14 research outputs found

    An assessment of deep learning models and word embeddings for toxicity detection within online textual comments

    Get PDF
    Today, increasing numbers of people are interacting online and a lot of textual comments are being produced due to the explosion of online communication. However, a paramount inconvenience within online environments is that comments that are shared within digital platforms can hide hazards, such as fake news, insults, harassment, and, more in general, comments that may hurt someone’s feelings. In this scenario, the detection of this kind of toxicity has an important role to moderate online communication. Deep learning technologies have recently delivered impressive performance within Natural Language Processing applications encompassing Sentiment Analysis and emotion detection across numerous datasets. Such models do not need any pre-defined hand-picked features, but they learn sophisticated features from the input datasets by themselves. In such a domain, word embeddings have been widely used as a way of representing words in Sentiment Analysis tasks, proving to be very effective. Therefore, in this paper, we investigated the use of deep learning and word embeddings to detect six different types of toxicity within online comments. In doing so, the most suitable deep learning layers and state-of-the-art word embeddings for identifying toxicity are evaluated. The results suggest that Long-Short Term Memory layers in combination with mimicked word embeddings are a good choice for this task

    TF-IDF vs Word Embeddings for Morbidity Identification in Clinical Notes: An Initial Study

    Get PDF
    Today, we are seeing an ever-increasing number of clinical notes that contain clinical results, images, and textual descriptions of patient's health state. All these data can be analyzed and employed to cater novel services that can help people and domain experts with their common healthcare tasks. However, many technologies such as Deep Learning and tools like Word Embeddings have started to be investigated only recently, and many challenges remain open when it comes to healthcare domain applications. To address these challenges, we propose the use of Deep Learning and Word Embeddings for identifying sixteen morbidity types within textual descriptions of clinical records. For this purpose, we have used a Deep Learning model based on Bidirectional Long-Short Term Memory (LSTM) layers which can exploit state-of-the-art vector representations of data such as Word Embeddings. We have employed pre-trained Word Embeddings namely GloVe and Word2Vec, and our own Word Embeddings trained on the target domain. Furthermore, we have compared the performances of the deep learning approaches against the traditional tf-idf using Support Vector Machine and Multilayer perceptron (our baselines). From the obtained results it seems that the latter outperforms the combination of Deep Learning approaches using any word embeddings. Our preliminary results indicate that there are specific features that make the dataset biased in favour of traditional machine learning approaches.Comment: 12 pages, 2 figures, 2 tables, SmartPhil 2020-First Workshop on Smart Personal Health Interfaces, Associated to ACM IUI 202

    Ensembling classical machine learning and deep learning approaches for morbidity identification from clinical notes

    Get PDF
    The past decade has seen an explosion of the amount of digital information generated within the healthcare domain. Digital data exist in the form of images, video, speech, transcripts, electronic health records, clinical records, and free-text. Analysis and interpretation of healthcare data is a daunting task, and it demands a great deal of time, resources, and human effort. In this paper, we focus on the problem of co-morbidity recognition from patient’s clinical records. To this aim, we employ both classical machine learning and deep learning approaches.We use word embeddings and bag-of-words representations, coupled with feature selection techniques. The goal of our work is to develop a classification system to identify whether a certain health condition occurs for a patient by studying his/her past clinical records. In more detail, we have used pre-trained word2vec, domain-trained, GloVe, fastText, and universal sentence encoder embeddings to tackle the classification of sixteen morbidity conditions within clinical records. We have compared the outcomes of classical machine learning and deep learning approaches with the employed feature representation methods and feature selection methods. We present a comprehensive discussion of the performances and behaviour of the employed classical machine learning and deep learning approaches. Finally, we have also used ensemble learning techniques over a large number of combinations of classifiers to improve the single model performance. For our experiments, we used the n2c2 natural language processing research dataset, released by Harvard Medical School. The dataset is in the form of clinical notes that contain patient discharge summaries. Given the unbalancedness of the data and their small size, the experimental results indicate the advantage of the ensemble learning technique with respect to single classifier models. In particular, the ensemble learning technique has slightly improved the performances of single classification models but has greatly reduced the variance of predictions stabilizing the accuracies (i.e., the lower standard deviation in comparison with single classifiers). In real-life scenarios, our work can be employed to identify with high accuracy morbidity conditions of patients by feeding our tool with their current clinical notes. Moreover, other domains where classification is a common problem might benefit from our approach as well

    Proceedings of the Fifth Italian Conference on Computational Linguistics CLiC-it 2018 : 10-12 December 2018, Torino

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Fifth Italian Conference on Computational Linguistics (CLiC-­‐it 2018). This edition of the conference is held in Torino. The conference is locally organised by the University of Torino and hosted into its prestigious main lecture hall “Cavallerizza Reale”. The CLiC-­‐it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after five years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges

    Ensembling and Dynamic Asset Selection for Risk-Controlled Statistical Arbitrage

    Get PDF
    In recent years, machine learning algorithms have been successfully employed to leverage the potential of identifying hidden patterns of financial market behavior and, consequently, have become a land of opportunities for financial applications such as algorithmic trading. In this paper, we propose a statistical arbitrage trading strategy with two key elements: an ensemble of regression algorithms for asset return prediction, followed by a dynamic asset selection. More specifically, we construct an extremely heterogeneous ensemble ensuring model diversity by using state-of-the-art machine learning algorithms, data diversity by using a feature selection process, and method diversity by using individual models for each asset, as well models that learn cross-sectional across multiple assets. Then, their predictive results are fed into a quality assurance mechanism that prunes assets with poor forecasting performance in the previous periods. We evaluate the approach on historical data of component stocks of the SP500 index. By performing an in-depth risk-return analysis, we show that this setup outperforms highly competitive trading strategies considered as baselines. Experimentally, we show that the dynamic asset selection enhances overall trading performance both in terms of return and risk. Moreover, the proposed approach proved to yield superior results during both financial turmoil and massive market growth periods, and it showed to have general application for any risk-balanced trading strategy aiming to exploit different asset classes

    Data-Driven Methodology for Knowledge Graph Generation Within the Tourism Domain

    Get PDF
    The tourism and hospitality sectors have become increasingly important in the last few years and the companies operating in this field are constantly challenged with providing new innovative services. At the same time, (big-) data has become the 'new oil' of this century and Knowledge Graphs are emerging as the most natural way to collect, refine, and structure this heterogeneous information. In this paper, we present a methodology for semi-automatic generating a Tourism Knowledge Graph (TKG), which can be used for supporting a variety of intelligent services in this space, and a new ontology for modelling this domain, the Tourism Analytics Ontology (TAO). Our approach processes and integrates data from Booking.com, Airbnb, DBpedia, and GeoNames. Due to its modular structure, it can be easily extended to include new data sources or to apply new enrichment and refinement functions. We report a comprehensive evaluation of the functional, logical, and structural dimensions of TKG and TAO

    Knowledge Graphs and Large Language Models for Intelligent Applications in the Tourism Domain

    Get PDF
    In the current era of big data, the World Wide Web is transitioning from being merely a repository of content to a complex web of data. Two pivotal technologies underpinning this shift are Knowledge Graphs (KGs) and Data Lakes. Concurrently, Artificial Intelligence has emerged as a potent means to leverage data, creating knowledge and pioneering new tools across various sectors. Among these advancements, Large Language Models (LLM) stand out as transformative technologies in many domains. This thesis delves into an integrative exploration, juxtaposing the structured world of KGs and the raw data reservoirs of Data Lakes, together with a focus on harnessing LLM to derive meaningful insights in the domain of tourism. Starting with an exposition on the importance of KGs in the present digital milieu, the thesis delineates the creation and management of KGs that utilize entities and their relations to represent intricate data patterns within the tourism sector. In this context, we introduce a semi-automatic methodology for generating a Tourism Knowledge Graph (TKG) and a novel Tourism Analytics Ontology (TAO). Through integrating information from enterprise data lakes with public knowledge graphs, the thesis illustrates the creation of a comprehensive semantic layer built upon the raw data, demonstrating versatility and scalability. Subsequently, we present an in-depth investigation into transformer-based language models, emphasizing their potential and limitations. Addressing the exigency for domain-specific knowledge enrichment, we conduct a methodical study on knowledge enhancement strategies for transformers based language models. The culmination of this thesis is the presentation of an innovative method that fuses large language models with domain-specific knowledge graphs, targeting the optimisation of hospitality offers. This approach integrates domain KGs with feature engineering, enriching data representation in LLMs. Our scientific contributions span multiple dimensions: from devising methodologies for KG construction, especially in tourism, to the design and implementation of a novel ontology; from the analysis and comparison of techniques for enriching LLMs with specialized knowledge, to deploying such methods in a novel framework that effectively combines LLMs and KGs within the context of the tourism domain. In our research, we explore the potential benefits and challenges arising from the integration of knowledge engineering and artificial intelligence, with a specific emphasis on the tourism sector. We believe our findings offer a promising avenue and serve as a foundational platform for subsequent studies and practical implementations for the academic community and the tourism industry alike

    Proceedings of the Fifth Italian Conference on Computational Linguistics CLiC-it 2018

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Fifth Italian Conference on Computational Linguistics (CLiC-­‐it 2018). This edition of the conference is held in Torino. The conference is locally organised by the University of Torino and hosted into its prestigious main lecture hall “Cavallerizza Reale”. The CLiC-­‐it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after five years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges

    Integrating Distributional, Compositional, and Relational Approaches to Neural Word Representations

    Get PDF
    When the field of natural language processing (NLP) entered the era of deep neural networks, the task of representing basic units of language, an inherently sparse and symbolic medium, using low-dimensional dense real-valued vectors, or embeddings, became crucial. The dominant technique to perform this task has for years been to segment input text sequences into space-delimited words, for which embeddings are trained over a large corpus by means of leveraging distributional information: a word is reducible to the set of contexts it appears in. This approach is powerful but imperfect; words not seen during the embedding learning phase, known as out-of-vocabulary words (OOVs), emerge in any plausible application where embeddings are used. One approach applied in order to combat this and other shortcomings is the incorporation of compositional information obtained from the surface form of words, enabling the representation of morphological regularities and increasing robustness to typographical errors. Another approach leverages word-sense information and relations curated in large semantic graph resources, offering a supervised signal for embedding space structure and improving representations for domain-specific rare words. In this dissertation, I offer several analyses and remedies for the OOV problem based on the utilization of character-level compositional information in multiple languages and the structure of semantic knowledge in English. In addition, I provide two novel datasets for the continued exploration of vocabulary expansion in English: one with a taxonomic emphasis on novel word formation, and the other generated by a real-world data-driven use case in the entity graph domain. Finally, recognizing the recent shift in NLP towards contextualized representations of subword tokens, I describe the form in which the OOV problem still appears in these methods, and apply an integrative compositional model to address it.Ph.D
    corecore