212 research outputs found

    A Genetic Bayesian Approach for Texture-Aided Urban Land-Use/Land-Cover Classification

    Get PDF
    Urban land-use/land-cover classification is entering a new era with the increased availability of high-resolution satellite imagery and new methods such as texture analysis and artificial intelligence classifiers. Recent research demonstrated exciting improvements of using fractal dimension, lacunarity, and Moran’s I in classification but the integration of these spatial metrics has seldom been investigated. Also, previous research focuses more on developing new classifiers than improving the robust, simple, and fast maximum likelihood classifier. The goal of this dissertation research is to develop a new approach that utilizes a texture vector (fractal dimension, lacunarity, and Moran’s I), combined with a new genetic Bayesian classifier, to improve urban land-use/land-cover classification accuracy. Examples of different land-use/land-covers using post-Katrina IKONOS imagery of New Orleans were demonstrated. Because previous geometric-step and arithmetic-step implementations of the triangular prism algorithm can result in significant unutilized pixels when measuring local fractal dimension, the divisor-step method was developed and found to yield more accurate estimation. In addition, a new lacunarity estimator based on the triangular prism method and the gliding-box algorithm was developed and found better than existing gray-scale estimators for classifying land-use/land-cover from IKONOS imagery. The accuracy of fractal dimension-aided classification was less sensitive to window size than lacunarity and Moran’s I. In general, the optimal window size for the texture vector-aided approach is 27x27 to 37x37 pixels (i.e., 108x108 to 148x148 meters). As expected, a texture vector-aided approach yielded 2-16% better accuracy than individual textural index-aided approach. Compared to the per-pixel maximum likelihood classification, the proposed genetic Bayesian classifier yielded 12% accuracy improvement by optimizing prior probabilities with the genetic algorithm; whereas the integrated approach with a texture vector and the genetic Bayesian classifier significantly improved classification accuracy by 17-21%. Compared to the neural network classifier and genetic algorithm-support vector machines, the genetic Bayesian classifier was slightly less accurate but more computationally efficient and required less human supervision. This research not only develops a new approach of integrating texture analysis with artificial intelligence for classification, but also reveals a promising avenue of using advanced texture analysis and classification methods to associate socioeconomic statuses with remote sensing image textures

    Fractal-based autonomous partial discharge pattern recognition method for MV motors

    Get PDF
    On-line partial discharge (PD) monitoring is being increasingly adopted to improve the asset management and maintenance of medium-voltage (MV) motors. This study presents a novel method for autonomous analysis and classification of motor PD patterns in situations where a phase-reference voltage waveform is not available. The main contributions include a polar PD (PPD) pattern and a fractal theory-based autonomous PD recognition method. PPD pattern that is applied to convert the traditional phase-resolved PD pattern into a circular form addresses the lack of phase information in on-line PD monitoring system. The fractal theory is then presented in detail to address the task of discrimination of 6 kinds of single source and 15 kinds of multi-source PD patterns related to motors, as outlined in IEC 60034. The classification of known and unknown defects is calculated by a method known as centre score. Validation of the proposed method is demonstrated using data from laboratory experiments on three typical PD geometries. This study also discusses the application of the proposed techniques with 24 sets of on-site PD measurement data from 4 motors in 2 nuclear power stations. The results show that the proposed method performs effectively in recognising not only the single-source PD but also multi-source PDs

    Land/Water Interface Delineation Using Neural Networks.

    Get PDF
    The rapid decline in acreage of land areas in wetlands caused by frequent inundations and flooding has brought about an increased awareness and emphasis on the identification and inventory of land and water areas. This dissertation evaluates three classification methods--Normalized Difference Vegetation Index technique, Artificial Neural Networks, and Maximum-Likelihood classifier for the delineation of land/water interface conditions using Landsat-TM imagery. The effects of three scaling algorithms, including resampling by aggregation, Gaussian smoothing, and local variance analysis, on the classification accuracy are analyzed to determine how the delineation, quantification and analysis of land/water boundaries relate to problems of mixed pixels, scale and resolution. Bands 3, 4, and 5 of a Landsat TM image from Huntsville, Alabama were used as a multispectral data set, and ancillary data included USGS 7.5 minute Digital Line Graphs for classification accuracy assessment. The 30 m resolution multispectral imagery was used as baseline data and the images were degraded to a series of resolution levels and Gaussian smoothed through various scaling constants to simulate images of coarser resolution. Local variance was applied at each aggregation and scaling level to analyze the textural pattern. Classifications were then performed to delineate land/water interface conditions. To study effects of scale and resolution on the land/water boundaries delineated, overall percent classification accuracies, fractal analysis (area-perimeter relationships), and lacunarity analysis were applied to identify the range of spatial resolutions within which land/water boundaries were scale dependent. Results from maximum-likelihood classifier indicate that the method marginally produced higher overall accuracies than either NDVI or neural network methods. Effects from applying the three scaling algorithms indicate that overall classification accuracies decrease with coarser resolution, increase marginally with scaling constant, and vary non-linearly with local variance mask sizes. It was discovered that the application of Gaussian smoothing to neural network classifier produces very encouraging results in classifying the transition zone between land and water (mixed pixels) areas. Fractal analysis on the classified images indicates that coarser resolutions, higher scaling constants and higher degrees of complexity, wiggliness or contortion of the perimeter of water polygons span higher ranges of fractal dimension. As the water polygons become more complex, the perimeter becomes increasingly plane filling. From the changes in fractal dimension, lacunarity analysis and local variance analysis, it is observed that at 150 m, a peak value of measured index is obtained, before dropping off. This suggests that at 150 m, the aggregated water bodies shift to a different \u27characteristic\u27 scale and the water features formed are smooth, compact, have more regular boundaries and form connected regions. This scale dependence phenomenon can help to optimize efficient data resampling methodologies

    Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods

    Get PDF
    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas

    Automatic texture classification in manufactured paper

    Get PDF

    Image analysis in medical imaging: recent advances in selected examples

    Get PDF
    Medical imaging has developed into one of the most important fields within scientific imaging due to the rapid and continuing progress in computerised medical image visualisation and advances in analysis methods and computer-aided diagnosis. Several research applications are selected to illustrate the advances in image analysis algorithms and visualisation. Recent results, including previously unpublished data, are presented to illustrate the challenges and ongoing developments

    SHIRAZ: an automated histology image annotation system for zebrafish phenomics

    Get PDF
    Histological characterization is used in clinical and research contexts as a highly sensitive method for detecting the morphological features of disease and abnormal gene function. Histology has recently been accepted as a phenotyping method for the forthcoming Zebrafish Phenome Project, a large-scale community effort to characterize the morphological, physiological, and behavioral phenotypes resulting from the mutations in all known genes in the zebrafish genome. In support of this project, we present a novel content-based image retrieval system for the automated annotation of images containing histological abnormalities in the developing eye of the larval zebrafish

    Medical image processing using fractal functions

    Get PDF
    In this paper, a comparison was made between a modified methods for repeated engineering modeling in order to increase the accuracy of medical images. A comparison was made between different types in terms of classification accuracy. The lacuinartiy feature has also been used to reduce the noise ratio in the received images. The results showed the importance of fractal IFS in medical pulse compression, where a ratio of (98%) was obtained in reducing noise and a ratio of (0.421) in the gap coefficient was obtained. It separated the diseased tissues from the healthy tissues by applying several multi-fractal factors. Fractal image compression is dependent on subjective similarity, with one part of the image being the same as the other part of a similar image. The partial coding is constantly linked to the grayscale images by dividing a color RGB image into three channels - red, green and blue, and is compressed independently by considering each color segment as a specific gray scale image. Based on the smart neural network, the patterns are distinguished for the medical images used by a few learning time and positive error 0.22%
    corecore