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SUMMARY

When the field of natural language processing (NLP) entered the era of deep neural

networks, the task of representing basic units of language, an inherently sparse and sym-

bolic medium, using low-dimensional dense real-valued vectors, or embeddings, became

crucial. The dominant technique to perform this task has for years been to segment input

text sequences into space-delimited words, for which embeddings are trained over a large

corpus by means of leveraging distributional information: a word is reducible to the set

of contexts it appears in. This approach is powerful but imperfect; words not seen during

the embedding learning phase, known as out-of-vocabulary words (OOVs), emerge in any

plausible application where embeddings are used. One approach applied in order to com-

bat this and other shortcomings is the incorporation of compositional information obtained

from the surface form of words, enabling the representation of morphological regularities

and increasing robustness to typographical errors. Another approach leverages word-sense

information and relations curated in large semantic graph resources, offering a supervised

signal for embedding space structure and improving representations for domain-specific

rare words.

In this dissertation, I offer several analyses and remedies for the OOV problem based

on the utilization of character-level compositional information in multiple languages and

the structure of semantic knowledge in English. In addition, I provide two novel datasets

for the continued exploration of vocabulary expansion in English: one with a taxonomic

emphasis on novel word formation, and the other generated by a real-world data-driven

use case in the entity graph domain. Finally, recognizing the recent shift in NLP towards

contextualized representations of subword tokens, I describe the form in which the OOV

problem still appears in these methods, and apply an integrative compositional model to

address it.

xvi



CHAPTER 1

INTRODUCTION

The mission of natural language processing (NLP) as a computational research field is

to enable machines to function in human-oriented environments where language is the

medium of communication. We want them to understand our utterances, to connect these

utterances with the objects and concepts of the surrounding world, to produce language

which is meaningful to us and helps us navigate a task or satisfy an emotional need. Over

the years of its existence, the mainstream of NLP has known shifts motivated by develop-

ments in computation, in linguistics, in foundational artificial intelligence, and in learning

theory. Since the mid-2010’s, the clear dominant framework for tackling NLP tasks, and

an undeniably powerful one, has been that of deep neural networks (DNNs). This con-

nectionist approach was originally motivated by the workings of the human brain, but has

since developed its own characteristics, and formed a well-defined landscape for explo-

ration which includes constraints stemming from the fundamental properties of its design.

This dissertation focuses on one of these built-in constraints, which I believe to be cen-

tral to DNNs in the context of natural language, and specifically of text processing, namely

that of representations. DNNs “live” in metric space: their operation manipulates real

numbers organized into vectors and matrices, propagating function applications and calcu-

lated values within instantiations of pre-defined architectures. This mode of existence is

very well-suited to problem domains that inhabit their own metric space, like the physical

realms of vision and sound. In stark contrast to these, the textual form of linguistic commu-

nication is built atop a discrete alphabet and hinges on notions such as symbolic semantics,

inconsistent compositionality, and the arbitrariness of the sign [Saussure 1916]. The ex-

ample in (1) exhibits all of these: the symbol dog refers to two distinct objects bearing no

semantic resemblance; large and white each describe the (canine) dog’s physical proper-

1



ties, while dining categorizes the table based on its function, and hot does not modify (the

second) dog at all, but rather joins it to denote a distinctive atomic concept.

(1) The large white dog ate the hot dog left on the dining table.

Given these properties of language, it is far from straightforward to decide the means

by which to transform raw text into an input for a neural NLP system tasked with a goal

which requires a grasp on the overall communicative intent of the text, such that this initial

representation does not lose basic semantics essential to the eventual outcome. This trans-

formation process is known as embedding, after which its artifacts are themselves known as

embeddings, often used synonymously in context with “vectors” or “distributed represen-

tations”. Indeed, the choice for default representations has known several shifts within the

short DNN era, motivated both by advances in computational power but also by a collective

coming to terms with the limitations of the preceding methods.

The great challenge of representation is compounded by the unboundedness of it all —

human concept space is ever-expanding, and each new concept may be assigned an arbitrary

sign; within an existing concept space, associations capable of inspiring new utterances oc-

cupy a combinatorial magnitude which is essentially infinite; and even the form-meaning

relationship itself exhibits malleability by humans’ interaction with text input devices and

various cognitive biases.1 Each of these sources of expansion weighs any proposed repre-

sentational method with the additional burden of generalizing to novel inputs while main-

taining consistency in the manner by which they are represented in the system. In the NLP

literature, the surface manifestation of the expanding spaces of concept and form, and of

the more locally-constrained disparity between text available at different points in time of

a model’s training and deployment, is known as the out-of-vocabulary problem, and the

unseen surface forms themselves are termed OOVs.

In this dissertation, I consider three central approaches to representing the fundamental

1As a case in point, in the course of writing this section I have manually added dozens of new terms to the
Overleaf editor’s spell-check dictionary, two in the referring sentence alone.
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units of natural language text in its input stage and the consequences of each approach’s

selection on the goals of the systems they are applied in. The first, most popular, and most

successful one when used in isolation, is the distributional approach where the represen-

tation function is trained to embed textual units which appear in similar contexts close

to each other in vector space. The second is the compositional approach which seeks to

assemble embeddings for workable textual units by breaking them down into more funda-

mental elements and applying functions over their own representations, less committed to

semantic guarantees. The last is the relational approach which makes use of large semantic

structures curated manually or in a semi-supervised fashion, leveraging known connections

between text and concepts and among concepts in order to create embeddings manifesting

humans’ notions of “meaning”. The OOV problem features heavily in the motivation

and analysis of the work presented, as it presents challenges to each of the approaches de-

scribed, yet the exact definition of vocabularies and OOV-ness themselves are challenged

by the advent of NLP systems that have become mainstream in parallel to the course of

completing this work, namely contextualized subword embeddings.

Research Statement

Compositional and relational approaches to representations of language, when integrated

into a distributional framework, improve performance of neural NLP systems across lan-

guages and tasks by making them more robust to out-of-vocabulary words encountered

downstream.
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My contributions in this dissertation span the space of these disparate approaches to

language representation, tackling the ultimate objective of examining their combination

along three material and methodological dimensions:

Approach compositional (§ 2.1, 2.2, 4, 5)⇐⇒ relational (§ 3.1, 3.2);

Environment static embeddings (§ 2.1, 3.1)⇐⇒ contextualized embeddings (§ 4, 5)

⇐⇒ direct prediction (§ 2.2);

Artifact model (§ 2.1, 3.1, 5)⇐⇒ dataset (§ 4.1, 3.2)⇐⇒ analysis (§ 2.2, 4.2).

The structure of this dissertation is as following:

In the remainder of this chapter, I provide an overview of the approaches under consid-

eration and of the methodologies I followed during my work.

In chapter 2, I gauge the merits of the compositional approach at the character-to-word

level, displaying its advantages across a wide variety of languages in imputing embed-

dings for unknown words in a sequence tagging model deploying static distributional word

embeddings as its input unit (§ 2.1), and then I examine a purely compositional character-

to-word sequence tagging system from a linguistic typology perspective, quantifying the

ability of recurrent character-level units to recognize parts of speech in languages of differ-

ent morphological properties using a novel analytical metric (§ 2.2).

In chapter 3, I explore the complementary effects of the structures governing the hu-

man conceptual map of language and the world over the signals extracted via distribu-

tional means. I show that incorporating such information allows better performance on

tasks requiring relational knowledge as well as gain insights into the structures themselves

(§ 3.1), and contribute to the evaluation possibilities of integrating relational and contex-

tual knowledge through construction of a novel real-world knowledge graph completion

dataset, closely connected to the OOV problem as manifested in the case of named entities

(§ 3.2).
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In chapter 4, I offer a surgical analysis of the OOV problem in the context of truly novel

words and state-of-the-art models. I collect and manually classify thousands of words new

to a news publication into their innovation classes, and demonstrate the limited ability of

models to master this basic taxonomic challenge even when possessing strong contextual

and compositional foundations (§ 4.1). I then focus on a specific, particularly hard set of

novel words, that of lexical blends, and analyze the difficulty contextualized models find

when processing them and when attempting to recover the original words which contribute

to the blends (§ 4.2).

In chapter 5, I once again approach the incorporation of compositional signals into dis-

tributional embeddings learned on longer sequences, this time integrating a character-level

module into contextualized transformer models built atop subword tokenizers, showing the

benefits of this integrative model in both sequence tagging and sequence prediction settings

while leveraging the pre-trained core of the models as part of both lower-level representa-

tion methods.

Finally, in 6, I summarize the findings and impact of the work in this dissertation and

lay the ground to work addressing more large-scale open questions still challenging the

overarching topic of atomic representations in NLP.
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1.1 The Atoms of Language

Natural language is ultimately a system for conveying meaning, information, and social

cues from the realm of human experience into a discrete linear form by encoding them

as auditory, visual, and/or textual symbols, which are then iteratively composed into more

complex units. In order to process such a system’s outputs by computational means, it

seems fitting to identify those symbols which carry the basic units of meaning, and then

find the proper ways to map those meanings into representations for a program which can

compose them. The first step, that of identifying linguistic atoms, proves to be a formidable

challenge. From the surface output perspective, the common wisdom is that the basic se-

mantic unit of language is what is known as a morpheme. The English word unbeliev-

able, for example, is composed of a stem morpheme believe, a semantic-syntactic suffix

-able recasting the verb into an adjective pertaining to potential, and a semantic prefix

un- denoting negation. But this morpheme = atom stipulation is not unassailable. Pro-

cesses below the morpheme level have been documented across languages, for example the

sound symbolism phenomenon known as phonaesthesia, where arbitrary sound patterns

correlate with a concept or conceptual properties, such as /gl/ in the English light/shine-

related words glow, glitter, and glare [Blake 2017]. Less arbitrarily, patterns and even

individual sounds in names are known to evoke semantic qualities based on their acoustic

properties [Köhler 1947; Bergh et al. 1984]. In English-language informal communication

modes, writers sometimes employ the practice of expressive lengthening, where a single

character in a word is repeated in order to amplify its referent’s extension on some scale.

For example, looooong would be used to describe a particularly long object or period of

time. In addition to these sub-morpheme phenomena, the morpheme symbolism and the

atoms of our conceptual space relate at neither a univalent nor a one-to-one relation. Cer-

tain stem morphemes, like star, denote multiple types of concepts or objects (polysemy

and homonymy), while some concepts may be referred to using different morphemes like
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the relevant meanings of room and space (synonymy). The suffix -s can denote both a

third-person present verb or a plural noun (polyexponence), and both are replaced by -es

under certain local conditions (flexivity).

Theoretical quibbles notwithstanding, NLP is a practical field, and from its nascence it

was clear that finding the most appropriate way to break text down to its purest elements

should not set back our efforts to perform sequence-level tasks and develop useful appli-

cations. Thus, concessions must be made in the form of selecting a unit easily extractable

from text and working with it. This necessity coincides with the reality of having English as

the overwhelmingly central target of NLP applications and easiest source of data. The focus

on a language with mostly isolating morphology, where morphemes often occupy distinct

word forms that are related through sentence-level syntax, conspired with the technical ease

of detecting whitespace in text and led to an inevitable starting point for the community in

using the space-delimited word as the basic unit of text analysis.2 The very name of the

fundamental bag-of-words approach (BoW) illustrates the implicit synonymity of “word”

and “basic unit of representation” in NLP jargon. Although subword- and multiword-level

systems were designed and developed outside this paradigm, mostly citing a non-English

motivation, when the neural revolution came the predominant methods again anchored the

field to the space-delimited word as the atom.

The most obvious advantage of this approach is its simplicity, considering how difficult

it is in practice to extract correct sub-word morphemes directly from text. Historically-

entrenched orthographic conventions and local-context phonological processes lead to phe-

nomena such as variance in morpheme form at different instantiations, such as the disap-

pearance of the stem’s final e in the unbelievable or the s-t alteration in derivations like

Mars-Martian, making a deterministic mapping from surface form to morpheme list im-

2I will continue throughout to use “space-delimited” to describe a family of simple string tokenization
techniques which typically also include minimal heuristics for punctuation separation and a handful of
language-specific rules like separating English contractions based on a short closed list, in partial accom-
modation of the difference between grammatical words and orthographic words [Dixon, Aikhenvald, et al.
2002].
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possible. The lack of overt textual marking of morpheme boundaries (except for the un-

common case of hyphenation) also leads to ambiguous segmentation in words like unionize,

and the general property of our sound and writing systems’ inventory being relatively small

leads to the incidence of affix-identical sequences in single-morpheme words like reply (cf.

shortly) and bring (cf. lying). Automatic detection of morphemes can be achieved today

by unsupervised data-driven systems like Morfessor [Creutz and Lagus 2002; Creutz and

Lagus 2007], which rely on large amounts of training data and provide no guarantee to

finding the true morphemes in all cases or downstream applications.

1.2 Neural Representations

The idea of breaking down concepts in language into numerically-valued axes has played

a role in the formation of the modern research landscape in linguistics. Osgood (1952)

proposed a low-dimensional space in which nominal objects and concepts are represented

by values associated with characteristics which may describe them, such that “eager” and

“burning” share a value along the weak⇔ strong dimension, while differing along the cold

⇔ hot dimension. The values were elicited from human subjects.

Scaling this very linguistically-motivated approach manually over an entire language

is at the very least impractical, and over the years some relaxations of this scheme to de-

fine representations for words which are distributed along dimensions gave rise to more

automation-friendly processing techniques. Most crucial was the realization that the in-

dividual dimensions in the representation space do not have to be meaningful in and of

themselves. Liberating the dimensions from their labels allowed the number of dimensions

to be governed by concerns of data availability and computational memory and power,

rather than by the precision of our semantic theory and ontological thoroughness; it allows

for the discovery of unnamed but possibly useful similarities and distinctions between con-

cepts; and it “leaves room” for new properties to be learned if, for example, a domain shift

occurs during the process of applying an embedding-based system to a downstream task.
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Embedding concepts into a “blank” vector space using learning methods turns the im-

plied causal direction that motivated Osgood’s framework on its head: instead of creating

the embeddings based on what we know about language and the relations between con-

cepts, these become the proxy target by which we can measure whether or not the embed-

dings learned by our model are useful to us. Starting with an arbitrary metric space with

well-known properties such as Rd becomes a great advantage, as the space comes with

metrics and operations which are easy to conceptualize and imagine as the necessary prox-

ies.3 As the formative instance of this realization served the ability to score the relative

directionality of two vectors using the cosine similarity function, which can be compared

to annotations in word similarity resources such as WordSim-65 [Rubenstein and Good-

enough 1965], where human subjects were asked to score word pairs without the hassle

of decomposing them into their semantic properties first. Metric space also affords the

intuitive parallelogram metaphor of word analogy, haunting every introductory text and

presentation on embeddings with the equation king − man + woman ≈ queen.

1.3 Distributional Semantics

The development of the distributed view of representation for linguistic objects accom-

panied the rise of methodologies making use of the distributional hypothesis, traditionally

attributed to Harris (1954) and framed as “you shall know a word by the company it keeps”.

The maximalist interpretation of this adage as “a word is defined by applying a combina-

tion function to the set of its contexts”, used pre-modern-neurally in influential methods

such as Brown Clustering [Brown et al. 1992], is an appealing principle to the embedding

movement for good reason: breaking words down into contexts provides us with just the

distributed fixed dimensions we seek. Once we decide exactly what “context” means to

us, we can automatically extract all contexts for all target words given only a corpus, and

3One heroic departure from the shackles of euclidean space is the line of work on embeddings in hy-
perbolic space [Nickel and Kiela 2017], touted as a more suitable representation framework for hierarchical
structures, including the semantic structure of a language.
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base our latent dimensions (whose number is limited to hundreds or thousands for prac-

tical reasons) on them. The two methods which ended up dominating the distributional

embeddings landscape share a definition of context, essentially “words that appear near the

target word”, but translate this decision into embedding differently. In SkipGram [Mikolov

et al. 2013], dimension significance is built “bottom-up” from a random initialization and a

traversal of the corpus; in GloVe [Pennington, Socher, and Manning 2014], dimensions are

the result of an implicit reduction of the full V × V co-occurrence matrix, where V is the

number of words in our vocabulary. The former approach was inspired by early embedding

systems developed around the task of language modeling [Bengio et al. 2003], which is

defined with an expectation based in distributional signals, while the latter has origins in

latent semantic analysis [LSA; Deerwester et al. 1990]. Evaluation on intrinsic tasks such

as similarity datasets and analogy benchmarks [e.g., Finkelstein et al. 2001; Mikolov, Yih,

and Zweig 2013; Hill, Reichart, and Korhonen 2015] cemented distributional word em-

beddings as the representation go-to and an accessible replacement to one-hot encodings

for a host of applications, while performance on downstream tasks within deep learning

systems advanced the understanding of the utility that pre-training can afford end-to-end

systems which include an embedding layer [Collobert and Weston 2008; Collobert et al.

2011].

The full pipeline from pre-training to downstream application is depicted in Figure 1.1.

A large body of text known as the pre-training corpus is traversed over or statistically

analyzed by the distributional algorithm, and the resulting embeddings are stored in a key-

value table structure. A model designed for the downstream task then queries this table

with words from the (labeled) task corpus and uses the retrieved embeddings as input for

its neural module.
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words
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Figure 1.1: The static word embedding pipeline, including MIMICK (§2.1). In this chapter’s
diagrams, data is depicted in dark boxes, models in bright ones, and models introduced in
this dissertation in dotted boxes. Artifacts which are not models shown in sharp corners.

1.4 Out-of-Vocabulary Words

The choice of space-delimited words as the basic unit for representation, and the large

resource investment necessary to pre-train a distributional model over a large corpus, in

both money and time, create a situation where vectors can mostly be trusted as long as

the words they represent are present in the pre-training corpus. The models so far

discussed have no intrinsic ability to represent words not present in their lookup table, or

out-of-vocabulary, or OOVs [Brill 1995; Brants 2000; Plank 2016; Heigold, Neumann, and

van Genabith 2017; Young et al. 2018]. Empirical analyses such as the one in § 2.1.2 show

that indeed, the overwhelming majority of downstream datasets contain words not present

in the pre-training corpora. In § 4.1 I present a diachronical dataset showcasing the volume

of novel terms entering a large, steady daily publication in English over time; but even a

snapshot of a language at a given moment contains unlimited domain-specific terms, mor-

phological derivations, named entities, potential loanwords, typographical errors, and other

sources of OOVs which would appear very reasonably in text analysis tasks and which the

downstream model should be given the faculty to handle. In fact, according to Kornai
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(2002), statistical reasoning leads us to conclude that languages have an infinite vocabu-

lary. But even if a language’s word set were finite, and all present in some corpus, practical

memory and lookup constraints would still limit embedding tables to non-exhaustive vo-

cabularies.

To overcome the intrinsic limits of corpus-learned embedding tables, the distributional

system has begotten some heuristics that try and initialize embeddings for OOVs beyond

the trivial random initialization fallback. If one were to stay true to Firth’s maxim, one

possible strategy would be to keep SkipGram’s context embedding table as well as the main

table (for “target” words), and initialize OOV embeddings based on the context in which

they are first encountered [Horn 2017]. This approach has not caught on, and instead most

practitioners took to the use of a special <UNK> embedding, named as an abbreviation of

unknown [Bengio et al. 2003]. In a pre-training stage, such an embedding is learned by

replacing a small percentage of the corpus with a dedicated <UNK> token, thus gaining at

least some prior for an initialization, in some sense an average over possible contexts for

encountering any word. This approach is brutally simplistic; it assumes not only that all

novel words are representable using the same approximation technique, but that they are

all exactly the same. The first assumption alone is easy to dispute: a careful observation of

the different word formation processes [Lieber 2005; Plag 2018] suggests that embedding

new words into an existing space must involve considering multiple approaches in parallel.

• Words created by processes at the multi-word level, such as compounding or blend-

ing, require means of extracting the underlying constructed words and composing

the semantic contribution from each word. For example, brunch is a blend of break-

fast and lunch; a reasonable initial embedding can be the mean vector for these two

words, hopefully keeping it at a high similarity with other meals and the appropriate

time of day.

• Words that are inflections of known words, for example ameliorating, can benefit

from a morphological analysis which finds its stem and syntactic suffix, placing the
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new vector at the sum of the verb ameliorate and the generalized notion of -ing verbs,

if one is realized in the embedding space (and arguably, in a good space it should at

least be reliably extractable).

• Novel named entities such as Lyft or SARS-COV-2, more often than not, reflect ar-

bitrary naming practices and cultural primitives, and even recognition of their type

(person / organization / location, etc.) might well be impossible without access to

knowledge bases covering the appropriate domain, noting explicitly where in con-

cept space the novel word should be embedded.

• Some OOVs are the result of unpredictable subword processes such as typographi-

cal errors (typos) and stylistic variation, such as expressive lengthening mentioned

above. In such cases, it is sometimes best to opt out of creation of a new embedding

at all and simply map the new form to the existing embedding of its intended canon-

ical word form. This choice will depend on the intended application; in certain cases

like sentiment analysis, the stylistic information itself is essential.

• Loanwords like vespa originate in a different language than the one the embedding

was produced for, but in some cases we have access to an embedding space for the

origin language and a function which translates between the two languages’ space. A

system which can detect the word and its origin, perhaps overcoming processes like

writing-system transliteration and phonological adaptation, can start by embedding

the target language word in a position projected from the source language’s embed-

ding for the equivalent word form.

This is not a comprehensive list. More types of novel words are identified in § 4.1, and

not all suggestions in the taxonomy above correspond to actual existing work. Limiting

this discussion to a strict interpretation of written-form uniqueness also prevents us from

considering as OOVs concepts which are spelled in the same way as other words, either

by chance (homography, for example row as a line or a fight), by naming (e.g., Space
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Force), or by processes such as zero-derivation (the verb smoke, derived from the noun). In

languages other than English, some OOV-creating forces may be more dominant in word

formation than in English. Morphologically-rich languages, as one edge case, feature large

percentages of OOVs in novel texts for a given task’s text size compared to English, and this

property is often compounded by the fact that many of these are low-resource languages,

possessing a relatively small corpus-extracted vocabulary to begin with.

The richness and unpredictability of the OOV problem calls for complementing the

word representation systems obtained distributionally with additional approaches, which is

the focus of this dissertation.

1.5 Subword Compositionality

The first approach considered is an attempt to break the space-delimited word paradigm and

get at the finer atomic units of meaning, which can then either be used as the fundamental

representation layer, or to induce better representations at the word level. This perspective,

known as the compositional approach, is inspired mostly by the cases where insufficient

generalizations are made for cases of morphological word formation processes. Under the

compositional framework, an ideal representation for unbelievable can be obtained by (1)

detecting its three morphological components un-, believe, and -able, (2) querying reliable

representations learned for each of them, distributionally or otherwise, and (3) properly

assembling them via some appropriate function.4

Each of these three steps is a challenge in itself and open to various implementational

approaches. Learning representations for subword units is usually done by considering the

subword elements in unison with the full word while applying a distributional method [e.g.,

Bojanowski et al. 2017], but some have opted for pre-processing the pre-training corpus

such that only lemma forms exist as raw text and the other tokens are explicit representa-
4I will use the term subword to denote textual units which are largely between the character level and

the word level, when no guarantee of their morphological soundness is attempted. In appropriate contexts,
this can also denote word-long or character-long elements which are nevertheless obtained by a subword
tokenizer.
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tions of the morphological attributes attached to each lemma [Avraham and Goldberg 2017;

Tan et al. 2020], inducing the production of more consistent vocabularies. Others yet leave

the learning to the downstream task itself, feeding off the backpropagated signal from the

training instances [Sutskever, Martens, and Hinton 2011; Ling et al. 2015; Lample et al.

2016]. The composition function from subwords to the word level is also open to many

different approaches: prior work has opted for construction techniques as diverse as us-

ing the subword strings as one-hot entries to represent the words themselves [Huang et al.

2013]; summing morpheme embeddings to produce word embeddings [Botha and Blun-

som 2014]; traversing a possibly deep morphological parse tree using a recursive neural

network [Luong, Socher, and Manning 2013]; positing probabilistic word embeddings for

which the morpheme embeddings act as a prior distribution [Bhatia, Guthrie, and Eisen-

stein 2016]; side-by-side training of both word-level and character-level modules followed

by concatenating the resulting representations, to allow the downstream model to learn

from both levels independently and control the interaction terms directly [Plank, Søgaard,

and Goldberg 2016]; assembling a hierarchical recurrent net that progressively encodes

longer portions of text in each layer [Chung, Ahn, and Bengio 2019]; or dispensing with

the word level altogether and just representing text with a single atomic layer of characters

or subwords [Sennrich, Haddow, and Birch 2016].

Most challenging of all is the detection of the subwords themselves. As noted above,

morphemes are hard to detect from the surface form of a word. For the default setting where

no curated resources exist to allow correct morpheme extraction from a word’s form, as is

the case in nearly all languages in the world, the mainstream of compositional represen-

tation research has centered on the raw character sequence, the unarguable atom of text,5

which is used either via direct operation or as a basis for heuristics that define subword units

based on statistical objectives. The great advantage of using characters or primitive charac-

5At least in languages using the Latin script, like English. Chinese text analysis has benefitted from
decomposing characters into strokes or radicals; Hebrew and Arabic include diacritical marks that are not
character-intrinsic; and elsewhere, treatment of individual bytes from the Unicode representation of charac-
ters has also shown merit.
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ter n-grams as the atomic unit for the model [Santos and Zadrozny 2014; Kim et al. 2016;

Wieting et al. 2016; Bojanowski et al. 2017; Peters et al. 2018] is that it rids us of the need

to explicitly designate morphemes altogether; the challenge is to still capture the informa-

tion they convey, somehow. In contrast, heuristically learning a subword vocabulary from

information-theoretic notions [Sennrich, Haddow, and Birch 2016; Kudo and Richardson

2018] or character-sequence unigram distribution [Kudo 2018] may find us many true mor-

phemes, but there is no guarantee of either precision or recall: corpus collection effects are

significant in determining the ultimate vocabulary, orthographic norms may still obfuscate

many useful generalized morphemes, and many frequent character sequences may enter

the subword vocabulary as the result of coincidental quirks. For example, the character

sequence eva might contribute to the representation of unbelievable, passing along signals

learned from unrelated words such as Eva or evaluate. The ever-growing popularity of sys-

tems which use such vocabularies in conjunction with the null composition function that

ignores sub-word hierarchy and passes the downstream model embeddings corresponding

to the raw subword sequence (see §1.7) prevents any possibility of correcting incorrect sub-

word tokens at the word level: in this scenario, the next processing layer of the model will

use the embedding for eva as if it were part of the input equally important to a frequent

word like house.

1.6 Relational Semantics

Another way to complement distributionally-trained embeddings is to incorporate signals

from curated type-level relational resources. The prominent category of such resources is

semantic graphs, such as WordNet [Fellbaum 1998] and BabelNet [Navigli and Ponzetto

2010], which encode the structural qualities of language as a representation of human

knowledge. The core goal of semantic graphs is to describe connections between refer-

ents in the perceived and conceived world, and to this end they make an explicit distinction

between words as character sequences and an internal semantic primitive which we can call
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concepts. Concepts form the chief node type in the semantic graph, connected by individ-

ual edges typed into relations such as hypernymy (elm “is a” tree) or meronymy (branch “is

part of” tree), as well as linguistic facts about concept names (shop.verb “is derivationally

related to” shop.noun) which make use of the word-form partition of the graph’s node set.

In similar vein, relations which straddle the divide between form and function, like syn-

onymy, are extractable from the bipartite subgraph relating word forms and their available

meanings.

In the context of language representation, these structures offer a notion of atomicity

stemming from our conceptual primitives, an attractive premise. They may not answer all

needs arising from inflectional morphology (since syntactic properties do not explicitly de-

note concepts) or some of the other word formation mechanisms, but the rich ontological

scaffolding offered by the graph and the prospects of assigning separate embeddings for

homonyms in a model-supported manner, assuming sense can be disambiguated in usage,

seems much “cleaner” than relying on large corpora and heuristics to statistically extract

linguistic elements and their meaning. In addition to this conceptual shift, as it were, the

graph structure itself provides a learning signal not present in linear corpus text, relating

the basic units to each other through various types of connections and placing all con-

cepts within some quantifiable relation of each other (within each connected component,

although lack of any relation path is also a useful signal). The structure can also occupy

the place of the fragile judgment-based word similarity and analogy benchmarks, allowing

more exact, refined, well-defined relations to be used for both learning the representations

and evaluating them. Methods which embed nodes and relations from general graph struc-

tures before even considering any semantics attached to individual nodes and edges, like

Node2vec [Grover and Leskovec 2016] and graph convolutional nets [Schlichtkrull et al.

2017], indeed serve as a basis and inspiration for many of the works in this space.

The fundamentally different manner in which the relational paradigm is complemen-

tary to the distributional one in contrast with the compositional one has bearing on the
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OOV problem, which can be considered from several perspectives. First is the potential of

semantic graphs to improve representation of words that are rare or not present in a large

corpus used to initialize distributional embeddings. This has proven to be a powerful di-

rection by methods such as retrofitting [Faruqui et al. 2015], where embeddings of related

concepts are pushed together in a post-processing learning phase, showcasing WordNet’s

impressive coverage of English domain-specific taxonomies such as classical natural sci-

ences. Elsewhere, properly modelling hypernymy, for example, has been found to help

understand text with rare words whose hypernyms are well-represented in the pre-training

corpus [Shwartz, Santus, and Schlechtweg 2017].6 Still, semantic graphs provide only a

partial solution to the overall goal of OOV impact mitigation, given their limited scope and

heavy reliance on expert annotation.

From the other direction, systems relying on semantic graphs for applications such

as question answering and dialogue generation are likely to encounter “OOVs” of their

own, i.e. words and concepts not present in the underlying graph. Unlike the corpus-OOV

problem, which cannot be quantified convincingly without selecting a specific downstream

task first, coping with graph-OOVs can be examined through tasks intrinsic to the graph

structure itself. One such task is relation prediction, where we assume a concept has a

known connection with some other concept, and need to figure out which one. Depending

on our perspective, either the source or target of the relation may be the OOV concept;

for example, on first encounter of the concept indian lettuce, we wish to know its hyper-

nym from our set of known concepts. This task is also useful for a similar class of graphs

known as knowledge graphs (KGs), such as Freebase [Bollacker et al. 2008]7 and Wiki-

Data [Vrandečić and Krötzsch 2014], which differ from semantic graphs in several aspects.

6A tangential but noteworthy approach considers relations that are not curated in large graphs, but rather
corpora annotated for inter-word relations such as syntactic dependencies [Madhyastha et al. 2016]. Their
system creates a mapping between a distributionally-obtained embedding table and one trained on the an-
notated parses, and generalizes this mapping to words which are now out-of-vocabulary for a further down-
stream task (e.g., sentiment analysis). In this case, the reference vocabulary (for defining OOV-ness) is not
the unsupervised corpus, but rather an intermediate downstream task.

7Now defunct.
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While WordNet curates connections between semantic concepts and dictionary entries, in-

cluding certain aspects of the physical world (e.g. “an elm is a tree”), KGs focus on real-

world entities and often time-sensitive encyclopedic knowledge (e.g. “Satya Nadella is the

CEO of Microsoft”). WordNet is a manually-crafted resource created by language and do-

main experts, whereas many KGs are either crowdsourced or automatically extracted from

databases and large text corpora. As a result, KGs are typically disconnected, shallow,

and sparse, boasting areas of hubness and areas of isolation; this contrasts with semantic

graphs, where systematic connectedness and hierarchy have been observed [Sigman and

Cecchi 2002]. KGs are also distinguished by the richness of their relation type variety, in

the hundreds or thousands, compared to WordNet’s 18 relation types (including seven pairs

of relations reciprocal to each other). Nevertheless, much of the work on the relation pre-

diction problem has been developed and evaluated on both semantic and knowledge graphs,

as well as on derived tasks like graph completion, where the entirety of a node’s connec-

tions are to be inferred at once, imitating real-world scenarios of knowledge discovery such

as the one I present in § 3.2.

Pre-training
corpus

Embedding
table

Semantic
graph

Prediction
model M3GM

DISTRIBUTIONAL
RELATIONAL

words

motifs

Figure 1.2: The static word embedding pipeline, including the relational architecture of
M3GM (§3.1).

Over the years, distributional methods have been used to feed increasingly complex
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neural nets predicting relations by embedding both concept nodes and relation edges based

on corpus-trained tables, to a large degree of success [e.g. Nickel, Tresp, and Kriegel 2011;

Socher et al. 2013; Bordes et al. 2013; Yang et al. 2014; Toutanova and Chen 2015; Nee-

lakantan, Roth, and McCallum 2015; Ji et al. 2015; Shi and Weninger 2017; Dettmers et al.

2018; Nathani et al. 2019]. The basic idea calls for embedding concepts into a metric space

and modeling relations by some operator that induces a score for an embedding pair input,

either by translating the concept vectors, combining them via bilinear operators, projecting

them onto a “scoring scale”, or designing an intricate deep system that finds complex re-

lationships. While these systems achieve impressive results, they all build on an implicit

assumption that relation prediction is a strictly local task: the fit of an edge can be esti-

mated from the nodes it connects and the intended label alone. In KGs, where structure is

of secondary concern, this assumption may go a long way before its limitations stress out

performance; in the much more structure-crucial semantic graphs, it is increasingly likely

that connections are predicted which should not be permissible from enforceable structural

constraints alone, e.g. that the hypernym graph cannot contain cycles. I present such exam-

ples in §3.1.5. Some systems indeed go beyond the individual edge to embed and predict

relations, for example the idea of a path prediction task [Guu, Miller, and Liang 2015]

which demands more structure reliance, or embedding methods leveraging local neigh-

borhoods of relation interactions and automatic detection of relations from syntactically

parsed text in an iterative manner [Riedel et al. 2013; Toutanova et al. 2015; Schlichtkrull

et al. 2017]. Others have constructed prediction models where an adversary produces ex-

amples which violate structural constraints such as symmetry and transitivity [Minervini

and Riedel 2018]. In § 3.1, I present a system which improves WordNet prediction by aug-

menting the distributionally-obtained signal with features (motifs) representing the global

structure of the semantic edifice. I show that wellformedness of a semantic graph is influ-

enced by individual connections to a degree that’s detectable through these simple motifs,

able to improve performance substantially on the relation prediction task, and finally ana-
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lyze the emerging feature weights to discover some general properties of English semantics.

The pipeline for the relation prediction task is presented in Figure 1.2.

1.7 Contextualized Representations

Recent developments in NLP have brought about a shift in the balance depicted so far with

respect to the atomic level chosen to represent language in applications and the approaches

taken to create these representations. Advances in multi-task learning and transfer learn-

ing, both in non-neural NLP and in non-NLP deep methods, matured well enough to allow

deep NLP to use them effectively as well. The increase of available computation power and

the extreme utility found to lie in recurrent nets, most notably the Long Short-Term Mem-

ory cell [LSTM; Hochreiter and Schmidhuber 1997], led to a series of works suggesting

the incorporation of instance-specific context into the feature extraction part of a model,

before applying any task-specific elements, beginning with simple prediction tasks [Mela-

mud, Goldberger, and Dagan 2016], followed by near-full coverage of core NLP [Peters

et al. 2018]. The next step was to continue training the shared-architecture context learner,

which we can now safely call a language model, during the downstream step, in a process

known as fine-tuning [Howard and Ruder 2018]. Design and processing power consid-

erations, but also downstream performance, fueled the shift [Radford et al. 2018] from

recurrent net infrastructure to transformer models [Vaswani et al. 2017], which in turn fa-

cilitated another major conceptual innovation where autoregressive token prediction was

replaced by masked language modeling, where sequence-medial tokens are hidden from

the representation layer and must be predicted based on the remaining context [Devlin et

al. 2019; Liu et al. 2019]. Throughout this evolution, one main principle remained stable:

the language prediction task acts as the pre-training step, providing a scaffolding model

which is capable of representing tokens within a sequence at a level of effectiveness that al-

lows downstream tasks to begin training with meaningful contextualized representations.

The heart of contextualization lies in the distributional approach, as depicted in Figure 1.3.
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Figure 1.3: The static and contextualized embedding pipelines, including the TOKDETOK

model (§5).

The design of these pre-training tasks meant they can no longer tolerate OOV tokens

at the rate encountered by static embedding algorithms, as that might render the models

unusable for any words that appear in context with OOVs downstream, rather than just the

OOVs themselves. On the other hand, the prediction layer creates a computational bottle-

neck which scales with the size of the vocabulary, since every token must be available for

prediction at all model steps. Therefore, these models resorted to compositional techniques

for the bottom layer where the input sequence is processed into tokens. The character

convolution net selected for ELMo [Peters et al. 2018] did not gain traction, possibly be-

cause it didn’t provide an adequate method for predicting text from the output layer, and

so subsequent models, particularly those relying on transformers, operate over a sequence

of equal-status tokens, each representing a word or a subword, from a mid-size vocabulary

(tens of thousands) built in a pre-pre-training phase using statistical heuristic techniques

mentioned in §1.5. These models inherit the problems endemic to these methods like in-

adequacy for certain OOV classes, morphological unsoundness, and length-imbalance; as

well as issues like the added burden they impose on already limited-length token sequences.

Common wisdom seems to hold that they make up for these shortcomings within the depths
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of their fully-connected transformer layers, and end up with satisfactory top-layer embed-

dings despite their bottom-layer flaws. In §4 I demonstrate how badly these models indeed

struggle on truly novel OOV forms, and in §5 I present a model which incorporates more

fine-grained compositionality but can still use well-trained subword input representations.

23



CHAPTER 2

COMPOSITIONAL REPRESENTATIONS

In this chapter, I quantify and demonstrate the utility of compositional character-level mod-

els when integrated into word representations and task-specific training regimes in the

context of sequence tagging on the token level in a multilingual setting. §2.1 addresses

the OOV problem in pre-trained distributional embedding tables whose originating corpus

may no longer be available, and shows that a character-level sequence model trained only

against the table itself can collect a meaningful signal and generalize its findings to unseen

tokens in a task combining part-of-speech tagging and morphological attribute prediction.

§2.2 focuses on character-level sequence models trained during the tagging task, introduc-

ing an analytic measure that assesses how well individual units in such a model’s hidden

states learn to tell parts of speech apart. I show how this measure reflects the morphological

properties of the different languages on whose data the analysis is performed.1

2.1 Modelling Distributional Embeddings via Character RNNs

2.1.1 Background

In this work, we approach the out-of-vocabulary (OOV) challenge in context-independent

embedding models from a quasi-generative perspective. Knowing nothing of a word except

for its embedding and its written form, we attempt to learn the former from the latter. We

train a recurrent neural network (RNN) on the character level with the embedding as the

1The sections of this chapter are based on work published as: Y. Pinter, R. Guthrie, and J. Eisenstein,
“Mimicking Word Embeddings using Subword RNNs”, in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Copenhagen, Denmark: Association for Computational Linguis-
tics, Sep. 2017,pp. 102–112; and Y. Pinter, M. Marone, and J. Eisenstein, “Character Eyes: Seeing Language
through Character-level Taggers”, in Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, Florence, Italy: Association for Computational Linguistics, Aug.
2019, pp. 95—102.
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target, and use it later to predict vectors for OOV words in any downstream task. We call

this model the MIMICK-RNN (or simply MIMICK), for its ability to read a word’s spelling

and mimic its distributional embedding.

Through nearest-neighbor analysis, we show that vectors learned via this method cap-

ture both word-shape features and lexical features. As a result, we obtain reasonable

near-neighbors for OOV abbreviations, names, novel compounds, and orthographic errors.

Quantitative evaluation on the Stanford RareWord dataset [Luong, Socher, and Manning

2013] provides more evidence that these character-based embeddings capture word simi-

larity for rare and unseen words.

As an extrinsic evaluation, we conduct experiments on joint prediction of part-of-speech

tags and morphosyntactic attributes for a diverse set of 23 languages featured in the Uni-

versal Dependencies dataset [de Marneffe et al. 2014]. Our model shows significant im-

provement across the board against a single UNK-embedding backoff method, and obtains

competitive results against a supervised character-embedding model, which is trained end-

to-end on the target task. In low-resource settings, our approach is particularly effective,

and is complementary to supervised character embeddings trained from labeled data. The

MIMICK-RNN therefore provides a useful new tool for tagging tasks in settings where there

is limited labeled data.

2.1.2 MIMICK Word Embeddings

We approach the problem of OOV embeddings as a generation problem: regardless of how

the original embeddings were created, we assume there is a generative wordform-based

protocol for creating these embeddings. By training a model over the existing vocabulary,

we can later use that model for predicting the embedding of an unseen word.

Formally: given a language L, a vocabulary V ⊆ L of size V , and a pre-trained embed-

dings tableW ∈ RV×d where each word {wk}Vk=1 is assigned a vector ek of dimension d,

our model is trained to find the function f : L → Rd such that the projected function f |V
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approximates the assignments f(wk) ≈ ek. Given such a model, a new word wk∗ ∈ L \ V

can now be assigned an embedding ek∗ = f(wk∗).

Our predictive function of choice is a Word Type Character Bidirectional Long Short-

Term Memory network (Bi-LSTM). An LSTM [Hochreiter and Schmidhuber 1997] is a

type of RNN which keeps a “cell” state component which, as the model traverses the input

sequence, contributes to the decision of how much to incorporate from each new input and

existing hidden state into the next hidden state, by means of nonlinearly-activated gates.

Given a word with character sequencew = {ci}n1 , a forward-LSTM and a backward-LSTM

are run over the corresponding character embeddings sequence {e(c)i }n1 . Let hnf represent

the final hidden vector for the forward-LSTM, and let h0
b represent the final hidden vector

for the backward-LSTM. The word embedding is computed by a multilayer perceptron:

(2.1)f(w) = OT · g(Th · [hnf ;h0
b ] + bh) + bT ,

where Th, bh and OT , bT are parameters of affine transformations, and g is a nonlinear

elementwise function. The model is presented in Figure 2.1.

The training objective is similar to that of Yin and Schütze (2016). We match the

predicted embeddings f(wk) to the pre-trained word embeddings ewk
, by minimizing the

squared Euclidean distance,
(2.2)L = ‖f(wk)− ewk

‖22 .

By backpropagating from this loss, it is possible to obtain local gradients with respect to the

parameters of the LSTMs, the character embeddings, and the output model. The ultimate

output of the training phase is the character embeddings matrix C and the parameters of

the neural network: M = {C,F,B,Th, bh,OT , bT}, where F,B are the forward and

backward LSTM component parameters, respectively.

MIMICK Polyglot Embeddings

The pretrained embeddings we use in our experiments are obtained from Polyglot [Al-

Rfou’, Perozzi, and Skiena 2013], a multilingual effort providing word embeddings pre-
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Figure 2.1: MIMICK model architecture.

trained over a contrastive prediction objective, where a single-hidden-layer model is tasked

with scoring an observed sentence from a corpus higher than a corrupted version of it where

the middle word is substituted for another. Polyglot was chosen for its availability in many

languages in a centralized repository with ample documentation. Each dataset contains 64-

dimension embeddings for the 100,000 most frequent words in a language’s training corpus

(of variable size), as well as an UNK embedding to be used for OOV words. Even with

this vocabulary size, querying words from respective UD corpora (train + dev + test) yields

high OOV rates: in at least half of the 23 languages in our experiments (see Section 2.1.4),

29.1% or more of the word types do not appear in the Polyglot vocabulary. The token-level

median rate is 9.2%.2

Applying our MIMICK algorithm to Polyglot embeddings, we obtain a prediction model

for each of the 23 languages. Based on preliminary testing on randomly selected held-out

development sets of 1% from each Polyglot vocabulary (with error calculated as in Equa-

tion 2.2), we set the following hyper-parameters for the remainder of the experiments:

2Some OOV counts, and resulting model performance, may be adversely affected by tokenization dif-
ferences between Polyglot and UD. Notably, some languages such as Spanish, Hebrew and Italian exhibit
syntactic synthesis wherein words of separate grammatical phrases are joined into one form (e.g. Span-
ish del = de + el, ‘from the-masc.-sg.’). For these languages, the UD annotations adhere to the sub-token
level, while Polyglot does not perform sub-tokenization. As this is a real-world difficulty facing users of
out-of-the-box embeddings, we do not patch it over in our implementations or evaluation.
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Table 2.1: Nearest-neighbor examples for the English MIMICK model.
OOV word Nearest neighbors OOV word Nearest neighbors

MCT AWS OTA APT PDM SMP compartmentalize formalize rationalize discern prioritize validate
McNeally Howlett Gaughan McCallum Blaney pesky euphoric disagreeable horrid ghastly horrifying
Vercellotti Martinelli Marini Sabatini Antonelli lawnmower tradesman bookmaker postman hairdresser
Secretive Routine Niche Turnaround Themed developiong compromising inflating shrinking straining
corssing slicing swaying pounding grasping hurtling splashing pounding swaying slicing rubbing
flatfish slimy jerky watery glassy wrinkle expectedly legitimately profoundly strangely energetically

character embedding dimension = 20; one LSTM layer with 50 hidden units; 60 training

epochs with no dropout; nonlinearity function g = tanh.3 We initialize character embed-

dings randomly, and use DyNet to implement the model [Neubig et al. 2017].

Nearest-neighbor examination. As a preliminary sanity check for the validity of our

protocol, we examined nearest-neighbor samples in languages for which speakers were

available: English, Hebrew, Tamil, and Spanish. Table 2.1 presents selected English OOV

words with their nearest in-vocabulary Polyglot words computed by cosine similarity. These

examples demonstrate several properties: (a) word shape is learned well (acronyms, capi-

talizations, suffixes); (b) the model shows robustness to typos (e.g., developiong, corssing);

(c) part-of-speech is learned across multiple suffixes (pesky – euphoric, ghastly); (d) word

compounding is detected (e.g., lawnmower – bookmaker, postman); (e) semantics are not

learned well (as is to be expected from the lack of context in training), but there are sur-

prises (e.g., flatfish – slimy, watery). Table 2.2 presents examples from Hebrew that show

learned properties can be extended to nominal morphosyntactic attributes (gender, num-

ber — first two examples) and even relational syntactic subword forms such as genetive

markers (third example). Names are learned (fourth example) despite the lack of casing

in the script. Spanish examples exhibit word-shape and part-of-speech learning patterns

with some loose semantics: for example, the plural adjective form prenatales is similar

to other family-related plural adjectives such as patrimoniales and generacionales. Tamil

displays some semantic similarities as well: e.g. enjineer (‘engineer’) predicts similarity

to other professional terms such as kalviyiyal (‘education’), thozhilnutpa (‘technical’), and
3Other settings, described below, were tuned on the supervised downstream tasks.
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Table 2.2: Nearest-neighbor examples for Hebrew (Transcriptions per Sima’an et al.
(2001)). ‘s/y’ stands for ‘she/you-m.sg.’; subscripts denote alternative spellings, standard
form being ‘X’1.

OOV word Nearest neighbors

TTGFM ‘(s/y) will come true’, TPTVR ‘(s/y) will solve’, TBTL ‘(s/y) will cancel’, TSIR ‘(s/y) will remove’
GIAVMTRIIM ‘geometric(m-pl)’2 ANTVMIIM ‘anatomic(m-pl)’, GAVMTRIIM ‘geometric(m-pl)’1
BQFTNV ‘our request’ IVFBIHM ‘their(m) residents’, XTAIHM ‘their(m) sins’, IRVFTV ‘his inheritance’
RIC’RDSVN ‘Richardson’ AVISTRK ‘Eustrach’, QMINQA ‘Kaminka’, GVLDNBRG ‘Goldenberg’

Table 2.3: Similarity results on the RareWord set, measured as Spearman’s ρ×100. VarEm-
bed was trained on a 20-million token dataset, Polyglot on a 1.7B-token dataset.

Emb. Vocab Polyglot All
dim size in-vocab pairs

N = 862 N = 2034

VarEmbed 128 100K 41.9 25.5
Polyglot 64 100K 40.8 8.7
MIMICK 64 0 17.9 17.5
Polyglot

64 100K 40.8 27.0
+MIMICK

Fasttext 300 2.51M 47.3

iraanuva (‘military’).

Stanford RareWords. The Stanford RareWord evaluation corpus [Luong, Socher, and

Manning 2013] focuses on predicting word similarity between pairs involving low-frequency

English words, predominantly ones with common morphological affixes. As these words

are unlikely to be above the cutoff threshold for standard word embedding models, they

emphasize the performance on OOV words.

To evaluate our MIMICK model on the RareWord corpus, we trained the Variational

Embeddings algorithm [VarEmbed; Bhatia, Guthrie, and Eisenstein 2016] on a 20-million-

token, 100,000-type Wikipedia corpus, obtaining 128-dimension word embeddings for all

words in the test corpus. VarEmbed estimates a prior distribution over word embeddings,

conditional on their morphological composition. For in-vocabulary words, a posterior is

estimated from unlabeled data; for out-of-vocabulary words, the expected embedding can

be obtained from the prior alone. In addition, we compare to FastText [Bojanowski et al.
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2017], a high-vocabulary, high-dimensionality embedding benchmark which makes use of

character-ngram embeddings in its training process.

The results, shown in Table 2.3, demonstrate that the MIMICK RNN recovers about half

of the loss in performance incurred by the original Polyglot training model due to out-

of-vocabulary words in the “All pairs” condition. MIMICK also outperforms VarEmbed.

FastText can be considered an upper bound: with a vocabulary that is 25 times larger than

the other models, it was missing words from only 44 pairs on this data.

2.1.3 Joint Tagging of Parts-of-Speech and Morphosyntactic Attributes

We extrinsically evaluate our method on the downstream task of tagging word tokens

for both their parts of speech and their morphosyntactic attributes, such as gender, num-

ber, case, and tense. For example, in the English sentence Max kicks the ball, the to-

ken kicks is to be tagged with the part-of-speech (POS) VERB and the attribute values

tense=PRESENT and person=3RD. In NLP, this task of morphosyntactic tagging dates

back at least to the mid 1990s [Oflazer and Kuruoz 1994; Hajič and Hladká 1998], and in-

terest has been rejuvenated by the availability of large-scale multilingual morphosyntactic

annotations through the Universal Dependencies (UD) corpus [de Marneffe et al. 2014].

Faruqui, McDonald, and Soricut (2016) propose a graph-based technique for propagating

type-level morphological information across a lexicon, improving token-level morphosyn-

tactic tagging in 11 languages, using an SVM tagger. In contrast, we apply a neural se-

quence labeling approach, inspired by the POS tagger of Plank, Søgaard, and Goldberg

(2016).

The Universal Dependencies (UD) scheme [de Marneffe et al. 2014] features a min-

imal set of 17 POS tags [Petrov, Das, and McDonald 2012] and supports tagging further

language-specific features using attribute-specific inventories. For example, a verb in Turk-

ish could be assigned a value for the evidentiality attribute, one which is absent from Dan-

ish. These additional morphosyntactic attributes are marked in the UD dataset as optional
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per-token attribute-value pairs, as demonstrated above.

Our approach for tagging morphosyntactic attributes is similar to the part-of-speech tag-

ging model of Ling et al. (2015), who attach a projection layer to the output of a sentence-

level bidirectional LSTM. We extend this approach to morphosyntactic tagging by dupli-

cating this projection layer for each attribute type. The input to our multilayer perceptron

(MLP) projection network is the hidden state produced for each token in the sentence by

an underlying LSTM, and the output is attribute-specific probability distributions over the

possible language-specific values for each attribute on each token in the sequence. For-

mally, for a given attribute a with possible values v ∈ Va, the tagging probability for the

i’th word in a sentence is given by:

P(awi
= v) = (Softmax(φ(hi)))v , (2.3)

with
(2.4)φ(hi) = Oa

W · tanh(Wa
h · hi + bah) + baW ,

where hi is the i’th hidden state in the underlying LSTM, and φ(hi) is a two-layer feedfor-

ward neural network, with affine weights {Wa
h, b

a
h} and {Oa

W , b
a
W}. We apply a softmax

transformation to the output; the value at position v is then interpreted as the probability

of attribute v applying to token wi. The input to the underlying LSTM is a sequence of

word embeddings, which are initialized to the Polyglot vectors when possible, and to MIM-

ICK vectors when necessary. Alternative initializations are considered in the evaluation, as

described in Section 2.1.4.

Each tagged attribute sequence (including POS tags) produces a loss equal to the sum

of negative log probabilities of the true tags. One way to combine these losses is to simply

compute the sum loss. However, many languages have large differences in sparsity across

morphosyntactic attributes, as apparent from Table 2.4 (rightmost column). We therefore

also compute a weighted sum loss, in which each attribute is weighted by the proportion of

training corpus tokens on which it is assigned a non-NONE value. Preliminary experiments
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Table 2.4: Languages used in tagging evaluation. Languages on the right are Indo-
European. *In Vietnamese script, whitespace separates syllables rather than words.

Language Branch Script Morpho. Tokens Language Branch Script Morpho. Tokens
type w/ attr. type w/ attr.

vi Vietnamese Vietic alphabetic* Analytic 00.0% fa Persian Iranian consonantal Agglut. 65.4%
hu Hungarian Finno-

Ugric
alphabetic Agglut. 83.6% hi Hindi Indo-

Aryan
alphasyllab. Fusional 92.4%

id Indonesian Malayic alphabetic Agglut. — lv Latvian Baltic alphabetic Fusional 69.2%
zh Chinese Sinitic ideographic Isolating 06.2% el Greek Hellenic alphabetic Fusional 64.8%
tr Turkish Turkic alphabetic Agglut. 68.4% bg Bulgarian Slavic alphabetic Fusional 68.6%
kk Kazakh Turkic alphabetic Agglut. 20.9% ru Russian Slavic alphabetic Fusional 69.2%
ar Arabic Semitic consonantal Fusional 60.6% cs Czech Slavic alphabetic Fusional 83.2%
he Hebrew Semitic consonantal Fusional 62.9% es Spanish Romance alphabetic Fusional 67.1%
eu Basque Vasconic alphabetic Agglut. 59.2% it Italian Romance alphabetic Fusional 67.3%
ta Tamil Tamil syllabic Agglut. 78.8% ro Romanian Romance alphabetic Fusional 87.1%

da Danish Germanic alphabetic Fusional 72.2%
en English Germanic alphabetic Analytic 72.8%
sv Swedish Germanic alphabetic Analytic 73.4%

on development set data were inconclusive across languages and training set sizes, and so

we kept the simpler sum loss objective for the remainder of our study. In all cases, part-

of-speech tagging was less accurate when learned jointly with morphosyntactic attributes.

This may be because the attribute loss acts as POS-unrelated “noise” affecting the common

LSTM layer and the word embeddings.

2.1.4 Experimental Settings

The morphological complexity and compositionality of words varies greatly across lan-

guages. While a morphologically-rich agglutinative language such as Hungarian contains

words that carry many attributes as fully separable morphemes, a sentence in an analytic

language such as Vietnamese may have not a single polymorphemic or inflected word in

it. To see whether this property is influential on our MIMICK model and its performance

in the downstream tagging task, we select languages that comprise a sample of multiple

morphological patterns. Language family and script type are other potentially influential

factors in an orthography-based approach such as ours, and so we vary along these param-

eters as well. We also considered language selection recommendations from de Marneffe

et al. (2014) and Schluter and Agić (2017).

As stated above, our approach is built on the Polyglot word embeddings. The inter-
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section of the Polyglot embeddings and the UD dataset (version 1.4) yields 44 languages.

Of these, many are under-annotated for morphosyntactic attributes; we select twenty-three

sufficiently-tagged languages, with the exception of Indonesian.4 Table 2.4 presents the

selected languages and their typological properties. As an additional proxy for morpho-

logical expressiveness, the rightmost column shows the proportion of UD tokens which are

annotated with any morphosyntactic attribute.

Metrics

As noted above, we use the UD datasets for testing our MIMICK algorithm on 23 languages5

with the supplied train/dev/test division. We measure part-of-speech tagging by overall

token-level accuracy.

For morphosyntactic attributes, there does not seem to be an agreed-upon metric for

reporting performance. Džeroski, Erjavec, and Zavrel (2000) report per-tag accuracies on a

morphosyntactically tagged corpus of Slovene. Faruqui et al. (2016) report macro-averages

of F1 scores of 11 languages from UD 1.1 for the various attributes (e.g., part-of-speech,

case, gender, tense); recall and precision were calculated for the full set of each attribute’s

values, pooled together.6 Agić, Ljubešić, and Merkler (2013) report separately on parts-

of-speech and morphosyntactic attribute accuracies in Serbian and Croatian, as well as

precision, recall, and F1 scores per tag. Georgiev et al. (2012) report token-level accuracy

for exact all-attribute tags (e.g. ‘Ncmsh’ for “Noun short masculine singular definite”)

in Bulgarian, reaching a tagset of size 680. Mueller, Schmid, and Schütze (2013) do the

same for six other languages. We report micro F1: each token’s value for each attribute

is compared separately with the gold labeling, where a correct prediction is a matching

non-NONE attribute/value assignment. Recall and precision are calculated over the entire

set, with F1 defined as their harmonic mean.
4Vietnamese has no attributes by design; it is a pure analytic language.
5When several datasets are available for a language, we use the unmarked corpus.
6Details were clarified in personal communication with the authors.
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Models

We implement and test the following models:

No-Char. Word embeddings are initialized from Polyglot models, with unseen words

assigned the Polyglot-supplied UNK vector. Following tuning experiments on all languages

with cased script, we found it beneficial to first back off to the lowercased form for an OOV

word if its embedding exists, and only otherwise assign UNK.

MIMICK. Word embeddings are initialized from Polyglot, with OOV embeddings in-

ferred from a MIMICK model (Section 2.1.2) trained on the Polyglot embeddings. Unlike

the No-Char case, backing off to lowercased embeddings before using the MIMICK output

did not yield conclusive benefits and thus we report results for the more straightforward

no-backoff implementation.

CHAR→TAG. Word embeddings are initialized from Polyglot as in the No-Char model

(with lowercase backoff), and appended with the output of a character-level LSTM updated

during training [Plank, Søgaard, and Goldberg 2016]. This additional module causes a

threefold increase in training time.

Both. Word embeddings are initialized as in MIMICK, and appended with a CHAR→TAG

LSTM trained during tagging.

Other models. Several non-Polyglot embedding models were examined, all performed

substantially worse than Polyglot. Two of these are notable: a random-initialization base-

line, and a model initialized from FastText embeddings (tested on English). FastText sup-

plies 300-dimension embeddings for 2.51 million lowercase-only forms, and no UNK vec-

tor.7 Both of these embedding models were attempted with and without CHAR→TAG con-

7Vocabulary type-level coverage for the English UD corpus: 55.6% case-sensitive, 87.9% case-insensitive.
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Table 2.5: POS tagging accuracy (UD 1.4 Test). Bold (Italic) indicates significant improve-
ment (degradation) by McNemar’s test, p < .01. * For reference, we copy the reported
results of Plank, Søgaard, and Goldberg (2016)’s analog to CHAR→TAG. Note that these
were obtained on UD 1.2, and without jointly tagging morphosyntactic attributes.

Ntrain = 5000 Full data

No-Char MIMICK CHAR Both Ntrain No-Char MIMICK CHAR Both PSG
→TAG →TAG 2016*

kk — — — — 4,949 81.94 83.95 83.64 84.88
ta 82.30 81.55 84.97 85.22 6,329 80.44 82.96 84.11 84.46
lv 80.44 84.32 84.49 85.91 13,781 85.77 87.95 89.55 89.99
vi 85.67 84.22 84.85 85.43 31,800 89.94 90.34 90.50 90.19
hu 82.88 88.93 85.83 88.34 33,017 91.52 93.88 94.07 93.74
tr 83.69 85.60 84.23 86.25 41,748 90.19 91.82 93.11 92.68
el 93.10 93.63 94.05 94.64 47,449 97.27 98.08 98.09 98.22
bg 90.97 93.16 93.03 93.52 50,000 96.63 97.29 97.95 97.78 98.23
sv 90.87 92.30 92.27 93.02 66,645 95.26 96.27 96.69 96.87 96.60
eu 82.67 84.44 86.01 86.93 72,974 91.67 93.16 94.46 94.29 95.38
ru 87.40 89.72 88.65 90.91 79,772 92.59 95.21 95.98 95.84
da 89.46 90.13 89.96 90.55 88,980 94.14 95.04 96.13 96.02 96.16
id 89.07 89.34 89.81 90.21 97,531 92.92 93.24 93.41 93.70 93.32
zh 80.84 85.69 81.84 85.53 98,608 90.91 93.31 93.36 93.72
fa 93.50 93.58 93.53 93.71 121,064 96.77 97.03 97.20 97.16 97.60
he 90.73 91.69 91.93 91.70 135,496 95.65 96.15 96.59 96.37 96.62
ro 87.73 89.18 88.96 89.38 163,262 95.68 96.72 97.07 97.09
en 87.48 88.45 88.89 88.89 204,587 93.39 94.04 94.90 94.70 95.17
ar 89.01 90.58 90.49 90.62 225,853 95.51 95.72 96.37 96.24 98.87
hi 87.89 87.77 87.92 88.09 281,057 96.31 96.45 96.64 96.61 96.97
it 91.35 92.50 92.45 93.01 289,440 97.22 97.47 97.76 97.69 97.90
es 90.54 91.41 91.71 91.78 382,436 94.68 94.84 95.08 95.05 95.67
cs 87.97 90.81 90.17 91.29 1,173,282 96.34 97.62 98.18 97.93 98.02

catenation. Another model, initialized from only MIMICK output embeddings, performed

well only on the language with smallest Polyglot training corpus (Latvian). A Polyglot

model where OOVs were initialized using an averaged embedding of all Polyglot vectors,

rather than the supplied UNK vector, performed worse than our No-Char baseline on a great

majority of the languages.

Last, we do not employ type-based tagset restrictions. All tag inventories are computed

from the training sets and each tag selection is performed over the full set.

Hyperparameters

Based on development set experiments, we set the following hyperparameters for all mod-

els on all languages: two LSTM layers of hidden size 128, MLP hidden layers of size equal

to the number of each attribute’s possible values; momentum stochastic gradient descent
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(a) Part-of-speech tagging (accuracy)

(b) Morpho-syntactic attribute tagging (micro-F1)

Figure 2.2: Results on agglutinative languages (top of each figure) and on Slavic languages
(bottom of each figure). X-axis is number of training tokens, starting at 500. Error bars are
the standard deviations over five random training data subsamples.
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Table 2.6: Micro-F1 for morphosyntactic attributes (UD 1.4 Test). Bold (Italic) type indi-
cates significant improvement (degradation) by a bootstrapped Z-test, p < .01, comparing
models as in Table 2.5. Note that the Kazakh (kk) test set has only 78 morphologically
tagged tokens.

Ntrain = 5000 Full data

No-Char MIMICK CHAR Both No-Char MIMICK CHAR Both
→TAG →TAG

kk — — — — 21.48 20.07 28.47 20.98
ta 80.68 81.96 84.26 85.63 79.90 81.93 84.55 85.01
lv 56.98 59.86 64.81 65.82 66.16 66.61 76.11 75.44
hu 73.13 76.30 73.62 76.85 80.04 80.64 86.43 84.12
tr 69.58 75.21 75.81 78.93 78.31 83.32 91.51 90.86
el 86.87 86.07 86.40 87.50 94.64 94.96 96.55 96.76
bg 78.26 81.77 82.74 84.93 91.98 93.48 96.12 95.96
sv 82.09 84.12 85.26 88.16 92.45 94.20 96.37 96.57
eu 65.29 66.00 70.67 70.27 82.75 84.74 90.58 91.39
ru 77.31 81.84 79.83 83.53 88.80 91.24 93.54 93.56
da 80.26 82.74 83.59 82.65 92.06 94.14 96.05 95.96
zh 63.29 71.44 63.50 74.66 84.95 85.70 84.86 85.87
fa 84.73 86.07 85.94 81.75 95.30 95.55 96.90 96.80
he 75.35 68.57 81.06 75.24 90.25 90.99 93.35 93.63
ro 84.20 85.64 85.61 87.31 94.97 96.10 97.18 97.14
en 86.71 87.99 88.50 89.61 95.30 95.59 96.40 96.30
ar 84.14 84.17 81.41 81.11 94.43 94.85 95.50 95.37
hi 83.45 86.89 85.64 85.27 96.15 96.21 96.59 96.67
it 89.96 92.07 91.27 92.62 97.32 97.80 98.18 98.31
es 88.11 89.81 88.58 89.63 94.84 95.44 96.21 96.84
cs 68.66 72.65 71.02 73.61 91.75 93.71 95.29 95.31

with 0.01 learning rate; 40 training epochs (80 for 5K settings) with a dropout rate of 0.5.

The CHAR→TAG models use 20-dimension character embeddings and a single hidden layer

of size 128.

2.1.5 Results

We report performance in both low-resource and full-resource settings. Low-resource train-

ing sets were obtained by randomly sampling training sentences, without replacement, until

a predefined token limit was reached. We report the results on the full sets and onN = 5000

tokens in Table 2.5 (part-of-speech tagging accuracy) and Table 2.6 (morphosyntactic at-

tribute tagging micro-F1). Results for additional training set sizes on selected classes of

languages are shown in Figure 2.2.

MIMICK as OOV initialization. In nearly all experimental settings on both tasks, across

languages and training corpus sizes, the MIMICK embeddings significantly improve over
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the Polyglot UNK embedding for OOV tokens on both POS and morphosyntactic tag-

ging. For POS, the largest margins are in the Slavic languages (Russian, Czech, Bul-

garian), where word order is relatively free and thus rich word representations are impera-

tive. Chinese also exhibits impressive improvement across all settings, perhaps due to the

large character inventory (> 12,000), for which a model such as MIMICK can learn well-

informed embeddings using the large Polyglot vocabulary dataset, overcoming both word-

and character-level sparsity in the UD corpus.8 In morphosyntactic tagging, gains are ap-

parent for Slavic languages and Chinese, but also for agglutinative languages — especially

Tamil and Turkish — where the stable morpheme representation makes it easy for subword

modeling to provide a type-level signal.9 To examine the effects on Slavic and agglutina-

tive languages in a more fine-grained view, we present results of multiple training-set size

experiments for each model, averaged over five repetitions (with different corpus samples),

in Figure 2.2.

MIMICK vs. CHAR→TAG. In several languages, the MIMICK algorithm fares better

than the CHAR→TAG model on part-of-speech tagging in low-resource settings. Table 2.7

presents the POS tagging improvements that MIMICK achieves over the pre-trained Poly-

glot models, with and without CHAR→TAG concatenation, with 10,000 tokens of train-

ing data. We obtain statistically significant improvements in most languages, even when

CHAR→TAG is included. These improvements are particularly substantial for test-set to-

kens outside the UD training set, as shown in the right two columns. While test set OOVs

are a strength of the CHAR→TAG model [Plank, Søgaard, and Goldberg 2016], in many

languages there are still considerable improvements to be obtained from the application

of MIMICK initialization. This suggests that with limited training data, the end-to-end

CHAR→TAG model is unable to learn a sufficiently accurate representational mapping from

8Character coverage in Chinese Polyglot is surprisingly good: only eight characters from the UD dataset
are unseen in Polyglot, across more than 10,000 unseen word types.

9Persian is officially classified as agglutinative but it is mostly so with respect to derivations. Its word-level
inflections are rare and usually fusional.
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Table 2.7: Absolute gain in POS tagging accuracy from using MIMICK for 10,000-token
datasets (all tokens for Tamil and Kazakh). Bold denotes statistical significance (McNe-
mar’s test,p < 0.01).

Test set Missing Full OOV
embeddings vocabulary (UD)

CHAR→TAG w/o with w/o with

Persian 2.2% 0.03 0.41 0.83 0.81
Hindi 3.8% 0.59 0.21 3.61 0.36
English 4.5% 0.83 0.25 3.26 0.49
Spanish 5.2% 0.33 -0.26 1.03 -0.66
Italian 6.6% 0.84 0.28 1.83 0.21
Danish 7.8% 0.65 0.99 2.41 1.72
Hebrew 9.2% 1.25 0.40 3.03 0.06
Swedish 9.2% 1.50 0.55 4.75 1.79
Bulgarian 9.4% 0.96 0.12 1.83 -0.11
Czech 10.6% 2.24 1.32 5.84 2.20
Latvian 11.1% 2.87 1.03 7.29 2.71
Hungarian 11.6% 2.62 2.01 5.76 4.85
Turkish 14.5% 1.73 1.69 3.58 2.71
Tamil* 16.2% 2.52 0.35 2.09 1.35
Russian 16.5% 2.17 1.82 4.55 3.52
Greek 17.5% 1.07 0.34 3.30 1.17
Indonesian 19.1% 0.46 0.25 1.19 0.75
Kazakh* 21.0% 2.01 1.24 5.34 4.20
Vietnamese 21.9% 0.53 1.18 1.07 5.73
Romanian 27.1% 1.49 0.47 4.22 1.24
Arabic 27.1% 1.23 0.32 2.15 0.22
Basque 35.3% 2.39 1.06 5.42 1.68
Chinese 69.9% 4.19 2.57 9.52 5.24

orthography. The next section seeks to quantify this and other benefits of the CHAR→TAG

architecture in more precise terms.

2.2 Analyzing the Role of Character RNN Units

2.2.1 Background

As shown in the previous section, character-level tagging models provide substantial per-

formance gains for sequence tagging across many types of languages. However, the mech-

anism by which they contribute to performance is still not clear, particularly whether or
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not they encode linguistic knowledge about morphology and orthography, and if so, how.

Different languages exhibit character-word correspondence in very different patterns, and

yet the bi-directional LSTM appears to be, or is assumed to be, capable of capturing them

all.

In this section, we challenge this implicit generalization by which character taggers

are “one size fits all (languages)”. We train CHAR→TAG sequence taggers (see § 2.1.4)

on a large selection of languages exhibiting various strategies for word formation, and

subject the resulting models to a novel analysis of the behavior of individual units in the

character-level Bi-LSTM hidden layer. Our protocol reveals differences in the ability of

the Bi-LSTM architecture to identify parts-of-speech, based on typological properties:

hidden layers trained on agglutinative languages find more regularities on the character

level than in fusional languages; languages that are suffix-heavy give a stronger signal to

the backward-facing hidden units, and vice versa for prefix-heavy languages. In short,

character-level recurrent networks function differently depending on how each language

expresses morphosyntactic properties in characters.

These empirical results motivate a novel Bi-LSTM architecture, in which the number of

hidden units is unbalanced across the forward and backward directions. We find empirical

correspondence between the analytical findings above and performance of such unbalanced

Bi-LSTM models, allowing us to translate the typological properties of a language into

concrete recommendations for model selection.

Analysis of Subword Models

Attempts to explain neural network performance by investigating hidden state activation

patterns on auxiliary or downstream tasks are a rapidly growing trend in current NLP re-

search [Alishahi et al. 2020]. On the word level, Linzen, Dupoux, and Goldberg (2016)

trained LSTM language models, evaluated their performance on grammatical agreement

detection, and analyzed activation patterns within specific hidden units. We build on this
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analysis strategy as we aggregate (character-) sequence activation patterns across all hidden

units in a model into quantitative measures.

Substantial work exists on the character level as well [Karpathy, Johnson, and Fei-Fei

2015; Vania and Lopez 2017; Kementchedjhieva and Lopez 2018; Gerz et al. 2018]. Smith

et al. (2018) examined the character component in multilingual parsing models empiri-

cally, comparing it to the contribution of POS embeddings and pre-trained embeddings.

Chaudhary et al. (2018) leveraged cross-lingual character-level correspondence to train

NER models for low-resource languages. Hahn and Baroni (2019) examine the ability

of character-level language models to distinguish parts-of-speech using a probing protocol.

Most related to our work is Godin et al. (2018), who compared CNN and LSTM character

models on a type-level prediction task on three languages, using the post-network softmax

values to see which models identify useful character sequences. Unlike their analysis, we

examine a more applied token-level task (POS tagging), and focus on the hidden states

within the LSTM model in order to analyze its raw view of word composition.

Our analysis assumes a characterization of unit roles, where each hidden unit is ob-

served to have some specific function. Findings from Linzen, Dupoux, and Goldberg

(2016) and others suggest that a single hidden unit can learn to track complex syntac-

tic rules. Radford, Jozefowicz, and Sutskever (2017) find that a character-level language

model can implicitly assign a single unit to track sentiment, without being directly super-

vised. Kementchedjhieva and Lopez (2018) also examine individual units in a character

model and find complex behavior by inspecting activation patterns by hand. In contrast,

our metrics are motivated by discovering these units automatically, and capturing unit-level

contributions quantitatively.

2.2.2 Tagging Task

We train a set of LSTM tagging models, following the setup of Ling et al. (2015). A word

representation trained only from a character-level LSTM submodule is fed into a word-level
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Table 2.8: Attributes and tagging accuracy by language (Irish and Thai do not have both
dev and test sets).

Language Affixation Morphological POS tagging accuracy %
synthesis Dev Test

Arabic strongly suff. introflexive 96.11 95.93
Bulgarian strongly suff. fusional 97.91 97.80
Coptic weakly pref. agglutinative 92.54 92.51
Danish strongly suff. fusional 95.59 95.46
Greek strongly suff. fusional 96.13 96.46
English strongly suff. fusional 93.65 93.30
Spanish strongly suff. fusional 95.75 95.00
Basque equal pre/suff. agglutinative 92.99 92.43
Persian weakly suff. fusional 96.07 96.10
Irish equal pre/suff. fusional 89.35
Hebrew weakly suff. introflexive 95.71 94.60
Hindi strongly suff. fusional 95.03 94.91
Hungarian strongly suff. agglutinative 94.14 92.00
Indonesian strongly suff. isolating 92.55 92.68
Italian strongly suff. fusional 96.82 96.95
Latvian weakly suff. fusional 94.70 93.09
Russian strongly suff. fusional 95.29 95.25
Swedish strongly suff. fusional 95.80 95.73
Tamil strongly suff. agglutinative 86.46 87.58
Thai little affixation fusional 91.37
Turkish strongly suff. agglutinative 92.08 92.48
Ukrainian strongly suff. fusional 95.68 95.26
Vietnamese little affixation isolating 88.51 86.58
Chinese strongly suff. isolating 93.05 93.11
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bidirectional LSTM, with each word’s hidden state subsequently fed into a two-layer per-

ceptron producing tag scores, which are then softmaxed to produce a tagging distribution.

For languages with additional morphosyntactic attribute tagging, we follow the architec-

ture in § 2.1 where the same word-level Bi-LSTM states are used to predict each attribute’s

value using its own perceptron+softmax scaffolding. In order to produce character models

which would be as informative as possible to our subsequent analysis, we do not include

word-level embeddings, pre-trained or otherwise, in our setup.

Language Selection

As our goal is to examine the relationship between character-level modeling and linguistic

properties, we drove language selection based on two morphological properties deemed

relevant to the architectural effects examined. All 24 datasets were obtained from Universal

Dependencies (UD) version 2.3 [Nivre et al. 2018], and linguistic properties were found

in the World Atlas of Language Structures [Bickel and Nichols 2013; Dryer 2013]. The

selected languages and their properties are presented in Table 2.8. We note that eleven of

the 24 languages selected are not Indo-European.

Affixation. To evaluate the role of forward and backward units in a bidirectional model,

we selected all languages available in UD which are not classified as either weakly or

strongly suffixing in inflectional morphology (the vast majority of UD languages). This

includes a single prefixing language (Coptic), two equally suffixing and prefixing languages

(Basque and Irish), and two languages with little affixation (Thai and Vietnamese).

Morphological synthesis. Linguistically functional features vary between expression as

distinct tokens (isolating languages), detectable unique character substrings (agglutinative),

fused together but still distinguishable from the stem (fusional), and non-linearly repre-

sented within the word form (introflexive). This property has been found to affect perfor-

mance in character-level models [Gerz et al. 2018; Chaudhary et al. 2018], and thus we
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select representatives of each group, including most available non-fusional languages.

Technical Setup

Most of our selected languages have only a single UD 2.3 treebank. For languages with

multiple treebanks we selected the largest, except in the cases of Spanish and Indonesian,

where we selected the GSD treebanks. The Irish IDT treebank has only a train and test

split, so we used the test set for early stopping. The Thai PUD treebank only provided a

single dataset with 1000 instances, which we shuffled and partitioned into a 850/150 split.

Tokens in all treebanks were normalized to remove noisy data: tokens containing “http”

were replaced with “URL” and tokens containing “@” were replaced with “EMAIL”. This

was most relevant (293 replacements) for the English treebank, which contained many long

URLs.

Hyperparameters. For the initial bidirectional character-level LSTM, we used a total

hidden state size of 128 (64 units in each direction). The character embedding size is set to

256, initialized using the method of Glorot and Bengio (2010). The word-level bidirectional

LSTM has two layers and a hidden state size of 128, with 50% dropout applied in the style

of Gal and Ghahramani (2016). Each attribute-prediction MLP has a single hidden layer

that is the same size as the tagset size for that attribute (see (2.4)), and includes a tanh

nonlinearity. Models were trained for up to 80 epochs, and we select the model with the

highest POS tagging accuracy on the dev set. Training used SGD with 0.9 momentum, and

all models were implemented using DyNet 2.0 [Neubig et al. 2017].

Results

In our initial setup, we represent words using a concatenation of the final states from a

bidirectional character-level LSTM with 64 forward and backward hidden units each. The

results for POS tagging, presented in Table 2.8, are on par with similar models [Plank,
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Søgaard, and Goldberg 2016, for example] despite not including a word-level type embed-

ding component. We attribute this success to our large character embedding size of 256,

corroborating findings reported by Smith et al. (2018).

2.2.3 Analysis

We next analyze the models trained on the tagging task in an attempt to see how their

character-level hidden states encode different manifestations of linguistic information. We

suggest that individual hidden units in the character-level sequence model attune to track

patterns in the words which would indicate their linguistic roles (POS and morphological

properties), and so patterns in character-role regularity across typologically different lan-

guages would manifest themselves in an observable form at the individual unit activation

level. This motivates us to devise metrics which would characterize languages through

aggregation of individual unit behaviour.

Metrics

For each language, we run the character-level BiLSTM from the trained tagger on POS-

unambiguous word types occurring frequently in the training set, grouped into their parts of

speech.10 This filtering was done in order to focus on the more consistent generalizations

found by the taggers during training, as our goal is to qualify properties of languages.11 On

each word w, we observe each hidden unit hi’s activation level (output) on each character

hci . We obtain a base measure b(w, i) based on the activation pattern. For example, an

average absolute base measure is defined as the average of absolute value activations:

bavg|·|(w, i) =
1

|w|

|w|∑
c=1

|hci |.

10We use 8 as our frequency threshold, and define unambiguous forms as ones tagged at least 60% of the
time with a single POS.

11This consideration also motivated our choice of UD data, which is tokenized to separate syntactic fusion
such as Hebrew and Arabic function words, or Spanish del.
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Figure 2.3: Activations of the English model’s unit 42 (forward) on the word characteriz-
ing. bavg|·| is 0.42, and bmad is 0.96 (the drop from the second i to n).

The max absolute diff base measure is defined as:

bmad(w, i) =
|w|−1
max
c=1
|hc+1
i − hci |.

Figure 2.3 demonstrates these two metrics for a sample (word, unit) pair, showing how

the former captures the general level of activation the word caused on the unit, while the

latter captures the local character pattern deemed most important by it. We intentionally

did not consider metrics based on the final activation values, the direct signals used by the

later layers in the model, as these bear no insight into the effect of a word’s composition on

the learned model.

Next, we derive a language-level metric for each hidden unit, based on the principle of

Mutual Information (MI). The base metric’s range ([0, 1) for bavg|·|, [0, 2) for bmad) is divided

into B bins of equal size, and base activations from each word are summed across each of

the T POS tag categories12, then normalized to produce a joint probability distribution. The

mutual information is computed as:

T∑
t=1

B∑
b=1

P (t, b)[ lnP (t, b)− lnP (t)− lnP (b)],

and we call the resulting number the POS-Discrimination Index, or PDI. Intuitively, a

higher PDI implies that the unit activates differently on words of different parts of speech,

12We omit the following “character-simple” part-of-speech tags: INTJ, NUM, PROPN, PUNCT, SYM, X.
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Figure 2.4: PDI values (bavg|·|) across hidden units in Coptic and English, shown in ordered
PDI values from largest to smallest, with blue (orange) bars indicating forward (backward)
units. The black line demarcates the median point of mass accumulation.

i.e. it is a better discriminator for the task.

At this point a per-language-trained model produces a set of dh PDI scores, one for each

hidden unit. We sort them from high to low, and define two language-level metrics: The

mass is the sum of PDI values for all units,M(L) :=
∑dh

i=1 PDI(L, i), intuitively meant to

quantify the degree of success the model has in assigning hidden units to discriminate POS

in this language. The head forwardness is the proportion of forward-directional units

before the point at which half of the mass accumulates (in a random setup, this number

would tend to 0.5):

∣∣∣{k :
∑k

i=1 PDI(L, i) ≤ M(L)
2
∧ hk is forward

}∣∣∣∣∣∣{k :
∑k

i=1 PDI(L, i) ≤ M(L)
2

}∣∣∣
This metric aims to quantify the relative importance of forward and backward units in

discriminating POS for L.

PDI Patterns

The PDI patterns on the bavg|·| base measure with B = 16 bins on all 24 languages are

presented in Table 2.9. We see that agglutinative languages, where we can expect a better

discrimination signal to emerge from the consistently-formed morphemes, cluster mostly at

the top of the PDI mass scale, suggesting more individual character-level units extract these
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signals successfully. Introflexive languages, where character sequences seldom correspond

to useful indications of POS or morphosyntactic attributes, cluster towards the bottom.

We present the full unit-level PDI value distributions for Coptic, a prefixing agglutina-

tive language, and English, a suffixing fusional language, in Figure 2.4 (trends for bmad are

similar). Consistent with other agglutinative languages, Coptic’s cumulative mass is very

large (M(cop) = 58.1), suggesting the predictive qualities of the sequence-based LSTM

allows good discrimination from the character signal, as one might expect from an agglu-

tinative language. Conversely,M(eng) = 16.0, demonstrating the difficulty presented by

fusional languages. The accumulation of 71% forward (80% backward) units in the head of

the Coptic (English) value ranking suggests an interesting relationship between affixation

and LSTM direction: LSTM units are likely to hone in on POS-indicative signals, which

often occur as affixes, in the beginning of their run, causing activation values to rise (in

absolute value) and stay large throughout the subsequent traversal of the stem. Unfortu-

nately, since no other prefixing languages are available in UD, we were not able to pursue

this hypothesis further.

Asymmetric Directionality

Based on these observations, we conduct a directionality balance study, where we vary the

number of hidden units in the forward and backwards dimensions. In addition to the models

analyzed above, which use 64 forward and 64 backward units (denoted hereafter 64/64),

we trained models with imbalanced directionality (128/0, 96/32, 32/96, 0/128). We test the

hypothesis that imbalanced models affect languages differently based on their linguistic

properties and statistical metrics. We note that these settings do not maintain parameter set

size: intra-direction transition operations are quadratic in that direction’s hidden layer size,

and so this adds a possible advantage in favor of direction-imbalanced models.

The results for this study are presented in Table 2.10 as well as averages for the language

categories listed in Table 2.8.
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Table 2.9: PDI statistics for UD 2.3 models, bavg|·| metric, sorted by the mass metric (sum
of PDIs). Agglutinative languages in bold, introflexive in italics.

Language Mass Mass % of forward
median units until
index median

Tamil 71.0 55 49.1
Irish 62.0 56 42.9
Coptic 58.1 56 71.4
Hungarian 47.9 55 50.9
Greek 31.2 55 45.5
Turkish 30.1 54 57.4
Russian 25.9 54 40.7
Thai 25.9 55 47.3
Ukrainian 25.0 54 37.0
Vietnamese 24.2 55 36.4
Chinese 23.8 47 42.6
Danish 21.7 54 44.4
Swedish 20.8 53 34.0
Basque 20.6 51 64.7
Indonesian 20.3 45 71.1
Latvian 17.0 52 42.3
Spanish 16.1 45 33.3
English 16.0 50 20.0
Bulgarian 15.6 52 46.2
Italian 14.1 48 56.2
Arabic 12.6 46 58.7
Hebrew 11.4 51 74.5
Persian 10.3 50 46.0
Hindi 8.4 51 41.2
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Table 2.10: POS tagging scores for various directionality imbalance settings, each point
averaged over three random seed runs; followed by macro-average aggregates over the
affixation and synthesis categories, where boldface denotes significance at p < 0.05 using
a paired two-tailed t-test.

Language 128/0 96/32 64/64 32/96 0/128

Arabic 96.29 96.08 96.06 96.09 96.16
Bulgarian 97.95 97.86 97.84 97.74 97.71
Coptic 93.10 92.80 92.58 92.98 92.91
Danish 95.93 95.68 95.61 95.60 95.70
Greek 96.19 96.07 96.01 96.00 95.93
English 93.86 93.74 93.65 93.80 93.87
Spanish 95.74 95.63 95.64 95.64 95.77
Basque 93.52 93.13 92.89 92.59 92.90
Persian 96.31 96.20 96.11 96.02 96.20
Irish 89.54 89.35 88.95 89.11 89.07
Hebrew 95.76 95.72 95.60 95.50 95.57
Hindi 95.35 95.22 95.12 95.11 95.25
Hungarian 94.25 94.29 94.20 93.97 94.00
Indonesian 92.42 92.34 92.49 92.53 92.55
Italian 97.00 96.78 96.87 96.88 97.01
Latvian 95.10 94.84 94.69 94.58 94.61
Russian 95.51 95.39 95.32 95.31 95.36
Swedish 95.93 95.69 95.64 95.52 95.85
Tamil 87.54 87.28 86.88 86.28 85.99
Thai 91.52 91.27 91.38 91.47 91.32
Turkish 93.14 92.45 92.06 92.03 92.09
Ukrainian 95.72 95.76 95.63 95.68 95.66
Vietnamese 87.98 87.92 88.23 87.83 87.85
Chinese 93.01 93.17 93.12 93.03 93.04

Inflectional Affixation Categories

S. suffix +0.22 +0.07 94.50 -0.06 -0.02
W. suffix +0.26 +0.12 95.46 -0.07 -0.01
Equal p/s +0.61 +0.32 90.99 -0.07 +0.06
Little aff. -0.06 -0.21 89.59 -0.16 -0.22
W. prefix +0.52 +0.22 92.91 +0.40 +0.33

Morphological Synthesis Categories

Introflex. +0.17 +0.05 95.87 -0.06 +0.01
Fusional +0.22 +0.07 94.95 +0.01 +0.06
Agglutina. +0.59 +0.27 91.58 -0.16 -0.15
Isolating -0.14 -0.13 91.15 -0.15 -0.13

Overall +0.25 +0.08 93.85 -0.05 -0.01
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One trend which emerges is the preference of agglutinative languages for imbalanced

models, whereas the other languages are little affected by this change. This could be ex-

plained by the increase in inter-unit interaction in the larger direction of an imbalanced

model — contiguous character sequences consistently encode reliable linguistic features in

these languages. A second finding is the slight bias of suffixing languages towards more

forward units and of the prefixing language to more backward units, indicating that hid-

den LSTM units are better in detecting formations close to their final state. Coupled with

the findings regarding PDI mass distribution in the different directional units in § 2.2.3,

we suggest that a subtle relationship exists between morphological information and model

directionality: units which end their run on the affix are more important for detecting the

POS signal, but it is more challenging for them to do so, and as a result more of them are

necessary. We also note the stability of isolating and little-affixing languages to direction-

ality balance, possibly owing to the relatively small significance of contiguous character

sequences in detecting word role. Lastly, we point out that the compromise sesquidirec-

tional models 96/32 and 32/96 did not tend to stand out significantly on our tested language

categories, suggesting there is no substantial middle-ground between the two popular tech-

niques of unidirectional and bidirectional LSTMs.
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2.3 Conclusions and Impact

In this chapter, I presented an algorithm which infers OOV word embedding vectors from

pre-trained, limited-vocabulary models, without need to access the originating corpus. This

method is particularly useful for low-resource languages and tasks with little labeled data

available, and in fact is task-agnostic. MIMICK improves performance over word-based

models on annotated sequence-tagging tasks for a large variety of languages across di-

mensions of family, orthography, and morphology. In later analysis, I showed that while

character-level Bi-LSTM models compute meaningful word representations across many

languages, the way they do it depends on each language’s typological properties. These

observations can guide model selection: for example, in agglutinative languages where a

strong preference for a single direction of analysis were observed, the use of unidirectional

character-level LSTMs could benefit models for such types of language.

At the time of publication, this chapter’s focus on static pre-trained word embeddings

and word-level LSTM prediction models was well-aligned with existing state-of-the-art

approaches. While in subsequent years the field has largely shifted to contextualized em-

beddings for sequence labeling tasks even in multilingual settings, a shift addressed in §4

and §5, it is worth noting that static embeddings are still a part of active research and

models being developed [Akbik et al. 2019; Atzeni and Recupero 2020; Chen, Yu, and

Lin 2020], and static embedding lexicons are still being used in settings such as analyzing

model interpretability [Wiegreffe and Pinter 2019; Mohankumar et al. 2020] and unsuper-

vised machine translation [Artetxe, Labaka, and Agirre 2018].

Since publication of the papers underlying this chapter, several follow-up studies have

been made to adapt MIMICK into different scenarios, as well as incorporate additional in-

formation into the underlying techniques. While my own attempts to replace the RNN

with a convolutional net provided inconclusive results, Zhao, Mudgal, and Liang (2018)

replaced it with a bag of character-ngram representations to a large degree of success on
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the UD datasets presented above. Schick and Schütze (2019) supplement MIMICK with a

module which attends over the output of the compositional net as well as contexts appear-

ing for words in the pre-training data (requiring access to this corpora, which we do not

assume). Garneau, Leboeuf, and Lamontagne (2018) and Garneau et al. (2019) attend over

the character-level output together with the context in the downstream task, showing gains

on most UD datasets compared with both this work and Zhao, Mudgal, and Liang’s.
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CHAPTER 3

RELATIONAL REPRESENTATIONS

This chapter explores the interaction of the relational approach for representing language

and the theory of distributional embeddings, as well as the different directions from which

OOVs can emerge in relational tasks. In §3.1, I introduce the M3GM model designed to

integrate global knowledge of the structure of a semantic graph into the local representa-

tions, obtained mostly distributionally, for the purpose of identifying relations within the

graph unseen during training. In addition to boosting performance of local-only models

when applied as a candidate re-ranker, M3GM offers the benefit of transparently represent-

ing structural properties in such graphs in the form of linearly-weighted features, allowing

post-training analysis that can gain insight into general tendencies of our linguistic and

conceptual spaces, as presented in §3.1.5. In §3.2, I reinterpret the definition of OOVs

in graph resources as a concrete use-case where novel entities are detected at real-time in

news stories and the task is to find their true place in an existing knowledge graph. The

resource presented in this section was mined from Bloomberg News and transformed onto

the Wikidata ontology, presenting recognition and alignment challenges which formed the

bulk of the effort.1

1The sections of this chapter are based on work published as: Y. Pinter and J. Eisenstein, “Predicting
Semantic Relations using Global Graph Properties”, in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium: Association for Computational Linguistics,
2018, pp. 1741-1751; and on Y. Pinter and A. Stent, “Creating a News-grounded Entity Discovery Dataset”,
in submission to AKBC 2021.
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3.1 Representing Semantic Relations using Global Graph Properties

3.1.1 Background

Semantic graphs, such as WordNet [Fellbaum 1998], encode the structural qualities of lan-

guage as a representation of human knowledge. On the local level, they describe connec-

tions between specific semantic concepts, or synsets, through individual edges representing

relations such as hypernymy (“is-a”) or meronymy (“is-part-of”); on the global level, they

encode emergent regular properties in the induced relation graphs. Local properties have

been subject to extensive study in recent years via the task of relation prediction, where

individual edges are found based mostly on distributional methods that embed synsets and

relations into a vector space [e.g. Socher et al. 2013; Bordes et al. 2013; Toutanova and

Chen 2015; Neelakantan, Roth, and McCallum 2015]. In contrast, while the structural reg-

ularity and significance of global aspects of semantic graphs is well-attested [Sigman and

Cecchi 2002], global properties have rarely been used in prediction settings. In this section,

we show how global semantic graph features can facilitate this kind of inference in local

tasks such as relation prediction.

To motivate this approach, consider the hypothetical hypernym graph fragments in Fig-

ure 3.1: in (a), the semantic concept (synset) catamaran has a single hypernym, boat. This

is a typical property across a standard hypernym graph. In (b), the synset cat has two

hypernyms, an unlikely event. While a local relation prediction model might mistake the

relation between cat and boat to be plausible, for whatever reason, a high-order graph-

structure-aware model should be able to discard it based on the knowledge that a synset

should not have more than one hypernym. In (c), an impossible situation arises: a cycle in

the hypernym graph leads each of the participating synsets to be predicted by transitivity

as its own hypernym, contrary to the relation’s definition. However, a purely local model

has no explicit mechanism for rejecting such an outcome.

In this section, we examine the effect of global graph properties on the link structure
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catamaran

boat

(a)

cat

mammalboat

(b)

cat

mammaltabby

(c)

Figure 3.1: Probable (a) and improbable (b-c) structures in a hypothetical hypernym graph.
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via the WordNet relation prediction task. Our hypothesis is that features extracted from

the entire graph can help constrain local predictions to structurally sound ones [Guo et al.

2007]. Such features are often manifested as aggregate counts of small subgraph structures,

known as motifs, such as the number of nodes with two or more outgoing edges, or the

number of cycles of length 3. Returning to the example in Figure 3.1, these two features

will trigger when graphs (b) and (c) are evaluated, respectively.

To estimate weights on local and global graph features, we build on the Exponential

Random Graph Model (ERGM), a log-linear model over networks utilizing global graph

features [Holland and Leinhardt 1981]. In ERGMs, the likelihood of a graph is computed

by exponentiating a weighted sum of the features, and then normalizing over all possible

graphs. This normalization term grows exponentially in the number of nodes, and in gen-

eral cannot be decomposed into smaller parts. Approximations are therefore necessary to

fit ERGMs on graphs with even a few dozen nodes, and the largest known ERGMs scale

only to thousands of nodes [Schmid and Desmarais 2017]. This is insufficient for WordNet,

which has an order of 105 nodes.

We extend the ERGM framework in several ways. First, we replace the maximum

likelihood objective with a margin-based objective, which compares the observed network

against alternative networks; we call the resulting model the Max-Margin Markov Graph

Model (M3GM), drawing on ideas from structured prediction [Taskar, Guestrin, and Koller

2004]. The gradient of this loss is approximated by importance sampling over candidate

negative edges, using a local relational model as a proposal distribution. The complexity

of each epoch of estimation is thus linear in the number of edges, making it possible to

scale up to the 105 nodes in WordNet.2 Second, we address the multi-relational nature of

semantic graphs, by incorporating a combinatorial set of labeled motifs. Finally, we link

graph-level relational features with distributional information, by combining the M3GM

2Although in principle the number of edges could grow quadratically with the number of nodes, Steyvers
and Tenenbaum (2005) show that semantic graphs like WordNet tend to be very sparse, so that the number of
observed edges grows roughly linearly with the number of nodes.
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with a dyad-level model over word sense embeddings.

We train M3GM as a re-ranker, which we apply to a a strong local-feature baseline on the

WN18RR dataset [Dettmers et al. 2018]. This yields absolute improvements of 3-4 points

on all commonly-used metrics. Model inspection reveals that M3GM assigns importance

to features from all relations, and captures some interesting inter-relational properties that

lend insight into the overall structure of WordNet.3

3.1.2 Max-Margin Markov Graph Models

Consider a graph G = (V,E), where V is a set of vertices and E = {(si, ti)}|E|i=1 is a set of

directed edges. The ERGM scoring function defines a probability over G|V |, the set of all

graphs with |V | nodes. This probability is defined as a log-linear function,

PERGM(G) ∝ ψERGM(G) = exp
(
θT f(G)

)
, (3.1)

where f is a feature function, from graphs to a vector of feature counts. Features are

typically counts of motifs — small subgraph structures — as described in §3.1.1. The

vector θ is the parameter to estimate.

We now discuss our adaptation of this model to the domain of semantic graphs, leverag-

ing their idiosyncratic properties. Semantic graphs are composed of multiple relation types

(hypernym, meronym, etc.), which the feature space needs to accommodate; their nodes are

linguistic constructs (semantic concepts) associated with complex interpretations, which

can benefit the graph representation through incorporating their embeddings in Rd into a

new scoring model. We then present our M3GM framework to perform reliable and efficient

parameter estimation on the new model.

3Our code is available at http://www.github.com/yuvalpinter/m3gm.
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Graph Motifs as Features

Based on common practice in ERGM feature extraction [e.g., Morris, Handcock, and

Hunter 2008], we select the following graph features as a basis:

• Total edge count;

• Number of cycles of length k, for k ∈ {2, 3};

• Number of nodes with exactly k outgoing (incoming) edges, for k ∈ {1, 2, 3};

• Number of nodes with at least k outgoing (incoming) edges, for k ∈ {1, 2, 3};

• Number of paths of length 2;

• Transitivity: the proportion of length-2 paths u → v → w where an edge u → w

also exists.

Semantic graphs are multigraphs, where multiple relation types (hypernymy, meronymy,

derivation, etc.) are overlaid atop a common set of nodes. For each relation r in the relation

inventoryR, we denote its edge set as Er, and redefine E =
⋃
r∈REr, the (disjoint) union

of all labeled edges. Some relations do not produce a connected graph, while others may

interact with each other frequently, possibly in regular but intricate patterns: for example,

derivation relations tend to occur between synsets in the higher, more abstract levels of the

hypernym graph (see §3.1.5). We represent this complexity by expanding the feature space

to include relation-sensitive combinatory motifs. For each feature template from the basis

list above, we extract features for all possible combinations of relation types existing in the

graph. Depending on the feature type, these could be relation singletons, pairs, or triples;

they may be order-sensitive or order-insensitive. For example:

• A combinatory transitivity feature will be extracted for the proportion of paths

u
hypernym−−−−−→ v

meronym−−−−−→ w where an edge u
has part−−−−→ w also exists.

• A combinatory 2-outgoing feature will be extracted for the number of nodes with

exactly one derivation and one has part.

59



The number of features thus scales in O(|R|K) for a feature basis which involves up to K

edges in any feature, and so our 17 basis features (with K = 3) generate a combinatory

feature set with roughly 3,000 features for the 11-relation version of WordNet used in our

experiments (see Section 3.1.3).

Local Score Component

In classical ERGM application domains such as social media or biological networks, nodes

tend to have little intrinsic distinction, or at least little meaningful intrinsic information

that may be extracted prior to applying the model. In semantic graphs, however, the nodes

represent synsets, which are associated with information that is both valuable to predicting

the graph structure and approximable using unsupervised techniques such as embedding

into a common d-dimensional vector space based on copious amounts of available data.

We thus modify the traditional scoring function from eq. (3.1) to include node-specific

information, by introducing a relation-specific association operator A(r) : V × V → R:

ψERGM+(G) = exp

θT f(G) +
∑
r∈R

∑
(s,t)∈Er

A(r)(s, t)

 . (3.2)

The association operator can be instantiated as any of the various models in existing

relation prediction literature, such as:

TransE [Bordes et al. 2013] embeds each relation r into a vector in the shared space, rep-

resenting a “difference” between sources and targets (inspired by the analogy task),

to compute the association score under a translational objective,

A(r)
TRANSE(s, t) = −‖es + er − et‖.

BiLin [Nickel, Tresp, and Kriegel 2011] embeds relations into full-rank matrices, comput-
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ing the score by a bilinear multiplication,

A(r)
BILIN(s, t) = eTs Wret.

DistMult [Yang et al. 2014] is a special case of BiLin where the relation matrices are

diagonal, reducing the computation to a ternary dot product,

A(r)
DISTMULT(s, t) = 〈es, er, et〉 =

d∑
i=1

esi eri eti .

Parameter Estimation

The probabilistic formulation of ERGM requires the computation of a normalization term

that sums over all possible graphs with a given number of nodes, GN . The set of such

graphs grows at a rate that is super-exponential in the number of nodes, making exact

computation intractable even for networks that are orders of magnitude smaller than se-

mantic graphs like WordNet. The problem of approximating this term has been an active

research topic for several decades, during which two common approximation methods have

emerged. In Maximum Pseudolikelihood Estimation [MPLE; Strauss and Ikeda 1990],

a graph’s probability is decomposed into a product of the probability for each edge, which

in turn is computed based on the ERGM feature difference between the graph excluding the

edge and the full graph. Further work found that applying a parametric bootstrap can in-

crease the reliability of MPLE, while retaining its superiority in training speed [Schmid and

Desmarais 2017]. Another popular approach is Monte Carlo Maximum Likelihood Esti-

mation [MCMLE; Snijders 2002] which follows a sampling logic, where a large number

of graphs is randomly generated from the overall space under the intuition that the sum of

their scores would give a good approximation for the total score mass. The probability for

the observed graph is then estimated following normalization conditioned on the sampling

distribution, and its precision increases as more samples are gathered.
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We opt to follow the MCMLE approach for M3GM, mainly due to the ability to keep

the number of edges constant in each sampled graph. This property is important in our

setup, since local edge scores added or removed to the overall graph score can occasionally

dominate the objective function, giving unintended importance to the overall edge count.

Formally, we estimate the probability in the following manner:

logP (G) ≈ logψ(G)− log
|G|V ||
M

M∑
G̃∼G|V |

ψ(G̃), (3.3)

where M is the number of networks G̃ sampled from G|V |, the space of all (multirelational)

edge sets on nodes V . Each G̃ is referred to as a negative sample, and the goal of estimation

is to assign low scores to these samples, in comparison with the score assigned to the

observed network G.

Network samples can be obtained using edge-wise negative sampling. For each edge

s
r−→ t in the training network G, we remove it temporarily and consider T alternative

edges, keeping the source s and relation r constant, and sampling a target t̃ from a proposal

distribution Q. Every such substitution produces a new graph G̃,

G̃ =G ∪ {s r−→ t̃} \ {s r−→ t}. (3.4)

Large-margin objective. Rather than approximating the log probability, as in MCMLE

estimation, we propose a margin loss objective: the log score for each negative sample G̃

should be lower than the log score for G by a margin of at least 1. This motivates the hinge

loss,

L(Θ, G̃;G) =
(

1− logψERGM+(G) + logψERGM+(G̃)
)
+
, (3.5)

where (x)+ = max(0, x). Recall that the scoring function ψERGM+ includes both the local

association score for the candidate edge and the global graph features for the resulting
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graph. However, it is not necessary to recompute all association scores; we need only

subtract the association score for the deleted edge s r−→ t, and add the association score for

the sampled edge s r−→ t̃.

The overall loss function is the sum overN = |E|×T negative samples, {G̃(i)}Ni=1, plus

a weighted L2 regularizer on the model parameters,

L(Θ;G) = λ||Θ||22+
N∑
i=1

L(Θ, G̃(i)). (3.6)

Proposal distribution. The proposal distribution Q used to sample negative edges is de-

fined to be proportional to the local association scores of edges not present in the training

graph:

Q(t̃ | s, r, G) ∝


0 s

r−→ t̃ ∈ G

A(r)(s, t̃) s
r−→ t̃ /∈ G .

(3.7)

By preferring edges that have high association scores, the negative sampler helps push the

M3GM parameters away from likely false positives.

3.1.3 Relation Prediction

We evaluate M3GM on the relation graph edge prediction task.4 Data for this task consists

of a set of labeled edges, i.e. tuples of the form (s, r, t), where s and t denote source and

target entities, respectively. Given an edge from an evaluation set, two prediction instances

are created by hiding the source and target side, in turn. The predictor is then evaluated on

its ability to predict the hidden entity, given the other entity and the relation type.5

4Sometimes referred to as Knowledge Base Completion, e.g. in Socher et al. (2013).
5We follow prior work in excluding the following from the ranked lists: the known entity (no self loops);

entities from the training set which fit the instance; other entities in the evaluation set.
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WN18RR Dataset

A popular relation prediction dataset for WordNet is the subset curated as WN18 [Bordes

et al. 2013; Bordes et al. 2014], containing 18 relations for about 41,000 synsets extracted

from WordNet 3.0. It has been noted that this dataset suffers from considerable leakage:

edges from reciprocal relations such as hypernym / hyponym appear in one direction in the

training set and in the opposite direction in dev / test [Socher et al. 2013; Dettmers et al.

2018]. This allows trivial rule-based baselines to achieve high performance. To alleviate

this concern, Dettmers et al. (2018) released the WN18RR set, removing seven relations

altogether. However, even this dataset retains four symmetric relation types: also see,

derivationally related form, similar to, and verb group. These symmetric relations can be

exploited by defaulting to a simple rule-based predictor.

Metrics

We report the following metrics, common in ranking tasks and in relation prediction in

particular: MR, the Mean Rank of the desired entity; MRR, Mean Reciprocal Rank, the

main evaluation metric; and H@k, the proportion of Hits (true entities) found in the top k

of the lists, for k ∈ {1, 10}. Unlike some prior work, we do not type-restrict the possible

relation predictions (so, e.g., a verb group link may select a noun, and that would count

against the model).

Systems

We evaluate a single-rule baseline, three association models, and two variants of the M3GM

re-ranker trained on top of the best-performing association baseline.

RULE We include a single-rule baseline that predicts a relation between s and t in the

evaluation set if the same relation was encountered between t and s in the training set. All

other models revert to this baseline for the four symmetric relations.
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Association Models The next group of systems compute local scores for entity-relation

triplets. They all encode entities into embeddings e. Each of these systems, in addition to

being evaluated as a baseline, is also used for computing association scores in M3GM, both

in the proposal distribution (see Section 3.1.2) and for creating lists to be re-ranked (see

below): TRANSE, BILIN, DISTMULT. For detailed descriptions, see Section 3.1.2.

Max-Margin Markov Graph Model M3GM is applied as a re-ranker. For each rela-

tion and source (target), the top K candidate targets (sources) are retrieved based on the

local association scores. Each candidate edge is introduced into the graph, and the score

ψERGM+(G) is used to re-rank the top-K list.

We add a variant to this protocol where the graph score and association score are

weighted by α and 1 − α, repsectively, before being summed. We tune a separate αr

for each relation type, using the development set’s mean reciprocal rank (MRR). These

hyperparameter values offer further insight into where the M3GM signal benefits relation

prediction most (see Section 3.1.5).

Since we do not apply the model to the symmetric relations (scored by the RULE base-

line), they are excluded from the sampling protocol described in eq. (3.5), although their

edges do contribute to the combinatory graph feature vector f .

Our default setting backpropagates loss into only the graph weight vector θ. We ex-

periment with a model variant which backpropagates into the association model and synset

embeddings as well.

Synset Embeddings

For the association component of our model, we require embedding representations for

WordNet synsets. While unsupervised word embedding techniques go a long way in rep-

resenting wordforms [Collobert et al. 2011; Mikolov et al. 2013; Pennington, Socher, and

Manning 2014], they are not immediately applicable to the semantically-precise domain of
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synsets. We explore two methods of transforming pre-trained word embeddings into synset

embeddings.

Averaging. A straightforward way of using word embeddings to create synset embed-

dings is to collect the words representing the synset as surface form within the WordNet

dataset and average their embeddings [Socher et al. 2013]. We apply this method to pre-

trained GloVe embeddings [Pennington, Socher, and Manning 2014] and pre-trained fast-

Text embeddings [Bojanowski et al. 2017], averaging over the set of all wordforms in all

lemmas for each synset, and performing a case-insensitive query on the embedding dictio-

nary. For example, the synset determine.v.01 lists the following lemmas: determine, find,

find out, ascertain. Its vector is initialized as

1

5
(edetermine + 2 · efind + eout + eascertain).

AutoExtend retrofitting + Mimick. AutoExtend is a method developed specifically for

embedding WordNet synsets [Rothe and Schütze 2015], in which pre-trained word em-

beddings are retrofitted to the tripartite relation graph connecting wordforms, lemmas, and

synsets. The resulting synset embeddings occupy the same space as the word embeddings.

However, some WordNet senses are not represented in the underlying set of pre-trained

word embeddings.6 To handle these cases, we trained a Mimick model (§2.1), which learns

to predict embeddings for out-of-vocabulary items based on their spelling. We do not mod-

ify the spelling conventions of WordNet synsets before passing them to Mimick, so e.g.

mask.n.02 (the second synset corresponding to mask as a noun) acts as the input character

sequence as is.

Random initialization. In preliminary experiments, we attempted training the associ-

ation models using randomly-initialized embeddings. These proved to be substantially

6We use the out-of-the-box vectors supplied in http://www.cis.lmu.de/˜sascha/
AutoExtend.
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Table 3.1: Results on development set (all metrics except MR are x100). M3GM lines use
TRANSE as their association model. In M3GMαr , the graph component is tuned post-hoc
against the local component per relation.

System MR MRR H@10 H@1

RULE 13396 35.26 35.27 35.23

1 DISTMULT 1111 43.29 50.73 39.67
2 BILIN 738 45.36 52.93 41.37
3 TRANSE 2231 46.07 55.65 41.41

4 M3GM 2231 47.94 57.72 43.26
5 M3GMαr 2231 48.30 57.59 43.78

weaker than distributionally-informed embeddings and we do not report their performance

in the results section. We view this finding as strong evidence to support the necessity of a

distributional signal in a type-level semantic setup.

Setup

Following tuning experiments, we train the association models on synset embeddings with

d = 300, using a negative log-likelihood loss function over 10 negative samples and iterat-

ing over symmetric relations once every five epochs. We optimize the loss using AdaGrad

with η = 0.01, and perform early stopping based on the development set mean reciprocal

rank. M3GM is trained in four epochs using AdaGrad with η = 0.1. We set M3GM’s re-rank

list size K = 100 and, following tuning, the regularization parameter λ = 0.01 and neg-

ative sample count per edge T = 10. Our models are all implemented in DyNet [Neubig

et al. 2017].

3.1.4 Results

Table 3.1 presents the results on the development set. Lines 1-3 depict the results for

local models using averaged fastText embedding initialization, showing that the best per-

formance in terms of MRR and top-rank hits is achieved by TRANSE. Mean Rank does not

align with the other metrics; this is an interpretable tradeoff, as both BILIN and DISTMULT
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Table 3.2: Main results on test set. † These models were not re-implemented, and are
reported as in Nguyen et al. (2018) and in Dettmers et al. (2018).

System MR MRR H@10 H@1

RULE 13396 35.26 35.26 35.26

COMPLEX† 5261 44 51 41
CONVE† 5277 46 48 39
CONVKB† 2554 24.8 52.5

TRANSE 2195 46.59 55.55 42.26

M3GMαr 2193 49.83 59.02 45.37

have an inherent preference for correlated synset embeddings, giving a stronger fallback for

cases where the relation embedding is completely off, but allowing less freedom for sepa-

rating strong cases from correlated false positives, compared to a translational objective.

Effect of global score. There is a clear advantage to re-ranking the top local candidates

using the score signal from the M3GM model (line 4). These results are further improved

when the graph score is weighted against the association component per relation (line 5).

We obtain similar improvements when re-ranking the predictions from DISTMULT and

BILIN.

The M3GM training procedure is not useful in fine-tuning the association model via

backpropagation: this degrades the association scores for true edges in the evaluation set,

dragging the re-ranked results along with them to about a 2-point drop relative to the un-

tuned variant.

Table 3.2 shows that our main results transfer onto the test set, with even a slightly

larger margin. This could be the result of the greater edge density of the combined training

and dev graphs, which enhance the global coherence of the graph structure captured by

M3GM features. To support this theory, we tested the M3GM model trained on only the

training set, and its test set performance was roughly one point worse on all metrics, as

compared with the model trained on the training+dev data.
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Table 3.3: Select heavyweight features (motifs) following best dev set training using
M3GM. Circled nodes count towards the motif.

Positive

1 s
member meronym−−−−−−−−−−−→ t

2 s
has part−−−−−→ t

3 s
hypernym−−−−−−→ t

derivationally related form−−−−−−−−−−−−−−−−−→ u

Negative

4 s
hypernym−−−−−−→ t

5 s
hypernym←−−−−−→ t

6 s
member meronym−−−−−−−−−−−→ t

instance hypernym−−−−−−−−−−−−→ u

7 s1
has part−−−−−→ t

verb group←−−−−−− s2

Synset embedding initialization. We trained association models initialized on AutoEx-

tend+Mimick vectors (see Section 3.1.3). Their performance, inferior to averaged fastText

vectors by about 1-2 MRR points on the dev set, is somewhat at odds with findings from

previous experiments on WordNet [Guu, Miller, and Liang 2015]. We believe the decisive

factor in our result is the size of the training corpus used to create fastText embeddings,

along with the increase in resulting vocabulary coverage. Out of 124,819 lemma tokens

participating in 41,105 synsets, 118,051 had embeddings available (94.6%; type-level cov-

erage 88.1%). Only 530 synsets (1.3%) finished this initialization process with no embed-

ding and were assigned random vectors. AutoExtend, fit for embeddings from Mikolov et

al. (2013) which were trained on a smaller corpus, offers a weaker signal: 13,377 synsets

(32%) had no vector and needed Mimick initialization.

3.1.5 Graph Analysis

As a consequence of the empirical experiment, we aim to find out what M3GM has learned

about WordNet. Table 3.3 presents a sample of top-weighted motifs. Lines 1 and 2 demon-

strate that the model prefers a broad scattering of targets for the member meronym and

has part relations (example edges: America → American, face → mouth, respectively),
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Table 3.4: Successful M3GM re-ranking examples.
Source Relation Correct Outranking

target local target(s)

indian lettuce hypernym herb garden lettuce

austria has part vienna germany,
hungary, france,
european union

Table 3.5: Graph score weights found for relations on the dev set. Zero means graph score
is not considered at all for this relation, one means only it is considered.

Relation r αr Relation r αr

mem. of domain usage 0.78 hypernym 0.64
mem. of domain region 0.77 domain topic of 0.38
member meronym 0.67 has part 0.33
instance hypernym 0.65

which are flat and top-downwards hierarchical, respectively, while line 4 shows that a mul-

titude of unique hypernyms is undesired, as expected from a bottom-upwards hierarchical

relation. Line 5 enforces the asymmetry of the hypernym relation.

Lines 3, 6, and 7 hint at deeper interactions between the different relation types. Line

3 shows that the model assigns positive weights to hypernyms which have derivationally-

related forms, suggesting that the derivational equivalence classes in the graph tend to exist

in the higher, more abstract levels of the hypernym hierarchy (i.e., shop is more likely to

also be a verb than its hyponym bodega). Line 6 captures a semantic conflict: synsets lo-

cated in the lower, specific levels of the graph can be specified either as instances of abstract

concepts (example instance hypernym edge: Rome→ national capital), or as members of

less specific concrete classes, but not as both. Line 7 may have captured a nodal property:

since part of is a relation which holds between nouns, and verb group holds between verbs,

this negative weight assignment may be the manifestation of a part-of-speech uniqueness

constraint. In addition, in features 3 and 7 we see the importance of symmetric relations

(here derivationally related form and verb group, respectively), which manage to be rep-

resented in the graph model despite not being directly trained on.
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Table 3.4 presents examples of relation targets successfully re-ranked thanks to these

features. The first false connection created a new unique hypernym, garden lettuce, down-

graded by the graph score through incrementing the count of negatively-weighted feature

4. In the second case, vienna was brought from rank 10 to rank 1 since it incremented the

count for the positively-weighted feature 2, whereas all targets ranked above it by the local

model were already has part-s, mostly of europe.

The αr values weighing the importance of M3GM scores in the overall function, found

per relation through grid search over the development set, are presented in Table 3.5.

It appears that for all but two relations, the best-performing model preferred the signal

from the graph features to that from the association model (αr > 0.5). Based on the

surface properties of the different relation graphs, the decisive factor seems to be that

synset domain topic of and has part pertain mostly to very common concepts, offering

good local signal from the synset embeddings, whereas the rest include many long-tail,

low-frequency synsets that require help from global features to detect regularity.

3.2 Creating a News-grounded Entity Discovery Dataset

3.2.1 Background

Knowledge Graphs (KGs) are a useful tool for many tasks in and adjacent to NLP [Hoff-

mann et al. 2011; Damljanovic and Bontcheva 2012; Zheng et al. 2012; Berant et al. 2013;

Daiber et al. 2013; Heck, Hakkani-Tür, and Tur 2013; Bordes, Chopra, and Weston 2014;

Sun et al. 2020], as well as to downstream business applications [Ma et al. 2015; Gomez-

Perez et al. 2017; Qian et al. 2017; Hubauer et al. 2018]. Much recent research has focused

on representation of entities and relations within KGs [Socher et al. 2013; Bordes et al.

2014; Grover and Leskovec 2016; Dettmers et al. 2018; Raiman and Raiman 2018; Wang,

Kulkarni, and Wang 2020, inter alia]. A number of large-scale KGs are freely available,

built using open-sourced and crowdsourced information, such as WikiData (maintained

by the WikiMedia foundation) [Vrandečić and Krötzsch 2014], YAGO [Tanon, Weikum,
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and Suchanek 2020] and FreeBase [Bollacker et al. 2008]. In addition, organizations may

construct their own proprietary databases of entities, attributes and relationships. Organiza-

tions may lack the resources to keep these databases up to date by hand, but may be able to

update them automatically using ontology alignment with public knowledge graphs [e.g.,

Trisedya, Qi, and Zhang 2019; Algergawy et al. 2019], and/or NLP and knowledge base

completion techniques [e.g., Verga, Neelakantan, and McCallum 2017; Zhao et al. 2020;

Sun et al. 2020; Davison, Feldman, and Rush 2019].

In this section, we set out to survey the advantages and challenges of such an effort,

using knowledge base completion assisted by named entity recognition on a set of news

stories from Bloomberg. As part of this endeavour, we release the Bloomberg News Entities

Dataset, or BBNE, for the benefit of the research community.

The BBNE is a two-part resource extracted and constructed using a semi-automatic

procedure which we describe at length in §3.2.2. It consists of: (a) a set of time-stamped

news stories in English from Bloomberg news, automatically annotated at the token level

with named entities, and (b) an associated subset of WikiData corresponding to entities

mentioned in (a).

The stories in the resource are ordered chronologically in order to support a real-time

knowledge discovery scenario, where a new (test set) story introduces a target entity and

a system is tasked with placing the target entity in the knowledge graph, detecting the

entities related to the target (as well as each relation’s type). This scenario occurs “in the

wild” for real-time knowledge-rich systems ingesting news stories from a feed. To this

end, the knowledge graph portion of the resource is divided into training, development and

test partitions corresponding to the time of each entity’s first appearance in the stories. We

demonstrate a usage scenario for this resource in the context of an actual global-interest

event which took place within its timespan, namely the murder of Jamal Khashoggi in

October 2018 and its unfolding in the news (§3.2.4).

While implementing the pipeline procedure used to create the dataset, we were faced
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Table 3.6: A sample story with annotations.
Metadata Story (fragment) Entities {ID: text (charac-

ter range)}

Date
2018-03-13T18:00:00.000

Story ID
rand id 536462

Headline
Shell Risks Losing Gas
Race as Rival Targets
Shared Reservoir

After a decade planning the
world’s largest floating gas
export plant, Royal Dutch
Shell Plc ’s supplies could
get tapped by a competitor
first. Shell and Japan’s In-
pex Corp. are both target-
ing gas from a connected
reservoir in Australia’s re-
mote Browse Basin, about
200 kilometers (125 miles)
off its northwest coast, ac-
cording to consultant Wood
Mackenzie Ltd. (...)

{Q154950: Shell (headline
0–5)}
{Q154950: Royal Dutch
Shell Plc (71–92)}
{Q154950: Shell (145–
150)}
{Q1654229: Inpex Corp.
(163–174)}
{Q8032236: Wood
Mackenzie Ltd (343–
362)}
(...)

with multiple decisions at crucial points, such as determining the extent of heuristic match-

ing we allow for translating entities from an internal knowledge graph into the standard

WikiData ontology; or the degree to which we then enrich the graph induced from Wiki-

Data so as to capture meaningful relations between the focal entities while not including too

much irrelevant information or information which would be too revealing for the intended

use case. We present a statistical analysis of our extracted knowledge graph against some

alternatives which other plausible choices for these decisions would produce (§3.2.3).

The format in which the resource is released can also be easily applied for other tasks

such as named entity recognition, knowledge graph link prediction (where both entities are

known), and relation extraction. An example of the data is provided in Tables 3.6 (stories)

and 3.7 (graph).

3.2.2 Resource Creation

The BBNE was created using the procedure outlined in Figure 3.2. After selecting news

stories from a pre-determined time period, we used a named entity detection system to
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Table 3.7: A snippet from the Knowledge Graph relating to entities from the story in Ta-
ble 3.6.

Source Relation Target

Q154950 (Royal Dutch Shell) P414 (traded in) Q171240 (London Stock Exchange)
Q2065985 (Eric Wiebes) P108 (employer) Q154950 (Royal Dutch Shell)
Q1654229 (Inpex) P414 (traded in) Q217475 (Tokyo Stock Exchange)
Q8032236 (Wood Mackenzie) P159 (HQ located in) Q23436 (Edinburgh)

extract entities mentioned in the headline and text of each story. Then, we performed a

heuristic search to align the found entities to the open-source WikiData. We then used the

matched WikiData entities and their relations to extract a subset of the WikiData-labeled

knowledge graph. Finally, we partitioned BBNE into train, development, and test sets in a

manner tuned to the knowledge graph discovery scenario.

News Story Extraction

We used all stories published on Bloomberg’s public web site between January 1, 2018 and

November 27, 2018. The resource contains 132,500 stories. For each story we provide the

date and time of publication, a unique story ID, the story headline, and the story text body.

We performed minimal text preprocessing: removal of HTML markup and rule-based re-

moval of bylines. Following this preprocessing, the corpus headlines contain 1,553,854

tokens in 138,019 sentences (11.7 and 1.04 per headline, respectively); the bodies are com-

prised of 86,795,984 tokens in 3,598,133 sentences (655 and 27 per story, respectively).

Counting was performed using NLTK’s default tokenizer [Loper and Bird 2002].

This corpus is larger than most news corpora used for named entity detection and

knowledge base completion research, including the English News Treebank [Bies, Mott,

and Warner 2015], CoNLL-YAGO [Hoffart et al. 2011] and the TAC KBP Entity Linking

and Discovery datasets [Ellis, Getman, and Strassel 2018], but smaller than large multi-

year news corpora such as English Gigaword [Parker et al. 2011] or the New York Times

Annotated Corpus [Sandhaus 2008].
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extract news stories

run named en-
tity detection

match entities to KG

expand/extract KG

partition stories
and associated KG

132,500 stories

2,450,667 mentions, 48,724 entities

15,921 entities

24,805 entities

Figure 3.2: Procedure for creating the BBNE resource
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Named Entity Detection

We used a proprietary named entity detection (NED) system to extract named entities from

the stories’ full text (headline + body) and link them to an existing non-WikiData, non-

relational entity database which includes PER (person) and ORG (organization) entities.

2,450,667 mentions (1,166,887 PER, 1,283,780 ORG) of 48,724 distinct entities (28,807

PER, 19,917 ORG) were detected in this phase. We retained the location of each entity

mention within each story in order to allow text-matching and exact context extraction by

users of the data set.

The named entity labels on this resource are limited in two ways:

• They are automatically annotated. Therefore, some entity mentions are spurious,

missing or partial; and some entity links are missing or incorrect.

• They are restricted to persons and organizations. Other entity types (e.g. locations,

events, works of art) are not labeled.

We hope that other researchers will nonetheless find these annotations useful or be

inspired to add their own annotations, as has been done for other automatically annotated

corpora [e.g., Napoles, Gormley, and Van Durme 2012].

Entity Matching

We mapped our entities into the ontology provided by WikiData [Vrandečić and Krötzsch

2014], which is an openly available graph structure based on data from Wikipedia: nodes

represent entities, abstract concepts, and metadata information, and are connected via edges

representing different types of encoded relations. We matched the 48,724 entities against

WikiData’s 56.3M entity dump from May 2019 using a sieve of manual filters ordered by

descending level of perceived accuracy. Each filter was written following manual coverage

miss analysis on the previous filter’s outputs. Matching was done on the entity type level

(i.e. using the internal KG’s canonical names and not each mention in the text), and the
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WikiData join key used was entity.labels.en.value. Matches to multiple Wiki-

Data entities were resolved to the matched WikiData entity with the smallest numerical ID,

often corresponding to the more significant entity. The filters are depicted in Figure 3.3.

• Exact textual match (8,381 exact, 255 case insensitive): does any name or alias of

this entity exactly match the name of a WikiData entity?

• Match after ignoring the middle name for PER (person) entities (1,928): does any

name or alias of this person, after the middle name is dropped, exactly match the

name of a WikiData entity? No case-insensitive matching was performed for this

phase.

• Match after ignoring corporate suffixes for ORG (organization) entities (4,560 exact,

263 case-insensitive): does any name or alias of this organization exactly match the

name of a WikiData entity, excluding any suffixes from a manually-composed list?7

• Match after ignoring final quoted nicknames for PER (person) entities (195 exact,

339 when also ignoring middle names): does any name or alias of this person, after

excluding final quoted nicknames (e.g. Charles Ellis Schumer “Chuck”), exactly

match the name of a WikiData entity? Here, again, no case-insensitive matching was

performed.

The total number of WikiData aligned entities is 15,921 entities, or 32.68% of the original

set. Subsequent manual sampling showed no other potential high-precision filters, and we

assume the majority of unmatched entities from the input database do not exist in WikiData.

Some examples of matched and unmatched entities are given in Table 3.8. We call the

resulting set of WikiData entities ‘Support Entities’, or SE.

7We search for the following 27 suffixes: ‘Ltd’, ‘Inc’, ‘LLC’, ‘Corp’, ‘SA’, ‘PLC’, ‘Co’, ‘LP’, ‘LLP’,
‘AG’, ‘AB’, ‘AS’, ‘SpA’, ‘GmbH’, ‘PAC’, ‘NV’, ‘Bhd’, ‘PJSC’, ‘PCL’, ‘SAS’, ‘JSC’, ‘BV’, ‘PT’, ‘CV’,
‘SE’, ‘ASA’, ‘A/S’.

77



Table 3.8: Examples of entities caught in the various steps of the heuristic matching sieve.
Matching phase Entity type Entity name in internal KG Matched Wiki ID

Exact match PER Keisha Lance Bottoms Q42770663
Exact match ORG Waseda University Q274486
Case-insensitive match ORG Consumer Federation Of America Q5164659
Middle name PER Charlotte Mary Hogg Q20876064
Corporate suffix ORG Advanced Micro Devices Inc Q128896
Final nickname PER Charles Ellis Schumer “Chuck” Q380900

Unmatched PER Jamal T Kheiry –
(Sr. Communications Manager at Marathon Petroleum Corporation)

Unmatched ORG New SDRL Ltd –
(A re-organized incorporation of Seadrill Limited, Q1477156)

exact string
match?

mention
type?

match excluding
middle name?

match after
dropping
corporate
suffixes?

match excluding
final quoted
nicknames?

stop

8,381 exact matches /
255 case insensitive

PER

ORG 1,928 matches

4,560 exact matches /
263 case insensitive

195 exact matches /
399 also excluding middle name

Figure 3.3: Heuristic process for matching entities to names/aliases of WikiData entities.
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Knowledge Graph Extraction

We mined the WikiData graph for all relations adjacent to any pair of entities in the set SE.

6,748 relation edges were found where both endpoints are among the 15,921 SE entities,

suggesting a very sparse graph with many mutually-disconnected components. This is not

surprising, as SE entities are limited to persons and organizations, which only relate to

each other via a limited set of possible connections such as employee. Still, person and

organization entities may well be connected via meaningful paths along the knowledge

graph longer than one edge, for example organizations which share location or persons

with the same alma mater. These shared related entities would not be identified in the raw

story texts by a NED system designed to detect entities within types of interest (e.g. persons

and organizations) alone, or may even not appear in them at all to begin with. Their role as

possible connection inducers between the other entities should not be discarded, however,

and so we seek them in WikiData and include them in our dataset. Specifically, we traversed

WikiData to find all entities (of any type) which are connected to at least two distinct SE

members, and found 9,241 such entities (out of a total of 46,805 SE-adjacent entities),

which we term Adjacent Entities or AE. In the complete dataset, we include the induced

graph for all 24,460 entities in SE ∪ AE, which includes all relations between any two

entities in either set. The statistics for this graph are detailed in Table 3.9.

In §3.2.3 we recount the process leading to the decisions described in this subsubsec-

tion, and suggest subsets of the data which are relevant for various uses.

Resource Format

The BBNE news story corpus is partitioned temporally into training (January-July), de-

velopment (August-September), and test (October-November) stories and associated graph

fragments. The final resource consists of:

• A partitioned list of stories, each annotated for their publication time, text, and all
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Table 3.9: Dataset statistics. Top: stories; bottom: graph. Counts in parentheses correspond
to dev instances not in train, and test instances not in train or dev. Discrepancies between
entity type counts and graph entity counts are due to AE entities and degree-0 SE entities.

Train Dev (new) Test (new)

Stories 79,725 (22,741) (23,292)
Entity Types 12,440 6,389 (1,725) 6,323 (1,399)
Entity Instances 400,326 109,328 (3,802) 115,333 (3,511)

(1,354,208 total, including unmatched entities)

Graph Entities 21,413 5,292 (1,685) 4,494 (1,362)
Relation Types 359 188 (2) 182 (0)
Edges 151,561 (12,332) (9,828)

contained entities (each with: span in text, canonical WikiData ID if matched, and

canonical entity name). Mentions whose entities were not matched in WikiData are

not recorded in the dataset.

• A list of all relations in the knowledge graph, partitioned according to the later of

each edge’s entities’ first appearance in the news corpus.8

Count statistics are presented in Table 3.9. The highest-degree entities in the training

set graph (6,000+ edges) are Q5 (human) and Q30 (United States of America), both AE

entities. In fact, among the top 50 highest-degree entities, only three are of story origin

(SE), all of which identified ORGs: Q148 (People’s Republic of China), Q13677 (New

York Stock Exchange) and Q865 (Taiwan), ranking 17th, 26th, and 33th, respectively. Note

the discrepancy between the designation of the PRC and the USA as different entity types,

arising from the idiosyncrasies of the originating internal KG but reconciled thanks to our

entity expansion step.

This structure was designed for the task of knowledge graph discovery, assuming a

scenario like the one illustrated in Figure 3.4: A system tasked with real-time text analy-

sis is being built, with access to a WikiData-type knowledge graph (KG) and to an NED

component. It ingests news stories as they come in, and outputs insights for users who
8Adjacent Entities, which do not appear in the corpus (see §3.2.2), are assumed to be ‘pre-known’ from

before 2018 and adjacent edges appear based on their in-corpus neighbor.
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ingest news story

run named en-
tity detection

entities in
KG?

add entities to KG

generate user insights

YES

NO

Figure 3.4: Knowledge graph discovery and insight generation. The component to be
trained using BBNE is highlighted.

are interested in the entities mentioned in each news story. A main challenge is the case

where the NED component detects an entity that is novel with respect to the KG compo-

nent. The system must then initialize the entity’s node in the graph and connect it to other

entities using the appropriate relation types, based only on the knowledge obtained from

the story: the entity’s name (the mention), the other entities detected in the story, and the

context of the story’s headline and body. It may use a contextualized language model for

this task, a knowledge graph embedding algorithm, any other components, or a combina-

tion of two or more of these. The BBNE, by construction, enables training such a system:

any model-internal components may be trained sequentially on the KG being built using

the train partition, and evaluated on the unseen entities emerging in the dev and test stories

(for which true relations are supplied). This scenario is further discussed in §3.2.4.
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Table 3.10: Graph and corpus statistics for incrementally permissive entity matching sieves
(Figure 3.3).

Rules |SE| |SE ∪AE| SE-edges Total edges Train set stories
with ≥ 5 entities

Exact match 8,381 14,572 2,423 105,867 13,772 (17%)
+case-insensitive 8,636 14,977 2,517 108,866 14,387 (18%)
+middle-name 10,564 18,124 3,541 133,671 17,787 (22%)
+corporate-suf 15,387 24,021 6,473 161,164 32,721 (41%)
+nicknames (=all) 15,921 24,805 6,748 169,809 33,512 (42%)

3.2.3 Analysis

During the creation of the resource, we made several choices that impact the nature of the

extracted KG: its size, graph topology, amenability to machine learning techniques, and

more. In this section, we analyze the decision spaces for three of these choices: (a) the

choice of entity matching heuristics that led to the creation of SE; (b) the inclusion criteria

for AE; and (c) the inclusion criteria for relations between and among members of SE and

AE.

Entity Matching Heuristics

The choice to use the specific entity matching heuristics described in §3.2.2 was a rolling

one, determined sequentially by manually sampling unmatched entities after each imple-

mented step, targeting the next easily-detectable group of matchable entities. Each step

was devised conservatively to maximize precision, and yet the released SE set is nearly

twice as large as it would be had we only used exact text matching.

We present representative statistics for alternative seed SE sets, keeping all other de-

cisions constant, in Table 3.10. We see that graph size in terms of AE entities and overall

edges scale more or less linearly with the number of SE entities, but the number of stories

in the training set contributing a substantial signal for context mining of SE entities be-

comes sizeable only in the final steps. Additional examination of the distributions of edges

gained in each step also reveals a more delicate pattern, where steps creating a balance
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Figure 3.5: Number of entities and edges in the knowledge graph based on different in-
creasing the number of SE entities to which an AE entity must be adjacent (log-scale).

between PER and ORG entities in SE, most notably the corporate suffix heuristic,

contribute a large amount of edges to the important SE-SE section of the graph, while not

adding as many to the noisier (from task perspective) AE-AE section (a 1:3 ratio, as op-

posed to a 1:5 ratio for the middle name step, which increases the bias in favor of PER

entities). We conclude that our choice of the entity alignment heuristics was beneficial in

keeping the size of the extracted KG and its internal balance fitting for the target task.

Inclusion Criterion for Adjacent Entities

We chose to collect all WikiData entities related to at least two SE entities (§3.2.2); we

made this choice to expand the WikiData-extracted KG beyond SE, while avoiding the

introduction of too many irrelevant WikiData entities which would dilute the relevance of

the extracted KG to downstream applications.

We did not collect precise statistics for more inclusive expansions of the KG beyond
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SE; looking at entities adjacent to adjacent entities to SE suggested the extracted KG

would grow by orders of magnitude due to AE-internal edges. Here we consider subsets

of AE constructed by restricting KG expansion to only those entities that touch at least k

entities from SE (where k > 2).

Figure 3.5 presents the sizes of possible expanded WikiData sub-KGs as a function of

stricter inclusion thresholds: theAE entity set, the set of edges connecting SE entities with

AE entities, and edges internal to the AE-induced graph. All three demonstrate rapidly

decreasing trends, closely following a power law series (0.995 ≤ R2 ≤ 0.998), suggesting

a preferential attachment dynamic [Barabási and Albert 1999] where a non-SE entity

tends to relate to the SE entities that already have external connections, a pattern known to

exist in other aspects of knowledge graphs [Kolyvakis, Kalousis, and Kiritsis 2020].

From the perspective of graph density, rather than size, the adjacency filter appears to

have a linear effect, as seen in Figure 3.6. Both the average degree of an AE entity in the

bipartite graph induced by the SE-AE partition, and the rate of connected pairs within the

internal AE-graph projection, scale roughly linearly with the threshold value. While the

former is to be expected by definition of the threshold, the slope is substantially steeper

than 1. These trends indicate that non-SE entities do not interact with SE entities in a

special manner; they possess a higher degree, which is evenly distributed across the overall

graph with respect to the SE entities.

Overall, the findings from this analysis appear to indicate that the set SE of support

entities appearing in Bloomberg news stories over the period January–November 2018 is a

plausible representative subset of WikiData entities.

Relation Pruning

The released BBNE includes all relation edges of all types, as long as they connect two

nodes from the set of entities SE∪AE. However, it is plausible that our process resulted in

retaining too many relation types, some of which unnecessary for the PER/ORG-centered
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Figure 3.6: Ratio proxies for edge density of SE-AE and AE-AE connections based on
different adjacency thresholds for AE entities.

scenario we wish to deal with. Curating a too-large set of relation types can reduce the

ability of models to capture the semantics of rarely-occurring relation types, as evidenced

by the observed long-tail distribution of many KG datasets [Xie, Liu, and Sun 2016] and

the creation of KGs with reduced relation type inventory [Bordes et al. 2014]. Specifically,

neural models often represent each relation using its own embedding [Bordes et al. 2014;

Grover and Leskovec 2016] or matrix [Sutskever, Tenenbaum, and Salakhutdinov 2009;

Socher et al. 2013], leading to an underfitting scenario, where a model must learn a large

number of relation-specific parameters based on a handful of instances. In feature-based

methods which include interactions between relations, each added relation incurs polyno-

mial complexity costs (see §3.1.2).

In Table 3.11 we show the size of the WikiData sub-KG remaining after trimming vari-

ous sets of relation types and, subsequently, filteringAE to maintain the 2-degree threshold

analyzed in the previous section.
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Table 3.11: The effects of removing relations from the BBNE KG.
Removed relation types |AE| |SE ∪ AE| Edges

None (released graph) 9,241 24,805 169,809
Top 1 (P31) 8,886 24,450 146,920
Top 10 (count > 5, 000) 5,858 21,422 69,014
Bottom 38 (singletons) 9,239 24,803 169,762
Bottom 143 (count < 10) 9,183 24,747 169,088

We note the stark difference in effect of removing common and rare relation types. Re-

moving just the single most common relation from the graph (P31 - instance of)

strips 355 AE entities (4%) of their status as connecting at least two SE nodes, including

substantial ones such as Q786820 automobile manufacturer and Q875538 public uni-

versity; and removes 13.48% of the edges in the KG, where 722 of these 22,889 removed

edges are non-P31 edges which were adjacent to nodes no longer in the graph. Taking out

the ten most common relations reduces the size of AE by more than a third, and the edge

count by more than one half. In the new graph, no relation occurs more than 5,000 times.

In contrast, removing all 38 singleton relations from the graph (e.g. P4647 location

of first performance) barely makes a dent in its structure, removing two entities from AE

(United States Naval Special Warfare Development Group and Lugano) and 0.02% of the

graph’s edges, while reducing the relation type vocabulary by 10.5%. Extending this rule

to all relations with fewer than 10 appearances in the graph removes 58 entities (0.2%) and

721 edges (0.042%) from the graph with the benefit of reducing the type vocabulary by

nearly 40%, to 210.

3.2.4 Knowledge Graph Discovery Use Case

In §3.2.1, we said that this resource might be useful for knowledge graph completion re-

search, or to research methods for automatically generating insights for new entities / rela-

tionships in a streaming news scenario. To demonstrate these uses of this resource, we look

at novel entities in the dev and test sets.
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Of the 1,725 novel dev set entities, 1,523 (88%) received fewer mentions in the test

set, indicating that entities on a whole exhibit peaks in their mention behavior, with only

a small minority lasting for sustained presence in the public eye. In fact, 1,418 dev set

entities (82%) do not appear at all in the test set.

The ephemeral quality of novel entities is better exemplified by the test set, where the

most prominent new entity, by far, is Jamal Khashoggi (Q1262052), the Saudi journal-

ist whose death in October 2, 2018 sparked much media interest which has since mostly

subsided. This entity racked up 721 mentions in BBNE stories, compared with just 20 for

the second-highest novel entity of the period, a retired Belgian politician set to return to

the international stage. This mention count ranked Khashoggi at 21st of all test set entities,

above, among others, former US president Barack Obama.

The first story mentioning Khashoggi was published on October 3 at 3:07 AM UTC.

He is mentioned by name once, within the following context:

Separately, the Washington Post reported that its contributor Jamal Khashoggi,

a vocal critic of the Saudi government, had entered the Saudi consulate in Is-

tanbul on Tuesday afternoon and that many hours later there had still been no

news from him.

This context should suffice a system trained for knowledge discovery to attach him to entity

journalist (Q1930187) via the relation occupation (P106), although the exact word is

not present there (nor elsewhere in the story). The relation country of citizenship (P27)

connecting him in the graph to Saudi Arabia (Q851) should be even more straightforward.

3.2.5 Related Work

The construction of this resource involves two basic elements: named entity detection, and

entity alignment.

Named Entity Detection Corpora. There are relatively few corpora annotated with linked

named entities (that is, named entity identifiers into a knowledge graph). The four most
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often used, in decreasing order of use, are:

• TAC KBP EDL data (2010-2013), with subsequent reannotations through TAC KBP

2020 [Ellis, Getman, and Strassel 2018]. This resource consists of 13,639 documents

with entities and their links to various knowledge graphs (including, in 2019, YAGO).

• AIDA CoNLL-YAGO [Hoffart et al. 2011] consists of a re-annotation of the English

CoNLL 2003 data to add entity links to one of YAGO, Freebase or Wikipedia.

• AIDA-EE [Hoffart, Altun, and Weikum 2014] consists of annotations on top of 300

English Gigaword 5 documents to add entity links to Wikipedia.

• Wikilinks-NED [Eshel et al. 2017] where, unlike the three above, the annotated en-

tities and links are constructed automatically, by finding English text snippets from

the web that include inbound links to Wikipedia.

Like the TAC KBP EDL and AIDA corpora, the BBNE consists of newswire text. Like

Wikilinks-NED, it consists of automatically annotated entities and entity links to Wikipedia.

Entity Alignment. The work done to extract a WikiData sub-KG for this resource is basic

entity alignment. There is a small but growing literature on entity alignment, which itself is

a subfield of ontology alignment. Ontology alignment has been an area of research since at

least the early 2000s, with the first machine learning approach being [Ehrig, Staab, and Sure

2005], and a long-running workshop series [Algergawy et al. 2019]. The first paper we can

find that refers explicitly to entity alignment is Hao et al. (2016) and work has continued,

focusing on knowledge graph embeddings and bootstrapping from a small set of known

entity alignments [e.g., Zhu et al. 2017; Sun, Hu, and Li 2017; Pei et al. 2019]. Most of this

work focuses on aligning ontologies that were created with a similar focus, such as wikis

from different languages. In our case, we are dealing with mapping between two ontologies

of very different foci, in particular one that focuses largely on person and organization

entities and another with entities of many different types. Therefore, the relation alignment
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and graph structure techniques used in previous work on entity alignment are not suitable.

Instead, we use simple heuristics to assign WikiData IDs to entities in our data.

3.3 Conclusion

In this chapter I introduced a novel method for reasoning about semantic graphs like Word-

Net, M3GM, which combines the distributional coherence between individual entity pairs

with the structural coherence of network motifs. Applied as a re-ranker, this method sub-

stantially improves performance on link prediction, and further analysis (lines 6 and 7 in

Table 3.3) suggests that adding graph motifs which qualify their adjacent nodes in terms of

syntactic function or semantic category may also prove useful.

The properties of M3GM as a probabilistic model support a further hypothesis that it

could be used for more than predicting individual edges. In a setting where a new entity

needs to be linked into a semantic graph, given only the vector embedding, M3GM should

excel as it is able to add multiple edges simultaneously and score them as a bundle accord-

ing to whether they maintain structural coherence. This provided an initial motivation to

the dataset creation project described in §3.2, where we found the resulting graph to be ex-

tremely challenging for state of the art base models available at the time. Hence, evaluation

of M3GM’s contribution to the task was impossible, and the project did not advance past

dataset creation. Exceedingly challenging or not, the Bloomberg News Entities Dataset re-

mains a dataset which is considerably faithful to a real-world scenario, comprised of news

stories automatically annotated with linked named entities, a subset of which have been

automatically mapped to WikiData; and a sub-KG of WikiData based on the entities men-

tioned in the news stories. Its temporal split and incremental annotation can inspire research

on knowledge graph completion, named entity detection, and streaming news analytics.

An unexplored angle in this chapter has been the multilingual one. I would thus like

to explicitly state that the work done here is not language-dependent. The structural pa-

rameters estimated by M3GM are not specific to English: for example, hypernymy cannot
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be symmetric in any language. If the structural parameters estimated from English Word-

Net are transferable to other languages, then the combination of M3GM and multilingual

word embeddings could facilitate the creation and extension of large-scale semantic re-

sources across many languages [Lafourcade 2007; Fellbaum and Vossen 2012; Bond and

Foster 2013]. Similarly, WikiData is a multilingually-linked resource, and copious news

feeds exist in many other languages serving time-critical business applications. Exten-

sion of the BBNE itself to other languages aligned with either the translated Bloomberg

stories or stories from another source could provide a unique test bed for ideas about mul-

tilingual knowledge base propagation, perhaps taking advantage of coverage differences in

WikiData curation across languages. For example, the Italian version of WikiData might

include more complete information about Italian politicians, and if a story pertaining to one

comes up in the English news source, a multilingual KB can be more helpful in relating

them in the graph than an English-only KB.
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CHAPTER 4

QUANTIFYING THE OOV PROBLEM IN NATURAL SETTINGS

As noted in §1.4, the space of OOVs is not a monolith; new words can be introduced as a

result of many linguistic and extra-linguistic processes. The compositional and relational

approaches each offer remedy to some classes of OOVs. Other work yet tackles specific,

individual categories: typographical errors [Sakaguchi et al. 2017], domain-specific termi-

nology [Du, Way, and Zydron 2016], stylistic variability [van der Goot 2019], morphologi-

cal productivity [Mueller and Schuetze 2011], or novel named entities [Hoffart, Altun, and

Weikum 2014]. In reality, unseen texts contain all these classes of novelty, and more. OOVs

are a typically presented as a significant challenge for generalization or understanding in

noisy user-generated text (e.g. Twitter) and/or domain-specific content [Eisenstein 2013];

but even large corpora that are narrow in domain, such as edited news stories, contain

linguistic innovations, including but not limited to novel morphological processes, typo-

graphical errors, and loanwords. This chapter introduces an experimental resource unique

in both its adherence to real-world settings and the tasks it facilitates. In §4.1 I present its

extraction process, the annotation taxonomy, and the task of classifying OOVs into their

source of novelty, and show that state-of-the-art model architectures relying on both distri-

butional and compositional methods, as well as on local context, do not achieve satisfactory

results. In §4.2 I delve into the most challenging classes of word formation sources, lexical

compounds and blends, first demonstrating how the latter’s loss of character content lies

at the heart of a contextual model’s struggle to represent them, and then gauging various

systems’ ability to reconstruct blend source words.1

1The sections of this chapter are based on work published as: Y. Pinter, Cassandra L. Jacobs, and Max
Bittker, “NYTWIT: A Dataset of Novel Words in the New York Times”, in Proceedings of the 28th Inter-
national Conference on Computational Linguistics, Barcelona, Spain (Online): International Committee on
Computational Linguistics, Dec. 2020, pp. 6509–6515; and Y. Pinter, Cassandra L. Jacobs, and Jacob Eisen-
stein. “Will it Unblend?”, in Proceedings of the 2020 Conference on Empirical Methods in Natural Language
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4.1 A Type-annotated Dataset of Novel Words in Context

4.1.1 Background

In this section, we present a dataset of novel words in English relative to the corpus of

articles published by the New York Times (NYT), as collected automatically in real time by

a Twitter bot. We name it the New York Times Word Innovation Types corpus, or NYTWIT

for short. We annotated each word for one of eighteen linguistically-informed categories

of novelty within the context of the NYT corpus, as well as for its date of publication and

a retrieval document identifier to enable context extraction.2 To our knowledge, this is the

first resource to include novel words along with their contextual information in addition

to linguistically-informed annotation, a method that enables expansion beyond dictionary-

based methods [Cook and Stevenson 2010; Dhuliawala, Kanojia, and Bhattacharyya 2016;

Ahmad 2000] and decontextualized neologisms [Kulkarni and Wang 2018]. In contrast

with resources which provide examples and attestations to lexical forms, NYTWIT was

constructed in a corpus-comprehensive manner where novelty guides curation and not vice

versa.

In addition, we provide results for the task of classifying words into their categories

based on word form and contextual information, a task which can both provide data for

linguistic analysis of lexical enrichment and serve as a processing step for NLP systems

which may work better if different modules are applied to different classes of novel words.

We show that both character-level models and large pre-trained sentence encoders struggle

on this task, illustrating the challenges of modeling language innovation. We release the

data under the GNU General Public License v3.0.3

Processing: Findings, Online: Association for Computational Linguistics, Nov. 2020, pp. 1525–1535.
2Context articles themselves cannot be published without licensing from the New York Times.
3The data is available at https://github.com/yuvalpinter/nytwit.
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4.1.2 The New York Times Word Innovation Types Dataset

Our dataset relies on tweets by the NYT First Said bot4, which operates by scraping new

articles as they post on the NYT site and tweeting out novel words following a filtering

process which we will describe at a high level.5 After tokenizing on white space and

punctuation, the precision-oriented script rejects capitalized words in order to avoid proper

nouns (at the cost of missing sentence-initial true OOVs). langid [Lui and Baldwin

2012] is used to reject non-English sentences, while still allowing loanwords in English

sentences. Words are queried against the historical NYT search API to detect unpublished

words.6 For the time range of our collected corpus, November 7, 2017 to March 28, 2019,

a bandwidth limit of five words per 30 minutes was imposed, but we confirmed that this

did not have a substantial effect on OOV coverage, leaving our artifacts distributionally

representative for the news domain. Words are queried against the historical NYT search

API to detect unpublished words.7

An associated context bot replies to the tweets with links to the original articles.8 We

used the URLs from this bot’s posts as the main reference for the words’ contexts. For 17

words, the article URL was retrieved manually by searching for the target article directly.

As the articles are subject to edits long after publication, there is an increasing but small

portion of articles which no longer contain the context, although at time of publication

these mostly include the removal of typographical errors from the stories and which are

ultimately filtered by our annotation process (see below).

4https://twitter.com/NYT_First_Said
5The code for the bot is available at https://github.com/MaxBittker/NYT-first-said.
6We note that the search index relies on imperfect, although extensive, digitization artifacts. At the time

of writing, in a sample of 450 terms from our dataset, four were entries in the Oxford English Dictionary,
nearly all of which belong to the domain or foreign categories.

7We note that the search index relies on imperfect, although extensive, digitization artifacts.
8https://twitter.com/NYT_Said_Where
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Annotation

The extracted data was independently annotated and filtered by Yuval Pinter and Cassan-

dra Jacobs, linguists by qualification. Initially, all 2,587 words were assigned one of 20+

tags inspired by the word formation literature [Kiparsky 1982; Klymenko 2019]. Certain

categories were filter categories intended to capture and exclude false positives from the

final dataset: DUPLICATE for inflections of words already appearing in the dataset in a

morphologically simpler form, e.g. batchcode and batchcodes; FOREIGN and PRP for for-

eign words and proper names (mostly all-lowercase Twitter usernames) which were not

caught by the automatic filtering; SPACES and TYPO for unintended cases of space omis-

sion and typographical errors which were not caught by NYT editors.9 The filtered items

are provided in the dataset under the label FILTERED.

Agreement between the annotators at this phase was 68% over all labels, at 0.6495

Cohen’s Kappa. Following category filtering, amounting to 40% of the original dataset,

agreement over the remaining 1,550 words was calculated to be 65% at 0.61 Kappa. At

the coarse-grained level, agreement on the four themes (lexical / morphological / syntactic

/ sociopragmatic) was 89% at 0.75 Kappa.10 The annotators then examined each other’s

annotations and agreed on some consolidation of rarely-occurring original labels, as well

as introduction of new labels deemed useful post-hoc.

We describe the eighteen categories in the finalized dataset, organized by a thematic

grouping not explicitly annotated. The taxonomy, with category counts, is summarized

in Table 4.1.

Lexical OOVs. We deem certain categories to arise from the fact that the NYT, while

being interested in many aspects of life, has not had the chance to delve into each and every

one at depth over its 168 years of existence. These are the DOMAIN label for technical terms
9The overwhelming share of these words have indeed since been deleted from the NYT website.

10A reviewer noted that these are low agreement rates, and compared the task to part-of-speech annotation.
We dispute the comparison, both on grounds of the novelty of the forms involved and of the mechanical
syntactic nature of the majority of POS tagging decisions.
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from uncommon domains (e.g. glossopoeia); the INNOVATION label for terms coined with

no discernable prevailing linguistic process (e.g. swanicles, a term from a work of fiction);

and the ONOMATOPEIA label for sound-based sequences (e.g. ktktk), which includes cases

of verbatim vocalization such as trololo.

Morphological OOVs. In this group we include categories of words composed of

meaning-carrying units present in existing English words which have appeared in the NYT

before, manifested in a new form. In increasing order of syntactic and semantic novelty,

they are: INFL, unseen inflections of existing wordforms: same part-of-speech, different

syntactic attributes (e.g. pennyloafers);11 DERIV, unseen derivations of existing words into

new parts-of-speech which carry no semantic distancing beyond the one existing in the new

part-of-speech itself (e.g. foamability); AFFIX, affixation of very distinct base words which

are typically derivational in nature but include a semantic charge (e.g. extraphotographic,

pizzaless); AFFIX LIBFIX, affixation of distinct base words with particles extracted from

another word in a process known as libfixation [Zwicky 2010] or splintering [Berman

1961], where the liberated affix still elicits the originating word but can be freely attached

to a growing selection of words (e.g. dripware); COMPOUND TRANSPARENT, a concate-

nation of two complete words each contributing essential semantics to the final form in

a way we deem (subjectively, with help of context) to be compositional (e.g. smellwalks,

strolls focusing on olfactory input); COMPOUND OPAQUE, a concatenation of base words

resulting in a new semantic concept deemed remote from the bases (e.g. nothingbuffet, a

play on nothingburger); and BLEND, a fusion of two or more base forms together where

original characters are lost or shared, or new ones are added (e.g. chipster, a hipster of

chicano origin).

11We include the negating prefixes in- and un-, which change a word’s meaning, but retain its part-of-
speech.
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Syntactic OOVs. This group consists solely of the SYNTH category of tokens which

synthesize multiple syntactic words into one form, a rare formation process in English

limited typically to auxiliary contractions (e.g. this’ll).

Sociopragmatic OOVs. Words in this group exhibit an orthographic diversion from stan-

dard English usually intended as a statement of register or status, or as a faithful represen-

tation of a certain linguistic style or sentiment. ARCHAIC, a register of older variants of

English or an ironic semblance of such (e.g. shooketh, a mock-archaic form of shake using

Middle English morphology); DIALECT, a geographically- or demographically-specific

form of a word typically spelled differently in the NYT (e.g. skwarsh, an r-full squash);

INFIX, a morphological tool reserved in English for expletive emphasis [McCawley 1978]

(e.g. unfreakingbelievable); PHONAESTHEME, a phonological duplication phenomenon

used in contemporary English nearly only as derisive echo reduplication borrowed from

Yiddish [Wales and Ramsaran 1990] (e.g. schmarket); LENGTHENING, a written mani-

festation of the expressive elongation of phonetic segments (e.g. greaaaaat); VARIANT,

spelling alternations or intentional typos which are not intended to be read differently from

the standard form of the word, used for branding and jest (e.g. kyllyng); and SPACES SIC,

the removal of whitespace to simulate breathlessness (e.g. lineafterlineafterline).

Naturally, some annotation cases are not clear-cut, as evidenced by the imperfect inter-

annotator agreement. We found the most challenging cases to be among the morphological

categories, where an affix is either semantically null (DERIV / INFL) or not (AFFIX) (14%

and 15% of disagreements, respectively); where a sense of the nearest in-vocabulary word

can signal the difference between INFL and DERIV (3.4%); where an AFFIX LIBFIX has

been “liberated” enough from the underlying word such that it is now simply an AFFIX

(does cyber- still envoke the full word cybernetics? Does crypto- envoke cryptography?);

if it has not been liberated yet, it should be a BLEND or a COMPOUND. In addition, the pre-

processing phase required a demarcation between DOMAIN and FOREIGN which was not
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easy to make given the heavy foreign-word influence in certain knowledge domains such

as cuisine (e.g. dinkelbrot). Words adapted into English morphology would usually lead to

a DOMAIN label (DOMAIN vs. COMPOUND: 4%). In many cases, we found the contexts

in which the words were introduced to give sufficient disambiguation (so, e.g., cybercoach

is an affix, but cyberinvasion is a compound).

4.1.3 OOV Classification Task

The task of classifying OOVs, i.e. assigning a novel word with a label from the taxon-

omy we defined above, can be beneficial from both an analytical linguistic standpoint, and

from an NLP standpoint concerned with model performance on downstream language un-

derstanding tasks. To get a sense of the predictability of the various OOV classes in the

dataset, we present several baselines for this straightforward task. The uniqueness of our

dataset allows us to apply both type-level and context-dependent systems, the latter operat-

ing in the real-world scenario of encountering a word for the first time in the actual context

of its introduction to the corpus.

First, our Majority class baseline assumes all OOVs are the result of affixation.

For all following models we trained a ridge classifier with default regularization pa-

rameters in scikit-learn [Pedregosa et al. 2011]. Scores for all supervised models

are reported via 10-fold cross-validation using the same folds for all systems. Due to the

class imbalance, we chose to implement training in such a way that upsampled rare classes

with replacement at each iteration to equal frequency as the most common class. We report

accuracy (ACC) and macro F1 scores.

Contextless features

We compare and contrast several input features to our classifier that only have access to the

form of the OOV, without consideration of the context:

• Character n-grams. We extract bag-of-character features ranging from one to three
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Table 4.1: Category taxonomy grouped into innovation source class (post-filtering;
N=1,550). The largest category, AFFIX, accounts for roughly 31% of the dataset.

Class Category Count Description Example

lexical
(21%)

domain 285 Domain-specific terminology which has
probably been around for a while

acetobacteria

innovation 11 Neologism formed in a morphologically
opaque process, possibly in a work of fic-
tion.

skoolies

onomatopeia 23 also for verbatim vocalizing trololo

morph
(70%)

infl 53 Inflection, word modification with no POS
change

wordmills

deriv 215 Derivation, changing a POS without se-
mantic concept introduction

codedness

affix 483 Adding semantic content using productive
affix

descenting, pizzaless

affix libfix 18 Adding semantic content by analogy to a
known base word

batterygate

compound
tr

121 A transparent, even compositional com-
pound

wormwork (“work
done by worms”)

compound
op

49 Unpredictable, uncompositional neolo-
gism

laylights (“glazed ceil-
ings above galleries”)

blend 142 Parts of original word(s) missing slowbalization (“slow
globalization”)

syntax
(0.4%)

synth 6 Syntactic synthesis this’ll

socio
(10%)

archaic 14 No longer used; includes mock-archaisms candelstyckes,
shooketh

dialect 46 Form which is rare due to speaker varia-
tion; including Britishisms

elluva (“hell of a”)

infix 2 Affix breaking up word unfreakingbelievable
phonaestheme 6 Echo duplication (market-) schmarket
lengthening 53 Repetition of (usually one) letters to sig-

nify lengthened pronunciation
greaaaaat

variant 18 Spelling annoyances, speech errors, delib-
erate typos

lyft

phonaestheme 6 Phonetically-motivated word variant schmarket
spaces sic 5 Deliberately-removed spaces (for lineafterlineafterline
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characters for each OOV. The feature vocabulary is estimated on the training set and

applied to the test set.

• FastText. We infer fasttext vectors [Bojanowski et al. 2017], applying its 3–6 character-

ngram representations, from the subword model trained on English Wikipedia.12

• ELMo embeddings. We use the word-level embeddings from ELMo [Peters et al.

2018], obtained via a pre-trained character-level convolutional net for each OOV

presented in isolation, with no surrounding sentence context.

• BERT no-context. We apply BERT-Base [Devlin et al. 2019] to the OOVs only pre-

ceded by the [CLS] token and appended by [SEP] . From this we selected our

classifier input to be the averaged top-layer embeddings associated with all word-

pieces of the OOV.13

Context-aware features

• Character RNNs. We train a 2-layer forward- (backward-) character-level GRU

language model and run it through the beginning (end) of the sentence until the OOV,

then use the concatenated final hidden states from each direction as features.

• ELMo. We obtain contextualized embeddings for all words in our sentences and

select the top layer representation associated with each OOV.

• BERT. We apply BERT-Base to the entire sentence in which the OOV appears, and

use the averaged top-layer embeddings at the indices of each OOV.

Results

The results, presented in Table 4.2, show that pretrained contextual models not only trail be-

hind a contextless, un-pretrained character n-gram baseline, they even fail to improve over

12wiki.en.bin file obtained May 25, 2020.
13Using just the embedding of the final word piece produced similar results.
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Table 4.2: Baseline results for OOV classification (N = 1550, |C|= 18).

Contextless ACC F1 Contextual ACC F1

Majority class .312 .026
Character n-grams .484 .323
FastText .433 .241 Character RNN .128 .054
ELMo embeddings .365 .203 ELMo .324 .135
BERT no-context .442 .288 BERT .469 .269

their own uncontextualized variants. While we have not performed a human analysis for

comparison, we refer back to the agreement reported between the two annotators as a proxy

for accuracy, which was .65 (§4.1.2). An analysis of class-specific F1 scores across the

different models exposed two general patterns in classifier performance: in all models, per-

formance on the AFFIX class was in the top four, and the same for LENGTHENING except

for Character RNN. We also observed that models that encode contextual, sentence-level

properties are typically better at encoding genre phenomena (e.g. DOMAIN was a top-four

category for BERT, Character RNN, fastText, and ELMo). However, for some classes of

models, there was a clear benefit to memorizing word forms. All count-based feature repre-

sentations (e.g. bag-of-character ngrams, bag-of-wordpieces) led to better performance on

orthographic properties, namely PHONAESTHEME, SYNTH, and ONOMATOPOIEA. These

results demonstrate the power that simple surface-form signals from character sequences

still possess in meaningful NLP tasks.

4.2 Blends as a Case-Study of Real-World Difficult OOVs

4.2.1 Background

As mentioned in §1.4, many linguistic processes generate OOV terms that cannot be cleanly

decomposed into meaningful subtoken segments. In this section we address a particularly

interesting and challenging source of OOV terms: novel blends [Algeo 1977], also known

as portmanteaux [Deri and Knight 2015]. Blends are constructed from the combination of

multiple bases into a new form, in which some characters are shared across both bases:
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Table 4.3: A sample of the blends from the dataset, with definitions and our full annotation
as described in §4.2.2. Linear blends are underlined.

Blend PAXOBS Bases Semantic relation Definition

hatriotism AXXBBBBSSS hate patriotism ATTRIBUTE Hate disguised as patriotism.
shoptics AAXXBBBS shop optics LOC-PART-WHOLE The social image projected when shopping.
innoventor XXAAXBBXXX innovator inventor CAUSAL A person who innovates by inventing.
thrupple AAABOBBB three couple CONTAINMENT A group of three people acting as a couple.

for example, shop + optics = shoptics. In this way, blends differ from other lexical com-

pounds (e.g., watermelon = water + melon), which are formed by simple concatenation.

Examples of OOV blends and their bases from our novel English blends dataset, collected

from NYTWIT’s set of blends (§4.1) and annotated for additional properties (§4.2.2), are

presented in Table 4.3. OOV blends are especially challenging to process, due to their com-

bination of function-level semantic novelty with the form-level pathology of an unexpected

character sequence.

We offer what is to our knowledge the first analysis of how transformer-based contex-

tual embedding models process novel blends and the representations they are able to pro-

duce for these challenging forms. First, we examine the impact of blends’ wordforms by

comparing the ability of contextualized models to represent blends against the minimally-

different case of novel lexical compounds. In §4.2.3, we show that the limited ability of

contextual language models to represent novel blends’ components faithfully is primarily

attributable to their form properties, whereas semantic differences between compounds and

blends play a much smaller role. We then investigate how well several methods are able

to recover the morphological boundaries within blends, which could mitigate the impact

by splitting blends into segments contributed by each constituent base, and to recover the

constituent bases given a segmentation (§4.2.4). Even under favorable conditions, we find

that systems proposed previously for similar tasks struggle on blends, showing limitations

of form-based and distributional similarity approaches. We propose a novel unsupervised

base recovery method using contextualized masked language models, BERT RANKER.

While this system performs well relative to others, we find substantial room for improve-
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ment. In our view, these results demonstrate the need for future work on our novel dataset

and associated tasks.14

Related Work

Prior work on blends has largely focused on generation [e.g., Das and Ghosh 2017; Simon

2018; Deri and Knight 2015; Kulkarni and Wang 2018; Smith, Hintze, and Ventura 2014].

While Gangal et al. (2017) provide a unified dataset of 1,579 blends, annotated for bases,

they do not provide contexts for real-world appearances of the blends, nor a breakdown

of the semantic relationship between their constituents. Moreover, some are synthetically

generated by a seq2seq model. In addition, these works all restrict their models to linear

two-word blends. Our PAXOBS scheme (§4.2.2) handles nonlinear and multi-base blends.

Cook and Stevenson (2010) presented a noncontextual method for blend base detection

using a dictionary-based lexicon, evaluated over an unreleased dataset, and Ek (2018) used

features from static embeddings to unblend words in Swedish. We adopt the candidate-

ranking approach of these works to evaluate component recovery, but incorporate context

with context-sensitive language models, and add the task of blend segmentation.

Extracting the semantics of constituents from larger phrases is not a problem unique

to single-token blends. Shwartz and Waterson (2018) worked on multi-word compounds;

Maddela, Xu, and Preoţiuc-Pietro (2019) segment hashtags, roughly half of which are akin

to our notion of compounds, by training a neural scoring system over features extracted

from word form, dictionary lookup and language model probabilities. Another connection

is to the learning of morphological rules, e.g., for processes such as derivation [Kondratyuk

2019] and lemmatization [Chrupala 2006; Ullman, Aho, and Hirschberg 1976; Hirschberg

1977]. Cotterell and Schütze (2018) present a supervised model of derivational morphology

that jointly accounts for segmentation as well as composition of static word embeddings

from the embeddings of morphemes, thereby touching on two of the main tasks under-

14We release our code and data at http://github.com/yuvalpinter/unblend.
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taken in this section. However, the application of such a model to blends is complicated

by the relative lack of labeled training data, as well as the irregularity of the underlying

phenomenon.

Novel blends are an example of linguistic creativity, which frequently operates at the

subword level. Related phenomena include eggcorns, which are alternative spellings that

yield an apparently more transparent relationship between form and function [Reddy 2009];

puns, which substitute words in new contexts based on phonological similarity [Jaech,

Koncel-Kedziorski, and Ostendorf 2016]; respellings that attempt to reintroduce prosodic

expression into spelling [Brody and Diakopoulos 2011]; intentional obfuscation [Zalmout,

Thadani, and Pappu 2019]; and typographical errors [Heigold, Neumann, and van Genabith

2017]. We therefore view blends as an instance of a broad set of creative phenomena that

poses challenges for the token-based approaches that currently dominate NLP.

4.2.2 Complex Words Dataset

Our proposed investigation of the behavior of NLP systems on novel complex words re-

quires a high-quality, reliable resource of truly novel blends and compounds in their orig-

inal contexts, annotated for character sequence composition and semantic properties. We

utilize NYTWIT to this end (§4.1). We extract and further annotate three types from this

dataset (version 1.1): blends (142 items), transparent compounds (121), and opaque com-

pounds (49). The difference between the compound classes is semantic and somewhat

subjective: transparent compounds have meanings which are comprehensible with little

context (e.g. quizmaker, a person who makes quizzes), while opaque compounds exhibit

metaphoric or allusive semantics (e.g. deathbox, a dangerous car).

Yuval Pinter and Cassandra Jacobs annotated each word for its constituent bases, the

character locations in which each base is represented, and the semantic relation between the

bases. A sample of annotated blends is presented in Table 4.3. All disagreements resulting

from the first round of blend base annotation (7%) were resolved by discussion, with the
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help of the words’ originating context. These contexts vary considerably in their length

and informativity,15 but typically contain direct or indirect disambiguating information, and

sometimes the component bases themselves: for blends, 40.3% of documents contained at

least one of the bases within sentences where the blends appear (e.g. only shop or optics,

for shoptics), while 10.2% contained both.

Semantic relations. We annotated all blends and compounds in the dataset according to

the well-studied semantic taxonomy of Tratz and Hovy (2010), which was designed for

multiword nominal compounds (e.g. cooking pot). These relations were not intended to

be applied to other types of phrases, blends, or lexical compounds. However, by referring

to the official taxonomy, the expanded definitions in Dima and Hinrichs (2015), and the

coarse- and fine-grained relation training data, we were able to assign one of twelve coarse-

grained relation classes to each word.16

As a preliminary check, we trained a relation classifier following the approach of Dima

and Hinrichs (2015), a single-hidden-layer classifier over GloVe embeddings [Penning-

ton, Socher, and Manning 2014], on the RANDOM partition of the Tratz and Hovy (2010)

data.17 This model achieved .203 accuracy and .173 macro-F1 on our dataset for all 311

items, substantially higher than baselines such as majority class (.087 acc. / .013 F1) and

random prediction calibrated to the marginal label distributions (.106 acc. / .078 F1 for

the best of ten runs), indicating credible annotation.18 This performance is still poor rela-

tive to multiword compounds, possibly due to the fundamentally different linguistic pro-

cesses governing lexical compounding and blending processes as opposed to multiword

15Compare, for example, the following context sentences: “Blaspy?”; “The procrastibaker must believe
that it is possible to be simultaneously working on a document, buttering pans and separating eggs.”

16For example, ATTRIBUTE was applied to the adjective-noun blend fitfluencers. 69% of the words contain
a non-noun base.

17The model trained on this split, set to de = dh = 50, slightly outperformed an identical one trained on
the LEXICAL split, and its test set accuracy on the original dataset is .721, close to replication. The LEXICAL
split was created to correct an over-representation of some compound bases in RANDOM, one which biases
statistical models toward lexical memorization (see details in §4.1 of Shwartz and Waterson (2018)), but has
no bearing on our dataset.

18The numbers for blends only are .148 / .079 vs. .063 / .020 for majority class.
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compounding.

Character-level labels. We introduce a character-level labeling schema to help classify

blend types and evaluate and train blend segmentation models, called PAXOBS.19 Each

character is labeled as P or S if it is in a base-external prefix or suffix, respectively; as X or

O if it is contributed by more than one or none of the bases, respectively; and by successive

letters of the alphabet for characters from only each base, starting from the base whose first

exclusive character precedes all exclusive materials from bases still not assigned a label.

Since most blends have only two bases, this class of labels is typically just the set {A,B}.20

This schema covers the full range of processes undergone in blending, except for annotation

of characters removed altogether from the bases (e.g. the e from hate in hatriotism), and

may be trivially applied to lexical compounds as well.

Blends may be classified into further subcategories based on the correspondence be-

tween their form and the bases. For example, in linear blends each base’s portion appears

uninterrupted in the blend (underlined in Table 4.3). Formally, a blend is linear if its label

sequence contains: no O; no A preceded by a B or X; and no B followed by an A or X. In our

dataset 59% of blends are linear, though prior work has reported up to 95% linear blends

among blends extracted from a curated lexicon [Cook and Stevenson 2010]. One possible

explanation for this discrepancy is that words that make it into common use (and thereby

into curated lexicons) may be simpler in their surface quality.

4.2.3 Blends in Context

Novel blends are a unique linguistic phenomenon, posing challenges for automated systems

on many different levels. However, the sparsity of their appearances in real-world text, as

well as the expertise required for creating a natural language understanding task which

uses specific documents from a large variety of domains as supporting information, make
19May be pronounced like “pack sobs”.
20This framework is loosely similar to edit scripts [Chrupala, Dinu, and van Genabith 2008], but rather

than transducing one string into another, the task is to combine two strings into a third.
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the evaluation of the effect of novel blends on this type of downstream task an impractical

goal for the scope of this work. Instead, we assess the treatment of novel blends at the

representational step of contemporary contextualized language models, by performing an

analysis of their processing by BERT [Devlin et al. 2019]. To gauge how well BERT

represents blends, we conduct a comparison with its treatment of a minimally-different

control class of novel words, namely lexical compounds. These are forms where at least

two bases are concatenated in full (e.g. quiz+maker), without the character loss incurred in

blends.

Our analysis begins with the assumption that in any given context, the meaning rep-

resentation of a complex word (blend or lexical compound) must be composed from its

bases, which we can estimate using the representational similarity between a complex

word and its bases in the same context. This criterion can be viewed as a form of lin-

guistic generalization, and if satisfied, enables downstream models to produce consis-

tent results across related words. To test this criterion, we compute the vector similari-

ties between the contextualized representations of complex words and their components, a

method that coheres with human judgments of contextual semantic similarity [Giulianelli,

Del Tredici, and Fernández 2020]. We probe BERT21 with synthetic inputs constructed

by replacing each complex word with its space-delimited bases. Formally, given a sen-

tence S = (w1, . . . , wi−1, x, wi+1, . . . , wn) where x denotes a blend or compound with

contributing bases b1, b2, we record the average vector across x’s wordpiece tokens for

each layer output in BERT’s transformer stack, e(l)(x), l ∈ 0, . . . , 12, and compute its

cosine similarity with the averaged vectors 1
2
(e(l)(b1) + e(l)(b2)) in the sequence S ′ =

(w1, . . . , wi−1, b1, b2, wi+1, . . . , wn).22

21We use the base-uncased flavor and the Huggingface implementation [Wolf et al. 2020] throughout
the paper.

22Four forms in our dataset have three bases: “fanimatic” = fan + animation + cinematic, “shaggydoodle” =
shaggy + labrador + poodle, “frenemesis” = friend + enemy + nemesis, “orchaestraits” = orca + orchestrates
+ straits. In these cases, we include the vectors for all three bases. One blend, “pregret”, has only one
base, against which it is compared. In addition, five words are missing from the analysis as they no longer
appeared in their original contexts at scraping time due to editorial actions on the NYT website: the blends
“humailiation” and “crapberg”; and the compounds “cybersensation”, “garagerock”, and “storytale”.
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(a) (b)

Figure 4.1: Pretrained BERT’s layer-wise similarity between representations of (a) com-
plex OOVs and their base components; and (b) linear blends and “smoothies”, lexical com-
pounds forced to lose characters while remaining linear. All representations are computed
using the original context in which the words appear. Error bars represent standard error of
the mean over the class.

Figure 4.1(a) compares the per-layer similarities for blends with the two types of com-

pounds described in §4.2.2: We find a clear distinction between blends and both compound

classes. For compounds, BERT induces representations that are very similar to those of the

components at all layers of the model. For blends, these representations diverge greatly,

especially in the lower layers of the model, which have been found to capture surface-form

characteristics of the input [Jawahar, Sagot, and Seddah 2019].

Since the difference between classes exists across all layers, we first wish to perform a

more thorough analysis of possible reasons for it.

Semantics

One possible explanation for the difference in BERT’s treatment of blends and lexical com-

pounds is that blends arise in lexical situations that are qualitatively different from those

in which compounds are formed. This would lead to a different distribution of semantic

relationships between bases of blends and compounds. In our annotated dataset we were

able to witness such differences; for example, the ATTRIBUTE relation accounts for 23% of

compounds but 38% of blends.

If BERT’s divergent treatment of blends and compounds is explained by the distribution

107



over semantic categories for each complex word type, then we would expect the similarity

scores within categories to be identical. Repeating the contextual similarity analysis within

each semantic category, we find that there are substantial divergences between blends and

compounds in several of the semantic categories. Figure 4.2 presents the similarity scores

for the six relations containing at least 15 observations; blend representations are less sim-

ilar to their decomposed versions compared to compounds regardless of the relation. A

linear model trained to predict similarity confirms that blends are less similar to their com-

ponents than compounds (ρ = −.128, p < .001).

Form

Another potential explanation is that differences in BERT’s treatment of blends and lexical

compounds are driven by the form of each compound, rather than the meaning. On this

view, the choice of whether to create a compound or a blend is a stylistic one [Renner

2015], and so controlling for the character loss incurred in blends would produce the same

processing difficulty for compounds.

Smoothies. If differences in surface form are what drives differences in contextualized

representations, then transforming the compounds into mock-blends, which we term

“smoothies”, should eliminate the differences between the two complex word types: we

would expect the function of the similarity of a contextual encoding of a blend to its bases

given a context it naturally occurs in to be approximately the same function of similarity

of a contextual encoding of a smoothie to its bases given the context the original com-

pound occurs in. We create our smoothies using COPYCAT [Kulkarni and Wang 2018],

a model which generates blends from two base forms via a sequence of character copy

and delete actions learned over features extracted from an language model, an LSTM,

and length-based heuristics. We train an ensemble of 50 COPYCAT models on the blends

from Deri and Knight (2015) and apply them to our novel compounds. We run the model
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ten times, and average the BERT differences over each base pair’s resulting smoothies be-

fore aggregating for categories. Since COPYCAT can produce only linear blends, we com-

pare the BERT correspondence for smoothies against linear blends only (whose aggregate

similarities are notably similar to those of blends as a whole). In creating the smoothies,23

we made sure that the overall rate of lost characters (delete operations) is comparable to

that of the true linear blends. We show in Figure 4.1(b) that smoothies pose similar gener-

alization challenges as blends: the gap between linear blends and smoothies is small, while

generalization for smoothies is far below that of the original compounds.

Tokenization. Having established that surface form is a main driver of the representa-

tional differences between blends and compounds, we now assess the specific impact of

BERT’s tokenization model, WordPiece (WP). WordPiece is a trained model, consisting

of a subword vocabulary constructed by identifying units (pieces) that appear repeatedly

in a corpus. It distinguishes between word-initial pieces, which may be whole words, and

word-noninitial pieces which are marked by a special “##” prefix. A word is then as-

signed a sequence of pieces whose characters matches it when concatenated. For example,

WP(“segmenting”)=[‘segment’, ‘##ing’]. Such a model might be poorly suited to novel

blends, which by definition reuse characters across bases, and which cannot be analyzed

by traditional patterns of morphology.

To test the effect of segmentation, we provide WP with base-congruent segmenta-

tion points informed by their PAXOBS tags: for example, shoptics is fed to BERT as →

sh+##op+##tics. We find that this change does little to bridge the gap between blends and

compounds: a redrawn version of Figure 4.1(a) using this tokenization is almost identical

to the original. Upon further examination, we find that while pre-tokenizing with PAXOBS

results in a larger number of wordpiece tokens (an average of 4.55 vs. 3.30), a similar leap

occurs in compounds (3.41 vs. 2.48), suggesting that WP does not produce morphologi-

cally accurate segments for compounds either [cf. Bostrom and Durrett 2020]. The crux of

23Examples include bow + person = boerson and junk + time = junime.
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Figure 4.2: Pretrained BERT’s similarity measures for each semantic relation with n > 15
instances.
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the issue must therefore lie within BERT’s transformer stack.

In conclusion, we have shown that the root cause of blend mistreatment in large con-

textual transformer models is their form, although knowing only their sequence structure

is not sufficient. Therefore, in the following section we suggest models which attempt to

identify blend segmentation points, but also ones which attempt recovery of their original

bases, in order to place them in an appropriate topical context.

4.2.4 Will it Unblend?

We next test to what extent existing models can help systems understand the meaning of

novel blends, an aspect of human language understanding that has been little explored in

NLP evaluation tasks. As demonstrated in §4.2.3, successfully representing blends requires

the capability to both properly decompose their form and identify the original constituents.

It also requires integrating disparate information from the surface features and local con-

text. We therefore cast blend understanding as two tasks: segmenting blends into character

sequences, and recovering blends’ bases post-segmentation. We leave the task of recog-

nizing blends to future work (beyond the best prediction quality achieved by the 18-way

classification models implemented in §4.1, which was .305 F1 on the blend class obtained

by using character-ngram features).

Compounds. Compounds were used as a comparative class in §4.2.3, but for the purpose

of form understanding we focus on blends. For compounds with a known segmentation,

base recovery is trivial, as each side of the segmentation point is always a base. As for

segmentation, we have shown in §4.2.3 that BERT’s transformer layers are capable of re-

covering from poor WordPiece performance, and so the utility of segmenting compounds

is limited compared to blends.24 Knowing that words are kept in their original form can de-

24We nevertheless evaluated the segmenters on compounds (compare with Table 4.4). WP performs about
as well as on blends in F1 (.558), and better in exact match (34%), and Domain Unigram LM outperforms it
on both (.636, 39% respectively). In compounds, lenient and strict metrics converge.
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fine much simpler and more effective systems of discovery than the ones described below,

such as a dictionary lookup of both sides for each possible single segmentation point.

Blend Segmentation

We approximate the problem of inferring blend structure by defining a segmentation task

over the character sequence which is the blend form, based on the rationale that supplying a

downstream system with character segments, each coherently representing a single known

word or morpheme, would improve its ability to represent the input sequence. For example,

a character-aware system familiar with non-complex words might understand that the initial

hat from hatriotism is related to hate if given in isolation; but with hatr it would be at a

loss.

Metrics. We draw on our PAXOBS schema (§4.2.2) to define segment-level precision and

recall scores for a given blend (e.g. shoptics: AAXXBBBS). A system’s prediction is a set of

character indices where segmentation should occur. We count any index which separates

characters of the same label as a false positive, towards precision (e.g. the segmentation in

[shopti;cs]). False negatives may be defined strictly or leniently: under strict evaluation,

a false negative is any segment that contains characters belonging to more than one base,

or to a base and shared material (X), while a lenient evaluation permits the inclusion of

shared material: [shop;tics] is leniently sound, but [sh;op;tics] is strictly sound as well. We

report micro-level precision, as well as F1 computed with both lenient and strict recall, and

lenient exact match. We ignore prefixes and suffixes, and allow models to freely separate

or include them in the adjacent base.

Systems. We compare the following systems:

• All-chars. A baseline which marks every character as its own segment (perfect re-

call).
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Table 4.4: Results for segmentation (N = 142, micro-aggregation). “L”– lenient, “S” –
strict. The desired number of segments varies between 2.05 and 3.40, depending on affixes
and recall policy.

F1 Exact Match
Model #segs Prec. L S L S

All-chars 10.15 .272 .427 .427 0% 0%
Seq. tagger 4.70 .291 .400 .376 5% 4%
WordPiece 3.30 .450 .562 .484 22% 8%
Domain BPE 3.18 .408 .517 .441 24% 11%
Domain Unigram LM 4.08 .428 .556 .492 22% 6%

• Sequence Tagger. We annotated the 1,579 blends in Gangal et al. (2017)’s blend

dataset (originally 1,624 lines but containing duplicates) for PAXOBS tags, and used

them for training a supervised neural character-level tagger. The tagger’s results

were then converted into segmentations by segmenting on each label change (so

〈“shoptics”, AAXXBBBS〉 becomes “sh;op;tic;s”).25

• WordPiece. We run WP “out of the box”.

• In-domain Subwords. We train BPE [Sennrich, Haddow, and Birch 2016] and

Unigram LM [Kudo 2018] subword tokenizers on news data from the Corpus of

Contemporary American English [1990–2015; Davies 2008] using the sentence-

piece package [Kudo and Richardson 2018], set to the same vocabulary size as the

WP model. Empirically, this size (30,522) outperformed other tested sizes (20,000,

30,000, 40,000) on the development set for BPE, and so was also selected for Uni-

gram LM.

25We manually annotated 550 of the 1,579 blends in the [Gangal et al. 2017] dataset, and passed the rest
through a heuristic program to cover whatever linear blends remained. The program flagged 150 blends as
suspected nonlinear, so we manually annotated them as well. A character tagger trained on only the 550-
blend set originally annotated did not reach better F1 scores than the one reported below, trained on the full
set. We use a 3-layer Bidirectional LSTM followed by a 4-layer MLP (tuned in the 2–4 range) with ReLU
activation (tuned vs. tanh), trained for 30 epochs with early stopping, optimized using Adam [Kingma and
Ba 2014] with a learning rate of 0.01 and a batch size of 96 (not tuned). The character embedding dimension
is 200 and the hidden dimensions for the LSTM and MLP are both 192 (not tuned). Tagging accuracy on the
development set is .457, and on our dataset .462. The model is implemented in PyTorch [Paszke et al. 2019].
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Results. The results in Table 4.4 show that all models struggle to find correct segmen-

tation, even compared to the all-chars baseline. The low performance of the supervised

tagger suggests that little can be inferred from relative character placement, demonstrating

the highly variable nature of novel blends. Corpus-based segmentation models manage to

segment over 20% of the blends successfully. This number is slightly higher when looking

at the subset of linear blends: Domain BPE matches 29% of them exactly. Further analy-

sis of the WP segmentations reveals a weakness in cases where the first post-A characters

suggest a plausible continuation to base A, common enough to appear in WP’s vocabulary,

e.g. [males;tream] (true bases male, mainstream; labels XXAABBBBBB), or [chip;ster] (true

bases chicano, hipster; labels AXXBBBBB).

We next consider the challenge of reconstructing the base components for segmented

blends.

Blend Component Recovery

We tasked different models with identifying the contributing bases (A, B)26 out of all pos-

sible words given a gold-segmented blend and an input vocabulary. We create sets of

candidate words for each blend which could, in principle, create the same blend as the true

bases. For example, the blend thrupple = three + couple will induce candidates such as

thrash for A and example for B. We report the following metrics:

• MRR-(A,B, ω) is the mean reciprocal rank of true base A/B across all possible

candidates for that side (single-side prediction), or (ω) of the true base pair out of all

possible base pair candidates (pair prediction);

• Precision @1 is the proportion of blends for which the top candidate is the true base

pair.27

26In three-based blends, we denote the last base as B for this task, surmising it is more important than the
second base given the right-headedness tendency of English.

27This contrasts with precision as reported by Cook and Stevenson (2010), who count a pair as correct if
at least one base is correct.
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In order to maintain a fair comparison between the models (see below), we extracted the

candidate lists for all model evaluations from the GloVe [Pennington, Socher, and Manning

2014] model’s vocabulary, as it is the only one restricted for in-vocabulary testing. In

total, 33 of the candidate lists (12%) are singletons, including two blends where neither

base has negative samples. Six blends (4%) lacked the correct base for one of the sides,

and these cases were treated as ranked last among candidates; three of these lists were

empty, translating to in a #1 rank for all systems. A single hyperparameter controlling

the minimum length of candidate overlap in linear blends was set to 3 with no tuning.

Candidates were selected according to bases’ stemmed form. The lower bounds on the

metrics resulting from these candidate list limitations are presented at the top of Table 4.5.28

BERT RANKER. We propose a contextual representational approach for ranking two-

sided base candidates using iterative piece prediction: we replace each appearance of a

blend b in its context sentence (w1, . . . , wi−1, b, wi+1, . . . , wn) with two successive [MASK]

tokens: (w1, . . . , wi−1,m1,m2, wi+1, . . . , wn). Then, we use a pretrained BERT masked

language model to compute wordpiece prediction distributions for these masked tokens.

We sort all possible candidate base pairs 〈l, r〉 according to the sum of probabilities for their

bases’ first pieces, P (m1 = l0) + P (m2 = r0),29 and record the rank of the true base pair.

When multiple candidate pairs have the same respective initial wordpieces 〈 l0=pre, r0=suf

〉, we break the tie by creating a new sentence input “left context pre [MASK] suf [MASK]

right context” and continue predicting the following piece pair, 〈l1, r1〉 iterating until there

are no more ties. At any point in the process, candidates which run out of wordpieces are

floated to the top of the working ranked list by base order (A-ending before B-ending). We

inferred the words in context based on the BERT-BASE-UNCASED BERTFORMASKEDLM

module obtained via https://github.com/huggingface/transformers (ver-

sion 2.0.0). This required lowercasing all input prior to processing.

28The full candidate lists are available in the project repository.
29This is crucial, since predicting a ‘##’-initial suffix token effectively attaches it to the preceding token
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We also implement an ablation (−CONTEXT) where no context is added to the masks,

in order to evaluate the contribution of the sentence contexts in isolation.

For single-side metrics, we report the rank of the true base in the prediction distribution

of a single [MASK] token (instead of two); in another variant (+OTHER-BASE) we add

the true base from the other side to the context, in order to level the playing field with the

baselines, which we describe next:

• Character RNN. We separately train a forward and a backward character-level RNN

on 109,000 documents from the Westbury Wikipedia corpus [Shaoul 2010]. We

feed the blend’s left (right) context to the forward (backward) RNN, then record

the probability of each A (B) candidate as a continuation of the context, computed

as the average of successive character log-likelihoods. We use 2-layer GRUs with

embedding dimension 128 and hidden dimension 256 (all chosen manually with no

tuning), and optimize using Adam with early stopping determined by performance

on a held-out development set of 10,000 randomly sampled documents.

• Edit distance (ED). Following Cook and Stevenson (2010), we compare the string

similarity (Levenshtein distance) between base candidate pairs’ orthographic forms.30

Single-side prediction fixes one base and ranks candidates from the other side based

on similarity.

• Static embeddings. We calculate cosine similarity between candidate base pairs’

embeddings in fastText [Bojanowski et al. 2017] and GloVe [Pennington, Socher,

and Manning 2014].31 fastText includes character n-grams, allowing an assessment

of the utility of subword information.

30A variant using phonological forms, extracted from a phonological lexicon [Lee et al. 2020], was limited
by only having pronunciations for a fraction of bases and candidates. In cases where both base pronunciations
were found the ranking was good, hinting at a promising avenue for future work by implementing automatic
text-to-phone modeling.

31We used the English CommonCrawl 300-dimension vectors available from https://fasttext.cc,
inferring OOV words using fastText software; and the 300-dimensional GloVe vectors trained on the 840-
billion CommonCrawl corpus, obtained from https://nlp.stanford.edu/projects/glove/
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Table 4.5: A sample of the blends from the dataset, with definitions and our full annotation
as described in §4.2.2. Linear blends are underlined.

MRR-

Model A B ω P@1

Lower bound .115 .257 .036 .014

Character RNN .162 .368 .060 .021
Edit distance .176∗ .432∗ .066 .014
fastText .357∗ .610∗ .167 .127
GloVe .449∗ .734∗ .188 .127

BERT RANKER .392 .711 .288 .264
+OTHER-BASE .403∗ .703∗

−CONTEXT .379 .675 .147 .127
+OTHER-BASE .379∗ .668∗

x

To summarize, both ED and Static methods are contextless pair-matchers which op-

erate in the +OTHER-BASE knowledge setup when evaluated for MRR-A and MRR-B;

Character RNN is a single-base ranker which uses context from one side only and cannot

be helped by knowledge of the other base.

Results. Results are presented in Table 4.5. We note the higher performance on B bases

achieved by all models, a fact which advantages WordPiece which leaves word-initial

pieces unmarked (see §4.2.3), as opposed to models such as XLM [Conneau et al. 2020],

which mark word-final pieces. If the beginning of the blend bears more resemblance to

the base it originated from, there’s a better chance of properly representing that base in the

overall blend. These findings suggest an iterative setup, where first the B base is predicted

and only then A is matched, might prove more successful. We leave this variant to future

work.

Our BERT RANKER model outperforms all baselines in the more realistic full-word

setting (MRR-ω, P@1). When ranking single bases, it does not benefit much from aware-

ness of the true other base (the oscillations recorded in the table are too small to be mean-

ingful), suggesting that most of its power lies in processing context and not in word form

representation. This conclusion is further supported by the superior performance of the
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static type-level GloVe embeddings, whose lead over fastText and BERT−CONTEXT in all

MRR measures suggests that word form is less helpful even in uncontextualized settings.

The particularly poor performance of the character RNN and edit distance model shows

that it is difficult to learn the task without any semantic signal.

Error Analysis. A qualitative assessment of the contexts which help BERT RANKER to

predict bases perfectly relative to the −CONTEXT variant shows that they typically contain

one or more of the bases in their entirety (e.g., eggcessories appears near multiple occur-

rences of the word eggs). By contrast, in some longer contexts containing diverse topics,

the inclusion of context wipes out the accessibility of the component bases, typically the

first one (e.g. chesticle, in which the context does not mention body parts, or cancerchon-

dria which mentions the word condition but neither of the bases).

4.3 Conclusions

I have presented a novel dataset of OOVs along with their contexts and linguistic novelty

class annotations, with certain complex forms also annotated for their source words using

a novel character-level schema as well as for semantic tags. I showed that contextual in-

formation in the form of other parts of the sentence provides some signal for novelty class

detection, while simple models relying on character n-gram information alone achieve high

performance. On the task of blend recovery, all approaches struggle but the most promis-

ing performance is obtained by BERT, a contextualized model with subword components,

which we have also shown is not able to represent blends as well as it does compounds,

due mostly to the phenomenon of character loss.

The availability of in-document contexts in which NYT neologisms occur permits many

linguistic and technical applications. From the perspective of the study of language growth

and formation, the dataset may be of interest to those who wish to assess the morphological

productivity of different affixes and roots, or the prevalence of the different word formation
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processes in a realistic setting, or perform in-depth analysis on any of the specific types of

innovations for which we provide annotations. In addition, the in-vivo nature of the dataset

provides a reference for neologisms which may or may not be later adopted into everyday

use, allowing diachronic studies anchored in the time of word introduction. Analysis of the

phonological, morphological, and discourse-level properties of these words may provide

insight into lexical adoption dynamics.

For NLP researchers, an important component of text applications is proper normaliza-

tion and segmentation of word forms. For example, a smart text editor should be able to

determine whether a blend is spelled correctly or not. Our preliminary experiment shows

that popular wordform encoders, such as the first layer of ELMo or the WordPiece encoder,

still have a long way to go in terms of recognizing the origins of a novel form. Such errors

might lead to inability to handle morphologically complex OOVs in downstream semantic

applications, although a study of such effects is still necessary. Properly leveraging context

for morphological decomposition of complex forms also remains an open problem.

Our results on blend representation and recovery highlight that annotation schemata

such as those of Tratz and Hovy (2010), which were designed for noun compounds, are

generalizable to other relational word types. In future work, I plan to integrate these signals

into a better blend processor which also benefits from relational sources, and to further

address the effect of blends on downstream tasks from semantic and syntactic viewpoints.

In addition, I aim to further examine the methods from our experiments on other classes of

novel words and in other languages. I also plan to add phonetic resources for improving

treatment of nonlinear blends.
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CHAPTER 5

CONTEXTUALIZED COMPOSITIONAL REPRESENTATIONS

The poor performance of contextualized models on the true-OOV tasks presented in §4 mo-

tivates a re-examination of the decision the NLP community has made to treat statistically-

extracted greedily-inferred subword units as the representational atom in today’s systems.

In this chapter, I revisit the integrative idea which underlies the MIMICK system from §2.1,

adapted to both the subword token realm and the pre-training procedures in contemporary

transformer models which have diverged significantly from the static embedding training

practices. The system I present, TOKDETOK, allows transformer training to continue on a

new corpus while simultaneously training the compositional module, which is in turn tied

to a sequence decoder which can replace the customary softmax operation.1

5.1 Background

The use of subword representations as a replacement for whole-word embeddings in NLP

applications has become the default choice in recent years, most notably within the frame-

work of large pre-trained language models (LPLMs) where the LM objective requires a

vocabulary that is computationally feasible for a softmax operation, typically interpreted

as no larger than 105 types, while also exhaustive, such that it allows production of ar-

bitrary space-delimited tokens in order to mitigate the out-of-vocabulary (OOV) prob-

lem. Informative subword vocabularies are pre-computed by methods such as byte-pair

encoding [BPE; Sennrich, Haddow, and Birch 2016] and its variant WordPiece used in

BERT [Devlin et al. 2019], or Unigram LM [Kudo 2018]. Such vocabularies normally

make use of explicit signalling for either word-medial or word-boundary tokens, so that

1This section is based on: Y. Pinter, A. Stent, M. Dredze, and J. Eisenstein, “Jointly Tokenizing and
Detokenizing Text for Robust Transformer-Based Language Models”, in preparation.
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Table 5.1: A tweet (top) and its WordPiece tokenization (BERT-BASE-UNCASED, bottom).
#simplyleopard #4thofjuly #showmeyourmumu @ Town of Breckenridge, Colorado

# simply ##le ##opa ##rd # 4th ##of ##ju ##ly # show ##me ##you ##rm ##um ##u
@ town of br ##eck ##en ##ridge , colorado

recompiling the original space-delimited words is a deterministic process.2

However, processes for constructing subword vocabularies have high variance: perturb-

ing the dataset used to train them leads to significant changes in the resulting vocabulary.

In a preliminary experiment, we sampled two sets of 1 million sentences from the same

Wikipedia dump and trained a Unigram LM model of 32,000 tokens on both. The result-

ing vocabularies presented a discrepancy of 27% (8,620 unshared tokens). Lazaridou et al.

found that collecting corpus data from different timestamps of the same source shifts the

vocabulary towards terms used more frequently over different times. When shifting be-

tween domains, topics, and registers, this gulf can only widen [Blitzer, Dredze, and Pereira

2007]. One effect of training or fine-tuning a LPLM over a dataset extracted from a dif-

ferent domain than the one on which its subword vocabulary was created is the creation

of long inputs with inconsistent treatment of words. For example, in the tweet shown in

Table 5.1, taken from a task where an emoji is to be matched to a tweet (§5.3), the intended

emoji is the US flag, but the excessive number of WordPiece tokens, and the breaking

down of the most informative word “#4thofjuly” into four unhelpful segments, causes a

classifier trained over a fine-tuned BERT to falsely predict the red heart emoji. In se-

quence tagging tasks like named entity recognition or morphological tagging, the breaking

down of sequence-atomic words into tokens presents a nontrivial decision point as to how

multi-token words’ output representations are to be used for predicting labels [Ács, Kádár,

and Kornai 2021]. In languages with non-concatenative morphology such as Hebrew, the

contiguous nature of subword tokens has been shown to render the representations of the

2As before, in this chapter we refer to space-delimited sections of text as “words” even when they are not
linguistic words per se, in order to distinguish them from the model-centric “tokens” which are represented
and operated over by LPLMs.
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transformer stack all but useless [Klein and Tsarfaty 2020].

In this chapter we present TOKDETOK (or TDT in short), a system which provides

LPLMs the option to represent novel and rare words with a single vector composed over

their character sequence, while retaining the knowledge learned for “unproblematic” word

tokens during pre-training. Our method bridges the gap between the two representation

modules via an additional pre-training sequence where the language modeling objective

is supplemented with training a character-level component to provide vector inputs to the

contextualized model apparatus, as well as a generative component which learns to output

target words from their encoded contextual representations. We show how these auxiliary

components can be trained so that they regularize each other, resulting in a character-to-

vector model that approximates representations well for single- and multi-token words, and

in a word-generation model which produces well-formed sequences approximating English

from arbitrary points in vector space. We examine the performance of various LPLMs

trained with a TOKDETOK module over text from both user-generated and edited sources

on both sequence prediction and sequence labeling tasks, finding that our system’s strength

lies mostly in the latter. We then analyze the effect of individual components and decision

points in our system, such as our choice of corpus for the second pre-training phase and

our regularization regime.

5.2 TOKDETOK

We focus on character-informed representations for LPLMs which use the transformer ar-

chitecture [Vaswani et al. 2017], such as BERT [Devlin et al. 2019], RoBERTa [Liu et al.

2019], and GPT [Radford et al. 2018]. A Transformer LPLM is composed around a core

function MOD parameterized as multi-head self-attention layers which accepts a sequence

{e1, . . . , el} of embedding vectors corresponding to a list of token indices {t1, . . . , tl} from

a vocabulary V , which is the output of a tokenization function τ operating on a sequence

S followed by lookup in an embedding table E; the core module MOD outputs a sequence
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S My hovercraft is full of eels .

τ my hover ##craft [MASK] full [MASK] eels .

πt X × X X X X X

E

TOK
h o v e r c r a f t /w

MOD

πg × X ×

GEN
of

DETOK i s /w e e l s /w

Figure 5.1: TOKDETOK integration into a masked language model. πt is set to send all
multi-WordPiece words into TOK; πg is set to generate every third word using DETOK. /w
is a reserved end-of-word character.

of contextualized vectors {h1, . . . ,hl}, of which a subset {hi}i∈I correspond to masked

tokens in positions I ⊆ [l] selected by a boolean masking operator m. All embeddings

ei,hi are in a shared space Rd. In the case of an autoregressive LPLM like GPT, I = [l]

but each vector hi is only dependent on the tokens preceding its position, {t1, . . . , ti−1},

and token-wise prediction is performed for each position assuming no knowledge of future

tokens. Under either regime, the output vectors {h1, . . . ,hl} serve as input to a prediction

module GEN, which outputs a distribution Di over V for each masked position i. Together,

the components described so far operate in the following manner:

{Di(V)}i∈{I} = GEN (MOD (E [τ(S)])) , (5.1)

where square bracketing denotes (elementwise) table lookup.
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Table 5.2: Example of token input selection by different policies, where [TOK] signifies
a word to be replaced by its character-based representation from TOK. Sentence fragment
taken from the MS-MARCO QA dataset (see §5.3) and tokenized using BERT-cased (##
replaced with # for ease of reading).

Original He was emphatically a modern gentleman, of scrupulous courtesy, sportive gaiety,
Word pieces He was em #pha #tically a modern gentleman , of s #c #rup #ulous courtesy , sport #ive g #ai #ety ,

Random-20% He was [TOK] a [TOK] gentleman , of s #c #rup #ulous [TOK] , sport #ive g #ai #ety ,
All-multi He was [TOK] a modern gentleman , of [TOK] courtesy , [TOK] [TOK] ,
SUFFIXES He was [TOK] a modern gentleman , of [TOK] courtesy , sport #ive [TOK] ,

In the considered LPLM architectures, the input S, which is atomically made up of a

sequence of characters {c1, . . . , cn} ∈ Σn, is broken down by τ to provide the tokenization

of length l ≤ n, and the prediction/generation operator GEN accepts the contextualized

outputs {h1, . . . ,hl} and implements prediction by means of a softmax distribution which

is based on scores obtained via dot-product against an output embedding table, which is

usually the same as E.

The TOKDETOK model makes no adjustments to MOD itself, and only offers condi-

tional replacements for τ and GEN. A tokenization policy πt selects a subset of tokens

from the original sequence J t ⊆ [l] to be represented by TOK instead of E ◦ τ . TOK has

access to the part of the character sequence S which underly the tokens selected by πt, and

produces input embeddings directly from the character level. These alternate embeddings

must agree in dimension with those of each e, but a single embedding may be used to

replace multiple base tokens (usually when all tokens corresponding to a single out-of-E

word are replaced), resulting in a shorter input sequence for MOD. A separate generation

policy πg selects a subset of the original sequence J g ⊆ [l] to be generated from the output

vectors h by DETOK instead of GEN. A high-level schematic depicting this framework is

presented in Figure 5.1.

The specific policies in a given application may be defined based on the model’s use

case. For example, in text classification no generation is required, and so πg will return ∅

for all sequences; πt can be tuned for a task based on known features of the base model

(BERT/GPT etc.) and of the domain text, some examples including: tokens corresponding

to all words that are not in a pre-determined vocabulary; all words in the sequence; all
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words assigned more than one token by the base tokenizer τ ; a random sample of words in

the sequence; or all words including characters that are not lowercase English characters.

One particular policy we hypothesize could be useful is one that affords the tokenizer slack

in detecting a single simple derivational or inflectional suffix: all words which are single-

token or whose second-and-final token is in the list SUFFIXES are left for E ◦ τ ; the rest

are represented using TOK.3 Different policies may be applied in training settings as well,

for example in order to “familiarize” the heavily-parametrized MOD with the inputs from

TOK. Three example policies are illustrated in Table 5.2.

5.2.1 Second Pre-training

A typical LPLM is initiated through a computationally-intensive pre-training step, iterat-

ing over a large corpus in batches of sequences and backpropagating a cross-entropy loss

calculated over the prediction layer’s output into all of its components, through GEN to

MOD to E. In order to train TOKDETOK, we introduce a second pre-training step we term

2PT, where the LPLM continues to update its parameters for a (possibly different) cor-

pus, but is supplemented with the TOKDETOK elements in order to “acclimatize” the MOD

components to outputs from TOK. In addition, TOK is also trained through a lower-level

objective requiring it to approximate the outputs ofE ◦ τ which it is replacing, and DETOK

is trained to sequentially produce the correct character sequence from MOD’s outputs. To-

gether, a batch of text sequences in a 2PT step produces the following loss elements which

are backpropagated into the unified model:

• A language modeling loss from the softmax operation over masked tokens, updating

MOD’s and E’s parameters, as well as TOK’s for tokens selected by a usage policy

πt(u) to be used in MOD’s input;

• A vectorization loss for the TOK component, computed against E ◦ τ ’s token em-

3SUFFIXES, compiled by manually examining a list of most common second-and-final tokens in a large
corpus under GPT-2’s tokenization, = {s, ed, es, ing, ly, al, ally, ’m, ’re, ’ve, y, ive, er, ’t, ’ll, an, ers}.
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beddings, over a set selected by a policy πt(l) which may or may not equal πt(u). This

loss can be computed, e.g., as the euclidean distance between the output and the

target. When the target corresponds to multiple token counts, an aggregation pool-

ing function agg : Rd×N+ → Rd needs to be defined over the embeddings, where

some candidates are taking their dimension-wise mean, taking the leftmost token’s

embedding, or taking the dimension-wise max;

• A generation loss for words generated by DETOK from MOD’s output vectors, ac-

cording to a πg policy. This loss is the character-level cross-entropy for an autore-

gressive sequence generation. Note that in order to only generate full words, πg must

align with πt(u) so that no multi-token words left as input to MOD are also selected

for generation.

As a form of regularization within the TOKDETOK components, we introduce addi-

tional training batches we call cycle dependency loops. In such a batch, TOK and DETOK

act in succession, starting from either of the spaces they operate in, with the goal of arriv-

ing at the same point after cycling through both components. A T→D loop thus starts at

a character sequence c ∈ Σ∗, runs it through TOK to obtain a vector e = TOK(c), and

runs DETOK in an attempt to return to the original sequence ĉ = DETOK(TOK(c)) ≈ c.

Analogously, a D→T loop starts at a vector ẽ ∈ Rd and targets ê = TOK(DETOK(ẽ)) ≈ ẽ.

In this loop, loss is only backpropagated as far as TOK, since backpropagating through a

generative model’s decision component introduces discrete steps which must be smoothed

or approximated (see discussion in Peng, Thomson, and Smith).

5.3 Tasks

To evaluate the advantages of character-sequence awareness in large-scale transformers, we

chose a diverse set of datasets which reflect unedited user-generated language in English,

as well as its interaction with edited text. We report results on a sequence classification

126



task (Emoji prediction), a sequence tagging task (named entity recognition, or NER) in

both an in-domain (Twitter NER) and cross-domain (Emerging entities NER) setting, a

sequence ranking task based on information retrieval in a hybrid edited-unedited textual

setting (Marco-QA ranking), and a task where a single word’s class is predicted within a

sequence (NYTWIT).

Emoji prediction. The English portion of the Multilingual Emoji Prediction dataset [Bar-

bieri et al. 2018; Ma et al. 2020a] is composed of tweets containing one of the twenty most

common emoji symbols. For the task, the emoji are stripped from the tweet text and the

system is asked to predict which one appeared in the original tweet, allowing it to be con-

strued as a self-annotated, fine-grained sentiment analysis task. All tweets are identified as

geographically originating in the US. We note that there is a significant qualitative differ-

ence between the training (+ development) set, and the test set of this corpus, hinted at by

one of the participant teams in the original task [Chen et al. 2018] but not explored.4 The

partitions were extracted based on a temporal split, with all test set tweets post-dating all

training set tweets by at least three months. More crucially, the test set dates (May 2017

– January 2018) overlap with Twitter’s increase of the tweet character limit from 140 to

280 characters, phased in mostly during November 2017. As a result, test set tweets have

on average ∼10% more words, increasing the amount of information within and diverging

their textual feature distribution from that of the training set by more than is customary in

NLP tasks. The label distribution remains more or less the same.

Twitter NER. The Twitter NER dataset [Strauss et al. 2016] is a prime example of se-

quence tagging in noisy user-generated data settings. It is composed of randomly sampled

English tweets from 2016, annotated for ten different entity types, including music artists

and sports teams, thus representing topics prevalent in social media.

4Another team identified a seasonal shift affecting the distribution of the Christmas tree emoji [Coster,
van Dalen, and Stierman 2018].
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Emerging entities recognition. The emerging entities dataset [Derczynski et al. 2017]

shares most of its training set with the same Twitter source as the Twitter NER dataset, but

as a domain-adaptation setup it includes a more ambitious evaluation fold: the development

set is extracted from YouTube comments, and the test set from StackExchange and Reddit.

The taskmasters claim that the dataset contains mostly rare and hitherto-unseen entities,

but do not provide exact statistics.

Community question answering. The MS-MARCO question answering dataset

[MARCOQA; Nguyen et al. 2016] was collected by mining a commercial search engine

log for user queries and asking humans to answer them, supplying the answer writers with

a set of passages retrieved automatically from edited text by the search engine which the

answer writers then marked as “selected” if they helped them formulate the answer. We

recast this dataset into a selection / ranking problem, not pursued in the original challenge:

given the query and the set of possibly helpful passages, which is the passage the answer

writer selected? To this end, we filtered out queries with more or fewer than one selected

passage, and evaluated each system based on the mean reciprocal ranks (MRR) of the true

selected passages in the rankings it produced. Due to its size, we uniformly sampled 10%

of the queries and associated passage collections from each partition in this dataset, and ran

all analyses and experiments on this new sampled dataset.

Novel word classification. The NYTWIT dataset (§4.1) includes passages in the New

York Times where a word appears which has not appeared in the publication before. The

system is tasked to classify the novel word into one of eighteen types of novelty sources,

such as “inflection of known word” or “lexical blend”. The dataset is not partitioned into

train/dev/test, and so we use the 10-fold partition from §4.1 and report accuracy results

aggregated over all instances, each from a model trained on the other nine folds.
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Table 5.3: Surface statistics for the datasets used for evaluation (training sets), against
Wikipedia text of comparable token count sizes. Tokenization performed with GPT-2.

Dataset Instances Tokens Types TTR Multitoks Token mass
(Space-delimited) increase

CoNLL-2003 NER 14,986 204,563 23,624 .115 16.08% 29.50%
Wiki1 — 204,564 28,092 .137 8.64% 12.85%

NYTWIT 1,903 94,403 26,028 .276 24.04% 38.04%
Wiki2 — 94,403 16,903 .179 9.11% 13.75%

Twitter NER 2,394 46,469 10,586 .228 17.23% 43.21%
Wiki3 — 46,509 10,855 .233 9.02% 13.77%

Emerging NER 3,394 62,730 14,878 .237 19.15% 54.25%
Wiki4 — 62,757 13,392 .213 9.05% 13.74%

Emoji Prediction 427,458 4,973,813 504,644 .101 32.96% 64.90%
Wiki5 — 4,973,813 194,240 .039 9.07% 13.58%

MARCOQA (10% sample) 80,704 46,956,674 1,355,049 .029 20.58% 31.91%
Wiki6 — 46,956,703 818,712 .017 9.48% 14.37%

5.3.1 Analysis

We begin with an analysis of the datasets and their subword properties in order to gauge the

direct effects of tokenization on the dataset’s genre and domain. In Table 5.3, we present

surface-level statistics reflecting the challenges posed by the datasets’ sources, comparing

each task’s training set with comparably-sized sets of sentences sampled uniformly from

English Wikipedia. We use the GPT-2 tokenizer, which boasts the largest subword vocabu-

lary of all models considered in this work, to obtain a lower bound on the added token mass

expected by our models on these datasets, and report the following measures: the number of

unique word types and type/word ratio, the percent of types which are subword-tokenized

by GPT-2 (Multitoks), and the overall increase in number of tokens over the corpus com-

pared to a single-token-per-word representation (i.e., strictest application of TOKDETOK

considered in this work).

We find a striking disparity between the well-edited Wikipedia corpora, themselves far

from being completely in-vocabulary, and the datasets at hand. Wikipedia itself proves

to be scale-invariant on the metrics that are not TTR, maintaining a token-OOV rate of

roughly 9% and a tokenization overhead of ∼13%.5 A control dataset in the form of

5This number is very close to the one found by Ács, Kádár, and Kornai using multilingual transformer
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CoNLL-2003’s English NER portion [Tjong Kim Sang and De Meulder 2003], extracted

from newswire text, exhibits a marked increase in complex words, possibly mostly named

entities, or time-sensitive terms compared to the tokenizer’s training set, alongside a de-

crease in type count which reflects its narrow source domain. NYTWIT, despite also being

extracted from newswire text, is sourced from news items that contain novel forms and

so are often written in a high register or involve niche domains; as a result, it contains a

larger overall token mass, split rather evenly across individual words (i.e., unknown words

have fairly “regular” structure). The Twitter NER datasets, exhibiting tweet language, do

not exceed CoNLL’s multitoken type proportion by much, but its OOVs tend to be com-

pletely unexpected forms, leading to a much higher raw post-tokenization count. In the

emoji dataset, which has not been pre-processed according to NER standards and instead

was directly scraped off Twitter, almost a third of all unique forms are multi-token, and

their presence enlarges the total token count by nearly two thirds. MARCOQA data, most

of which is text from highly-ranked web pages, but also including user-generated queries,

assumes a middle position between these two extremes.

5.4 Experiments

We evaluate the effect of TokDetok when included in various LPLMs. We choose BERT-

BASE-CASED [Devlin et al. 2019], GPT-2-SMALL [Radford et al. 2019], and ROBERTA-

BASE [Liu et al. 2019] as the base LPLMs to be manipulated.6 The former contains roughly

108M parameters, and the latter two roughly 125M, a difference accounted for by their

larger subword vocabulary (50k vs. 29k) and the resulting larger embedding table. All

models are case sensitive, but they differ in their strategy for preserving the original space-

delimited word sequence: BERT’s tokenizer marks word-non-initial tokens with a “##”

string, while GPT-2’s tokenizer marks spaces with a special underline character and ap-

pends them to the following word. The difference manifests itself in sequence-initial words,

models; other languages’ corpora boast overheads ranging from 28% (French) to 95% (Japanese).
6Models loaded from the Huggingface repository [Wolf et al. 2020].
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whose initial token in the GPT-2 representation shares the form of sequence-medial word-

medial tokens, rather than that of sequence-medial word-initial tokens; and in symbols pre-

tokenized without a preceding space, such as punctuation and apostrophes. RoBERTa’s to-

kenizer adopts the GPT-2 marking strategy but avoids the first pitfall by internally prepend-

ing all input sequences with a space character. We perform the 2PT phase for each model

on a collection of English tweets from 2016 obtained from the Firehose and preprocessed to

replace all ‘@’-mentions with @user. We later ablate this domain change effect by train-

ing models with 2PT text from the English Wikipedia March 2019 dump (see §5.4.3). We

sample both resources to create pre-training corpora of roughly 725MB (unzipped), several

orders of magnitude smaller than what contemporary models use for the first pre-training

phase, and train for a single epoch.

In preliminary experiments on several character-level TOK architectures, we found that

a convolutional net outperforms bidirectional LSTMs and small transformer stacks. We

pass the input characters through three separate convolution layers of width 2, 3, and 4

(characters), then pass the outputs through max-pooling layers and a ReLU activation, and

finally project the concatenation of the results onto the base models’ embedding dimension.

This TOK component contains ∼1M parameters, negligible compared to the transformers’

parameter count.7 We implement DETOK as a 2-layer unidirectional LSTM whose hidden

layer is initialized by projecting the context vector hi output from MOD into the hidden

dimension. Characters are generated by projecting the LSTM’s output through two linear

layers with a tanh activation.

During 2PT, we insert a cycle dependency batch every 5,000 LM steps. For the replace-

ment policies we choose πt(l) to sample uniformly random sets of tokens representing 15%

of space-delimited words to pass as a target loss for TOK, and πt(u) to replace the embedding

input to MOD with TOK’s output for all multi-token words. πg selects all tokens to pass

as target losses for DETOK, calculated as a sum of the cross-entropy loss for each charac-

7The Wikipedia-trained models contain ∼2.8M parameters, with the difference due to language-ID filter-
ing performed on the Twitter data, leading to a much smaller character set.
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ter in the target sequence. Cycle batches consist of sampling k words out of the K most

frequent words from the training corpus, with replacement, and k vectors from a Gaussian

distribution centered around the surface of the unit sphere in hidden-dimension space:

ẽ ∼ 1√
d
· N (0, I(d)).

T→D loops are optimized for a character-level cross-entropy loss, whereas D→T loops

target a euclidean distance loss. When a TOK embedding correspond to multiple τ tokens,

the learning target is created by max-pooling their embeddings.8 We set K =25,000 and

k =1,000.

5.4.1 Pre-training Quality

Across all base models and both 2PT corpora selected for our experiments, we observed a

steady decrease in the LPLM models’ built-in loss metrics (masked prediction / autoregres-

sive prediction) until stabilizing at roughly half the initial value before the end of the 2PT

epoch. This indicated that the transformer layers are able to process inputs from both the

embedding table and TOK and reconcile them. Figure 5.2 depicts the parameter updates in

RoBERTa by parameter type, across layers, comparing parameter values before and after

the 2PT phase on Twitter data. It shows that the change along the model is fairly stable,

with mildly more significant updates in the bottom and top layers. The former is to be

expected given the introduction of inputs from TOK; the latter can also be influenced by

encountering Twitter data, which is substantially different that what RoBERTa is “used to”.

Another artifact of 2PT is the outputs of the DETOK module. While monitoring the

training procedure, we periodically sample words from random locations centered around

the surface of the unit sphere of the embedding space, to see what “priors” the generative

net is learning from the vectors encountered during training. Table 5.4 presents some of

these samples for different models and different corpora at different points in the training

8This agg function outperformed average-pooling and first-token selection in preliminary experiments.
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Figure 5.2: Euclidean distance between RoBERTa weight parameter values before and after
a 2PT training phase on the Twitter corpus.

Table 5.4: Example generated words from random locations near the surface of the unit
sphere in R768.

Model BERT GPT-2 RoBERTa
Corpus Wikipedia Wikipedia Twitter Twitter Twitter
Steps 9,000 13,500 21,000 7,500 57,500
Sequences (103) 5,184 7,776 10,080 2,160 16,560

proming crordman d orereren everyone
dy sssion . ant kerned

deded gental the re levernger
terse 2 @ cerent and

h ther ==666!!!!!!!!!!!!!!! ennte ed

133



phase. Masked models appear to be learning well-formed fractions of English or pseudo-

English words at early stages of the training phase from both Wikipedia and Twitter data.

As training continues, fewer sequences containing repetitions are observed, fewer genera-

tions occur across samples, and more in-vocabulary words appear, suggesting convergence

of the vector space towards representing well-formed and diverse English vocabulary. The

autoregressive GPT-2, on the other hand, struggles to produce meaningful sequences be-

yond short words and punctuation symbols when trained on the informal Twitter input,

suggesting a difficulty in learning a mapping of language from vector space without avail-

ability of a two-sided context.

5.4.2 Downstream Evaluation

During task fine-tuning and inference, since we do not evaluate on generative tasks, we do

not use DETOK. We perform minimal hyperparameter search for each base model + task

combination, and fine-tune model parameters during downstream training in all tasks but

NYTWIT. For these tasks, we also experimented with setups where MOD and TOK are used

as feature extractors only, and where TOK training is supplemented by an additional vector-

ization loss (as described in §5.2.1 for the 2PT phase) computed against embeddings of the

task input. Neither setup provided improvement on any task during our tuning experiments

(see §5.4.3).

Downstream models are implemented as follows: for sequence classification and rank-

ing, a two-layer perceptron with ReLU activation is trained to make the prediction from the

top-layer representation of the initial [CLS] token (in BERT and RoBERTa models) or of

the final token in the sequence (in GPT-2). For NER, an LSTM is run over the sequence

of each word’s top-layer representation, followed by a single linear layer which makes the

prediction. For NYTWIT, MOD’s contextualized vector for the target word is used as input

for a single logistic layer. In cases of multi-token words, the prediction from the first token

is selected. We set TOK’s character embedding dimension to 200 and the convolutional
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layers to 256 channels. Following Sun et al., we set the maximum learning rate to 10−3 for

the task models and 2 × 10−5 for fine-tuning, and perform warm-up for 10% of the total

expected training steps before linearly decaying the rates to zero. All parameters are opti-

mized using Adam [Kingma and Ba 2014] with default settings. We run all NER models for

twenty epochs and sequence-level task models for three, evaluating on the validation set af-

ter each epoch using the metrics reported below, and stopping early if performance has not

improved for four epochs. In order to avoid unfairly favorable conditions for TOKDETOK

models, task hyperparameters are all tuned on the base models, with TOKDETOK models

using only values on which their base equivalents have also been evaluated.

We evaluate the effectiveness of TOKDETOK’s concepts and components by comparing

the following setups:

• NONE uses only the base model;

• NONE+2PT uses a version of the base model that was further pre-trained on the same

Twitter corpus on which TOKDETOK is trained, in order to control for the increase

in total unlabeled text seen by the model;

• SCAFFOLDING is a model trained with TOKDETOK in a 2PT phase, but only using

base model embeddings during task fine-tuning;

• STOCHASTIC samples 10% of the words in the downstream datasets, calling TOK on

their character sequences while using the base model’s embedding for the remaining

90%;

• ALL NO-SUFF calls TOK on all multi-token words which are not of the form [token

suff], where suff is a member of SUFFIXES from §5.2, and uses the base model’s

embedding on the rest.

We present the results of the downstream prediction tasks in Table 5.5. All transformer

models except for NONE were 2nd-phase pre-trained three separate times using different
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Table 5.5: Results on all models (Emoji, NER, NYTWIT: Micro-F1 × 100; QA: MRR ×
100), all results except for NONE are averaged over three models initialized on different
random seeds. Best result for each base model in bold, best across all underlined.

Base TDT Emoji Twitter NER Emerging NER QA NYT- Avg.
Dev Test Dev Test Dev Test WIT Test

BERT None 24.30 37.29 29.06 28.66 38.14 29.01 46.78 45.21 37.39
None+2PT 29.25 39.40 32.05 29.50 39.79 29.25 50.02 44.87 38.61
Scaffolding 28.17 38.60 32.45 31.38 41.10 29.25 49.50 53.62 40.47
Stochastic 27.54 37.41 30.77 27.51 37.99 27.98 48.12 49.80 38.16
All no-suff 27.12 38.63 34.09 29.59 39.47 28.43 48.64 34.76 36.01

GPT-2 None 24.89 38.72 30.25 26.70 40.06 28.40 44.90 47.25 37.19
None+2PT 25.47 40.95 32.00 28.51 40.68 29.90 47.18 47.44 38.80
Scaffolding 25.29 40.70 30.46 28.97 41.16 28.23 46.99 50.99 39.18
Stochastic 25.23 38.55 32.20 28.10 39.58 28.35 46.11 46.37 37.50
All no-suff 26.30 34.27 36.27 32.48 49.20 34.87 44.98 33.21 35.96

RoBERTa None 25.07 39.50 48.57 44.86 56.43 46.22 45.12 48.31 44.80
None+2PT 27.04 42.82 47.39 43.84 57.13 45.12 48.98 48.43 45.84
Scaffolding 25.87 41.12 49.71 45.51 56.28 44.60 48.26 53.98 46.69
Stochastic 26.38 40.09 49.57 44.82 58.21 45.26 48.54 51.80 46.10
All no-suff 26.82 33.07 46.55 42.72 55.07 43.91 47.45 35.65 40.56

SOTA (reported) 47.46 52.4 49.6 48.4

random seeds, and the mean results are reported.

The first observation we make is the dominance of RoBERTa, a thoroughly optimized

masked language model, over the other models on the NER datasets in all its variants. This

suggests RoBERTa has captured fine-grained information about individual words that it

was able to retain in its representations for them; the struggle of the TOKDETOK model

to provide improvement over the NONE versions of the model strengthens this hypothesis.

GPT-2, despite having access to only left-side context of each word, still outperforms the

basic BERT model on most setups in the NER tasks, perhaps due to its larger subword

vocabulary size. At the same time, its gains from the TOK representations are much more

considerable, suggesting that its left-context-only inference may in fact be detrimental to

the its MOD’s performance as a whole. In general, models perform better on Emerging

NER than on Twitter NER, which we attribute to several possible causes or their combina-

tion: first, the source shift in the Emerging NER test set from Twitter to Reddit is meant to

encumber the models, but given the extensive pre-training they undergo they may actually
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benefit from the fact that test sequences are longer on average than those in the Twitter

NER dataset; second, more prosaically, the Emerging NER dataset contains fewer entity

types (6 vs. 10), making the task itself somewhat easier.

The other word-level task, NYTWIT, demonstrates substantial gains made by the

TOKDETOK training regime: the SCAFFOLDING setup preforms best in all three base mod-

els, and in both masked langugage models the STOCHASTIC setup outperforms both NONE

variants. Together with the NER results, this suggests that TOKDETOK succeeds in pro-

viding transformer models with word-level representations that allow coarse-grained clas-

sifications (such as named entity type or novel word origin), better than default subword

segmentations, for both edited and user-generated text.

We find that TOKDETOK is less successful in improving sequence prediction perfor-

mance than on word-level tasks. The NONE+2PT setup obtains the best results in most

models on the Emoji and QA datasets, suggesting the improvements seen in TOKDETOK-

based models is mostly attributable to the domain shift introduced by the Twitter pre-

training corpus.9 This suggests that TOK may be a good learner for word-internal phe-

nomena, picking up structural cues as to their roles within or without context, making it

more useful locally than subword tokens’ uninformed embeddings, while not being strong

enough to provide a better semantic prior for MOD to aggregate together with surrounding

well-formed words, making its global utility limited.

9We note the complete inconsistency in both model performance and comparative model ranking present
in the Emoji dataset, which calls back the systemic issue we identified in §5.3: The time span over which
the test set was collected contained a fundamental shift in Twitter’s properties — doubling the tweet length
limit from 140 to 280 characters — and so exhibits an unpredictable corpus incompatible with the train
and dev partitions. As a result, model performance over the dev set does not predict the test set results (a
large difference on performance in this task between dev and test sets was also observed in macro-F1 scores
by Barbieri et al.). In fact, under such specific data shift circumstances, it could be the case that the simpler
base model is better equipped for facing longer test data, which scales generalizations made over the training
and dev sets, as opposed to TOK-augmented models which have more levels of generalization to acquire
during training and cannot anticipate the scale change. Post-hoc inspection of specific model outputs resulted
in some more concrete hypotheses for the cause of discrepancy in the major categories of confusion, for
example the distributions of “@” presence in heart-emoji tweets and heart-eyes-emoji tweets shifted to a
degree which could explain the models’ growing confusion between the two, but no signals accounted for
the entire difference in performance and we conclude that the main reason remains the change in sequence
length distributions.
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Table 5.6: Dev set average effect of model variants compared with the ALL NO-SUFF

condition on a single random seed: “No-FT” — pre-trained model used only for feature
extraction; “Wiki” — TOKDETOK trained on Wikipedia data instead of Twitter; “No loops”
— trained without the cycle dependency loops; “All multi” — common-suffix words also
inferred using TOK.

Ablation BERT GPT-2 RoBERTa

Full 37.17 38.27 41.97
No FT −0.31 −0.25 −0.80
Wiki 2PT −3.11 −2.67 −2.17
No loops +0.82 +0.26 −1.12
All multi −1.39 +0.44 −1.81

5.4.3 Ablations

We compare the dev set results of the ALL NO-SUFF condition on several modified versions

of the model, presented in Table 5.6. First, we find that fine-tuning MOD and TOKDETOK

parameters during downstream task application is beneficial for results across base models,

indicating susceptibility of TOK’s network to tune itself on task data and not solely on LM

and the vectorization signal. Next, and most substantially, we note the vast improvement

of Twitter-trained models compared with 2PT performed over a Wikipedia corpus with

comparable size; even though some tasks are on edited text, the overall effect of domain

change during second pre-training is apparent (and, indeed, least impactful on the NYTWIT

task which features the best-edited text). Other decisions made during the 2PT phase appear

to be less decisive: removing the dependency loops helps performance on BERT and GPT-

2, but makes a large dent in the best-performing RoBERTa, indicating potential gains to

be made by applying DETOK in generative tasks not pursued within our scope; the suffix-

based dialing down of inference in pre-training helps the masked models but hurts GPT-2

performance, possibly because its autoregressive application prohibits it from looking at a

simply-inflected word’s suffix when processing its stem, a problem not incurred in masked

modeling.

138



5.5 Related Work

CharBERT [Ma et al. 2020b] is a method which incorporates character-level encodings in

LPLMs, while re-designing the transformer stack to include a “character channel” distinct

from the parallel token channel. Char2Subword [Aguilar et al. 2020] integrates multiple

losses in a system trained to predict subword tokens from the character level, all origi-

nating in distance metrics between target and prediction. CharacterBERT [El Boukkouri

et al. 2020] uses an ELMo-style character convolutional network to encode input into a

transformer MLM. CANINE [Clark et al. 2021] is a method for training LPLMs which re-

moves the need for a subword tokenizer, by utilizing character-level representations which

are pooled into inputs for the main transformer module. Unlike TOKDETOK, these sys-

tems all require training an LPLM from scratch and do not support using a 2PT step for

tuning existing large models. In addition, with the exception of CANINE, they all resort to

softmax prediction over a subword vocabulary for the generative portion of the pre-training

phase, and do not offer a character-level decoder which can also be tied to the encoding

component.

5.6 Conclusion

We present TOKDETOK, an adaptive tokenization-detokenization system which allows

large pre-trained language models to handle representation of words learned composition-

ally from their orthographic manifestation without resorting to hard-coded subword embed-

dings which fare poorly on the thick distribution tails of domain-shifted data. We demon-

strate TOKDETOK’s efficacy across three pre-trained model architectures when trained on

a corpus from a domain new to them, showing that with a relatively small amount of pro-

cessing improvements can be reached on token-level tasks; with sequence-level task per-

formance holding out in powerful pre-trained systems. In future work, we wish to extend

the scope of TOKDETOK to non-English languages and to multilingual models, as well as
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to make use of the DETOK module to assist in generative tasks.
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CHAPTER 6

CONCLUSION

In this dissertation, I set out to chart the various approaches taken for determining the basic

elements in written language and representing them in neural learning systems, and gauge

the potential of integrating them into models that are robust to novel word formations and

sensitive to the structure of language and linguistic properties. Seeing as the distributional

approach is the one that requires neither annotated data nor explicit human knowledge to

provide excellent initial representations for words in a given corpus, I treat it as a fulcrum

into which other approaches integrate.

In Chapter 2, I focused on the contributions of the compositional approach, accord-

ing to which the meanings of a word contain a significant component that is the func-

tion of smaller units present in its orthographic form. The MIMICK model presented

in §2.1 demonstrates a cross-linguistic ability of character-level compositional modules to

learn signals helpful to prediction of morphosyntactic attributes from only distributionally-

trained static word embeddings, while the analysis technique in §2.2 offers a way to quan-

tify the utility of the specific RNN architecture in learning these signals via bottom-up

aggregation of the distributed parameter space, comparing models trained on data from

different languages.

In Chapter 3, I examined the relational approach, which seeks to make use of known

connections between concepts as they are manifested in language. In §3.1 I showed that

tasks inherent to semantic graphs, a complex structure explicitly containing such connec-

tions, may be improved not only by distributional priors but also by looking at the graph

structures as a whole; moreover, the M3GM model’s design allows post-training analy-

sis of the feature space which can provide us with insight into the structure of language

and concept space themselves. In §3.2 I designed a semi-supervised setup and used it to
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create a resource emulating the real-world process of adding information into an existing

knowledge graph as it is ingested through a news feed.

As the rapid progress in the NLP research landscape shifted the focus away from static

models and into new ways of thinking about atomic language representations, I decided in

Chapter 4 to zoom back out and chart the abilities and limitations of these new approaches,

as well as the adjusted notion of OOV, from the perspective of raw linguistic data. In §4.1

I created the NYTWIT dataset of truly novel words and showed that models which rely

heavily on both distributional and compositional signals struggle greatly in the modest task

of recognizing the word-formation process which created them; in §4.2 I followed up on the

particularly challenging cases of compounds and blends, showing that even when a model

knows it is faced with a lexical blend, it comes up short when attempting to recognize its

contributing source words.

Finally, in Chapter 5 I developed the TOKDETOK model which integrates character-

sequence signals into the subword-based contextualized models that dominate today’s NLP

systems, one which does not require complete re-training of a model from scratch, and

which increases performance on tasks were the data originates in user-generated domains,

across several large transformer model architectures.

The work done for this dissertation has already made impact on NLP research. I men-

tioned the independent follow-ups to the MIMICK model, which in addition has been cited

in many other works seeking to extract character-level information for models working over

larger atomic units. I hope its extension into the contextualized framework as TOKDETOK

makes similar effects, playing into its useful characteristic of upstream compatibility. The

M3GM model held its state-of-the-art status in relation prediction over WordNet for ap-

proximately two years; the resurgence of interest in making benchmarks for NLP models

more challenging and robust [Bowman and Dahl 2021] will hopefully lead to the inclu-

sion of BBNE completion, NYTWIT classification and blend recovery in future model

evaluations. As NLP continues to reinvent itself, I seek to further challenge the explicit
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and implicit assumptions inherent in novel methods from a linguistically-informed view,

advancing a principled analysis of models and the creation of challenging resources and

integrative language representation and processing systems.

6.1 Future Work Directions

Intrinsically Evaluating Compositional Approaches

One major obstacle for completing the work presented in this dissertation stemmed from

the need to incorporate novel representational ideas within a framework where they occupy

the first step of a long and resource-intensive application process. In current NLP prac-

tice, the ultimate stamp of approval for any system’s merit, or usefulness, comes from its

performance on the final downstream task. Not too long ago, intrinsic model evaluation in

the form of nearest-neighbor lists and correlation on similarity tasks was good enough for

word representations [Huang et al. 2012; Mikolov et al. 2013], or at least valuable side-

by-side with an additional downstream evaluation, and indeed I reported both for MIMICK.

Similarly, for contextualized models, perplexity or other word-prediction scores were once

plausible as a single metric [Merity, Keskar, and Socher 2018] but now serve only as the

appetizer for the main-course evaluation on a multitask benchmark like SuperGLUE [Wang

et al. 2019a] or a selection of multiple “understanding” tasks. One of the reasons intrinsic

metrics have fallen from grace is that they were shown to not correlate well with down-

stream performance [Chiu, Korhonen, and Pyysalo 2016; Wang et al. 2019b]. Coupled with

the subjective nature of assessing something as ambiguously-defined as “word similarity”

and the arbitrariness of using compression metrics for assessing word prediction, the mes-

sage to algorithm designers is clear. In my opinion, the price of this policy is unacceptably

high: tokenization and other subword algorithm designs cannot be tested comprehensively,

with proper architecture search and hyperparameter sweeps, without incurring a massive

cost in time and resources consumed. Therefore, one main goal I set for my future work

is to roll back the norms of our practice and find new ways to evaluate upstream repre-
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sentational models in a manner which facilitates efficient development, while maintaining

reliable correlation with eventual downstream performance.

Breaking the Shackles of Hardware

The research ecosystem in which the work in this dissertation and parallel efforts is en-

trenched revolves largely around constraints external to the true underlying motivations

of NLP as a scholarly field. We integrate approaches together because they are building

blocks we can grasp, and implement, and use together one bite at a time. But each of these

academic building blocks is ultimately a product of earth-scale trends not shaped by lan-

guage scientists, most salient of all being the mid-2010’s emergence of deep neural nets

from its niche research cocoon as a massively applicable and effective set of concrete tools

due to a revolution in hardware, mostly attributable to the modern GPU (and later, TPU),

in an instantiation of a phenomenon recently coined as “the Hardware Lottery” [Hooker

2020]. These architectures unleashed the power of mass parametrization which NLP as a

field was smart enough to utilize and adapt to its needs, but not without limitations. First

was of course the immediate adoption of embeddings as the features of language atoms.

Next, when feedforward and convolutional nets, the true power users of GPUs, proved in-

sufficient for processing language with its sequential nature, RNNs took the spotlight, but

the temporal dimension remained a hindrance and increasingly uncomfortable hacks like

batching over padded sequences crept into the state-of-the-art models, and transformers

were developed to address this problem. But the problems being solved are still by and

large implementational ones. We should strive to change the underlying constraints, not

succumb to them. If language is compositional, why can’t our models be? When a domain-

specific multi-morphemic word is embedded into the same vector space as a preposition,

with the same number of parameters encoding the information of both, surely something

is amiss. Sentences, and full paragraphs, are then also crammed into those same spaces

relabeled as “output” embeddings, but again no linguistic explanation is available for why
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this would be a reasonable choice, and one probably does not exist. A recent position paper

suggests pursuing self-induced linguistic levels and representations, claiming that trans-

formers took us an important step towards intra-model compositional modeling, but does

not address the hardware limitations [Henderson 2020].

In my opinion, true integration of various approaches to modeling language would in-

clude a bottom-up design of hardware systems dynamic enough to allocate memory and

processing cycles to on-the-fly representation and usage of variable-size, variable-length,

variable-depth linguistic structures. With the hardware, a suitable theory of learning must

be developed, one which may be inspired by existing techniques as transformers have been

from convolutional nets, but nevertheless a linguistically-aware one. For example, such

systems might be optimized for concurrent forward and backward operations, leveraging

the duality of written language as both a hierarchical and sequential medium.
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Hajič, Jan and Barbora Hladká (1998). “Tagging Inflective Languages: Prediction of Mor-
phological Categories for a Rich Structured Tagset”. In: 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Conference on Com-
putational Linguistics, Volume 1. Montreal, Quebec, Canada: Association for Compu-
tational Linguistics, pp. 483–490.

Hao, Yanchao et al. (2016). “A joint embedding method for entity alignment of knowledge
bases”. In: Proceedings of the China Conference on Knowledge Graph and Semantic
Computing.

154



Harris, Zellig S (1954). “Distributional structure”. In: Word 10.2-3, pp. 146–162.

Heck, Larry, Dilek Hakkani-Tür, and Gokhan Tur (2013). “Leveraging knowledge graphs
for web-scale unsupervised semantic parsing”. In: Proceedings of the 14th Annual Con-
ference of the International Speech Communication Association (INTERSPEECH).

Heigold, Georg, Günter Neumann, and Josef van Genabith (2017). “How Robust Are
Character-Based Word Embeddings in Tagging and MT Against Wrod Scramlbing or
Randdm Nouse?” In: arXiv preprint arXiv:1704.04441.

Henderson, James (2020). “The Unstoppable Rise of Computational Linguistics in Deep
Learning”. In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Online: Association for Computational Linguistics, pp. 6294–
6306.

Hill, Felix, Roi Reichart, and Anna Korhonen (2015). “SimLex-999: Evaluating Semantic
Models With (Genuine) Similarity Estimation”. In: Computational Linguistics 41.4,
pp. 665–695.

Hirschberg, Daniel S. (1977). “Algorithms for the Longest Common Subsequence Prob-
lem”. In: J. ACM 24.4, pp. 664–675.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural
computation 9.8, pp. 1735–1780.

Hoffart, Johannes, Yasemin Altun, and Gerhard Weikum (2014). “Discovering emerging
entities with ambiguous names”. In: Proceedings of the 23rd international conference
on World wide web, pp. 385–396.

Hoffart, Johannes et al. (2011). “Robust Disambiguation of Named Entities in Text”. In:
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Pro-
cessing. Edinburgh, Scotland, UK.: Association for Computational Linguistics, pp. 782–
792.

Hoffmann, Raphael et al. (2011). “Knowledge-based weak supervision for information ex-
traction of overlapping relations”. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies.

Holland, Paul W. and Samuel Leinhardt (1981). “An exponential family of probability
distributions for directed graphs”. In: Journal of the american Statistical association
76.373, pp. 33–50.

Hooker, Sara (2020). “The hardware lottery”. In: arXiv preprint arXiv:2009.06489.

155



Horn, Franziska (2017). “Context encoders as a simple but powerful extension of word2vec”.
In: Proceedings of the 2nd Workshop on Representation Learning for NLP. Vancouver,
Canada: Association for Computational Linguistics, pp. 10–14.

Howard, Jeremy and Sebastian Ruder (2018). “Universal Language Model Fine-tuning for
Text Classification”. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Associa-
tion for Computational Linguistics, pp. 328–339.

Huang, Eric et al. (2012). “Improving Word Representations via Global Context and Mul-
tiple Word Prototypes”. In: Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Jeju Island, Korea: Associa-
tion for Computational Linguistics, pp. 873–882.

Huang, Po-Sen et al. (2013). “Learning deep structured semantic models for web search
using clickthrough data”. In: Proceedings of the 22nd ACM international conference
on Information & Knowledge Management, pp. 2333–2338.

Hubauer, Thomas et al. (2018). “Use cases of the industrial knowledge graph at Siemens”.
In: Proceedings of the International Semantic Web Conference (P&D/Industry/BlueSky).

Jaech, Aaron, Rik Koncel-Kedziorski, and Mari Ostendorf (2016). “Phonological pun-
derstanding”. In: Proceedings of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
pp. 654–663.
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Köhler, W (1947). “Gestalt psychology, 2nd edn New York”. In: NY: Liveright Publishing
Corporation.[Google Scholar].

Kolyvakis, Prodromos, Alexandros Kalousis, and Dimitris Kiritsis (2020). “Hyperbolic
knowledge graph embeddings for knowledge base completion”. In: Proceedings of the
European Semantic Web Conference. Springer.

Kondratyuk, Dan (2019). “Cross-Lingual Lemmatization and Morphology Tagging with
Two-Stage Multilingual BERT Fine-Tuning”. In: Proceedings of the 16th Workshop on
Computational Research in Phonetics, Phonology, and Morphology. Florence, Italy:
Association for Computational Linguistics, pp. 12–18.

Kornai, András (2002). “How many words are there?” In: Glottometrics 4, pp. 61–86.

Kudo, Taku (2018). “Subword Regularization: Improving Neural Network Translation Mod-
els with Multiple Subword Candidates”. In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne,
Australia: Association for Computational Linguistics, pp. 66–75.

Kudo, Taku and John Richardson (2018). “SentencePiece: A simple and language indepen-
dent subword tokenizer and detokenizer for Neural Text Processing”. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations. Brussels, Belgium: Association for Computational Linguistics,
pp. 66–71.

Kulkarni, Vivek and William Yang Wang (2018). “Simple Models for Word Formation in
Slang”. In: Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1

157



(Long Papers). New Orleans, Louisiana: Association for Computational Linguistics,
pp. 1424–1434.

Lafourcade, Mathieu (2007). “Making people play for Lexical Acquisition with the JeuxDe-
Mots prototype”. In: SNLP’07: 7th international symposium on natural language pro-
cessing, p. 7.

Lample, Guillaume et al. (2016). “Neural Architectures for Named Entity Recognition”. In:
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. San Diego, California:
Association for Computational Linguistics, pp. 260–270.

Lazaridou, Angeliki et al. (2021). “Pitfalls of Static Language Modelling”. In: arXiv preprint
arXiv:2102.01951.

Lee, Jackson L. et al. (2020). “Massively Multilingual Pronunciation Modeling with WikiPron”.
In: Proceedings of the 12th Language Resources and Evaluation Conference. Marseille,
France: European Language Resources Association, pp. 4223–4228. ISBN: 979-10-
95546-34-4.

Lieber, Rochelle (2005). “English word-formation processes”. In: Handbook of
word-formation. Springer, pp. 375–427.

Ling, Wang et al. (2015). “Finding Function in Form: Compositional Character Models for
Open Vocabulary Word Representation”. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, pp. 1520–1530.

Linzen, Tal, Emmanuel Dupoux, and Yoav Goldberg (2016). “Assessing the Ability of
LSTMs to Learn Syntax-Sensitive Dependencies”. In: Transactions of the Association
for Computational Linguistics 4, pp. 521–535.

Liu, Yinhan et al. (2019). “Roberta: A robustly optimized bert pretraining approach”. In:
arXiv preprint arXiv:1907.11692.

Loper, Edward and Steven Bird (2002). “NLTK: the natural language toolkit”. In: arXiv
preprint cs/0205028.

Lui, Marco and Timothy Baldwin (2012). “langid. py: An off-the-shelf language identifi-
cation tool”. In: Proceedings of the ACL 2012 system demonstrations. Association for
Computational Linguistics, pp. 25–30.

Luong, Thang, Richard Socher, and Christopher Manning (2013). “Better Word Represen-
tations with Recursive Neural Networks for Morphology”. In: Proceedings of the Sev-

158



enteenth Conference on Computational Natural Language Learning. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 104–113.

Ma, Weicheng et al. (2020a). “Multi-resolution Annotations for Emoji Prediction”. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP). Online: Association for Computational Linguistics, pp. 6684–6694.

Ma, Wentao et al. (2020b). “CharBERT: Character-aware Pre-trained Language Model”.
In: Proceedings of the 28th International Conference on Computational Linguistics.
Barcelona, Spain (Online): International Committee on Computational Linguistics, pp. 39–
50.

Ma, Yi et al. (2015). “Knowledge graph inference for spoken dialog systems”. In: Pro-
ceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP).

Maddela, Mounica, Wei Xu, and Daniel Preoţiuc-Pietro (2019). “Multi-task Pairwise Neu-
ral Ranking for Hashtag Segmentation”. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. Florence, Italy: Association for Com-
putational Linguistics, pp. 2538–2549.

Madhyastha, Pranava Swaroop et al. (2016). “Mapping Unseen Words to Task-Trained
Embedding Spaces”. In: Proceedings of the 1st Workshop on Representation Learning
for NLP. Berlin, Germany: Association for Computational Linguistics, pp. 100–110.

McCawley, James D (1978). “Where you can shove infixes”. In: Syllables and segments,
pp. 213–221.

Melamud, Oren, Jacob Goldberger, and Ido Dagan (2016). “context2vec: Learning Generic
Context Embedding with Bidirectional LSTM”. In: Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning. Berlin, Germany: Associa-
tion for Computational Linguistics, pp. 51–61.

Merity, Stephen, Nitish Shirish Keskar, and Richard Socher (2018). “Regularizing and Op-
timizing LSTM Language Models”. In: International Conference on Learning Repre-
sentations.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013). “Linguistic Regularities in
Continuous Space Word Representations”. In: Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Atlanta, Georgia: Association for Computational Linguistics,
pp. 746–751.

Mikolov, Tomas et al. (2013). “Efficient estimation of word representations in vector space”.
In: Proceedings of International Conference on Learning Representations.

159



Minervini, Pasquale and Sebastian Riedel (2018). “Adversarially Regularising Neural NLI
Models to Integrate Logical Background Knowledge”. In: Proceedings of the 22nd
Conference on Computational Natural Language Learning. Brussels, Belgium: Asso-
ciation for Computational Linguistics, pp. 65–74.

Mohankumar, Akash Kumar et al. (2020). “Towards Transparent and Explainable Attention
Models”. In: Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. Online: Association for Computational Linguistics, pp. 4206–4216.

Morris, Martina, Mark S. Handcock, and David R. Hunter (2008). “Specification of
exponential-family random graph models: terms and computational aspects”. In: Jour-
nal of statistical software 24.4, p. 1548.

Mueller, Thomas, Helmut Schmid, and Hinrich Schütze (2013). “Efficient Higher-Order
CRFs for Morphological Tagging”. In: Proceedings of the 2013 Conference on Empir-
ical Methods in Natural Language Processing. Seattle, Washington, USA: Association
for Computational Linguistics, pp. 322–332.

Mueller, Thomas and Hinrich Schuetze (2011). “Improved Modeling of Out-Of-Vocabulary
Words Using Morphological Classes”. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies. Port-
land, Oregon, USA: Association for Computational Linguistics, pp. 524–528.

Napoles, Courtney, Matthew R Gormley, and Benjamin Van Durme (2012). “Annotated
gigaword”. In: Proceedings of the Joint Workshop on Automatic Knowledge Base Con-
struction and Web-scale Knowledge Extraction (AKBC-WEKEX), pp. 95–100.

Nathani, Deepak et al. (2019). “Learning Attention-based Embeddings for Relation Predic-
tion in Knowledge Graphs”. In: Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics. Florence, Italy: Association for Computational
Linguistics, pp. 4710–4723.

Navigli, Roberto and Simone Paolo Ponzetto (2010). “BabelNet: Building a Very Large
Multilingual Semantic Network”. In: Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Uppsala, Sweden: Association for Compu-
tational Linguistics, pp. 216–225.

Neelakantan, Arvind, Benjamin Roth, and Andrew McCallum (2015). “Compositional vec-
tor space models for knowledge base inference”. In: 2015 aaai spring symposium se-
ries.

Neubig, Graham et al. (2017). DyNet: The Dynamic Neural Network Toolkit. eprint: arXiv:
1701.03980.

160

arXiv:1701.03980
arXiv:1701.03980


Nguyen, Dai Quoc et al. (2018). “A Novel Embedding Model for Knowledge Base Com-
pletion Based on Convolutional Neural Network”. In: Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers). New Orleans, Louisiana: As-
sociation for Computational Linguistics, pp. 327–333.

Nguyen, Tri et al. (2016). “MS MARCO: A human generated machine reading comprehen-
sion dataset”. In: CoCo@ NIPS.

Nickel, Maximilian and Douwe Kiela (2017). “Poincaré embeddings for learning hierar-
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