at the end of the prediction horizon H.

From the perspective of provision of green services, this function can be aimed at

solving a covering problem, also called Maximum Service Distance (MSD) (Toregas

et al., 1971), where a set of elements needs to be covered with a minimum number of

subsets, subject to some constraints. An element is considered covered if it is located

within a specified distance from one of these subsets. In this regard, a given scenario

can be configured by the set of facilities of a certain type, specifically: green areas

located at a given distance from a central point. This central location is represented

in this case by the CBD that attracts most of the dwellers, since typically in an urban

scenario population decays with distance. The final goal consists of maximising the

number of inhabitants who are located relatively close to this type of service, in this

case green areas.

Regarding the level of complexity of this type of problem, it can be shown

through a reduction of the Maximum-k Covering Problem (MCP) (Ageev and

Sviridenko, 1999), that even for a unique time step of the problem, selecting the
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set of patches of land that maximise the acquisition probability of the policy is an

NP-hard optimisation problem (Krause et al., 2014).

Furthermore, the consideration of a single optimisation step can hardly accomplish

the final long-time objectives of such plans, the problem should be formulated instead

by a sequential set of the previously defined static problems. The management of

the financial resources between time steps can be defined in a way that the unused

budget assigned in a given time step t− 1, denoted by br, is added over the following

period t to the corresponding budget b0 as:

b(t) = b0(t) + br(t− 1) (5.3)

where b(t) is the absolute amount of resources available for time step t, b0(t) is

the new financial quantity added to the same time step t and finally br(t− 1) are the

remain resources that were not spent in the previous time step t− 1 and accumulate

for t.

Apart from that, since land acquisition costs may change over time and addi-

tionally urban dynamics could transform areas in the fringe of the city into new

developments, which made them inappropriate to be included within any acquisition

plan, different patches of land can be available in each time step t. Consequently

this problem cannot be solved statically in advance without basing the new decisions

on previous actions and the forecast of future tendencies.

Under these circumstances, let Pt ⊆ V be the set of patches of land that is

available to be purchased in a given time step t. For each new time step t, the

amount of available resources both new b0(t) and old br(t− 1), the cost dynamics

and the amount of non-urbanised areas refine the set P for time t, taking also into

account the areas already selected, in such a way that Pt = Tt′−1 ∩ V .
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5.3 Greedy Techniques

5.3.1 Adaptive Submodularity

One way of characterising different optimisation techniques is by the level of com-

plexity of the problems that they can deal with. This level is directly linked with the

performance of the algorithms and the amount of computational resources required

to tackle them.

Previous studies focused on solving a simple static MCP problem concluded

that when the problem is solved by simple greedy techniques, most of the time

these techniques are able to find the optimum for a two element set (Cornuejols

et al., 1980) and that approximate greedy algorithms can solve it within a factor of

1− (1− 1
p
)p (Cornuejols et al., 1977) where p is the maximum size of the subsets.

However, when instead of aiming at a simple static MCP problem, the planning

of a set of non-static MCP problems is considered, the complexity of the problem,

which could be defined as a SDMP, considerably increases and previous conclusions

must be revisited. Golovin et al. (2011) conclude that, under some natural conditions,

a policy generated by the application of a simple greedy algorithm that searches

for an opportunistic location of a facility subject to a budget which is given in the

current moment, achieves a performance that can compete with the use of other

more intelligent heuristics. These heuristics take into account future trends in the

environment like the availability of the land.

These conditions are met when the function is adaptive submodular. Submodu-

larity is a property which assigns each subset S ⊆ V a value F(S). V in this case

is a finite set of the possible locations for a green area and F(S) is the function

which retrieves the utility achieved when the location S is transformed into a park.

Assuming that F(∅) = 0, which means that no value is generated in areas without a

park, these kinds of functions have a natural diminishing returns property, so that

for each subset A,B ⊆ V the following inequality is held:

F(A ∩B) + F(A ∪B) ≤ F(A) + F(B) (5.4)
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From the previous formula it can be inferred that when spatial overlapping occurs

among the areas covered by A and B, there is less gain in the final utility function F.

Fig. 5.1 illustrates this effect. A type of submodular function is considered monotone

if an augmentation of the number of subsets, does not provoke a drop of the utility

function. This can be formally expressed as:

∀A ⊆ B ⊆ V, F(A) ≤ F(B) (5.5)

For this specific covering problem it is not possible that the transformation of a

parcel of land into a new park could provoke a drop in the level of provision of green

services in the surrounding area, independently of the number of parks that already

exist in the area. Due to that assumption, such location problems are considered to

be monotone submodular (Frieze, 1974).

(a) Illustration of the areas of influ-
ence of three parks (S1, S2, S3) lo-
cated in the same city. These areas
are strictly disjoint. Consequently no
overlap zones are formed from their
union. The final utility function will
be the result of adding each of the
individual utilities separately.

(b) In this case a new green area S′

is located among the previous parks
S1, S2 and S3. This concrete place-
ment of S′ will include several areas
in which the influence of S′ partially
includes others covered from previ-
ous selections. These common areas,
as they already serve the inhabitants
living within them, do not add new
utility to the policy, limiting the con-
tribution of the new green area S′.
This is an example of a diminishing
return effect.

Figure 5.1: Visual representation of the diminishing return function that is linked
with the concept of submodularity. In the example it is shown that posterior selections
cannot achieve better utility but the same or lower in certain cases.

Submodular functions characterise a broad range of applications including weighted

coverage functions, mutual information and facility location among others. Numerous

works, aimed at minimising these functions, exist as a result of the amount of areas
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where this type of function can be applied (Fujishige, 2005). For instance, specialised

Branch & Bound algorithms with limited scalability were suggested (Nemhauser and

Wolsey, 1981; Goldengorin et al., 1999). However, all of them are limited by the com-

plexity of the problem which, in most cases, belongs to the NP-hard category. This

is the case for the weighted coverage (Feige, 1998) and mutual information (Krause

and Guestrin, 2012).

Despite this level of hardness, (Nemhauser and Wolsey, 1978) were able to design

an intelligent greedy algorithm which achieves good approximations to optimal

solutions for several classes of submodular functions. Their approach is not only

capable of dealing with a NP-hard complexity, but also competing at the same level

as the best results provided by other much more intelligent approaches.

From this point onwards, the concept of adaptive submodularity of Golovin is a

generalisation of the classical notion of submodularity for sequential decision making

problems under uncertainty where the system is capable of taking into account

information from the environment after selecting each element.

Apart from the complex nature of this kind of problem, uncertainty entails that

the state of the system is only partially revealed. Due to that and the common

presence of varied types of constraints, further difficulty for the optimisation process

is added. However, according to Golovin, this structural property ensures robust

performance for greedy approximation approaches when dealing with these SDMPs.

For simple problems, greedy algorithms are very efficient optimisation strategies

compared with other more intelligent approaches, due to their limited amount of

resources required to apply them. However, in order to solve NP-hard problems

these techniques generally require exponential time and subsequently they generate

very poor results. Golovin demonstrates that, in the cases in which two conditions

are met, a simple brute force strategy can be competitive with the optimal policy.

These two conditions are adaptive monotonicity and adaptive submodularity. As

previously mentioned, monotonicity is the non-negative nature of the benefit of any

action and submodularity is based on the idea that the benefit of any action can

never be higher if the action is chosen later in time due to its diminishing returns
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property. The law of diminishing returns in economics says that, if all productive

processes are held constant except one, adding more of this factor will at some point

yield to lower marginal output of the production process (Knight, 1944). In the same

way, let a policy be composed of a series of locations selected in a period of time,

if all the selected locations are kept constant except one, which will be added later

on to the policy, the final result of this modified policy will never be better than

the original one. This is a consequence of a problem that can be characterised as

adaptive submodular.

Since in the previous definition of the problem both conditions are met, then

an intelligent greedy algorithm that searches for maximising the current utility can

compete with other advanced approaches like our evolutionary algorithm. This

happens not only in terms of objective values achieved, but also in terms of the

efficiency of the entire process. In this chapter, it is shown different configurations of

the urban problem when this condition is possible to be met.

5.3.2 Model Complexity

The problem could also be analysed from a more abstract point of view, focusing on

the inner complexity of the planning problem. This complexity can be derived from

different factors. One of these sources is the representation ability of the selected

urban model. In this case the model is used to develop the different dynamics that

interact within it including population distribution, urban spatial growing patterns

and different land-use prices. From this perspective Wheaton (1979) and Berry and

Kim (1993) stated that the simplicity of Alonso’s model directly affects the nature

of the search space and may condition the optimisation process.

EA techniques, compared to other methods, have been shown to be especially suit-

able for large and complex (nonconvex and nonlinear) search spaces with a very large

number of parameters (Aerts and Heuvelink, 2002) and, within a simple environment

configuration, EA may not be able to use all its potential. Subsequently other less

sophisticated optimisation methods can outperform it in terms of performance since

EA achieves better results as the complexity of the planning problem grows. This
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was one of the conclusions drawn by Pukkala and Kurttila (2005) from comparing six

different heuristics for forest planning problems when spatial objectives are included

in the model. Spatial objectives require that the optimisation process has to deal

with physical locations of the facilities to allocate them. Pukkala and Kurttila (2005)

also reported the slow nature of the EA strategy. In this regard, Palah́ı et al. (2004)

added that EA is not good for simple location problems.

From this point onwards, this chapter will be focused on studying the comparison

between two adaptive greedy optimisation strategies and an Evolutionary algorithm,

using an urban scenario. In response to the offline nature of the EA approach,

the algorithm has to deal with this problem assuming significant levels of noise

and uncertainty, a complicated objective function and constraints. It is important

to notice that in this chapter, the validity of the model to deal with real-world

scenarios is not the most important element taken into account for the analysis of

the algorithms. Finally, the results show how increasing the level of complexity of

the spatial structure of the urban model and the elements interacting within it, the

EA approach can compete and outperform the most intelligent greedy algorithm.

5.4 Methodology

The methodology followed in this chapter is visually depicted in Fig. 5.2. Green

squares represent the different optimisation strategies, orange items are external

parts which are computed separately and finally blue squares depict different steps of

the planning process according to the varied nature of each strategy (adaptive or non

adaptive). The elements that are surrounded by a rounded rectangle represent steps

of the study where the hypothetical urban model is involved. After the set-up phase

is finished and the statistical data is generated, the workflow is divided into two main

areas: on the right, two adaptive baselines used for comparison purposes and, on the

left, it is located the non-adaptive evolutionary approach. The last confluence box

will gather and compare the final set of policies, resulting from each optimisation

process.

Each of the components represented in this workflow are explained in the following
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subsections.

Figure 5.2: General schema of the components used in this work and how they
interact with each other.

5.4.1 Set-up Phase & Sampling

The workflow that connects the multiple components which encompass the present

optimisation process start with a set-up step where certain variables are initialised.

In this phase, the common characteristics of all the modules included in the system

are defined in such a way that a posterior measurement of the final performance of

the optimisation strategies can be carried out. These are, for each experimental run,

two initial constraints are imposed on all the approaches considered:

• The budget: A stochastic series of monetary incomes, generated in advance

by a uniform random process, is assigned to the municipality in each sequence

of time in order to implement and manage suitable open space policies. The

municipality is the entity in charge of taking the purchasing decisions. The
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principle behind this conception is that since financial resources assigned to

green protection generally are available in increments over time, it is unrealistic

to be able to purchase a large set of parcels at once.

• The ecological scenario: The initial ecological configuration of the lattice is

defined by a random generation process where an individual value is assigned

to each cell of the lattice. These values represent the ecological richness of the

area under consideration. An illustration of a final ecological configuration is

shown in Figure 3.14.

Both factors affect the land purchase dynamics, the first one limiting the location

and amount of parcels of land that the system is able to acquire in each time step,

and the second one influencing rural land types. In this regard, the ecological value

of a given patch of land defines its configuration as an agricultural or forest land

type. Furthermore, the nature of the prices for each of these types is significantly

different.

Finally the statistical data gathered for sampling are also generated, as was

explained in the previous chapter, see Sec. 4.5.1 on page 135. The information

includes which cells are urbanised and when, prices of the urban cells for the entire

duration of the simulation and the population dynamics, which include the density

of each urban cell for the same period of time. These different sets of data are used

to aid the EA algorithm to deal with the noise and uncertainty resulting from its

offline nature and also to calculate the fitness of each solution.

5.4.2 Evolutionary Algorithm Definition

In this work, an EA approach is used to find a time series of cells to be transformed

into parks during a concrete period of time. The optimisation process is highly

constrained by geographical and economical circumstances and it should be adapted

to work with high levels of uncertainty derived from the unknown future.

To deal with this uncertainty, the system retrieves offline statistical data collected

by the same urban simulation which is used as a surrogate model (Vallejo et al.,

2013). These different sets of data, gathered from the beginning to the end of the
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period considered in the planning process include information about: (1) parcel

availability, (2) non-urban land prices and (3) population distribution dynamics.

Green parcel availability is restricted by the non-deterministic urban dynamics of

the city, the evolution of the non-urban prices and the quantity and distribution of

the population which is ruled by a utility function that depends on other factors of

the model. A formal description of the utility function is depicted in formula 3.4.

These elements are used to measure the final satisfaction of the population.

The algorithm starts with the random generation of an initial population of

potential solutions, each referred to as a ‘chromosome’. Each individual solution

stores the information needed for encoding a complete problem solution. The initial

population has to homogeneously cover the search space of solutions and ensure

enough diversity to successfully allow its future exploration. A lack of diversity at

this stage may cause stagnation and premature convergence (Eshelman and Schaffer,

1991; Goldberg, 1989). However, in the present case, a relatively small population

size was selected, equal to 25, since by empirical experiments we concluded that in our

framework the evolutionary algorithm can guarantee most of the times the reasonably

fast location of a near-optimal solution. Larger configurations only elongate the

optimisation process without providing noticeably better performance.

The structure of the initial population of solutions and its evolution have always

to satisfy some defined constraints in terms of budget and land availability. Green

protection is not allowed in urban areas.

5.4.2.1 Chromosome Encoding

Every individual solution, also called a chromosome cr ∈ Cr is composed by ‘genes’,

each one denoted by β and referred to in this work as an individual selection. They

describe the selected cells to be transformed from rural areas into protected units at

a certain time t. The chromosome structure is visually depicted in Fig. 5.3 and can

be formally expressed as follows:

cr = [β0, β1, ..., βT−1] (5.6)
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where T = 600 is the number of time slots defined in the simulation, in which the

algorithm has the opportunity to perform a purchase if it is considered appropriate.

Due to the theoretical nature of the model, an individual time unit in the simulation

is not equivalent to a real period of time. A given βt represents the selection of rural

cells to be protected at a certain time t (see Figure 5.3). This, in turn can be defined

as follows:

βt =
{

[c(x1,y1), c(x2,y2), ..., c(xm,ym)], bt
}

(5.7)

where c ⊂ C is the subset of [0,m] cells selected for protection by the municipality

agent at time t. Each cell ci is spatially located in a different pair of coordinates

(x, y) to be transformed into a park in turn t. m, which denotes the amount of

cells protected in this turn, is bounded by the maximum budget available for this

time step t. The system will try to buy cells as long as the budget is high enough

to allow new acquisitions. In the equation, bt denotes the remaining budget that

was not spent in time t and it accumulates for the next selection βt+1. The budget

bd ∈ B is generated in advance by a uniform random process taking values in fixed

intervals and it is shared by all the optimisation strategies. In each time step bt can

be calculated as:

bt = bdt −
m∑
i=0

price(ci)t + bt−1 (5.8)

where price is the function that calculates how much a single non-urbanised cell

ci costs according to the formula 3.17 for time t, m is the number of cells protected

in this time step and bt−1 is the remaining budget from the previous period.

This chromosome representation is order-dependent, with the total number of

possible facilities to be protected not fixed in advance. Because of some of the

selections could be empty, this implies that chromosomes could also be considered of

variable length. However, for simplification purposes they are treated as regular.

The current encoding system allows the existence of redundant individuals within

the population, which could potentially lead to a lack of diversity during the evolu-

tionary process. Additionally, the encoding process is strongly dependant on the set
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of selected slots of time where purchases are carried out. These time steps are chosen

in the initialisation of each individual solution at the beginning of the optimisation by

a random process subject to the budget constraint. The mutation operator will only

search for better acquisition areas at these times and no exploration of purchasing

opportunities during a different subset of time-steps is done within the EA algorithm.

Figure 5.3: Visual representation of the three-layer chromosome encoding used in
this approach. The first layer coloured in grey represents a given time-slot defined by
its intrinsic order. Afterwards, the set of cells planned to be acquired are depicted in
pink circles. Finally the available spare budget that remains after the purchases are
done within this time step is shown in blue squares.

Under the current encoding system, the generation of solutions and their evolution

always ensures the feasibility of the entire population during policy construction.

However, when this policy is tested afterwards, it is possible that unforeseen circum-

stances arose. Some of the land selections can be infeasible due to a wrong perception

of the budget or the urban dynamics of the city when the policy is executed. In this

case, the set of feasible solutions F is a subset of the possible solutions generated by

the algorithm that satisfies the problem constraints.

The testing of the feasibility of the solutions is not done at the level of the

individual encoding directly. Instead, a list of forbidden locations is used to avoid

protecting a cell twice. Another possible approach for this problem would be to

encode the entire lattice (a matrix of 50 × 50 positions) for each individual and

indicate the moment at which the cells are protected. This method would avoid the

necessity of having external data structures to store the additional information and

would save the time of checking that a given location is used or not. The drawback

of this approach would be the storage required to keep the entire population of

solutions in memory during the evolution process.
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Redundancy in the population of solutions is a factor not taken into account

during the optimisation process. Then, the system allows the evolution in parallel of

identical solutions.

5.4.2.2 Scheme Selection

The selection operator emphasises good solutions to the detriment of weaker alterna-

tives by the implementation of an elitism mechanism. Elitism in an EA context, is

a mechanism that ensures that the best-so-far individuals survive from generation

to generation. For selection purposes it was used Tournament Selection, which

has shown to lead to good performance, despite its simplicity, and it is frequently

used (Nicklow et al., 2009). Tournament size was set to 4, which means that the

method selects a parent from the population by first choosing four chromosomes

uniformly at random, and selecting the best of those four, breaking ties randomly.

5.4.2.3 Mutation Process

An elitist mutation operator which modifies a single selection is used to find new

points in the search space. The implemented mutation method randomly selects

one non-empty selection βi and searches for a set of cells that improves the fitness

with respect to the same selection i in the parent. Selecting any of the cells already

included in the entire policy is not allowed.

Let βi be the selection i picked to be mutated in time t from the parent cr, then

β
′
t will be the new selection to substitute for βt if the following conditions are met:

f(β
′
)t > f(β)t

β
′ 6∈ ∗

cr

PR(β
′
)t 6 PR(β)t

(5.9)

where f defines the fitness function which assesses the adequacy of the selected

cells included in a single selection β at time t,
∗
cr is the chromosome which represents

a copy of the current parent solution c′r and PR is the total rural price of the patches
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of land included in a given selection at time t.

These conditions can be interpreted as follows: only if the new selection of cells β
′

is strictly disjoint from the cells already selected within the entire policy, achieving

at the same time higher satisfaction without violating the affordability terms, then

the change is accepted and hence the mutation is successful.

Due to the plateau nature of the search space, the optimisation algorithm en-

counters significant difficulty when trying to improve the policy between generations.

To overcome this, the algorithm boosts the appearance of successful changes within

the evolutionary process by performing 1000 attempts in each generation to find an

improved mutation, which can be seen as a system which implements two stages of

evolution.

Apart from those conditions, there is another factor that complicates the conse-

quences of the mutation procedure. The time-dependent nature of the budget further

constrains the price requirements for the new selection. As previously mentioned,

the amount of resources assigned to each slot of time t is made up of the correspond-

ing budget for this time slot plus the remaining resources resulting from previous

purchases. Then, since the part of the budget that the selection βt has not spent

in time t is accumulated for time t+ 1, it could easily happen that any of the next

non-empty selection from βt+1 to βT uses these extra resources for its own purchase.

If the mutated selection β
′

uses more resources than β, then future infeasibilities can

occur when the next acquisitions are carried out, invalidating some of the future

purchases when the policy is finally executed. If the number of generations that the

algorithm uses to evolve its population is large, this effect can easily spread which can

provoke numerous rejections when finally the policy is implemented. Other reported

approaches eliminate the consequences of this aggregate behaviour by discarding the

budget that was not spent in each time slot (Golovin et al., 2011).

A successful mutation should also meet other constraints:

• Cells cannot be selected twice or more for the same individual solution.

• The remaining budget should be always positive. Debts are not permitted.
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• Cells being considered for protection cannot have the state of urbanised or be

in the process of changing to that state.

• A gene mutation, over a specific selection, should not modify the rest of the

genes.

The existence of infeasibilities at the level of single selections when the policy

is designed, on the other hand, could be positive at policy execution time under

certain circumstances. The algorithm includes a parameter which may slightly relax

these budget constraints in the mutation process. It was empirically proven that this

mechanism may boost the final performance of the algorithm by incrementing the

final number of protected cells and compensating for the ones that are finally rejected

by failing to foresee the urbanisation dynamics. In the execution of the policy, a

cell can be rejected due to two factors: a lack of budget or when the objective cell

has been already urbanised. The algorithm includes a parameter which may slightly

relax the budget constraints in the mutation process, introducing a reduced number

of infeasibilities. In the case of an urbanisation failure, the resources assigned to the

purchase will not be used and can be invested in some extra cells selected by this

mutation mechanism.

The pseudocode of the implementation of the mutator operator is depicted in

Algorithm 5.1.

In the algorithm, tick represents the random time step selected to be mutated.

newBudget is a local variable used to calculate the funds available to be spent in

the cells selected by the new mutate individual. remainBudget and budget are the

funds coming from previous and current time step respectively. sel represents the

new mutated selection candidate to be included in the policy. newFitness is the

fitness of the new selection sel and formerFitness the fitness of the parent. changed

is a boolean variable triggered when a successful selection is found, newPrice is the

total price of the cells chosen by sel. Finally, counter is a variable that sums up the

amount of unsuccessful mutations and MAX ATTEMPS the maximum number of

attempts that the system allows, which is equal to 1000.

To study the complexity of the mutation operator requires also to analyse other

162



Chapter 5: Optimisation of green spaces allocation

Algorithm 5.1 EA Mutation

Require: tick, formerFitness, remainBudget, budget
1: global variables
2: MAX ATTEMPS
3: end global variables
4: local variables
5: newBudget
6: changed
7: newPrice
8: counter
9: newFitness

10: sel
11: end local variables
12: procedure mutate
13: newBudget = 0;
14: do . Select randomly a tick to mutate
15: tick = this.selections.get(new Random()).getTick();
16: if tick!=0 then
17: newBudget = remainBudget[tick -1];
18: else
19: newBudget += budget[tick] - remainBudget[tick];
20: end if
21: sel = new Selection(tick, newBudget); . if there are cells in the selection
22: if sel.getCells().size()!=0 then
23: newFitness = sel.calculateFitness();
24: double formerFitness = this.selections.get(index).getFitness();
25: if newFitness > formerFitness then
26: changed = true;
27: newPrice = 0;
28: for Cell c: sel.getCells() do
29: newPrice += c.getPrice();
30: end for . Delete previous selections from the forbidden list
31: for Cell c: this.selections.get(tick).getCells() do
32: deleteForbidden(c.getX(), c.getY());
33: end for
34: selections.set(index, sel);
35: remainBudget[tick] = newBudget - newPrice;
36: else
37: counter++;
38: end if
39: else
40: counter++;
41: end if
42: while !changed && counter < MAX ATTEMPS
43: if counter < MAX ATTEMPS then
44: return true;
45: else
46: return false;
47: end if
48: end procedure
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methods and functions that this code uses in each execution call. There are two

functions that require further analysis: selection constructor has a loop that can be

repeated a maximum of 100 times and the function createCell() another 40 times.

Then, according to this information, in the best case the time complexity of the

algorithm is O(1) and in the worst case O(nm), where n = 1000 and m = 140.

5.4.2.4 Crossover Operator

In the present implementation, the selected structural representation of individuals

introduces difficulties for crossover operations. Firstly, as a rural cell cannot be

protected twice, a feasible crossover needs to ensure that the sets formed by the

cells included into the segments to be integrated in the new chromosome are strictly

disjoint.

This restriction can be manageable to implement. However the time-dependent

nature of the remaining budget also highly constrains the system, as occurred in

the implementation of the mutation operator. To minimise the number of possible

infeasible selections, the following condition should be met. If a pair of parental

chromosomes Cr and C ′r are selected to mate and recombine in such a way that βi is

the binding crossover point and Bi the remaining budget for Cr, and in the same

way, βj and Bj are the corresponding parameters for C ′r, then Bi > Bj.

The high likelihood of joining two incompatible chromosomes leads to difficulties

in easily finding a suitable combination to compose the new offspring. In this

regard, this search of compatible individuals causes an exponential increment in the

computational time of the algorithm. As a conclusion, the crossover operator was

removed from the system, even if this decision could also reduce the time performance

of the algorithm (Jansen and Wegener, 2002).

5.4.2.5 Fitness Function

In the current chapter a single objective is considered. In the model, the fitness is

defined to reflect how close agents’ homes are to green spaces, and involves measuring

the distance from the dwelling of each agent to the closest green area located in the

surroundings. This metric is based on the premise that distance is the factor that
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mainly determines the access and the frequency of use of green areas (Giles-Corti

et al., 2005; Lindhagen, 1996; Woolley, 2003). According to the specific criterion of

Giles-Corti et al. (2005), green areas can be classified into the following groups:

• Access within a short walk (less than 300 metres).

• Access within a long walk (from 300 to 600 metres).

• Access with help of any means of transport (further than 600 metres).

The same study concludes that people do not generally use a green area if it

is located beyond a threshold of 300-400 metres from their residence. Using this

convention, the optimal candidate solution is the chromosome which maximises the

usability of green areas in compliance with the multiple constraints of the system

such as the restricted budget and land availability. Notice that even if the problem

under consideration is considered a covering problem, this concept is not included

specifically in the calculation of the fitness. However, since the definition rewards

the areas closest to the dwelling of the agents, the covering idea is implemented

indirectly.

According to this idea, fitness is formulated as follows: let A be the set of agents

living in the city and G the set of green areas located in the urban area under

consideration, then the fitness value f(ai, gj) at a time t measures the satisfaction

achieved by this concrete agent ai in relation to the green area gj. If ∀a ∈ A and

∀g ∈ G, this value can be formulated as follows:

gj = clo(ai)

ft(ai, gj) =



3 if δ(ai, gj) = 1

2 if δ(ai, gj) = 2

1 if δ(ai, gj) = 3

0 otherwise

(5.10)
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where clo is the function that returns the closest green area gj of a given agent

ai and δ(ai, gj) is the function that calculates the distance from a given agent ai to

gj in the grid using the Manhattan distance metric (Krause, 2012).

Figure 5.4: Visual representation of the type of neighbourhood generated by the
fitness function. Squares represent cells a short distance from a given green area
depicted by a red star. Inside each square is included a quantification of the
contribution of this urban park to the final fitness in the case an agent settles down
in this cell.

Manhattan distance can be computed using the formula z = (xi − xj) + (yi − yj)

and is a metric more suitable for grid-like road networks that tries to mimic restrictive

movements typical of the rectangular pattern of streets (Bow et al., 2004; Shahid

et al., 2009). A visual representation of the neighbourhood generated by the definition

of this fitness function is depicted in figure 5.4. It is important to notice that the

coverage provided by a green area falls off gradually following the behaviour of a

decay function.

From an urban planning perspective, to appropriately assess the suitability of

a planning policy, it is not enough to know how effective the plan is for a given

moment in time. Instead it is necessary to determine its adequacy for the entire

interval covered by the planning procedure. To accomplish this goal, the fitness of

each parcel of land included in each selection βi is measured at a time t∗, when it

is acquired, to the end of the simulation H. Formally this can be represented as
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follows:

F (gj) =
H∑
t=t∗

n∑
i=1

(
ft(ai, gj)

)
(5.11)

where n is the total number of inhabitants in the city at time t and F (gj) is the

fitness of a single green area gj calculated for the entire population of the city for

the period [t∗...H]. Finally if the fitness is collected for the entire set of protected

areas at the end of the planning period H, then:

F(H) =
m∑
k=1

F (gk) (5.12)

where F(H) is the total aggregated fitness of every green area network and m is

the number of green areas planned to be purchased within the policy.

Notice that even if overlapping is not directly penalised in the definition of the

fitness function, since each agent only contributes to the common satisfaction with

the closest green area, the possible rest of parks in the surroundings do not add any

value to the function and, hence overlapping of green areas is indirectly penalised.

The pseudocode of the implementation of the fitness function is described the

following algorithm, see Alg. 5.2.

Algorithm 5.2 Calculation of the Fitness Function (Total Satisfaction)

Require: minGreenDistance, totalSatisfaction
1: int minGreenDistance = Integer.MAX VALUE;
2: int totalSatisfaction = 0;
3: procedure fitnessfunction
4: for each agent a in the grid do
5: minGreenDistance = lattice.distanceTo(a.location, Cell-

State.PROTECTED);
6: if (minGreenDistance > 3 || minGreenDistance==0) then
7: greenSatisfaction = 0;
8: else
9: greenSatisfaction = 4 - minGreenDistance;

10: end if
11: totalSatisfaction += greenSatisfaction();
12: end for
13: return totalSatisfaction;
14: end procedure
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In the code, minGreenDistance is the minimum distance calculated from the

location of each agent a to the closest cell protected and totalSatisfaction accumulates

the satisfaction achieved for the entire population of the grid. The complexity of the

function is O(n), where n is the number of agents in the grid in this time step.

5.4.2.6 Replacement method & Stopping criterion

A steady state replacement method is used to generate the new population in each

generation, where fitter offspring are inserted into the current population, replacing

less profitable parents. The selected stopping criterion is twofold: the algorithm stops

when a maximum number of generations (10,000) is reached or if a certain number of

generations (200) have passed without improvement. The latter value was selected

after observing, in preliminary work, that once this threshold is reached it is unlikely

that further evolution occurs. When the algorithm finishes, the individual solution

with the highest fitness is accepted as the optimum result. The offline approach

always allows the system to run until convergence is reached.

Finally, when the algorithm finishes, the individual solution with the highest

fitness is accepted as the optimum result. At this point this final policy is ready to

be tested. The application of this kind of policy is represented by Fig. 5.5.

5.4.3 Modules work-flow: Baselines

Two adaptive baselines were used to compare the performance of our non-adaptive

evolutionary approach. The first one is called random (RAN), and the second one is

the ‘closest to the CBD’ (CLO) baseline. Notice that comparing adaptive approaches

which are free from the influence of uncertainty and are always fully aware of the

state of the system may be unfair for the non-adaptive strategy. In this regard,

when the offline final plan is applied to the real problem, a reduced percentage of

its candidate cells resulting from the application of the EA approach may easily be

rejected because the area to protect is already urbanised or because the final price

of the cell is higher than expected and unaffordable for the current budget. This

testing phase is not necessary for both of the online baselines.
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Figure 5.5: In this graphical representation of the application of the EA strategy to
the allocation of green spaces, a spatial layout of a city with three CBDs captured at
t = 300 is shown. The urban cores are depicted in yellow (urbanised areas), white
(new areas already transformed to be urbanised but not constructed yet) and red
cells (which show the new areas selected in this turn to be urbanised). Green areas
are modelled in green. Finally the rest of the grey cells are rural areas which are
available for purchasing.

A more detailed description of both baselines is depicted in the following sections:

5.4.3.1 RAN Definition

The first baseline, called RAN, is a simple random approach which searches up to

ten times in each turn t for rural cells to be transformed into green areas. These

cells should hold the following condition: if R is the set of rural cells in the grid at a

time t, then the system searches for a cell r ∈ R, such that:

PRt (r) < bt (5.13)

where PRt (r) is the price of the rural cell r and bt is the available budget at time t.

If in all the ten attempts the searches are unfruitful, no purchase is done at this time
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step and bt is accumulated for turn t+ 1. A visual representation of the application

of this simple policy is depicted in Fig. 5.6.

Figure 5.6: In this graphical representation of the application of the online RAN
baseline to the allocation of green spaces, a spatial layout of a city with three CBDs
captured at t = 300 is shown. The urban cores are depicted in yellow (urbanised
areas), white (new areas already transformed to be urbanised but not constructed
yet) and red cells (which show the new areas selected in this turn to be urbanised).
Green areas are modelled in green. Finally the rest of the grey cells are rural areas
which are available for purchasing.

The pseudocode of the implementation of the ‘RAN’ baseline is described in

Algorithm 5.3.

In the code, currentTick is the current time step of the system, budget[currentTick]

represents the funds assigned beforehand for acquisition, accuBudget[currentTick-1]

are the funds accumulated from the previous time step, both types of funds are

summed up and passed to the searchGreenSpace function as a parameter. The

function returns accuBudget[currentTick], that is the remain budget available for

land purchases at this time step that will be used in the next future acquisition. In the

function searchGreenSpace, selectedCell is the cell selected randomly for protection if

the conditions are acceptable, MAX ATTEMPS is the maximum number of times
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that feasible cells are sought. This constant has a value of 10. Finally, attempts is a

counter of the number of times that the system has searched for a suitable cell so far.

The time complexity of the algorithm is O(n), where n is the number of attempts.

Since the number of attempts is bounded to 10, which corresponds to the worst case,

the time complexity of the algorithm can be approximated to O(1).

Algorithm 5.3 ‘RAN’ Selection of Green Areas

1: global variables
2: MAX ATTEMPS
3: SIZE LATTICE
4: end global variables
5: require currentTick, totalBudget, accuBudget[], budget[]
6: procedure selectGreenAreas(int currentTick)
7: if currentTick==0 then
8: accuBudget[currentTick] = searchGreenSpace(budget[currentTick]);
9: else

10: totalBudget = budget[currentTick] + accuBudget[currentTick-1];
11: accuBudget[currentTick] = searchGreenSpaceS(totalBudget);
12: end if
13: end procedure
14: require restBudget, coordX, coordY, selectedCell, attempts
15: procedure searchGreenSpace(int restBudget)
16: int attempts = MAX ATTEMPS;
17: randnum.setSeed(System.currentTimeMillis());
18: while attempts > 0 do
19: coordX = 1 + (Rand.nextInt(SIZE LATTICE - 1));
20: coordY = 1 + (Rand.nextInt(SIZE LATTICE - 1));
21: selectedCell = GreenArea.getCell(coordX, coordY);
22: if selectedCell ! = null then
23: if selectedCell.isEmpty() &&
24: selectedCell.getPrice() < restBudget then
25: restBudget -= selectedCell.getPrice();
26: selectedCell.setState(CellState.PROTECTED);
27: attempts = MAX ATTEMPS;
28: else
29: attempts–;
30: end if
31: else
32: attempts–;
33: end if
34: end while
35: return restBudget;
36: end procedure
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5.4.3.2 CLO Definition

The selection of cells in the second baseline called CLO is only permitted within the

peri-urban area of the city. The philosophy behind this approach comes from the

assumption that it is often unnecessary to purchase parcels that are spatially remote

from the current population until the city has spread enough to make them relevant.

Following this idea, the system retrieves the latest cell urbanised, called l. If N(l) is

the set of cells that belongs to the neighbourhood of l and R is the set of rural cells

in the grid at time t, then the system selects randomly a cell c ∈ (N ∧R) such that:

PRt (c) < bt (5.14)

where PRt (c) and bt are the price of the cell c and the available budget at time t.

If none of the neighbours is suitable for protection due to the current constraints,

then the budget bt is accumulated for the next turn t + 1. Fig. 5.7 represents a

possible development of this policy within a city.

The pseudocode of the implementation of the ‘CLO’ baseline is depicted in the

algorithm 5.4:

In the code, currentTick is the current time step of the system, budget[currentTick]

represents the funds assigned beforehand for acquisition, accuBudget[currentTick-1]

are the funds accumulated from the previous time step. restBudget is the remain

budget available to search for the next available cell and isFound is a boolean value

that is triggered if the algorithm is able to find a suitable cell.

In this case, the time complexity of the algorithm is O(n), where n is the number

of cells that belong to the neighbourhood of the cell that was most recently urbanised.

Since according to the definition of the neighbourhood structure, the maximum

number of cells in a neighbourhood is 8, then the time complexity of the function

could be approximated to O(1).
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Algorithm 5.4 ‘CLO’ Selection of Green Areas

1: require currentTick, totalBudget, accuBudget[], budget[];
2: procedure selectGreenAreas(int currentTick)
3: if currentTick==0 then
4: accuBudget[currentTick] = searchGreenSpace(budget[currentTick]);
5: else
6: totalBudget = budget[currentTick] + accuBudget[currentTick-1];
7: accuBudget[currentTick] = searchGreenSpaceS(totalBudget);
8: end if
9: end procedure

10: require restBudget, isFound
11: procedure searchGreenSpace(int restBudget)
12: boolean isFound = false;
13: for Cell c in getLastUrbanised().getNeighbours() do
14: if !isFound then
15: if c.isEmpty() && c.getPrice() < restBudget then
16: isFound= true;
17: restBudget -= c.getPrice();
18: c.setState(CellState.PROTECTED);
19: end if
20: end if
21: end for
22: return restBudget;
23: end procedure

5.5 Experiments & Computational Results

In this section the implications of the model, when different strategies are applied,

are explored analytically. The methods selected for this analysis are an offline EA

algorithm and the two baselines presented previously: ‘RAN’ and ‘CLO’. For each

of them, the search of an efficient policy constructor is carried out according to its

implemented strategy.

The first inspection of the generated data was aimed at exploring the topological

arrangement of the protected cells generated for each of the approaches. The different

set of land-uses were plotted, see Fig. 5.5 for the EA algorithm, Fig. 5.7 for the ‘CLO’

strategy and Fig. 5.6 for the ‘RAN’. A preliminary visual inspection shows that EA

is able to allocate their selected green areas between the different urban cores. The

CLO strategy generates more green spaces in the urban area and less at the edges of

the grid. The RAN baseline places less green spaces between urban areas and more

at the edge of the area under consideration. These differences are mainly caused by
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the distinct nature of the strategies pursued by each of the algorithms. The RAN

algorithm, due to its random nature, tends to finish with a more homogeneous layout

of green areas. These patches of land are mostly located in the outer areas of the

lattice due to the cheaper prices of the land that is further from the city. CLO, only

allows the acquisition of cells at the boundaries of the city, so allows a mix of green

areas within the core of the city. Finally EA, is a trade-off strategy between both

previous approaches allowing protection at a middle distance from each city centre.

Figure 5.7: In this graphical representation of the application of the online CLO
baseline to the allocation of green spaces, a spatial layout of a city with three CBDs
captured at t = 300 is shown. The urban cores are depicted in yellow (urbanised
areas), white (new areas already transformed to be urbanised but not constructed
yet) and red cells (which show the new areas selected in this turn to be urbanised).
Green areas are modelled in green. Finally the rest of the grey cells are rural areas
which are available for purchasing.

Afterwards, the optimisation strategies were tested against a predefined number

of scenarios where the urban model was modified to meet different sets of features

such as multiple numbers of CBDs growing in parallel and different non-urban price

dynamics. The main goal pursued by this strategy is to study the behaviour of
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the optimisation techniques in relation to the multiple complexities of the urban

model, focusing especially on how the EA performance varies in comparison with

the baselines. Hence, the scenarios were defined as a measure of the complexity

of the selected configurations. Starting from a simple layout and constant prices,

increasing the level of complexity of the topological arrangement and finishing adding

a dynamic behaviour to the rural prices. Following this increment in the complexity,

the characteristics of each scenario are summarised in the following list:

• Scenario 1 is devoted to the analysis of an urban area with a single and

central CBD. Non-urban prices are constant and hence, peri-urban parcels are

as expensive as any other rural area in the lattice.

• Scenario 2 also deals with only one central CBD but, in this case, the

complexity is increased by defining dynamic non-urban prices. These prices

augment as a function of the growth of the city, based on the reduction of the

available land and the corresponding increment in demand and finally in prices.

• Scenario 3 configures a layout with several CBDs distributed in a triangle

shape in the centre of the lattice and with non-urban prices of a dynamic

nature.

In order to account for the variations introduced by the stochastic variations, the

results presented in this work have been calculated as averaged over 20 independent

optimisation runs for each method considered. Different topological configurations

will be considered for each of the approaches in line with the scenarios previously

described. In each of the runs, different data will be collected to assess and compare

the suitability of the strategy. The data include: the satisfaction (performance/fitness

of the policy), total population, total urban and rural cells, prices of urban and rural

cells (maximum and minimum values), average distance from the green cells to the

correspondent CBD and incoming migration.

The selected information analysed for measuring the optimisation approaches

comprise the final amount of protected cells that the approach manages to buy

with the available budget. The satisfaction of the population is measured by means
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of the fitness function and the average distance from each protected cell to the

corresponding CBD.

The visualisation of the fitness function is a method capable of showing the

success of the algorithms in finding an efficient set of green areas which satisfies the

necessities of the population. The number of green areas is a quantitative metric

that indicates the amount of green areas the algorithms are able to protect with the

available budget, independently of their proximity to the inhabitants of the city.

Finally, the closeness factor is an important qualitative metric to be measured

in order to properly compare different policies. This metric measures the global

distance of the parks to the CBDs of a given policy generated by an optimisation

strategy in each time step. Hence, for time t this metric denoted by CL is calculated

as follows:

CL(t) =
1

m

m∑
i=0

δ
(
gi, CCBD(gi)

)
∀g ∈ G (5.15)

where m is the number of green areas at time t, CCBD(gi) is a function that

returns the closest CBD to a given green area gi and δ is a function that retrieves

the discrete radial distance from this green area gi to this CBD.

The reason behind its use in this analysis is based on the idea of finding a trade-

off between the amount and quality of green areas. If the model acquires almost

exclusively cells located in the outer areas of the lattice, which are significantly

cheaper, only when the city expands its boundaries at the end of the simulation

horizon H, these areas are going to be reached. Then, only a small number of

residents can get benefit from them, since most of the population will be closer to

the CBD and, hence, this may easily result in the generation of a very poor policy.

In this regard Xue et al. (2012) conclude that when the design of long term plans

is performed over a population that tends to spread, it is commonly unnecessary to

acquire parcels that are at a significant distance from the source at the beginning

of the planning period. Under Alonso’s assumptions (Alonso, 1964), this distance

could be measured by this closeness factor.

The data depicted in the Figures 5.8, 5.9 and 5.10, which correspond to the
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aforementioned scenarios, are composed by three plots which represent the fitness

function as a measure of the population satisfaction achieved in each time step

(top), the amount of cells that have been converted into parks (bottom left) and the

closeness metric which measures the average distance of all protected cells to the

corresponding CBD in each turn (bottom right). These factors will be the major

characteristics taken into account to analyse the results presented here.

5.5.1 Scenario 1 (1 CBD - constant non-urban prices)

Due to the constant nature of the non-urban prices during the simulation, the

optimisation strategies do not get any benefit from purchasing cells in advance

further from the CBD. In addition, when these outer areas are urbanised in the long

term, they will be significantly less populated than the cells located closer to the

centre due to the monocentricity assumption of Alonso (Alonso, 1964).

In this scenario, the three approaches: RAN, CLO and EA can manage to

purchase almost the same amount of cells. Only EA is able to buy slightly more cells

due to the advanced characteristics implemented in the algorithm. The stochastic

option was further explained in Sec. 6.3.2 on page 203 and the existence of infeasible

solutions at the level of individual selection was commented on Sec. 5.4.2.3 on

page 161. It should be recalled here that all the approaches always share the same

budget.

Under these circumstances, the approach that places the maximum number of

cells in the most populated areas of the grid, which means the areas closer to the

CBD, will have the most satisfied population. In this regard a heuristic like CLO,

which has been specially designed to maximise the closeness to the CBD, achieves

notably better satisfaction than the other two strategies. The RAN approach cannot

compete with the other greedy strategy because it tends to generate a homogeneous

distribution of green cells, placing most parts of the parks in not very populated

areas. EA, on the other hand, cannot achieve a closeness rate as high as CLO.

Furthermore, EA decisions should be made very accurately when selecting areas that

will be very close to the borders of the city in order to avoid later rejections due
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to non-predicted dynamics in the development of the peri-urban areas of the city.

These rejections may lead to the situation where very promising areas for locating

parks may not be successfully transformed in the long term.
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Figure 5.8: Results from scenario 1 (one CBD and constant non-urban prices).
The figure shows three different areas where the three approaches are compared:
Satisfaction (top), number of cells protected (bottom left) and closeness to the CBD
(bottom right). RAN approach is plotted in blue, EA in red and CLO in yellow.

Regarding the number of protected cells, all three approaches manage to buy a

constant amount of cells during the planning period, with no clear differences among

them. This behaviour is due to the constant nature of the rural cells and the shared

financial budget.

5.5.2 Scenario 2 (1 CBD - dynamic non-urban prices)

In the second scenario the complexity derived from the dynamical nature of the

non-urban prices (See Fig. 3.17) decreases the maximum satisfaction achieved by

all the approaches, more significantly in the case of CLO. The noticeable increment

in the price of peri-urban areas due to the imminent urbanisation provokes a clear
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TIME STEPS EA PERFORM. RAN PERFORM. CLO PERFORM.

50 271.32 3.09 428.09

100 2175.44 42.95 3002.43

150 8419.56 346.86 10237.07

200 27603.30 1669.40 32205.26

250 82462.58 7575.35 88278.98

300 191220.60 25374.84 218537.87

350 250959.40 49536.67 315634.73

400 264695.60 69811.95 328719.40

450 260386.60 88600.99 322734.00

500 249761.40 105596.54 312283.87

550 243775.60 120505.60 302636.80

600 234398.00 136816.10 296625.87

Table 5.1: Numerical values of the EA, RAN and CLO algorithms’ performance in
terms of the satisfaction achieved by the urban population and measured by the
fitness function during the complete time horizon of the simulation (data in line with
Fig. 5.8 corresponding to Scenario 1)

distinction in the number of cells that each approach can afford. In this regard the

CLO baseline is hindered the most, meanwhile the EA is only partially affected

because its strategy tends to compensate for the allocation of its green cells in less

dense areas with the acquisition of a quantitatively larger amount of cells. On the

other hand, the homogeneous location of the cells allocated by RAN makes the

approach almost immune to the increment in prices of the peri-urban areas since the

percentage of protected cells in these areas is not very significant.

Since at the beginning of the simulation prices are still affordable for CLO, the

method soon manages to acquire enough good cells to gather a significant amount of

satisfaction from the population. Meanwhile the results reported by EA are always

a step behind. However the situation changes as rural prices increase with time and

it is more complicated to acquire parcels with the available budget, specially very

expensive peri-urban cells. The value of the available budget can be insufficient in

the long term. Since CLO cannot find any suitable cell, its budget cannot be used

for any new acquisition, even though its value shows a progressive accumulation in

each turn. This effect can be observed at a concrete point in the planning process,

close to half of the horizon of the simulation.
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Figure 5.9: Results from scenario 2 (one CBD and dynamic non-urban prices).
The figure shows three different areas where the three approaches are compared:
Satisfaction (top), number of cells protected (bottom left) and closeness to the CBD
(bottom right). RAN approach is plotted in blue, EA in red and CLO in yellow.

There is a peak in the satisfaction from which CLO cannot afford to purchase

almost any other new cell on the outskirts of the city, neglecting the provision of

parks in these new constructed urban areas. At the end of the simulation, the

failure of CLO and a drop in the population who lives close to the CBD provokes a

significant decrement in its performance, with its final satisfaction levels equal to the

RAN approach. On the contrary, under the same circumstances, EA is at least able

to keep its performance steady throughout the period considered.

From the closeness point of view, CLO notably manages to place its green facilities

in areas close to the city centre. After that, EA is the second-best strategy, followed

finally by RAN. Noticeable is also that, in the three cases, the tendency of the

metric is almost steady from the beginning to the end of the time horizon covered

by the three planning processes. This means that, even if later in time it is more

complicated to find new affordable areas, these new acquisitions are placed in general

as conveniently as the ones purchased previously in the plan.
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TIME STEPS EA PERFORM. RAN PERFORM. CLO PERFORM.

50 0.00 0.00 135.76

100 0.00 0.00 1335.43

150 93.16 0.00 4769.86

200 1982.86 0.00 15976.31

250 13579.84 0.00 48718.16

300 67806.14 4.68 125336.04

350 173448.00 2898.12 226681.00

400 262018.20 17655.30 246143.50

450 318045.60 39203.72 228163.90

500 345126.80 66414.04 204034.80

550 342345.20 95586.00 182350.80

600 331457.00 124703.60 162976.80

Table 5.2: Numerical values of the EA, RAN and CLO algorithms’ performance in
terms of the satisfaction achieved by the urban population and measured by the
fitness function during the complete time horizon of the simulation (data in line with
Fig. 5.9 corresponding to Scenario 2)

For the number of cells finally collected, EA and RAN behave similarly and

significantly better than CLO. The difference between them depends on how close

the strategies are able to allocate the green cells to the centre of the city which can

be seen in the third part of the figure.

5.5.3 Scenario 3 (Three CBD - dynamic non-urban prices)

In the last scenario, where more CBDs are included in the framework and the system

is more complex, the overall absolute performance of CLO and EA again decreases.

RAN is not affected by this new level of complexity since the method tends to spread

homogeneously its protected areas independently of the topological structure of the

city.

On the other hand, the difference in performance between the CLO baseline and

EA is more evident in the long term. The higher complexity of the scenario, with

three different urban price gradients, one per each core, creates a more heterogeneous

search space where the EA approach can find better solutions, especially at the end

of the simulation. The peak point when CLO starts to decrease, is located earlier

in time than in the previous scenario, which confirms how the algorithm struggles

earlier within a more complex scenario. The opposite behaviour is shown in the EA
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strategy, where the approach is capable of keeping a growth tendency for longer.

These peak points give information about when the algorithm starts having problems

to find a proper cell to protect. Under the same conditions, in terms of rural prices,

if in one scenario this occurs early in time, this is a signal that the level of complexity

is higher than in the other.
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Figure 5.10: Results from scenario 3 (several CBDs and dynamic non-urban prices).
The figure shows three different areas where the three approaches are compared:
Satisfaction (top), number of cells protected (bottom left) and closeness to the CBD
(bottom right). RAN approach is plotted in blue, EA in red and CLO in yellow.

In terms of the number of cells and the closeness measurement, EA manages

to place its cells more conveniently, closer to the results achieved by CLO, at the

expense of reducing the total number of cells in comparison with RAN. Finally the

total amount of cells that each algorithm manages to buy is better for RAN and EA

and steady in the case of CLO which is able to conveniently place its cells even if its

total number is inferior to the scenario 2. The shape of the function that counts the

number of green cells within the policy is similar to the previous scenario, which may

mean that this factor is highly influenced by the nature of the rural prices (constant

or dynamic).
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TIME STEPS EA PERFORM. RAN PERFORM. CLO PERFORM

50 0.00 0.00 202.57

100 99.80 0.00 1466.55

150 672.68 0.00 5424.48

200 2691.48 0.00 17139.55

250 11780.92 0.00 50052.82

300 47890.34 23.85 117803.02

350 121118.02 1430.46 151775.07

400 180117.40 8049.10 150859.87

450 214605.00 20455.57 139235.93

500 229921.00 39197.44 126713.13

550 235827.40 65507.47 114784.53

600 234665.60 93327.42 105446.80

Table 5.3: Numerical values of the EA, RAN and CLO algorithms’ performance in
terms of the satisfaction achieved by the urban population and measured by the
fitness function during the complete time horizon of the simulation (data in line with
Fig. 5.10 corresponding to Scenario 3)

5.6 Execution of the Offline Policy

A second mandatory step in the generation of an offline policy after its generation,

consist of the execution of the plan created beforehand by the policy constructor

component. In this phase, the level of validity of the generated policy is also checked.

A disadvantage of placing the unique policy execution after the planning phase

is that some of the expectations and assumptions taken by the policy constructor

may not be fully accurate. This may lead to certain selections of cells not being

transformed as a result of a lack of budget compared with the real price of the

parcel, or due to incompatibilities in the objective land class if this parcel is already

urbanised. The test component executes the policy and checks the validity of a

given EA solution. In order to do that, the present framework uses an independent

simulation of the city where some data is gathered to provide information about the

quality of the EA solution such as the amount of urban inconsistencies and the final

satisfaction achieved by the solution.

When an inconsistency occurs in any of its types, the candidate cell to be

protected at this time is rejected and no contribution to the final satisfaction is

added. Its budget, in turn, is not spent and it accumulates for future purchases.
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As a consequence, for every inconsistency found in the EA solution, the algorithm

reduces its final satisfaction in comparison with the expected value calculated in the

construction of the policy. Figure 5.11 shows the amount of urban inconsistencies

found in relation to the number of simulations collected from the surrogate model.
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Figure 5.11: Evolution of the number of individual cells that are marked as an urban
inconsistency as a function of the number of times the sampling process was carried
out. Each box visually represents the number of urban failures from each specific
number of samples. Averaged values are represented by the red lines and limits of
the boxes depict maximum and minimum values gathered for each sampling size.

This plot is the result of gathering the number of inconsistencies that occur

when the policy is repeatedly executed, concretely five times using the scenario two.

The goal of this sample process is to gather enough data from the surrogate model

to allow the EA to deal with the uncertainty derived from the unknown spatial

evolution of the different land-use types during the creation of the policy. From

the slope of the resulting function, it can be concluded that it is not necessary to

gather a huge amount of data in order to achieve consistent results, due to the little

variation in the number of failures (±5). The slope of the graph shows similarities
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with an exponential decrement function in the number of rejections with respect

to the number of simulations. By means of the analysis derived from the shape of

this function, it can be concluded that it is not required to collect the data a large

number of times to achieve accurate results. Concretely, from simulation number

five onwards, the number of rejections are near steady and close enough to zero to

be considered a robust method.

It is also noticeable that the model cannot eliminate the existence of inconsistencies

in the execution of the policy, even if the number of replicates where the data is

gathered increases. This is a consequence derived from the fact that the future

cannot be completely predicted and the model always evolves differently in each

execution. It is important to mention that as the urban model is used as a surrogate

source of information, the number of failures is highly linked with the variability of

the model, which means that it is a factor that has to be studied every time this EA

strategy is applied in a different urban model. It is important to recall that these

data come from non identical runs of the model, so this is a significant measurement

of the behavioural consistency of the system.

The results shown in Fig. 5.12 correspond to a visualisation of the two elements

that may produce local infeasibilities in the execution of the policy: the budget and

the urban dynamics. A failure due to the budget is triggered when the cell assigned

to be protected by the policy constructor (the EA optimiser) has not been urbanised

yet, but the price is higher than the current available budget. Additionally, an urban

failure occurs when the candidate cell has been previously urbanised, independently

of its current price.

After the testing of the policy is finished, the module retrieves the total amount

of failures provoked by both constraints. Afterwards, the process is repeated multiple

times, where different policies are generated by each of the scenarios considered.

Finally, these values are averaged over 10 runs for all the scenarios analysed.
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Figure 5.12: The graph shows a visual representation of the different types of
inconsistencies that may be generated in the execution of the policy. Concretely a
comparison can be made by measuring the areas generated by the number of failures
caused by the budget (in dark brown) and by the amount of urban incompatibilities
(in green) occurred during the execution of the different scenarios, each represented
by an individual bar.

The study of the system can be performed under the assumption that the amount

of failures of each type is in line with the configuration of each scenario, assuming a

similar behaviour for equal level of complexity. This could imply that the amount of

errors in the policy, caused by the lack of accuracy in assessing future urban dynamics,

is similar in the first and the second scenarios, where the city was configured with a

single CBD. However, this is not reflected in the gathered data. In fact, the general

characteristic derived from the comparison of both quantities is that the offline EA

approach found much more problematic to deal with the budget constraints than

forecasting accurately the urban dynamics. Additionally, scenario 2 and 3 are almost

identical in terms of urban failures, where the change to a higher number of CBDs

seems not affecting the system. As a result, only in the case of the first scenario,

where the urban prices are constant, the amount of failures is significantly lower and

the contribution from the urban development is contrarily superior.
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With respect to the number of failures due to the lack of financial resources, it

can be seen that the system is more sensitive to this parameter and, consequently,

the execution of the policy is likely to discard a higher number of cells due to this

factor, especially in scenario numbers 2 and 3. Since the nature of the non-urban

prices is different among scenarios, this seems to affect the number of inconsistencies

in different ways. In the first scenario, these values are constant throughout the

planning horizon. This deterministic behaviour would imply the generation of zero

infeasibilities, since the system is always able to assess how much it should invest

in each patch of land. However, the constant characterisation of the prices does

not mean that they are homogeneous. Prices are based on two different types of

land: forest and agricultural, each different in nature and subsequently in price,

see table 3.3. The urbanisation causes an ecological degradation effect that would

change forest cells into agriculture the closer the city is from them. This means

that some cells could change the price during the simulation and a small number of

infeasibilities can occur if the system tries to buy an agricultural cell that is, in fact,

a forest land and hence, more expensive.

On the other hand, scenarios 2 and 3 lead to a large number of infeasibilities due

to the fully dynamic nature of the rural prices. This factor may change, not only

because of the type of land-use that they represent and the ecological degradation

process linked with the urbanisation, as in the previous case, but also because the

cells closer to the peri-urban areas of the city are significantly more expensive than

the rest. These cells vary according to the continuous expansion of the city.

The amount of failures in assessing the price of the patches of land seems also

being affected by more complex urban layouts, since this quantity in scenario 3 is

higher than in scenario 2. This is caused by the cells located closer to the peri-

urban areas of the CBDs. The amount of cells changing their state is higher when

three CBDs are interacting than with a single central core. This difference influences

the rural prices by speeding up the amount of cells in the grid that severely changes

in comparison with the outer cells of the lattice, that remain more stable during

most part of the simulation. Faster changes are more complex to assess and hence,
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the amount of failures increases also due to this factor.

5.7 Discussion

CLO is a very smart greedy strategy for simple urban planning problems where

the allocation of facilities is conditioned by the fact that the population tends to

concentrate close to the CBD. Following the experiments, it is concluded that the

best results from this baseline were achieved when the model is characterised by

constant rural price gradients, as in the case of Scenario 1, or when the allocation

of green areas can be performed with unlimited resources, and hence there are no

constraints in terms of budget. CLO can also accomplish a reasonable level of service

when the growth speed of the city is slow and enough budget can be accumulated in

order to buy the most expensive non-urban cells, which are the ones located closer to

the boundaries of the city. This is concretely the reason behind the success of CLO

strategy in a very short-term time horizon where the amount of available budget

allows the complete provision of green areas within the city. However, in real world

cases, when monetary resources are scarce in comparison with the price of the land,

it is required to carefully plan and foresee future necessities of the population with

the use of more intelligent approaches.

Because of this factor, the CLO heuristic shows the worst results at the end

of the simulation. The total amount of cells protected are lower and concentrated

mostly around the city centre, neglecting to give proper services to the outskirts

of the city. At the moment funding starts to be insufficient, there are not enough

resources to buy new cells in the peri-urban areas of the city, and then the strategy

reduces its performance. Additionally, when more flows of population move from

the CBD to outer areas of the city, the satisfaction achieved by CLO is reduced

drastically getting even closer to the performance of a simple random approach.
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Table 5.4: Characteristics of the execution of the Evolutionary Algorithm

Scenario Generations Mutations Worst Best Mean SD

1CBD - Const Prices 2045 1169 2583 2613 2601 13.764

1CBD - Var Prices 1982 1565 1262 1271 1269 6.578

3CBD - Var Prices 1507 1144 1192 1197 1195 3.838

General characteristics of the evolutionary algorithm among scenarios. First column
shows the number of the scenario where these data was collected. The second
column describes the number of generations that the algorithm needs to run until
achieving convergence. Column three depicts the total number of mutations where
the algorithm was able to improve a member of its population. Columns four, five
and six illustrate the difference between the members of the population of solutions
by representing the final worst, best and average values respectively of their fitness
function. Finally the standard deviation from these values is calculated.

For complex scenarios like 2 and 3, the EA algorithm outperforms both baselines

during the entire simulation. This approach also achieves a steady level of service

even when the resources from the budget are insufficient. This advantage is an effect

of the design of the fitness function that takes into account the satisfaction of each

green area from the moment that the patch of land is purchased to the end of the

planning period.

In summary, the CLO baseline, that always allocates the urban parks as close

as possible to the most populated areas, is very powerful for simple scenario config-

urations when the distribution of non-urban prices is not characterised by drastic

gradients. EA, on the contrary, is able to provide more efficient solutions in the

long-term for the entire population. It can also deal better with variations in the dis-

tribution of the population and it can tackle more satisfactorily scenarios configured

with heterogeneous peri-urban prices and more complex urban structures.

These results are also in line with the conclusions held by Golovin et al. (2011)

for problems that can be characterised by an adaptive submodular property like this

given case. An intelligent greedy approach like CLO is able not only to compete with

an EA approach producing better policies in terms of performance, but also generates

better results under certain circumstances like the ones described previously in this
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section. Apart from that, it is also worth noting that CLO, as a greedy approach, is

able to generate its results much faster than the EA algorithm due to the simplicity

of its strategy.

Finally RAN solutions, due to the stochastic selecting mechanism, spread their

protected cells more homogeneously and scattered throughout the surface under

consideration. This strategy does not take advantage of the reduced prices around

the city at the beginning of the simulation. In turn, when prices are significantly

higher and it is more difficult to purchase any new patch of land, the RAN approach

manages to give a reasonable service to the outskirts of the city, in contrast to the

other two approaches that are more sensitive to the significant increment in prices

occurring at the end of the simulation.

1CBD - Const Prices 1CBD - Var Prices 3CBD - Var Prices

Scenarios

0

2

4

6

8

10

12

S
a

ti
s

fa
c

ti
o

n
 A

re
a

×10
7 Area Comparative

RAN

EA

CLO

Figure 5.13: This bar plot illustrates the evolution of the satisfaction of the different
optimisation approaches through the three designed scenarios. Each group of bars
measures the area generated by the fitness function that assesses the satisfaction
achieved by the population of the city. In dark blue is represented the area covered
by the random approach RAN, in light blue the one generated by the EA algorithm
and in yellow the same results for the CLO baseline.

Fig. 5.13 shows the results achieved by the fitness function, focusing on the area

of the surface generated by the curve that describes the satisfaction in each time
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step instead of its shape. This area will be calculated using trapezoidal numerical

integration techniques (Yeh and Kwan, 1978). From this perspective we can have

a global assessment of each strategy, allowing us to measure the behaviour among

scenarios and to be able to compare the three approaches from a more general point

of view. This evolution in satisfaction could give us information regarding the effect

that the changes in complexity have on the algorithms.

From a preliminary visual inspection, if each maximum point of the bars generated

by the algorithms in each scenario are connected as a curve, it can be observed

that CLO bars, in yellow, represent a function that is similar to a decreasing linear

function. RAN baseline in dark blue depicts a function that can be generalised to be

closer to a power-law distribution and finally EA forms a function that can be closer

to a negative binomial distribution distribution. These statements are based on the

idea that the order of the scenarios is a measure of the complexity of the system. The

behaviour of these functions has to be taken as a preliminary conclusions and further

analysis should be carried out in order to confirm their validity. The analysis should

include more configurations to add more points to each function and the inclusion of

other factors that can potentially add significant complexity to the system.

It is also worth noting that there is a swap in performance between the CLO

baseline and the EA algorithm in scenarios 1 and 2, where EA outperforms CLO.

However, this tendency is not maintained between scenario 2 and 3, in which CLO

get closer in terms of the area covered to the EA approach. This may imply that the

change in the nature of the urban prices benefits the EA, creating a search space

where EA can exploit more its potential meanwhile the spatial complexity of the

layout of the city does not benefit the algorithm excessively.

From the observation of the behaviour of the fitness generated in each of the

different scenarios in Fig. 5.13, it can be observed that the values gathered from the

CLO baseline compared to the developed EA drops when higher complex scenarios

have been taken into consideration, especially when it is added another factor

of complexity to the model, namely the non-deterministic rural prices (scenario

3). However, the different spatial configurations resulting from including multiple
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CBDs into the model, does not give rise to a clear benefit over the EA algorithm.

Subsequently these limited results show that the non-adaptive EA approach is

a suitable optimisation technique for location allocation problems with complex

dynamics and constraints, but less suitable in scenarios where the submodularity

property applies, in which case a greedy algorithm may be preferred.

5.8 Conclusions

In this chapter, it was tackled the task, faced by many urban planning departments, of

green space allocation over time in growing and densely populated urban environments.

This was done by using the urban growth simulation framework and the optimisation

strategies that were respectively described in previous chapters.

The problem investigated was formally expressed and an important property of

the system into consideration was explained. Adaptive submodularity has a high

impact on the final performance of the algorithms. This property implies that, under

some circumstances, an intelligent greedy algorithm can overperform a more complex

approach. To study how the developed EA behaves a series of scenarios were defined,

varying the complexity of the topological configuration of the lattice, and the nature

of the non-urban prices.

Different optimisation methods were then tested against the EA: two rule-based

baselines, one which chose cells closest to the CBD (CLO) and a random baseline

(RAN). The CLO baseline was found to achieve very good results in terms of

estimated satisfaction of the residents, but at the expense of significant budget spend.

Over simulated time, this effect is exacerbated, and CLO fails to compete with EA,

especially in the long term, where the population settling in the outskirts of the

city cannot be adequately served by green space provision. Meanwhile, experiments

showed that the results achieved by our EA strategy begin to outperform the greedy

strategy with increasing model complexity, for example involving a realistic city

configuration with multiple cores, multiple housing price gradients and occasionally

turbulent market dynamics.

It was argued that this higher complexity model more closely resembles real world
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conditions, and therefore we can conclude that EA approaches are better suited to

inform real-world decision making. These conclusions are limited by the proof of

concept nature of this framework and the very small number of scenarios analysed.

Further systematic experiments would be required to achieve more consistent results.

In the next chapter it is compared this adaptive EA with an ‘online’ version.

Both approaches will investigate the same problem of generating open space plans by

solving a SDMP in a complex, stochastic urban scenario. In this case, it is analysed

their performance and computational time, and it is also presented a qualitative

comparison between the types of policies generated by the two methods and the

topological structures generated in each case.
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Chapter 6

Online Evolutionary Algorithms

for Planning

6.1 Introduction

Urban-planning authorities continually face the problem of optimising the allocation

of green space over time in developing urban environments. The problem is essentially

a sequential decision making task involving several interconnected and non-linear

uncertainties, and requires time-intensive computation to evaluate the potential

consequences of individual decisions. In this chapter, the application of two very

distinct frameworks incorporating evolutionary algorithm approaches for this problem

are explored: (i) an ‘offline’ approach, in which a candidate solution encodes a

complete set of decisions, which is then evaluated by full simulation and (ii) an

‘online’ approach which involves a sequential series of optimizations, each making

only a single decision, and starting its simulations from the endpoint of the previous

run. The outcomes, in each case, in the context of a simulated urban development

model and compare their performance in terms of speed and quality are studied. The

results show that the online version is considerably faster than the offline counterpart,

without significant loss in performance.
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6.2 Definition of the problem

The aim of green space planning is to select an efficient sequence of green space

facilities over a defined period of planning time. This task can be viewed as a SDMP

where a sub-optimal finite set of N sequential alternatives has to be found in a

discrete-time system. In a green space planning scenario, each of these N alternatives

can be seen as an embedded LA problem. LA problems, first described by Cooper

(1963), can be defined as the optimal placement of a set of new facilities or units in

such a way that a series of goals is met.

EAs have been successfully used to solve complex spatial problems (Pukkala

and Kurttila, 2005; Lu and Eriksson, 2000) in discrete decision spaces (Davis,

1991; Goldberg, 1989). However, their performance under uncertainty has been

questioned (Rieser et al., 2011; Wu et al., 2006) since a simple EA has insufficient

information to deal directly with uncertainty.

To equip an EA to solve this kind of problem, it is necessary to engineer ap-

propriate mechanisms which help maintain suitable search progress without being

misled by noisy decisions, or unacceptably decelerated by time-consuming simulations.

Existing methods that can be applied to evolutionary systems to cope with such

circumstances include tools such as noisy fitness, fitness approximation and dynamic

fitness functions. In (Qin et al., 2010) a GA-Aided stochastic optimisation model

is applied to cope with the uncertainty related to the study of air quality in urban

areas. In contrast to probabilistic approaches, (Wang and Yang, 2009) resort to

local search techniques to overcome the uncertainty generated by the ageing factor

presented in many engineering problems. Following a similar approach (Wang et al.,

2013) successfully applies a variant constrained multi-objective EA in a simulated

topology and shape optimisation problem under uncertainty.

To further test the potential of evolutionary techniques in this area, the stochastic

model is configured to use a topologically non-trivial city with several CBDs and

different price gradients (see Fig. 3.1). This type of arrangement complicates the

search and decision space and provides a scenario where EA can better shows its
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potential of coping with these additional complexities (Pukkala and Kurttila, 2005;

Vallejo et al., 2015).

Price gradients can be divided into two different dynamics according to the type

of land they represent, broadly subdivided into rural and urban. Urban prices are

higher the closer the patch of land is to a CBD, and also depend on household agents’

preferences and on the current level of demand for this particular parcel of land. On

the other hand, rural prices are different if the corresponding area is classified as

a forest or as an agricultural cell. They are also influenced by the distance to the

closest peri-urban area, due to the impact on the expected profit derived from its

urban transformation. Rural land, located in the surroundings of the borders of the

city, achieves a peak in prices, decreasing from this point with distance (Plantinga

et al., 2002). Meanwhile, the continuous urban growth expansion narrows the amount

of available land, and this diminishing supply increases the price of the remaining

land as time passes.

The provision of green services is performed following a covering model (Toregas

et al., 1971). The principle of this approach is to maximise the number of users who

are located relatively close to the defined type of service, in this case green areas.

6.2.1 Experiments Conducted

This chapter investigates the viability of two distinct approaches using evolutionary

algorithms as alternatives for generating open space plans by solving this SDMP in a

stochastic urban scenario. In what we call the ‘offline’ approach, a complete plan is

proposed at the outset; that is, at time=0, it has already been decided which parcels

of land are slated to be purchased at all future time steps (if it turns out to be

feasible in the ensuing simulated circumstances). In contrast, the ‘online’ approach

makes its land-acquisition decisions one at a time, each time benefiting from the

reduced uncertainty arising from the previous step. Both approaches are empirically

evaluated and compared in response to a set of physical and ecological constraints

using the same software structure for all methods.

To measure the suitability of each approach, three criteria have been simultane-
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ously taken into account: the computational time used to run both approaches, the

objective function value achieved during the length of the planning period and the

spatial patterns generated by the final layout of the protected cells selected by each

approach. The implementation of the offline policy is identical than the one used

in previous chapter. Same techniques to deal with the uncertainty are used in both

approaches. For each of the algorithms, different purchasing strategies are considered.

A purchasing strategy can be seen as a decision making process related to when it is

better to save the received financial resources and when it is worthy to invest them

in a new patch of land. In this regard, the offline approach will include the ‘fix’ and

the ‘stochastic’ strategy and the online algorithm will consider a ‘threshold-based’

strategy.

6.3 Online Optimisation Procedure

Figure 6.1: The schema of all the elements included in both planning processes is
depicted in this figure. The previous generation of uncertain parameters, how these
different components are linked with the hypothetical urban model and the different
nature of the results in each approach are also included.

Based on this evolutionary strategy, the proposed optimisation framework includes a

variety of components as can be observed in Fig. 6.1 and Fig. 6.2. In these figures,
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two different EA workflows for each scenario, an ‘online’ and an ‘offline’ approach,

are described. Both approaches share a common budget and an initial environmental

scenario. By means of Monte Carlo sampling techniques, the offline approach will

gather the required information about the most probable population density and its

distribution, the urbanised areas and the rural prices for each time step considered

in the simulation. The online counterpart only needs the population information

to calculate the fitness function. Based on that data, the optimisation procedure

depicts the adaptive and non-adaptive nature of the corresponding online and offline

approaches. Finally, the generation of the final decision alternatives is performed

which describe the concrete policies resulted from the process.

The main goal of the optimisation process is to select a series of patches of rural

land, within a determined time horizon, to be transformed into green areas as the city

develops over a number of years. The general objective pursued with this purchasing

policy is to attempt to ensure that each land allocation decision fulfils both the

present needs of the urban population, along with estimated needs of the larger

population as it develops in future time steps.

The optimisation process starts in both cases with the definition of two initial

constraints that are imposed on the algorithms at the beginning of the simulation: a

common budget which limits the acquisition process, and an environmental layout

whose values are attached to every cell of the grid. In Fig. 6.3, an example of this

ecological lattice is shown. From a general point of view, this lattice shows the

ecological value degradation effect caused by urban development in a city of three

CBDs. The small green areas within the urban cores depict the protective impact of

allocating green parks in the city.

In both cases the constraints are generated in advance by a uniform random

process. The budget takes values in fixed intervals for the entire duration of the

simulation. The ecological values measure the natural resources richness of the land

and determine the rural land type: cells with high ‘eco’ values are classified as forest,

while rural cells with low eco-values are classified as agricultural. The way these

values are generated at the beginning of the simulation is described in Algorithm 3.3.
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Figure 6.2: The online & offline optimisation workflows are depicted highlighting the
characteristics that these two strategies have in common.

The ecological value of a cell, and hence its land-use classification, is also influenced

by the values assigned to the cells in its neighbourhood. This leads to a dynamic

diffusion/feedback process within the model, which is capable of mimicking the

ecological degradation process provoked by urban expansion over the remaining

open space (Alberti and Marzluff, 2004). Both of the initial constraints (budget

and environmental layout) directly affect the land purchase mechanism. The budget

limits the locations and amounts of cells that the system is able to acquire, and the

ecological values influence rural prices and the non-urban land-use type.

In terms of their formulation, the two algorithms vary in line with the nature of
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Figure 6.3: Visualisation of a determined configuration of ecological values linked to
each cell where black cells represent very degraded areas and green cells describe
rich environmental zones. The range of green tones represents intermediate states,
with brighter colours depicting more valued areas.

their overall approaches, which, respectively, are adaptive and non-adaptive. The

main difference between them is that during the execution of the online approach,

local policies are computed at each decision step; whereas, in the offline algorithm,

all policies are decided and fixed at the beginning of the simulation.

6.3.1 The Offline Algorithm

The implementation of this algorithm was explained in detail in previous chapter.

Summarising briefly, the algorithm starts with the random generation of an initial

population of potential solutions using different seed values. A relatively small

population size of 25 is used for both approaches, following preliminary work in

which we concluded that this enabled both algorithms to converge relatively quickly,

and considering each algorithm individually, was not surpassed in solution quality

by larger population sizes. Each chromosome stores the information needed for

encoding a complete solution to the problem. The construction process has to satisfy

some initial constraints in terms of budget and land availability. Protection is not
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allowed in urban areas and budget must be strictly positive at any time. Further

characteristics of this approach can be seen in previous chapter.

6.3.2 Purchasing Decisions in Offline Planning

Due to the time-dependent nature of the budget, the monetary resources available at

a given time t, are partially the result of the previous land purchase history. Hence,

the selection of the time steps, where the land acquisition should be carried out is one

factor that severely influences the effectiveness of a given policy. There are different

criteria that could be applied to decide if it is a good choice to spend the current

budget in a given time step or whether it is more convenient to accumulate it for

the future in order to select a more appropriate and expensive patch of land. In the

offline algorithm two different approaches were implemented to solve this problem:

• FIXED

Every time the budget is bigger than the cheapest cell in the grid the system

tries to make a purchase. If in 100 attempts the algorithm is able to find a

suitable selection of cells, the acquisition is performed. In general this approach

can only afford to buy a reasonable amount of cheap cells located far from

the CBDs, due to the fact that the continuous acquisition of land refrains the

strategy from being able to save enough financial resources to buy other kind

of patch of land.

• STOCHASTIC

In this case, purchase decisions are limited not only by the available funds, but

also by a variable which restricts the purchases to the 70% of the times that

these actions can be potentially successful. This value was selected by a test

and error process, searching for the final best values of the fitness function.

The strategy allows the system to focus on a more qualitative type of cells

than the previous approach at the expense of dropping the total number of

cells transformed into green spaces.

Both methods treat the entire set of decisions as equally important. However,

earlier purchases are more critical than the later ones, due to the fact that at the
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beginning of the simulation, when the city is small in size there are promising empty

areas close to the CBDs that will soon be urbanised. These areas will potentially be

highly populated in the near future and the amount of satisfaction collected will be

much higher than in zones closer to the outer limits of the grid.

6.3.3 The Online Algorithm

The online approach performs a series of optimisation runs, one for each time step,

to support the decision at that time step. In contrast to the offline approach, each of

these individual optimisations requires a much simplified chromosome Cr, which only

needs to represent the current state of the system since it can exploit the complete

knowledge of the current belief at any moment. Consequently, its structure is reduced

to the following information:

Crt = [c(x1,y1), c(x2,y2), ..., c(xm,ym)] (6.1)

where each cell ci, spatially located in a different pair of coordinates (x, y), belongs

to the set of [0,m] cells selected for being transformed into parks in the present time

step t. Notice the variable length of the chromosome. Another difference from the

offline approach is that, it is not necessary to accumulate any remaining budget

because the available funding, shared by the entire population, is known at each

moment. This property of the budget allows the system to completely remove this

source of uncertainty.

Regarding the mutation operator, the online approach uses the same mechanism

explained in Sec. 5.4.2.3, but with a different level of granularity. Instead of searching

for an individual selection β to mutate amongst the entire set of selections, as it

was done in the offline algorithm, the online mutation generates a complete new

individual Cr′t, where Crt ∩ Cr′t = ∅.

Contrary to the previous approach, all the selected cells included in the population

at any time step are feasible. The optimisation module is aware of the current state

of the system and the entire set of chromosomes constructed and evolved under these

circumstances are valid and can be checked at the time the policy is decided.
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Due to time restrictions typical of practical online planning, the online stopping

criterion is halted prematurely, reducing the maximum number of generations that

the algorithm is allowed to run without improving to 50 and the total number of

generations to 450.

The pseudocode of the selection of green cells by the ‘Online’ algorithm is the

following:

Algorithm 6.1 Online Selection of Green Areas

1: global variables
2: TOTAL TICKS
3: end global variables
4: require currentTick
5: procedure updateAggregate(int currentTick) . The system evaluates

possible acquisitions in each time step
6: if currentTick == TOTAL TICKS then
7: RunEnvironment.getInstance().endRun();
8: else
9: searchGreenSpace(currentTick);

10: writeSatisfaction(currentTick);
11: end if
12: end procedure
13: require currentTick, solution[], size
14: require coodX, coodY, cell
15: procedure searchGreenSpace(int currentTick)
16: solution = municipality.runGA(currentTick);
17: size = solution.length/2;
18: if solution.length ! = 0 then
19: for i=0;i<size;i=i+2 do
20: coodX = Integer.parseInt(solution[i]);
21: coodY = Integer.parseInt(solution[i+1]);
22: cell = GreenArea.getCell(coodX, coodY);
23: if cell==null then
24: System.err.println(“Cell not found when trying to protect”);
25: else
26: cell.setState(CellState.PROTECTED);
27: protectedCells.add(cell);
28: nonUrbanCells.remove(cell);
29: end if
30: end for
31: else
32: System.err.println(“Solution length equal to zero”);
33: end if
34: end procedure

In the procedure updateAggregate significant variables are currentTick and TO-

TAL TICKS which represent the current time step of the system and the total length
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of the simulation respectively. Additionally, for the searchGreenSpace procedure, the

algorithm uses the following variables: solution that it is the list of cells selected in

this time step by the municipality, size that represents the number of cells to be

protected, cell which stores each of the cells to be acquired and their coordinates

in the grid, depicted by coodX and coodY. The time complexity of this algorithm

depends on the complexity of the function runGA.

6.3.4 Purchasing Decisions in Online Planning

As a result of the simplified nature of each online individual, the question raised

is if it is possible to implement a more efficient mechanism to discern whether it is

convenient to look for a feasible candidate patch of land to purchase, which means

to evolve the current EA population in this turn or save the resources for the future.

One possible way to answer this question is by analysing the nature of the search

space and the way it is constrained by external factors at the current point in

time. The method used is referred here as a threshold-based strategy, and it involves

recording the mean fitness of the initial population of random solutions at the current

time step. The quality achieved at this initial point provides a useful hint about the

potential capacity for improvement by evolution, subject to the current budget and

land price constraints. Such use of information retrieved in the first generation was

also explored in Ratle (1998) to create a global approximation of the fitness function.

Purchasing decisions are therefore taken by comparing the averaged values of

the fitness function of the initial population with a pre-defined fitness threshold.

If the fitness threshold level is not met, it is assumed that, even by the use of an

evolutionary process, the algorithm will not be capable of finding enough attractive

choices in this current time step, presumably due to the gap between the current

budget compared to the current prices.

In the case that the initial population check passes the threshold, and consequently,

we evolve a population at the new time step, a second fitness threshold comes into

play. This time the new threshold is based on the averaged values of the fitness

function of the evolved population compared to the average value of the fitness
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function of the initial population. If the second fitness threshold is not reached, we

take the view that purchases made in this time step are likely to be suboptimal due

to a lack of evolution, and may cause a cascade of further difficulty in future time

steps through poor use of budget in this round. Not reaching this second fitness

threshold, therefore leads to rejection of this result, and we reinstate the budget and

proceed to the next time step, where the current budget will be accumulated. Both

thresholds were defined and calibrated by empirical observation of the algorithm’s

behaviour in preliminary work.
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Figure 6.4: Amount of different type of evolutions of the population according to
the nature of the search space in each concrete time step. Green values represent
successful evolutions, where the policy was decided and executed and consequently a
patch of land was protected. Red values represent generations with an insufficient level
of quality in the initial population, where the population was not evolved. Finally,
blue values illustrate promising generations in which the level of improvement was
not enough to be considered as a suitable solution for being included into the final
policy.

In Fig. 6.4, we depict the behaviour of the evolution resulting from the application

of this strategy. Successful attempts peak at around 200 generations, where almost

50% of the time the initial population of solutions was accepted. From this point,

there is a clear decline in successful attempts; at generation 400 only small gains
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are made in terms of patches of land selected and protected. The evolved and not

selected set of solutions is a strategy executed around 40%− 50% of the times during

the first half of the simulation, increasing the frequency up to more than 60% in

the second third part of the simulation, decreasing drastically to less than 20% at

the end. Meanwhile, rejected generations reach 20%− 30% in the first third of the

simulation, climbing up to 40% in the second third, until, towards the end of the

run, all generations are rejected, since rural prices are extremely high due to the lack

of supply.

In terms of time consumption, the first threshold speeds up the algorithm, avoiding

the exploration of certain generations meanwhile the second threshold wastes the

time taken in evolving a population that perhaps is not going to be used within the

final policy.

6.4 Evolutionary Algorithms and tools to deal

with Uncertainty

In general, online approaches alleviate the computational complexity and the level of

uncertainty by only considering the state of the present situation and the current

time horizon, whereas an offline search would compute a large contingency plan prior

to its execution, considering all possible situations that could occur (Ross et al.,

2008).

A step-by-step planning strategy is significantly more flexible and it allows

the online version to handle possible changes in the environment without extra

computation. This characteristic allows planners to take the potential advantage of

analysing and responding to the stochastic dynamics of the system. On the other

hand, the offline approach can get benefit from, effectively, being able to look further

ahead, acquiring at lower prices patches of land that are located in more remote

areas. These locations, that currently are not very attractive for the online strategy,

can be unaffordable when the level of interest increases.

An additional advantage of the modular structure of the offline EA is that it can
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be applied straightforwardly to any urban growth model, even if an increment in the

complexity of the model may require substantially more computational effort than

the one reported in this thesis. The model, in this case, would only need to read the

output file generated by the offline policy constructor and applied it afterwards.

The online counterpart, on the other hand, would need to be integrated into the

code of the objective urban growth model in order to receive the input information

that characterise each individual realisation. Its applicability would generally require

further coding in order to include the policy constructor considered here with the

execution module, which is particular to each individual urban model. Hence, due

to this continue feedback of information required from the urban model, the design

of the online component cannot be independent.

6.4.1 Offline Constraints & Testing

When a sequential set of decisions has to be taken in advance with no information

about the state of the environment at these times, highly constrained conditions

can easily arise at the time the policy is implemented. In this regard, the offline

algorithm ideally needs to receive as inputs accurate information about which cells

are urbanised during the entire period considered and the dynamics of the rural

prices. By using Monte Carlo sampling techniques analogously, as was previously

done for the urban population, this information is collected. Finally this urban

information will be used to constrain the set of available parcels of land. Meanwhile

non-urban prices will limit the cells that the budget can afford during the simulation.

In Fig. 6.2 it is shown that the offline optimisation approach is divided into two

main independent parts: the policy constructor implemented by the EA, and the

policy execution which is covered within the code of the urban model (the CA). A

disadvantage of placing the unique policy execution after the planning phase is that

some of the expectations and assumptions of the policy constructor could be found

to be wrong when facing real conditions. This may lead to certain selections of cells

included in the planning that cannot be transformed into green areas due to a lack

of budget compared with the real price of the parcel at this time, or also because of
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incompatibilities in the objective land class in the case the parcel is already urbanised.

The policy execution, responsible for checking the final set of cells, is allowed to

dismiss the candidate green areas which are incompatible with the real instance of

the problem. Once the filtering is performed and the final set of cells is defined, the

policy executor will calculate the real satisfaction of the offline algorithm based on

this successfully applicable subset of cells.

6.5 Results & Discussion

The results shown in this chapter are the averages over 20 independent optimisation

runs for each approach. The algorithms were executed in a Linux operating system

with an Intel core i5-3210M processor and 8GB DDR3 of RAM memory and they

were coded in Java using an Eclipse compiler and the open source software RS version

2.0 (North et al., 2005). RS is an agent-based modelling and simulation toolkit

commonly used in the CA-ABM community. Previous publications have validated

the software in different contexts (Parry et al., 2006; Griffin and Stanish, 2007).

The previously described hypothetical CA-ABM urban growth framework was

used, with the main objective of making use of the complexity of its dynamics (Batty

et al., 1999) in order to test and measure the suitability of EA techniques in a

stochastic scenario under uncertainty in two different versions, the described online

and offline approaches. The CA consisted of a two-dimensional regular lattice of

50×50 cells with i- and j-axes and stochastic transition rules. The model is configured

to develop an urban area with three main CBDs growing in parallel with different

price gradients.

6.5.1 Computational Time

The CA-ABM model, as previously mentioned, was implemented using the RS frame-

work. This is an important aspect to take into consideration when the computation

time of both algorithms is analysed. The RS framework requires a significant amount

of computational resources to simulate the dynamics of the city, the representation

of all its inhabitants and their interactions.
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Approach PC (sec) PE (sec) TT (sec) TR #Gen

Offline 41011.8 911.32 41923.12 2.145 1682

Online 19118.3 1604.8 20723.1 0.466 450

Table 6.1: Offline vs. Online results in terms of computation time and the number
of generations.

The resulting time statistics are shown in Table 6.1. Column 1 Approach refers

to the name of the approach considered. Column 2 (PC) Policy Construction

represents the running time that both algorithms require to construct their policies

without taking into account the policy execution. Column 3 (PE) Policy Execution

comprises the implementation of the planning and the evolution of the rest of the

model dynamics. Column 4 (TT) Total Time illustrates the total used processor

time: which includes the previous policy construction time plus the policy execution.

Column 5 (TR) Time Ratio shows the ratio of offline time to online, that is the

quantitative relation between them, showing the number of times one value contains

the other. Finally, Column 6 #Gen depicts the average number of generations used

in each approach.

It is intuitively clear that offline approaches would need considerably more time

to come up with a final plan in comparison with an online version of the same

algorithm (Ross et al., 2008). In the present work, computer simulations show that

the proposed algorithm exhibits the expected behaviour in terms of time.

It should be noticed that there are two main factors that can significantly affect

the behaviour of the time consumed. Firstly the offline version can run alone in

the system console using all the available resources, meanwhile the online version

has to share memory and processor resources with all the infrastructure created

by Repast Simphony and Eclipse. This means that at the same time that the EA

population is evolving, thousands of objects which represent agents, cells and other

type of elements of the urban growth model will typically coexist. This advantage is,

however not enough to speed up the algorithm significantly. Secondly the number

of generations that the online version is limited to evolve in comparison with the

offline version aids the algorithm to show better time performance at the expense of

decreasing the fitness of its final individual solution.
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One drawback associated with online planning is that, in a practical setting,

it would generally be required to meet real-time constraints; this means that the

algorithm would need to greatly reduce the available planning time to satisfy the

requirements of a real-time environment. For instance, this could be the case of

robot motion planning or anytime learning scenarios (Gaschler et al., 2013; Vargas

et al., 2014). However the system, in any of its versions, cannot properly cope with

the requirements of a real-time system, because the nature of EA requires long

computational times until convergence and it is not considered in general a suitable

approach for these kind of scenarios (Ciesielski and Scerri, 1998) unless the algorithm

is strictly time-bounded.

Other external characteristics that can be associated with the time calculation

is the convergence rate and the internal design of the EA. Changes through better

areas of the search space require time in terms of number of generations. As was

commented previously, Alonso’s model favours areas of the grid closer to the CBD,

which are more and earlier populated. In the present offline implementation, since

the crossover operator is dismissed, every generation the algorithm is able to modify a

single allele of one individual of the entire population which means that the mutation

rate pof can be at maximum:

pof =
1

T

1

Npop

(6.2)

where T is the number of time steps of the simulation and Npop is the number of

individual solutions evolving together in the evolutionary population. In turn, in the

online approach the mutation rate, denoted by pon, will change the information of

one single individual in each generation:

pon =
1

Npop

(6.3)

Following from that, the mutation operator in the online approach allows further

jumps in the search space, converging faster than its offline counterpart. This aspect

also means that it is more likely that the online algorithm falls into local minima.

However, since the evolving time assigned is rather limited, a faster improvement of
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the solutions compensates for this effect, since in general chromosomes do not have

enough time to properly converge.

In conclusion, the offline algorithm navigates the search space slowly, making

a large number of small steps; it is essentially a highly exploratory and ‘careful’

approach, capable of finding near-optimal results, but generally requiring many

generations to do so. Meanwhile, the approach used by the online algorithm is more

an exploitative approach, taking a small number of large steps; this is a strategy

that can provide excellent results in a short time, but generally runs the risk of not

achieving the best results available.

6.5.2 Performance

In Fig. 6.5, the performance of both algorithms is visualised. Performance is calculated

by measuring the satisfaction achieved by the population using the fitness function,

see formula 5.11 on page 168. At this point it is important to recall that a person

living in the city is ‘satisfied’ if he/she lives close to a green area.

The functions plotted show that the offline version marginally outperforms its

online counterpart, but only towards the end of the simulation, where the online

satisfaction figures decay. This behaviour can be explained after analysis of the

pattern of land purchase behaviours in the two approaches. As we will see, key

relevant factors in this behaviour turn out to be the spatial positioning of the selected

green areas, particularly the distance from the protected cells to the different CBDs,

and also the numbers of cells protected.

The Alonso (1964) urban model adopted in this work has a general tendency to

concentrate most of the population close to the CBD. Consequently, the measurement

of how many of these protected patches of land are close to the three defined central

areas of the lattice can provide significant information about the level of satisfaction

achieved by the inhabitants of the city. This distance concept is called in the

present work the ‘closeness’ factor. The closeness factor is defined as a measure

which averages the distance from the protected cells to each corresponding CBD, see

Fig. 6.6. The mean is calculated by grouping the cells of the lattice in concentric
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annuli around its CBDs. Each ring is considered of distance one. Finally each group

is multiplied by its distance and averaged for each time step. This can be formalised

as follows:

clo = {∀c ∈ P : |Θ(c)−Θ(CBDc)|} (6.4)

where P is the set of protected cells and Θ is the function that returns the

correspondent annuli of a cell c in function of each assigned CBD, denoted by CBDc.
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Figure 6.5: Comparing the online & offline algorithms’ performance in terms of the
satisfaction achieved by the urban population during the complete time horizon
of the simulation. This satisfaction is quantified by the application of the fitness
function. Regarding the purchasing strategy, the offline approach uses a stochastic
strategy to decide the moment in which the purchase decisions are taken and the
online approach uses a threshold-based strategy that takes the information from the
fitness of the random population of EA solutions as it is explained in Fig. 6.4

.

Here it is important to mention that the difficulty in allocating green parcels of

land close to the peri-urban areas of the city (which would improve the closeness

factor and better serve more populated areas) is related to the quantitative difference

between the available budget and the rural prices of the peri-urban areas of the city.

In response to its immediate urban development, the price of these patches of land
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TIME STEP OFFLINE PERFORMANCE ONLINE PERFORMANCE

50 0.00 0.00

100 1.44 23.64

150 164.26 297.58

200 1348.52 3433.60

250 6688.92 16970.38

300 31299.28 72332.92

350 76971.42 126669.80

400 107088.92 141619.40

450 122133.00 140413.40

500 131880.20 132985.00

550 138961.60 123126.60

600 142662.60 115859.60

Table 6.2: Numerical values of the online & offline algorithms’ performance in terms
of the satisfaction achieved by the urban population and measured by the fitness
function during the complete time horizon of the simulation (data in line with
Fig. 6.5).

increases significantly (Plantinga and Miller, 2001).
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Figure 6.6: This figure represents the average closeness of each protected cell to the
corresponding CBD in both algorithms. This factor is calculated using the number
of concentric circles between them. Closeness is a key element in the analysis of the
performance of both algorithms. This aspect can be seen as a qualitative measure of
a given solution.

In terms of the ability of the algorithms to allocate their green cells in more
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efficient areas of the grid, Fig. 6.6 shows the different values of the closeness factor

for both approaches. The functions depict noticeable differences in terms of the

shape and the average distance from the protected cells to their corresponding CBD.

The online approach is a more intelligent strategy, capable of allocating the selected

green areas closer to the city centre. This tendency, that can be almost described

as constant from time step 200, is valid for the entire simulation period. On the

other hand, the offline algorithm displays consistently higher values than the online

approach with a steady monotonic increment throughout the process.

TIME STEPS ONLINE CLOSENESS OFFLINE CLOSENESS

50 8.27 8.16

100 9.11 7.44

150 8.63 6.90

200 8.65 6.48

250 9.26 6.44

300 10.01 6.50

350 11.33 6.67

400 11.98 6.83

450 12.40 6.89

500 12.70 6.95

550 12.97 6.99

600 13.07 7.05

Table 6.3: Numerical values of the average closeness of each protected cell to the
corresponding CBD in both algorithms, offline and online. Results in line with
Fig. 6.6.

Along with the spatial position of the cells, the total number of purchased green

areas is also a salient factor which influences the final level of satisfaction. As shown

in Fig. 6.7, at the beginning of the simulation both algorithms have very similar

behaviour. However from about halfway into the simulation, around time step

350, the online algorithm starts to fall behind in terms of the number of protected

cells. This effect is caused by the restrictive purchasing schedule strategy selected

for the online approach, which does not consider any affordable non-urban cell

profitable enough to be purchased. In contrast, the offline policy constructor is able

to more efficiently manage its budget in the latter half of the simulation, buying

some affordable cells in the outskirts of the city.
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Figure 6.7: This figure shows the performance of both approaches in terms of the
number of green cells protected at each time step during the simulation.

TIME STEPS OFFLINE NUM CELLS ONLINE NUM CELLS

50 8.24 8.12

100 25.74 25.72

150 41.70 44.48

200 57.18 64.50

250 72.52 82.26

300 86.78 96.40

350 101.22 103.74

400 108.88 107.22

450 114.18 108.86

500 117.70 109.86

550 120.54 110.38

600 121.54 111.00

Table 6.4: Numerical values of the number of green cells protected at each time step
during the simulation by both algorithms: offline and online. These numbers are in
line with Fig. 6.7.

One conclusion that can be drawn from these figures is that, if the analysis

considers the moment in which the protection purchase was carried out, it can be

seen that actions taken at the end of the simulation have less impact on the final

performance. This arises from the aggregate nature of the definition of the fitness
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function. Since the online algorithm needs a certain level of satisfaction to allow

a purchase, these late-stage acquisitions are rejected, and consequently we see the

offline strategy catching up and overtaking the online strategy in terms of protection

decisions late in the city’s development.

Future analysis needs to be done to better understand the causes and dynamics

of these behaviours. However, it also should be mentioned that the limited number

of generations allowed for the online EA may be an important factor. With more

generations allowed, for example, it could be that we would see even better protection

decisions made at early stages by the online EA, and, although we might still expect

the slowdown in purchasing at later stages, the earlier boost may keep it ahead of

the offline algorithm in terms of number of areas protected.

6.5.3 Spatial Distribution of Cells

Visually, the spatial arrangement of the protected cells resulting from the policy

constructor of both approaches, captured in time step 300, shows some noticeably

different patterns.

The corresponding figures showing the topological distribution of green areas are

the following: Fig. 6.8 represents the final offline spatial distribution with a fixed

purchase schedule plan, Fig. 6.9 depict the spread of cells when a stochastic schedule

plan is applied and finally Fig. 6.10 that uses the threshold-based strategy to decide

when is the best time to buy.

General observations about the distributions of green cells in these three ap-

proaches can be made as follows. It is interesting to see how the patterns vary with

the different variants of the purchasing strategies. The offline policy constructor

implements two strategies: a fixed and a stochastic variant. The threshold-based

strategy is developed for the online algorithm. From its qualitative characteristics,

the fixed purchasing schedule strategy manages to protect its green areas in locations

generally further from the CBDs. This fixed approach also manages to protect a

large number of cells, however only a small number of them are placed between the

urban cores. Since the approach tries to protect cells as soon as it has funding for any
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of the available areas and the financial resources received monthly are significantly

lower to the prices of the land, to save enough resources to buy expensive cells close

to very populated areas is complicated.

Figure 6.8: Offline algorithm: The lattice shows the spatial distribution of green cells
in time step 300 with a fixed purchasing schedule strategy. In this case, green
areas are located generally further from the CBDs. The approach achieves to protect
a large number of cells, however only a small number of them are placed between
the urban cores.

In the stochastic purchasing schedule, on the other hand, the total number of

protected cells is lower than in the fixed purchasing schedule. Recall that in this

strategy the algorithm avoids any purchase 70% of the time that the algorithm has

enough resources to do it, which seems responsible for this behaviour. However, the

accumulation of money allows the algorithm to invest in more expensive patches

of land. Hence, the majority of these cells are located in more populated areas,

closer to the CBDs. Then, in conclusion, the stochastic approach surpasses the fixed
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approach due to the fact that the higher number of cheap protected cells of the

fixed approach cannot compete with the higher quality of the ones selected by the

stochastic strategy.

Figure 6.9: Offline algorithm: The grid depicts the spatial distribution of green cells
in time step 300 with a stochastic purchasing schedule implementation. The
total number of protected cells are remarkably reduced if it is compared with Fig. 6.8,
a fix purchasing schedule, but the majority of them are located in more populated
areas, closer to the CBDs.

The online approach implements a threshold-based purchasing schedule to decide

when to buy and when to save the budget for the next generation. This approach is

capable of protecting a slightly lower amount of cells than the stochastic procedure of

the offline approach at the end of the simulation. It achieves a compact distribution

of green areas and connects the majority of them. The quality of these cells also

tends to be high, being mostly placed close to the most crowded areas of the city.
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Figure 6.10: Online algorithm: Visualising the spatial distribution of green cells
in time step 300 with a threshold-based purchasing schedule implementation. The
adaptive strategy achieves the most compact distribution of green areas compared
to the other two approaches. With a number of green cells similar to the stochastic
strategy, the approach allows to connect the majority of them.

If a comparison between the stochastic offline approach and the threshold-driven

online algorithm is carried out, it can be concluded that even if there is a general

tendency in both strategies to place more green areas in the zones of confluence

amongst CBDs, the offline topological distribution is rather more scattered, with

some of the cells located in the extremes of the lattice. In contrast, the offline

approach groups the green areas in some well-formed clusters, even though factors

like size and compactness of the protected land were not explicitly included as

objectives in the definition and calculation of the fitness function.

Focussing now on the offline approach, we can look at the difference between the

fixed and stochastic purchasing strategies (Fig. 6.8 and Fig. 6.9). A conclusion that
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results from inspection of these very distinct patterns is that the purchase strategy

seems to be a critical factor for the entire land protection process. The differences

(at least based on visual inspection) between fixed and stochastic purchasing appear

as marked as the differences between the offline and online strategies themselves.

Further consideration allows this to be traced back, again, to the time-dependent

nature of the budget, and the strained relationship between budget level and the

general dynamics of rural land prices, since the distance to the CBD and the amount

of cells are strongly linked with the purchase strategy. Its influence in shaping the

overall outcomes leads to the suggestion that ongoing research in this area might

usefully consider separating the overall task into two phases, as shown in Fig. 6.11. A

key conclusion is the crucial role of the purchase schedule plan, given that purchase

decisions are dependent on a restrictive budget which limits the amount of land it is

possible to acquire.

Figure 6.11: Simple depiction of what we propose to be an optimal way to engineer
effective green planning practice, based on our experiments and results.

Size is an important factor in the pattern of use of a given green area, linked

with the visit frequency and the type of activities undertaken in parks (McCormack

et al., 2010). However, even if larger areas are capable of supporting a more diverse

type of uses and activities which increases their attractiveness (Broomhall, 1996),

other studies conclude that it is better to design a layout with numerous small green

areas than a few large parks (Bengochea Morancho, 2003). In this particular aspect,
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the final spatial pattern distributions linked to the study of the population’s needs,

as done in this work, clearly produce a contrary conclusion. Even if including other

more complex factors into the calculation of the fitness, such as protection areas

of high environmental value, crowdedness, level of amenities, size of the park and

connectivity with other areas, could affect partially the spatial results, our results

can contribute to the discussion towards more effective designs of green area layouts

within the green planning community.
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Figure 6.12: In this plot, the behaviour of the budget that was not spent in each
turn of the simulation for the online (in blue) & the offline approach (in green) is
shown. From time step 400 accumulation of the budget shows the difficulties that
both algorithms face to find appropriate cells to buy.

Finally, the behaviour of the remaining budget in one optimisation run using the

scenario 1, can be observed in Fig. 6.12. The similar nature of this parameter in

both approaches during all the simulation process is an interesting effect to notice.

The tendency of the function created can be seen as a measurement of the level of

difficulty that both optimisation approaches face in order to acquire new cells to

convert them into green spaces. This can be especially observed from around time
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step 400, where the slope of the functions increase significantly. This is an effect in

line with other conclusions held in the system by studying different factors of the

optimisation process.

6.6 Conclusions

In abstract terms, the field of study of this chapter is SDMPs under uncertainty in

stochastic domains. These types of problems are normally addressed with a variety

of non-evolutionary strategies. The pursued goal is to assess the suitability of EA

techniques for this task, particularly in the context of its application in a green

space allocation planning model. The main objective of the developed model is to

determine an investment strategy which ensures a proper provision of a given kind of

resource, in this case parks, for the population of a city within a predefined period

of time.

It is illustrated how two different EA methodologies, an online and an offline

approach, are implemented and how they are equipped to cope with the uncertainty

in constraints and objective functions, by means of a specific implementation of

Monte Carlo sampling. In the online version, the algorithm is able to see the state

of the system at any time, being capable of taking decisions in real time. The offline

strategy has to look ahead in order to forecast all the possible situations and create

an entire plan for a long period of time. Both approaches were tested on a complex

version of the urban growth model, configured with three CBDs and multiple price

gradients to take more advantage of the application of the evolutionary technique.

Finally, the performance of their objective functions, the computational time used

and the emerged spatial patterns are compared, explaining the behaviour of both

approaches.

The experiments show that both algorithms accomplish similar results in terms of

the level of satisfaction achieved by the population, measured by the fitness function,

see Fig. 6.5; the offline version marginally out-performs the online at the expense

of using significantly more time to converge. Disparity in factors like the number

of cells protected, the average closeness to a CBD and the final spatial size and
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distribution of green areas shows the different planning biases of the algorithms. Due

to the aggregated nature of the budget, different purchasing strategies are tested,

concluding that the details of the purchasing strategy are critical factors within the

problem.

Finally, from the research conducted here we believe that evolutionary techniques

can be considered a valid option to solve SDMPs under uncertainty in complex

environments.
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Conclusion

7.1 Introduction

This thesis concentrated on research into applying evolutionary algorithms to a

complex problem in urban development. Specifically, the focus of interest was to

investigate the creation of plans to locate green spaces over time, subject to budget

cycles, in the context of continual growth in both population and infrastructure, the

details of which could not be reliably predicted in advance. Particular attention

was given to equipping the algorithm with strategies to cope with the inherent

uncertainties in the task. Based on Monte Carlo sampling and the use of the urban

model as a surrogate, two EA approaches were developed. The first has an offline

nature, where the green space allocation policy over the entire time horizon is fully

generated at once. In the second ‘online’ approach, the algorithm solves the problem

step by step, and each step is able to adapt with knowledge of the decisions and

early outcomes from the previous steps.

7.2 Main Findings

The following points are the most important findings reported in this thesis.

• To deal with the uncertainty derived from generating planning policies subject

to future unknown characteristics of the system, this work bases the gathering
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of information on Monte Carlo sampling techniques and on an equivalent

version of the urban model used as a surrogate tool. The surrogate model is

able to inform the system about the nature of the urban dynamics as well as

the amount of noise added to it.

To collect statistics from the surrogate model, the full simulation needs to be

run several times to lead to robust results. However, experiments reveal that

the number of full simulation runs required for this purpose is not onerous. This

conclusion is in line with the analysis of Miller and Goldberg (1996) relating

to the optimal sampling for GA.

The statistical knowledge gathered using these techniques is a major factor to

take into account for the validity of the results. If the surrogate model is not

able to properly infer the trends of the system, conclusions would be poor and

non significant. Hence, special consideration in this regard would be required

to transfer the methodology to other urban systems.

• This thesis is based on the development of an extension of the traditional urban

economic model of Alonso. The model was enhanced to reflect more realistic

conditions, in order to fit the requirements of the selected location-allocation

problem. These enhancements allow the representation of a mechanism to

design policies for acquiring and allocating green spaces in urban areas and

to model the ecological degradation process caused by the expansion of the

urbanisation.

The resulting theoretical framework is applied together with a CA-ABM ap-

proach, creating a hybrid environment that it is aimed at shedding light on

aspects of urban growth. This theoretical model was validated by different

experiments conducted and reported in several publications (see Sec. 1.6) and

could be the basis of further interesting studies in the area of sustainable urban

development.

• This work also shows the applicability of evolutionary algorithm strategies as

an appropriate optimisation method for both offline and online versions of the
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problem. Several aspects of interest from both implementations are:

– One important factor in constructing effective offline planning designs

is the adaptive submodularity property that the problem shows under

certain configurations of the city. This aspect was analysed using the

offline version of the EA and two baselines: one random and another

intelligently designed to fulfil the needs of the population. The conclusions

derived from the comparison between them are in line with what can be

expected when these algorithms are applied to problems characterised as

adaptive submodular (Golovin et al., 2011).

However, even if more complex configurations of the city seem to increase

the level of complexity of the search space, favouring the performance

of EA over the intelligent CLO baseline, it seems that there are factors

that exert more influence than others. In particular, the dynamic nature

of rural prices affects the optimisation process more significantly than

the addition of other spatial factors, such as creating a more complex

spatial configuration of the city with different CBDs. While similar

conclusions were reported in other works (Pukkala and Kurttila, 2005),

these conclusions are still preliminary and further experiments with more

factors should be explored to validate how the complexity affects this type

of problems.

– The offline and online method were also compared. In the case of the

online method, it can be concluded that the performance of the algorithm

increases significantly if, instead of focusing on buying cells as soon as

the policy collects enough budget to afford that transaction, the problem

is approached from the perspective of finding a policy that sometimes

accumulates the current budget in order to facilitate the purchase of a

better option in the future.

To support this, information from the random initial population of the

EA approach was used, providing insights into how much the search space

is constrained by the budget at this time. This information aided the
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algorithm in knowing not only when the acquisition operations should be

explored, but also to save time in the construction of the online policy. In

both cases, due to the complexity of the selected encoding of a problem

solution, the crossover operator was removed from the algorithm due

to the computational time required in finding feasible solutions after its

application.

– The encoding and the selection mechanisms used in the definition of

the EAs have a direct impact on the evolution of the system, and hence

on the conclusions derived from the experiments included in this thesis.

Different encoding would result in other types of case studies with the

development of a distinct set of mechanism designed to deal with them.

– Another key aspect of this research is the definition of the fitness function.

Its definition is oriented to maintain the level of satisfaction within an

urban area which leads to planning solutions which ensure the level of

service for this population in the long term. However, due to its concrete

formulation, where each agent only gets advantage of the closest green area

in the surroundings of its household, the problems falls into the adaptive

submodularity property commented previously. Similar definitions that

account of all the green areas around would have avoided this complication.

– Finally, another crucial aspect for the system is the definition of the

budget, with an aggregate behaviour. Similar version of the problem

where financial resources cannot be accumulated, would have resulted in

a much simple problem. Most of the mechanisms developed in this thesis

were aimed to aid the algorithms to achieve a higher level of efficiency

due to this factor.

• The results derived from this work could provide some useful insights to

the green urban planning community, in particular concerning the spatial

arrangement of parks that are designed mainly to satisfy the necessities of

the population living close to them. Different spatial patterns were generated

according to the different policies that this thesis investigated.
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In this regard, the EA tends to naturally cluster the areas close together, which

indicates that large green surfaces achieve higher levels of satisfaction from visi-

tors than a set of multiple scattered areas. However, this conclusion is contrary

to other results reported in the literature. For example, Bengochea Morancho

(2003) claims that it is better to design a layout with numerous small green

areas, rather than a few large parks. On the contrary, Broomhall (1996) said

that lager areas are capable of supporting more diverse activities, which increase

their attractiveness for the visitors. Hence, even if the level of attractiveness of

the park was not included explicitly in the model, from the results gathered

here it can be concluded that designing large parks are also an option to

consider for planners and decision-making stakeholders in order to better fulfil

the needs of the people who use them.

7.3 Future Work

There are multiple areas presented in this thesis, from both the computational

intelligence and computational sustainability perspectives, that would benefit from

further work. These possible additional lines of research are discussed in the following

subsections.

7.3.1 Factors Influencing Agents’ Behaviour

As it was previously mentioned, open space planning from a demand perspec-

tive (Maruani and Amit-Cohen, 2007), uses attributes from the specific target

population to find the most efficient green allocation strategy as a response to social

requirements over gardens and parks.

Distance from the park to the dwelling is commonly considered the major factor

that influences visit frequency and activities undertaken in parks (Björk et al.,

2008; Woolley, 2003). The selection of this feature in planning is based on the

observation that only a small percentage of users takes any means of transport to

access them (Wong, 2009). Consequently, parks at a short distance are visited more

often than large remote parks (Roovers et al., 2002).
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With the use of the spatial distribution of the green areas and the population

density among other features, a zoning analysis can be used to create a ranking of

location alternatives on the basis of their overall attractiveness for the future new

park. The process includes conducting a multicriteria land suitability analysis, and

the posterior selection of optimal sites through an optimisation process according to

a measurable criterion.

However, even if from this quantitative perspective the provision of green areas

has been carried out following an efficient process, this fact does not necessarily

imply that users have enough incentive to visit them. In this matter, a very small

number of studies are focused on the factors that could promote or limit the use of

these green areas (Bixler and Floyd, 1997; Hitchings, 2013).

In the concrete case of green space allocation, the existing literature covers

a specific range of issues, such as the protection and restoration of valuable and

degraded areas (Zucca et al., 2008), the preservation of carbon stocks (Marinoni

et al., 2009) or the definition of ecological corridors (Ferretti and Pomarico, 2013)

among others. In these studies, data are normally gathered by on-site surveys, a

series of spatial observations and by experts’ knowledge. In the present proposition

of future work, we are especially interested in the analysis of factors which negatively

influence the frequency of visits to a park.

According to that premise, future studies could investigate some of these factors,

such as crowdedness, size, distribution and design, in an urban growth model using

an Agent-Based System framework in order to improve the understanding of the

individual perceptions that directly influence the frequency of use to these open

spaces. This knowledge can contribute to the design of more comprehensive green

policies which enhance the satisfaction of a larger number of residents. Based on these

factors, the model, the behaviour of agents and the nature of the fitness function

can be enriched to better mimic heterogeneous behaviours of visitors.

In the following, we discuss in particular the factors that could discourage people

to visit parks:
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7.3.1.1 Crowdedness

High population density in green areas is associated with various factors including

population and urban growth. A higher demand for these spaces is created by the rise

of the average standard of living, and an increasing level of environmental awareness

in society (Cheshire and Sheppard, 1998; Kline, 2006; McPherson, 2006).

Crowding perception is a subjective concept which can be perceived when the

area is highly congested with heavy pedestrian and vehicular use. Depending on the

specific user profile, the perception of crowdedness may be different. For instance,

fairly experienced users feel more intensively the saturation when they compare their

current visit with past experiences (Ditton and Sutton, 2004; Vaske et al., 1980) and

when they use the area more frequently (Arnberger and Brandenburg, 2007). These

local visitors can feel the saturation to be a factor which decreases their quality of

life (Lankford and Howard, 1994; Brunt and Courtney, 1999; Williams and Lawson,

2001).

Congestion can provoke different compensatory measures such as time and in-

traspatial displacement if any suitable alternative exists (Hall and Shelby, 2000;

Shelby et al., 1988; Manning and Valliere, 2001), and may decrease the importance

of the distance to the park for its use (Kaczynski et al., 2008). This interspatial

displacement also implies extra costs in terms of time and transportation, which can

be a problem for low income individuals who cannot afford to move to other green

areas outside the city (Scottish Natural Heritage, 2008).

7.3.1.2 Size & Distribution

Size is an important factor to take into account when patterns of use of green areas

are analysed. In the related literature, it is a common practise to group parks into

two different types: urban local green areas selected for daily outdoor activities, and

non-local areas used for excursions or weekend sports (Arnberger, 2006). McCormack

et al. (2010) consider that larger parks are capable of supporting a wider range of

activities, which increases their attractiveness (Broomhall, 1996). From a different

perspective, Bengochea Morancho (2003) concludes that it is better to have numerous
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small green areas, which should be complemented with a well planned set of large

parks. In her analysis of how green areas influence prices of the households, this

conclusion is derived from the role of distance, which is primarily emphasised over

others.

There are studies that connect the concept of distance with size. Pouta and

Heikkilä (1998) create a classification relating type of green area, size and distance.

They define the minimum size for local parks to be between 1.5 and 3 hectares

reachable in 300 metres, and outdoor recreational parks are characterised by 20-25

hectares at 1 kilometre. The European Commission has recommended that residential

proximity to green spaces should be limited to 300 metres with an area of at least

5000 m2 (Tarzia, 2003).

Another important aspect to consider is the topological distribution of these areas

within the city. It is quite common find cases where parks are non-homogeneously

distributed. Instead, they are generally concentrated over some districts which leads

to extensive areas with a lack of proper provision.

A non-homogeneous set of green areas contributes to the appearance of inequalities

where some people have easier access to nature areas in their local neighbourhoods

than others (Pickett et al., 2001). In general, underprovision and an overall lower

level of vegetation cover are more commonly found in low income areas (Iverson and

Cook, 2000; Pham et al., 2012). This factor is an important environmental equity

issue for city planners.

7.3.1.3 Design & Green Services

Design is another important element which influences the frequency of use of green

areas (Schroeder and Daniel, 1982) and contributes to the improvement of health and

well being (Floyd et al., 2008). Users travel further distances to visit a certain green

area if it has extended characteristics and enhanced aesthetical factors (McCormack

et al., 2006; Epstein et al., 2000). Commonly size and design are also concepts linked

together since larger parks permit the allocation of a wider offer of services (Giles-

Corti et al., 2005).
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However, as a negative factor, the level of greenery and physical barriers like

inadequate facilities to interact with the park (walking trails), lack of transport

choice, poor accessibility or unaffordable recreational activities may discourage some

people to use these parks.

7.3.2 Enrich Population profiles in their use of Green areas

Population segments divided by gender, age, household composition and socio-

economic status differ in how they use and perceive green areas (Burke et al., 2009;

Eisler et al., 2003). This makes it very challenging to find a unified policy which

achieves a complete fulfilment of these diversified demands. For instance, it can be

mentioned that elderly people show lower frequency of use due to personal mobility,

health and security fears (Payne et al., 2002; Burgess et al., 1988). Meanwhile

children have higher needs of open areas for playing and social interaction when they

live in high populated dwellings (Loukaitou-Sideris and Stieglitz, 2002; Crane et al.,

2006).

It is also proposed to make a more active use of population demographics and back-

ground information for grouping visitors according to different interests and personal

characteristics using an ABM approach. As it has been argued, ABM is a technique

particularly suitable for studying socio-economic and environmental trends based

on heterogeneous individual interactions and it complements other equation-based

techniques by means of the exploration of individual-level behaviours (Brown et al.,

2006). ABM has been extensively used to study urban growth phenomena (Huang

et al., 2013; Matthews et al., 2007) in the context of rich individual profiles, normally

parametrised from quantitative surveys (Robinson et al., 2012).

7.3.3 Multi-objective Approaches

Since problems related to location-allocation of resources are in nature multiobjec-

tive (Watts et al., 2009; Nelson et al., 2009), we propose the implementation of a

multiobjective planning extension of our current urban model (Vallejo et al., 2013),

focused on the discouraging factors commented on the previous section: crowdedness,
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low level of activities, poor accessibility, lack of security. The analysis of these

elements in a diversified population allows us to capture and understand the most

relevant synergies and conflicts created by the interactions with other dynamics in-

cluded in the model, such as demographic growth, urban extension and environmental

degradation.

7.3.3.1 Ecological Protection

One of the most urgent research issues within the broad field of urban planning

is the study of mechanisms that can mitigate the ecological degradation that is

invariably linked with urban expansion. What makes this particularly difficult is

that the process of urban expansion needs to achieve effective and acceptable results

at many time-scales. For example, if a growing city builds quickly on the majority of

the green spaces available to it, it will severely limit its further growth opportunities.

An optimal land-use allocation can preserve valuable land resources and maintain

environmental stability.

Another important kind of landscape that can be located in the surroundings

of urban areas is forest landscape. Urban forestry refers to concentrated groups of

trees in urban settings. The use of these landscapes has been oriented according to

a set of different goals, often contrary to each other (Nilsson and Randrup, 1997),

such as timber production as a provision service in contrast to the ecological interest

in maintaining natural diversity and boosting regeneration capacity. This can also

facilitate the reduction of CO2 emissions from deforestation and soil degradation.

To manage such conflicts, it is necessary to achieve a trade-off between the

different aspects, so that the urban forestry program emerges as a state funded

entity to manage a sustainable production of timber. The main agents involve in

this process are:

• State forest service.

• Private owners.

• Wood processing industry.
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• Environmental NGOs.

This line of research would also focus on public ownership as a tool to fulfil the

conservationist goal. Municipalities would acquire these areas using what is called

‘land-buying funds’, and fitness would measure not only the amount of protected

cells in the lattice in terms of the ecological value at the time of acquisition, but also

the number of other cells that are protected in its neighbourhood. This way, the

fitness measure guides the process towards promoting larger, connected protected

areas, which is a crucial issue in terms of sustainability.

Formally this fitness function could be expressed as follows:

f(t) =
T∑
i=0

(bio(ci) ∗ 100 +NV ×Ncp(ci)) (7.1)

where c(t) ∈ P is the set of protected protected cells in time t, bio is the function

that retrieves the ecological value of the cell ci, NV is a constant that represents the

additional reward the fitness has for each protected cell that belongs to the neighbour

of the cell ci into consideration and Ncp is the function that returns the number

of protected cells in the neighbourhood of ci. bioValues are in the range (0 − 1) .

To calibrate the effect of this factor in the calculation of the fitness function, it is

required to increase its magnitude by a factor of 2.

The proposed future work would be focused on the optimisation of the two

conflicting objectives: (i) to achieve the maximum level of service for the population

living in the city, and (ii)maintaining a high level of ecological protection where

these values take into account as a positive factor the amount of green areas located

together, which can consequently support better a large number of biota. The

problem can be represented with the following vector J of n system responses, where

n in this case is equal to 2.

M =

J1

J2

 =

Satisfaction
Protection

 (7.2)

In continued but uncompleted work in this direction, we have applied a modifica-

tion of the PAES algorithm as the MOEA approach to find the best trade-off between

234



Chapter 7: Conclusion

these goals. The spatial representation of the implementation of this algorithm using

the satisfaction fitness and the conservation fitness leads to arrangement of green

areas below.

(a) Visual representation of the city

and the generated policy at time

step=300.

(b) Illustration of the final arrange-

ment of the city at time step=600.

These figures shows that, even if it is possible to generate a policy that covers

both conflicting aspects, the policy constructor seems to favour areas further from

the centre of the city due likely to the very affordable nature of the prices in these

areas. More research and further analysis would be necessary to come up with further

conclusions.

7.3.4 Model extension

The proposed extensions of the urban model can be outlined as follows:

• Defining different agents’ profiles according to their family structure, gender and

age factors. Each profile should have associated a set of predefined motivations

to visit green areas, which generate different patterns of use. These varied

types would be based on data collected from quantitative studies published in

the associated literature and could include: elderly people, young families with

children, teenagers, young professionals and so on. Since age and offspring

are characteristics that have been already implemented in the model, the task

235



Chapter 7: Conclusion

here will consist only in the mapping of each of them to a set of predefined

profiles, adding the corresponding information to each agent. The profile will

cause some effects on the computation of the fitness, contributing to each

profile with a different level of satisfaction according to the type of green

area in the surroundings. From a computational point of view, this will not

affect the performance of the model. However, since population is used to

compute the fitness, richer information would be necessary to be collected to

aid the EA algorithm to construct an efficient policy. Further checking would

be required to see if this information could be easily collected and transferred

to the algorithm.

• Defining the rules that allow the system to decide for each agent which parks

would be visited and with which frequency. Taken into consideration are their

location in the grid and their patterns of use according to their personal profile.

Using the resulting population density and the size of each park, this line of

work would include the concept of crowdedness, which will decrease the level

of satisfaction of the affected population. This assignation could add some

complexity to the system if the agent is able to choose an alternative green

area in their surrounding, is this area exists or if the use of this areas can be

shared between some of them. The potential of this type of model is in the

study of complex dynamics of use of the population. This can be extended to

include the use additional means of transport to rich other green areas that

offer further level of amenities.

• Clustering analysis. Based on the preliminary visual analysis of the topological

structures formed by the spread of green areas generated by the different

algorithms developed in this thesis, further quantification is needed to draw

consistent conclusions about the consequences for the population. The study

could be implemented using multiple metrics, like size, shape and relative

location of these areas, and techniques such as k-mean algorithms based on the

topological centroids. This aspect can be extended to study the links between

green areas, applying techniques like connectivity models based on distance,
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like hierarchical clustering. This extension would require extra computation

but from a post-processing perspective. Another module within the framework

could be created to take as an input the final arrangement of the cells in the

lattice and compute connexions, dependencies and relationships between these

green areas.

• Enriching the characterisation of green parcels to include the aforementioned

factors and their interdependences (design, green services, accessibility). Ad-

jacent green areas will be considered as a single unit. This will permit the

existence of parks larger than a single cell in size with different designs, levels

of greenery and activities to be undertaken. To implement this characteristics

within the model a new class that abstracts these green areas over the single

unit green areas will be implemented. The division of functionalities will be

required to split the code between them and create appropriate methods of

communication. Other elements should be also revisited like distance to green

areas, which should look for the centroid of the park and the ecological value

of the area, which could not be homogeneous.

• To model the crowdedness factor each park should have a metric related to

the potential number of visitors than can supply according to their size. This

metric would be constructed in function of the people living close by. Further

refinements would be needed to capture that a given agent can visit different

parks if multiple areas are located in their surroundings. This selection would

be affected by multiple factors including the level of amenities, the profile of

each particular agent and the accessibility level. Crowdedness will also influence

the fitness function as a negative factor. However, the perception of crowds

are subjective. An heterogeneous influence should be added. This should be

extended to the variety of agents’ profiles, defining different upper and lower

bounds for each of them. Further analysis should be carried out to measure

this characteristic as a general aspect of the area.

• Creating some scenarios in which the final spread of parks are not homoge-
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neously distributed, in order to study how the population could cope with

crowded green areas or a lack of provision. The use of scenarios has proven

useful in the study of the impact of multiple socio-economic dynamics in an

urban context (Murray-Rust et al., 2013). In each scenario, the model could

be optimised using an EA technique for a single or multi-objective set of

characteristics, encompassing the minimisation of economical costs and the

maximisation of both the population satisfaction and the protection of the

highest ecological valued areas. In this case, instead of starting the study

from an empty grid, different more mature urban configurations would be the

starting point. Extra functionality would be required to allow these types

of lattices and extra gathering of data would be implemented to study the

consequences of each of these scenarios.

• The study of the time required to run the experiments will be extended to cover

other areas of the thesis. Information should be added regarding the length of

the experiments and how this factor changes when different configurations of

the city are tested. This will cover multiple sizes of the lattice and richer layouts,

with more CBDs located differently within the grid. Output information from

the simulation would include this extra information, with no extra additions

to the model or optimisation procedures.
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Data & Coding

This appendix includes information regarding the code and experiments from which

this thesis is underpinned. The entire content is stored in a public repository in the

GitHub community, concretely in https://github.com/MartaVallejo/PhD_Code.

The code is stored under the GNU General Public License v3.0 and can be cited

with DOI:10.5281/zenodo.802116.

The structure of the stored information is the following:

• Code: stores all the modules that the urban model framework is compounded.

All the files are classes implemented in Java.

• Experiments: allocate the data gathered from the different experiments con-

ducted during the PhD. Each experiment has a different name scenario. Con-

cretely, there are four scenarios:

– Scenario 6d

– Scenario 9gc

– Scenario 10b

– Scenario 13

• Matlab Scripts: covers all the scripts created to post-process the data generated

by the model.
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• developmentNotes.pdf : file with information about how to run the experiments,

descriptions of the modules, main variables, input and output files and Matlab

scripts.
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Development Notes

B.1 General Description

B.1.1 Modules & Files

• Random: Random approach, non-optimised.

– Baselines.txt

– SatisfactionRan.txt

• GatherData: Used only to gather the statistical data.

– Density.txt

– NonUrbanPrices.txt

– Urbanised.txt

– Rings.txt

• ClosestHeuristic: The closes cell that we can buy (from Scenario 7)

– Baselines.txt

– SatisfactionClo.txt

• Genetic algorithm: GA Satisfaction and GA Distance.

– GA DATA.txt General info
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– Result GA.txt with all the cells protected

• TestOptimisation: Test the EA approach.

– SatisfactionGA.txt

– Inconsistencies.txt

• MultiOptimisation: online GA Satisfaction (from Scenario 13)

– SatisfactionMO.txt

– realfitness.txt

• CheckFiles:

– Check Visually the distribution of cells protected in Result GA.txt or

Satisfaction CLO, RAN

– Check Result GA.txt regarding the budget.

– Visualise the population distribution in a given tick.

B.1.2 Variables

Seven kind of prices, each with:

1. Fitness:

• Distance only GA

– Tick0 −Min(Tick, sat) 6= 0

– Min(Tick, sat) 6= 0

• Satisfaction

(a) Ticks counted only GA

– Accumulative.
∑S

i=1

∑C
j=1

∑N
k=tj

s(ci,j)k

– Single.

∗ Initial
∑S

i=1

∑C
j=1 s(ci)t0

∗ End
∑S

i=1

∑C
j=1 s(ci)tN
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(b) Per agent

– Unique: Maximum satisfaction per agent: ∀a ∈ A, s(a) = max s(a, l)

– Aggregated: Total satisfaction per agent: ∀a ∈ A, s(a) =
∑
s(a, l)

∗ Flat: only one point per park if it is at maximum 3 cells of

distance.

∗ Weighted: (1 to 3) point depending of the distance.

2. Selection creation process: only GA

• Fix: all possible cells.

• Stochastic: only a percentage of possible cells.

B.1.3 Files

Data gathered for 600 ticks of the clock.

B.1.3.1 Gather Data

For each time step, we store an entire lattice 50 × 50 cells (2500). The lattice is

made up by a set of integer values. Each cell store a value in the system.

• Non urban prices.

– The number of times that this row has been updated.

– Mean of the price of the land when city grows.

• Urbanised

– Number of times this row has been updated.

– If the cell has been urbanised to the time t, then sum one in the lattice

correspondent to this time step.

1 + SizeLattice

• Density
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– The number of times that this row has been updated.

– If the cell is urbanised then it is calculated and stored the mean of the

previous value and the new value. Change: only sum and it can be divided

later.

• Rings Non-urban averaged priced in the different rings of the lattice.

B.1.3.2 TestSolution, Random, Closest Heuristic & Multioptimisation

TYPE FITNESS : S(Satisfaction), D(Distance).

TYPE SELECTION : F(Fix), S(Stochastic).

TYPE SATISFACTION AGENTS : Flat: 1 / Weighted: 2

TYPE FITNESS TICKS : Accumulative (10), Single - Initial: (21) / End: (22)

TYPE OPTIMISATION : 1, 0, MixApproach (TODO) In Multioptimisation

SAVE DENSITY : 1 Save population distribution to calculate real fitness.

• Satisfaction Different runs are appended into the same file if the run is not

finished properly. Each line corresponds to one time step.

1. Total population.

2. Total satisfaction (1): All the green spaces count.

3. Total satisfaction (2): Only the closest green space counts.

4. Total satisfaction (3): Protection

5. Total urban cells.

6. Total protected cells.

7. Min Green price.

8. Max Green price.

9. Average Green price

10. Min Urban price.

11. Max Urban price.

12. Average Urban price
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13. Min populated

14. Max populated

15. Migration

16. Closeness to the CBD

17. Protected cells

18. Remaining budget

SatisfactionMO (Additional fields):

19. Time

20. GA Population size

21. Generations until convergence

22. Number of mutations

23. Worst fitness

24. Best fitness

25. Mean fitness

26. SD fitness

27. 0 (not evolved), 1 (evolved not used), 2 (evolved and used)

In SatisfactionGA (name file):

1. GA ID (4 digits).

2. Satisfaction ID (4 digits).

3. Type of fitness: (TYPE FITNESS )

(a) Satisfaction (S) - Both aspects

– Ticks (TYPE FITNESS TICKS )

∗ Accumulative (10)

∗ Single - Initial: (21) / End: (22)

– Agents - Flat: 1 / Weighted: 2 (TYPE SATISFACTION AGENTS )
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(b) Distance (D)

4. Type of selection. (TYPE SELECTION )

(a) Fix (F)

(b) Stochastic (S) - <percentage> (PERCENTAGE STOCHASTIC )

5. Feasibility

(a) Feasible (F)

(b) Infeasible (I)

Example: 1234 5678 S101 F I - 1234 5678 D S50 F

In SatisfactionMO (name file):

1. GA ID (4 digits).

2. Satisfaction ID (4 digits).

3. Type of fitness: S (TYPE FITNESS )

– Ticks (TYPE FITNESS TICKS )

∗ Accumulative (10)

∗ Single - Initial: (21) / End: (22)

– Agents - Flat: 1 / Weighted: 2 (TYPE SATISFACTION AGENTS )

4. Type of selection. (TYPE SELECTION )

(a) Fix (F)

(b) Stochastic (S) - <percentage> (PERCENTAGE STOCHASTIC )

Example: 1234 5678 S101 F - 1234 5678 S101 S50

• Budget Budget used to buy and protect land. One per time step. Field:

Amount of budget given to the municipality in each time step. It is generated

randomly.

– BUDGET R: Randomly generated

– BUDGET P: In function of the population

• Scenario Initial biovalues of the cells included into the lattice. Type: double.
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B.1.3.3 GA Phase

• ResultGA Cells selected to be protected according to the GA optimisation

procedure.

File content:

1. Tick of the clock only when a cell is protected: it can be repeated if two

cells are protected in the same slot.

2. Pair/s of coordinates of each cell.

3. Price of the cell.

Name Format:

– Times that statistics are gathered.

– Type of fitness: (GA Satisfaction or GA Distance projects)

1. Satisfaction (S) - Both aspects

∗ Ticks (TYPE FITNESS TICKS )

· Accumulative (10)

· Single - Initial: (21) / End: (22)

∗ Agents - Flat: 1 / Weighted: 2 (TYPE FITNESS AGENTS )

2. Distance (D)

– Type of selection.

1. Fix (F)

2. Stochastic (S) - <percentage>

– Feasibility

1. Feasible (F)

2. Infeasible (I)

– ID (Four digits).

Example: 20 S101 F F 1234, 20 S212 S50 I 1234, 20 D F I 1234, 20 D S50 F

1234
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• GA DATA Located in folder Workspace to be updated from both GAs.

1. Type optimisation: OFF SAT, ON SAT

2. Lattice size

3. GA Population size.

4. Ticks of the simulation.

5. Times that statistics are gathered.

6. Generations until convergence.

7. Number of mutations.

8. Worst fitness.

9. Best fitness.

10. Mean fitness

11. Standard Deviation SD

12. ID (Same than Result GA).

13. Type of fitness:

(a) Satisfaction (S) - Both aspects

– Ticks

∗ Accumulative (1) - 0

∗ Single (2) - Initial: 1 / End: 2

– Agents - Flat: 1 / Weighted: 2

(b) Distance (D) - 0 - 0 - 0

14. Type of selection.

(a) Fix (F) - 0

(b) Stochastic (S) - <percentage>

15. I/F Infeasible solutions - Feasible solutions

16. Scenario (Type of prices).

17. CBDs.
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18. Type of Budget

19. Computational Time

Example:15 600 20 xxxx xxxx xxx xxx 1234 S 1 0 1 F 0 9g, ...1234 D 1 0 1 S 50 9F

Mean and SD fitness should be calculated in MATLAB

• GA Parameters

1. Number of individuals in the population.

2. Number of simulations.

3. Size of the lattice.

4. Scenario.

5. CBDs info.

6. Feasible - infeasible solutions.

B.1.3.4 TestOptimisation

• Inconsistency One file for all runs.

1. GA ID (4 digits).

2. Satisfaction ID (4 digits).

3. Number of inconsistencies: times that we try to protect a cell that is

already urbanised.

4. Number of failures because of a lack of budget.

5. Times statistics are collected.

6. Type of fitness:

(a) Satisfaction (S) - Both aspects

– Ticks

∗ Accumulative (1) - 0

∗ Single (2) - Initial: 1 / End: 2
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– Agents - Flat: 1 / Weighted: 2

(b) Distance (D) - 0 - 0 - 0

7. Type of selection.

(a) Fix (F) - 0

(b) Stochastic (S) - <percentage>

8. Feasibility

(a) Feasible (F)

(b) Infeasible (I)

9. Scenario.

10. CBDs.

11. Size lattice

12. Total Time

13. Type Price

14. Type Budget

Example: 1234 5678 1 15 20 S 1 0 1 F 0 9g, xxx D 0 0 0 S 50 9f

B.1.3.5 MOOptimisation

• Inconsistency One file for all runs.

1. GA ID (4 digits).

2. Satisfaction ID (4 digits).

3. Type of fitness:

(a) Satisfaction (S) - Both aspects

– Ticks

∗ Accumulative (1) - 0

∗ Single (2) - Initial: 1 / End: 2

– Agents - Flat: 1 / Weighted: 2
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(b) Distance (D) - 0 - 0 - 0

4. Type of selection.

(a) Fix (F) - 0

(b) Stochastic (S) - <percentage>

5. Scenario.

6. CBDs.

7. Size lattice

8. Time

Example: 1234 5678 1 15 20 S 1 0 1 F 0 9g, xxx D 0 0 0 S 50 9f

• Baselines

1. CLO/RAN

2. id

3. Scenario name

4. CBDs

5. Size lattice

6. Budget

7. Total time

B.1.4 Scenarios

B.1.4.1 Backup Allocation

At University: mv59/private/versions

Home: Documents/PhD/CollectedData/Code

B.2 How to run experiments: Steps

All the programs should share the same scenario.txt file and budget.txt. Create a

folder with the name of the new scenario if it is necessary and place the files into the

folder: CollectedData/Calculos.
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• In the GatherData module.

– Check current size of the lattice and change it if it is appropriate.

– If we want to start from scratch, initialise Urbanised, NonUrbanPrices &

Density files to zero.

∗ Location of the files: collectedData/Scenarios/CaseBase/FilesToZero.

∗ Take the ones with the correct size of the lattice and with the proper

number of ticks of the clock.

Otherwise copy them form the case we want to continue.

– In lattice.java

∗ update CBDS according to the desired scenario. NUM CBDS will

be updated automatically

∗ update scenario to assign the proper non-urban prices in cell.java.

– Run nLattice::TOTAL TICKS times GatherData to collect statistical

data for the GA in the Urbanised, NonUrbanPrices, Density & Rings files.

∗ Create a folder with the time that the data is gathered.

• In the GA Satisfaction/Distance project (normal Java project with parameters).

– Check input parameters: population size, number of generations, size

lattice and scenario name.

– Update Density, NonUrbanPrices & Urbanised files with the new files

calculated before.

– Run the program.

– Copy Result GA.txt to CollectedData/Scenario/NomScenario/Num Runs

when the program finishes

• The file Workspace/GA Data.txt is automatically updated.

• In TestOptimisation project:
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– Parameters: size of lattice: in <projectname>.rs

context.xml ::”World Size”, ”width”, ”height” (source view).

– In lattice.java update:

∗ Number of runs (TOTAL TICKS)

∗ NUM CBDS and CBDS according to the desired scenario.

∗ scenario to assign the proper non-urban prices in cell.java.

∗ SCENARIO NAME with the name given to the current scenario.

– Copy the Result GA.txt file from GA that we want to check.

– Run the program

– Copy satisfaction.txt into the folder CollectedData/Scenarios/NomSce-

nario/Num Run.

– The file inconsistecy.txt is automatically updated.

• When the collection of data is finished for the current scenario, copy GA Data.txt

and inconsistecy.txt to CollectedData/Scenario/NomScenario

• In Random project & Closest project

– Check parameters: size of lattice

– In lattice.java update:

∗ number of runs (Lattice::TOTAL TICKS)

∗ NUM CBDS and CBDS according to the desired scenario.

∗ scenario to assign the proper non-urban prices in cell.java.

– Run Random / Closest

– Place & satisfactionRAN.txt into CollectedData/Scenarios/NomScenari-

o/RAN or satisfactionCLO.txt into CollectedData/Scenarios/NomScenar-

io/CLO as corresponding

– protected.txt is not currently used.

If there are enough changes to create a new scenario, copy the .java files into

folders, zip them and copy to the folder CollectedData/Code
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B.2.1 List of Functions in Matlab

To run the post-process scripts in MATLAB, go to myFunctions2.m, choose the

number of the function to run, see if matlabXX needs any adjustment and call

myFunctions2(num function).

1. budgetGenerator Generate a file budget dependant on the population alpha

= 0.5: measure the importance of the population when the budget is generated.

Density.tx t: File with population evolution

2. simpleSatisfaction (matlab) Show simple satisfaction comparative for EA,

MO, CLO and RAN

3. simpleSatisfactionBar (matlab) Show simple satisfaction comparative for

EA, CLO and RAN

4. satisfactionTable50 (matlab) Show simple satisfaction comparative for EA

and RAN

5. latexTable (matlab2) Create the code in latex for a table with the satisfaction

achieved by the three approaches. Changes in the folder of the script matlab2

should be done to gather data for the three scenarios.

6. bestSatisfactionTest (matlab) Inconsistency.txt Create a plot with the best

Test values achieved with one inconsistency for each scenario.

7. failuresPlot (matlab) Inconsistencies.txt Create a stacked bar chart using the

bar function with information about the number of failures due to budget and

due to city expansion.

8. populationPlot (matlab) Create a plot with the population behaviour

9. cellsUrbanisedPlot (matlab) Create a plot with the number of cells urbanised

for RAN, EA and CLO.

10. protectedCellsPlot (matlab) Create a plot with the number of cells protected

11. migrationPlot (matlab) Create a plot with the behaviour of the migration
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12. lowerGreenPricesPlot (matlab) Create a plot with the collected green prices

with the lowest value

13. higherGreenPricesPlot (matlab) Create a plot with the collected green

prices with the highest value

14. greenSpacesPlot3D (matlab) Test the 3-D shaded surface plot for collected

green prices

15. lowestUrbanPrices (matlab) Create a plot with the urban cells with the

lowest value

16. higherUrbanPricesPlot (matlab) Create a plot with the urban cells with

the highest value

17. avgGreenPricesPlot (matlab) Create a plot with the average of green prices

18. avgUrbanPricesPlot (matlab) Create a plot with the urban cells with the

average value

19. greenPricesPerRing (Rings file) Plot average green price prices grouped by

rings. Place Ring.txt in General folder before run the function

20. Ring GreenPricesPlot (matlab) Double Plot: Plot average green price prices

grouped by rings. Average green prices in EA

21. exponentialFunction (matlab) Return the exponential function of the non

urban prices data

22. satisfaction protected closeness (matlab2) ICCS plots: 3subplot: satisfac-

tion, number of cells protected and closeness

23. satisfactionArea (matlab4) Area of the satisfaction of three heuristics from

the three scenarios

24. OnOfCellsProtectedPlot (matlab3) Plot with the number of cells protected

for Online/Offline
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25. OnOfSatisfaction (matlab3) Create a line plot with the satisfaction for

Online/Offline

26. OnOfCloseness (matlab3) Create a plot with the closeness to CBD for On-

line/Offline

27. OnOfTiming (matlab3) Computational time for Online/Offline/Mix. TODO.

Not really implemented

28. OnOfLatexTableNumCells (matlab3) Create the code in latex for a table

with the satisfaction achieved by the three approaches.

29. OnOfLatexTableSatisfaction (matlab3) Create the code in latex for a table

with the satisfaction achieved by the three approaches

30. remainingBudget (matlab2) Plot the function with the average remaining

Budget

31. GAOptimisationTable GA Data.txt Create a table in a figure that collects

data of the EA from different scenarios. Info: Generations, Mutations, Worst,

Best, Mean and SD

32. OnOfbudget (matlab3) budgetONOF.txt Plot the function with the average

remaining Budget

33. matricesCorr realFitness.txt and density.txt Study the correlation of two

matrices

34. OnOfevolution (matlab3) Create a line plot with the evolution for Online

approach: EVOLVED NOT SELECTED, SUCCESSFUL and REJECTED.

35. avgSalaryPlot Cells.txt Create a plot with the evolution of the salary.

36. numberCellsPlot Create a plot with the behaviour of the cells according to

their urban land-used type.

37. urbanFailuresPlot InconsistencyOld2.txt Create a boxPlot figure with the

number of urban failures in function to the number of replicates gathered.
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B.3 Differences between Scenarios

B.3.1 First attempts

• Scenario 1: Changes in the way cells are selected in GA. Fix a problem with

the size of the CA in the check scenario

• Scenario 2. Add new statistic material

• Scenario 3. Fixed the growth of the city

• Scenario 4. Fixed a problem in gathering the position of people.

• Scenario 5, 6. Collected data without protection of cells. Fixed a problem in

GA positions.

• Scenario 7 they depend on the distance.

– Fixed: Calculating fitness values in GA. Now the protection of cells is

homogeneously done.

– Add: CHANGE RATE constant = 0.2.

– Change: Non-urban prices depend on the distance to CBD.

– Add: Var lastUrbanised, getLastUrbanised() and setLastUrbanised()

B.3.2 Scenario created for the ICAART journal

B.3.2.1 Scenario 8

• Add: New source of uncertainty: non-urban prices are not constant.

• Remove: Concept of tolerance and threshold (Genetic algorithm)

• Add: New form to accept a cell to be protected, urbanisation factor (Genetic

algorithm)

• Change: Calculation of fitness (linked with urbanisation factor).

• Fixed: Calculation of position (Lattice, GA)
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• Fixed: Error found in TestOptimisation::Cell::ReduceDemand

B.3.2.2 Scenario 9

• Fixed: Forest and agricultural price was swapped

• Fixed: GatherData::CHANGE RATE was 0.8 and not 0.2.

• Fixed: Urban prices which gives higher values in green prices.

• Add: Gather statistics about cells (min, max, avg).

• Add: Gather statistics about the GA algorithm (max and avg fitness, muta-

tions).

• Fixed: Times the mutation procedure is tried in the GA.

• Fixed: Statistics files were written in gather data differently than were read

in GA.

• Fixed: Satisfaction was calculated differently in GA than in the rest of the

modules.

• Modified: Price recent development is calculated taking all the cells in the

outer annulus instead of only the last cell urbanised.

B.3.3 Scenario created for ICCS2015

B.3.3.1 Scenario 10

• Add: More than one CBD in the simulation.

• Add: Capacity to choose among different fitness distances.

• Add: New stochastic way of generating the selections in GA.

• Add: Statistics gathered added automatically to inconsistecy.txt & DATA GA.txt.

• Add: Information to the name of the files during all the process.

• Add: GA feasible & infeasible solutions.
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• Mod: How protected cells are managed in testing

• Fix: Gather data shift one position the statistical data gathered

• Add: Checkfiles: Visualise population

• Fix: prices constant when they shouldn’t in GA SAT

• Fix: Duplicated cells to be protected

• Fix: One of the three cities creates cells further from CBD

B.3.3.2 Scenario 11

• Modified: Size of the lattice equal to 100.

B.3.3.3 Scenario 12

• Modified: Budget linked to population growth with the use of parameter

alpha in Matlab.

In GA SAT: change TYPE BUDGET = 1. Rest Lattice: TYPE BUDGET =

1.

B.3.4 Scenario created for UAI2015

B.3.4.1 Scenario 13

• Add: Module MultiOptimisation where GA optimisation is done online.

• Add: Variable Individualxxxx: times a suitable individual is searched by the

GA.

• Add: Time total and partial gathered (Multi).

• Fix: Cells were not removed from the list of NON URBAN CELLS when they

were protected. Allow a cell be protected twice.

• Add: Baseline.txt file to collect general information of CLO and RAN like

time, CBDs...
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• Fix: Problem found when a cell was selected for urbanised in the same turn

that it was protected.

• Add: Initial conditions are checked in lattice.

B.3.5 Scenario after UAI2015

B.3.5.1 Scenario 14

• Fix: Error RAN. Now more than one cell can be bought in one turn.

• Add: New fitness to protect high ecological values of a city

• Mod: Fitness calculated in each selection, not in each individual

• Add: Gather remaining budget to plot

• Fix: Error in GA when selections where populated

• Fix: Not allow salary < cost to select a dwelling. avgUrbanPrices fixed.

• Add: Collect real fitness to measure correlation

• Fix: Distance to CBD always 1 in green prices (tick=1)

• Fix: GA now forbids mutating an individual when it is duplicated

B.3.5.2 Scenario 15

Multiobjective PAES

B.4 Future extensions

B.4.1 Benchmarking

Perform a benchmarking comparison analysis or benchmarking between a GA ap-

proach and other kind of techniques naturally more adequate to solver sequential-

decision making problems like:
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• Reinforcement Learning (RL). RL was formalised by Barto (Barto et al.,

1981)and it consists of a machine learning technique capable of selecting the

optimal policy and representing explicitly the uncertainty.

• Simulated Annealing

• Markov Chains

• Spatial logistic regression

Goal: check if our approach is the best for this particular problem. Comparison of

heuristics that depends on:

• Problem formulation.

• Parameters specifically used for the method used: determine how much time is

required to complete the search (computational cost)

• Time given to search throughout the search space and performance (Pukkala

and Kurttila, 2005).

B.4.2 Improvements of the model.

• Satisfaction increases with the quality of the green area that can be measured

by two factors: higher ecological value (preference for forest against agricultural

land) and the extension of the protected area. Perform a pre-clustering of the

areas.Measure how crowded the green areas are and penalise the satisfaction

in case the area is overcrowded. Study differences in prices of buying larger

extensions of land (price & satisfaction behaviour).

• Associate the green satisfaction factor and the fitness function with the indi-

vidual willingness of living close to a green space.

• Adequate the salary to a normal distribution.

• Fix the problem salaries too low at the end of the simulation. (Study which

part of the salary is used to pay housing expenses). Divide agents into its

profile (Loibl and Toetzer, 2003).
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• Implement change of residence if satisfaction is not enough. Redevelopment

deactivate.

• Measure the influence of the initial scenario in the results.

• Most individuals do not have a complete knowledge of the possible set of

available places. Include a stochastic factor: sometimes not the best areas are

developed.

• Search better behaviour for migration.

• A non-homogeneous distribution of resources.

• Array that initialise CBD with starting time.

• Think in an intelligent heuristic like CLO for protection of green areas

B.5 Notes

Directions in all modules:

dir = (x ∗ size) + y

In CLO searchGreenSpaces is triggered by municipality and not by updateAggre-

gate.

Urban cells in class city are considered static, however each cell knows in CITY ID,

the city it belongs.
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Litoral de Valencia: un Estudio de Valoración Contingente. Civitas, S.A., 1999.

Dendrinos, Dimitrios S and Mullally, Henry. Urban Evolution: Studies in the

Mathematical Ecology of Cities. Oxford University Press Oxford, 1985.

Devisch, Oswald TJ; Timmermans, Harry JP; Arentze, Theo A, and Borger, Aloys WJ.

An agent-based model of residential choice dynamics in nonstationary housing

markets. Environment and Planning A, 41(8):1997 – 2013, 2009.

Di Pietro, Anthony; While, Lyndon, and Barone, Luigi. Applying evolutionary

algorithms to problems with noisy, time-consuming fitness functions. In Congress

on Evolutionary Computation, CEC2004, volume 2, pages 1254–1261. IEEE, 2004.

Ditton, Robert B and Sutton, Stephen G. Substitutability in recreational fishing.

Human Dimensions of Wildlife, 9(2):87–102, 2004.

Doick, Kieron J; Peace, Andrew, and Hutchings, Tony R. The role of one large

greenspace in mitigating London’s nocturnal urban heat island. Science of The

Total Environment, 493:662–671, 2014.

Donovan, Geoffrey H and Butry, David T. The value of shade: estimating the effect

of urban trees on summertime electricity use. Energy and Buildings, 41(6):662–668,

2009.

Ducheyne, Els I; De Wulf, Robert R, and De Baets, Bernard. A spatial approach

to forest-management optimization: linking GIS and multiple objective genetic

algorithms. International Journal of Geographical Information Science., 20:917–

928, 2006. URL http://www.informaworld.com/10.1080/13658810600711287.

282

http://www.informaworld.com/10.1080/13658810600711287


REFERENCES

Durmaz, Engin; Aras, Necati, and Altınel, İ Kuban. Discrete approximation heuristics
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González, Pablo Barreira; Gómez-Delgado, Montserrat, and Benavente, Francisco-

Aguilera. Vector-based Cellular Automata: exploring new methods of urban

growth simulation with cadastral parcels and graph theory. In 4th International

Conference on Computers in Urban Planning and Urban Management, July 2015.

Gray, A. The Intuitive Idea of Distance on a Surface. Modern differential geometry

of curves and surface with mathematica. 2nd ed. Boca Raton: CRC Press, pages

341–345, 1997.

Greeuw, Sandra CH; van Asselt, Marjolein BA; Grosskurth, Jasper; Storms, CAMH;

Rijkens-Klomp, Nicole; Rothman, Dale S; Rotmans, Jan, and Ribeiro, Teresa.

Cloudy Crystal Balls. International Centre for Integrative Studies (ICIS), November

2000.

Grefenstette, John J. Optimization of control parameters for genetic algorithms.

IEEE Transactions on Systems, Man and Cybernetics, 16(1):122–128, 1986.

Griffin, Arthur F and Stanish, Charles. An agent-based model of prehistoric settlement

289



REFERENCES

patterns and political consolidation in the Lake Titicaca Basin of Peru and Bolivia.

Structure and Dynamics, 2(2):1–47, 2007.

Grimm, Nancy B; Faeth, Stanley H; Golubiewski, Nancy E; Redman, Charles L;

Wu, Jianguo; Bai, Xuemei, and Briggs, John M. Global change and the ecology of

cities. Science, 319(5864):756–760, 2008.

Grimm, Volker and Railsback, Steven F. Designing, formulating, and communicating

agent-based models. In Agent-based Models of Geographical Systems, pages 361–377.

Springer, 2012.

Grimm, Volker and Railsback, Steven F. Individual-based Modeling and Ecology.

Princeton University Press, 2013.

Groenewegen, Peter P; Berg, Agnes E; Vries, Sjerp, and Verheij, Robert A. Vitamin

G: effects of green space on health, well-being, and social safety. BMC Public

Health, 6(1):1, 2006.

Guezguez, Wided; Amor, Nahla Ben, and Mellouli, Khaled. Qualitative possibilistic

influence diagrams based on qualitative possibilistic utilities. European Journal of

Operational Research, 195(1):223–238, 2009.

Guo, Zhongwei; Xiao, Xiangming, and Li, Dianmo. An assessment of ecosystem

services: water flow regulation and hydroelectric power production. Ecological

Applications, 10(3):925–936, 2000.

Hajela, Prabhat and Lin, C-Y. Genetic search strategies in multicriterion optimal

design. Structural Optimization, 4(2):99–107, 1992.

Hales, David; Rouchier, Juliette, and Edmonds, Bruce. Model-to-model analysis.

Journal of Artificial Societies and Social Simulation, 6(4), 2003.

Hall, Troy and Shelby, Bo. Temporal and spatial displacement: evidence from a

high-use reservoir and alternate sites. Journal of Leisure Research, 32(4):435–457,

January 2000.

290



REFERENCES

Hamacher, Horst W and Drezner, Zvi. Facility Location: Applications and Theory.

Springer Science+Business Media, 2002.

Hamill, Lynne and Gilbert, Nigel. Agent-based Modelling in Economics. John Wiley

& Sons, 2015.
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Mika J. Environmental biodiversity, human microbiota, and allergy are interrelated.

Proceedings of the National Academy of Sciences, 109(21):8334–8339, 2012.
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