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Abstract: Today, increasing numbers of people are interacting online and a lot of textual comments
are being produced due to the explosion of online communication. However, a paramount inconve-
nience within online environments is that comments that are shared within digital platforms can hide
hazards, such as fake news, insults, harassment, and, more in general, comments that may hurt some-
one’s feelings. In this scenario, the detection of this kind of toxicity has an important role to moderate
online communication. Deep learning technologies have recently delivered impressive performance
within Natural Language Processing applications encompassing Sentiment Analysis and emotion
detection across numerous datasets. Such models do not need any pre-defined hand-picked features,
but they learn sophisticated features from the input datasets by themselves. In such a domain, word
embeddings have been widely used as a way of representing words in Sentiment Analysis tasks,
proving to be very effective. Therefore, in this paper, we investigated the use of deep learning and
word embeddings to detect six different types of toxicity within online comments. In doing so, the
most suitable deep learning layers and state-of-the-art word embeddings for identifying toxicity are
evaluated. The results suggest that Long-Short Term Memory layers in combination with mimicked
word embeddings are a good choice for this task.

Keywords: deep learning; word embeddings; toxicity detection; binary classification

1. Introduction

In these years, short text information is continuously being created due to the explosion
of online communication, social networks, and e-commerce platforms. Through these
systems, people can interact with each others, express opinions, engage in discussions, and
receive feedback about any topic. However, a paramount inconvenience within online
environments is that text spread by digital platforms can hide hazards, such as fake news,
insults, harassment, and, more in general, comments that may hurt someone’s feeling.
These comments can be considered to be the digital version of personal attacks (e.g.,
bullying behaviors) that can cause social problems (e.g., racism), and they are felt to be
dangerous and critical by people who are struggling to prevent and avoid them. The risk of
such a phenomenon has increased with the event of social networks and, more in general,
within online communication platforms (https://medium.com/analytics-vidhya/twitter-
toxicity-detector-using-tensorflow-js-1140e5ab57ee, accessed on 11 February 2021). An
attempt to deal with this issue is the introduction of crowdsourcing voting schemes that
give the possibility to denounce inappropriate comments in online environments to the
users. Among many others, Facebook, for example, allows its users to report a post in
terms of violence or hate speech [1]. This scheme allows Facebook to identify fake accounts,
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offensive comments, etc. However, these methodologies are often inefficient, as they fail
to detect toxic comments in real time [2], becoming a requirement within social network
communities. A toxic post might have been published online much earlier than the time it
is reported and, during the time it is online, it might cause problems and offenses to several
users which might have undesired behaviors (e.g., leaving the underlying social platform).
Therefore, detecting toxicity within textual comments through novel technologies has great
relevance in the the prevention of adverse social effects in a timely and appropriate manner
within online environments [3].

In the last years, the use of data for extracting meaningful information to interpret
opinions and sentiments of people in relation to various topics has taken hold. Today,
textual online data are parsed to predict ratings about online courses [4], sentiments associ-
ated to companies and stocks within the financial domain [5], and, recently, healthcare [6],
toxicity in online platforms [7]. All of these approaches fall within the Sentiment Analy-
sis research topic, which classifies data into positive or negative classes, and it includes
several subtasks, such as emotion detection, aspect-based polarity detection [8], etc. To
detect such knowledge, supervised Machine Learning-based systems are designed and
provided by the research community to support and improve online services to mine and
use the information. Training data are required to employ supervised Machine Learning
based tools; however, the amount of labeled data might result insufficient, thus making
challenging the design of these tools.

This is more stressed with the spread of Neural Networks and deep learning models,
which can reproduce cognitive functions and mimic skills that are typically performed by
the human brain, but need large amount of data to be trained. With the elapse of time, the
interest in these technologies as well as their use for the identification of various kinds of
toxicity within textual documents are grown [1].

Word embeddings are one of the cornerstones in representing textual data and feed
Machine Learning tools. They are representations of words mapped to vectors of real
numbers. The first word embedding model (Word2Vec) utilizing Neural Networks was
published in 2013 [9] by researchers at Google. Since then, word embeddings are encoun-
tered in almost every Natural Language Processing (NLP) model used in practice today.
The reason for such a mass adoption is their effectiveness. By translating a word to an
embedding, it becomes possible to model the semantic importance of a word in a numeric
form and, thus, perform mathematical operations on it. In 2018, researchers at Google pro-
posed the Bidirectional Encoder Representations from Transformers (BERT) [10], a deeply
bidirectional, unsupervised language representation able to create word embeddings that
represent the semantic of words in the context they are used. On the contrary, context-free
models (e.g, Word2Vec) generate a single word embedding representation for each word in
the vocabulary independently from the word context.

Within this scenario, in this paper various deep learning models that are fed by
word embeddings are designed and evaluated to recognize toxicity levels within textual
comments. In details, four deep learning models built using the Keras (https://keras.io/,
accessed on 11 February 2021) framework are designed, and four different types of word
embeddings are analyzed.

To this aim, the current state-of-the-art toxicity dataset released during the Kag-
gle challenge on toxic comments (https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge/overview, accessed on 11 February 2021) is used.

The reader notices that this paper analyzes the performances of deep learning and
classical Machine Learning approaches (using tf-idf and word embeddings) when tackling
the task of toxicity detection. Basically, we want to assess whether the syntactic and
semantic information lying within the text can provide hints on the presence of certain
toxicity classes. This is not possible in some domains and tasks: for example, for the
problem of identifying empathetic vs. non-empathetic discussion within answers of a
therapist during motivational interviews, it has been initially observed that syntactic and

https://keras.io/
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semantic information do not provide any clue for the classification task, leading to very
low accuracies [11].

Thus, for a fair analysis, it is important that the dataset does not contain any unbal-
anceness. Machine Learning classifiers fail to cope with imbalanced training datasets, as
they are sensitive to the proportions of the different classes [12]. As a consequence, these
algorithms tend to favor the class with the largest proportion of observations, which may
lead to misleading accuracies. That is why we preprocessed the mentioned dataset to make
it balanced and then applied a 10-fold cross-validation to tackle the proposed task.

Thus, this paper provides the following contributions:

• We analyzed four deep learning models based on Dense, Convolutional Neural
Network (CNN), and Long-Short Term Memory (LSTM) layers to detect various levels
of toxicity within online textual comments.

• We evaluate the use of four word embedding representations based on Word2Vec [9,13]
and Bidirectional Encoder Representations from Transformer (BERT) [10] algorithms
for the task of toxicity detection in online textual comments.

• We provide a comparison between deep learning models against common baselines
that are used within classification tasks of textual resources.

• We release contextual word embeddings resource trained on a dataset, including toxic
comments.

• We also release mimicked word embeddings of tokens that are missing in the pre-
trained Google Word2Vec (https://code.google.com/archive/p/word2vec/,
accessed on 11 February 2021) word embeddings.

The source code that is used for this study is freely available through a GitHub
repository (https://github.com/danilo-dessi/toxicity, accessed on 11 February 2021).

The remainder of this paper is organized, as follows. Section 2 includes a literature
review and discusses current methods for toxicity detection in textual resources. Section 3
formalizes the problem. Section 4 describes the word embeddings and deep learning
models adopted in this research work. Research results and their discussion are reported in
Section 5. Finally, Section 6 concludes the paper and illustrates future directions to further
tackle the detection of toxic comments.

2. Related Work

A few past works have already addressed the challenge of detecting toxicity within
textual comments that are left by users within online environments. Generally, they rely
on Sentiment Analysis methods [14–19] to detect and extract the subjective information
and classify emotions and sentiments to determine whether a toxicity facet is present or
not. For doing so, NLP, Machine Learning, Text Mining, and Computational Linguistics
are the most prominent technologies employed [20,21]. Sentiment Analysis methods, like
many others within the Machine Learning domain, can be mainly split into two categories.
i.e., supervised and unsupervised. Supervised techniques require the use of labeled data
(training set) to train a model that can be applied to unseen data in order to predict a
sentiment or an emotion [22–24]. These methods often are limited by the lack of labeled
data, or by the fact that there are not either good or enough examples for certain cate-
gories (e.g., in case of dataset imbalance) [25]. On the other hand, unsupervised Sentiment
Analysis approaches usually rely on semantic resources, like lexicons, where words are
assigned to scores for reflecting words relevance for target categories to infer sentiments
and emotions of the input data [26–28]. Supervised and unsupervised approaches are
both largely explored in literature for Sentiment Analysis tasks, which include Sentiment
Analysis polarity detection (i.e., identifying whether a certain text is either positive or
negative) [29], figurative-language uncovering (understanding if the input text if figurative
or objective) [21,30], aspect-based polarity detection (e.g., assigning sentiment polarity
to features of a certain topic, such as the screen of an iPhone) [31,32], sentiment scores
prediction (e.g., identifying a continuous number in [−1, 1] to a certain topic or text) [4],
and so on.

https://code.google.com/archive/p/word2vec/
https://github.com/danilo-dessi/toxicity


Electronics 2021, 10, 779 4 of 18

However, these methodologies have only recently been explored for toxicity detec-
tion [33], although the need to monitor online communications to identify toxicity and
make the communications safe and respectful is an old and still open issue. Hence, the
gap between the current methodologies and their potential use within toxicity detection
remains an open challenge. Therefore, dealing with toxicity raises new challenges and
research opportunities where deep learning-based approaches for Sentiment Analysis can
have a relevant role in making advancements for the identification of toxicity levels.

Additionally, Semantic Web technologies are being used within Sentiment Analysis
tasks. It has been proved that they bring several benefits, leading to higher accuracy [34].
For example, the use of sentiment-based technologies to detect toxicity is investigated
in [35]. However, the use of word embedding representation is not taken into account. A
work worth noting is [21], where the authors analyzed the problem of figurative language
detection in social media. More in detail, they focused on the use of semantic features that
were extracted with Framester for identifying irony and sarcasm. Semantic features have
been extracted to enrich the representation of input tweets with event information using
frames and word senses in addition to lexical units. Sentilo [36,37] represents one more
example of an unsupervised method that exploits Semantic Web technologies. Given a
statement expressing an opinion, Sentilo recognizes its holder, detects its related topics and
subtopics, links them to relevant situations and events referred to by it, and evaluates the
sentiment expressed on each topic/subtopic. Moreover, Sentilo is domain-independent and
it relies on a novel lexical resource, which enables a proper propagation of the sentiment
scores from topics to subtopics. Its output is represented as an RDF graph and, where
applicable, it resolves holders’ and topics’ identity on Linked Data.

Recently, the authors in [33] discussed the problem of toxicity detection and proved
that context can both amplify or mitigate the perceived toxicity of posts. Besides, they
found no evidence that context actually improves the performance of toxicity classifiers.
In another work [38] the authors presented an interactive tool for auditing toxicity detection
models by visualizing explanations for predictions and providing alternative wordings
for detected toxic speech. In particular, they displayed the attention of toxicity detection
models on user input, providing suggestions on how to replace sensitive text with less
toxic words.

Others, Ref. [39], tackled the problem of identifying disguised offensive language,
such as adversarial attacks that avoid known toxic patterns and lexicons. To do that, they
proposed a framework to fortify existing toxic speech detectors without a large labeled
corpus of veiled toxicity. In particular, they augmented the toxic speech detector’s training
data with new discovered offensive examples.

Deep learning technologies have been leveraged by the authors in [40] to tackle the
problem of toxic comments detection. More in details, the authors introduced two state-of-
the-art neural network architectures and demonstrate how to employ a contextual language
representation model.

One more work that deals with a sentiment toxicity detection problem is [7], where
the authors adopt both pre-trained word embeddings and close-domain word embeddings
previously trained on a large dataset of users’ comments [41].

However, their approach is based on a Logistic Regression (LR) classifier and it does not
use state-of-the-art deep learning technologies. Well established methodologies (e.g., k-nearest
neighbors (kNN), Naive Bayes (NB), Support Vector Machines (SVM), etc.) are today outper-
formed for the same tasks by CNN-based models by [42].

One more work for toxicity detection is proposed by authors in [43] and it lies within
the context of multiplayer online games. There, social interactions are an essential feature
for a growing number of players worldwide. This interaction might bring undesired and
unintended behavior, especially if the game is designed to be highly competitive. They
defined toxicity as the use of profane language by one player to insult or humiliate another
player in the same team. Given the specific domain, the use of bad words is a necessary,
but not sufficient, condition for toxicity, as they can be used to curse without the intent
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to offend anyone. The authors looked at the 100 most frequently used n-grams for n = 1,
2, 3, 4 and manually determined which of them are toxic or not. With such training data,
they use a SVM to predict the odds of winning for each team to observers based on their
communication, while the match is still going.

Another work that embraces both deep learning and word embeddings for toxicity de-
tection is reported in [1], where FastText (https://fasttext.cc/docs/en/english-vectors.html,
accessed on 11 February 2021) pre-trained embeddings are used to feed four different deep
learning models that are based on CNN, Long Short Term Memory (LSTM), and Gated
Recurrent Unit (GRU) layers. However, the experiments show weak results probably due
to the class imbalance of classes. Conversely, in this work deep learning models by using
a balanced dataset are trained, when considering one toxicity class at a time, and trying
to better represent the input texts by using word embeddings tuned to the target domain.
More precisely, in one set of experiments, domain generated word embeddings are created
through mimicking techniques; this allows to face slang, misspellings, or obfuscated con-
tents not represented within pre-trained word embedding representations [24,44]. Besides
the Word2Vec embeddings, state-of-the-art word embeddings, called BERT [10,45,46], are
used to tune the vectors to the context where words are used.

3. Problem Formulation

The problem that is faced in this paper is a multi-class multi-label classification
problem. We turned it into several binary single-label classification problems. More
precisely, given a textual comment c and a toxicity facet t, the approach is aimed to build a
deep learning model

γ : (c, t)→ l

where l is a binary label that can only assume values in {0, 1} and indicates whether the
toxicity t is present in c (i.e., l takes the value 1) or not (i.e., l takes the value 0). Therefore,
with such an approach, an independent binary classifier for each toxicity label is trained.
Given an unseen sample, each binary classifier predicts whether that underlying toxicity is
present or not in the sample. The combined model then predicts all of the labels for this
sample for which the respective classifier predicts a positive result. Although this method
of dividing the task into multiple binary tasks may resemble superficially the one-vs-all
and one-vs-rest methods for multi-class classification, it is essentially different from them,
because a single binary classifier deals with a single label without any regard to other labels
whatsoever. This means that each binary classification task that we formulated does not
benefit from the information of the other labels at training time. However, this mapping is
straightforward and it does not change the semantic of the input problem [47]. By building
these models for various t, the performances of the proposed solutions are evaluated with
the goal of finding which combination of the deep learning layers and word embeddings
can better capture the text peculiarities for toxicity detection.

4. The Proposed Approach

In this section, we will describe the deep learning models and word embedding
representations for representing the text expressing the various toxicity categories.

4.1. Preprocessing

Text preprocessing techniques, such as stop words and punctuation removal, lemmati-
zation, stemming, matching words with a dictionary to correct grammar, removing words
containing alpha-numeric characters, and so on, are common practices when Machine
Learning algorithms are applied [48,49], and text representation is generated as a result of
different feature engineering processes. However, with the introduction of deep learning
approaches, these techniques have not shown promising results. The reason is that neural
networks learn from any element found within the text, because each token contributes to
the sentence semantics. Therefore, although certain terms might be included in existing
stop word lists, they are maintained because they can enrich the semantics of text con-

https://fasttext.cc/docs/en/english-vectors.html
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tent and improve the performance of the deep learning model [1]. Hence, as suggested
by authors in [1], all of the above mentioned preprocessing steps are ignored; only the
conversion of texts in lower case is performed. Afterward, the whole set of input text is
ready to feed a deep learning model. More precisely, imagine to have a toxicity target
class t and a set of pairs P = {(c0, l0), . . . , (cn, ln)}, where ci is a textual comment and l0
is a binary label that can only take either the value 0 if the comment ci does not include
the toxicity t or 1 if the comment ci expresses some level of toxicity t. From the set P, the
set P′ = {(c′0, l0), . . . , (c′n, ln)} is derived, where each comment c′i is an integer-encoded
comment of the original ci. In details, let W be the list of all the words that belong to all
textual comments, and WS the set of all the words in W without duplicates (i.e., WS has
only one occurrence for each input word, whereas W can contain multiple occurrences
of the same element). Subsequently, two functions θ and φ, which map the elements in
W and WS to unique integer values, respectively, are built. For example, consider the
sentence you both shut up or you both die and imagine to have the toy functions θtoy and
φtoy. The function θtoy maps “you” to “7”, “both” to “43”, “shut” to “22”, “up” to “76”,
“or” to “10”, “you” to “3”, “both” to “41”, and “die” to “50”. The function φtoy maps
“you” to “7”, “both” to “43”, “shut” to “22”, “up” to “76”, “or” to “10”, and “die” to “50”.
Subsequently, the integer-encoded sentence is [7, 43, 22, 76, 10, 3, 41, 50] by applying θtoy,
and [7, 43, 22, 76, 7, 43, 10, 50] by using φtoy. The reader notices that, by using θtoy, the words
“you” and “both” are mapped to different integers. Within our approach, the function θ is
used for BERT word embeddings, whereas the function φ is used to encode the input text
when Word2Vec word embeddings are employed.

4.2. Deep Learning Models

Figure 1 shows the designed deep learning model schemes. In particular, we illustrate
four deep learning models based on Dense, CNN, and LSTM layers that are available
within the Keras framework (https://keras.io/, accessed on 11 February 2021). All the
models present the same number of layers. It is worth noting that the input and output
layers among the models are the same to better compare their performances when only
considering the type of neural network that they adopt. More precisely, the input layer
is an Embedding layer, which has the goal of mapping the words of the input text to the
underlying word embeddings. The last layer is a Dense layer that maps the intermediate
results of the models in a single label that can only take the values 0 and 1. For doing so,
it uses the sigmoid activation function to compute a probability that can be easily used to
obtain the correct label value. In the next paragraphs, we will give more details about the
deep learning layers.

The literature already showed [50] that deep learning methods that are trained with
word embeddings outperform those trained with tf-idf features. Therefore, we did not
include the latter in our analysis, as we believe that they would not add additional value to
the current evaluation.

4.2.1. Dense Model

The first model is depicted in Figure 1a. It is composed of two inner Dense layers with
128 and 64 neurons. They are densely-connected layers that are able to reduce the input
size of hundred and thousands of nodes to a few nodes whose weights can be used to
predict the final class of the input.

4.2.2. CNN Model

The CNN model that is depicted in Figure 1b is based on inner CNN layers. These
layers perform filtering operations to detect meaningful features of textual input for the
target toxicity facet. Filters can be envisioned as kernels that slide on the vector representa-
tion and perform the same operations on each element until all of the vectors have been
covered. Two kernels of size 10 for the first layer and size 5 for the second layer are used.

https://keras.io/
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For these layers, the same number of neurons previously introduced for the Dense layers is
used to better compare the model performances.

Output shape: (n tokens, emb_size)

Embeddings

Dense

Dense

Dense

Encoded Text

Label

Output shape: (n tokens, 128)

Output shape: (n tokens, 64)

Output shape: (n tokens, emb_size)

Embeddings

CNN

CNN

Dense

Encoded Text

Label

Output shape: (n tokens, 128)

Output shape: (n tokens, 64)

(a) (b)

Output shape: (n tokens, emb_size)

Embeddings

LSTM

LSTM

Dense

Encoded Text

Label

Output shape: (n tokens, 128)

Output shape: (n tokens, 64)

Output shape: (n tokens, emb_size)

Embeddings

BiLSTM

BiLSTM

Dense

Encoded Text

Label

Output shape: (n tokens, 128)

Output shape: (n tokens, 64)

(c) (d)

Figure 1. The deep learning models. (a) Dense (b) Convolutional Neural Network (CNN) (c) Long-
Short Term Memory (LSTM) (d) Bidirectional LSTM. The output shape of the employed layers is
indicated within the parenthesis.

4.2.3. LSTM Model

The model that is depicted in Figure 1c exploits the LSTM layers to perform a binary
classification of the input text. LSTMs are an extended version of Recurrent Neural Net-
works (RNN) and they are designed to work on sequences. They use memory blocks to
hold the state of the computation, which makes it possible to learn temporal dependencies
of data, binding the chunks of data that are currently being processed with the chunks
of data already processed. This allows for inferring semantic patterns that describe the
history of the input data, solving the problem of common RNN whose results mostly
depend on the last seen data fed into the model, smoothing the relevance of previously
processed data.

4.2.4. Bidirectional LSTM

The last model, as shown in Figure 1d, is an evolution of the LSTM model. It uses
bidirectional LSTM layers to find patterns that can be discovered by exploring the history
of the input data in both forward and backward directions. The idea of this kind of network
consists of presenting the training data forwards and backward to the two bidirectional
LSTM hidden layers whose results are then combined by a common output layer.
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4.3. Word Embeddings Representations

In this section, the word embedding representations that are used to model the
syntactic and semantic properties of the words in vectors of real numbers are introduced.
Within this work, the employed word embedding representations are Word2Vec [9,13] and
BERT [10]. We chose the most common sizes for the embeddings, i.e., 300 for Word2Vec
embeddings, and 1024 for BERT word embeddings.

4.3.1. Word2Vec

The Word2Vec [9,13] word embedding generator aims to detect the meaning and
semantic relations among the words by investigating the co-occurrence of words in doc-
uments within a given corpus. The idea behind this algorithm is to model the context of
words by exploiting Machine Learning and statistics and come up with a vector representa-
tion for each word within the corpus. The resulting word vector representations allow the
recognition of relatedness between words. For example, the verbs capture and catch, which
are syntactically different but share common meaning and present analogous co-occurring
words, are associated to similar vectors. A Word2Vec model can be trained by using either
the Continuous Bag-Of-Words (CBOW) or the Skip-gram algorithm. Within our work, the
Skip-gram algorithm is adopted, because, from a preliminary evaluation, it obtained higher
performances. In details, the following Word2Vec word embeddings are used:

• Pre-trained. Pre-trained word embeddings that are released by Google and available
online (https://code.google.com/archive/p/word2vec/, accessed on 11 February
2021). They are trained on the Google news dataset and they contain more than one
billion words. However, their use can be limited by words that could be misspelled
(e.g., words with orthographic errors) or domain-dependent words within the input
data. These words are commonly referred to as Out Of Vocabulary (OOV) words.

• Domain-trained. Domain-trained word embeddings are trained on the original un-
balanced dataset (we merged the training and the test set) provided by the Kaggle
challenge. The reader notices that we computed the domain-trained embeddings on
the new training sets only (at each iteration of the 10-fold cross-validation procedure)
of our evaluation strategy. Training the embeddings on the domain data solves the
problem of OOV words, because, for each word, it is possible to associate a vector.
However, words that are not frequent within our data might have a vector that does
not fully and correctly represent words’ semantics. The Skip-gram Word2Vec algo-
rithm available within the gensim (https://radimrehurek.com/gensim/, accessed on
11 February 2021) library is used. The model is trained using 20 epochs.

• Mimicked. Mimicked word embeddings are embeddings of OOV words that are not
present within the original model used to represent the text data, but they are inferred
by exploiting syntactic similarities of words that are in the originally considered vo-
cabulary. More in details, we used the algorithm that was proposed by [44], which is
based on an RNN and works at character level. Words within an original vector model
representation are firstly encoded by sequences of characters, and characters are asso-
ciated with new vector representations. Subsequently, by using a BiLSTM network,
an OOV word w is associated to a new word embedding e. To create word embed-
dings for the OOV words, we used the default input dataset, the hyperparameters
mentioned in [44], and the pre-trained Word2Vec Google embeddings.

4.3.2. BERT

The BERT word embeddings model was introduced in late 2018 by the authors in [10].
It is a novel model of pre-trained language representations that allows for the tuning
of word vector representations to the meaning that the word has in a given context,
overcoming ambiguity issues of words. One of the famous examples is usually reported
with the word bank. Consider the two sentences “The man was accused of robbing a bank”
and “The man went fishing by the bank of the river”. The introduced word embedding
models describe the word bank with the same word embedding, i.e., they express all the

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/
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possible meanings with the same vector and, therefore, cannot disambiguate the word
senses based on the surrounding context. On the other hand, BERT produces two different
word embeddings, coming up with more accurate representations for the two different
meanings. For doing so, BERT computes context-tuned word embeddings, resulting in
more accurate representations that might lead to better model performances. In this work,
the bert_24_1024_16 BERT model trained on book_corpus_wiki_en_cased is employed and fine-
tuned by using the bert_embedding (https://pypi.org/project/bert-embedding/, accessed
on 11 February 2021) library.

4.3.3. Word Embeddings Preparation

To load word embeddings into a deep learning model, they have to be organized into
a matrix M. For Word2Vec word embeddings, the set WS of words in the input data is used
to build M as a matrix of size (|WS|, 300), where each row with index φ(w) | w ∈ WS
(i.e., rowφ(w)) contains the word embedding of the word w. If a word w is not present in
the Word2Vec selected resource (e.g., when only pre-trained word embeddings are used),
then rowφ(w) is a row with all of its entries set to 0. Similarly, when the BERT embeddings
are employed, the matrix M size is (|W|, 1024), where each row with index θ(w) | w ∈W
(i.e., rowθ(w)) contains the word embedding of the word w. The generated matrix M is
loaded into the Embedding layer of the employed deep learning model to map the encoded
textual comments to the correct word embeddings.

5. Experimental Study

In this section, we describe the dataset used to perform our experiments, the obtained
results, and the related discussion. All of the experiments are run by using a 10-fold cross-
validation setup. Each model is trained with batches of size 128. The model is configured
to train, at most, with 20 epochs. However, an early stopping method with patience of
5 epochs and a delta of 0.05 that monitors the accuracy of the model are embedded within
the training stage. The loss function used to train the models is the binary crossentropy and
the used optimizer is rmsprop with the default learning rate 0.001 provided by the used
library. The domain-trained word embeddings have been computed on the training sets
only at each iteration of the 10-fold cross-validation procedure. All of the other parameters
have been empirically set on the basis of the models performance and previous experiences
in past works [4,24]. The experiments have been carried out on a Titan X GPU that was
mounted on a server with 16 GB of RAM memory.

5.1. The Dataset

To perform our analysis, we employed the dataset that was released by a Kaggle
competition (https://www.kaggle.com/, accessed on 11 February 2021). The dataset is
collected from Wikipedia comments, which have been manually labeled into 6 different
toxicity classes. It consists of training and test files. However, the original split is not kept
in order to apply the proposed approach and balance the data. The dataset is composed
of more than 200 k comments and it presents annotations for six different toxicity classes
and one more class when no toxicity is present. Table 1 reports the number of comments
and the related percentage concerning the original dataset (second and third columns)
belonging to each of the seven resulting classes. The first row includes the comments that
do not present toxicity, then, from the second row on, the number of comments for each
toxicity class (toxic, severetoxic, obscene, threat, insult, identityhate) are reported. Besides,
from Table 1 it is worth noting that the dataset is strongly unbalanced, as nearly 90% of
the overall comments do not present toxicity. Therefore, the training of a model is biased
because the model does not have a sufficient number of examples of the minority class
to correctly identify a pattern, as mentioned earlier in the paper. A random model that
always predicts the majority class can obtain better performances although it is not be able
to recognize elements that should belong to the minority class. Hence, having a balanced

https://pypi.org/project/bert-embedding/
https://www.kaggle.com/
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dataset is a common procedure in several classification tasks [51] and allows for better
understanding the performances of a model [12].

It follows that, for each toxicity class, we built a dataset where the number of positive
examples (i.e., comments that present the target toxicity class) and the number of negative
examples (i.e., comments that do not present that target toxicity class) are the same. Table 1
reports the size of the created datasets for each class under the Balanced dataset size column.
The reader notices that, for a certain toxicity class, the negative examples are chosen among
all the other classes, including the No toxic comments.

Table 1. Number of textual comments for each class.

Toxicity Class Number of Comments Percentage Balanced Dataset Size

No toxic 201,081 89.95% -
toxic 21,384 9.57% 42,768

severe toxic 1962 0.88% 3924
obscene 12,140 5.43% 24,280
threat 689 0.31% 1378
insult 11,304 5.06% 22,608

identity hate 2117 0.95% 4234

5.2. Baselines

For evaluation purposes, the deep learning models have been compared to a certain
number of baselines. These are classical Machine Learning classifiers that are usually
employed with the tf-idf to represent textual resources [48]. More precisely, the deep
learning models are compared against the following classifiers:

• Decision Tree (DT) . The Decision Tree algorithm builds a model by learning decision
rules that when applied to the input features can correctly predict the target class.
The model has a root node that represents the whole set of input data. This node
is subsequently split into its children by applying a given rule. The process is then
recursively applied to its children as long as there are nodes that can be split.

• Random Forest (RF). This method adopts more DTs applied on different samples of
the input data and uses a majority voting strategy to predict the output classes. The
strength of this algorithm is that each DT is individually trained; therefore, overfitting
and errors due to biases are limited. We adopted a classifier that made use of 100 DTs
estimators.

• Multi-Layer Perceptron (MLP). This is a neural network that is composed of a single
layer of nodes. We used a layer with 100 nodes in our experiment.

For these classical Machine Learning methods employed as baselines, the adoption of
just word embeddings is not promising and this has already been shown in literature [52].
In particular, when employing word embeddings for classical Machine Learning methods,
they should be processed by operations such as the average or the sum before being fed to
a given classifier. This causes a loss of syntactic and semantic information expressed by the
embeddings of each word.

To develop the algorithms above, we employed the scikit-learn (https://scikit-learn.
org/stable/index.html, accessed on 11 February 2021) library.

Additionally, the area under the Receiver Operating Characteristic Area Under the
Curve (ROC-AUC) is also reported in Table 2 in order to understand the performance of
our model with respect to the best models proposed for the challenge’s task.

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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Table 2. Receiver Operating Characteristic Area Under the Curve (ROC-AUC) values of our deep learning models on each
binary classification and average for each model.

Learning
Model

Feature Toxic Severe
Toxic Obscene Threat

Identity
Hate

Insult Average

Deep Model
Dense

pre-trained 0.921 0.968 0.936 0.977 0.944 0.933 0.947
domain-
trained 0.915 0.959 0.928 0.968 0.934 0.924 0.938

mimicked 0.922 0.969 0.938 0.981 0.941 0.931 0.947
bert 0.898 0.964 0.904 0.945 0.924 0.906 0.924

Deep Model
CNN

pre-trained 0.905 0.964 0.924 0.969 0.934 0.915 0.935
domain-
trained 0.895 0.950 0.857 0.957 0.909 0.903 0.912

mimicked 0.906 0.961 0.923 0.974 0.935 0.914 0.936
bert 0.881 0.952 0.894 0.909 0.892 0.895 0.904

Deep Model
LSTM

pre-trained 0.970 0.982 0.980 0.983 0.968 0.976 0.977
domain-
trained 0.963 0.980 0.977 0.983 0.968 0.970 0.974

mimicked 0.971 0.983 0.977 0.985 0.970 0.977 0.977
bert 0.930 0.974 0.940 0.956 0.950 0.940 0.948

Deep Model
Bidirectional

LSTM

pre-trained 0.969 0.981 0.973 0.984 0.967 0.975 0.975
domain-
trained 0.963 0.980 0.977 0.984 0.964 0.970 0.973

mimicked 0.969 0.963 0.980 0.988 0.970 0.976 0.974
bert 0.930 0.970 0.939 0.951 0.947 0.941 0.946

5.3. Results and Discussion

In this section, we discuss the results of the experiments that we have carried. They
are reported in Tables 2 and 3 in terms of ROC-AUC, precision, recall, and f-measure scores
(for computing the ROC-AUC, the true positive rates and false positive rates are computed
according to Equations (1) and (2); precision, recall, and f-measure are computed according
to Equations (3)–(5)). In the equations, TP (true positives) is the number of comments with
the target toxicity class correctly guessed by the model, FP (false positives) is the number
of comments erroneously associated to a target toxicity class, TN (true negatives) is the
number of comments that the classifier correctly does not classify for a target class, and
FN (false negatives) is the number of comments that are erroneously classified with a class
different than the target class.

True positive rate =
TN

TN + FP
(1)

False positive rate =
FP

FP + TN
(2)

Precision (p) =
TP

TP + FP
(3)

Recall (r) =
TP

TP + FN
(4)

F−measure ( f ) = 2× P · R
P + R

(5)

The results depicted in Table 3 show how the deep learning models perform against
the baselines (classical Machine Learning approaches). For each deep learning model,
the performance of the model in combination with the embedding representations is
illustrated as well.
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Table 3. Precision (p), recall (r), and f-measure (f) related to the binary classification for each toxicity class using the
balanced dataset.

Learning Model Feature Toxic Severe
Toxic Obscene

p r f p r f p r f

Decision Trees
Random Forests

MLP

tf-idf 0.859 0.855 0.857 0.847 0.947 0.894 0.926 0.929 0.928
tf-idf 0.860 0.856 0.858 0.888 0.940 0.913 0.945 0.834 0.913
tf-idf 0.849 0.857 0.853 0.913 0.918 0.915 0.884 0.895 0.889

Deep Model
Dense

pre-trained 0.863 0.856 0.858 0.923 0.910 0.916 0.886 0.867 0.876
domain-
trained 0.855 0.848 0.851 0.893 0.910 0.899 0.874 0.863 0.867

mimicked 0.868 0.844 0.855 0.926 0.914 0.919 0.880 0.877 0.878
bert 0.828 0.817 0.822 0.912 0.917 0.913 0.844 0.821 0.832

Deep Model
CNN

pre-trained 0.848 0.849 0.848 0.910 0.911 0.909 0.863 0.861 0.861
domain-
trained 0.846 0.841 0.842 0.903 0.875 0.888 0.858 0.849 0.853

mimicked 0.836 0.865 0.850 0.886 0.919 0.901 0.856 0.870 0.862
bert 0.801 0.812 0.805 0.899 0.911 0.904 0.819 0.832 0.825

Deep Model
LSTM

pre-trained 0.914 0.915 0.914 0.944 0.962 0.953 0.927 0.949 0.938
domain-
trained 0.903 0.916 0.909 0.947 0.948 0.947 0.929 0.944 0.936

mimicked 0.895 0.938 0.916 0.941 0.966 0.953 0.928 0.938 0.932
bert 0.866 0.851 0.858 0.927 0.932 0.929 0.889 0.861 0.875

Deep Model
Bidirectional

LSTM

pre-trained 0.906 0.923 0.914 0.936 0.959 0.947 0.963 0.854 0.905
domain-
trained 0.905 0.915 0.910 0.948 0.962 0.955 0.941 0.933 0.937

mimicked 0.910 0.921 0.915 0.939 0.963 0.951 0.929 0.945 0.937
bert 0.875 0.841 0.856 0.933 0.941 0.937 0.892 0.852 0.871

Learning Model Feature Threat Identity
Hate Insult

p r f p r f p r f

Decision Trees
Random Forests

MLP

tf-idf 0.917 0.891 0.903 0.819 0.927 0.869 0.887 0.891 0.889
tf-idf 0.954 0.897 0.924 0.847 0.911 0.877 0.929 0.851 0.888
tf-idf 0.914 0.916 0.913 0.889 0.897 0.893 0.871 0.880 0.876

Deep Model
Dense

pre-trained 0.934 0.930 0.931 0.897 0.865 0.879 0.872 0.865 0.869
domain-
trained 0.913 0.918 0.914 0.858 0.877 0.866 0.876 0.846 0.860

mimicked 0.933 0.932 0.931 0.881 0.882 0.880 0.873 0.857 0.863
bert 0.867 0.891 0.877 0.874 0.865 0.855 0.841 0.827 0.834

Deep Model
CNN

pre-trained 0.932 0.870 0.891 0.872 0.863 0.867 0.842 0.862 0.851
domain-
trained 0.898 0.899 0.898 0.823 0.868 0.842 0.874 0.816 0.843

mimicked 0.927 0.918 0.922 0.860 0.879 0.869 0.847 0.849 0.847
bert 0.842 0.872 0.849 0.824 0.842 0.832 0.831 0.821 0.826

Deep Model
LSTM

pre-trained 0.932 0.967 0.948 0.907 0.909 0.906 0.918 0.939 0.928
domain-
trained 0.949 0.951 0.950 0.913 0.925 0.918 0.919 0.930 0.924

mimicked 0.953 0.962 0.957 0.887 0.946 0.914 0.916 0.948 0.931
bert 0.916 0.899 0.907 0.880 0.895 0.886 0.874 0.870 0.872

Deep Model
Bidirectional

LSTM

pre-trained 0.946 0.961 0.952 0.905 0.921 0.912 0.918 0.931 0.924
domain-
trained 0.949 0.949 0.949 0.904 0.935 0.919 0.918 0.938 0.927

mimicked 0.941 0.944 0.940 0.902 0.934 0.916 0.920 0.935 0.927
bert 0.913 0.900 0.905 0.900 0.857 0.874 0.889 0.866 0.877

5.4. Comparison with the Kaggle Challenge

The results that are indicated in Table 2 report the ROC-AUC values of our deep
learning approaches for each toxicity class and the average over all the classes. The reader
notices that it is not the purpose of this paper to compete with the other participants of
the Kaggle challenge where the data have been extracted and the evaluation has been
reported while using the ROC-AUC. The best three approaches of the challenge were
Toxic Crusaders, neongen & Computer says no, and Adversarial Autoencoder, which reported
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a ROC-AUC value of 0.989, 0.988, and 0.988, respectively. The challenge task was to test
any proposed approach on a highly unbalanced dataset. In this paper, we wanted to study
how deep learning methods and classical Machine Learning approaches (using tf-idf and
word embeddings) perform on the toxicity problem without any bias (unbalanceness of
the data). Moreover, it has been proved that optimizing a method for the ROC-AUC does
not guarantee the optimization on the precision–recall curve [53]. This is why we included
Table 3 with precision, recall, and f-measure metrics computed on the preprocessed bal-
anced dataset. There are several heuristics and tuning that can be done in the presence
of unbalanced datasets to help achieve high values of ROC-AUC. Those could not be
performed by us, since we used a balanced version of the original dataset.

5.4.1. Baseline Comparison

The results indicate that Dense- and CNN-based models are not much better than
the baseline methods. Actually, in some cases, they are outperformed. For example,
considering the toxicity classes obscene and insult, it is possible to observe that the f-measure
that is computed on the baseline predictions is higher than the one obtained by Dense-
and CNN-based models. On the other hand, LSTM-based models are able to outperform
the baseline methods with a minimum improvement in terms of f-measure of 0.01, i.e.,
in percentage 1% (see obscene class), and a maximum of 0.058, i.e., in percentage 5.8%
(see toxic class). These results are similar, and sometimes still more noticeable when the
Bidirectional LSTM layers are employed. Moreover, when considering that, by using the
balanced dataset, every classifier is able to obtain a f-measure that is always higher than
0.8, the improvements can be considered to be remarkable. The only drawback is related to
the computational time needed to train the deep learning model. Nevertheless, the training
time is not reported, since: (i) it is out of the scope of this study; (ii) with modern GPUs, it
is feasible to train complex deep learning models; (iii) the training step must be executed
only once; and, (iv) the computational time that is needed for the prediction step does not
depend on the underlying model used for the training step.

5.4.2. Dense-Based Model

For the task of toxicity detection, the Dense-based model never obtains the best per-
formances. In most of the cases, the best results with this model are obtained with the
mimicked word embeddings where for four out of six classes the achieved f-measure score
is the highest. The pre-trained word embeddings obtain high performances too, especially
for classes, such as Toxic, Threat (in this case, the f-measure is very close to the case when
using mimicked), and Insult. The use of domain-trained word embeddings never meets high
scores, except when the precision is considered for the Insult class. Similarly, BERT word
embeddings performances are the worst.

5.4.3. CNN-Based Model

Using the CNN-based model the results do not improve further with respect to the
Dense-based model. In some cases, the performances of the model are even lower. With
this model, the best results are obtained by employing the mimicked word embeddings for
the toxicity classes Toxic, Obscene, Threat, and Identity Hate. For the other toxicity classes,
the best results are obtained using the pre-trained word embeddings. Domain-trained and
BERT embeddings are not able to properly represent the domain knowledge for the CNN
model, thus the results are poor.

5.4.4. LSTM-Based Model

The LSTM model outperforms both Dense and CNN-based models, proving its suit-
ability to detect patterns for toxic detection. As previously mentioned, mimicked word
embeddings are employed for the deep learning model to learn and uncover toxicity from
the text comments. Pre-trained and Domain-trained word embeddings obtain good perfor-
mances, and their results are not far from the model using the mimicked word embeddings.
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On the other hand, once again BERT is not a good representation for the LSTM model.
Except for BERT, the three other word embeddings that are adopted with the LSTM model
outperform the baseline methods for almost each toxicity level.

5.4.5. BiLSTM-Based Model

Although the higher complexity of the employed layers, the results of the BiLSTM
(Bidirectional LSTM) model are similar to those obtained by the LSTM model. In some
cases, the BiLSTM is able to outperform the LSTM, in others it is not. Moreover, it differs
from the other models, because its best performances for many classes are obtained using
the domain-trained word embeddings. The pre-trained and mimicked word embeddings
continued to show good ability to represent domain knowledge, and BERT embeddings
are confirmed to be the last choice for the task of toxicity detection. Similarly to the
LSTM model, except using BERT, the model outperforms the baselines in almost each
toxicity class.

5.4.6. Overall Evaluation of the Deep Learning Models

The use of deep learning for the task of toxicity detection has shown good perfor-
mances in all the toxicity classes. Additionally, it turns out that, despite the small size
of datasets employed for certain classes, they are able to detect patterns that allow for
correctly performing the classification. More in details, the results suggest that the Dense
and CNN models perform well, since their f-measure is always higher than 0.8, but, for the
toxicity detection task, they are outperformed by the LSTM and BiLSTM models, which
obtain a f-measure higher than 0.9 in most of the cases. The results are comparable among
the LSTM and BiLSTM models. However, because BiLSTM-based models need a higher
computational time to be trained than LSTM models, the latter are slightly preferred. It
is worth mentioning that the current models are trained without the context that was
surrounding the comments in the Wikipedia pages (where the dataset has been originally
collected) and, therefore, they might lack the necessary information to predict the correct
class. One more obstacle might be also due to the presence of figurative language within
the comments, which might change the meaning of the sentences, thus misleading the
models. For example, a frequent sentence like I am going to kill you pronounced after a
mistake or an undesired change in the Wikipedia pages does not necessarily convey a
threat or hate emotion, but it may be simply a joke.

5.4.7. Overall Evaluation of Word Embeddings

From the results, it is noticeable that the Word2Vec algorithm is a good choice for
representing textual resources to be parsed with deep learning models. The results suggest
that mimicked word embeddings are the best choice, because they enclose the knowledge
of pre-trained word embeddings that have been built on a large dataset and do not suffer
from the OOV words problem [24]. Domain-trained word embeddings obtain good results,
but, for most of the cases, they are outperformed. This may depend on the fact that the
resources that are employed to train these embeddings are not very large and, besides,
there is not a sufficient number of examples of toxicity due to the unbalanced number of
toxic comments in the input dataset (i.e., more than 200 k comments do not present toxicity;
the reader can see Table 1).

Surprisingly, BERT embeddings perform badly for the task of toxicity detection,
although they are currently the state-of-the-art word embedding representations. A possible
motivation behind this finding is that assigning a different embedding to the same word
is somehow misleading to the training of the deep learning models. More precisely, the
tuning step performed to generate the BERT embeddings on our data is not able to capture
the context of the words due to the length of some input textual comments and to the typos
and incorrect grammar often present within them, thus transferring possible erroneous
information to our deep learning models. One more reason might be due to the lack of
the surrounding context of the comments; it might have limited the fine-tuning of the
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model, therefore leading the semantics of words to be captured badly. This fact is worth
investigating, and a close analysis to this problem is required.

6. Conclusions and Future Work

In this paper, we presented an assessment of various deep learning models fed by
various word embedding representations to detect toxicity within textual comments. From
the obtained results, we can definitely state that toxicity can be identified by machine and
deep learning approaches fed with syntactic and semantic information extracted from the
text. We show how LSTM-based model is the first choice among the experimented models
to detect toxicity. We also show how various word embeddings may represent the domain
knowledge in a variety of ways, and an unique model for all cases might be insufficient.
In particular, the results are encouraging when using mimicking techniques to deal with
OOV words where there are not many examples to build significant domain-dependent
word embeddings. As future works, we plan to perform a deeper assessment of deep
learning models by using and combining different layers, to better detect patterns and
on real scenarios where classes may be unbalanced as well. Moreover, we would like to
investigate other contextualized word embedding representations, such as ELMO [54] for
the toxicity detection task. An analysis of the proposed approaches on which configuration,
parameter settings and heuristic may be added to tackle the same problem but in presence
of highly unbalanced datasets is definitely a research direction we would like to investigate
as well. Finally, we would like to investigate the impact of using different embeddings
for the same word, since it might be the cause of failure of BERT embeddings in our
experiments. We also think that an ensemble strategy of the proposed approaches should
result in better overall performances and are also investigating this direction.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area under the curve
BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional Long-Short Term Memory
CBOW Continuous Bag-Of-Words
CNN Convolutional Neural Network
DT Decision Tree
ELMO Embeddings from Language Models
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
kNN k-Nearest Neighbors
LR Logistic Regression
LSTM Long-Short Term Memory
MLP Multi-Layer Perceptron
NB Naive Bayes
NLP Natural Language Processing
OOV Out Of Vocabulary
RF Random Forest
ROC Receiver Operating Characteristic
RNN Recurrent Neural Network
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TF-IDF Term Frequency–Inverse Document Frequency
SVM Support Vector Machine
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