591 research outputs found

    Memetic micro-genetic algorithms for cancer data classification

    Get PDF
    Fast and precise medical diagnosis of human cancer is crucial for treatment decisions. Gene selection consists of identifying a set of informative genes from microarray data to allow high predictive accuracy in human cancer classification. This task is a combinatorial search problem, and optimisation methods can be applied for its resolution. In this paper, two memetic micro-genetic algorithms (MμV1 and MμV2) with different hybridisation approaches are proposed for feature selection of cancer microarray data. Seven gene expression datasets are used for experimentation. The comparison with stochastic state-of-the-art optimisation techniques concludes that problem-dependent local search methods combined with micro-genetic algorithms improve feature selection of cancer microarray data.Fil: Rojas, Matias Gabriel. Universidad Nacional de Lujan. Centro de Investigacion Docencia y Extension En Tecnologias de la Informacion y Las Comunicaciones.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional de Lujan. Centro de Investigacion Docencia y Extension En Tecnologias de la Informacion y Las Comunicaciones.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Vidal, Pablo Javier. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentin

    Evolutionary Algorithms

    Full text link
    Evolutionary algorithms (EAs) are population-based metaheuristics, originally inspired by aspects of natural evolution. Modern varieties incorporate a broad mixture of search mechanisms, and tend to blend inspiration from nature with pragmatic engineering concerns; however, all EAs essentially operate by maintaining a population of potential solutions and in some way artificially 'evolving' that population over time. Particularly well-known categories of EAs include genetic algorithms (GAs), Genetic Programming (GP), and Evolution Strategies (ES). EAs have proven very successful in practical applications, particularly those requiring solutions to combinatorial problems. EAs are highly flexible and can be configured to address any optimization task, without the requirements for reformulation and/or simplification that would be needed for other techniques. However, this flexibility goes hand in hand with a cost: the tailoring of an EA's configuration and parameters, so as to provide robust performance for a given class of tasks, is often a complex and time-consuming process. This tailoring process is one of the many ongoing research areas associated with EAs.Comment: To appear in R. Marti, P. Pardalos, and M. Resende, eds., Handbook of Heuristics, Springe

    A Constrained Multi-Objective Learning Algorithm for Feed-Forward Neural Network Classifiers

    Get PDF
    This paper proposes a new approach to address the optimal design of a Feed-forward Neural Network (FNN) based classifier. The originality of the proposed methodology, called CMOA, lie in the use of a new constraint handling technique based on a self-adaptive penalty procedure in order to direct the entire search effort towards finding only Pareto optimal solutions that are acceptable. Neurons and connections of the FNN Classifier are dynamically built during the learning process. The approach includes differential evolution to create new individuals and then keeps only the non-dominated ones as the basis for the next generation. The designed FNN Classifier is applied to six binary classification benchmark problems, obtained from the UCI repository, and results indicated the advantages of the proposed approach over other existing multi-objective evolutionary neural networks classifiers reported recently in the literature

    Unsupervised text Feature Selection using memetic Dichotomous Differential Evolution

    Get PDF
    Feature Selection (FS) methods have been studied extensively in the literature, and there are a crucial component in machine learning techniques. However, unsupervised text feature selection has not been well studied in document clustering problems. Feature selection could be modelled as an optimization problem due to the large number of possible solutions that might be valid. In this paper, a memetic method that combines Differential Evolution (DE) with Simulated Annealing (SA) for unsupervised FS was proposed. Due to the use of only two values indicating the existence or absence of the feature, a binary version of differential evolution is used. A dichotomous DE was used for the purpose of the binary version, and the proposed method is named Dichotomous Differential Evolution Simulated Annealing (DDESA). This method uses dichotomous mutation instead of using the standard mutation DE to be more effective for binary purposes. The Mean Absolute Distance (MAD) filter was used as the feature subset internal evaluation measure in this paper. The proposed method was compared with other state-of-the-art methods including the standard DE combined with SA, which is named DESA in this paper, using five benchmark datasets. The F-micro, F-macro (F-scores) and Average Distance of Document to Cluster (ADDC) measures were utilized as the evaluation measures. The Reduction Rate (RR) was also used as an evaluation measure. Test results showed that the proposed DDESA outperformed the other tested methods in performing the unsupervised text feature selection

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    Memetic Evolutionary Multi-Objective Neural Network Classifier to Predict Graft Survival in Liver Transplant Patients

    Get PDF
    In liver transplantation, matching donor and recipient is a problem that can be solved using machine learning techniques. In this paper we consider a liver transplant dataset obtained from eleven Spanish hospitals, including the patient survival or the rejection in liver transplantation one year after the surgery. To tackle this problem, we use a multi-objective evolutionary algorithm for training generalized radial basis functions neural networks. The obtained models provided medical experts with a mathematical value to predict survival rates allowing them to come up with a right decision according to the principles of justice, efficiency and equit

    Multi-objective evolutionary algorithms of spiking neural networks

    Get PDF
    Spiking neural network (SNN) is considered as the third generation of artificial neural networks. Although there are many models of SNN, Evolving Spiking Neural Network (ESNN) is widely used in many recent research works. Among the many important issues that need to be explored in ESNN are determining the optimal pre-synaptic neurons and parameters values for a given data set. Moreover, previous studies have not investigated the performance of the multi-objective approach with ESNN. In this study, the aim is to find the optimal pre-synaptic neurons and parameter values for ESNN simultaneously by proposing several integrations between ESNN and differential evolution (DE). The proposed algorithms applied to address these problems include DE with evolving spiking neural network (DE-ESNN) and DE for parameter tuning with evolving spiking neural network (DEPT-ESNN). This study also utilized the approach of multi-objective (MOO) with ESNN for better learning structure and classification accuracy. Harmony Search (HS) and memetic approach was used to improve the performance of MOO with ESNN. Consequently, Multi- Objective Differential Evolution with Evolving Spiking Neural Network (MODE-ESNN), Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (HSMODE-ESNN) and Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) were applied to improve ESNN structure and accuracy rates. The hybrid methods were tested by using seven benchmark data sets from the machine learning repository. The performance was evaluated using different criteria such as accuracy (ACC), geometric mean (GM), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and average site performance (ASP) using k-fold cross validation. Evaluation analysis shows that the proposed methods demonstrated better classification performance as compared to the standard ESNN especially in the case of imbalanced data sets. The findings revealed that the MEHSMODE-ESNN method statistically outperformed all the other methods using the different data sets and evaluation criteria. It is concluded that multi objective proposed methods have been evinced as the best proposed methods for most of the data sets used in this study. The findings have proven that the proposed algorithms attained the optimal presynaptic neurons and parameters values and MOO approach was applicable for the ESNN

    EPRENNID: An evolutionary prototype reduction based ensemble for nearest neighbor classification of imbalanced data

    Get PDF
    Classification problems with an imbalanced class distribution have received an increased amount of attention within the machine learning community over the last decade. They are encountered in a growing number of real-world situations and pose a challenge to standard machine learning techniques. We propose a new hybrid method specifically tailored to handle class imbalance, called EPRENNID. It performs an evolutionary prototype reduction focused on providing diverse solutions to prevent the method from overfitting the training set. It also allows us to explicitly reduce the underrepresented class, which the most common preprocessing solutions handling class imbalance usually protect. As part of the experimental study, we show that the proposed prototype reduction method outperforms state-of-the-art preprocessing techniques. The preprocessing step yields multiple prototype sets that are later used in an ensemble, performing a weighted voting scheme with the nearest neighbor classifier. EPRENNID is experimentally shown to significantly outperform previous proposals
    corecore