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ABSTRACT The past decade has seen an explosion of the amount of digital information generated within
the healthcare domain. Digital data exist in the form of images, video, speech, transcripts, electronic health
records, clinical records, and free-text. Analysis and interpretation of healthcare data is a daunting task,
and it demands a great deal of time, resources, and human effort. In this paper, we focus on the problem
of co-morbidity recognition from patient’s clinical records. To this aim, we employ both classical machine
learning and deep learning approaches. We use word embeddings and bag-of-words representations, coupled
with feature selection techniques. The goal of our work is to develop a classification system to identify
whether a certain health condition occurs for a patient by studying his/her past clinical records. In more
detail, we have used pre-trained word2vec, domain-trained, GloVe, fastText, and universal sentence encoder
embeddings to tackle the classification of sixteen morbidity conditions within clinical records. We have
compared the outcomes of classical machine learning and deep learning approaches with the employed
feature representation methods and feature selection methods. We present a comprehensive discussion of
the performances and behaviour of the employed classical machine learning and deep learning approaches.
Finally, we have also used ensemble learning techniques over a large number of combinations of classifiers
to improve the single model performance. For our experiments, we used the n2c2 natural language
processing research dataset, released by Harvard Medical School. The dataset is in the form of clinical
notes that contain patient discharge summaries. Given the unbalancedness of the data and their small size,
the experimental results indicate the advantage of the ensemble learning technique with respect to single
classifier models. In particular, the ensemble learning technique has slightly improved the performances of
single classification models but has greatly reduced the variance of predictions stabilizing the accuracies
(i.e., the lower standard deviation in comparison with single classifiers). In real-life scenarios, our work can
be employed to identify with high accuracy morbidity conditions of patients by feeding our tool with their
current clinical notes. Moreover, other domains where classification is a common problem might benefit
from our approach as well.

INDEX TERMS Deep Learning, Machine Learning, Multimorbidity, Natural Language Processing,
Classifiers, Word Embeddings, Healthcare.
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I. INTRODUCTION

N the last years, we have observed a rise in life ex-
Ipectancy, which has also increased the risk of long-term
diseases such as diabetes, cognitive impairment, and many
other severe health issues [[1]-[4]]. A further downside of
a longer lifespan is that people can be affected by more
than one disease at a time, leading to the likelihood of
under-standard quality of life. An individual with long-term
diabetes, for example, has a higher risk of hypertension,
high cholesterol levels, blockage of the arteries or veins.
According to the World Health Organization report [5]], 40%
of the population is exposed to at least one long-term health
condition, and 25% of the population suffers from multimor-
bidity in a developed country. In addition, the report also
emphasizes the directly proportional relationship between
the high incidence of multimorbidity and middle and low-
income countries because they do not have funds that should
be invested to enhance primary care of the population [6].
There is, therefore, the need to continuously track medical
information.

With the introduction of information technology systems,
more and more clinical records are constantly being pro-
duced, processed, and analyzed. The information encoded
by clinical reports could be used to provide new healthcare
services globally, addressing the problems related to people’s
social or economic status. As an example, clinical reports
contain a variety of information in the form of numbers (e.g.,
laboratory results), images (e.g., x-ray), medical descriptions
(e.g., treatment history), or transcripts (e.g., motivational
interviewing therapy sessions), which can be used to create
content-based services to assist patients and medical practi-
tioners.

The analysis and human interpretation of healthcare data
are challenging because of their dimension and unstructured
and heterogeneous formats. Hence, Artificial Intelligence
technologies are more massively applied to analyze health-
care big data [[7]. For instance, they have been applied to tex-
tual clinical reports to perform tasks such as classification [8]],
clustering [9]], and recommendation [10]. The state-of-the-
art research in this direction has already yielded significant
results, and many challenges [11]] are further explored with
the goal of assisting the healthcare personnel. They include
dynamic forecasting [12], personalized monitoring [|13]], and
individualized treatment recommendations [14] of patients,
especially those presenting multimorbidities as considered
more vulnerable. According to [5]], given that 25% of the
world population is already suffering from multimorbidity,
its early identification is paramount for preventing the severe
health issues which can happen in the future to the patients.
Therefore, in our work, we aim at automatically identifying
the multimorbidity factors indicated in the patient’s clinical
records. The morbidity identification is of great significance
in assisting the healthcare personnel with several downstream
tasks involving the handling of large volumes of electronic
health records. For our experiments, we have used a dataset
that contains the clinical records of patients, indicating the
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presence of one or more morbidity factors. In addition,
deep learning (DL) models and advanced word embeddings
representations have recently proven to be state-of-the-art
for many natural language processing (NLP) tasks and are
popularly used within many healthcare problems. Hence,
in order to exploit their advantages, we have focused upon
the representation of clinical records by methods such as
word embeddings and bag-of-words in combination with
feature selection techniques using classical machine learning
(CML) and DL approaches. The work focuses on discovering
whether the patients are suffering from single or multiple
morbidity conditions by studying their past clinical records.
In the following, we will list more in detail the contributions
of our paper:

e We use CML and DL approaches for performing mor-
bidity detection within clinical notes.

o We experimentally compare five pre-trained word em-
beddings and four bag-of-words representations cou-
pled with different feature selection algorithms.

o We compare the proposed DL approaches against CML
approaches with different bag-of-words feature repre-
sentations.

« We compare the proposed DL approaches against CML
approaches with word embeddings feature representa-
tions.

e Out of several CML and DL models we tested, we anal-
ysed their inclusion in an ensemble strategy to improve
single models’ performances.

o We prove that in the presence of small datasets, sin-
gle classifiers obtain unstable performances, whereas
ensemble approaches mitigate this instability and, at
the same time, increases the accuracy of the overall
classification. Note that our ensemble approach’s com-
putational cost affects only the training step, but not the
prediction phase.

o We provide a comprehensive discussion over the perfor-
mances of CML and DL approaches with each kind of
feature representation and the advantages of using the
ensemble strategy and under which constraints.

The remainder of the manuscript is organized as follows.
Section [[I] presents the literature survey and related work.
Section[IIIldescribes the motivations behind this work and de-
fines the problem statement we are tackling. It also includes
the details about the dataset description and the preprocessing
we have performed. Section [[V] discusses the different types
of feature representation methods we employed. Section [V]
details the classification models used for this work. Section
presents the experimental evaluation and the obtained
results. Section includes the observations and trends of
the classifiers’ behaviour and the ensemble strategy we have
come up with. Finally, Section draws the conclusion for
the conducted experiments and obtained results and shows
the directions where we are headed.
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Il. RELATED WORK

This section briefly reviews the existing NLP and Artificial
Intelligence methods within the healthcare domain and how
the feature selection techniques and the word embedding
models have been employed.

A. ARTIFICIAL INTELLIGENCE IN HEALTHCARE

Today Artificial Intelligence and its sub-fields such as DL,
Text Mining, and in general, CML play an important role
in clinical decision-making, comprehension, predictive dis-
ease detection, and therapy assistance [15]. DL healthcare
applications made significant improvements in many areas,
such as the analysis of blood samples, the identification of
heart attacks, tumors, and so on [16]. DL models’ high-
quality performances for healthcare problems have brought
to encouraging discussions and interest within the Artificial
Intelligence community.

The use of DL techniques to identify multimorbidity in
clinical reports have been extensively studied in recent years.
For instance, DL models in [|17]] were fed by word and entity
embeddings to the following two layers, Convolutional Neu-
ral Network (CNN) and second Max Pooling. The model im-
proved the results that were obtained during the i2b obesity
challenge in 2008. Another work [18] proposed DL based
approaches for morbidity status identification. It was focused
on automatic learning from the clinical records and feature
discovery to disengage hand-crafted feature selection using
single and multi-channel CNN models. The single-channel
CNN model used an embedding layer to train the model,
whereas the multi-channel model employed multiple CNN
models in parallel, as an ensemble of CNN models, where
each used different hyper-parameters. One more work [19]
investigated the performances of long-short term memory
(LSTM) networks for entity recognition based on character
and word-level representations. The proposed LSTM model
outperformed traditional state-of-the-art methods, such as
the conditional random field for entity recognition. Authors
in [20]] uncovered the implementation of sentiment analysis
techniques for patient discharge summaries classification.
The proposed hybrid model used a semi-supervised tech-
nique based on the vector space model and statistical methods
in conjunction with extreme learning machine auto-encoder.
The goal was to examine and evaluate the treatment quality
based on the discharge summaries. In [21]), the authors tack-
led a multi-label binary text classification problem using the
rule-based classifier and orthogonal machine learning strate-
gies. The work evaluated the performances of long short-
term memory against logistic regression employing pre-
trained BioWordVec and domain-trained word embeddings
representations. The work presented in [22] investigated the
DL approaches, which used pre-trained language models on
relation extraction from clinical records. Authors applied
pre-trained and fine-tuned Bidirectional Encoder Representa-
tions from Transformers (BERT), showing that the fine-tune

Uhttps://www.i2b2.org/NLP/Obesity/
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method (FT-BERT) performed better than the feature-based
method (FC-BERT).

All the works mentioned above were focused on just DL
or CML techniques. In fact, to the best of our knowledge,
there are not many existing papers available in the literature
within the healthcare domain where CML and DL techniques
have been extensively compared. We address this by pre-
senting a paper where we carried out an extensive set of
experiments using DL and CML techniques with different
combinations of feature representation models and word
embeddings. Moreover, we employed ensemble strategies to
further increase single models’ accuracy and tested several
combinations of CML and DL approaches with different
feature representation techniques. The best heterogeneous
ensembles we obtained at the end of the process exploited the
pros of each constituent. Our target was a multi-classification
task (i.e., identifying several morbidity factors) within the
healthcare domain. We wanted to conduct one more analysis:
how each CML and DL method behaved within the underly-
ing domain using a small set of clinical notes.

B. WORD EMBEDDINGS MODELS

Clinical records are mostly in the form of free-text, which
are unstructured, contain typographical errors, and are com-
prised of healthcare domain-specific terminologies [23]]. The
representation of these clinical records in a way that they
can be used effectively by CML and DL approaches remains
one of the top challenges within the healthcare domain. To
exploit the hidden semantics within the clinical notes, using
word embeddings is a must. The work in [24] provides a
guide for training word embeddings on clinical text data. It
discusses the different types of word representations, clinical
text corpora, available pre-trained clinical word vector em-
beddings, intrinsic and extrinsic evaluation, applications, and
limitations of these approaches. Authors in [25]] leveraged the
infused elementary distance matrix to update the topic distri-
butions for calculating the corresponding optimal transports.
This strategy provides the update of word embeddings with
robust guidance, improving the algorithmic convergence. As
an initial study, the paper [26] presented a comparative analy-
sis of CML and DL approaches with different types of feature
representations such as Term Frequency-Inverse Document
Frequency (TF-IDF) and word embeddings.

Concerning previous works, in our approach, we have
used five-word embeddings, namely pre-trained word2vec,
domain-trained, GloVe, fastText, and USE, to model the
input datasets with and without the stop words. One of the
purposes was also to observe the impact of stopwords within
the considered domain. The removal of stopwords can often
lead to a different outcome, as it changes the context and
the meaning of a sentence. For instance, using stopwords
removal, the sentence The patient is not stable might turn
into The patient is stable, thus changing the meaning of the
initial sentence.

The literature suggests several interesting works that uti-
lize state-of-the-art word embeddings and bag-of-words rep-
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resentations. However, not many have discussed the impact
of different feature representation approaches for imbalanced
datasets. To bridge this knowledge gap, we have used word
embeddings and sentence embeddings generated by USE,
along with different kinds of bag-of-words representations.
We have also provided a detailed discussion about the im-
pact of stopwords in word embeddings, observed from the
performed experiments.

C. FEATURE SELECTION

Feature engineering in NLP involved creating specific nu-
merical functions to represent salient aspects of the text,
such as the nouns and pronouns ratio. This approach often
required significant domain knowledge and effort to identify
meaningful features. Feature selection is extensively used
to reduce data by eliminating irrelevant and superfluous
attributes from the dataset [27], [28]. This technique en-
hances the data interpretation, improves data visualization,
reduces training time of learning algorithms, and improves
prediction performances [29]]. The work in [30] mentions
the effectiveness of feature selection algorithms in several
applications and highlights the challenges faced due to the
unique characteristics of data. In work performed in [31], the
authors aimed to achieve an affordable, fast, and objective
diagnosis of the genetic variant of oligodendroglioma by
combining the feature selection with ensemble-based clas-
sification. In addition, the work in [32]] presented a method
called FREGEX, which is based on regular expressions to ex-
tract features from biomedical, clinical notes. It was used as a
substitute for the n-grams based feature selection method and
employed the algorithms Smith-Waterman and Needleman-
Wunsch for sequence alignment. The three datasets used to
evaluate the proposed method’s performances were manually
annotated and contained information on smoking habits, obe-
sity, and obesity types. The features extracted by FREGEX
based on regular expressions improved the performance of
SVM and Naive Bayes based classifiers. The work in [33]]
used a modified differential evolution algorithm to perform
feature selection for cardiovascular disease and optimization
of selected features. It also evaluated several performance
measures for the prediction of heart disease to combine the
modified differential evolution algorithm with a feed-forward
neural network and fuzzy analytical hierarchy process.

In our work, we have used three feature selection algo-
rithms with both CML and DL approaches to exploit the ad-
vantages in identifying the features necessary for distinguish-
ing the morbidity classes, as well as in substantially reducing
the computation time for training the models. The majority
of existing works with healthcare data are confined to using
a few feature selection techniques, either with CML or DL
algorithms. To contribute to the body of knowledge, we have
applied multiple combinations of feature representation and
selection. Moreover, we came up with a set of ensembles
made of heterogeneous constituents that outperform the sin-
gle classifiers. We provided a detailed discussion about the
impact of the feature engineering process on the used dataset
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for the multi-classification task.

lll. PROBLEM FORMULATION, DATASET, AND
PREPROCESSING

This section provides the formulation of the problem we ad-
dressed, the used dataset, and the related preprocessing steps
we have applied for the employed CML and DL models.

A. PROBLEM FORMULATION

As mentioned in the introduction, in this paper, we tackle a
multi-label classification problem. For each patient, we have
his/her clinical records and a list of morbidity conditions
that he/she may suffer from. Thus, we aim at identifying the
presence or absence of morbidity conditions in the patients by
analyzing their clinical records using bag-of-words and word
embeddings in conjunction with CML and DL approaches.
Several approaches exist to tackle the multi-label prob-
lem [34]. A straightforward and widely used one is to de-
compose the multi-label problem into multiple binary clas-
sification tasks. This technique is named binary relevance
method in the literature [35]]. Another approach is to trans-
form the multi-label problem into a single-label multi-class
classification problem in which the classes are all label com-
binations. However, since we address the recognition of 16
morbidities in our work, the number of possible classes (i.e.,
co-morbidities) would be 2'6 = 65, 536. We discarded this
approach since we believe that the number of classes would
be too large with respect to the size of our training set. Other
more complex solutions exist, including using a multi-label
ensemble classifier built from a committee of (single-label)
multi-class classifiers or the use of customized machine
learning algorithms adapted to the multi-label problem.
However, since our study’s primary goal is to provide
a comprehensive comparison of different ML approaches
and feature extraction techniques, we believe that using a
widely adopted and simple classification strategy is the most
appropriate. For this reason, in this work, we adopt the
binary relevance method, and we transform the multi-label
classification task into sixteen binary classification problems.

B. DATASET DESCRIPTION

We performed our research study on the nZCZE] dataset re-
leased for the i2b2 obesity and co-morbidity detection chal-
lenge in 2008. The dataset was completely anonymized by
replacing personal and sensitive information of patients with
surrogates. The dataset contains clinical records of patients,
and these records indicate that patients may have one or
more morbidity conditions from a range of sixteen morbid-
ity conditions (diseases). The sixteen morbidity conditions
are Asthma, CAD, CHF, Depression, Diabetes, Gallstones,
GERD, Gout, Hypercholesterolemia, Hypertension, Hyper-
triglyceridemia, OA, Obesity, OSA, PVD, and Venous Insuffi-
ciency.

Zhttps://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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Originally the n2c2 dataset contained six documents, out
of which four were Training Textual Judgments, Training
Intuitive Judgments, Test Textual judgments, and Test Intu-
itive Judgments. They all were annotated. The remaining two
documents, namely Training Obesity Patients Records and
Test Obesity Patients Records, contained the clinical records
and a unique id associated with them. The textual judgment
documents contain all the sixteen morbidity conditions, and
within each morbidity condition, there is a specific number
of ids and labels associated with them. The labels in textual
judgment documents can obtain values in {Y, N, U, Q},
where "Y" means yes, the patient has the morbidity, "N"
means no, the patient does not have the morbidity, "U"
means the morbidity is not mentioned in the record, and
"Q" stands for questionable whether the patient has the
morbidity. Besides, intuitive judgment documents represent
clinical records where domain experts (doctors) were able
to infer if those were indicative of having one or more mor-
bidity conditions for the underlying patients. Hence, possible
intuitive judgments are limited to labels "Y," "N," and "Q"
because "U" is irrelevant as an intuitive judgment. The length
of the clinical records is in the range of 500 to 1200 words.
A sample of each of the six annotated documents of the
morbidity condition Asthma is shown in Table/[l]

TABLE 1. Sample data of class Asthma

Training Documents Test Documents

Test  Data-Textual — Judgments

Training Data-Textual Judgments

<diseases source="textual"> <diseases source="textual">
<disease name="Asthma"> <disease name="Asthma">
<doc id="1" judgment="U"/> <doc id="3"  judgment="Y"/>
<doc id="2" judgment="Y"/> <doc id="5"  judgment="U"/>
<doc id="10" judgment="U"/> <doc  id="8"  judgment="U"/>
Training Data-Intuitive Judgments | 1est Data-  Intuitive  Judgments
<diseases source="intuitive"> <diseases source="intuitive">

<disease name="Asthma">

<disease name="Asthma">

<doc id="1" judgment="N"/> <doc id="3"  judgment="Y"/>
<doc id="4" judgment="N"/> <doc id="5"  judgment="N"/>
<doc id="10" judgment="Q"/> <doc id="9"  judgment="Y"/>
Training-Obesity Patients Records Test-Obesity  Patients  Records
<doc id="1"> <doc id="3">
<text> <text>

470971328 | AECH | 09071283 | |
6159055 | 5/26/2006 12:00:00 AM
| PNUEMONIA | Signed | DIS |
Admission Date: 4/22/2006 Report

490646815 | WMC | 31530471 ||
9629480 | 11/23/2006 12:00:00
AM | ANEMIA | Signed | DIS |
Admission Date: 11/23/2006

Report Status: Signed
Status: Signed Discharge Date: 7/27/2006
Discharge Date: 6/20/2006 ATTENDING: CARINE
ATTENDING: TRUKA , DEON | WALTER MD
XAVIER M.D. SERVICE: PRINCIPAL DI-
SERVICE: BH .anList Medical AGNOSIS: Anemia and GI bleed.
Center.

PRIMARY DIAGNOSIS:

Congestive heart failure. ...

As each clinical record may have multiple associated mor-
bidities, as mentioned earlier, we chose to tackle the multi-
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class classification problem as several binary classification
problems. To do this, we have extracted all the clinical
records having labels "Y" or "N" from the textual and in-
tuitive judgment documents.

1) Data Preprocessing

The dataset used for our experiments contained abbrevia-
tions, some typos, and punctuation, and some preprocessing
steps were thus necessary. In the scope of our work, we
have used two types of feature representations, namely bag-
of-words and word embeddings. On the one hand, for bag-
of-words, we have employed TF-IDF, whose vector rep-
resentation relies on the word’s occurrence frequency. On
the other hand, the word embeddings’ working principle
is based upon capturing the semantic relationships among
words. The works in [36], [37] discuss the process and impact
of document preprocessing in NLP tasks. Accordingly, the
preprocessing steps we have performed for transforming our
input dataset to be used with the bag-of-words models are
reported below:

o Lower-casing the text to represent the same words of
different cases such as Asthma and asthma as one, i.e.,
asthma.

o Tokenization of text to build a function f, where for
each word w, the function f is associated with an integer
index 1.

o Punctuation and numeric values removal from the text.

o Lemmatization of the tokens.

o TF-IDF matrix generation from input data to transform
each clinical note into a feature vector.

In order to study the impact of stopword removal for the
experiments with word embeddings representation, we have
preprocessed the input data to generate two sets of feature
vectors. One set of feature vectors contains the stopwords,
while the other set does not. In the second case, stopword
removal has been performed by using the NLTKE] library.
Furthermore, these two feature vectors are separately used
to train the CML models to observe the impact of stopwords
on the classifier’s performance.

2) Stopwords and their impact in text prepocessing

Stopwords are those words that commonly occur in a text.
There are both advantages and disadvantages in including
or excluding stopwords while preprocessing the data. The
use of stopwords is debatable, and it is difficult to define
one standard protocol that can be applied to all datasets.
Therefore, the impact of stopwords is very much dependent
on the data type and nature of the task at hand. A general ob-
servation in this context is that removing stopwords reduces
the data size, the model’s training time and can also improve
the model’s performance because stopwords removal may
leave meaningful tokens in the dataset. In addition, stopwords
such as negations in sentences are important indications for
inferring certain behavior types in the context of sentiment

3https://www.nltk.org/
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analysis [38]], [39] and motivational interviewing, empathetic
conversations, etc., in therapeutic scenarios. For example,
the following two sentences: "The patient is not stable."”
"The patient is not happy.” The removal of the stopword
not changes these to sentences that convey precisely the
opposite meaning and emotion as compared to the original.
Therefore, from these observations, it can be inferred that
for tasks such as spam filtering, auto-tag generation, text,
genre, language, and caption classification, removing stop-
words is likely not going to degrade the classification model’s
performance. On the other hand, for tasks such as machine
translation, text summarization, identification of change talk
and sustain talk in motivational interviewing, patient’s treat-
ment recommendations, the removal of stopwords can lead
to underperformances of the training model. In this context,
the authors in [40]] observed a decrease in performances of
SVM classification models from 70.76% to 55.26% for the
task of automatic annotation of clinical text fragments based
on codebooks having a large number of categories. Similarly,
authors in [41]], [42] also reported the underperformance
of the employed classification models for text classification
as a consequence of removing the stopwords. In the case
of the DL models, we have used BiLSTM layers, which
handle the long-term dependencies and have the capability
to store information for a long duration. Therefore, given
the presence of several tokens in our dataset behaving as the
negation mentioned above and the ability of DL approaches
in conjunction with word embeddings representations to
tackle the contextual relationship of the words, we performed
the experiments with the DL approaches only with the input
dataset containing the stopwords.

3) Transforming input data for training of DL models

We have used the DL models with bag-of-words and word
embeddings representations described in Section The
DL models require the input data to be in integer encoded
format, where each word is represented by a unique integer.
Thus, each word can be mapped to the corresponding word
vector using the embeddings layer. In addition to integer
encoding, we have also padded the data to have symmetrical
length throughout. The steps of encoding and padding the
input data are mentioned below:

« Encoding the input texts into numeric integer represen-
tations using vocabulary-index relation. For instance,
consider the sentence s: the patient is asthmatic, and a
function f that maps the to "S", patient to "34", is to
"10" and asthmatic to "87". Then, the resulting integer-
encoded sentence Se;,codeq Will be [5, 34, 10, 87].

o Padding each of the input text (integer encoded) to
a length equivalent to (average + standard deviation)
number of tokens. Most clinical texts are around the
average length for our dataset, and the very few re-
maining clinical texts are too long. Therefore, we have
limited the number of tokens for each text sequence in
order to reduce computational cost as well as keeping
the dimension of input text reasonable. For our work,

we have computed the padding length equal to the sum
between the average and the standard deviation of the
number of tokens each input text had. This formula has
been found empirically on our data and turned out to be
a good trade-off between the size of the padding and the
length of the document. For example, for four clinical
records with 25, 39, 44, and 80 tokens, respectively, the
average length is avg=47, and the standard deviation is
std = 20.29. Hence, the length that we consider for
padding is 67. Also, in the presence of very long clin-
ical notes, which comprise 3.12% of the total dataset,
we have broken them down into more notes with the
same annotations. Although this last preprocessing step
slightly augmented the dataset, it did not change the
sixteen classes’ unbalanceness distribution. In Table [2]
we show the number of clinical notes and percentage of
occurrences of each class before and after the prepro-
cessing step.

TABLE 2. Percentage of occurrences of each class and number of clinical
notes before and after the preprocessing step.

Morbidity Before Preprocessing | After Preprocessing
#Clinical #Clinical
Notes % Occ. Notes % Occ.
Ashtma 952 15.13 984 15.24
CAD 942 60.72 972 60.08
CHF 904 48.89 936 49.15
Depression 968 23.14 1000 242
Diabetes 980 70.2 1012 70.55
Gallstones 996 17.47 1028 18.29
Gerd 858 22.84 880 22.95
Gout 1004 12.55 1034 12.38
Hypercholesterolemia 876 56.62 904 56.42
Hypertension 942 18.68 970 20.41
Hypertriglyceridemia 976 5.53 1006 5.37
OA 934 21.63 960 22.08
Obesity 930 44.52 960 44.58
OSA 994 14.08 1026 14.62
PVD 938 14.93 968 15.5
Venos Insufficiency 858 7.23 882 7.26

IV. FEATURES REPRESENTATIONS

We have used bag-of-words TF-IDF and word embeddings
representations to generate feature vectors. On the one hand,
TF-IDF has served as a baseline for many NLP tasks [43]] for
decades and has proven to be very useful. On the other hand,
word embeddings are the current state-of-the-art due to their
innate capability of capturing the semantics and contextual
information for textual features representation of words and
text sequences [44], [45].

A. TF-IDF

TF-IDF is a feature extraction technique that calculates the
weight for each word based on its frequency within a docu-
ment. In document d, TF defines the occurrence of a word
w. In the entire document, IDF measures the rarity of a
word w. Equation shows the TF-IDF formula of w in a
document d; where ¢’ is the frequency of the word w in the
i-th document d;, |d;| is the size of the document expressed
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as the number of words, n is the number of documents in
the collection, and n% is the number of documents where
the word w occurs at least once. TF-IDF values are usually
normalized in the range [0,1].

TF - IDF(w,di) = S0 - log - (1)
y O Ii] 9w

To generate the feature vectors using bag-of-words TF-
IDF representation, we have used the TF-IDF Vectorizelﬂ
from the scikit-learn library. We have performed the exper-
iments with four types of feature vectors using the TF-IDF
representations: All Features (where feature selection is not
applied) and the ones obtained by applying three feature se-
lection algorithms: ExtraTreesClassifier, InfoGainA ttribu-
teEval, and SelectKBest. The reason for limiting the number
of features is to reduce the computational time for training the
models by keeping only those features that contribute most in
distinguishing the instances of the different classes. Feature
selection also has the effect of disregarding those terms that
are irrelevant and may confuse the classifier or determine
overfitting.

« ExtraTreesClassifier is essentially an ensemble learn-
ing method that conceptually shares a similar working
principle as that of Random Forest. The only difference
is the method for constructing decision trees. For a given
set of m features, which are selected randomly from
the features set of the input data, ExtraTreesClassiﬁerE]
selects the top features based on their importance (it
can be typically calculated by the Gini Index [46]).
These random samples of features are further used to
create decision trees which are mutually correlated. This
process helps to minimize the chances of overfitting and
ranks the features in descending order.

« InfoGainAttributeEval is used for feature selection
based upon measuring how each feature contributes to
decreasing the overall entropy [47]]. Entropy is basically
a measure of the impurity degree in the dataset. The
data is characterized as less impure when the entropy
is closer to zero. Hence, the usefulness of an attribute
is identified by its contribution to reduce the overall
entropy. It can be represented by:

InfoGain(Class, Attribute) =

2
H(Class) — H(Class|Attribute) @

where H is the information entropy.

o SelectKBest takes the score function as a parameter,
which is applied to a pair (m,y) where m corresponds
to the features of the input data and y to the correspond-
ing labels. The score function returns an array of scores,
one for each feature m[:,i] of m. SelectKBele] then
simply retains the first k features of m with the highest
scores.

4https://tinyurl.com/y8jqmscd
Shttps://tinyurl.com/ybnzo8rh
Shttps://tinyurl.com/y5c7w6bo
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The parameter vocabulary of the TF-IDF vectorizer
should be provided with a custom list of words (vocabu-
lary) to use the feature selection algorithms from the python
library. This custom vocabulary contains the words (fea-
tures) in ranked order provided by feature selection al-
gorithms based upon the features’ information gain. We
have set the configuration to max_features=600 and
vocabulary=custom_vocab, where custom_vocab is the
vocabulary of ranked features selected by applying the fea-
ture selection algorithms. This setting generates the feature
vectors matrix of {n x 600} dimension, where n is the
number of text documents (clinical notes).

B. WORD EMBEDDINGS

This section describes the general working principle of the
word embeddings followed by the details of all the word
embeddings used for our experiments: pre-trained word2vec,
domain-trained, Glo Ve, fastText, and USE embeddings. They
are reported below. Word embeddings are distributed repre-
sentations that model words’ properties into vectors of real
numbers in a predefined vector space, capturing features and
preserving their semantic relationships. As an outcome of
this representation, the words having similar meanings have
a similar representation. In Figure [T} we have presented the
visualization of 300-dimensional word embeddings of 18586
words generated from our dataset using the word2vec model
in high dimensional space using Tensorboar(ﬂ From the
visualization, one can note how the words are mapped near to
those whose word embeddings have a similar meaning. For
instance, in the case of the word diabetes, the words diabetic
and insulinotherapy are represented in the close semantic
space, notable by their scores 0.772 and 0.777.

o Pre-trained Word2Vec Word2Vec is an algorithm in-
vented by Google for training word embeddings that
relies on the distributional hypothesis [48]]. The distribu-
tional hypothesis uses skip-gram or Continuous Bag of
Words (CBOW) algorithms. In the CBOW model, for a
given context, the objective is to predict the focal word.
The CBOW model with a softmax loss function is es-
sentially a log-linear classification model. The aim is to
determine the most likely parameters of the embedding
vectors, which can be represented by Equation 3}

exp(w?wc)

P(wyslwe) = 3)

14
Yoy exp(wfwe)

where w_c is the context (one or more words), w_f is
the focal word, and V' is the vocabulary size. On the
other hand, the skip-gram model can be considered as
a complementary model to the CBOW model in terms
that its objective involves predicting a context word

Thttps://projector.tensorflow.org/
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FIGURE 1. Visualizing the semantic relationships between words by Word2Vec word embeddings representation.

given a single focal word [24]. The skip-gram model is
represented by Equation [}

e}

Plwslw.) =
e =
The Word2Vec algorithm aims to detect the meaning
and semantic relations by studying the co-occurrences
among words in a given corpus. We have used the
pre-trained Word2Ve(ﬁ model, which is trained on the
part of the Google News dataset (about 100 billion
words). This pre-trained model contains vectors of three
million words and phrases, which are represented in
300-dimensional space.

+ Domain-trained Word2Vec The domain-trained word
embeddings are generated by using the Word2Vec al-
gorithm on the n2c¢2 dataset. The rationale of using
these embeddings is their advantage in representing the
out-of-vocabulary words due to training on the target
domain (in our case, healthcare). We have generated the
word embeddings of 300 dimensions with 10 epochs
and a window size of 5 by using the Gensinrﬂ library.

« GloVe generator algorithm was developed as an open-
source project at Stanford in 2014 [49]]. For a given con-
text, to identify how frequently the words appear, GloVe
utilizes a statistics-based matrix to compute the vectors’
scores based on the co-existence of words within the
context. Unlike the Word2Vec algorithm, GloVe uses
both the skip-gram model, which is a local context
window, and the latent semantic analysis method, which

eap(uw,)

“4)

Shttps:/code.google.com/archive/p/word2vec/
9https://radimrehurek.com/gensim/

belongs to the global matrix factorization methods. For
our work, we have used the pre-trained GloVe6ﬂ em-
beddings model, trained by the Stanford NLP Group on
600 billion tokens of Wikipedid'T|and Gigaword™| with
dimension 300.

o fastText One drawback of Word2Vec and GloVe algo-
rithms is the fact that they are not able to handle out-
of-vocabulary words. To overcome this limitation, Face-
book proposed fastTexH which is essentially an ex-
tension of the Word2Vec algorithm [S0]-[52]]. FastText
extends the Word2Vec skip-gram model by consider-
ing internal sub-word information. Basically, words are
represented as n-gram of characters instead of learning
vectors for words directly. For instance, for n=3, the
word apple consists of app, ppl, and ple. FastText does
not consider the internal structure of the word and repre-
sents a bag-of-words model with a sliding window over
a word. Also, as long as the characters are contained
in the window, it is unaffected by the order of the n-
grams. This approach helps the model to compute word
representations of out-of-vocabulary words and allows
the model to understand suffixes and prefixes because it
is very likely that some of the n-grams also appears in
other words.

o Universal Sentence Encoder (USE). While the com-
mon practice with the word embeddings focuses on
representing the word, the technique to represent the
sentence through a single vector is unclear. To address

10https://mlp.stanford.edu/projects/GloVe/
https://dumps.wikimedia.org/enwiki/
1Zhttps://catalog.ldc.upenn.edu/LDC2011T07
Bhttps://fastText.cc/docs/en/english-vectors.html
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FIGURE 2. The architecture of the pipeline for morbidity detection in clinical
records using TF-IDF representations with CML and DL approaches.

Classical Machine
Learning
Classifiers / Deep
Learning Models

this, Google introduced pre-trained embeddings models
known as USE, which are optimized to train with a
longer text sequence than a single word such as phrases,
sentences, and short paragraphs [53]], [54]. The pre-
trained USH™ model is trained on several domains with
a variety of data sources to dynamically accommodate
a wide variety of natural language understanding tasks.
It transforms the text into high-dimensional vectors by
performing an encoding. It comes with two variations,
i.e., one trained with transformer encoder and the other
trained with the deep averaging network. For our work,
we have used the deep averaging network pre-trained
USE, which takes variable-length English texts as input
and outputs 512-dimensional vectors.

V. CLASSIFICATION MODELS

We have used two types of classification models based on
CML and DL approaches with each type of feature represen-
tation mentioned in Section [V} Figure 2] shows the general-
ized architecture of the pipeline used for the classification of
clinical records using TF-IDF representations with CML and
DL approaches.

The pipeline consists of training and testing phases. Prior
to the training stage, we preprocess the clinical records, as
mentioned in Section[[TI-B1] After that, classifiers are trained
on the feature vectors derived from the training samples.
After creating feature vectors, the previously trained classi-
fiers predict each clinical record label in the testing sample.
Finally, the performances of different classifiers are evaluated
by calculating standard metrics such as precision, recall, and
F-1 score. In the following sections, we will list the CML

4https://tfhub.dev/google/universal-sentence-encoder/4
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FIGURE 3. The architecture of DL models to use word embeddings
representation.

algorithms used for our experiments, followed by the DL
models and their architectures.

A. CLASSICAL MACHINE LEARNING MODELS

Experimental results reported in this paper were obtained
using standard implementations of CML algorithms provided
by the Weka toolkit using Python Weka—Wrapmel interface
with Java Virtual MachineEl environment. We have employed
Support Vector Machine (SVM) [55]], k-Nearest Neighbours
(kNN) [56], Naive Bayes [57]], Random Forest [58], Random

Tree [59]], J-48 [60] and J-Rip [61]].

B. DEEP LEARNING MODELS

We have used DL models with two types of representations,
one with word embeddings and the other with bag-of-words.

1) Deep Learning Models Used with Word Embeddings
The DL model we used for word embeddings representations
is the network with an embeddings layer, two BiLSTM lay-
ers, a dense layer followed by an output layer for the binary
classification task. Figure 3] presents the related architecture.
The embeddings layer is initialized by the following four
inputs:

o input_dim (size of the vocabulary);

o output_dim: (dimension of the dense embeddings);

o weights (embeddings_matrix), and

« input_length (length of input sequences).

The input_dim represents the length (V') of the unique
vocabulary made from our input data (clinical records).

Shttps://pypi.org/project/python-weka-wrapper/
19https://pypi.org/project/javabridge/
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The input matrix (integer encoded vectors) has dimension
{n x m}, with n equal to the number of clinical records
and input_length corresponding to m, which is the maximum
number of tokens considered for each text. The embed-
dings_matrix is the vector representation of the correspond-
ing words of the vocabulary and has dimension {V x z},
where x represents the output_dim. Specifically, output_dim
for all the embeddings is 300 except USE, which has a value
of 512. The output of the embeddings layer is passed to two
hidden layers that implement BiLSTM neural networks [62]].
LSTM is a particular kind of recurrent neural network that
can store the history of the input data and has already proven
to be able to find patterns in data where the sequence of the
information matters [63]]. By using the bidirectional version,
the models can learn from the input data both backward and
forward. Finally, the output of the BiLSTM layer is fed to a
fully connected dense layer to predict the labels.

2) Deep Learning Models used with Bag-of-words
representation

For the bag-of-words model, in conjunction with the em-
ployed feature selection algorithms, we used TF-IDF repre-
sentation. The differences between the neural network model
used here with that described in the previous paragraph are
the following:

« Firstly, the one described here does not have an embed-
dings layer, and the input is directly fed to the BILSTM
layer.

« Secondly, the input data do not undergo the preprocess-
ing steps such as integer encoding and padding when
used with TF-IDF representation.

The input to the BILSTM layer, in this case, is the TF-IDF
matrix, which is generated by the TF-IDF vectorizer and has
dimension {n x 600}, with n the number of text documents
(clinical records). Figure [] presents the architecture of the
DL network used with TF-IDF representation.

VI. EXPERIMENTS AND RESULTS
The server specifications we have used to develop our meth-
ods and run the experiments are summarized in Table [3]

TABLE 3. Server Specifications.

Item Specification

CPU Intel Core i3-7100 (-HT-MCP-) CPU @ 3.90
GHz

GPU NVIDIA GP102 [TITAN X], 12 GB memory

Graphic driver NVIDIA graphic driver version 440.33.01

CUDA Version 10.2
oS Ubuntu (17.10)
Python Version 3.6.6

We have conducted our experiments with CML and DL
approaches using the bag-of-words applied to feature selec-
tion algorithms and word embeddings representations. We
have also employed ensemble learning over a large number
of combinations of classifiers to improve the single model
performances and obtain stable results.

10

—
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FIGURE 4. The architecture of DL models to use TF-IDF representation.

We used 10-fold cross-validation as an experimental de-
sign [64] to ensure the robustness of performance estimation
and avoid the bias of our single models. The performances
of different classifiers and feature representations were mea-
sured in terms of F-1 score (F-1) using micro and macro
averaging over 10 folds provided by the scikit-leanﬂ library.
The formulas to calculate precision, recall, and F-1 score are
given by:

. TP
Precision = TP+ PP (®)]
TP
Recall = TPLFN (6)

Precision x Recall
Fl1=2 7
% Precision + Recall 7

where TP, FP, and FN represent true positive, false pos-
itive, and false negative of each label, respectively. The
experiments that have been carried out can be divided into
three groups for ease of understanding, which are mentioned
below:

« In the first set of experiments, CML and DL approaches
were used with bag-of-words representations coupled
with feature selection algorithms using TF-IDF repre-
sentation, as mentioned in Section [[V-A]

o In the second set of experiments, we used CML and
DL approaches with word embeddings generated by
pre-trained models of word2vec, domain-trained with
word2vec, GloVe, fastText, and USE embeddings. The

Thttps://tinyurl.com/y4mt646z
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feature vectors generated by these pre-trained word
embeddings to train CML classifiers were generated
from the same input data by either keeping the stop-
words or removing them. The purpose of generating two
sets of feature vectors was to study the relatedness of
stopwords with the context of the text and their impact
on the classifier’s performance. The DL models were
trained only with the feature vectors of the input data
with stopwords as the standard experiment.

o As the last set of experiments, we implemented en-
semble learning techniques on a large number of com-
binations of classifiers to improve the single model
performances.

The following subsections describe the three sets of exper-
iments.

A. EXPERIMENTAL RESULTS WITH BAG-OF-WORDS
COUPLED WITH FEATURE SELECTION ALGORITHMS

This section provides the details of the experiments per-
formed with CML and DL approaches with bag-of-words
coupled with feature selection algorithms using TF-IDF rep-
resentations. TF-IDF evaluates the importance of a feature
based on its frequency. Identifying features that contribute
the most to distinguish the classes is useful for improv-
ing the models’ performances. Thus we have adopted three
feature selection algorithms, namely ExtraTreesClassifier,
InfoGainAttributeEval, and SelectKBest, along with the All
Features. Table 4| depicts the results of CML classifiers
with All Features using TF-IDF representations. Tables [5] [6]
and [/] illustrate the results of CML Classifiers with feature
selection algorithms ExtraTreesClassifier, SelectKBest, and
InfoGain, respectively. Finally, Table [§] includes the results
of the DL models with the four bag-of-words applied to
feature selection algorithms using TF-IDF representations.
The key observations from the performed experiments are
listed below:

o In general, the feature selection algorithms have im-
proved the performance of CML classifiers (typically
by 1%). The two best-performing classifiers with All
Features are SVM and Random Forest with 98.45 and
98.1 micro F-1 scores, respectively (as shown in Table
H). The use of the ExtraTreesClassifier as the feature
selection algorithm has improved the micro F-1 score
of Random Forest to 98.82 and SVM to 99.26 (shown
in Table E]), which is the best performance of CML
classifiers among all the experiments.

o In contrast, the Naive Bayes classifier used with All
Features has performed the best with a Micro F-1 score
of 89.31 (as shown in Table [) than with any feature
selection algorithms.

o In the case of DL approaches, All Features using TF-
IDF has been outperformed by the feature selection
algorithms achieving up to 13% of F-1 score (shown in
Table 3).

o The reason for the low performance of DL models
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with All Features using TF-IDF is because that TF-
IDF selects the features based on the frequency of the
words, not useful to distinguish the morbidity classes.
Feature selection algorithms identify the most important
features that allow the DL models to learn the context of
clinical records, and this results in further improvement
of the classification performances.

o From our experimental results, it turned out that the
adoption of feature selection algorithms has shown more
benefit on DL models than on CML algorithms. In fact,
with All Features, the micro F-1 score of DL models was
76.47, whereas, with the usage of ExtraTreesClassifier,
it has improved to 89.63 (as shown in Table[g).

o As far as the computational time and resource require-
ments are concerned, the CML models have proven to
be computationally faster and less demanding for what
resources are concerned. The training time of the CML
models seen so far was up to 600 seconds; that of the
DL models was much higher (a couple of hours) using
the same machine mentioned in Table[3](DL approaches
employed both the CPU and the GPU whereas the CML
models just the CPU).

B. EXPERIMENTAL RESULTS WITH WORD
EMBEDDINGS

In this other group of experiments, we have trained the CML
and DL approaches with the embeddings generated by the
pre-trained word2vec, domain-trained with word2vec, fast-
Text, GloVe, and USE models. The results of the experiments
are summarized in Tables [0] [I0} [[1] In particular, Tables [9]
and [I0] present the results of CML classifiers using word
embeddings representation with the input data without the
removal of stopwords (raw) and with the input data not
containing the stopwords (pre-processed), respectively. The
best performances of CML classifiers with word embeddings
representations extracted from Tables [0 and [I0] are shown
in Figure [7] Moreover, for ease of understanding, Figure [§]
represents the performance of the CML and DL classifiers
with bag-of-words coupled with feature selection algorithms.
Figure [9] shows the CML and DL classifiers’ plot with word
embedding representation. The winning configurations are
highlighted for each kind of used representation.

The key observations from the performed experiments are
listed below:

o The CML classifiers have performed only slightly better
(less than 1% of difference) with embeddings when
the input data do not contain the stopwords. The case
when the input data contain the stop words has lower
performances, where the domain-trained and USE em-
beddings are the exceptions.

o Given the small size of the used dataset and the mini-
mal difference between the two kinds of CML models
(with and without stopwords), we cannot draw any
conclusions related to improvements or not derived from
the presence of stopwords in the dataset. However,
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TABLE 4. Performances of CML Classifiers with All Features using TF-IDF Representations.

J-48 J-Rip Naive Bayes Random Forest Random Tree SVM KNN (k=1) KNN (k=5)
Morbidity Micro Macro|Micro Macro{Micro Macro|Micro Macro |Micro Macro|Micro Macro|Micro Macro|Micro Macro
Class F-1 F-1 | F-1 F-1 | F-1 F-1 | F-1 F-1 F-1 F-1 | F-1 F-1 | F-1 F-1 | F-1 F-1
Asthma 994 98.75| 98.4 97 |91.1 81.6 | 99.4 98.75 | 98.9 97.95[98.77 97.55|98.1 96.45|89.6 76.65
CAD 93.6 934 1943 94.05| 884 8795|977 97.55 | 96.4 96.2 | 99.2 99.1 | 96 95.8 | 70.8 67.45
CHF 96 96.05| 94 94.05| 86.9 86.95| 97.8 97.75 | 96.2 96.2 | 98.9 98.9 | 94.7 94.7 | 68 64.45
Depression 95.4 93.3 1951 93.15| 847 76.85]| 96.3 94.45 | 95.2 932 | 97 95.75 | 96.7 95.2 | 79.5 59.85
Diabetes 95.7 94.85| 96 95.25| 89.3 86.9 | 96.3 95.45 | 96.5 95.8 1969 96.25| 93.5 92.6 | 73.2 71.75
Gallstones 99.1 9845|994 9895|894 82.05]|98.8 97.85 | 984  97.15| 99 98.2 | 98.8 97.85|834 51.75
Gerd 97.3 96.15| 964 9495| 88.1 83.25]| 98.1 97.25 | 974 9635|979 96.95|97.2 96.05| 82.5 68.7
Gout 99.7 99.3 | 99.7 99.3 | 95.2 89.2 | 99.2 98.1 | 984 96.45]|99.6 99.1 | 98.7 97.15| 90.2 68.2
Hypercholesterolemia| 97.4  97.35| 91.7 91.55| 829  82.55| 97.5 974 | 95.7 95.6 | 97.7 97.7 | 95.7 95.6 | 78.9 78.2
Hypertension 97.8 96.25| 955 92.75| 86.4 76.9 | 97.7 95.95 | 97.5 95.7 | 97.6 96.1 | 95.2 92.5 | 85.1 72.1
Hypertriglyceridemia| 98.2  89.95| 98.8 94.1 | 96.7 86.6 | 99.4 96.9 | 994 96.9 | 99.4 96.9 | 99.2 9595|945 48.6
OA 97.8 96.8 | 97.1 95.75]| 88.7 83.2 | 97.6 96.35 | 97 95.55]98.5 97.75| 96.1 944 | 75.1 65.2
Obesity 99 99 | 976 97.6 | 80.9 80.75| 96.8 96.75 | 96.1 96.1 | 97.2 97.15|96.3 96.25| 76 74.85
OSA 99.5 9895 99.8 99.6 | 89.2  76.55| 98.6 96.95 | 97.8  95.35] 98.8 97.4 | 98.5 96.8 | 89.4  72.65
PVD 98.1 9625|987 97.45|92.1 82.05]|98.5 96.9 | 983 96.65|98.9 97.85|99.4 98.7 | 90.1  73.65
Venous Insufficiency | 97.3 90.1 | 97.4 90.85| 99 96.3 | 100 100 | 99.5 98.3 | 100 100 | 98.8 9595|945 68.05
Average 97.58 95.93[96.86 95.39(89.31 83.72 98.1 97.14 |97.41 96.21 (98.45 97.66|97.05 95.74[82.55 67.63
TABLE 5. Performances of CML Classifiers with Feature Selection Algorithm ExtraTreesClassifier using TF-IDF Representations.
J-48 J-Rip Naive Bayes Random Forest Random Tree SVM KNN (k=1) KNN (k=5)
Morbidity Micro Macro|Micro Macro{Micro Macro|Micro Macro |Micro Macro|Micro Macro|Micro Macro|Micro Macro
Class F-1 F-1 | F-1 F-1 | F-1 F-1 | F-1 F-1 F-1 F-1 | F-1 F-1 | F-1 F-1 | F-1 F-1
Asthma 99.1 98.15|99.1 98.15| 73.7 67 |99.2 98.35 | 98.3  96.75]99.2 98.35]| 994 98.75| 86.2  54.55
CAD 95.5 9535|947 9445| 93 92.7 | 98.5 98.45 | 97 96.9 | 99.6 99.55| 97 96.9 | 83.4  81.05
CHF 96 96 |97.2 97.25| 86 85.95| 98.9 989 |97.3 97.35|99.1 99.1 | 98.2 98.25| 86 85.8
Depression 947 92451 96.5 95.1 | 75.1  72.75| 96.9 954 1965 9495|99.2 9885|963 9445|78.1 48.85
Diabetes 96.7 96.1 | 95.6 94.75|93.8 92.75| 98 97.55 | 96.9 96.35| 97.8 97.3 | 96.7 96 | 79.2 67.5
Gallstones 97.6  95.75|99.1 98.45]| 70.7 66.4 | 99 98.2 | 994 9895|998 99.65| 99 98.2 | 83.4  50.35
Gerd 97.3 96.1 | 958 94.15| 76 73.6 | 98.8 98.35 | 97.4 96.4 | 99.8 99.65| 984 97.65| 78.2 48.2
Gout 994 98.65|99.8 99.55| 85.3 76.9 | 99.8 99.55 | 99.2 98.2 | 100 100 | 99.2 98.1 | 87.6  48.25
Hypercholesterolemia| 95.3  95.25| 91.7 91.6 | 87.8 87.45| 98.4 98.35 | 97.5 97.45|982 98.15| 979 9795|823 8195
Hypertension 97.5 95.7 | 96 934 | 714 67.1 | 97.9 96.35 | 97 95.15| 99.2 98.6 | 97.2 95.25|82.6 5245
Hypertriglyceridemia| 99.2 96.1 | 98.7 94 | 914 75.25| 99.6 98 99.6 98 | 994 96.9 | 99.4 96.9 | 94.5 48.6
OA 97.5 96.35] 96.7 952 | 754  72.45| 98.9 984 1968 9525|991 98.75|98.5 97.75| 80.3 52.6
Obesity 98.2 98.15|97.6 97.6 | 87.7 87.75| 98.9 98.9 | 96.1 96.1 | 994 99.35| 959 95.85| 79.6 78.3
OSA 99.3  98.55| 99.8 99.6 | 79.1 71.25|99.4 98.7 | 98.6 97.1 | 994 98.7 | 98.6 96.95]| 86.8 52.5
PVD 98.1 96.2 | 97 94.2 | 77.1 70.1 | 98.9 97.85 | 98.5 97 1989 97.85| 98.5 96.9 | 85.7 50.25
Venous Insufficiency | 98.1 92.7 | 97.8 92.15]| 86.5 71.5 | 100 100 | 100 100 | 100 100 | 100 100 | 92.8 48.15
Average 97.47 96.1097.07 95.60(81.88 76.93(98.82 98.21 [97.88 96.99(99.26 98.80|98.14 97.24(84.17 59.33
TABLE 6. Performances of CML Classifiers with Feature Selection Algorithm SelectkBest using TF-IDF Representations.
J-48 J-Rip Naive Bayes Random Forest Random Tree SVM KNN (k=1) KNN (k=5)
Morbidity Micro Macro|Micro Macro{Micro Macro|Micro Macro |Micro Macro|Micro Macro|Micro Macro|Micro Macro
Class F-1 F-1 | F-1 F-1 | F-1 F-1 | F-1 F-1 F-1 F-1 | F-1 F-1 | F-1 F-1 | F-1 F-1
Asthma 994 98.75| 98.8 97.8 | 91.5  82.55| 994 98.75 | 989 9795[989 9795|979 96 89 75.05
CAD 94.8 94.6 | 91.2 90.9 | 88.7 88.25|97.2 97.1 | 949 94.65| 99.2 99.1 | 95.8  95.55|69.2 6535
CHF 96.2  96.25| 95.7 95.7 | 86.9  86.95| 98.2 98.25 | 96 96.05 | 99.1 99.1 | 954 95.35| 69.2 65.9
Depression 95.9 94.05]| 96.1 94.6 | 84.7 77.2 | 96.3 94.45 | 95.5 93.5 1971 95.75| 955 93.55|79.8 60.7
Diabetes 96.1 9535|952 94.35]| 89.7 87.4 | 96.5 95.7 | 94.3 93.2 | 971 96.55| 924 91.4 | 70.1 69.2
Gallstones 99 98.25| 99 98.25 | 89.3 81.9 | 98.8 97.85 | 97.6  95.85| 99 98.2 | 98.8 97.85|83.3 53.05
Gerd 97 95.65 | 96.6 953 | 88.2 81.25| 98.1 97.25 | 96.7 95.4 | 97.7 96.6 | 97.4  96.35| 83.4 70.4
Gout 99.6 99.1 | 99.7 99.3 | 949 88.45|99.2 98.1 | 98.8 97.25|99.6 99.1 | 98.8 97.35|89.8  70.05
Hypercholesterolemia| 97 97 190.6 90.5 | 83 82.65| 97.5 97.45 | 95 94.85 | 97.7 97.7 | 94.7 947 | 789  78.55
Hypertension 97.5 9575|939 904 | 86.5 77.05|97.7 95.95 | 95.8 93 | 97.7 96.1 | 96.6 945 | 86.8  72.85
Hypertriglyceridemia | 98.4 91.4 | 98.8 94.4 | 96.6 86.3 | 99.4 96.9 | 994 96.9 | 994 96.9 | 99.6 98 | 94.5 48.6
OA 972 9595| 97 95.7 | 88.2  82.55| 97.6 96.35 | 97 95.551| 98.3 974 | 964 9475|778 6795
Obesity 98.8 98.8 | 97.7 97.75| 80 79.851 96.3 96.25 | 95.3 952 | 97 96.95| 96.1 96.05| 76.7  76.35
OSA 99.5 98.95| 99.8 99.6 | 89.3 76.7 | 98.6 96.95 | 97.8 95.5 | 98.8 97.4 | 98.2 96.3 | 90.7  78.65
PVD 98 96 | 974 9495|91.8 81.55|98.5 969 | 985 97.05|/989 97.85| 99 98.05| 90 73.2
Venous Insufficiency | 97.6  90.65 | 97.3 90.4 | 98.5 94.85| 100 100 | 99.8  99.15| 100 100 | 98.6 952 1952 74.05
Average 97.63 96.0396.55 94.99(89.24 83.47(98.08 97.14 {9696 95.69|98.47 97.67|96.95 95.68|82.78 68.74
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TABLE 7. Performances of CML Classifiers with Feature Selection Algorithm InfoGain using TF-IDF Representations.

J-48 J-Rip Naive Bayes Random Forest Random Tree SVM KNN (k=1) KNN (k=5)
Morbidity Micro Macro|Micro Macro{Micro Macro|Micro Macro |Micro Macro|Micro Macro|Micro Macro|Micro Macro
Class F-1 F-1 | F-1 F-1 | F-1 F-1 | F-1 F-1 F-1 F-1 | F-1 F-1 | F-1 F-1 | F-1 F-1
Asthma 994 98.75| 98.8 97.8 | 91.5 82.55| 994 98.75 | 98.9 97.95[989 9795|979 96 89 75.05
CAD 94.8 94.6 | 91.2 90.9 | 88.7 88.25|97.2 97.1 | 949 94.65| 99.2 99.1 | 95.8 95.55|69.2 6535
CHF 96.2  96.25| 95.7 95.7 | 869  86.95| 98.2 98.25 | 96 96.05 | 99.1 99.1 | 954 95.35| 69.2 65.9
Depression 95.5 93.45] 96.1 94.6 | 84.7 77.2 | 96.3 94.45 | 95.5 93.5 1971 9575|955 93.55|79.8 60.7
Diabetes 959 95.15]952 94.35]| 89.7 87.4 | 96.5 95.7 | 94.3 932 | 971 96.55| 924 91.4 | 70.1 69.2
Gallstones 974  9525| 99 98.25| 89.3 81.9 | 98.8 97.85 | 97.6  95.85| 99 98.2 | 98.8 97.85| 833 53.05
Gerd 96.3 94.6 | 96.6 95.3 | 88.2  83.35| 98.1 97.25 | 96.7 95.4 | 97.7 96.6 | 97.4  96.35| 83.4 70.4
Gout 99.6 99.1 | 99.7 99.3 | 949 88.45|99.2 98.1 | 98.8 97.25| 99.6 99.1 | 98.8 97.35| 89.8  70.05
Hypercholesterolemia| 97 97 190.6 90.5 | 83 82.65| 97.9 97.9 95 94.85| 99.6 99.1 | 94.7 947 | 789  78.55
Hypertension 97.2 9535|939 90.4 | 86.5 77.05| 97.5 95.65 | 95.8 93 | 97.7 96.1 | 96.6 945 | 86.8  72.85
Hypertriglyceridemia | 97.7  87.45| 98.8 944 | 86.5 77.05|99.4 96.9 | 994 96.9 | 99.4 96.9 | 99.6 98 | 94.5 48.6
OA 972 9595| 97 95.7 | 88.2 82.55|97.6 96.35 | 97 95.551| 98.3 974 | 964 9475|778 6795
Obesity 98 9795|977 97.75| 80 79.85| 96.3 96.25 | 95.3 952 | 97 96.95| 96.1 96.05| 76.7  76.35
OSA 99.1 98.1 | 99.8 99.6 | 89.3 76.7 | 98.6 96.95 | 97.8 95.5 | 98.8 97.4 | 98.2 96.3 | 90.7  78.65
PVD 97.5 95.1 {974 9495|91.8 81.55|98.5 96.9 | 985 97.05/989 97.85| 99 98.05| 90 73.2
Venous Insufficiency | 97.6  90.65 | 97.3 90.4 | 98.5 94.85| 100 100 | 99.8  99.15| 100 100 | 98.6 952 1952 74.05
Average 97.28 9529 (96.55 94.99 [88.61 83.02(98.10 97.15 {96.96 95.69 |98.59 97.75|96.95 95.68 |82.78 68.74
TABLE 8. Performances of DL models with Bag-of-Words Coupled with Feature Selection Algorithms using TF-IDF Representations.
Extra Tress Classifier InfoGain SelectKBest All Features
Morbidity Class Micro F-1  Macro F-1 Micro F-1  Macro F-1 Micro F-1  Macro F-1 Micro F-1 Macro F-1
Asthma 90.86 80.25 92.22 82.14 84.86 45.89 84.87 45.90
CAD 83.02 82.33 67.85 54.05 60.51 38.35 60.09 43.16
CHF 86.3 85.91 74.01 69.64 52.98 40.37 54.20 53.38
Depression 86.15 76.46 81.41 66.7 76.86 43.43 76.86 43.45
Diabetes 86.93 83.54 80.2 72.35 70.2 41.21 70.20 41.24
Gallstones 96.08 90.66 85.24 58.12 82.52 45.2 82.52 45.21
Gerd 90.9 86.26 80.18 58.74 77.15 435 77.15 43.55
Gout 95.61 86.4 95.91 86.08 87.45 46.62 87.45 46.65
Hypercholesterolemia 78.64 76.12 67.07 60 56.61 35.96 56.84 51.45
Hypertension 81.31 49.54 79.2 47.86 81.31 44.53 81.31 44.84
Hypertriglyceridemia 97.13 83.71 94.56 50.02 94.46 48.56 94.46 48.57
OA 90.35 81.51 85.22 75.04 78.37 43.91 78.37 43.93
Obesity 94.83 94.69 72.36 66.57 55.48 35.53 55.48 35.68
OSA 97.88 95.08 94.66 88.32 85.91 46.2 85.91 46.21
PVD 85.72 67.9 85.08 64.62 85.07 45.96 85.07 45.96
Venous Insufficiency 92.3 53.39 92.77 48.08 92.77 48.08 92.77 48.12
Average 89.63 79.61 83.00 65.52 76.41 43.33 76.47 45.45

we believe that, given the technical terminology used
within the clinical notes, stopwords should not play an
important role when preprocessing the dataset. A more
detailed analysis of them is out of the scope of the paper
and will be investigated in a future direction.

In the case of DL models, the use of word embeddings
has further improved their performance with respect to
the bag-of-words representation coupled with feature
selection algorithms. The best performance of the DL
model is observed when GloVe word embeddings are
employed with 94.3 average micro F-1 scores (Table[TT)
against the average micro F-1 score of 89.63 when used
with bag-of-words representation (Table [8). Besides,
the former corresponds to the best performance of DL
models for all sets of experiments.

Generally, it is expected that the domain-specific word
embeddings will perform better (due to the absence of
out-of-vocabulary words) than pre-trained word embed-
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dings, but it does not happen if the training data is
small. The small amount of data in fact, jeopardizes
the chances of learning the subtle peculiarities of the
domain and will lead to the high variance estimation
of the model’s performance. For such a reason, the
performances of the DL models with domain-trained
embeddings are worse than those of the other four
pre-trained embeddings. In contrast to the DL models,
the performance of CML models using domain-specific
word embeddings is only slightly affected by the small
size of the dataset.

Regarding the computational time, the CML models
have again turned out to be computationally fast and
less resource exhaustive as compared to the DL models.
The training time of the CML models ranges between
80 and 600 seconds. The reason for the reduced training
time with respect to the CML models employing bag-
of-words is the lower dimension of the embedding vec-
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tors (typically 300-dimensional for all types of word-
embeddings except USE, which has 512).

« Different from the CML classifiers, the training time
of the DL classifiers has increased up to 40 hours. The
reason for this higher computational cost lies within the
employment of new layers of deep neural networks.

The comparison of the training time between the CML and
DL models are presented in Figures[5|and[6] Finally, Table[TT]
presents the results of DL models with the word embeddings
representation.

Training Time of CML Models

Random Forest (All Features)
J-48 (SelectkBest)

J-RIP (InfoGain)

SVM (Extra Tress Classifier)

Knn (k=5) (USE)

CML Models

Naive Bayes (Word2Vec)
KNN (k=1) (Glove)
Random Forest (fastText)

Random tree (Domain-Train)

0 100 200 300 400 500 600 700
Time (in seconds)

FIGURE 5. The training time of CML models with different representations.

Training Time of DL Models

USE
Word2Vec
Glove

fastText

DL Models

Domain-Train
SelectKBest
InfoGain
Extra Tress Classifier

All Features

0 10 20 30 40
Time (in hours )

FIGURE 6. The training time of DL models with different representations.

C. EXPERIMENTAL RESULTS WITH ENSEMBLE
APPROACH

In this final group of experiments, we will discuss the
ensemble approach we have employed. Ensemble learning
works by first training each single machine learning model
and then combining the predictions of them. The rationale
behind ensemble learning is to take the best from a given
set of algorithms by combining their outputs. Given the
large number of classifiers employed in our study, it was
not feasible to experiment with all possible combinations of
machine learning algorithms. For this reason, we selected the
most effective DL and CML algorithms for experimenting
with the ensemble approach. We performed our experiments
with the BiLSTM based DL model and 8 CML algorithms.
We used the four bag-of-words models with feature selection
and the five types of word embeddings for each of them.
Hence, we considered 9 x 9 = 81 classification models totally.
Considering the formula 2% — (a+1), with a > 2 equal to the
number of models, for calculating the total number of possi-
ble ensembles constituted, in our case we have a = 81. This
would account for a total of (28! —82) possible combinations.
It would be unfeasible to compute all the possible ensembles
resulting from the formula above. Therefore, we have limited
the number of models for generating the configurations of
ensembles. We hypothesized that combining CML and DL
classifiers in the same ensemble configuration would increase
the model’s stability without decreasing accuracy. Hence,
we included the 6 top-performing CML models and the 5
top-performing DL models in our pool of classifiers to be
included in the ensemble configurations. We used r out of 11
classifiers for each configuration, with r being an odd integer
number between 3 and 11. Using an odd number of classi-
fiers, we could straightforwardly apply the majority voting
technique. The choice of using 11 classifiers corresponded
to 1013 different ensemble configurations, which we believe
is a reasonable number for our experiment. The classifiers
selected for the ensemble configurations are listed below:

« Random Forest classifier used with SelectKBest feature
selection algorithm.

e SVM classifier used with ExtraTreesClassifier feature
selection algorithm.

o kNN classifier (where k=1) used with ExtraTreesClas-
sifier feature selection algorithm.

e kNN classifier (where k=1) used with fastText word
embeddings representation.

+ Random Forest classifier used with USE word embed-
dings representation.

« Random Forest classifier used with fastText word em-
beddings representation.

o DL model used with USE word embeddings representa-
tion.

« DL model used with GloVe word embeddings represen-
tation.

o DL model used with fastText word embeddings repre-
sentation.
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FIGURE 7. Best performances of CML classifiers using embeddings with and without stopwords taken from Tables [9]and[T0}

TABLE 9. Performances (averaged over all the morbidity classes) of CML classifiers with Word Embeddings when input data contain stopwords.

Domain-Train fastText GloVe Word2Vec USE

Classifier Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1
J-48 92.21 87.79 93.34 89.65 92.95 88.84 92.62 86.39 93.42 89.8
J-Rip 86.12 77.87 90.16 85.49 89.16 83.7 88.76 80.92 89.56 83.83
Naive Bayes 58.14 51.5 65.89 63.83 63.51 60.84 61.96 60.47 68.13 60.33
Random Forest 97.92 96.95 98.03 96 97.98 95.9 96.63 92.85 98.06 97.1
Random Tree 97.19 95.69 97.5 96.33 97.1 95.68 95.87 92.88 96.98 95.52
SVM 79 51.2 89.08 78.07 86.13 70.78 87.31 71.85 90.06 85.31
KNN (k=1) 97.18 95.74 97.51 96.07 97.18 95.82 95.95 93.04 97.31 95.95
KNN (k=5) 81.79 65.52 84.12 68.14 83.38 66.76 83.13 65.71 83.16 68.4

TABLE 10. Performances (averaged over all the morbidity classes) of CML classifiers with Word Embeddings when input data do not contain stopwords

Domain-Train fastText GloVe Word2Vec USE

Classifier Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1
J-48 91.79 87.09 93.44 89.59 93.65 89.85 93.36 89.91 92.53 87.91
J-Rip 85.09 75.21 89.78 84.43 89.86 85.53 89.91 84.62 88.34 81.77
Naive Bayes 57.5 52.25 69.25 66.96 66.5 64.48 65.71 63.93 51.55 47.02
Random Forest 97.8 96.83 98.13 97.24 98.05 95.93 98.12 96.08 97.9 96.09
Random Tree 97.25 95.84 97.2 95.74 96.99 95.64 97.41 96.07 97.01 96.61
SVM 79.43 51.65 90.27 81.32 89.49 79.17 89.83 79.91 89.9 84.42
KNN (k=1) 97.13 95.54 97.54 96.3 97.22 96.26 97.43 96.02 97.43 96.19
KNN (k=5) 81.67 64.27 84.57 69.12 84.3 68.44 84 68 84.05 69.69

e DL model used with InfoGain feature selection algo-
rithm.
« DL model used with ExtraTreesClassifier feature selec-
tion algorithm.
We computed the performances of all the above-mentioned
1013 ensemble combinations, and the results of the six best
performing combinations among them are discussed in the
following. Out of the top six ensemble models, ensembles
1, 3, and 5 consist of five classification models, while 3
classification models constitute ensembles 2, 4, and 6. The
results of the ensembles are summarized in Table 12
The structure of the top six ensemble combinations is listed
below:

VOLUME 4, 2016

o Ensemble-1. The number of constituting classifiers for

Ensemble-1 is 5, which are: DL models with (fast-
Text and GloVe) word embeddings, SVM with Extra-
TreesClassifier algorithm, Random Forest with Selec-
tKBest algorithm, kNN(k=1) with fastText word em-
beddings.

o Ensemble-2. The number of constituting classifiers

for Ensemble-2 is 3, which are: DL model with
GloVe word embeddings, SVM with ExtraTreesClassi-
fier, KNN(k=1) with fastText word embeddings.

+ Ensemble-3. The number of constituting classifiers

for Ensemble-3 is 5, which are: DL models with
(fastText and GloVe) word embeddings, SVM with
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TABLE 11. Performances of DL models with Word Embeddings.

Domain-Train fastText GloVe ‘Word2Vec USE

Morbidity Class | Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1 | Micro F-1 Macro F-1
Asthma 86.75 57.51 95.68 90.56 96.63 93.45 92.85 84.57 87.81 58.77
CAD 60.5 54.4 87.68 87.32 91.07 90.5 74.08 73.05 80.88 82.73

CHF 61.17 56.74 87.6 87.52 93.91 93.85 89.36 89.25 81.51 78.35
Depression 80.57 60.54 94.62 91.75 96.58 94.83 91.73 87.6 88.13 71.26
Diabetes 73.26 56.9 92.15 91.41 94.8 91.73 91.32 89.72 88.93 85.1
Gallstones 83.53 54 88.32 83.56 92.46 85.96 89.74 75.65 89.42 69.86
Gerd 78.43 54.49 83.1 74.77 89.04 82.17 75.74 63.59 86.95 68.82

Gout 88.25 53.96 96.21 90.67 96.81 91.43 87.96 69.63 91.33 64.02
Hypercholesterolemia | 67.56 66.05 88.83 88.12 91.08 90.56 88.45 88.02 82.42 83.84
Hypertension 79.94 57.29 97.24 95.16 97.23 95.92 89.91 82.8 89.28 93.54
Hypertriglyceridemia 94.35 61.77 93.36 86.47 98.87 93.92 97.13 72.57 98.56 87.13
OA 76.97 57.75 88.85 83 93.26 89.33 82.22 70.02 86.4 67.04
Obesity 55.05 48.72 84.3 83.31 85.8 85.49 67.52 64.19 64.08 62.36
OSA 86.92 55.38 93.25 84.97 97.58 94.77 91.85 83.92 92.44 71.69

PVD 86.03 55.86 95.41 90.04 99.14 98.25 92.53 81.55 91.23 67.87
Venous Insufficiency 92.3 47.95 97.9 86.43 97.66 84.23 94.04 66.16 87.89 32.8
Average 78.22 56.2 91.53 87.19 94.3 91.21 87.28 77.64 86.46 71.81

TABLE 12. Performances of Ensemble Approaches.

Ensemble-1 Ensemble-2 Ensemble-3 Ensemble-4 Ensemble-5 Ensemble-6

Morbidity Micro  Macro Micro  Macro Micro Macro Micro Macro Micro Macro Micro Macro
Class F-1 F-1 F-1 F-1 F-1 F-1 F-1 F-1 F-1 F-1 F-1 F-1
Asthma 99.37 98.75 99.05 98.14 99.37 98.75 99.16  98.34 99.37 98.75 99.37 98.75

CAD 99.58  99.55 99.58  99.56 99.47 99.44 99.68 99.67 99.58  99.56 99.58  99.55

CHF 99.78  99.78 99.67 99.67 99.78  99.78 99.67  99.67 99.78 99.78 99.34  99.34
Depression 98.86  98.37 98.97 98.52 98.86  98.37 99.07 98.67 98.86  98.37 98.76  98.22
Diabetes 98.27  97.90 98.27 9791 98.16  97.77 98.16 97.78 98.16 97.77 98.37 98.02
Gallstones 99.70  99.47 99.80  99.65 99.80 99.65 99.70  99.48 99.70  99.47 99.60  99.30
Gerd 98.95 98.49 99.18 98.83 99.07 98.66 99.07  98.66 98.95 98.49 98.95 98.49

Gout 99.70  99.31 99.70  99.31 99.70  99.31 99.80 99.54 99.70  99.31 99.70  99.31
Hypercholesterolemia | 98.52  98.49 98.06 98.02 98.40 98.37 98.29  98.26 98.29 98.25 98.52 98.49
Hypertension 99.68 99.47 99.58  99.30 99.47  99.12 99.47  99.12 99.47  99.12 99.58  99.30
Hypertriglyceridemia 9949 9744 99.49 97.44 99.49 9744 99.59 97.97 99.49 97.44 99.39  96.90
OA 98.93  98.39 98.93 98.40 99.04 98.56 99.04 98.56 98.93  98.39 98.72  98.06

Obesity 99.03  99.02 99.25 99.24 99.03  99.02 98.71  98.69 98.92 98.91 99.46 99.46

OSA 99.50 98.94 99.60 99.16 99.50 98.94 99.40 98.74 99.50 98.94 99.40 98.73

PVD 99.04  98.06 99.15 98.28 99.04  98.06 99.04  98.06 99.04  98.06 98.93 97.84
Venous Insufficiency 100.00 100.00 | 100.00 100.00 | 100.00 100.00 | 100.00 100.00 | 100.00 100.00 | 100.00 100.00
Average 99.27 98.84 99.27 98.84 99.26  98.83 99.24  98.83 99.23  98.79 99.23 98.73

ExtraTreesClassifier algorithm, kNN(k=1) with Ex-
traTreesClassifier algorithm, kNN(k=1) with fastText
word embeddings.

« Ensemble-4. The number of constituting classifiers
for Ensemble-4 is 3, which are: DL model with fast-
Text word embeddings, SVM with ExtraTreesClassifier,
kNN(k=1) with fastText word embeddings.

« Ensemble-5. The number of constituting classifiers for
Ensemble-5 is 5, which are: DL models with (fast-
Text and GloVe) word embeddings, SVM with Extra-
TreesClassifier algorithm, Random Forest with fastText
word embeddings, kKNN(k=1) with fastText word em-
beddings.

« Ensemble-6. The number of constituting classifiers for
Ensemble-6 is 3, which are: DL model with GloVe
word embeddings, Random Forest with SelectKBest
algorithm, kNN(k=1) with fastText word embeddings.

To get the final predictions of the ensembles, we have used
the majority voting technique, generally used for these kinds
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of tasks [65]]. In this technique, multiple models are used to
make predictions for each clinical record, and predictions
by each model are considered as a "vote." For instance,
for a document (a clinical record), if three classifiers have
predicted the class of a sample as 1, 0, and 1, then the final
predicted label will be 1, as it secures more than half the
votes. For ease of understanding, we have summarized our
experimental results in Table The first section of Table
[[3] presents the average performances of the eight CML al-
gorithms with each of the four bag-of-words models coupled
with feature selection algorithms and the five-word embed-
dings. The second section of Table [T3] presents the average
performances of the nine DL models used with each of the
two representations, i.e., the four bag-of-words models rep-
resentations and the five-word embeddings representations.
Lastly, the third section shows the average performances of
all the ensemble models we have tested with 3, 5, 7, and 9
constituents.

The comparison of the aforementioned performances has
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TABLE 13. Average, Best Micro F-1 Score and Standard Deviation of CML and DL Classifiers and Ensembles. Results are averaged over all the morbidity classes.

CML Classifiers Used With

Average Micro F-1 Score

Best Micro F-1 Score | Standard Deviation

All Features 94.66 98.45 5.71
Extratrees Algorithm 94.33 99.26 7.04
InfoGain Algorithm 94.48 98.59 5.68
SelectKBest Algorithm 94.58 98.47 5.60
Domain-Train Embeddings 85.95 97.25 14.49
Fasttext Embeddings 90.02 97.54 10.27

Glove Embeddings 89.53 98.05 11.15
Word2vec Embeddings 89.47 98.12 11.50

USE Embeddings 87.33 97.43 16.34

DL Approach Used with Average Micro F-1 Score | Best Micro F-1 Score | Standard Deviation
Bag-of-Words Representations 81.37 89.63 6.31

‘Word Embeddings Representations 87.58 94.3 6.11
Ensemble Approach Using Average Micro F-1 Score | Best Micro F-1 Score | Standard Deviation
3-Models 96.96 99.27 2.35
5-Models 97.97 99.27 0.96
7-Models 98.34 99.12 0.47
9-Models 98.51 98.93 0.27
11-Model (just 1) 97.79 97.79 n.a.

been done in terms of the average micro F-1 score, best micro
F-1 score, and standard deviation. Note that values in each
row of the table are averaged over all the morbidity classes
and settings within the underlying model. The best performer
among them gives an F-1 score of 99.27, with an average of
97.97 and a standard deviation of 0.96. From the results, we
can observe that the CML and DL classifiers’ performances
are lower than the presented ensembles.

VII. DISCUSSION

We have analyzed the performance variations of CML and
DL classifiers with the different feature vector representa-
tions.

Firstly, we will discuss the performances of CML classi-
fiers with word embeddings with or without stopwords. The
results indicate that the performances of CML classifiers are
slightly better when data do not include the stopwords in
general when used with different embeddings, with domain-
trained and USE embeddings being the exception. Unlike the
other word embeddings approaches that take a word as an
input to generate the feature vectors, the input to USE is a
sentence. Therefore, the embeddings produced by USE for
the sentence capture the context of the sentence and the mu-
tual relatedness of words within it. The removal of stopwords
can change the meaning of the sentence, negatively impacting
the predictions.

In the case of CML classifiers used with bag-of-words
representation, the performances of CML classifiers have
improved with the ExtraTreesClassifier feature selection al-
gorithm, i.e., SVM with the F-1 score of 99.26, which is the
best performance for all the performed experiments. Overall,
the CML classifiers have performed better with the feature
selection algorithms.

Furthermore, in the case of DL approaches, the used
feature selection algorithms have substantially improved the
model’s performance. The F-1 score of 76.25 with All Fea-
tures has increased to 89.63 when ExtraTreesClassifier is
adopted. In the case of the DL approaches used with different
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word embeddings, GloVe has achieved the best results. In
the context of training time, the CML models have proven
to be computationally lighter and faster to train. Conversely,
the DL models have a long training time, which increases
while switching from experiments with bag-of-words to word
embedding representations.

Finally, the integration of CML and DL approaches by
employing the ensemble technique to produce ensemble
models has improved the single best classification model’s
performances. While the best performances of the DL models
were achieved with GloVe word embeddings obtaining a
micro F-1 score of 94.3, the top 989 out of 1013 ensembles
got a higher score than it. Although the best ensemble score
of 99.27 is only slightly better than the best performance of
a single CML model, 99.26, the efficacy of ensemble models
can be appreciated by their high average and low standard
deviation values. The average micro F1 scores of ensembles
made of 3, 5, 7, and 9 classification models are greater than
the average of each single representation technique used for
experiments. In addition, while the CML classifiers suffer
from a high standard deviation value, the ensembles are
much more stable with a standard deviation, which decreases
from 2.35 when using 3 classifiers to 0.27 when using
9 classifiers. Despite being computationally intensive, the
ensemble method proved to be a viable technique. Indeed,
for a highly imbalanced and small dataset like the one we
used, the prediction stability of the model is quintessential.
In general, for the minority class, the classification models
tend to achieve lower precision or recall scores. Using the
ensemble approach, we can not only deal better with the
prediction of the minority class but also reduce the variance
of predictions and thus the generalization error.

VIIl. CONCLUSION

We have used CML, and DL approaches to tackle the multi-
classification of clinical records by employing bag-of-words
using TF-IDF and word embeddings feature representa-
tion methods. We have conducted experiments to observe
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FIGURE 8. Experimental results of CML and DL models with and without the employment of feature selection algorithms.
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FIGURE 9. Experimental results of CML and DL models with word embeddings.

how each method can contribute to morbidity identification,
leveraging various feature selection and pre-processing tech-
niques. The results show that the size of the dataset is critical
for DL models’ performances when the training data is unbal-
anced. For our dataset, CML classifiers have performed better
than the DL models when used with the word embeddings
representations. For the DL approaches, word embeddings
representations have performed significantly better than the
TF-IDF representation of All Features and feature selection
algorithms. Finally, we have generated ensemble models by
coupling DL models and CML classifiers used with different
representations and adopting the majority voting strategy.

The ensembles have proven to be useful for the small dataset
in mitigating the biased behavior of a single classifier model
as well as in improving the single best model’s performance
prediction stability. Although word embeddings are pow-
erful vector representation techniques, the performances of
DL models greatly depend upon the size of the data. A
small dataset prevents the BiLSTM layers of the models
from learning the fine peculiarities of input data, which are
important elements in "handling long-term dependencies."
A large dataset can be a game-changer in enhancing the
DL model’s performance. In the context of future work,
techniques like data augmentation and state-of-the-art word
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embeddings representations exploiting transformer architec-
ture such as BERT, ELMO, XLNet, etc., could be employed
to deal with the constraints of small datasets in order to
improve the performances of DL models and the overall
ensemble. Moreover, a detailed analysis of the benefits of
removing or not the stopwords from the clinical notes will
be carried out to understand when they are useful or not in
the underlying domain. Last but not least, we would like
to apply the proposed approach to solve other multi-label
classification problems present in domains different from
health and analyze and compare the results against those
obtained by the study we have done in this paper.

A. ABBREVIATIONS

Classical Machine Learning-(CML), Deep Learning-(DL),
Natural Language Processing-(NLP), Term Frequency-
Inverse Document Frequency-(TF-IDF), Long-Short Term
Memory-(LSTM), Convolutional Neural Network-(CNN),
Universal Sentence Encoder-(USE), Continuous Bag of
Words-(CBOW), Support Vector Machine-(SVM), k-Nearest
Neighbours-(kNN), Bidirectional Encoder Representations
from Transformers-(BERT).
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