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A B S T R A C T   

Research on the uncertainty of Land Use Cover Change (LUCC) models is still limited. Through this paper, we aim 
to globally characterize the structural uncertainty of four common software packages (CA_Markov, Dinamica 
EGO, Land Change Modeler, Metronamica) and analyse the options that they offer for uncertainty management. 
The models have been compared qualitatively, based on their structures and tools, and quantitatively, through a 
study case for the city of Cape Town. Results proved how each model conceptualised the modelled system in a 
different way, which led to different outputs. Statistical or automatic approaches did not provide higher 
repeatability or validation scores than user-driven approaches. The available options for uncertainty manage
ment vary depending on the model. Communication of uncertainties is poor across all models.   

1. Introduction 

Uncertainty is inherent in spatial analysis because of the need of 
abstraction to represent any of the earth’s characteristics or processes 
through a map or a GIS procedure. It is also inherent to any analysis that 
involves human understanding of any real-world process. We under
stand uncertainty as an indicator of the degree of distrust of the images 
and concepts of the real world that we are using (Castilla and Hay 2007). 
This uncertainty must be carefully examined to be aware about the 
limitations of our analysis and studies. 

Land Use Cover Change (LUCC) models have many sources of un
certainty, which are difficult to disentangle (Uusitalo et al., 2015). 
Altogether, they are known as model output uncertainty (Refsgaard 
et al., 2007; Klein Goldewijk and Verburg 2013) or the uncertainty 
cascade (Refsgaard et al., 2013). Notwithstanding, several authors have 
tried to classify them in different groups (Van Asselt 2000; Walker et al., 
2003; Refsgaard et al., 2007, 2013; Matott et al., 2009; Klein Goldewijk 
and Verburg 2013; García-Álvarez et al., 2019), mainly differentiating 
the following types of uncertainty:  

⁃ Epistemological uncertainty. The uncertainty that comes from the 
delimitation and conceptualization of the problem to be modelled. 
When strictly referring to the uncertainty of the way a problem is 
conceptualized in a model, several authors talk about “structural 
uncertainty” (Ferchichi et al., 2017). Brown et al. (2021) specifically 
refer to model paradigms when analysing model structures that lie in 
a very different conceptualization of the systems to be modelled. 

⁃ Model technical uncertainty. The uncertainty arising from the com
puter implementation of the model, concerning not only the model 
algorithm, but also the data formats, resolution and other issues. It is 
related to epistemological uncertainty.  

⁃ Process variability uncertainty. The uncertainty that comes from the 
different ways a system can evolve in the future.  

⁃ Input uncertainty. The uncertainty that comes from the data used in 
the model and its ability to represent the earth surface and/or its 
characteristics.  

⁃ Parameter uncertainty. The uncertainty associated to the values at 
which the different model parameters are calibrated. 
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⁃ Model operation uncertainty. The uncertainty that arises from the 
accumulation and interaction of uncertainties propagated through 
the model. 

These sources of uncertainty in LUCC modelling exercises have been 
addressed widely in literature. Many papers assess the output uncer
tainty of specific exercises (Memarian et al., 2012; Ligmann-Zielinska 
2013), whereas others focus on specific sources of uncertainty, like 
parameter uncertainty (Dietzel and Clarke 2004; Conway 2009; García 
et al., 2011; Van Vliet et al., 2013; Houet et al., 2015; Confalonieri et al., 
2016; Grinblat et al., 2016; Liao et al., 2016) or process variability un
certainty (Kok and Van Delden 2009; Verburg et al., 2013; Alexander 
et al., 2015; Maier et al., 2016). 

Less common is the research about epistemological uncertainties of 
LUCC models and, specifically, about the models’ structural uncertainty 
(Elsawah et al., 2020). Some studies address specific topics related to 
this issue, like the different procedures to calculate change potential and 
change allocation (Riveira and Maseda 2006; Lin et al., 2011; 
Pérez-Vega et al., 2012; Camacho Olmedo et al., 2013; Shafiza
deh-Moghadam et al., 2015). Ferchichi et al. (2017b) propose a frame
work to quantify structural uncertainty of LUCC models based on 
probabilistic theory and sensitivity analysis. However, there is a lack of 
studies that characterize the overall structural uncertainty of available 
LUCC model software packages and analyse the tools and options that 
each model offers for uncertainty management and communication. 

Today, there is a large availability of standard model software 
packages to simulate different spatial dynamics (Camacho Olmedo et al., 
2018b). Although they are considered too simple by some users to model 
complex phenomena, their use is ever-increasing (Wickramasuriya 
et al., 2009; Chaudhuri and Clarke 2013; Leija et al., 2021) and they are 
tools used in practice for real policy cases (Barredo et al., 2003; Van 
Delden et al., 2011; Eastman and Toledano 2018b; Guzman et al., 2020). 
Information about the uncertainty associated to the use of these software 
packages is not usually widespread and no paper analysing their struc
tural uncertainty and their approaches to uncertainty management has 
been found in the literature. However, knowledge about these aspects is 
required to improve their understanding and characterization. In addi
tion, it will help to engage planning agents and spread their use in 
real-world problems solving (Yeh and Li 2006; Batisani and Yarnal 
2009; Sohl et al., 2016). 

Through this paper, we aim to fill the previous research gap by 
characterizing and comparing four standard LUCC model software 
packages. Model comparison has been proposed by several authors as a 
way to assess the structural uncertainty (Kelly et al., 2013; Uusitalo 
et al., 2015; Brown et al., 2021) and has been usually employed as a 
useful approach to better characterize and understand the available 
software packages (García et al., 2012; Toro Balbotín 2014; Mas et al., 
2014; Aguejdad et al., 2016; Camacho Olmedo et al., 2018b). 

Through the comparison, we will answer the following research 
questions:  

⁃ Which are the sources of uncertainty that come from the different 
model structures?  

⁃ How does each model manage and communicates uncertainty? 

We will analyse the model structure of each software and the options 
that they offer for uncertainty management and communication through 
a qualitative comparative analysis of the models. Additionally, we will 
assess the potential uncertainty associated to the model structure by 
applying the four compared models to the same study case. In the 
following section, we explain the methodological approach of this paper 
in detail. 

2. Materials and methods 

2.1. Model software packages 

We compared four standard pattern-based LUCC model software 
packages: CA_Markov, Dinamica EGO, Land Change Modeler, as 
included in the TerrSet 2018 version, and Metronamica. Below, we 
provide a short description of each model. A graphic representation of 
each one is provided in the Annex 1. Annex 2 includes a comparative 
table to evaluate the differences among models. 

The models have been selected based on the authors’ deep experi
ence with them (Mas et al., 2010, 2011, 2014; Camacho Olmedo et al., 
2018a; García-Álvarez, 2018) and wide use among the LUCC modelling 
community (Santé et al., 2010; Kamusoko 2012; Eastman and Toledano 
2018b; Ferreira et al., 2019). Practical experience with the models is 
essential to fully understand the model conceptualizations and struc
tures and their limitations in real-case applications. The wide use of 
these models among the LUCC community guarantees the utility of the 
results here delivered, as they help to characterize standard tools used 
by many users for different purposes, either as part of scientific studies 
or real case applications. In addition, as they rely on common LUCC 
modelling theories, we can draw general lessons from their analysis and 
comparison, which can be applied to any LUCC model. 

CA_Markov (Eastman and Toledano 2018a) is a modelling tool which 
makes use of several procedures integrated in TerrSet (previously 
IDRISI), a software of geospatial analysis and modelling. The quantity of 
changed pixels is determined by a Markov matrix, whereas the location 
of those pixels is performed through the combination of a series of 
suitability layers, a contiguity filter and a multi-objective allocation 
procedure. 

Dinamica EGO (Soares-Filho et al., 2002, 2009; Rodrigues and 
Soares-Filho 2018) is a free environmental modelling platform that in
cludes LUCC modelling methods. Due to the flexibility that it offers, 
there is a wide variety of ways to set up a LUCC model. As common 
practise, Markov chains and Weights of Evidence (WoE) are used for the 
estimation of the quantities and change potential. Change allocation is 
performed through a couple of stochastic cellular automata functions: 
patcher, which produces new patches, and expander, which simulates 
the growth as expansion of previous patches. 

Land Change Modeler (LCM) (Eastman 2015a; Eastman and Tole
dano 2018b) is a constrained LUCC model which is also integrated in 
TerrSet. The change potential calculation is empirically obtained 
through three possible methods: neural networks, logistic regression and 
a machine learning algorithm (SimWeight). The change allocation is 
performed through a multi-objective allocation procedure, whereas the 
quantity of change is estimated by means of a Markov matrix. 

Metronamica (RIKS 2012; Van Delden and Vanhout 2018) is a con
strained cellular automata model based on the theory developed by 
White and Engelen in the 90’s (White and Engelen 1993; White et al., 
1997). Land use is allocated according to a “competition for space” 
principle based on the following inputs: interaction rules between land 
uses (human behaviour), accessibility, land suitability (environmental 
conditions) and zoning (planning). Demands can be defined externally 
or by means of a regional model simulating job and population 
dynamics. 

2.2. Model comparison 

Model structures were compared according to the following aspects: 
change potential calculation (including the explanatory factors consid
ered by each model), quantity of changes estimation, allocation of 
changes, pattern simulation, and validation and outputs. Although only 
the last one specifically relates with uncertainty management and 
communication, these questions have been reviewed for all other as
pects as well, regarding the extent to which the models include tools or 
allow user intervention for uncertainty management. 
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The comparison followed a both qualitative and quantitative analysis 
of each software (Fig. 1). The qualitative analysis complements the 
limitations of the quantitative analysis to assess sources of uncertainty 
that are not usually addressed in the literature (Elsawah et al., 2020). 
Through the qualitative approach (2.2.1) we compared the way in which 
each model conceptualizes the modelled system and the available op
tions they offer for uncertainty management. Through the quantitative 
approach (2.2.2), we compared model outputs for the same case study 
(city of Cape Town) to assess the differences that come from the model 
structure. 

The case study is part of the urban modelling practice. Accordingly, 
results from our analysis may be affected by the specificities of urban 
dynamics: urban growth is usually simulated through a common set of 
driving forces (accessibility, physical suitability, zoning) and neighbour 
interactions. Nonetheless, general understanding of the models’ options 
for uncertainty management and system conceptualization can be also 
applied to other types of application. 

The study case is explained in detail in annex 3. It consisted of a 
model set up with a spatial resolution of 100 m grid cells for the city of 
Cape Town and the period 1990–2013. 

2.2.1. Qualitative model characterization 
We reviewed and characterized the structures and features of the 

different software packages. This includes, among other items, system 
conceptualization, available methods for quantity of changes estima
tion, change potential calculation, change allocation, uncertainty man
agement/validation and communication of results as well as the theory 
behind those methods. This information was obtained through the 
model’s documentation and based on the deep experience of authors 
with the analysed software (Mas et al. 2014, 2018; Paegelow et al. 2014, 
2018; Camacho Olmedo et al., 2018b; García-Álvarez, 2018). 

2.2.2. Model outputs assessment 
The four models were calibrated for the same case study following 

the approach described in annex 3. Outputs generated by each model 
were then analysed and compared. This allowed to analyse which dif
ferences between simulations came from the use of different model 
structures. According to this criterion, the higher the consensus among 
model outputs, the more certain is the simulation. Simulation success 
was also measured by comparing each simulation with reference data 
through common LUCC validation indices and metrics, Kappa Simula
tion (Van Vliet et al., 2011) and Spatial metrics (Mcgarigal 2018) (see 
below). The higher the agreement between reference and simulated 
data, the more successful the simulation is considered. 

For the comparison of output maps, we differentiated between soft- 
classified and hard-classified maps (Camacho Olmedo et al., 2013). The 
first ones, which we will also refer to as Change Potential (CP) maps, 
show the probabilities of change to a specific category. Hard-classified 
maps, which are the final land use maps simulated by the models and 
we refer to as simulation results, assign every pixel to a specific category 
and, therefore, show states instead of probabilities. 

Agreement between CP maps obtained through different methods of 
change potential calculation was measured through the Spearman cor
relation coefficient incorporated in the R package “ENMTools” (Warren 
et al., 2021). To this end, Transition Potential (TP) maps to the same 
category in Dinamica and LCM were aggregated and compared to the 
Land Use Potential (LUP) maps for that category in CA_Markov and 
Metronamica. LUP maps show the probability of change to a specific 
category (e.g. B), whereas TP maps show the probability of a specific 
transition (e.g. A to B) happening. To make both types of maps com
parable, areas of CA_Markov and Metronamica LUP maps not considered 
in the transitions of Dinamica and LCM TP maps were masked. 

Hard-classified simulated outputs from different models were 
compared by means of standard cross-tabulation techniques, Kappa 
Simulation (Ksim) and a set of spatial metrics calculated at the class 
level: number of patches, patch mean size and standard deviation and 

proportion of like adjacencies. Ksim evaluates the agreement between 
the changes simulated by each model compared to the agreement that is 
expected by chance (Van Vliet et al., 2011). Spatial metrics characterize 
the shape and size of patches and the way they are allocated on the map, 
that is, the maps’ patterns. A patch is a group of neighbour pixels with 
the same value (Botequilha Leitao et al., 2006). The proportion of like 
adjacencies inform about the aggregation or cohesion between patches 
of the same class (Mcgarigal 2018). That is, how aggregated or frag
mented are the patches that make up a class. 

Each model was executed 20 times under the same parameters and 
conditions to assess the intra-model output variability. Only outputs 
from the first executions were employed for the previous assessments, 
whereas outputs from the remaining 19 executions were only employed 
to assess the agreement between model executions. Outputs from 
different model executions show low variability and do not significantly 
alter the pattern logic of the simulated CP areas or LUC changes. Thus, 
single outputs are enough to compare the output uncertainty caused by 
different model structures. 

Agreement between change potential maps obtained through the 
same production method for each model was assessed by calculating the 
average standard deviation of the pixel values across the 20 outputs. 
Intra-model agreement between simulations was assessed through KSim 
and cross-tabulation, as in the inter-model comparison. 

3. Results 

3.1. Change potential calculation 

Change potential is calculated in the four compared models based on 
the relation defined or found between a set of factors or drivers of 
change and the LUC changes. That relation can be defined by the user in 
the case of expert-driven models (CA_Markov, Metronamica) or calcu
lated through automatic or statistical approaches, as defined by Van 
Vliet et al. (2016), in the case of data-driven models (Dianmica EGO, 
LCM). In the second case, models are trained until the best statistical 
relation between explanatory factors and LUC changes is obtained. In 
the first case, models are trained based on user criteria, which is usually 
driven by validation metrics, such as Kappa or Quantity and Allocation 
(dis)agreement indices. 

Although we can obtain the same relation between factors and LUC 
changes through any of the methods implemented in the four software 
packages, each method entails a specific workflow for the combination 
of factors and produces a specific type of change potential map. 
Depending on the method, there are also some restrictions regarding the 
number or type of factors that can be taken into account. Accordingly, 
the selected methods and the way they have been implemented are 
closely connected with the model conceptualization. 

3.1.1. LUC and LUCC explanatory factors 
Only Metronamica puts restrictions regarding the number and type 

of factors considered. It only comprises four factors (neighbourhood 
interactions, accessibility, suitability and zoning), although the user can 
choose how many base maps he or she likes to include in the different 
factors and even rule out some of them by modifying the transition 
potential formula that guides the change potential map creation. 

The Metronamica factors may be dynamic. The model also includes a 
random component in the change potential map creation, which in
troduces variability between different CP maps produced by the model 
(yellow cell in Table 1). It is possible to run the model in a deterministic 
way as well (random factor = 0), although the developers do not 
recommend this due to the inherent uncertainty in land use dynamics. 

CA_Markov is not able to work with dynamic factors, which makes 
the model more uncertain when simulating processes that are explained 
by different or variable factors along time. On the other hand, Dinamica 
EGO and LCM admit any type and number of factors, including the 
dynamic ones. Notwithstanding, for LCM, when using Logistic 
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Fig. 1. Conceptual chart of the methods followed to compare the four model software packages.  
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Regression as the change potential calculation method, the model re
quires factors that are linearly related to the potential for transition 
(Eastman 2015b). To this end, LCM includes tools for factors trans
formation. However, they transform the factors based on LUC data, 
assuming a temporal stationarity, i.e. the continuation of past trends to 
the future, which may not be real. 

3.1.2. Two different types of change potential maps 
Dinamica EGO and LCM produce Transition Potential (TP) maps 

(Camacho Olmedo et al., 2013), which indicate the potential of a set of 
defined land uses to transition to another set of land uses. Although 
transitions can take place from any class to every other class on TP maps, 
they are usually restricted to the more meaningful, as it is difficult to 
find statistically significant relationships between a few LUC changes 
and a set of factors. In these cases, the found relationships may be 
significantly affected by errors in data or the presence of one-off events. 

Through expert-driven approaches, models produce Land Use Po
tential (LUP) or suitability maps (Camacho Olmedo et al., 2013; 2018a). 
They indicate the preference of each land use class to occupy any 
location of a study area based on a set of drivers defined by the user, 
which in practice allows any transition to happen at any point in time. 
They do not necessarily require of historical data to be obtained 
(Aguejdad 2021), although Camacho Olmedo et al. (2013) point out 
how users create these maps based on the understanding of distribution 
of the considered land uses in time, which implicitly includes the un
derstanding of previous past changes. 

For our study case, correlation between Change Potential (CP) maps 
is independent of the type of maps compared. The CA_Markov and 
Metronamica LUP mas show the highest correlation with the TP maps of 
LCM, whereas TP maps automatically produced by Dinamica EGO show 
the highest correlalation with Metronamica LUP maps (Table 1). 

3.1.3. Methods for change potential calculation 
Each model calculates the change potential though different pro

cedures (Fig. 2), which are closely related to the way each model has 
been conceptualized. 

LCM offers three methods for transition potential map creation: 
Neural Networks and SimWeight, based on machine learning tech
niques, and Logistic Regression. The three methods trust automatic or 
statistical procedures as defined by Van Vliet et al. (2016) to find out the 
relation between changes and drivers of change. To this end, they use a 

sample of pixels as training and then, in the case of Neural Networks and 
SimWeight, the inferred relations are compared to a set of validation 
pixels. As far as the analysis sample varies with each model run, the 
inferred relations change with the sample as well (Kim 2010), although 
this variation is low (Table 1). The logistic regression procedure allows 
the user to employ all the pixels in the analysis and, therefore, avoid this 
possible uncertainty. 

Dinamica EGO makes use of the Weights of Evidence (WoE) to 
calculate the change potential maps, although the model also admits 
external maps produced through other methods to bypass the incorpo
rated methods. The WoE is a Bayesian method that relates the presence 
of a given set of factors with the probability of land use change (Eastman 
et al., 2005). Soares-Filho et al. (2013) developed a Genetic Algorithm 
that allows the user to refine the change potential calculated through the 
WoE method. The software also allows the user to manually edit the 
obtained weights to account for some of the uncertainties that the data, 
calibrations periods, etc can entail. This manual adjustment may have a 
great impact on the obtained maps. In our modelling exercise, change 
potential maps obtained with automatic and adjusted weights showed 
big differences (Table 1). 

CA_Markov does not integrate a specific method for change potential 
calculation, although the model help advises to employ the Multicriteria 
Evaluation (MCE) implemented in TerrSet as the standard tool for this 
purpose. When using this method, the model will rely on user or expert 
knowledge, becoming very dependent on the uncertainty of that 
knowledge. In this regard, in this method he decides which factors to use 
and how they should be transformed and combined. He even assigns a 
weight to every factor. 

In Metronamica, the change potential map is calculated through a 
formula that combines a series of input data manually adjusted by the 
user. The user can also edit the formula, which gives him the chance to 
account for the model structure uncertainty. However, they can also 
introduce new sources of uncertainty by doing so. 

With the exception of Dinamica EGO, CP maps produced through the 
different methods implemented by each model show very high corre
lation among them and lower correlation with CP maps produced by 
other models (Table 1). In addition, there is not a clear correlation be
tween CP maps based on their production method: manual vs auto
matic/statistical approaches. Accordingly, the Dinamica EGO CP maps 
automatically produced through the WoE show lower correlations with 
CP maps of other models than the CP maps obtained after the manual 

Table 1 
In diagonal and grey, average standard deviation of change potential maps produced through the same method after 20 model executions for the 
transitions to residential areas. Off-diagonal cells show the Spearman correlation coefficient between change potential maps produced through different 
methods for the transitions to residential areas. CAM: CA_Markov; Metro 0: Metronamica with random factor = 0; Metro 0.5: Metronamica with random 
factor = 0.5; LG SY10: Logistic Regression in LCM with a Systematic Sampling = 10%; LG SY100: Logistic Regression in LCM with a Systematic Sampling 
= 100%; LG ST10: Logistic Regression in LCM with a Stratified Sampling = 10%; LG ST100: Logistic Regression in LCM with a Stratified Sampling =
100%; NN: LCM with Neuronal Networks; SM: LCM with SimWeight; Manual WoE: Dinamica EGO with manual adjustment of Weights of Evidence; Auto 
WoE: Dinamica EGO with Weights of Evidence automatically calculated. 
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Fig. 2. Methods for change potential maps production offered by each model.  
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modification of the obtained weights. 

3.2. Quantity of changes estimation 

CA_Markov, Dinamica EGO and LCM calculate the simulated quan
tities from Markov chains. They indicate the probability of every cate
gory to transition to every other class and to remain the same (Camacho 
Olmedo and Mas 2018a; Aguejdad 2021). Thence, they make the 
modelling process to focus on transitions instead of land use states. 

Through this approach, it is difficult to model systems where the land 
use dynamics change frequently and that do not follow historical pat
terns of growth (Mas et al., 2018; Paegelow 2018; Aguejdad 2021). That 
is, systems where the transitions between land uses are not always the 
same and at similar intensities. In addition, Markov chains usually 
calculate transition probabilities from past changes, extracted by 
comparing LUC maps at two different time points (Camacho Olmedo and 
Mas 2018a). In these cases, the uncertainty of input maps will be 
transferred to the obtained probabilities. Nonetheless, the three models 
allow the user to manually modify the obtained Markov probabilities 
from input data, and, therefore, to account for some of the uncertainties 
associated to input data. However, this step may not be easy for some 
users. 

The Markov probabilities tool implemented in TerrSet and used in 
the context of CA_Markov allows to consider in the uncertainty of input 
maps in the quantity of change estimation. However, this introduces 
important modifications in the calculated quantities of change (Mas 
et al., 2014). Accordingly, this method can introduce more uncertainty 
than the one for which it finds an answer. 

Metronamica does not include any method for quantity of changes 
estimation. The user enters the total number of cells (persistence +
changes) that will make up each function class. The tool the user em
ploys to decide the total number of cells will determine the uncertainty 
of this data. In addition, the transitions modelled for every category will 
rely on the settings of the interaction rules in the CA component. If the 
user does not introduce high values of inertia for the existent pixels of 
the function classes, some incongruent transitions can take place. 
Moreover, since the user cannot enter any information about the 
quantities of the vacant classes, their final size will also rely on the user 
calibration. Metronamica is therefore the most flexible model for 
modelling different types and speeds of change. However, because of 
this high level of flexibility, the ability of the user to replicate the dy
namics of change is critical when calibrating the model and simulating 
the correct quantities of change. 

All four models calculated different quantities of change, despite 
being based on the same reference data (Table 2). Small differences in 
the way Markov probabilities are calculated and used to calculate the 
number of pixels explain the disagreements between CA_Markov, 
Dinamica EGO and LCM. Metronamica’s differences are explained by its 
specific method and the user calibration. 

3.3. Allocation of changes 

LCM, CA_Markov and Metronamica follow a deterministic procedure 
for change or land use allocation. On the contrary. Dinamica EGO in
cludes a stochastic algorithm of change allocation that simulates 
different changes each time that the model is run (Table 3 and Fig. 3). 

LCM and CA_Markov make use of a Multi Objective Land Allocation 
(MOLA) mechanism. It selects those pixels with the highest potential to 
change, solving conflicts between different objectives based on the 
minimum-distance-to-ideal-point-rule (Eastman et al., 1995). Metrona
mica follows a similar procedure. It selects the pixels with the highest 
potential to change for every category, allocating first the demands of 
the function classes and, then, the pixels of the vacant classes. Although 
the process is deterministic, the random factor added to the change 
potential maps allows transitions to take place in areas less likely to 
change. 

CA_Markov includes a contiguity filter as part of the allocation pro
cess, forcing pixels with lower potential values to be simulated as change 
if located next to previous pixels of the simulated category. In LCM, a 
zoning layer can be included in the allocation of changes step, multi
plying the values of the change potential maps. 

The allocation functions of Dinamica EGO (patcher and expander) 
include a Cellular Automata component, favouring the simulation of 
pixels adjacent to land use classes of the same category. They also 
include a stochastic component to account for the unpredictability of 
human decision-making, which however is not easy to control. It is 
associated to a specific prune factor, which can be managed by the user, 
but also to a Monte Carlo approach of land use allocation and the 
parametrization of the expander and patcher functions (García-Álvarez, 
2018). To reduce this stochasticity to a minimum, the user must choose a 
prune factor of 1, define clear and different transition potential values 
for the candidate cells and parametrize the expander and patcher 
functions according to the pixel size. In our case study, the stochasticity 
was relatively high: in 20 model executions, only 7.6% of the pixels 
simulated as change were allocated in the same place, with 34% of the 
changing pixels allocated in the same place less than 10 times (Table 4 
and Fig. 3). 

Simulated changes from each model usually show more agreement 
with the outputs from other models than with reference maps (Table 4). 
CA_Markov and Metronamica are the models that simulate the most 
similar changes. On the contrary, CA_Markov and Dinamica EGO are the 
models simulating more different changes. These differences cannot be 
explained by differences between change potential maps, as there is not 
a direct relation between correlation of change potential maps and the 
agreement of simulated changes (Tables 1 and 4). 

3.4. Pattern simulation 

CA_Markov, Dinamica EGO and Metronamica include a Cellular 
Automata component to replicate the real LUC pattern. This is lacking in 
LCM, which however allows to include a dynamic factor of distance to 
any of the map categories. LCM can infer from this variable the relation 
between LUC changes and the distance to cells of the other categories. 
However, this is calculated automatically by the model and therefore 
dependent on input data uncertainty. Because there is no user inter
vention possible, there is no direct control of the modelled pattern. 

This CA component or attraction factor is especially relevant to 
simulate urban dynamics, such as the ones of the City of Cape Town, as 
new urban areas usually grow on the urban edges, usually in the search 

Table 2 
Changes in pixels simulated by every model (2002–2013) for every transition 
compared to the changes measured in reference maps for the same period.  

Modelled 
transitions 

Residential areas 

Vegegation 
areas to… 

Other 
cultivated 
areas to… 

Cultivated 
vine áreas 
to… 

Rural 
residential 
to… 

Reference 7376 658 232 331 
CA_Markov 7139 649 231 330 
Dinamica EGO 

(Manual) 
6853 594 NA 297 

LCM 
(Neuronal) 

9361 121 NA 497 

Metronamica 
(0.5) 

8137 252 17 570  

Table 3 
Number of times that each pixel is allocated in the same place across 20 model 
executions in Dinamica EGO.  

1-5 6–10 11–15 16–19 20 (Deterministic) 

15.5% 18.3% 27.1% 31.4% 7.6%  
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for economies of agglomeration (White et al., 1997). 
For our modelling exercise, although LCM simulated a general 

pattern very similar to the reference landscape, the simulation includes 
many small and scattered patches that do not fit the common pattern 
associated with land uses like urban residential. Even if we can check a 
visual coherent pattern in Fig. 4, the spatial metrics reveal how LCM was 
the model that simulated the most new patches of urban residential: 120 
opposite to 7 new patches of change between the reference maps of 2002 
and 2013 (Table 5). 

In CA_Markov the user controls the compactness of the simulated 
pattern through a user-defined contiguity filter. It up-weights the land 
use potential values of pixels close to pixels of the considered class and 
down-weights those which are far from this (Camacho Olmedo and Mas 
2018b). It applies the same compactness logic to all modelled classes. In 
our study case, urban residential and urban informal changes were 
simulated according to the same pattern: patches of both classes became 
more compact, with a reduction in the total number of patches and a 

bigger mean path size (Table 5). However, urban informal pattern is 
more scattered (large increment of the number of patches and a lower 
mean patch size) than the urban residential one. 

Metronamica allows to define neighbourhood interactions between 
all classes of the map and each function class, making it possible to get a 
specific pattern for each class, solving the previous limitation of 
CA_Markov. The user can also play with the weight of self-attraction 
rules and the random factor to facilitate the production of new 
patches in Metronamica. However, both CA_Markov and Metronamica 
faced difficulties when trying to simulate changes as new patches. In the 
two models, all changes were simulated as infill of existing patches or as 
an organic halo from them (Fig. 4). 

Dinamica EGO simulates the desired pattern through two different 
functions: expander and patcher, which can be used together or inde
pendently. The expander function simulates changes as expansion of 
previous patches of the same use, whereas the patcher function simu
lates changes as new patches, disconnected from previous pixels of the 
same use. The user must indicate to the model the size and shape of the 
new patches for each modelled transition through three parameters: 
mean, variance and isometry. Accordingly, Dinamica EGO is the model 
that gives more control to the user regarding pattern simulation. For our 
study, the simulated landscape of Dinamica resembled quite well the 
reference landscape (Table 5), being maybe the best model when it 
comes to this point. 

3.5. Tools for validation, uncertainty management and communication 

Directly or indirectly, all four models offer the user a wide range of 
tools to test the accuracy and uncertainty of the simulation results. This 
is possible in Metronamica through the complementary Map Compari
son Kit software and in CA_Markov and LCM through TerrSet, the soft
ware where these models are included. The Dinamica EGO platform is 
directly able to calculate a wide range of validation measures. 

Metronamica is the only model that explicitly includes a tool for 
scenario management. It also allows to inform about the stochasticity 
associated to single run simulations. Dinamica EGO, because of its 
flexibility, can be designed to produce similar results. CA_Markov and 
LCM are more constrained to this end. LCM is only able to simulate 
business-as-usual scenarios (Eastman and Toledano 2018b). In 
CA_Markov, different model applications must be set up to account for 
different scenarios. 

All four models provide manuals and tutorials that describe the 
models’ methods and explain how to use them properly (Soares-Filho 
et al., 2009; RIKS 2012; Eastman 2015b). However, information about 
how to validate or assess the uncertainty of the modelling exercises is 
usually lacking. In addition, none of the four models is open source, 
which limits the user development and understanding of the software. 
Nonetheless, Metronamica foundations are deeply addressed in the 
literature (White and Engelen 1993; White et al., 1997) and described in 
detail in the model documentation (RIKS 2012), facilitating the repli
cation of the model by other users. 

4. Discussion 

Each of the four model software packages compared conceptualized 
the systems and processes to be modelled in a different way, which 
resulted in different outputs. These sources of structural uncertainty are 
discussed in detail in section 4.1. In addition, all models provide 
different methods or tools to deal, manage and communicate the 
possible uncertainties of the modelling exercise. They are discussed in 
section 4.2. 

Part of the results here discussed are limited by the study case 
selected for the model comparison. Model outputs were only compared 
for one specific case and one historic period. Analyses making use of 
different historic periods and study areas could provide complementary 
results. In addition, we have only judged the models’ success based on 

Fig. 3. Map showing the number of times that each pixel is allocated in the 
same place across 20 model executions in Dinamica EGO. 

Table 4 
Off-diagonal cells show Kappa simulation scores between simulated changes by 
the compared models. The higher the KSim (0–1), the higher the agreement 
between changes simulated by the two simulations diagonal cells show. Diag
onal cells show Kappa simulation scores between simulated and observed 
changes for each model. The higher the KSim (0–1), the higher the agreement 
between observed and simulated changes.   

CA_Markov Dinamica 
EGO 
(Manual) 

LCM 
(Neuronal 
networks) 

Metronamica 
(0.5) 

CA_Markov 0.23 – – – 
Dinamica EGO 

(Manual) 
0.274 0.33 – – 

LCM (Neuronal 
networks) 

0.303 0.415 0.41 – 

Metronamica 
(0.5) 

0.566 0.374 0.515 0.33  
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their quantitative performance with respect to a historic period of 
reference. Assessing the plausibility of model parameters and results, 
based on expert judgment or other strategies, could also provide com
plementary conclusions. 

4.1. Structural uncertainty 

How a system is conceptualized in a model comes with an important 
source of epistemological uncertainty, which may depend to a great 
extent on the purpose or objective for which the model was initially 
developed. Models developed for a specific purpose and application can 
include a structure that suit the simulated processes best. For standard 
models, like the ones assessed in our application, the sources of 

structural uncertainty can be bigger. The models assessed in our study 
have all developed towards generic modelling frameworks. Although 
they might have been developed for a specific purpose originally, over 
time they have been adapted to be able to simulate a wider range of 
dynamics. 

LCM and Dinamica EGO were initially developed to simulate defor
estation dynamics (Soares-Filho et al., 2002; Eastman 2015a), but suc
cessfully simulated urban processes in our study case and have been 
applied with success in other domains (Eastman and Toledano 2018b; 
Rodrigues and Soares-Filho 2018). In this regard, they do not limit the 
number or nature of the factors considered, which makes them very 
flexible tools. That is also the case of CA_Markov, that was not specif
ically developed for any application, but has been successfully applied to 

Fig. 4. Changes simulated by every model (2002–2013) for an example area of Cape Town compared to the changes that the reference map show. The last map in the 
lower right corner shows the coincidences between the simulated changes by the four models. 

Table 5 
Spatial metrics difference between 2002 and 2013 for the reference map and the four simulations for the categories urban residential (R) and urban informal (I). NP: 
Number of patches; Mean; Patch mean size; SD: Patch standard deviation; PLAJD: Proportion of like adjacencies. *E.g. 7 means that the reference map of 2013 has 7 
more patches than the land use map of 2002.   

NP MEAN SD PLAJD 

R I R I R I R I 

Reference map 7* 25 4.97 2.09 53.92 5.86 0.17 4.02 
CA_Markov − 35 − 8 19.44 5.23 88.03 13.62 1.67 8.39 
Dinamica EGO 7 9 4.08 3.08 62.57 6.57 0.23 − 0.69 
LCM (Neuronal networks) 120 47 − 20.18 − 0.10 − 1.87 7.65 0.25 − 0.10 
Metronamica 22 65 0.55 − 0.25 87.88 5.35 0.63 3.16  

D. García-Álvarez et al.                                                                                                                                                                                                                       



Environmental Modelling and Software 153 (2022) 105411

10

many domains (Eastman and Toledano 2018a). 
Metronamica, based on the model proposed by White and Engelen to 

simulate urban dynamics (White and Engelen 1993; White et al., 1997), 
has been also applied to simulate non-urban dynamics (Van Delden and 
Vanhout 2018; Navarro Cerrillo et al., 2020). However, the model has 
been specifically designed to simulate urban and regional processes in 
detail, as revealed by the four factors that model considers: accessibility, 
neighbourhood, suitability and zoning. They are the common drivers of 
urban change, but may be limited to simulate dynamics related with 
farming or natural vegetation. 

In CA models, such as CA_Markov, Dinamica EGO or Metronamica, 
the behaviour of a complex system is explained by the relation between 
every of its components (conceptualized as cells) and their neighbour
hoods. If this assumption does not lie on the base of the dynamics of the 
modelled system, these models will probably fail when modelling the 
intended dynamics. This logic fits well with urban processes, like the 
ones of Cape Town, as well as with other ones, such as deforestation 
(Barredo et al., 2003; White et al., 2015; Kura and Beyene 2020). 
However, even in urban environments, not all dynamics can be 
explained following the same CA theory. In our study case, model’s fit 
was poor for informal settlements (Annex 3), as this class usually grows 
scattered and cannot be easily explained by common CA rules (Ibrahim 
et al., 2019). Liu et al. (2019) point out at the limited capabilities of CA 
models to simulate novel urban processes, such as urban regeneration, 
gentrification, or urban shrinkage. Nonetheless, Lauf et al. (2016) 
simulated with success urban shrinkage processes for Berlin in a 
Metronamica-based model. 

Even if relying on the same CA theory, models can implement it in a 
different way, leading to variable model structures and sources of un
certainty. Simple approaches, such as the contiguity filter of CA_Markov, 
may be less suited for complex applications where several categories or 
dynamics are modelled. Thus, the CA component in CA_Markov only 
allows the user to tune the compactness of the entire simulated land
scape, without distinctions at the class level. In our application, this 
hampered the correct simulation of informal settlements, whose pattern 
did not adapt to the general compactness logic applied by the model. 

Pontius Jr. and Malanson (2005) considered the ability to control the 
modelled pattern as an important feature of a modelling exercise. CA 
models allowing the definition of complex interactions (attraction and 
repulsion rules) between land uses, such as Metronamica, give an 
answer to this question. However, only through the implementation of 
more complex methods, such as the Expander and Patcher algorithms of 
Dinamica EGO, the model can simulate different dynamics than the infill 
or growth from the patch edges. In this regard, García et al. (2011) and 
Hewitt and Díaz-Pacheco (2017) point out at the model’s ability to 
simulate emergent growth isolated from previous developments when 
analysing the complexity of CA models. 

In our study case, Dinamica EGO was the only CA model able to 
replicate the full complexity of the land use change pattern. Soares-Filho 
et al. (2003) and Mas et al. (2014) proved the high control that this 
model offers for pattern simulation. Notwithstanding, this flexibility is 
dependent on the stochasticity introduced in the model, which may 
hamper the user understanding and the model stability (García-Álvarez, 
2018). 

The simulation of dynamics by means of contiguity rules is also 
possible through non-CA approaches, such as LCM. A dynamic factor of 
attraction/repulsion between one land use and the others can account 
for those contiguity patterns. For our study case, the parametrization of 
this factor in LCM contributed to the generation of a similar simulation 
in CA and non-CA models. 

The correct or uncertain simulation of the studied dynamics may be 
also caused by other model characteristics, such as the assumption of 
temporal stationarity of LUC change (Feng et al., 2019). Markov-based 
models, like CA_markov, Dinamica EGO and LCM, reproduce past pro
cesses into the future, which makes difficult to simulate turning points in 
the modelled systems when different land use transitions take place 

(Mas et al., 2018; Paegelow 2018). In addition, quantities of change in 
Markov-based models are usually calculated from historical data, mak
ing the models very dependent on input data representativeness and 
accuracy (Paegelow 2018; Aguejdad 2021). Verburg et al. (2019) 
recommend the development of models able to simulate the LUC de
mands explicitly, which can link demand and supply. 

Models based on TP maps, like Dinamica EGO and LCM, also find 
difficult to simulate different transitions through time and usually trust 
their calibration in recent changes, which may be not enough to repre
sent the system’s future variability. To account for this process vari
ability, models should be also able to handle dynamic factors. This is a 
common feature in the three of the models compared, with CA_Markov 
as the only software not able to handle these type of factors. 

There is a wide variety of non-CA modelling approaches (National 
Research Council 2014; Camacho Olmedo et al., 2018b). Many of them, 
like LCM, rely on machine learning and statistical procedures. Through 
these methods, the model studies the relation between past changes and 
drivers of change and apply it to the future. However, if not allowing for 
user intervention, the model may become very dependent on input un
certainties from data, short calibration periods, etc. LCM does not offer 
any room for user intervention to this end, which hampered the 
correction of some pattern inconsistencies in our study case. Thus, in 
LCM, model success entirely depends on the ability of the chosen eval
uation method to correctly find the relation between drivers of change 
and past changes. 

When models relying on automatic or statistical procedures allow for 
user intervention, the users should be aware of the impact of their 
intervention and the uncertainties that it may bring. In Dinamica EGO, 
the change potential can be calculated through the Weights of Evidence 
or a Genetic algorithm and the obtained result later modified by the 
user. In our study case, this modification produced very different change 
potential maps to the ones automatically generated by the model. 

Models relying on user understanding, such as Metronamica and 
CA_Markov, avoid the uncertainties that come from the method, but 
become dependent on the user input’s uncertainty (Botterweg 1995; 
Sohl et al., 2016; Li et al., 2017). They may be even bigger than the ones 
associated to the selected method for change potential calculation. 

In automatic or statistical approaches, the model’s success will 
depend a lot on the data and, specifically, on the number and statistical 
representativity of observed changes. If these are not large or repre
sentative enough, the relation that the model finds between changes and 
drivers of change may be biased. However, this may be a common 
feature in those models trusting user knowledge if s/he heavily relies on 
historic dynamics to manually calibrate the models, such as in the 
studies of Guzman et al. (2020) and Tamuka Moyo et al. (2021). In these 
cases, expert judgment could be a solution, as experts can inform about 
the plausibility of the user’s parameters and the simulation results 
(Hewitt et al., 2014). 

According to Botterweg (1995), user’s calibrations are only valid for 
those users or experts who made the calibration, limiting the repeat
ability of the model application. However, in our exercise, expert-based 
calibrations showed high correlation, even with change potential maps 
obtained through statistical or automatic approaches. On the contrary, 
change potential maps obtained through different statistical or auto
matic approaches showed high variability. These findings are similar to 
the ones obtained by Krueger et al. (2012). Thus, although the repeat
ability and easiness of calculation are usually some of the common ad
vantages pointed out to choose automatic or statistical approaches, this 
is not always the case. 

Expert or user knowledge has been pointed out as a useful tool for 
uncertainty assessment (Uusitalo et al., 2015). Nevertheless, total user 
control, like in Metronamica, has important limitations. The modeller 
needs to understand how hundreds of parameters work at the same time. 
Accordingly, he can struggle during the calibration, especially if he does 
not have the expertise or experience required (Elsawah et al., 2017). A 
mixture of both data-driven and knowledge-driven approaches can be 
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considered an adequate solution (Pérez-Vega et al., 2012). This is 
already implemented in Dinamica EGO and has already been tested in 
CA_Markov and Metronamica (Ghosh et al., 2017; Newland et al., 2018). 

4.2. Uncertainty management 

4.2.1. Managing the structural uncertainty 
Models can offer different strategies to deal with the structural un

certainties they may convey. One of the most common is the provision of 
different methods in each of the modelling steps, among which the users 
can choose the most suitable. It connects with the models’ need to 
provide multiple process representation suggested by Verburg et al. 
(2019). Another approach is the possibility of direct user intervention. 
The availability of models’ code is maybe the option that would offer the 
users more room to deal with the models’ structural uncertainty, 
although it would require a high level of expertise and user under
standing of the model. In addition, it has been considered a required step 
by Verburg et al. (2019) to progress on LUCC modelling and the man
agement of uncertainty. However, none of the four models assessed are 
open source. 

For the production of change potential maps, offering the possibility 
to use external maps created through other methods is a good solution, 
which has been applied in practice in Metronamica and is already 
implemented in Dinamica EGO and CA_Markov. In the last case, this 
option is extensively used (Cai and Wang 2020; Arora et al., 2021). 
Offering a range of methods for change potential calculation is another 
approach. However, the different methods should be complementary, 
providing a similar utility. 

Dinamica EGO provides two different complementary methods 
(Weights of Evidence, Genetic Algorithm) to calculate the change po
tential. This, in addition to the admission of external maps, gives the 
user a wide range of chances to deal with the model’s structural un
certainty. LCM supplies three different methods for change potential 
calculation plus two extra machine learning techniques that have been 
included in the last release of the model (Eastman and Toledano 2018b). 
However, logistic regression is just provided for pedagogic purposes 
(Eastman and Toledano 2018b) and not recommend by the developers 
(Eastman 2015a). In addition, machine learnings behave like a black 
boxes (Kim 2010; Mozumder et al., 2016), hampering the user under
standing of the model. If s/he cannot understand why one method 
produces different results than the other, s/he will not be able to 
effectively manage the model’s structural uncertainty by selecting 
among the different methods that are available. 

For change allocation, models can also offer different algorithms or 
methods. However, this is less common than in the change potential 
calculation. All four models compared offer a single method of change or 
land use allocation, which cannot be modified in CA_Markov and LCM. 
Through the provision of flexible frameworks, like in Dinamica EGO, 
models can allow the user to develop their own land allocation algo
rithms. Other approach is allowing the user modification of the specific 
method or algorithm implemented in the model. Metronamica, for 
example, allows the user to modify the transition potential formula that 
the model uses to allocate land uses. 

For the quantity of changes estimation, user intervention is the most 
common approach for uncertainty management. The four models 
assessed allow users to modify the quantities of simulated changes, 
which give them the chance to employ different methods to calculate 
those quantities. However, depending on the format that these quanti
ties must be provided, the room for user intervention may be more 
limited. In this regard, LCM only allow to introduce markov probabili
ties. CA_Markov and Dinamica EGO offer options for the implementation 
of dynamic methods of quantity of changes estimation. In a similar vein, 
Metronamica allows the dynamic computation of quantities of change 
through a regional model that can be parametrized by the user. 

4.2.2. Stochasticity as a means to account for the model allocation 
uncertainty 

Stochasticity is considered as an important feature by several authors 
to replicate real phenomena (García et al., 2011; Van Vliet et al., 2012; 
Renard et al., 2013). It accounts for the uncertainty of the real world, 
where decisions are dependent on uncertain human actions. For a given 
set of changes, there are usually large available areas for development 
with similar potential to change. Uncertain human action is the factor 
that can explain why a change took place in one place or another. 

By including a stochastic component, models can account for this 
uncertainty. García et al. (2011) reviewed two main approaches for the 
inclusion of randomness in LUCC models: a stochastic perturbation, 
included in Metronamica as part of the change potential calculation, and 
Monte Carlo methods of change allocation, as included in Dinamica 
EGO. The first approach allows less likely changes to happen and has 
been pointed out as useful when communicating the uncertainty of the 
change allocation step (White et al., 2015). The second approach allows 
cells with similar potential to change to be simulated at each model 
execution, although may produce important output variability, as in our 
study case. 

4.2.3. Process variability uncertainty 
At the regional or global levels, the aggregation of uncertain local 

human decisions brings about new drivers or processes of change, which 
finally change the foundations of the systems. Accordingly, real systems 
are far from equilibrium systems, which can evolve to new stages gov
erned by new rules and processes (White et al., 2015). Usually, models 
deal with this process variability uncertainty by accounting for 
randomness in the modelling process (Hewitt and Díaz-Pacheco 2017) 
or by means of the definition of scenarios (Van Asselt 2000; Maier et al., 
2016). Some tools have been also proposed to deal with this uncertainty, 
like the self-modification algorithm in SLEUTH (Clarke 2004). 

Stochasticity facilities those tipping points to happen, allowing to 
replicate more complex systems. However, changing the foundations of 
a system is only possible by means of entering a large randomness, 
which at the same time may hamper the user comprehension of the 
model. The stochastic perturbation approach included in Metronamica 
produces limited stochasticity, at least when staying between the ranges 
indicated by the developers, as proved in our simulation and other 
studies (Wu 2002; García et al., 2011; Hewitt and Díaz-Pacheco 2017). 
The Monte Carlo method for change allocation implemented in 
Dinámica EGO can produce very stochastic simulations, accounting for 
the process variability uncertainty mentioned above (Mustafa et al., 
2018). However, the uncertainty that this method introduces in the user 
comprehension of the performed calibration can be higher than the one 
for which it finds an answer, as the model can show different results 
every time that it is run, making the model parametrization and un
derstanding uncertain. Accordingly, the user must find a balance be
tween the stochasticity of his/her model and its stability. 

Scenarios allow to manage the process variability uncertainty by 
providing a range of possible system evolutions, under different drivers 
and processes of change. They allow the user to explore future system 
uncertainties in a transparent way: the user knows what is being tested. 
However, only those uncertainties that can be thought of will be 
included, while a more black box approach also has the potential to 
capture the unknown unknowns. 

Models only able to produce business-as-usual scenarios or that offer 
options for parameter variation, like LCM (Pérez-Vega et al., 2012; 
Eastman and Toledano 2018b), cannot deal with this source of uncer
tainty. When different scenarios can be produced, such as in the other 
three compared models, the provision of specific tools for the manage
ment and creation of scenarios, like in Metronamica, may be a very 
useful tool to manage this source of uncertainty (Van Delden and 
Hagen-Zanker 2009; Riddell et al., 2020). 

Caution should be paid regarding the uncertainty that scenarios 
capture. Studies show that there are often larger differences between 
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results of a baseline scenario simulated with different model software 
packages than between different scenarios run with the same model 
(Van Delden et al., 2012; Prestele et al., 2016; Sohl et al., 2016). This 
uncertainty, mostly structural, should be therefore carefully evaluated. 
To this end, model comparison has been repeatedly pointed out as a tool 
for model validation and characterization of their uncertainty 
(Pérez-Vega et al., 2012; Sohl et al., 2016; Paegelow et al., 2018). In this 
regard, this study proves how the same model application calibrated 
through very similar parameters for four different model software 
packages may deliver different results. 

4.2.4. Validation and uncertainty analysis 
Models usually include specific tools to validate and assess the un

certainty of their outputs. However, if this is not possible, the generation 
of outputs that can be easily exported to other validation software, or 
even the connection between the models and these software, is equally 
effective. In this regard, Metronamica, CA_Markov and LCM give the 
user a wide range of options for model validation through the Map 
Comparison Kit and TerrSet. The provision of flexible GIS frameworks, 
where users can design and implement their own validation methods, 
like in Dinamica EGO, is another valid option for the provision of vali
dation and uncertainty management tools. 

It is important that the model developers provide the users guide and 
assistance when making these validation exercises or generally assessing 
the model uncertainty. In this regard, Elsawah et al. (2020) pointed out a 
gap between theory and practice in the implementation of uncertainty 
assessment exercises. It is common the availability of model manuals 
and tutorials that give some tips to this end, like in the four models 
compared. However, specific guidelines about validation and, above all, 
about uncertainty analysis, are usually lacking and have been not found 
for any of the compared models. When available, they focus on one or a 
few analyses and do not make the user aware of the complexity that a 
full validation and uncertainty analysis may entail. 

4.2.5. Communication of uncertainty 
There is still a lack of attention in the provision of tools to commu

nicate the uncertainty that the models provide, which is especially 
important for their correct use among decision makers and stakeholders 
(Elsawah et al., 2020). None of the analysed models provides enough 
tools to communicate most of the uncertainties of the analysis to the 
audience, from the problem conceptualization to the model validation. 
Models just focus on specific sources of uncertainty, but not on the whole 
uncertainty of the modelling exercise. This can be related with the lack 
of an agreed framework for uncertainty assessment in LUCC modelling. 
The development of external tools, easily connected with the models, 
that fulfil that need could be an alternative solution. 

The generation of probability outputs, which account for the model 
stochasticity and variability among model runs, is a useful approach to 
communicate the uncertainty of single outputs. However, only Metro
namica includes a tool to produce these outputs, which could be espe
cially useful in Dinamica EGO, due to the important stochasticity that 
the model can convey. Notwithstanding, this result could be inconve
nient if it is not properly used. It can give the audience a false 
perspective about the uncertainty of the simulation. It just accounts for 
the system’s uncertainty that the models try to replicate through a sto
chastic component. However, it does not account for all the other 
sources of uncertainty which we have addressed in this paper. 

5. Conclusions 

Each model software package conceptualized the modelled system in 
a different way, which led to differences in the way the LUC dynamics 
and changes were simulated. Despite of these differences, there is not a 
best modelling approach. Each model entails different uncertainties and 
limitations, which must be carefully considered by their potential users. 
In this regard, comparing different model outputs for the same 

application is a good approach to account for the structural uncertainty 
of our modelling exercises. 

The less automatic the model workflow is, the more options the user 
has to control the model structural uncertainty. In this regard, con
strained approaches that offer little room for user intervention, like 
LCM, can be associated to important sources of structural uncertainty if 
the model structure does not perfectly fit with the modelled processes. 
Nonetheless, very flexible approaches, which rely a lot on user or expert 
knowledge, may become very dependent on the uncertainties intro
duced by them. Thus, mixed approaches, like Dinamica EGO, are 
considered preferable. Nonetheless, statistical or automatic modelling 
approaches did not provide in our study case more repeatability or 
better simulation scores than models relying on user knowledge, which 
proved that user intervention is not necessarily associated with more 
uncertain simulations. 

Offering several options or methods for change potential calculation, 
quantity of changes estimation and change allocation allows user 
intervention in the modelled process, but does not leave all decisions in 
the user. However, when offering several options or methods, these 
should be complementary and provide different approaches. In this re
gard, the different options for change potential calculation offered by 
LCM provided similar results. 

Randomness and scenario management were identified as two 
important elements to account for the uncertainty of the modelled 
processes, but are not usually included in all models. In our case, only 
Dinamica EGO and Metronamica were able to both simulate stochastic 
simulations and generate different scenarios. In addition, we have 
identified a lack of attention in models to important aspects related with 
uncertainty management, such as the communication of model un
certainties and the provision of tools and guidance for uncertainty 
analysis. 
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García-Álvarez, D., Van Delden, H., Camacho Olmedo, M.T., Paegelow, M., 2019. 
Uncertainty challenge in geospatial analysis: an approximation from the land use 
cover change modelling perspective. In: Koutsopoulos, K., de Miguel González, R., 
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Mas, J.-F., Kolb, M., Houet, T., et al., 2011. Éclairer le choix des outils de simulation des 
changements des modes d’occupation et d’usages des sols. Une approche 
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dans le sud chilien: géomatique et modélisation prospective appliquée sur une forêt 
patrimoniale de la province d’Osorno (41o 15’ - 41o 00’ latitude Sud). Université 
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