573 research outputs found

    A Comparative Study of Time-Frequency Representations for Fault Detection in Wind Turbine

    Get PDF
    To reduce the cost of wind energy, minimization and prediction of maintenance operations in wind turbine is of key importance. In variable speed turbine generator, advanced signal processing tools are required to detect and diagnose the generator faults from the stator current. To detect a fault in non-stationary conditions, previous studies have investigated the use of time-frequency techniques such as the Spectrogram, the Wavelet transform, the Wigner-Ville representation and the Hilbert-Huang transform. In this paper, these techniques are presented and compared for broken-rotor bar detection in squirrel-cage generators. The comparison is based on several criteria such as the computational complexity, the readability of the representation and the easiness of interpretatio

    Induction Machine Diagnosis using Stator Current Advanced Signal Processing

    No full text
    International audienceInduction machines are widely used in industrial applications. Safety, reliability, efficiency and performance are major concerns that direct the research activities in the field of electrical machines. Even though the induction machines are very reliable, many failures can occur such as bearing faults, air-gap eccentricity and broken rotor bars. Therefore, the challenge is to detect them at an early stage in order to prevent breakdowns. In particular, stator current-based condition monitoring is an extensively investigated field for cost and maintenance savings. In fact, several signal processing techniques for stator current-based induction machine faults detection have been studied. These techniques can be classified into: spectral analysis approaches, demodulation techniques and time-frequency representations. In addition, for diagnostic purposes, more sophisticated techniques are required in order to determine the faulty components. This paper intends to review the spectral analysis techniques and time-frequency representations. These techniques are demonstrated on experimental data issued from a test bed equipped with a 0.75 kW induction machine. Nomenclature O&M = Operation and Maintenance; WTG = Wind Turbine Generator; MMF = Magneto-Motive Force; MCSA = Motor Current signal Analysis; PSD = Power Spectral Density; FFT = Fast Fourier Transform; DFT = Discrete Fourier Transform; MUSIC = MUltiple SIgnal Characterization; ESPRIT = Estimation of Signal Parameters via Rotational Invariance Techniques; SNR = Signal to Noise Ratio; MLE = Maximum Likelihood Estimation; STFT = Short-Time Fourier Transform; CWT = Continuous Wavelet Transform; WVD = Wigner-Ville distribution; HHT = Hilbert-Huang Transform; DWT = Discrete Wavelet Transform; EMD = Empirical Mode Decomposition; IMF = Intrinsic Mode Function; AM = Amplitude Modulation; FM = Frequency Modulation; IA = Instantaneous Amplitude; IF = Instantaneous Frequency; í µí± ! = Supply frequency; í µí± ! = Rotational frequency; í µí± ! = Fault frequency introduced by the modified rotor MMF; í µí± ! = Characteristic vibration frequencies; í µí± !"# = Bearing defects characteristic frequency; í µí± !" = Bearing outer raceway defect characteristic frequency; í µí± !" = Bearing inner raceway defect characteristic frequency; í µí± !" = Bearing balls defect characteristic frequency; í µí± !"" = Eccentricity characteristic frequency; í µí± ! = Number of rotor bars or rotor slots; í µí± = Slip; í µí°¹ ! = Sampling frequency; í µí± = Number of samples; í µí±¤[. ] = Time-window (Hanning, Hamming, etc.); í µí¼ = Time-delay; í µí¼ ! = Variance; ℎ[. ] = Time-window

    DIAGNOSIS OF INDUCTION MOTOR BEARING DEFECT USING DISCRETE WAVELET TRANSFORM AND ARTIFICIAL NEURAL NETWORK

    Get PDF
    Induction motor is electromechanical equipment that is widely used in various industrial applications. The research paper presents the detection of the defect to three-phase induction motor bearing using discrete wavelet transforms and artificial neural networks to detect whether or not the motor is damaged. An experimental test rig was made to obtain data on healthy phase currents or damaged bearings on the induction motor using the motor current signature analysis (MCSA) method. Several mother-level wavelets are chosen on the wavelet method from the obtained current signal. The feature of the wavelet results is used as an input of the Artificial Neural Network to classify the condition of the induction motor. The results showed that the system could provide an accurate diagnosis of the condition of the induction motor

    Experimental diagnosis of inter-turns stator fault and unbalanced voltage supply in induction motor using MCSA and DWER

    Get PDF
    This paper presents a comparative study between two techniques of signal processing to diagnose both faults the inter-turn short circuit (ITSC) in stator windings and the unbalanced voltage supply (UVS) in induction motors. The first is considered a classical technique called Motor Current Signature Analysis (MCSA) which is based on the processing of the stator current by the Fast Fourier Transform (FFT). The second is anadvanced technique based on a Discrete Wavelet Energy Ratio (DWER) of three stator currents. The aim objective of this paper is to compare the ability and effectiveness of both techniques to detect the ITSC fault and the UVS in induction motors, and distinguishing between them. An experimental implementation tests the two diagnosis techniques.The results obtained show that the MCAS technique by the FFT analysis has a difficult to discriminate between the current harmonics due to the provide voltage unbalance and those originated by ITSC faults. Unlike the DWERtechnique, which has high sensitivity and exceptional ability to detect and distinguish between the two faults that lead to the reliability of the diagnosis system. To demonstrate that the DWER is an accurate and robust diagnosis approach are used the neural network (NN) as a tool to classify the faults (ITSC and USV) where using DWER indicators as NN input. The results obtained of combination between the DWER and NN are effective and proved its ability to detect both faults under different load conditions and distinguish between them accurately with low error (10-5)

    Fault Diagnosis in the Slip Frequency Plane of Induction Machines Working in Time-Varying Conditions

    Full text link
    [EN] Motor current signature analysis (MCSA) is a fault diagnosis method for induction machines (IMs) that has attracted wide industrial interest in recent years. It is based on the detection of the characteristic fault signatures that arise in the current spectrum of a faulty induction machine. Unfortunately, the MCSA method in its basic formulation can only be applied in steady state functioning. Nevertheless, every day increases the importance of inductions machines in applications such as wind generation, electric vehicles, or automated processes in which the machine works most of time under transient conditions. For these cases, new diagnostic methodologies have been proposed, based on the use of advanced time-frequency transforms-as, for example, the continuous wavelet transform, the Wigner Ville distribution, or the analytic function based on the Hilbert transform-which enables to track the fault components evolution along time. All these transforms have high computational costs and, furthermore, generate as results complex spectrograms, which require to be interpreted for qualified technical staff. This paper introduces a new methodology for the diagnosis of faults of IM working in transient conditions, which, unlike the methods developed up to today, analyzes the current signal in the slip-instantaneous frequency plane (s-IF), instead of the time-frequency (t-f) plane. It is shown that, in the s-IF plane, the fault components follow patterns that that are simple and unique for each type of fault, and thus does not depend on the way in which load and speed vary during the transient functioning; this characteristic makes the diagnostic task easier and more reliable. This work introduces a general scheme for the IMs diagnostic under transient conditions, through the analysis of the stator current in the s-IF plane. Another contribution of this paper is the introduction of the specific s-IF patterns associated with three different types of faults (rotor asymmetry fault, mixed eccentricity fault, and single-point bearing defects) that are theoretically justified and experimentally tested. As the calculation of the IF of the fault component is a key issue of the proposed diagnostic method, this paper also includes a comparative analysis of three different mathematical tools for calculating the IF, which are compared not only theoretically but also experimentally, comparing their performance when are applied to the tested diagnostic signals.This work was supported by the Spanish "Ministerio de Ciencia, Innovacion y Universidades (MCIU)", the "Agencia Estatal de Investigacion (AEI)" and the "Fondo Europeo de Desarrollo Regional (FEDER)" in the framework of the "Proyectos I+D+i -Retos Investigacion 2018", project reference RTI2018-102175-B-I00 (MCIU/AEI/FEDER, UE).Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Burriel-Valencia, J.; Riera-Guasp, M. (2020). Fault Diagnosis in the Slip Frequency Plane of Induction Machines Working in Time-Varying Conditions. Sensors. 20(12):1-26. https://doi.org/10.3390/s20123398S126201

    Transformada wavelet para análisis del motor de inducción: revisión

    Get PDF
    This study makes a revision of the most recent investigations that have implemented the wavelet transform by analyzing the electrical and mechanical variables of the induction motors. The investigations can be grouped into three main topics: diagnosis and detection of faults, control and detection systems and the classification of electromagnetic disturbances.Este trabajo realiza una revisión de las investigaciones más recientes que han implementado la transformada wavelet analizando las variables eléctricas y mecánicas de los motores de inducción. Las investigaciones se pueden agrupar en tres temas principales: diagnóstico y detección de fallas; sistemas de control y detección y la clasificación de perturbaciones electromagnéticas

    Toward condition monitoring of damper windings in synchronous motors via EMD analysis

    Full text link
    (c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Failures in damper windings of synchronous machines operating in real facilities have been recently reported by several authors and companies. These windings are crucial elements of synchronous motors and generators, playing an important role in the asynchronous startup of these machines as well as in their stability during load transients. However, the diagnosis of failures in such elements has barely been studied in the literature. This paper presents a method to diagnose the condition of damper bars in synchronous motors. It is based on the capture of the stator current of the machine during a direct startup and its further analysis in order to track the characteristic transient evolution of a particular fault-related component in the time-frequency map. The fact that the damper only carries significant current during the startup and little or no current, when the machine operates in steady state, makes this transient-based approach specially suited for the detection of such failure. The Hilbert-Huang transform (based on the empirical mode decomposition method) is proposed as a signal-processing tool. Simulation and experimental results on laboratory synchronous machines prove the validity of the approach for condition monitoring of such windings. © 2012 IEEE.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) in the framework of the VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011. (Programa Nacional de proyectos de Investigacion Fundamental, project reference DPI2011-23740). Paper no. TEC-00443-2011.Antonino-Daviu, J.; Riera-Guasp, M.; Pons Llinares, J.; Roger-Folch, J.; Perez, R.; Charlton-Perez, C. (2012). Toward condition monitoring of damper windings in synchronous motors via EMD analysis. IEEE Transactions on Energy Conversion. 27(2):432-439. https://doi.org/10.1109/TEC.2012.2190292S43243927

    Closed-Loop Drive Detection and Diagnosis of Multiple Combined Faults in Induction Motor Through Model-Based and Neuro-Fuzzy Network Techniques

    Get PDF
    In this paper, a fault detection and diagnosis approach adopted for an input-output feedback linearization (IOFL) control of induction motor (IM) drive is proposed. This approach has been employed to detect and identify the simple and mixed broken rotor bars and static air-gap eccentricity faults right from the start its operation by utilizing advanced techniques. Therefore, two techniques are applied: the model-based strategy, which is an online method used to generate residual stator current signal in order to indicate the presence of possible failures by means of the sliding mode observer (SMO) in the closed-loop drive. However, this strategy is not able to recognise the fault types and it can be affected by the other disturbances. Therefore, the offline method using the multi-adaptive neuro-fuzzy inference system (MANAFIS) technique is proposed to identify the faults and distinguish them. However, the MANAFIS required a relevant database to achieve satisfactory results. Hence, the stator current analysis based on the HFFT combination of the Hilbert transform (HT) and Fast Fourier transform (FFT) is applied to extract the amplitude of harmonics due to defects occur and used them as an input data set for the MANFIS under different loads and fault severities. The simulation results show the efficiency of the proposed techniques and its ability to detect and diagnose any minor faults in a closed-loop drive of IM

    Modelling and detection of faults in axial-flux permanent magnet machines

    Get PDF
    The development of various topologies and configurations of axial-flux permanent magnet machine has spurred its use for electromechanical energy conversion in several applications. As it becomes increasingly deployed, effective condition monitoring built on reliable and accurate fault detection techniques is needed to ensure its engineering integrity. Unlike induction machine which has been rigorously investigated for faults, axial-flux permanent magnet machine has not. Thus in this thesis, axial-flux permanent magnet machine is investigated under faulty conditions. Common faults associated with it namely; static eccentricity and interturn short circuit are modelled, and detection techniques are established. The modelling forms a basis for; developing a platform for precise fault replication on a developed experimental test-rig, predicting and analysing fault signatures using both finite element analysis and experimental analysis. In the detection, the motor current signature analysis, vibration analysis and electrical impedance spectroscopy are applied. Attention is paid to fault-feature extraction and fault discrimination. Using both frequency and time-frequency techniques, features are tracked in the line current under steady-state and transient conditions respectively. Results obtained provide rich information on the pattern of fault harmonics. Parametric spectral estimation is also explored as an alternative to the Fourier transform in the steady-state analysis of faulty conditions. It is found to be as effective as the Fourier transform and more amenable to short signal-measurement duration. Vibration analysis is applied in the detection of eccentricities; its efficacy in fault detection is hinged on proper determination of vibratory frequencies and quantification of corresponding tones. This is achieved using analytical formulations and signal processing techniques. Furthermore, the developed fault model is used to assess the influence of cogging torque minimization techniques and rotor topologies in axial-flux permanent magnet machine on current signal in the presence of static eccentricity. The double-sided topology is found to be tolerant to the presence of static eccentricity unlike the single-sided topology due to the opposing effect of the resulting asymmetrical properties of the airgap. The cogging torque minimization techniques do not impair on the established fault detection technique in the single-sided topology. By applying electrical broadband impedance spectroscopy, interturn faults are diagnosed; a high frequency winding model is developed to analyse the impedance-frequency response obtained
    • …
    corecore