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Abstract 
The aim of this paper is to outline fundamental concepts and principles of the Agent-Based 

Modelling (ABM) paradigm, with particular reference to the development of geospatial 

simulations.  The paper begins with a brief definition of modelling, followed by a 

classification of model types, and a comment regarding a shift (in certain circumstances) 

towards modelling systems at the individual-level.  In particular, automata approaches (e.g. 

Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the 

fore.  A definition of agents and agent-based models is given; identifying their advantages 

and disadvantages, especially in relation to geospatial modelling.  The potential use of agent-

based models is discussed, and how-to instructions for developing an agent-based model are 

provided.  Types of simulation / modelling systems available for ABM are defined, 

supplemented with criteria to consider before choosing a particular system for a modelling 

endeavour.  Information pertaining to a selection of simulation / modelling systems (Swarm, 

MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, 

categorised by their licensing policy (open source, shareware / freeware and proprietary 

systems).  The evaluation (i.e. verification, calibration, validation and analysis) of agent-

based models and their output is examined, and noteworthy applications are discussed. 

 

Geographical Information Systems (GIS) are a particularly useful medium for representing 

model input and output of a geospatial nature.  However, GIS are not well suited to dynamic 

modelling (e.g. ABM).  In particular, problems of representing time and change within GIS 

are highlighted.  Consequently, this paper explores the opportunity of linking (through 

coupling or integration / embedding) a GIS with a simulation / modelling system purposely 

built, and therefore better suited to supporting the requirements of ABM.  This paper 

concludes with a synthesis of the discussion that has proceeded. 

 

 

Key Words: Agent-Based Modelling (ABM), agent-based models, geospatial / spatially 

explicit modelling, verification, calibration, validation, Geographical Information Systems 

(GIS), linkage (coupling or embedding / integration). 
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Principles and Concepts of Agent-Based Modelling for 

Developing Geospatial Simulations 
 

1: Introduction 
The aim of this paper is to outline fundamental concepts and principles of the Agent-Based 

Modelling (ABM) paradigm, with particular reference to the development of geospatial 

simulations (i.e. spatially explicit geographic phenomena - where the nature of the features 

and movement that is represented varies over the Earth’s surface).  Essentially, geospatial 

models depend on the location of the features or phenomena being modelled, such that if one 

or more of those locations change, the results of the model change (Wegener, 2000).  

Geographical Information Systems (GIS) are a particularly useful medium for representing 

model input and output of a geospatial nature.  However, GIS are not well suited to dynamic 

modelling (Goodchild, 2005; Maguire, 2005).  Consequently, this paper explores the 

opportunity of linking (through coupling or integration / embedding) a GIS with a simulation 

/ modelling system purposely built, and therefore better suited to supporting the requirements 

of ABM. 

 

A particular goal of this paper is to present the reader with a comprehensive introduction to 

the development of geospatial agent-based models.  A resource the authors of this paper 

believe is missing in literature to date.  Ubiquitous notions within the literature are 

represented in concise fashion, unifying and (in some instances) descrambling terminology to 

present a clear, simple, and logical discussion for the uninitiated.  This paper does not claim 

to introduce new concepts or develop original theory.  On the contrary, its purpose is to 

consolidate pre-existing concepts and theory in a comprehendible manor.  Bearing this in 

mind, the specific structure of the paper is as follows: 

 

Section 1.2 begins with a definition of the term agent, identifying characteristics germane to 

agents, and the general structure of agent-based models.  Subsequently, alternative terms used 

(often confusingly) to describe ABM are identified and explained.  This is followed by 

advantages and disadvantages of developing agent-based models, especially in relation to 

geospatial modelling, as well as the potential use of agent-based models.  Afterwards, how-to 

instructions for developing an agent-based model are given.  Types of simulation / modelling 
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systems available for ABM are defined, supplemented with guidelines to consider before 

choosing a particular system for a modelling endeavour.  Information pertaining to a selection 

of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, 

AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, 

shareware / freeware and proprietary systems).  The penultimate subsection discusses the 

evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and 

their output.  The section concludes with the identification of notable ABM applications, with 

particular reference to research of a geospatial nature.  Section 1.3 of this paper explores the 

current modelling capabilities of GIS.   In particular, problems of representing time and 

change within GIS are highlighted.  This is followed by a rationale for linking (i.e. through 

coupling or integration / embedding) a GIS with a simulation / modelling system more suited 

to the requirements of ABM.  Section 1.4 draws this paper to a close, synthesizing the 

discussion that has proceeded. 

 

However, at this juncture of the paper the reader is provided with a brief definition of 

modelling from a GIS viewpoint.  This is followed by a classification of model types, and a 

comment regarding a shift towards modelling certain systems at the individual-level.  In 

particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been 

particularly popular. 

 

1.1 Modelling: A Definition  
The term modelling can have different connotations in the GIS world, so it would be sensible 

to begin with an attempt to define its meaning; at least in the context of this paper.  A model 

is a simplified representation of reality (i.e. of one or more processes that are believed to 

occur in the real-world; Longley and Batty, 2003), of which there are several types (see 

Section 1.1.1).  A model can be constructed as a computer programme that uses (usually to 

some degree) a simplified digital representation of one or more aspects of the real-world, 

transforming them to create a new representation.   

 

Models can be static, if the input and output both correspond to the same point in time, or 

dynamic if the output represents a later point in time than the input (Longley et al., 2005).  

The common element in all such models is the operation of the GIS in multiple stages, 

whether they are used to create indicators from input layers or to represent time steps in the 
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operation of a dynamic process (Goodchild, 2005).  In this setting, modelling can serve a 

number of purposes.  Static models provide indexes or indicators that can provide some 

predictors of impacts, sensitivities, or vulnerabilities.  Dynamic models go further by 

attempting to project quantifiable impacts into the future and are used to assess different 

management or development (‘what if’) scenarios.  This experimental aspect is perhaps the 

most compelling justification for modelling, and a firm belief upon which this paper is based. 

 
1.1.1: Model Types 
Although rarely considered in the context of GIS, analogue models are probably the most 

common type.  An analogue model is defined as a scale model, a representation of a real-

world system in which every aspect is modelled in miniature.  The success of an analogue 

model depends on the degree to which the system can be scaled.  Alternatively, a digital or 

computational model conducts all operations using a computer.  Data are assembled in a data 

model and coded using a variety of coding schemes that reduce relevant aspects of the real-

world to a sequence of binary values.  Goodchild and Proctor (1997) explain that unlike 

analogue models, digital models do not have a representative fraction, since there is no 

distance in the model to compare to distance in the real-world.   Instead the level of 

geographic detail is captured in the spatial resolution, or the smallest feature represented in 

the database. 

 

Temporal resolution is just as important as spatial resolution within a dynamic model, since it 

defines the length of each time increment.  Any dynamic model operates in a discrete 

sequence of such time steps; a subsequent iteration calculates the model’s next prediction 

based on the current state.  Essential to any model is the use of an appropriate spatial and 

temporal resolution for the phenomena of interest.  Both spatial and temporal resolutions 

affect the relationship between the real-world process and the replica computer model.  The 

two will inevitably be different; thus a model will leave the user with some uncertainty about 

the real-world process because of the model’s level of abstraction. 

 

1.1.2: Individual or Aggregate 
Hypothetically, it is possible to model any system using a set of rules about the behaviour of 

the system’s constituent elements.  For example, the behaviour of a crowd can be modelled 

through rules likely to characterise the behaviour of every individual.  However, depending 
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on the size of the crowd and the purpose of the model, this may not be practical or even 

useful.  Continuous-field models address this problem by replacing individual objects with 

continuously varying estimates of abstracted properties, for example the density of people in 

a crowd (Goodchild, 2005).  Alternatively, individual objects can be aggregated into larger 

wholes, modelling the behaviour of the system through these aggregates.  However, 

aggregate systems subsume variation and processes that fall below the implied spatial 

resolution of the representation.  According to Longley (2004), aggregation creates scientific 

quicksand.  The scale and configuration of the constituent elements of information (i.e. 

objects located in time and space), can exert critical influence on the outcomes of spatial 

analysis (see Openshaw, 1984, for a discussion of the Modifiable Areal Unit Problem, 

MAUP, and Bailey and Gatrell, 1995, for the concept of ecological fallacy).  Areal data 

rarely has any validity independent of particular applications, if they have any validity at all.  

Problems associated with aggregating data are compounded in modelling when the focus is 

upon interaction, process or the representation of dynamics.  Spatial analysis of unique 

individuals modelled as mobile point referenced ‘events’ 1 present the logical endpoint of the 

drive towards disaggregation (Longley, 2004). 

 

Progress is clearly being made in the use of disaggregated data.  Increased computer power 

and storage capacity has made individual-level modelling more practical in recent times.  An 

example of which can clearly be seen in the evolution of pedestrian modelling (see Galea and 

Gwynne, 2006), where there has been a concerted movement from aggregate to individual-

level modelling.  Essential to the progression of individual-level modelling has been the 

development of automata approaches, which have been at the forefront of computer 

modelling research (Benenson and Torrens, 2004).  An automaton is a processing mechanism 

with characteristics that change over time based on its internal characteristics, rules, and 

external input.  Automata process information input to them from their surroundings, and 

their characteristics are altered according to rules that govern their reaction to those inputs.  

Two classes of automata tools, CA2 and ABM have been particularly popular; their use has 

dominated the research literature.  The origin of CA and ABM are well documented (see 

Wolfram, 2002; Parker et al., 2003; Torrens, 2004), and it is not the intention of the authors 

 
1 Humans and their activities are depicted in GIS as mobile point-referenced ‘events’ (Martin, 1996). 
2 Cellular automata are arrangements of individual automata, usually in a regular tessellated space (e.g. a rectangular grid), although 

irregular geometries can also be used (e.g. Voronoi polygons).   



 

 

- 8 - 

 

to reiterate their foundations ad nauseam.  However, it is important to provide a 

comprehensive yet concise introduction to ABM, since this concept is the foundation of this 

paper. 

 

1.2: Agents and Agent-Based Models 
There is no universal agreement on the precise definition of the term ‘agent’, although 

definitions tend to agree on more points than they disagree (Macal and North, 2005).  Agent 

characteristics are difficult to extract from the literature in a consistent and concise manner, 

because they are applied differently within disciplines.  Furthermore, the agent-based concept 

is a mindset more than a technology, where a system is described from the perspective of its 

constituent parts (Bonabeau, 2002).  The concept of an agent is meant to be a tool for 

analysing a system, not an absolute classification where entities can be defined as agents or 

non-agents (Russell and Norvig, 2003).  For example, some modellers consider any type of 

independent component (i.e. software, model, individual, etc), to be an agent.  Others insist 

that a component’s behaviour must be adaptive in order for it to be considered an agent, 

where the term agent is reserved for components that can, in some sense, learn from their 

environments and change their behaviours accordingly (see below).  Nonetheless, from a 

pragmatic modelling standpoint, there are several features that are common to most agents 

(Wooldridge and Jennings, 1995 - extended and explained further by Franklin and Graesser, 

1996; Epstein, 1999; Torrens, 2004; Macal and North, 2005): 

 

• Autonomy: Agents are autonomous units (i.e. governed without the influence of 

centralised control), capable of processing information and exchanging this information 

with other agents in order to make independent decisions.  They are free to interact with 

other agents, at least over a limited range of situations, and this does not (necessarily) 

affect their autonomy.  In this respect, agents are active rather than purely passive (see 

below).  

• Heterogeneity: The notion of mean-individuals is redundant; agents permit the 

development of autonomous individuals.  Groups of agents can exist, but they are 

spawned from the bottom-up, amalgamations of similar autonomous individuals.  

• Active: Agents are active because they exert independent influence in a simulation.  The 

following active features can be identified: 
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o Pro-active / goal-directed: Agents are often deemed goal-directed, having goals to 

achieve (not necessarily objectives to maximise) with respect to their behaviours’.  

For example, agents within a geographic space can be developed to find or follow a 

set of spatial paths to achieve a goal within a certain constraint (e.g. time), when 

exiting a building during an emergency. 

o Reactive / Perceptive: Agents can be designed to have an awareness, or sense of 

their surroundings.  Agents can also be supplied with prior knowledge, in affect a 

‘mental map’ of their environment, thus providing them with an awareness of other 

entities, obstacles, or required destinations within their environment.  Extending the 

example above, agents could therefore be provided with knowledge of building exit 

locations. 

o Bounded Rationality: Throughout the social sciences, the dominant form of 

modelling is based upon the rational-choice paradigm (Axelrod, in press).  Rational-

choice models generally assume that agents are perfectly rational optimisers with 

unfettered access to information, foresight, and infinite analytical ability (Parker et 

al., 2003).  These agents are therefore capable of deductively solving complex 

mathematical optimisation problems in order to maximise their well being; balancing 

long-run and short-run payoffs in the face of uncertainty.  While rationale-choice 

models can have substantial explanatory power, some of there axiomatic foundations 

are contradicted by experimental evidence, leading prominent social scientist to 

question their empirical validity.  However, agents can be configured with ‘bounded’ 

rationality (through their heterogeneity), to circumnavigate the potential limitations of 

these assumptions (i.e. agents can be provided with fettered access to information at 

the local level).  In affect, the aforementioned ‘perception’ of agents can be 

constrained.  Thus, rather than implementing a model containing agents with optimal 

solutions that can fully anticipate all future states of which they are part of, agents 

make inductive, discrete, and adaptive choices that move them towards achieving 

goals.  For instance, an agent may have knowledge of all building exit locations, but 

agents will be unaware if all exits are accessible (e.g. some may have become blocked 

through congestion). 

o Interactive / Communicative: Agents have the ability to communicate extensively.  

For example, agents can query other agents and / or the environment within a 

neighbourhood, via neighbourhoods of (potentially) varying size, searching for 
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specific attributes, with the ability to disregard an input which does not match a 

desirable threshold. 

o Mobility: The mobility of agents is a particularly useful feature, not least for spatial 

simulations.  Agents can roam the space within a model.  Juxtaposed with agent’s 

ability to interact and their intelligence, this permits a vast range of potential uses. 

o Adaptation / Learning:  Agents can also be designed to be adaptive, which can 

produce Complex Adaptive Systems (CAS; Holland, 1995).  Agents can be designed 

to alter (limited to a given threshold if required) their state depending on their current 

state, permitting agents to adapt with a form of memory or learning, but not 

necessarily in the most efficient way possible.  Agents can adapt at the individual 

level (e.g. learning alters the probability distribution of rules that compete for 

attention), or the population level (e.g. learning alters the frequency distribution of 

agents competing for reproduction). 

 

Agent-based models are comprised of multiple, interacting agents situated within a model or 

simulation environment.  A relationship between agents is specified, linking agents to other 

agents and / or other entities within a system.  Relationships may be specified in a variety of 

ways, from simply reactive (i.e. agents only perform actions when triggered to do so by some 

external stimulus e.g. actions of another agent), to goal-directed (i.e. seeking a particular 

goal).  The behaviour of agents can be scheduled to take place synchronously (i.e. every 

agent performs actions at each discrete time step), or asynchronously (i.e. agent actions are 

scheduled by the actions of other agents, and / or with reference to a clock).   

 

Environments define the space in which agents operate, serving to support their interaction 

with the environment and other agents.  Agents within an environment may be spatially 

explicit, meaning agents have a location in geometrical space, although the agent itself may 

be static.  For example, within a building evacuation model agents would be required to have 

a specific location for them to assess their exit strategy.  Conversely, agents within an 

environment may be spatially implicit; meaning their location within the environment is 

irrelevant.  For instance, a model of a computer network does necessarily require each 

computer to know the physical location of other computers within the network. 
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In a modelling context, agent-based models can be used as experimental media for running 

and observing agent-based simulations.  To this extent, they can be thought of as a miniature 

laboratory, where the attributes and behaviour of agents, and the environment in which they 

are housed, can be altered and the repercussions observed over the course of multiple 

simulation runs.  The ability to simulate individual actions of many diverse agents and 

measure the resulting system behaviour and outcomes over time (e.g. changes in patterns of 

pedestrian emergency egress), means agent-based models can be useful tools for studying the 

effects on processes that operate at multiple scales and organisational levels, and their effects 

(Brown, 2006).  In particular, the roots of ABM are within the simulation of human social 

behaviour and individual decision-making (Bonabeau, 2002).   

 

The acronym ABM will be used throughout the remainder of this paper, but a caveat is 

required.  There are various alternative terms (and their acronym’s) applied in the literature to 

what, for all intent and purpose, is essentially ABM.  Examples include: Agent-Based 

Computational Modelling, (ABCM), Agent-Based Social Simulation (ABSS), Agent-Based 

Computation Simulation, and Agent-Based Modelling and Simulation (ABMS).  Multi-Agent 

Systems (MAS) is another very popular term which is often, confusingly, used 

interchangeably to describe agent-based models.  The field of MAS is a well established 

research and applied branch of Artificial Intelligence (AI), and although ABM has strong 

roots in the field of AI, agent-based models are not limited to the design and understanding of 

artificial agents.  Impetus to develop MAS was spawned from problems encountered in the 

implementation of tasks on distributed computational units interacting with one another and 

with the external environment (Distributed Artificial Intelligence, DAI).  The term MAS is 

more commonly applied outside the social sciences, for example, by computer scientists in 

relation to agent-oriented software development.  Therefore, the MAS field can be 

characterised as the study of societies of artificial autonomous agents, while the ABM field 

can be typified as the study of artificial societies of autonomous agents (Conte et al., 1998).  

These two fields differ in more substantial ways than just their formalism (i.e. logic and AI 

based in the MAS domain, and mathematically based in the social science domain).  

However, this will not be considered in this paper (see Conte et al., 1998 for a more detailed 

treatment). 
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More importantly, the term agent has connotations beyond ABM.  For instance, agents found 

within agent-based models are different from mobile agent systems, which are light-weight 

software proxies that perform various functions for users, and to some extent can behave 

autonomously (Macal and North, 2005).  ABM is not the same as object-oriented simulation, 

although the object-oriented paradigm provides a suitable medium for the development of 

agent-based models.  For this reason, ABM systems are invariably object-oriented. 

 

1.2.1: Advantages of Agent-Based Models 
In relation to the context of this paper, there are three main claimed advantages of the agent-

based approach over traditional modelling techniques, such as top-down techniques of non-

linear dynamical systems in which related state variables are aggregated (e.g. though 

differential equations).  The agent-based approach: 1) captures emergent phenomena; 2) 

provides a natural environment for the study of certain systems; and, 3) is flexible, 

particularly in relation to the development of geospatial models. 

 

Emergence is a phenomenon, along with other surprising and unexpected behaviours 

unfamiliar to the classical sciences, such as self-organisation, chaos, adaptation, etc, which 

are characteristic of complex systems (Couclelis, 2002).  Neural networks are well known 

examples of complex structures that are capable of organised behaviour, as a result of parallel 

interaction of many interconnected neurons.  More specifically, the study of phenomena 

characterised by interactions among many distinct components is labelled ‘aggregate3 

complexity’ (Manson, 2001; in press).  Emergent phenomena are characterised by stable 

macroscopic patterns arising from local interaction of individual entities (Epstein and Axtell, 

1996).  By definition, emergent phenomena cannot be reduced to the system’s parts; the 

whole is more than the sum of the parts.  Thus, emergent phenomena can exhibit properties 

that are decoupled (i.e. logically independent) from the properties of the system’s parts.  For 

example, a traffic jam often forms in the opposing lane direction to a traffic accident; a 

consequence of ‘rubber-necking’.  Studying the behaviour of collections of entities focuses 

 
3 Manson’s taxonomy of complexity research also includes algorithmic (i.e. the complexity of a system lies in the difficulty faced in 

describing system characteristics), and deterministic (i.e. unpredictable dynamic behaviour of relatively simple deterministic systems, where 

unpredictable refers to the sensitivity of outcomes based on initial conditions) complexity.  These categories refer to aspects of phenomena 

that are not mutually exclusive.  These three major divisions afford a more coherent understanding of complexity theory, but this it is not the 

only possible classification (see Reitsma, 2003 and Manson, 2003 for a heated debate), though it provides a useful framework for the 

purpose of this paper. 
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attention on relationships between entities (O'Sullivan, 2004).  Characteristics of emergent 

phenomena make them difficult to understand and predict, particularly as emergent outcomes 

can be counterintuitive (Epstein, 1999).  In summary, the purpose of aggregate complexity is 

to arrive at understanding by reduction, and reassembly of a system of aggregate complexity, 

where the critical break with previous reductionist science is the attempt at reassembly 

(O'Sullivan, 2004).  Aggregate complexity is of particular interest to geographers because it 

implies that the local spatial configuration of interactions affects outcomes at the whole 

system level. 

 

Since agent-based models describe the behaviour and interactions of a system’s constituent 

parts from the bottom up, they are the canonical approach for modelling emergent 

phenomena.  Bonabeau (2002) has identified a non-exhaustive list of conditions where agent-

based models can be useful for capturing emergent behaviour: 

 

1) Interaction between agents is complicated, non-linear, discontinuous, or discrete (i.e. the 

behaviour of an agent can be altered dramatically, even discontinuously), by other agents.  

This can be particularly useful if describing discontinuity of individual behaviour is 

difficult, for example, using differential equations;   

2) The ability to design a heterogeneous population of agents with an agent-based model is 

significant.  Agents can represent any type of unit, from which intuitive collections of 

individual units can be formed, from the bottom up.  Unlike agent-based models, 

aggregate differential equations tend to smooth out fluctuations.  This is important 

because under certain conditions, fluctuations can be amplified: a system can be linearly 

stable but susceptible to large perturbations.  Heterogeneity also allows for the 

specification of agents with varying degrees of rationality (see above).  This offers 

advantages over approaches that assume perfectly rational individuals, if they consider 

individuals at all; 

3) The topology of agent interactions is heterogeneous and complex.  Aggregate flow 

equations usually assume global homogeneous mixing, but the topology of an interaction 

network can lead to significant deviations from predicted aggregate behaviour.  This is 

particularly poignant for social processes, because physical or social networks matter 

(Axtell, 2000); and, 

4) When agents exhibit complex behaviour, including learning and adaptation.  
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In many cases ABM is a natural method for describing and simulating a system composed of 

real-world entities.  The agent-based approach is more akin to reality than other modelling 

approaches, rendering ABM inherently suited to simulating people and objects in very 

realistic ways.  For example, it is arguably easier to conceptualise, and model how evacuees 

exit a building during an emergency, than to produce equations that govern the dynamics of 

evacuee densities.  Nonetheless, because equations regarding evacuee density result from the 

behaviour of evacuees, the agent-based approach will also enable the user to study aggregate 

properties.  In particular, the agent-based approach can be useful when it is more natural to 

describe the constituent units of a system under some of the following conditions (Bonabeau, 

2002): 

 

1) The behaviour of individuals cannot clearly be defined through aggregate transition rates 

(e.g. panic within a fleeing crowd); 

2) Individual behaviour is complex.  Although hypothetically any process can be explained 

by an equation, the complexity of differential equations increases exponentially as the 

complexity of behaviour increases.  Describing complex individual behaviour with 

equations can therefore become intractable; 

3) Activities are arguably a more natural way of describing a system than processes; and, 

4) Agent behaviour is stochastic.  Points of randomness can be applied strategically within 

agent-based models, opposed to arbitrarily within aggregate equations. 

 

Finally, the agent-based approach to modelling is flexible, particularly in relation to 

geospatial modelling.  Notably, spatial simulations benefit from the mobility that agent-based 

models offer.  To reiterate, an agent-based model can be defined within any given system 

environment (e.g. a building, a city, a road network, a computer network, etc).  Furthermore, 

agents have the ability to physically move within their environment, in different directions 

and at different velocities.  Agent mobility makes ABM very flexible in terms of potential 

variables and parameters that can be specified.  Neighbourhoods can also be specified using a 

variety of mechanisms.  The implementation of agent interactions can easily be governed by 

space, networks, or a combination of structures.  This would be far more complex to explain 

by mathematics, for example (Axtell, 2000).  Significantly, agent-based models can regulate 

behaviours based on interactions at a specific distance and direction.  Agent-based models 



 

 

- 15 - 

 

also provide a robust and flexible framework for tuning the complexity of agents (i.e. their 

behaviour, degree of rationality, ability to learn and evolve, and rules of interaction).  

Another dimension of flexibility is the ability to adjust levels of description and aggregation.  

It is easy to experiment with aggregate agents, sub groups of agents, and single agents, with 

different levels of description coexisting within a model.  Thus, the agent-based approach can 

be used when the appropriate level of description or complexity is unknown, and finding a 

suitable level requires exploration. 

 

1.2.2: Limitations of Agent-Based Models 
The enthusiasm of adopting the ABM approach for geospatial modelling is curtailed by some 

limitations.  Although common to all modelling techniques, one issue relates to the purpose 

of the model; a model is only as useful as the purpose for which it was constructed.  A model 

has to be built at the right level of description for every phenomenon, judiciously using the 

right amount of detail for the model to serve its purpose (Couclelis, 2002).  This remains an 

art more than a science (Axelrod, in press).  The nature of the system being modelled is 

another consideration.  For example, a system based on human beings will involve agents 

with potentially irrational behaviour, subjective choices, and complex psychology.  These 

factors are difficult to quantify, calibrate, and sometimes justify, which complicates the 

implementation and development of a model, as well as the interpretation of the simulation 

outputs.  However, the fundamental motivation for modelling arises from a lack of full access 

to data relating to a phenomenon of interest.  Often, the target itself is neither well understood 

nor easy to access.  The development of agent-based models offers a means to increase the 

utility of simulation models, by closely tailoring the model and subsequent analysis to the 

needs of end users (Parker et al., 2003).  In particular, the often visual communication 

provided by spatially explicit models, especially those coupled with GIS, can be effective at 

depicting formal model results to a wide range of users (Axtell, 2000).  Nevertheless, a 

model’s output must be interpreted appropriately.  Varying degrees of accuracy and 

completeness in the model inputs determine whether the output should be used purely for 

qualitative insight, or accurate quantitative forecasting.  The following section reviews the 

purpose of different ABM approaches in more detail. 

 

By their very definition, agent-based models consider systems at a disaggregated level.  This 

level of detail involves the description of potentially many agent attributes and behaviours, 
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and their interaction with an environment.  The only way to treat this type of problem in 

agent computing is through multiple runs, systematically varying initial conditions or 

parameters in order to assess the robustness of results (Axtell, 2000).  There is a practical 

upper limit to the size of the parameter space that can be checked for robustness, and this 

process can be extremely computationally intensive, thus time consuming.  Although 

computing power is increasing rapidly, the high computational requirement of ABM remains 

a limitation when modelling large systems. 

 

Finally, critics of complexity theory point out that the wide variety of surprising behaviour 

exhibited by mathematical and computational models are rarely found in the real-world.  In 

particular, agent-based models are very sensitive to initial conditions and to small variations 

in interaction rules (Couclelis, 2002).  Consequently, modellers of complex systems are never 

likely to enjoy the intellectual comfort of laws.  Despite this, and the other limitations that 

have been highlighted, ABM is a useful tool for exploring systems that exhibit complex 

behaviour.  Complexity theory has brought awareness of the subtle, diverse, and 

interconnected facets common to many phenomena, and continues to contribute many 

powerful concepts, modelling approaches and techniques.  In this vein, the following section 

explores the potential use of agent-based models. 

 

1.2.3: Purpose of Agent-Based Models 
Just as there are different types of models, each with their own characteristic features, 

advantages, and disadvantages, there are different ways that a model can be used (Casti, 

1997).  Consideration of these uses allows a clearer understanding of what distinguishes a 

good or bad model.  The following discussion separates the utility of ABM into two broad 

categories: explanatory or predictive4.   

 

The explanatory modelling approach strives to explore theory and generate hypotheses.  The 

primary purpose is not to predict the future behaviour of a system, but rather to provide a 

framework in which past observations can be understood as part of an overall process.  

Explanatory models generally focus on a specific aspect of a system, placing emphasise on 

some details about a phenomenon and ignoring others, in the hope that such laboratory 

 
4 Also referred to as prognostic or descriptive. 
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explorations will lead to empirically relevant insights.  These models purport to be 

explanatory by stating how reality should, or would be, under ideal circumstances, but they 

do not attempt to reproduce actual systems (Parker et al., 2003).    The potential drawback of 

this approach is the lack of analytical methods to empirically evaluate ABM results (see 

Section 1.2.6).  Furthermore, although explanatory models can provide considerable insight 

about theory and thinking, it is difficult to establish whether the final model is informative 

about specific real-world systems and scenarios. 

 

The purpose of an agent-based model adopting an exploratory approach could be to 

programme plausible agent behaviours and interactions that, when run as a simulation, 

produce similar trends and patterns to those observable through the analysis of real-world 

systems.  A model of this nature would produce a ‘candidate explanation’ for the emergence 

of observed patterns (see Epstein, 1999 for a detailed overview of candidate explanations).  

The main challenge for such an application, after ensuring agent behaviours and interactions 

are plausible, is to develop and test alternative models to identify the range of agent 

representations that can produce given macro-representations (Brown, 2006).   

 

The predictive modelling approach follows a fundamentally different logic to the explanatory 

approach.  Predictive models are commonly used for extrapolation of trends, evaluation of 

scenarios, and the prediction of future states.  More specifically, changes in initial conditions 

(e.g. rules governing agent behaviours and interactions, such as information available to 

agents, constraints upon or incentives for particular agent behaviour or movement, etc), can 

be used to evaluate the possible effects on the model outcome.  Predictive models are 

designed to mimic real-world systems, and are particularly useful for scenario development 

and policy decisions.   

 

Juxtaposed with the underpinnings of ABM outlined above, Parker (2003) identifies some of 

the key benefits of predictive modelling.  In particular the author notes that by modelling at a 

fine scale of granularity agent-based models make very good statistical use of data at a fine 

resolution.  In addition, because agent-based models are not constructed to meet a set of 

equilibrium criteria, it is possible for the model to simulate discontinuous and non-linear 

phenomena.  Moreover, by accounting for heterogeneity and inter-dependencies, models can 

reflect important endogenous feedbacks between processes.  However, this leads the 
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discussion to some limitations of predictive models.  Any model with positive feedback can 

create system behaviour referred to as path dependence; where a path to a process can be very 

sensitive to both initial conditions and small variations in stochastic processes.  For this 

reason, predictive modelling, including ABM, of a system containing positive feedbacks can 

be very challenging.  Also, predictive models can be parameterised with too much real-world 

data.  This can lead to an overly-fitted model (i.e. where the model’s calibration is overly 

constrained to existing data).  Predictive models of this nature can be insufficiently general to 

represent a large range of potential outcomes related to the system under analysis, or to 

analyse alternative systems.  

 

The choice between adopting an explanatory or predictive approach to modelling is not 

mutually exclusive.  This choice is dependant on the required precision of the model, which 

in turn, is directly related to the type of information and knowledge that is required.  The 

purpose of a model, including an agent-based model, is not necessarily to faithfully capture 

all aspects of a system; and this complicates this decision process further.  At a fundamental 

level, an agent-based model can be used solely to enrich understanding of a process that is 

present within a system through controlled computation experimentation.  The 

aforementioned decision between the models purpose is made harder because agent-based 

models do not fit easily into the classic deductive / inductive approaches to modelling, 

familiar to scientists.  Scientists use deduction to derive theorems from assumptions, and 

induction to find patterns in empirical data (Axelrod and Tesfatsion, 2006).  For instance, the 

discovery of equilibrium results in game theory using rational choice axioms is a good 

example of deduction, whilst induction, in the social sciences, is widely used in the analysis 

of opinion surveys and macro-economic data (Axelrod, in press).  Thence, an agent-based 

modeller might use a deductive approach to develop a set of assumptions regarding the 

behaviour and interaction of agents from a body of literature.  However, in contrast to classic 

deduction, the simulated output of agent-based models cannot be used to prove theorems.  

Thus, a modeller might generate data from several different simulation runs and analyse these 

results with inductive methods, similar to those employed for analysis of empirical data.  

However, unlike typical induction, the simulated data comes from a rigorously specified set 

of rules rather than direct measurement of the real-world.  The inability to implement ABM 

in either a purely deductive or inductive manner, has led Axelrod (in press) to arguably define 

simulation in general, and ABM in particular, as a third way of doing science. 
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The following section discusses specific steps required to develop of an agent-based model, 

focussing on how the distinction in a models final purpose (see above) impacts the design and 

implementation of agents and their environment. 

 

1.2.4: Developing an Agent-Based Model 
The process of building an agent-based model begins with a conceptual model, where basic 

questions or goals, elements of the system (e.g. agent attributes, rules of agent interaction and  

behaviour, the model environment, etc), and the measurable outcomes of interest are 

identified (Brown, 2006).  It is important to ‘ground’ a model during the conceptualisation 

process (i.e. establish whether simplifications made during the design process do not 

seriously detract from the credibility and likelihood that the model will provide important 

insights; Carley, 1996).  It is usual for a modeller to set forth a claim as to why the proposed 

model is reasonable.  This claim will be enhanced if the applicability of the model is not over 

stated, and by defining the models limitations and scope.  Grounding can be reinforced by 

demonstrating that other researchers have made similar or identical assumptions in their 

models, and by justifying how a proposed model will be of benefit in relation to pre-existing 

models. 

 

Conceptualising the fundamental aspects of an agent-based model (i.e. one or more agents 

interacting within an environment), juxtaposed with the distinction between explanatory vs. 

predictive purposes of a model suggests a fourfold typology of agent and environment types 

(Table 1).  Couclelis (2001) classifies agents and their environment as either being designed 

(i.e. explanatory) or analysed (i.e. predictive - empirically grounded).  If designed, agents are 

endowed with attributes and behaviours that represent (often simplified) conditions for 

testing specific hypotheses about general cases.  Analysed agents are intended to accurately 

mimic real-world entities, based on empirical data or ad hoc values that are realistic 

substitutes for observed processes.  Similarly, the environment that agents are situated within 

can be designed (i.e. provided with characteristics that are simplified to focus on specific 

agent attributes), or analysed (i.e. represent a real-world location).  The boundary between 

designed and analyzed is not always distinct, especially when ad hoc data are employed.  

Subtle but profound differences, both practical and conceptual, exist between the design or 

analysis approach of developing agents and their environment.  A major difference in 
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practical terms is that designing something provides direct (partial or total) control over the 

outcome, whereas there can only be hope that something has been analyzed correctly 

(Couclelis, 2001).  Table 1 provides further details to consider when developing agents and 

their environment; including a brief description of the model, the purpose and intent of the 

model (see Section 1.2.3), verification and validation strategies used to assess the model 

outputs (see Section 1.2.5 and 1.2.6 respectively), and appropriate software for the 

development of a model (see Section 1.4.2.3).  

 
AGENT  

Designed Analysed 

D
es

ig
ne

d 

 
Model Description 

- Abstract 
 

Purpose / Intent 
- Discovery of new relationships 
- Existence proof 

 
Verification & Validation Strategy 

- Theoretical comparison 
- Replication 

 
Appropriate Development Tools 

- Easy to implement simulation / 
modelling system 

 

 
Model Description 

- Experimental 
 

Purpose / Intent 
- Role-playing games among stakeholders 
- Laboratory experiments 

 
Verification & Validation Strategy 

- Repetitions 
- Adequacy of design 

 
Appropriate Development Tools 

- Flexible simulation / modelling systems 
with well developed user interfaces 
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Model Description 

- Historical 
 

Purpose / Intent 
- Explanation 

 
 
 
Verification & Validation Strategy 

- Qualitative: goodness of fit 
 
Appropriate Development Tools 

- Advanced simulation / modelling 
systems linked with GIS 

 

 
Model Description 

- Empirical 
 

Purpose / Intent 
- Explanation 
- Projection 
- Scenario analysis 

 
Verification & Validation Strategy 

- Quantitative: goodness of fit 
 
Appropriate Development Tools 

- Low-level programming languages 
 

Table 1: Description, purpose / intent, verification & validation strategies, and appropriate development tools 

for agent-based models incorporating designed or analysed agents / environments (adapted from Berger and 

Parker, 2001). 

 

Once a model has been conceptualised, it must be formalised into a specification which can 

be developed into a computer programme; if the model is required to be run as a computer 
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simulation.  The process of formalisation involves being precise about what an identified 

theory relating to a phenomena of interest means, making sure that it is complete and 

coherent.  There are several reasons why computer simulation is more appropriate for 

formalising social science theories than mathematics, which has often been used in the social 

sciences (Gilbert and Troitzsch, 2005).  First, programming languages are more expressive 

and less abstract than most mathematical techniques.  Second, a computer simulation can deal 

more easily with parallel process and processes without well defined order or actions than 

systems of mathematical equations.  Third, a computer model can include heterogeneous 

agents (e.g. pedestrians with varying degrees of knowledge about a building layout), while 

this is usually relatively difficult using mathematics.  Finally, computer programmes are (or 

can easily be made to be) modular, so that major changes can be made to one part of the 

model without requiring large changes in other parts of the programme, an ability which 

mathematical systems often lack.   

 

The object-oriented paradigm provides a very suitable medium for the development of agent-

based models.  In particular, it provides the aforementioned modularity useful for developing 

a computer simulation.  It is not the intention of this paper to outline the fundamental object-

oriented concepts, this has been achieved by numerous others (refer to Booch (1994) for a 

seminal discussion, Hathaway (2003) for a non-technical discussion, and Armstrong (2006) 

for a useful evaluation and clarification of key object-oriented notions). 

 

At the time of writing, there are many simulation / modelling systems available to assist the 

development stage of ABM.  The majority of these simulation / modelling systems are 

programmed, and / or require the user to develop their model in an object-oriented language.  

The subsequent section of this paper identifies some of the simulation / modelling systems 

available for ABM, highlighting key questions that should be considered for a user to 

determine an appropriate system for their needs. 
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1.2.4.1: Types of Simulation / Modelling Systems for Agent-Based 

Modelling  
In general, two types of simulation / modelling systems are available to develop agent-based 

models: toolkits or software5.  Based on this dichotomy, toolkits are simulation / modelling 

systems that provide a conceptual framework for organising and designing agent-based 

models.  They provide appropriate libraries6 of software functionality that include pre-

defined routines / functions specifically designed for ABM.  However, the object-oriented 

paradigm allows the integration of additional functionality from libraries not provided by the 

simulation / modelling toolkit, extending the capabilities of these toolkits.  Of particular 

interest to this paper is the integration of functionality from GIS software libraries (e.g. 

OpenMap, GeoTools, ESRI’s ArcGIS, etc), which provide ABM toolkits with greater data 

management and spatial analytical capabilities required for geospatial modelling (see Section 

1.3). 

 

The development of agent-based models can be greatly facilitated by the utilisation of 

simulation / modelling toolkits.  They provide reliable templates for the design, 

implementation and visualisation of agent-based models, allowing modellers to focus on 

research (i.e. building models), rather than building fundamental tools necessary to run a 

computer simulation (Tobias and Hofmann, 2004; Railsback et al., in press).  In particular, 

the use of toolkits can reduce the burden modellers face programming parts of a simulation 

that are not content-specific (e.g. a Graphical User Interface, GUI, data import-export, 

visualisation / display of the model).  It also increases the reliability and efficiency of the 

model, because complex parts have been created and optimised by professional developers, 

as standardised simulation / modelling functions.  Unsurprisingly, there are limitations of 

using simulation / modelling systems to develop agent-based models, for example: a 

substantial amount of effort is required to understand how to design and implement a model 

in some toolkits; the programming code of demonstration models or models produced by 

other researchers can be difficult to understand or apply to another purpose; a modeller will 

have to learn or already have an understanding of the programming language required to use 

the toolkit; and finally the desired / required functionality may not be present, although 
 

5 An agent-based model could be programmed completely from scratch using a low-level programming language if a modeller has sufficient 

programming knowledge and experience; see below for disadvantages of this approach.  
6 A collection of programming classes grouped together, termed packages (i.e. classes with similar purpose). 
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additional tools might be available from the user community or from other software libraries.  

Benenson et al. (2005) also note that toolkit users are accompanied by the fear of discovering 

that a particular function cannot be used, will conflict, or is incompatible with another part of 

the model late in the development process. 

 

Probably the earliest and most prominent toolkit was SWARM, although many other toolkits 

now exist.  At the time of writing there are more than one hundred toolkits available for ABM 

(see AgentLink, 2006; SwarmWiki, 2006; Multiagent Systems, 2006; Tesfatsion, 2006b for 

comprehensive listings).  However, variation between toolkits can be considerable.  For 

example, their purpose (some toolkits have different design objectives e.g. AI rather than 

social science focus, or network opposed to raster or vector model environments), level of 

development (e.g. some models are no longer supported or have ceased development), and 

modelling capabilities (e.g. the number of agents that can be modelled, degree of interaction 

between agents) can vary.  A review of all toolkits currently available is beyond the scope of 

this paper.  However, section 1.2.4.3 identifies a selection of noteworthy simulation / 

modelling toolkits (e.g. Swarm, MASON, Repast, OBEUS, AnyLogic), highlighting there 

purpose and capabilities, as well as resources providing further information. 

 

In addition to toolkits, software is available for developing agent-based models, which can 

simplify the implementation process.  For example, simulation / modelling software often 

negates the need to develop an agent-based model via a low-level a programming language 

(e.g. Java, C++, Visual Basic, etc).  In particular, software for ABM is useful for the rapid 

development of basic or prototype models.  However, modellers using software are restricted 

to the design framework advocated by the software.  For instance, some ABM software will 

only have limited environments (e.g. raster only) in which to model, or agent neighbourhoods 

might be restricted in size (e.g. von Neumann or Moore).  Furthermore, a modeller will be 

constrained to the functionality provided by the software (unlike ABM toolkits modellers will 

be unable to extend or integrate additional tools), especially if the toolkit is written in its own 

programming language (e.g. NetLogo).  Section 1.2.4.3 identifies a selection of noteworthy 

software for the development of agent-based models; StarLogo, its derivative NetLogo, and 

AgentSheets. 
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1.2.4.2: Guidelines for Choosing a Simulation / Modelling System  
Ideally, a modeller would have comprehensive practical experience in a range of modelling / 

simulation systems before choosing which system to use for a modelling endeavour.  

Unfortunately, this is not usually feasible.  For this reason several authors (Najlis et al., 2001; 

Serenko and Detlor, 2002; Tobias and Hofmann, 2004; Rixon et al., 2005; Roberson, 2005; 

Dugdale, 2006) have gained practical experience and / or have surveyed several systems, 

identifying key criteria that should be considered before making a decision.  General criteria 

include, but are not limited to: ease of developing the model / using the system; size of the 

community using the system; availability of help or support (most probably from the user 

community); size of the community familiar with the programming language in which the 

system is implemented (if a programming language is necessary to implement the model); is 

the system still maintained and / or updated; availability of demonstration or template 

models; technical and how-to documentation, etc.  Criteria relating specifically to a systems 

modelling functionality include: number of agents that can be modelled; degree of interaction 

between agents; ability to represent multiple organisational / hierarchical levels of agents; 

variety of model environments available (network, raster, and vector); possible topological 

relationship between agents; management of spatial relationships between agents, and agents 

with their environment; mechanisms for scheduling and sequencing events, etc.  These 

criteria will be weighted differently depending on a modeller’s personal preferences and 

abilities (e.g. the specification of the model to be developed, programming experience / 

knowledge, etc).   

 

Another important distinction separating simulation / modelling systems is there licensing 

policy; open source, shareware / freeware, or proprietary.  Open source simulation / 

modelling systems constitute toolkits or software whose source code is published and made 

available to the public, enabling anyone to copy, modify and redistribute the system without 

paying royalties or fees.  A key advantage of open source simulation / modelling systems 

relates to the transparency of their inner workings.  The user can explore the source code, 

permitting the modification, extension and correction of the system if necessary.  This is 

particularly useful for verifying a model (see Section 1.2.5).  The predominant open source 

simulation / modelling systems are toolkits (e.g. MASON, Repast, Swarm, etc).  The 

distinction between an open source simulation / modelling system and a shareware / freeware 
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system is subtle.  There is no one accepted definition of the term shareware / freeware, but 

the expression is commonly used to describe a system that can be redistributed but not 

modified, primarily because the source code is unavailable.  Consequently, shareware / 

freeware systems (e.g. StarLogo, NetLogo, OBEUS, etc) do not have the same flexibility, 

extendibility or potential for verification (in relation to access to their source code), as open 

source systems.  Similarly, shareware / freeware systems tend to be toolkits, rather than 

software.  Finally, proprietary simulation / modelling systems are available for developing 

agent-based models.  Proprietary systems are mainly software, developed by an organisation 

who exercises control over its distribution and use; most require a licence at a financial cost 

to the user.  These systems have the advantage of being professionally designed and built for 

a specific use, and are often relatively simple to use.  However, they often lack the 

community support found with open source or shareware / freeware systems.  Moreover, 

since access to their source code is prohibited, a model developed with proprietary software 

is essentially black box.  A modeller will therefore, to some extent, be left unsure about the 

inner validity of a model constructed with a proprietary system.  This situation is 

compounded when the output of a model is emergent or unexpected. 

 

Striking a balance between the aforementioned criteria is difficult.  Unfortunately, while 

identifying a suitable system for the development of an agent-based model, too much time 

can often be expended trying to find this balance.  This balance can be perceived as a trade 

off between the difficulty of developing a model (e.g. in terms of time required to programme 

the model, understand how to develop a model with a specific system, or acquiring 

experience and knowledge of a programming language if required, etc), versus the modelling 

power provided by the simulation / modelling system (e.g. modelling capabilities and 

functionality, Figure 1).  The key is striking a ‘personal’ balance between these criteria.  For 

example, those more accustomed to programming may prefer the functionality and flexibility 

of a simulation / modelling toolkit.  However, modellers that only wish to develop a basic or 

prototype model quickly and easily, possibly with little or no programming skills may prefer 

to use simulation / modelling software. 
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Figure 1: Balance between power versus difficulty of developing a model with a simulation / modelling system. 

 

1.2.4.3: Simulation / Modelling Systems for Agent-Based Modelling 
This section provides key criteria pertaining to a selection of simulation / modelling systems 

available for the development of agent-based models (the rationale for each criterion was 

described in Section 1.2.4.2).  Although there are many systems available for developing 

agent-based models, this paper reviews eight, separated into three categories of licensing 

policy (see Section 1.2.4.2 for a definition of each type): 1) open source (Swarm, MASON 

and Repast); 2) shareware / freeware (StarLogo, NetLogo and OBEUS); and 3) proprietary 

systems (AgentSheets and AnyLogic).  These systems were chosen because they fulfilled the 

(majority of the) following criteria, they are: maintained and still being developed; widely 

used and supported by a strong user community; accompanied by a variety of demonstration 

models and in some instances the model’s programming script or source code is available; 

and finally they are capable of developing spatially explicit models, possibly via the 

integration of GIS functionality.  Tables 2, 3 and 4 tabularise information of each system for 

comparison purposes; categorised by their licensing policy (adapted from Najlis et al., 2001 

and Parker, 2001).  The reminder of this section provides further information about each 

system, identifying examples of geospatial models that have been developed with the system.  

A caveat must be noted at this point, the information provided within this section is accurate 
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at the time of publication.  However, the systems reviewed are constantly being updated, thus 

modellers are advised to check each systems website to obtain up to date information. 

 

Open Source Simulation / Modelling Systems 
 SWARM MASON Repast 

Developers  
Santa Fe Institute / 
SWARM Development 
Group, USA 

Center for Social 
Complexity, George 
Mason University, USA 

University of Chicago,  
Department of Social 
Science Research 
Computing, USA 

Date of Inception 1996 2003 2000 

Website  http://www.swarm.org http://cs.gmu.edu/~eclab/pr
ojects/mason http://repast.sourceforge.net

E-mail List http://www.swarm.org/mai
lman/listinfo     

https://listserv.gmu.edu/arc
hives/mason-interest-l  

https://lists.sourceforge.net/l
ists/listinfo/repast-interest

Implementation 
Language Objective-C / Java Java Java / Python / 

Microsoft.Net 

Operating System Windows, UNIX, Linux, 
Mac OSX 

Windows, UNIX, Linux, 
Mac OSX 

Windows, UNIX, Linux, 
Mac OSX 

Required 
programming 
experience  

Strong Strong Strong 

Integrated GIS 
functionality 

Yes (e.g. Kenge GIS 
library for Raster data: 
http://www.gis.usu.edu/sw
arm) 

None 

Yes (e.g. OpenMap, Java 
Topology Suite, and 
GeoTools).  Repast 
simulations can also be run 
within ArcGIS through an 
extension called Agent 
Analyst. 

Integrated 
charting / 
graphing / 
statistics 

Yes (e.g. R and S-plus 
statistical packages) None 

Yes (e.g. Colt statistical 
package, and basic Repast 
functionality for simple 
network statistics) 

Availability of 
demonstration 
models  

Yes Yes Yes 

Source code of 
demonstration 
models 

Yes Yes Yes 

Tutorials / How-
to Documentation Yes Yes Yes 

Additional 
information Minar et al. (1996) Luke et al. (2004) 

Agent Analyst Extension 
(http://www.institute.redlan
ds.edu/agentanalyst) 
 
Useful weblog: 
http://www.gisagents.blogsp
ot.com

Table 2: Comparison of open source simulation / modelling systems (adapted from Najlis et al., 2001 and 

Parker, 2001). 

 

Swarm (Table 2) is an open source simulation / modelling system designed specifically for 

the development of multi-agent simulations of complex adaptive systems (Swarm, 2006); 

http://www.swarm.org/
http://cs.gmu.edu/%7Eeclab/projects/mason
http://cs.gmu.edu/%7Eeclab/projects/mason
http://repast.sourceforge.net/
http://www.swarm.org/mailman/listinfo
http://www.swarm.org/mailman/listinfo
https://listserv.gmu.edu/archives/mason-interest-l
https://listserv.gmu.edu/archives/mason-interest-l
https://lists.sourceforge.net/lists/listinfo/repast-interest
https://lists.sourceforge.net/lists/listinfo/repast-interest
http://www.gis.usu.edu/swarm
http://www.gis.usu.edu/swarm
http://www.institute.redlands.edu/agentanalyst
http://www.institute.redlands.edu/agentanalyst
http://www.gisagents.blogspot.com/
http://www.gisagents.blogspot.com/
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although agent-based models can easily be develop using Swarm as well.  Inspired by 

artificial life, Swarm was designed to study biological systems; attempting to infer 

mechanisms observable in biological phenomena (Minar et al., 1996).  In addition to 

modelling biological systems, Swarm has been used to develop models for anthropological, 

computer science, ecological, economic, geographical, and political science purposes.  Useful 

examples of spatially explicit models include: the simulation of pedestrians in the urban 

centres (Schelhorn et al., 1999 and Haklay et al., 2001); and the examination of crowd 

congestion at London’s Notting Hill carnival (Batty et al., 2003).  Najlis et al. (2001) identify 

the steep learning curve of Swarm as a significant factor to consider before choosing this 

system to develop an agent-based model; although this should be less of a problem for a 

modeller with strong programming skills. 

 

MASON (Multi Agent Simulation Of Neighbourhood - Table 2) was developed by the 

Evolutionary Computation Laboratory (ECLab) and the Centre for Social Complexity at 

George Mason University.  At present MASON does not provide functionality for 

dynamically charting (e.g. histograms, line graphs, pie charts, etc) model output during a 

simulation, or allow GIS data to be imported / exported (Luke et al., 2004).  However, the 

developers of MASON are continuing to develop further functionality, and they hope users 

will develop and contribute tools themselves (e.g. GIS integration).  Unfortunately there is 

little technical documentation and a relatively small user group in comparison to some of the 

other systems identified within this paper.  However, how-to documentation, demonstration 

models (e.g. the seminal heat bugs example, network models, etc), and several publications 

detailing the implementation and / or application of MASON are available for a prospective 

modeller to evaluate the system further (MASON, 2006).   

 

Originally developed at the University of Chicago, the Recursive Porous Agent Simulation 

Toolkit (Repast - Table 2) is currently maintained by Argonne National Laboratory and 

managed by the Repast Organisation for Architecture and Development (ROAD).  Repast 

caters for the implementation of models in three programming languages: Python (RepastPy); 

Java (RepastJ); and Microsoft.Net (Repast.Net).  RepastPy allows basic models to be 

developed by modellers with limited programming experience via a ‘point-and-click’ GUI 

(Collier and North, 2005).  RepastPy models can subsequently be exported / converted into 

Java for further development in RepastJ.  Repast.Net and RepastJ allow for more advanced 
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models to be developed (Vos, 2005), because more complex functionality can be 

programmed into a model.  Agent Analyst is an ABM extension that allows users to create, 

edit, and run Repast models from within ArcGIS (Redlands Institute, 2006).  Repast has a 

relatively large user group and an actively supported e-mail list, as well as extensive how-to 

documentation and demonstration models available from the system website.  Useful 

examples of spatially explicit models created using Repast include the studying of 

segregation, and residential and firm location (Crooks, 2006) and the evacuation of 

pedestrians from within an underground station (Castle, 2006).  

 

Whilst still being maintained RepastJ, Repast.Net and RepastPy have now reached maturity 

and are no longer being developed.  They have been superseded by Repast Simphony 

(RepastS) which provides all the core functionality of RepastJ or Repast.Net, although 

limited to implementation in Java.  The Repast development team have provided a series of 

articles regarding RepastS.  The architecture and core functionality are introduced by North et 

al. (2005a), and the development environment is discussed by Howe et al. (2006).  The 

storage, display and behaviour / interaction of agents, as well as features for data analysis (i.e. 

via the integration of the R statistics package) and presentation of models within Repast S are 

outlined by North et al. (2005b).  Tatara et al. (2006) provide a detailed discussion outlining 

how-to develop a “simple wolf-sheep predation” model; illustrating RepastS modelling 

capabilities. 

 

StarLogo (Table 3) is an shareware / freeware modelling system developed at the Media 

Laboratory, Massachusetts Institute of Technology (MIT).  Unlike the other six agent-based 

simulation / modelling systems discussed in this section, both StarLogo and NetLogo models 

are programmed procedurally, opposed to an object-oriented nature.  Thus, models developed 

with StarLogo do not benefit from the similarity in abstraction shared between the agent-

based and object-oriented paradigms.  Furthermore, StarLogo lacks the same flexibility 

offered by open source systems, since modellers are constrained to functionality provided by 

the system.    However, the StarLogo website indicates that an open source version of the 

system (OpenStarLogo) has been developed and will be available in the near future.  Despite 

these limitations, StarLogo is very easy to use, notably for people with very little 

programming experience.  Dynamic charting functionality of model output during a 

simulation is provided.  In addition, a number of demonstration models and detailed how-to 
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documentation relating to these models is supplied with StarLogo, and many more are 

available to download from the World Wide Web (WWW).  Batty et al. (1998) have used 

StarLogo to examine visitor movement within London’s British Tate Gallery, specifically 

how changes in room configuration can affect movement between exhibits.   

 

Shareware / Freeware Simulation / Modelling Systems 
System Name StarLogo NetLogo OBEUS 

Developers  
Media Laboratory, 
Massachusetts Institute of 
Technology, USA 

Centre for Connected 
Learning and Computer-
Based Modelling, 
Northwestern University, 
USA 

Environmental Simulation 
Laboratory, Tel Aviv 

University, Israel  

Date of Inception Early 1990s, Java based 
version 2000 1999 Early 2000s 

Website  http://education.mit.edu/st
arlogo

http://ccl.northwestern.edu
/netlogo  

http://eslab.tau.ac.il/Resear
ch/default.aspx

E-mail List http://education.mit.edu/pi
permail/starlogo-users   None None 

Implementation 
Language Proprietary scripting  Proprietary scripting Microsoft.Net 

Operating System Windows, UNIX, Linux, 
Mac OSX 

Windows, UNIX, Linux, 
Mac OSX Windows 

Required 
programming 
experience  

Basic  Basic Moderate-Strong 

Integrated GIS 
functionality None None Yes 

Integrated 
charting / graphing 
/ statistics 

Yes Yes Unknown 

Availability of 
demonstration 
models  

Yes Yes Unknown 

Source code of 
demonstration 
models 

Yes Yes Unknown 

Tutorials / How-to 
Documentation Yes Yes Yes 

Additional 
information 

OpenStarLogo website: 
http://education.mit.edu/op
enstarlogo/  

http://groups.yahoo.com/g
roup/netlogo-users

User manual: 
http://eslab.tau.ac.il/OBEU
S/OBEUSManual.pdf  
 
Geosimulation website:  
http://www.geosimulation.
org

Table 3: Comparison of shareware / freeware simulation / modelling systems (adapted from Najlis et al., 2001 

and Parker, 2001). 

 

NetLogo (originally named StarLogoT - Table 3) is a variant of StarLogo, originally 

developed at the Centre for Connected Learning and Computer-Based Modelling at 

http://education.mit.edu/starlogo/
http://education.mit.edu/starlogo/
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
http://eslab.tau.ac.il/Research/default.aspx
http://eslab.tau.ac.il/Research/default.aspx
http://education.mit.edu/pipermail/starlogo-users/
http://education.mit.edu/pipermail/starlogo-users/
http://education.mit.edu/openstarlogo/
http://education.mit.edu/openstarlogo/
http://groups.yahoo.com/group/netlogo-users
http://groups.yahoo.com/group/netlogo-users
http://eslab.tau.ac.il/OBEUS/OBEUSManual.pdf
http://eslab.tau.ac.il/OBEUS/OBEUSManual.pdf
http://www.geosimulation.org/
http://www.geosimulation.org/
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Northwestern University, to allow StarLogo models to be developed on computers using the 

Macintosh operating system.  It is now possible to create StarLogo models on a computer 

using a Macintosh operating system, thus the critically distinction between the two simulation 

/ modelling systems is that NetLogo is specifically designed for the deployment of models 

over the internet (NetLogo, 2006).  Both NetLogo (Figure 2) and StarLogo provide 

functionality to import image files, which can be used to define the environment agents are 

located within, thus facilitating the development of spatial models.  NetLogo has been used to 

develop applications in disciplines varying from biology and physics to the social sciences.  

Extensive how-to documentation / tutorials and demonstration models are available from the 

system website, and functionality can be extended through Application Programming 

Interfaces (APIs), although the source code for the system is currently unavailable. 

 

 

Figure 2: Example of GIS integration in NetLogo, the Cruising Model (NetLogo, 2006). 
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OBEUS (Object-Based Environment for Urban Simulation - Table 3) was developed at Tel 

Aviv University, Israel.  Based on the theory of Geographic Automata Systems (GAS; 

Benenson and Torrens, 2004), it is designed for the simulation of urban phenomena; 

specifically in a geospatial context.  GAS considers an urban system as consisting of objects 

that are either fixed (e.g. houses or roads) or non-fixed (e.g. people or cars; Benenson et al., 

2005).  OBEUS is implemented in the Microsoft.NET framework, but relies on several third-

party components (Microsoft.NET Framework, Borland C# compiler, etc), which must be 

installed in order to operate the system.  OBEUS provides a GUI to develop the structure of a 

model, although the behaviour and interaction rules of agents must be programmed using one 

of the Micorsoft.NET languages (e.g. C#, C++, or Visual Basic, etc).  Consequently, 

moderate to strong programming skills are required.  OBEUS has been used to develop a 

number of spatially explicit models, including: the simulation of ethnic residential 

distributions within the Yaffo area of Tel Aviv between 1955-1995 (Benenson et al., 2002, 

Benenson et al., 2005), and street parking and urban sprawl (Benenson et al., 2004).   

 

Proprietary Simulation / Modelling Systems 
 AgentSheets AnyLogic 

Developers  AgentSheets Inc., USA XJ Technologies, Russia 
Date of Inception 1991 Unknown 
Website  http://www.agentsheets.com  http://www.xjtek.com  
E-mail List None None  
Implementation 
Language Proprietary scripting Proprietary scripting 

Operating System Windows, UNIX, Linux, Mac OSX Windows, UNIX, Linux, Mac OSX 
Required 
programming 
experience  

None - Basic Moderate 

Integrated GIS 
functionality None None 

Integrated charting 
/ graphing / statistics None Yes 

Availability of 
demonstration 
models  

Yes Yes 

Source code of 
demonstration 
models 

N /A N /A 

Tutorials / How-to 
Documentation Yes Yes 

Additional 
information 

Carvalho, 2000and Repenning et al., 
2000  

http://www.xjtek.com/support/forums/ge
neral  

Table 4: Comparison of proprietary  simulation / modelling systems (adapted from Najlis et al., 2001 and 

Parker, 2001). 

 

http://www.agentsheets.com/
http://www.xjtek.com/
http://www.xjtek.com/support/forums/general/
http://www.xjtek.com/support/forums/general/
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AgentSheets (Table 4) is a proprietary simulation / modelling system that allows modellers 

with limited programming experience to develop an agent-based model, because models are 

developed through a GUI (Repenning et al., 2000).  A number of demonstration models are 

available from the system website.  For example, Sustainopolis is a simulation analogous to 

the computer game SimCity; exploring pollution dispersal within a city (Figure 3).  Carvalho 

(2000) has used AgentSheets extensively to teach undergraduate students, the author 

comments that it is easy to use the system to develop models quickly, providing students with 

hands-on experience of ABM without the need to learn a programming language.  However, 

the author notes models created with AgentSheets are limited in their sophistication (e.g. the 

complexity of agent behaviour and interaction).  Furthermore, the system lacks functionality 

to dynamically chart simulation output, and agents are limited to movement within a two-

dimensional cell-based environment.   

 

 

Figure 3: The Sustainopolis model developed in AgentSheets (2006). 

 

AnyLogic (Table 4) incorporates a range of functionality for the development of agent-based 

models.  For example, models can dynamically read and write data to spreadsheets or 

databases during a simulation run, as well as dynamically chart model output.  Furthermore, 

external programmes can be initiated from within an AnyLogic model for dynamic 
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communication of information, and vice versa.  However, AnyLogic models can only be 

created on Microsoft operating systems, although a simulation can be run on any Java-

enabled operating system once compiled (e.g. a Macintosh operating system).  The AnyLogic 

website notes that models have been developed for a diverse range of applications including: 

the study of social, urban (Figure 4) and ecosystem dynamics (e.g. a predator-prey system); 

planning of healthcare schemes (e.g. the impact of safe syringe usage on HIV diffusion); 

computer and telecommunication networks (e.g. the placement of cellular phone base 

stations); and the location of emergency services and call centres.  However, the source code 

of these examples and / or documentation of these models are unavailable. 

 

 

Figure 4: An urban and transport dynamics model developed in AnyLogic (2006). 

 

Each system discussed within this section can be positioned within the continuum illustrated 

in Figure 1 (power versus difficulty of developing a model with a simulation / modelling 

system).  However, the exact location of each system is very subjective (i.e. dependant upon 

a modeller’s knowledge and experience of ABM in general, and each simulation / modelling 

system in particular).  The information presented within this section has provided the reader 

with a selection of useful criteria to assess the eight simulation / modelling systems 
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presented, allowing each system to be (approximately) located within this continuum based 

on the readers own knowledge and experience.  Once a candidate system(s) has been 

identified the reader will need to investigate the potential suitable of the system(s) further. 

 

1.2.5: Verification and Calibration of Agent-Based Models 
Once developed, the computer programme must be verified by checking the model behaves 

as expected; often referred to as ‘inner validity’ (Brown, 2006; Axelrod, in press).  Whether 

the model itself is an accurate representation of the real-world is a different type of validity 

(see below).  Achieving inner validity is harder than it might seem.  For instance, hypotheses 

about the model’s output can be tested under a range of parameter input settings.  Perhaps the 

model can be examined under an extreme situation where the outcome is easily predictable.  

These hypotheses should yield expected results from the model because they are based on the 

conceptual model design.  However, it is difficult for a programmer to know whether 

unexpected outcomes are a reflection of a mistake in the computer programme (a ‘bug’), 

logical errors of the model, or a surprising consequence of the model itself (Gilbert and 

Terna, 1999).  This predicament is conflated because complex systems can often produce 

emergent and counterintuitive results.  A modeller can guard against the former of these 

problems by adopting ‘unit tests’ while programming their model.  Unit testing involves the 

execution of the computer programme after each modification of the code to check that a bug 

has not been introduced (Gilbert and Troitzsch, 2005).  Nevertheless, a modeller must still 

determine if unexpected results are due to an error in the model logic, or just a feature of the 

system being modelled.  These difficulties of verification are compounded by the fact that 

most simulations are dependent on random number generators7 to simulate the effects of 

unmeasured variables and random choices.  Thus, repeated runs can be expected to produce 

different outcomes.  Fortunately, one of the main advantages of ABM is that they provide a 

natural method for describing and simulating a real-world system, which helps simplify the 

model logic (Batty, 2001).  However, it is not uncommon to spend more time confirming that 

a model has been programmed correctly than programming the model itself. 

 

The most thorough way of verifying a model is to re-implement the model using a different 

programming language and ideally a different ABM toolkit; a process sometimes referred to 
 

7 Computers are likely to generate pseudo-random numbers, not actually random numbers.  This facet is important when simulations are 

sensitive to subtle differences in the random numbers used.  



 

 

- 36 - 

 

as ‘docking’ or ‘alignment’ (Axtell et al., 1996).  Although this method will never attain the 

status of a proof, it helps the modeller become more confident as to the veracity of the model 

results (Hales et al., 2003).  Docking is not always practical (i.e. in relation to time) or 

feasible (i.e. for a modeller to learn a new programming language or how to develop their 

model in an alternative system).  However, replication is one of the hallmarks of cumulative 

science, and is an important facet needed to confirm whether claimed results of a simulation 

are reliable (i.e. can be reproduced by somebody else starting from scratch).  Axelrod (in 

press) notes that without this confirmation, it is possible that published results could be due to 

programming errors, misrepresentation of the system being modelled, or errors analysing the 

simulation results.  Furthermore, replication is required to determine whether a new model 

can subsume a previous model.  If it is not practical or feasible for a modeller to dock their 

model, it is critical that a thorough description of the model is provided for another to attempt 

replication.  Unfortunately, the later stipulation has rarely been accomplished to date; a 

noteworthy exception includes Railsback (in press).  Documentation should include 

information regarding the source code for running the model, how to run the programme, and 

how to understand the output.  Fortunately, the use of standardised ABM toolkits and 

programming languages facilitates replication.  Unfortunately, it is often difficult for a 

modeller to provide a complete description of their model within the word limit of 

publications (except digital media), especially when addressing an interdisciplinary audience.  

Carley (1996) stresses that computer models and their output should be described and 

presented as separate publications.  

 

After a modelling endeavour has been verified the final stages are to calibrate and validate 

the model.  Calibration entails setting the model structure and parameter values in ways that 

accurately reflect a real-world system.  Calibration typically requires data on the micro-level 

processes that the agent-based model is based upon.  These data can be acquired through 

various means, such as surveys, statistical analysis of empirical data, experiments designed to 

obtain decision-making strategies and factors, etc.  Calibration occurs in stages, usually 

repeated iteratively, until the outcomes of the model fit (within a reasonable tolerance) the 

real-world data collected.  Therefore, calibration is useful for assessing the feasibility of the 

model to simulate the real-world system (i.e. showing that the model can generate results that 

match the real-world data).  If the model output cannot be fitted to the real-world data, it may 

be necessary for the modeller to re-programme aspects of the model (e.g. rules dictating agent 
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behaviour and interaction, etc).  Thus, calibration is also helpful in the verification process of 

the model.  It should not be forgotten that the level of correspondence between the model and 

the real-world data is partly dependant on the purpose of the model.  In which case, the 

modeller must have confidence in the accuracy of the real-world data (e.g. ensuring that the 

data does not represent extreme situations).  The impulse to calibrate a model can lead to the 

model being overly fitted.  In this situation, a model fits the real-world data but is 

insufficiently general to represent a diverse range of system outcomes, or be applied to 

alternative systems. 

 

It is often argued that a model with sufficient parameters can always be tweaked until the 

real-world data is matched (Carley, 1996).  To this extent, modellers should be wary that 

calibration does not guarantee the validity of a model.  However, for many models this 

criticism is less appropriate.  In particular, within agent-based models that represent processes 

with rules (e.g. the interaction and behaviour of agents) rather than parameterised equations, 

there are often few if any parameters.  Conversely, there is no guarantee that a model with a 

large number of rules dictating the interaction and behaviour of agents can be configured to 

generate the observed data. 

 

1.2.6: Validation and Analysis of Agent-Based Model Outputs 
A model is valid to the extent that it adequately represents the system being modelled (Casti, 

1997).  However, the validity of a model should not be thought of as binary (i.e. a model 

cannot simply be classified as valid or invalid); a model has a certain degree of validity (Law 

and Kelton, 1991).  Validity can be ascertained by comparing the output of the model with 

comparable data collected from a real-world system.  For example, to understand the output 

of an agent-based model it is often necessary to evaluate the details of a specific simulation 

‘history’.  There are at least three ways in which history can be described (Axelrod, in press): 

 

1) History can be reported as a selection of key events in chronological order.  For instance, 

the simulation of a train station evacuation could be described at the point in time when 

the emergency alarm sounds, when strategic confines of the station have been evacuated 

(e.g. platform, escalator / stairs, ticket hall, etc), until the station is fully vacated.  Whilst 

informative, this method provides little explanatory power about the model itself. 
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2) Alternatively, the history of one agent can be documented.  For example, the location of a 

pedestrian with the station when the emergency alarm sounds, the time taken for the 

pedestrian to reach strategic locations within the station thereafter (e.g. platform, escalator 

/ stairs, ticket hall, building exit), and a summary of the route traversed by the agent.  This 

is often the easiest type of history to understand, and can be very revealing about the way 

the model works (i.e. how the logic of the model effects agents over time). 

3) Finally, the history from a global viewpoint can be noted.  For example, the distribution 

of pedestrians throughout the station, to potentially assess the use of different emergency 

exits.  Although the global viewpoint is often regarded as the best method for observing 

large-scale patterns, several detailed histories are often required to explain the reason for 

these observed patterns. 

 

Although the analysis of individual histories is interesting, they can be misleading; especially 

if the model incorporates random elements.  For example, simulations often use a random 

number generator to imitate the decision making process of an agent (e.g. direction choices, 

mood preferences, etc), to randomise the order in which agents move, or to substitute an 

unmeasured parameter (equivalent to the modeller making a guess in the absence of more 

accurate information), etc.  In order to determine whether the conclusion from a simulation 

run is typical, it is necessary to undertake a repeated number of simulations using identical 

parameters and initial conditions, but using different random number seeds8.  This will help 

distinguish whether particular patterns observed in a single illustrative history are 

idiosyncratic or typical.  Results from these simulation runs will need to be presented as 

distributions, or as means with confidence intervals.  Statistical analysis will be required to 

assess any variation in the model output, and to determine whether inferences from the 

simulation histories are well founded.  Gilbert and Troitzsch (2005), and Axelrod (in press) 

state that regression will be required for analysing quantitative changes in the output of a 

simulation, and analysis of variance will be required to assess the output of a simulation if the 

differences are qualitative9 (e.g. if patterns or clusters have formed).  As with any statistical 

analysis, it is necessary to determine if observed differences are statistically significant (i.e. 

 
8 A random number generator can be ‘seeded’ with an initial value.  This seed can be used by the modeller to recreate an identical sequence 

of numbers. 
9 Observable rather than directly quantifiable. 
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unlikely to have occurred by chance), and if differences are substantive (i.e. the magnitude is 

large enough to be important). 

 

It is usually desirable to engage in sensitivity analysis once a model (at least for a specific set 

of initial conditions and parameter values) appears to be valid.  The aim of sensitivity 

analysis is to determine the extent variation in the model’s assumptions yield differences in 

the model output.  The principle behind sensitivity analysis is to vary the initial conditions 

and parameters of the model by a small amount and observe differences in the model 

outcomes.  For example, a model might be run several times, varying a given parameter 

between 10% above and below the original value.  If the impact on the output is negligible, it 

can be assumed the parameter is not of critical importance to the model, and its accuracy is 

not of major concern.  However, a note of caution should be observed since complex systems 

can exhibit large and sudden shifts in system behaviour in response to relatively small 

perturbations in inputs (Manson, in press). 

 

Sensitivity analysis is also used to investigate the robustness of the model.  If the behaviour 

of the model is very sensitive to small differences in the value of one or more parameters, the 

modeller might be concerned whether these particular values are correct (Gilbert and 

Troitzsch, 2005).  Unfortunately, even with a small number of variables, the required number 

of parameter combinations can become very large, and the resources required to perform a 

thorough analysis can become excessive.  In practice, a modeller is likely to have a good 

intuition about which parameters are likely to have the largest impact on the model, and will 

therefore be more important to examine.  The effect of different model versions can also be 

assessed by running controlled experiments with sets of simulation runs, akin to the 

evaluation of parameter changes.  The difference in the logic of a model (e.g. changes in rules 

governing agent behaviour and / or interaction, etc) can be studied by systematically 

comparing different versions of the model.  However, it is imperative initial conditions are 

kept identical for any comparison to be valid. 

 

There are a few caveats that must be considered while validating and analysing the output of 

a model (Gilbert and Troitzsch, 2005).  Firstly, both the model and the system under analysis 

are likely to be stochastic.  Thus, comparison between the model output and data from the 

real-world system are unlikely to correspond on every occasion.  Whether the significance of 
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this difference is enough to cast doubt in the model depends partly on the expected statistical 

distribution of the simulation output.  Unfortunately, these distributions are rarely known a 

priori and are difficult to estimate with simulations, especially if outcomes are emergent.  

Another problem relates to the capability of the model to make predictions, since they will 

almost certainly be conditional (i.e. it is unlikely that all postulated outcomes can be 

produced).   For instance, a model may be able to produce plausible future predictions, but 

may not be able to recreate known past system states.  Furthermore, there is a possibility that 

the model is correct, but the data from the real-world system may not (i.e. inappropriate 

assumptions or estimates could have been obtained from the data).  Finally, many simulations 

are path dependant (i.e. the outcome of a simulation is dependant on the exact initial setup 

chosen).  Different runs of the same model can generate variation in outputs due to changes 

in initial conditions, parameters, or the stochastic behaviour / interaction of agents.  Thus, the 

‘history’ of a simulation is highly significant. 

 

Calibration and validation are arguably the hardest two issues of ABM.  Even though there 

may be correspondence between a model’s output and a real-world system, this is not 

sufficient condition to conclude that the model is correct (Gilbert, 2004).  There are many 

different processes which could yield a given outcome, and just because a model generates 

similar outcomes does not prove that the processes included within the model account for the 

real-world outcome.  However, a model should be regarded as a basis for reducing 

uncertainty about the future, from a prior state of unawareness, to one of more limited 

uncertainty.  A model should not be considered a failure if its predictions are not perfectly 

accurate or if a modeller is left unsure whether processes included within the model account 

for the real-world outcome.  It takes time and many refinements of a model, but a modeller 

can gradually increase their confidence in a model by testing it against real-world data in 

more and more ways.  Bearing this in mind, a large number of agent-based models have been 

developed to study various phenomena. 

 

1.2.7: Applications of Agent-Based Models 
It is impractical to comprehensively review the full range of ABM applications within this 

paper, and even examination of a representative sample presents a challenging exercise.  

Agent-based models have been developed for a diverse range of subject areas, such as: 

archaeological reconstruction of ancient civilisations (Axtell et al., 2002; Gumerman et al., 
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2003); understanding theories of political identity and stability (Lustick, 2002);  

understanding processes involving national identity and state formation (Cederman, 2001); 

biological models of infectious diseases (Eidelson and Lustick, 2004; Chen et al., 2006); 

growth of bacterial colonies (Kreft et al., 1998; Krzysztof et al., 2005); single- (Emonet et 

al., 2005) and multi-cellular level interaction and behaviour (Athale and Deisboeck, 2006); 

alliance formation of nations during the Second World War (Axelrod and Bennett, 1993); 

modelling economic processes as dynamic systems of interacting agents (Agent-based 

Computational Economics, ACE, Tesfatsion, 2006a);  company size and growth rate 

distributions (Axtell, 1999); size-frequency distributions for traffic jams (Nagel and 

Rasmussen, 1994); price variations within stock-market trading (Bak et al., 1999);  voting 

behaviours in elections (Kollman et al., 1992); identifying and exploring behaviour in 

battlefields (Ilachinski, 1997); spatial patterns of unemployment (Topa, 2001); trade networks 

(Epstein and Axtell, 1996); business coalitions over industry standards (Axelrod, 2006); 

social networks of terrorist groups (North et al., 2004), to name but a few.  These examples 

can be constructed as lying on a continuum, from minimalist academic models based upon 

ideal assumptions, to large scale commercial decision support systems based upon real-world 

data.  In relation to the focus of this paper, the remainder of this section concentrates on the 

origin of ABM applied to social phenomena, particularly in a geographical context. 

  

Despite the advantages of ABM as a tool for simulation (see Section 1.2.1), ABM has not 

been widely adopted in geospatial research; although there is no obvious reason why this is 

the case.  Thomas Schelling is credited with developing the first social agent-based model in 

which agents represent people, and agent interactions represent a socially relevant process.  

Schelling’s (1971) model demonstrated that stark segregation patterns can emerge from 

migratory movements among two culturally distinct, but relatively tolerant, types of 

households.  Yet, ABM did not begin to feature prominently in the geographical literature 

until the mid-1990s, when Epstein and Axtell (1996) extended the notion of modelling people 

to growing entire artificial cities.  The goal was to understand the emergence of patterns, 

trends, or other characteristics observable in society or geography.  Epstein and Axtell’s 

Sugarscape model demonstrated that agents could emerge with a variety of characteristics 

and behaviours suggestive of a rudimentary society (e.g. death, disease, trade, health, culture, 

conflict, war, etc).   
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On a technical note, until recently the majority of ABM research has still involved the 

population of regular lattices, similar to CA, with agents that could migrate between cells.  

Alternatively, CA were just re-interpreted as agent-based models by attributing 

anthropomorphic state variables to cells (Torrens and Benenson, 2005).  Moreover, the 

movement of agents has been dependent solely on the attributes of their immediate 

neighbouring cells and their inhabitants, and their environments have not been based on real-

world geographic features.  Gimblett et al. (2002) were amongst the first to use real-world 

geographic features.  Their agent-based model was developed to evaluate the recreational use 

of Broken Arrow Canyon, Arizona.  Specifically, current hiking, bike, and off-road trail paths 

were mapped in a GIS and potential alternatives simulated in order to aid management 

decisions of environmental protection and enhance recreational user experiences of the 

canyon.  More recently, Dibble and Feldman (2004) have developed a three-dimensional 

extension to the Repast ABM toolkit.  The extension has enabled the authors to model the 

control of infectious disease transmission, dynamics of civil violence, and coordination of 

social networks within three-dimensional landscape terrains, and social and spatial networks.   

 

The examples identified within this section demonstrate the vast array of subjects and 

disciplines that researchers have investigated through ABM.  In particular, the use of ABM 

for experimenting and exploring with geographical phenomena is still in its infancy.  

Consequently, the future is set to be a very exciting for agent-based modellers.  Especially 

since the use of ABM to investigate a phenomenon is limited only by the researcher’s 

imagination.   

 

1.3: Modelling within GIS: Current Capabilities 
It can be difficult to comprehend how GIS technology, built essentially for handling maps 

and “map-related ideas”, can be adapted to the needs of dynamic simulation modelling; 

especially when it is not even perceived as an optimal platform for modelling (Goodchild, 

2005).  Particular criticisms of GIS with respect to modelling is their ability to handle time 

(Langran, 1992; Peuquet, 2005 – see Section 1.3.1), the representation of continuous 

variation (Longley et al., 2005), and most have only rudimentary modelling capabilities 

(Maguire, 2005).  Nevertheless, there are several good reasons to justify why the use, or 

linkage of GIS with simulation / modelling systems (see Section 1.3.2), is an effective means 

of modelling when spatial and temporal analysis is necessary. 
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Current commercial and public domain GIS software systems all contain numerous tools for 

acquiring, pre-processing, and transforming data.  Their use in modelling includes data 

management, format conversion, projection change, re-sampling, raster-vector conversion, 

etc.  GIS also include excellent tools for visualisation / mapping, rendering, querying, and 

analysing model results, as well as assessing the accuracies and uncertainties associated with 

inputs and outputs. 

 

Typically, all of the capabilities described above are accessible via end-user graphical and 

command line interfaces.  However, these capabilities have recently become accessible 

through APIs, via software libraries.  The exposure of APIs was a significant recent 

improvement in terms of GIS and spatial modelling, as external programmers now have 

access to the underlying software components upon which GIS software vendors base their 

end-user versions of systems. This is perhaps the most pertinent enhancement, as many of the 

techniques used in GIS analysis are potentially far more robust if they can be linked with an 

extensive toolkit of methods for simulation; an issue which is addressed at greater length later 

in Section 1.3.2.  GIS vendors have invited this situation as it allows GIS to be extended and 

customised for use in new application areas, thus expanding the market potential of their 

systems. 

 

Alternatively, a model can be expressed as a sequence of GIS commands executed by a script 

(Maguire, 2005).  Recently in GIS there has been a move to use industry-standard low-level 

programming languages (e.g. Java, C++, and Visual Basic), and scripting languages (e.g. 

Python, VBScript, and Jscript), rather than proprietary, home grown scripting languages (e.g. 

ESRI’s Arc Macro Language, AML, or Avenue).  Interoperability standards such as the 

Microsoft.Net framework facilitate this process by allowing compliant packages to be called 

from the same script.   

 

In addition to scripts, graphical flowcharts can be used to express sequences of operations 

that define a model.  Longley et al. (2005) note that one of the first graphic platforms for 

conceptualising and implementing spatial models was probably the ERDAS IMAGINE 

software, which allows the user to build complex modelling sequences from primitive 

operations.  ESRI is another GIS vendor that provides an environment that allows models to 
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be authored and executed in a graphical environment: ModelBuilder within ArcGIS 9.x, 

which superseded Spatial Modeller within ArcView 3.x. 

 

In principle, graphic-model building can be used for dynamic modelling via an iterative 

process, where the output of one time step becomes the input for the next.  However, this 

method posses two dilemmas: 1) the GIS will not have been designed for an iterative process, 

requiring the user to re-enter the data at the beginning of each time step, and; 2) the time 

required to run a model could be considerable.  The former of these problems can be 

overcome with scripting languages; both can potentially be overcome by integrating the GIS 

with a simulation / modelling system better equipped for the task at hand.  Before exploring 

the possibilities of linking GIS and simulation / modelling systems (Section 1.3.2), the 

following section of this paper evaluates the capability of GIS to handle space-time 

information, which computer simulations generate in volume, and has always been a 

limitation. 

 

1.3.1: Representing Time and Change within GIS 
The subject of time within GIS has received a considerable amount of attention.  Heywood 

(2006) comments that ideally, GIS would be able to represent temporal change using methods 

that explicitly represent spatial change, as well as different states through time. Furthermore, 

methods allowing direct manipulation and comparison of simulated or observational data in a 

temporal and spatial dimensions should be catered for.  In reality, two main challenges for the 

integration of time within GIS exist: 1) continuous data over a period of time are rarely 

available for an entity or system of interests; 2) data models and structures able to record, 

store, and visualise information about an object in different temporal states are still in their 

infancy (Heywood et al., 2006).  In the context of this paper, the former challenge is less of a 

constraint since an agent-based computer simulation is capable of generating an abundance of 

data over a continuous period of time, while much progress has been made on the later issue.  

The following discussion outlines issues related to the representation of time and change, as 

well as approaches for incorporating space-time information within GIS.  

 

The basic objective of any temporal database is to record change over time, where change can 

be thought of as an event or collection of events.  An event might be a change in state of one 

or more locations, entities, or both.  Changes that might affect an event can be distinguished 
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in terms of their temporal pattern; Peuquet (2005) has suggested four types: 1) continuous - 

events occurring throughout some period of time; 2) majorative - events occurring most of 

the time; 3) sporadic - events occurring some of the time, and; 4) unique - events that only 

occur once.  The distribution of events within these temporal patterns can also be very 

complex (e.g. chaotic, cyclic, or steady state), complicated further as change, to some extent, 

is always occurring at various rates as well (e.g. from sudden to gradual).  Hence, duration 

and frequency are important descriptive characteristics within this taxonomy of temporal 

patterns. 

 

There are three approaches for capturing space-time information within a GIS:  1) location-

based; 2) time-based, and; 3) entity-based.  The only method of viewing a data model within 

existing GIS, as a space-time representation, is as a temporal series of spatially-registered 

‘snapshots’ (Peuquet, 2005).  Invariably this approach employs a raster data model, although 

vector has also been used, with only a single information type stored (e.g. elevation, density, 

precipitation, etc) for each cell at any one point in time.  Information for the entire layer is 

stored for each time step, regardless of whether change has occurred since the previous step.  

There are several criticisms of this approach.  Firstly, the data volume increases enormously, 

because redundant data is stored in consecutive snapshots.  The state of a spatial entity can 

only be retrieved by querying cells of adjacent snapshots, because information is stored 

implicitly between each time step.  Finally, the exact point when change has occurred cannot 

be determined.  Langran (1992) has proposed a modification of this approach.  The temporal-

raster (or grid) approach allows multiple values to be stored for each pixel.  A new value, and 

the time at which change occurred for each pixel is stored, which can result in a variable 

number of records for each cell.  Recording the time at which change has occurred allows for 

values to be sorted by time.  The most recent value for each cell can therefore be retrieved, 

which represents the present state of the system.  The obvious advantage to this approach is 

the reduction of redundant data stored for each cell. 

  

Peuquet and Duan (1995) have proposed a time-based approach to storing space-time 

information within a GIS, where change is stored as a sequence of events through time.  Time 

is stored in increasing order from an initial point, with the temporal interval correlating to 

successive events.  An event is recorded at the time when the amount of accumulated change 

is considered significant, or by another domain-specific rule.  This type of representation has 
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the advantage of facilitating time-based queries, and the addition of a new event is straight 

forward as it can simply be added to the end of the timeline.  Furthermore, in terms of 

modelling an important capacity of any model is the ability to represent alternative versions 

of the same reality.  The concept of representing multiple realities over time is called 

branching.  Branching allows various model simulation runs to be compared, or simulation 

results to be compared to observed data.  The time-based approach facilitates the branching 

of time in order to represent alternative or parallel sequences of events resulting from specific 

scenarios, because it is strictly an ordinal timeline.  

 

Finally, several entity-based space-time models have been proposed.  Conceptually these 

models extend the topological vector approach (e.g. coverage model); tracking changes in the 

geometry of entities incrementally through time.  The amendment vector model was the first 

of this type, and extended frameworks have been proposed subsequently.  Besides 

maintaining the integrity of entities and their changing topology, these approaches are able to 

represent asynchronous changes to entity geometries.  However, the space-time topology of 

these vectors becomes increasingly complex as amendments accumulate through time.  In 

addition, aspatial entity attributes can change over time.  To record aspatial changes, a 

separate relational database is often used.  However, if change occurs at a different rate 

between the spatial and aspatial aspects of an entity, maintaining the identity of individual 

entities becomes difficult, especially when entities split or merge.   

 

Object-oriented data models have transformed the entity-based storage of space-time 

information within GIS (Zeiler, 1999), and have become mainstream within commercial GIS 

(e.g. the geodatabase structure with ArcGIS).  They have grown increasingly more 

sophisticated, catering for a powerful modelling environment.  The object-oriented data 

model approach provides a cohesive representation that allows the identity of objects, as well 

as complex interrelationships to be maintained through time.  Specifically, temporal and 

location behaviour can be assigned as an attribute of features rather than the space itself, 

which has the distinct advantage of allowing objects to be updated asynchronously.  Despite 

the advantages of the object-oriented data model, Reitsma and Albrecht (2006) observe that, 

to date, no data model or data structure allows the representation of processes (i.e. recording a 

process that has changed the state of an object within a model).  Consequently, queries about 

where a process is occurring at an instant of time cannot be expressed with these current 
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approaches.  Notwithstanding, object-oriented data models are the canonical approach to the 

storage of space-time data generated by agent-based models, and their visualisation within 

GIS, given their complementarities.  Nevertheless, the visualisation of agent-based models 

within GIS is still limited to a temporal series of snapshots. 

 

1.3.2: Linkage - Coupling versus Integration / Embedding 
Models implemented as direct extensions of an underlying GIS, through either graphic 

model-building or scripts, generally make two assumptions: 1) all operations required by the 

model are available in the GIS (or in another system called by the model); and, 2) the GIS 

provides sufficient performance to handle the execution of the model (Longley et al., 2005).  

In reality, a GIS will often fail to provide adequate performance, especially with very large 

datasets and a large number of iterations, because it has not been designed as a simulation / 

modelling engine.  This one-size-fits-all approach inherent in GIS provides limited 

applicability, and attention has subsequently been devoted to linking, either through coupling 

or integration / embedding, GIS with simulation / modelling systems more directly suited to 

users needs.  General classifications have been produced by numerous authors (e.g. Maguire, 

1995; Bernard and Krüger, 2000; Westervelt, 2002; Goodchild, 2005; Longley et al., 2005; 

Maguire, 2005).  Several of their definitions now overlap as technological advance has 

blurred the boundaries of their classifications, whist some definitions are convoluted because 

terminology has been used interchangeably or sometimes inappropriately (e.g. coupling, 

linkage or integration).  Nevertheless, categorisation of these techniques is possible, and a 

brief description of each is developed below, in an attempt to clarify the situation.  This is 

followed by a critique of these different approaches, with a view to identifying an appropriate 

method for developing geospatial agent-based models. 

 

In situations where GIS and simulation / modelling systems already exist (e.g. as commercial 

products), or the cost of rebuilding the functionality of one system into another is too great, 

the systems can be coupled together (Maguire, 2005).  Coupling can therefore be broadly 

defined as the linkage of two stand-alone systems by data transfer.  Three types of coupling 

are distinguishable, although these are only a subset of the much larger fields of enterprise 

application integration (Linthicum, 2000) and software interoperability (Sondheim et al., 

2005).  The attributes of each approach cascaded along the coupling continuum, from loose to 

tight / close (Table 5 summaries the competing objectives of the different coupling 
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approaches; greyed boxes are considered more desirable characteristics - adapted from 

Westervelt, 2002): 

 
1) Loose Coupling.  A loose connection usually involves the asynchronous operation of 

functions within each system, with data exchanged between systems in the form of files.  

For example, the GIS might be used to prepare inputs, which are then passed to the 

simulation / modelling system, where after execution the results of the model are returned 

to the GIS for display and analysis.  This approach requires the GIS and simulation / 

modelling system to understand the same data format; if no common format is available 

an additional piece of software will be required to convert formats in both directions.  

Occasionally, specific new programmes must be developed to perform format 

modifications; 

 

2) Moderate Coupling.  Essentially this category encapsulates techniques between loose 

and tight / close coupling.  For example, Westervelt (2002) advocates remote procedure 

calls and shared database access links between the GIS and simulation / modelling 

system, allowing indirect communication between the systems.  Inevitably, this reduces 

the execution speed of the integrated system, and decreases the ability to simultaneously 

execute components belonging to the different software; and,  

 
3) Tight or Close Coupling.  This type of linkage is characterised by the simultaneous 

operation of systems allowing direct inter-system communication during the programme 

execution.  For example, standards such as Microsoft’s COM and .NET allow a single 

script to invoke commands from both systems (Ungerer and Goodchild, 2002).  A variant 

of this approach allows inter-system communication by different processes that may be 

run on one of more networked computers (i.e. distributed processing). 

 

Coupling has often been the preferred approach for linking GIS and simulation / modelling 

systems.  However, this has tended to result in very specialised and isolated solutions, which 

have prevented the standardisation of general and generic linkage.  An alternative to coupling 

is to embed or to integrate the required functionality of either the GIS or simulation / 

modelling system within the dominant system using its underlying programming language 

(Maguire, 2005).  The final system is either referred to as GIS-centric or modelling-centric 

depending on which system is dominant.  In both instances, the GIS tools or modelling 
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capabilities can be executed by calling functions from the dominant system, usually through a 

GUI.  Compared to coupling, an embedded or integrated system will appear seamless to a 

user (Maguire, 1995).  However, in the past integration has been based on existing closed and 

monolithic GIS and simulation systems, which poses a risk of designing systems that are also 

closed, monolithic, and therefore costly (Fedra, 1996).   

 

Objective and Explanation Loose Moderate Close / 
Tight 

Integration Speed: The programmer time involved in linking the 
programmes. Fast Medium Slow 

Programmer Expertise: Required level of software development 
expertise. Low High Medium 

Multiple Authorship Avoidance: In some instances it might be 
necessary for the programmer to modify the original software 
product.  Any alteration reduces the ownership responsibility.  
Major alterations could totally sever this link, resulting in limited 
or no support by the original author(s). 

High Medium Low 

Execution Speed: How rapidly does the integrated software 
execute? Slow Medium Fast 

Simultaneous Execution: Can components of the system run 
simultaneously and communicate with one another?  Can the 
components operate on separate platforms? 

Low Low High 

Debugging: How difficult is it to locate execution errors in the 
linked system? Easy Moderate Hard 

 
Table 5: Comparison of coupling approaches (adapted from Westervelt, 2002).  

 

Interest in modelling-centric systems has increased considerably over recent years, 

predominately due to the development of simulation / modelling toolkits with scripting 

capabilities that do not require advanced computer programming skills (Gilbert and Bankes, 

2002).  Often the simulation / modelling toolkit can access GIS functions, such as data 

management and visualisation capabilities, from a GIS software library.  For example, the 

Repast toolkit exploits functions from GeoTools (a Java GIS software library) for importing 

and exporting data, Java Topology Suite (JTS) for data manipulation, and OpenMap for 

visualisation.  The toolkit itself maintains the agents and environment (i.e. their attributes), 

using identity relationships for communication between the different systems.  Functions 

available from GIS software libraries reduce the development time of a model, and are likely 

to be more efficient because they have been developed over many years with attention to 

efficiency.  Additionally, the use of standard GIS tools for spatial analysis improves 

functional transparency of a model, as it makes use of well known and understood 

algorithms.  Alternatively, spatial data management and analysis functions can be developed 
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within the modelling toolkit, although this strategy imposes huge costs, in terms of time to 

programme the model, and time required to frequently update spatial data or use spatial 

analysis functions within the model.   

 

Conversely, the GIS-centric approach is an attractive alternative; not least because the large 

user-base of some GIS expands the potential user-base for the final model.  Analogous to the 

modelling-centric approach, GIS-centric integration can be carried out using software 

libraries of simulation / modelling functions accessed through the GIS interface.  There are 

many examples of simulation / modelling systems integrated within commercial GIS, 

including: the Consequences Assessment Tool Set (CATS) system, designed for emergency 

response planning; the Hazard Prediction and Assessment Capability (HPAC) system, for 

predicting the effect of hazardous material releases into the atmosphere; the NatureServe 

Vista system, for land use and conservation planners.   

 

Brown et al. (2005) propose an alternative approach which straddles both the GIS-centric and 

modelling-centric frameworks.  Rather than providing functionality within one system, the 

middleware-based approach manages connections between systems, allowing a model to 

make use of the functionality available within the GIS or the simulation / modelling toolkit 

most appropriate for a given task.  Thus, the middleware approach allows the simulation / 

modelling toolkit to handle the identity and relationship of, and between agents and their 

environment.  Conversely, the GIS would manage spatial features, as well as temporal and 

topological relationships of the model.  Essentially, the simulation / modelling toolkit handles 

what it is designed for (i.e. implementing the model), while the GIS can be used to run the 

model, and visualise the output.  An example of this approach is the ABM extension within 

ArcGIS (referred to as Agent Analysts), which allows users to create, edit, and run RepastPy 

models from within ArcGIS (Redlands Institute, 2006).  However, it is the opinion of the 

authors that only a dichotomy of integration classifications exists.  A GIS is either integrated 

into a simulation / modelling toolkit, or vice versa.  The definition of the middleware 

approach is essentially tight coupling (see above).  The review within this section suggests 

that agent-based modellers interested in developing a geospatial model involving many 

(possibly tens of thousands) interacting agents with complex behaviours and interactions 

between themselves, and their environment should consider either GIS-centric or modelling-

centric integration. 
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1.4: Conclusion 
This paper identified advantages of developing agent-based models to simulate systems (for 

certain circumstances) at the individual-level.  In particular, agent-based models are useful 

for capturing emergent phenomena, they provided a natural environment for the study of 

systems composed of real-world entities, and are flexible, particularly in relation to the 

development of geospatial models.  In light of these benefits, fundamental concepts and 

principles of the ABM paradigm, principally in relation to geospatial modelling, were 

defined.  A comprehensive introduction into the development and evaluation of agent-based 

models and their output followed.  GIS were recognized as particularly useful media for 

representing model input / output of a geospatial nature.  However, despite current advance it 

was noted there are still only rudimentary modelling capabilities available within GIS.  The 

discussion highlighted that, depending on the modelling endeavour, the linkage of a 

simulation / modelling system with a GIS could be useful.  In particular, users interested in 

developing a geospatial model consisting of many (possibly tens of thousands) agents, with 

potentially complicated behaviour and interactions between themselves and their 

environment might consider either GIS-centric or modelling-centric integration. These 

linkage approaches offer a number of mutually reinforcing advantages.  The simulation / 

modelling toolkit will benefit from the data acquisition, pre-processing, transformation, and 

visualisation tools provided by the GIS.  While the GIS will benefit from the management of 

identities and relationships of, and between agents and their environment supported by the 

simulation / modelling toolkit.  Thus, guidelines for choosing, and key criteria pertaining to a 

selection of simulation / modelling systems where provided to facilitate the reader’s 

identification of a suitable system for the development of a geospatial agent-based model. 
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