1,182 research outputs found

    Reconstructing DNA copy number by joint segmentation of multiple sequences

    Get PDF
    The variation in DNA copy number carries information on the modalities of genome evolution and misregulation of DNA replication in cancer cells; its study can be helpful to localize tumor suppressor genes, distinguish different populations of cancerous cell, as well identify genomic variations responsible for disease phenotypes. A number of different high throughput technologies can be used to identify copy number variable sites, and the literature documents multiple effective algorithms. We focus here on the specific problem of detecting regions where variation in copy number is relatively common in the sample at hand: this encompasses the cases of copy number polymorphisms, related samples, technical replicates, and cancerous sub-populations from the same individual. We present an algorithm based on regularization approaches with significant computational advantages and competitive accuracy. We illustrate its applicability with simulated and real data sets.Comment: 54 pages, 5 figure

    Statistical Methods for Characterizing Genomic Heterogeneity in Mixed Samples

    Get PDF
    Recently, sequencing technologies have generated massive and heterogeneous data sets. However, interpretation of these data sets is a major barrier to understand genomic heterogeneity in complex diseases. In this dissertation, we develop a Bayesian statistical method for single nucleotide level analysis and a global optimization method for gene expression level analysis to characterize genomic heterogeneity in mixed samples. The detection of rare single nucleotide variants (SNVs) is important for understanding genetic heterogeneity using next-generation sequencing (NGS) data. Various computational algorithms have been proposed to detect variants at the single nucleotide level in mixed samples. Yet, the noise inherent in the biological processes involved in NGS technology necessitates the development of statistically accurate methods to identify true rare variants. At the single nucleotide level, we propose a Bayesian probabilistic model and a variational expectation maximization (EM) algorithm to estimate non-reference allele frequency (NRAF) and identify SNVs in heterogeneous cell populations. We demonstrate that our variational EM algorithm has comparable sensitivity and specificity compared with a Markov Chain Monte Carlo (MCMC) sampling inference algorithm, and is more computationally efficient on tests of relatively low coverage (27x and 298x) data. Furthermore, we show that our model with a variational EM inference algorithm has higher specificity than many state-of-the-art algorithms. In an analysis of a directed evolution longitudinal yeast data set, we are able to identify a time-series trend in non-reference allele frequency and detect novel variants that have not yet been reported. Our model also detects the emergence of a beneficial variant earlier than was previously shown, and a pair of concomitant variants. Characterization of heterogeneity in gene expression data is a critical challenge for personalized treatment and drug resistance due to intra-tumor heterogeneity. Mixed membership factorization has become popular for analyzing data sets that have within-sample heterogeneity. In recent years, several algorithms have been developed for mixed membership matrix factorization, but they only guarantee estimates from a local optimum. At the gene expression level, we derive a global optimization (GOP) algorithm that provides a guaranteed epsilon-global optimum for a sparse mixed membership matrix factorization problem for molecular subtype classification. We test the algorithm on simulated data and find the algorithm always bounds the global optimum across random initializations and explores multiple modes efficiently. The GOP algorithm is well-suited for parallel computations in the key optimization steps

    Comparative genomics of recent adaptation in Candida pathogens

    Full text link
    [eng] Fungal infections pose a serious health threat, affecting >1,000 million people and causing ~1.5 million deaths each year. The problem is growing due to insufficient diagnostic and therapeutic options, increased number of susceptible patients, expansion of pathogens partly linked to climate change and the rise of antifungal drug resistance. Among other fungal pathogens, Candida species are a major cause of severe hospital-acquired infections, with high mortality in immunocompromised patients. Various Candida pathogens constitute a public health issue, which require further efforts to develop new drugs, optimize currently available treatments and improve diagnostics. Given the high dynamism of Candida genomes, a promising strategy to improve current therapies and diagnostics is to understand the evolutionary mechanisms of adaptation to antifungal drugs and to the human host. Previous work using in vitro evolution, population genomics, selection inferences and Genome Wide Association Studies (GWAS) have partially clarified such recent adaptation, but various open questions remain. In the three research articles that conform this PhD thesis we addressed some of these gaps from the perspective of comparative genomics. First, we addressed methodological issues regarding the analysis of Candida genomes. Studying recent adaptation in these pathogens requires adequate bioinformatic tools for variant calling, filtering and functional annotation. Among other reasons, current methods are suboptimal due to limited accuracy to identify structural variants from short read sequencing data. In addition, there is a need for easy-to-use, reproducible variant calling pipelines. To address these gaps we developed the “personalized Structural Variation detection” pipeline (perSVade), a framework to call, filter and annotate several variant types, including structural variants, directly from reads. PerSVade enables accurate identification of structural variants in any species of interest, such as Candida pathogens. In addition, our tool automatically predicts the structural variant calling accuracy on simulated genomes, which informs about the reliability of the calling process. Furthermore, perSVade can be used to analyze single nucleotide polymorphisms and copy number-variants, so that it facilitates multi-variant, reproducible genomic studies. This tool will likely boost variant analyses in Candida pathogens and beyond. Second, we addressed open questions about recent adaptation in Candida, using perSVade for variant identification. On the one hand, we investigated the evolutionary mechanisms of drug resistance in Candida glabrata. For this, we used a large-scale in vitro evolution experiment to study adaptation to two commonly-used antifungals: fluconazole and anidulafungin. Our results show rapid adaptation to one or both drugs, with moderate fitness costs and through few mutations in a narrow set of genes. In addition, we characterize a novel role of ERG3 mutations in cross-resistance towards fluconazole in anidulafungin-adapted strains. These findings illuminate the mutational paths leading to drug resistance and cross-resistance in Candida pathogens. On the other hand, we reanalyzed ~2,000 public genomes and phenotypes to understand the signs of recent selection and drug resistance in six major Candida species: C. auris, C. glabrata, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis. We found hundreds of genes under recent selection, suggesting that clinical adaptation is diverse and complex. These involve species-specific but also convergently affected processes, such as cell adhesion, which could underlie conserved adaptive mechanisms. In addition, using GWAS we predicted known drivers of antifungal resistance alongside potentially novel players. Furthermore, our analyses reveal an important role of generally-overlooked structural variants, and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Taken together, our findings provide novel insights on how Candida pathogens adapt to human-related environments and suggest candidate genes that deserve future attention. In summary, the results of this thesis improve our knowledge about the mechanisms of recent adaptation in Candida pathogens, which may enable improved therapeutic and diagnostic applications.[cat] Les infeccions fúngiques representen una greu amenaça per a la salut, afectant a més de 1.000 milions de persones i causant aproximadament 1,5 milions de morts cada any. El problema està augmentant a causa d’unes opcions terapèutiques i diagnòstiques insuficients, l'increment del nombre de pacients susceptibles, l'expansió dels patògens parcialment vinculada al canvi climàtic i l'augment de la resistència als fàrmacs antifúngics. D’entre diversos fongs patògens, els llevats del gènere Candida són una causa important d'infeccions nosocomials, amb una alta mortalitat en pacients immunodeprimits. Diverses espècies de Candida constitueixen un problema de salut pública, cosa que requereix més esforços per a desenvolupar nous medicaments, optimitzar els tractaments disponibles i millorar els diagnòstics. Tenint en compte el dinamisme genòmic d’aquests patògens, una estratègia prometedora per millorar les teràpies i diagnòstics actuals és comprendre els mecanismes evolutius d'adaptació als fàrmacs antifúngics i a l’hoste humà. Treballs anteriors utilitzant l'evolució in vitro, la genòmica de poblacions, les inferències de selecció i els estudis d'associació de genoma complet (GWAS, per les sigles en anglès) han aclarit parcialment aquesta adaptació recent, però encara hi ha diverses preguntes obertes. En els tres articles que conformen aquesta tesi doctoral, hem abordat algunes d'aquestes preguntes des de la perspectiva de la genòmica comparativa. En primer lloc, hem abordat qüestions metodològiques relatives a l'anàlisi dels genomes de les espècies Candida. L'estudi de l'adaptació recent en aquests patògens requereix eines bioinformàtiques adequades per a la detecció, filtratge i anotació funcional de variants genètiques. Entre altres raons, els mètodes actuals són subòptims a causa de la limitada precisió per identificar variants estructurals a partir de dades de seqüenciació amb lectures curtes. A més, hi ha una necessitat d’eines computacionals per a la detecció de variants que siguin senzilles d'utilitzar i reproduibles. Per abordar aquestes mancances, hem desenvolupat el mètode bioinformàtic "personalized Structural Variation detection" (perSVade), una eina que permet la detecció, filtratge i anotació de diversos tipus de variants, incloent-hi les variants estructurals, directament des de les lectures. PerSVade permet la identificació precisa de les variants estructurals en qualsevol espècie d'interès, com ara els patògens Candida. A més, la nostra eina prediu automàticament la precisió de la detecció d’aquestes variants en genomes simulats, la qual cosa informa sobre la fiabilitat del procés. Finalment, perSVade es pot utilitzar per analitzar altres tipus de variants, com els polimorfismes de nucleòtid únic o els canvis en el nombre de còpies, facilitant així estudis genòmics integrals i reproduibles. Aquesta eina probablement impulsarà les anàlisis genòmiques en els patògens Candida i també en altres espècies. En segon lloc, hem abordat algunes de les preguntes obertes sobre l'adaptació recent en els llevats Candida, utilitzant perSVade per a la identificació de variants. D'una banda, hem investigat els mecanismes evolutius de resistència als fàrmacs antifúngics en Candida glabrata. Per a això, hem utilitzat un experiment d'evolució in vitro a gran escala per estudiar l'adaptació a dos antifúngics comuns: el fluconazol i l’anidulafungina. Els nostres resultats mostren una adaptació ràpida a un o ambdós fàrmacs, amb un cost per al creixement moderat i a través de poques mutacions en un nombre reduït de gens. A més, hem caracteritzat un paper nou de les mutacions en ERG3 en la resistència creuada al fluconazol en soques adaptades a anidulafungina. Aquests descobriments aclareixen els processos mutacionals que condueixen a la resistència als fàrmacs i a la resistència creuada en els patògens Candida. D'altra banda, hem re-analitzat aproximadament 2.000 genomes i fenotips disponibles en repositoris públics per a comprendre els senyals genòmics de selecció recent i de resistència a fàrmacs antifúngics, en sis espècies rellevants de Candida: C. auris, C. glabrata, C. albicans, C. tropicalis, C. parapsilosis i C. orthopsilosis. Hem trobat centenars de gens sota selecció recent, suggerint que l'adaptació clínica és diversa i complexa. Aquests gens estan relacionats amb funcions específiques de cada espècie, però també trobem processos alterats de manera similar en diferents patògens, com per exemple l’adhesió cel·lular, cosa que indica fenòmens d’adaptació conservats. A part, utilitzant GWAS hem predit mecanismes esperats de resistència a antifúngics i també possibles nous factors. A més, les nostres anàlisis revelen un paper important de les variants estructurals, generalment poc estudiades, i suggereixen una implicació inesperada de la recombinació (para)sexual en la propagació de la resistència. En conjunt, els nostres descobriments proporcionen noves perspectives sobre com els patògens Candida s'adapten als entorns humans, i suggereixen gens candidats que mereixen investigacions futures. En resum, els resultats d’aquesta tesi milloren el nostre coneixement sobre els mecanismes d'adaptació recent en els patògens Candida, cosa que pot permetre el disseny de noves teràpies i diagnòstics

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individual

    Computational approaches for improving treatment and prevention of viral infections

    Get PDF
    The treatment of infections with HIV or HCV is challenging. Thus, novel drugs and new computational approaches that support the selection of therapies are required. This work presents methods that support therapy selection as well as methods that advance novel antiviral treatments. geno2pheno[ngs-freq] identifies drug resistance from HIV-1 or HCV samples that were subjected to next-generation sequencing by interpreting their sequences either via support vector machines or a rules-based approach. geno2pheno[coreceptor-hiv2] determines the coreceptor that is used for viral cell entry by analyzing a segment of the HIV-2 surface protein with a support vector machine. openPrimeR is capable of finding optimal combinations of primers for multiplex polymerase chain reaction by solving a set cover problem and accessing a new logistic regression model for determining amplification events arising from polymerase chain reaction. geno2pheno[ngs-freq] and geno2pheno[coreceptor-hiv2] enable the personalization of antiviral treatments and support clinical decision making. The application of openPrimeR on human immunoglobulin sequences has resulted in novel primer sets that improve the isolation of broadly neutralizing antibodies against HIV-1. The methods that were developed in this work thus constitute important contributions towards improving the prevention and treatment of viral infectious diseases.Die Behandlung von HIV- oder HCV-Infektionen ist herausfordernd. Daher werden neue Wirkstoffe, sowie neue computerbasierte Verfahren benötigt, welche die Therapie verbessern. In dieser Arbeit wurden Methoden zur Unterstützung der Therapieauswahl entwickelt, aber auch solche, welche neuartige Therapien vorantreiben. geno2pheno[ngs-freq] bestimmt, ob Resistenzen gegen Medikamente vorliegen, indem es Hochdurchsatzsequenzierungsdaten von HIV-1 oder HCV Proben mittels Support Vector Machines oder einem regelbasierten Ansatz interpretiert. geno2pheno[coreceptor-hiv2] bestimmt den HIV-2 Korezeptorgebrauch dadurch, dass es einen Abschnitt des viralen Oberflächenproteins mit einer Support Vector Machine analysiert. openPrimeR kann optimale Kombinationen von Primern für die Multiplex-Polymerasekettenreaktion finden, indem es ein Mengenüberdeckungsproblem löst und auf ein neues logistisches Regressionsmodell für die Vorhersage von Amplifizierungsereignissen zurückgreift. geno2pheno[ngs-freq] und geno2pheno[coreceptor-hiv2] ermöglichen die Personalisierung antiviraler Therapien und unterstützen die klinische Entscheidungsfindung. Durch den Einsatz von openPrimeR auf humanen Immunoglobulinsequenzen konnten Primersätze generiert werden, welche die Isolierung von breit neutralisierenden Antikörpern gegen HIV-1 verbessern. Die in dieser Arbeit entwickelten Methoden leisten somit einen wichtigen Beitrag zur Verbesserung der Prävention und Therapie viraler Infektionskrankheiten

    Integrative Transcriptomic Analysis of Long Intergenic Non-Coding RNAs in Cancer.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017
    corecore