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Abstract: In this paper, a fault detection and diagnosis approach adopted for an input-output feedback linearization 
(IOFL) control of induction motor (IM) drive is proposed. This approach has been employed to detect and identify 
the simple and mixed broken rotor bars and static air-gap eccentricity faults right from the start its operation by 
utilizing advanced techniques. Therefore, two techniques are applied: the model-based strategy, which is an online 
method used to generate residual stator current signal in order to indicate the presence of possible failures by means 
of the sliding mode observer (SMO) in the closed-loop drive. However, this strategy is not able to recognise the 
fault types and it can be affected by the other disturbances. Therefore, the offline method using the multi-adaptive 
neuro-fuzzy inference system (MANAFIS) technique is proposed to identify the faults and distinguish them. 
However, the MANAFIS required a relevant database to achieve satisfactory results. Hence, the stator current 
analysis based on the HFFT combination of the Hilbert transform (HT) and Fast Fourier transform (FFT) is applied 
to extract the amplitude of harmonics due to defects occur and used them as an input data set for the MANFIS 
under different loads and fault severities. The simulation results show the efficiency of the proposed techniques 
and its ability to detect and diagnose any minor faults in a closed-loop drive of IM. 
Keywords: Induction motor (IM); Input-output feedback linearization (IOFL) control; Fault detection and 
diagnosis; Stator residual current; Multi-adaptive neuro-fuzzy inference system (MANAFIS); Hilbert transform 
(HT). 

 
 
1. Introduction 
 

Nowadays, modern industrial systems are becoming more and more complex and sophisticated. At the same 
time reliability, availability and operating safety have become very important and real challenges for today's 
businesses. However, the squirrel cage induction motor, by its construction and its robustness, ensures a wide 
range of application in industrial systems [1]. The evolutions of power electronics, microelectronics and micro-
computing have made it possible to overcome the problem of the non-linearity of the machine and to realize control 
algorithms that can make the IM a formidable competitor of speed variable [2]. There are many methods dedicated 
to control induction motors, however, the controlled part is subjected to strong nonlinearities and temporal 
variables, it is necessary to design control algorithms ensuring the robustness of the process against the 
uncertainties on the parameters and their variations. The input-output feedback linearization control has focussed 
on the attention owing to the simple design and on the perfect decoupling between rotor speed and flux, as well as 
fast dynamic response, even too easy implementation, robustness to parameter variations, and load disturbances 
[3–5]. 

The use of this machine in several industrial applications can be affected by potential defects; mechanical origin 
(rolling bearing wear, eccentricity of the shaft ...), electrical or magnetic (stator inter-turn short circuit, broken 
rotor bars ...), and supply (network or converter) [6–8]. Furthermore, the static air-gap eccentricity and broken 
rotor bars faults are the most important causes of faults in IMs, which lead to produce oscillation in the rotor speed 
and mechanical vibrations causing damage in IM. These faults effects become more apparent by increasing their 
severities, particularly, in the open-loop drives [9]. 

The tasks of detection and diagnosis of failures are naturally found their place in the monitoring system at 
closed-loop of IM. These tasks related to the knowledge acquired on the encountered problems, which make the 
fault detection and diagnosis approaches divided into two wide categories: approach with model [10] and approach 
without model [11]. 
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Variable speed drives allow the machine to continue its operation even when the defects are exposed, which 
make the fault diagnosis delicate in the closed-loop drive, owing to the fact that the control-loop considered the 
defects may arise as a disturbance, and the IOFL control scheme corrects and compensate the faults effect. For 
that reason, the monitoring approach by approach with model, based on variable monitoring of the machine, is 
necessary. This approach required an observer that generally used to estimate the state variable of a system from 
the measurable inputs and outputs for the control system and it can be used also for fault detection [12]. Many 
structures of observers have been proposed in literature such as model reference adaptive system MRAS [13], 
sliding mode observer [14,15], Luenberger observer [16], and high gain observer [17]. The fault detection 
technique based on a formal model of the machine to be monitored, it does not depend on the nature of the signal, 
which provides a good prognosis of the faults in transient and steady states of IM. Moreover, the formal model 
will serve as a reference for defining the normal operation, and any deviation from the operating point will be a 
sign of the failure [18]. 

The model-based strategy is an analytical model based on the monitoring of the parameters and the magnitudes 
of the machine, by means of observation algorithms. This strategy detects the faults by comparing the model and 
the actual process referring to the evolution of the residual signals [19]. A SMO is used, due to the conception 
simplicity and the computational efficiency, in order to obtain a vector of stator residual current in the closed-loop 
motor drive to achieve rapid fault detection. Many researchers have focused their attention on the use of a model-
based strategy for fault detection. In this area, [20] has developed a model-based strategy to detect the stator short-
circuit fault in the IM. This strategy based on the generation of a specific current residual vector using a state 
observer. The proposed strategy presents very low sensitivity to load variations and power-supply perturbations 
and show the ability for detecting incipient faults, including a low number of short-circuited turns. In [21], a fault 
detection method is proposed for IM based on a high-order sliding mode observer.  This technique is used to detect 
the stator windings damages and shows that the current and speed residual signals sensitive to the fault occurs. On 
the other hand, the model-based strategy can use the whiteness of innovation sequence developed by the standard 
extended Kalman filter. This technique just requires current sensors, which are available in most IM drive systems 
to provide good controllability. This proposed method provides better estimates for stator inter-turn fault detection 
as mentioned in [22]. Furthermore, a new model-based fault detection and isolation (FDI) strategy is proposed in 
[23] for field-oriented control, IM drives. The residual evaluation generated by the single open-circuit faults is 
carried out in the stator reference frame (dq-coordinates). The observer FDI scheme can be combined with a fault 
re-configuration strategy in order to improve the reliability of the motor drive, which leads to the effective 
detection of single open-circuit faults. The work of [24], used the rotor speed residual for sensor fault detection in 
IM drives by means of the single adaptive observer. The current model-based approaches, presented by an 
algebraic equations-based analysis, ensure the fast detection of speed sensor fault scenarios. 

In fact, these residuals are sensitivity for modelling uncertainties, parameter variation, load disturbance, and the 
unknown inputs such as external noise, which lead to a false alarm, and it is difficult to distinguish the simultaneous 
faults. In order to overcome this problem and solve the ambiguity in IM, the modeless methods (approach without 
model) are applied. 

Modeless methods are divided into two parts, the first part corresponding to low-level processing tools. It is 
based on the extraction of information through the measured signals processing tools which are currents, voltages, 
speed, vibrations, temperature, and noise emissions. However, the stator current signals can provide a significant 
information on faults using the spectrum through the fast Fourier transform, short time Fourier transform (STFT), 
and wavelet transform (WT) [2,25]. Generally, the FFT is used to determine the spectral signatures by investigating 
the frequencies components around the fundamental frequency for each fault in IM [26]. Nevertheless, FFT suffers 
from its sensitivity to load variations conditions [27]. Furthermore, at low slip, FFT technique can not offer 
efficient detection performance, due to the rapprochement and overlap of the broken rotor bars (1±2ns)f and static 
air-gap eccentricity (mfr±f) (m, n=1,2,3...) faults frequencies characteristic in the stator current with the 
fundamental frequency component as their amplitudes are small to compare. Advanced signal processing 
techniques are needed to be considered to avoid the FFT drawback. For that reason, one or more signal processing 
technique may be combined for more efficient fault diagnosis as presented in [25], the authors used the DWT and 
HT to achieve high accuracy to detect broken rotor bars fault in IM. In this paper, the HFFT technique is proposed 
to extract the envelope from the stator current by HT and processed it via FFT. This combination presents a 
significant tool to distinguish the simple and mixed faults occur with high resolution even at low slip, without 
overlap between the faults frequencies. 

Second part so-called high-level techniques, which use tools more oriented towards the communication between 
experts. However, the techniques of artificial intelligence serve as basic tools for decision support. A lot of 
researches developed by academics and industry are reported in the literature to identify the faults in the induction 
machines [28,29]. Out of many artificial intelligence techniques used for the motor fault diagnosis, particularly in 
this present work, the adaptive neuro-fuzzy inference system (ANFIS), which is a combination of fuzzy logic and 
neural network techniques [30]. Recently, ANFIS is combined with other methods and is employed as an enhanced 
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tool for conducting classification. The work by [31] the neuro-fuzzy technique has been used to detect the broken 
rotor bars using FTT to extract the features from the magnetic flux density, which were considered as an input for 
the proposed technique. In [32], a new methodology for stator inter-turn fault diagnosis of three-phase IM using 
ANFIS is presented, which is developed based on Sequence Component Phase Index and Sequence Component 
Amplitude Index for detection of fault location and fault severity. Furthermore, the fault diagnosis of squirrel-cage 
induction motor broken bars based on ANFIS identification method with subtractive clustering is presented by 
[33], this concept is implemented by primarily taking into account the information data extracted from the classical 
motor current signature analysis (MSCA), then ANFIS approach used this data set as an input for early rotor bar 
fault detection phase. In [34], the field of monitoring and diagnosing IM faults, particularly the stator short-circuit, 
the broken rotor bar faults and the mixed fault is carried out, based on the neuro-fuzzy network technique. Its 
knowledge base makes use of indicators derived from DWT analysis and spectral analysis of the stator current, 
which allows, in addition to the detection, the evaluation of the number of broken bars and the position of the turns 
in short-circuit. The hybrid model, known as FMM-CART (the Fuzzy Min-Max neural network and the 
Classification and Regression Tree), is used to detect and classify fault conditions of IM in both offline and online 
motor operations as reported in [35]. The broken rotor bars, stator winding, and unbalanced supply faults, are 
investigated to evaluate the effectiveness of FMM-CART. The signal harmonics are extracted from the power 
spectral density (PSD), and used them as the input data for faults classification with FMM-CART, the results 
indicate that method is able to detect and diagnosis the faults in the early stage. Authors in Ref. [36], investigated 
the current monitoring for effective broken rotor bar fault diagnosis in open loop of IM, by using a novel oblique 
RF (random forest) algorithms classifier. Therefore, the RF algorithm prove to be relevant for the motor diagnosis. 
Phuong et al. [37] presented a diagnosis methodology for incipient rolling element bearing failures; by extract 
useful features from incoming acoustic emission signals by using a wavelet packet transform based kurtogram. 
The linear discriminant analysis (LDA) technique is used to select the most discriminant bearing fault features 
from the original feature set. Then, a Naïve Bayes (NB) classifier used the selected fault features in order to classify 
the bearing fault conditions and it shows good accuracies for classification. Furthermore, the Authors in Ref. 
[38,39] used the vibrations analysis methods to diagnose the bearing faults by using, respectively; spectral kurtosis 
(SK) based feature extraction coupled with k-nearest neighbor (KNN) distance analysis, and an adaptive deep 
convolutional neural network (ADCNN), which is used the cyclic spectrum maps (CSM) of raw vibration signal 
as bearing health states. That is lead to automate feature extraction and classification process. Slaheddine et al. 
[40] improve the standard support vectors machines (SVM) by using support vector data description (SVDD) 
based on MCSA and stationary wavelet packet transform (SWPT) for feature extraction to diagnose broken rotor 
bar fault. Bensaoucha et al. [41] proposed a diagnostic technique based on NN for detecting and locating the inter 
turns short-circuit in one of three stator winding phases of IM, where the three-phase shift between the stator 
voltages and its currents are considered as inputs of the NN in order to develop an automatic fault detection and 
classification system. The authors in [42], used methods for bearing fault detection and diagnosis by means of the 
artificial neural network (ANN) and ANFIS. The multi-staged decision algorithm is developed based on ANN and 
ANFIS models. Both time and frequency domain parameters extracted from the vibration and current signals are 
used to train the ANN and ANFIS models, which are then used to detect and diagnose the severity of the bearing 
fault. The results revealed that ANFIS-based scheme is superior to the ANN-based one especially in diagnosing 
fault severity. As well, the ANFIS conception presents a limitation to identify the mixed faults due to a single 
output. Further, the most techniques of artificial intelligence are used in the literature for an open-loop machine 
process in several cases. Nevertheless, in closed-loop drives, the control-loop compensates the fault effect [43], 
which cause difficulty in diagnosis defects. Based on the aforementioned state of the art, the Multi-ANFIS 
(MANFIS) technique proposed in this work to overcome the problem of accuracy and single ANFIS output, which 
is used to identify and distinguish the mixed and the simple faults of the broken rotor bars and static air-gap 
eccentricity even at low slip in IM closed-loop drives. This technique used the features extracted from the HFFT 
technique under different loads and fault severities as an input data set for the training algorithm. 

In this context, the important aim of this paper is to show another perspective with regard to the detection and 
diagnosis of the fault in a closed loop of induction motors. The reduced model of the IM dedicated to simulate two 
of faults: broken rotor bars and static air-gap eccentricity. The implementation of IOFL control by means of the 
SMO is proposed in order to estimate the stator current in healthy and faulty states of the induction machine. The 
model-based approach is operated for fast detection of incipient faults using SMO through the residual stator 
current. As well, the HFFT technique extracts the amplitudes of frequency components due to the defects occurs 
in IM from the stator current envelope (SCE) under different loads and fault severities. These features are 
considered as reliable indicators and used them as input data set for MANAFIS. The obtained results show the 
value of the proposed techniques for fault detection and diagnosis in a closed-loop drive of IM. 
 
2. Spectrum of stator current envelope and model-based approach 
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Hilbert transform is a signal analysis method used to extract the stator current envelope as illustrated in Fig. 1. 
However, the HT is a time domain convolution of a signal x(t) with the function 1/t, such as the phase current that 
is used to emphasize its local properties, as follows [25,44] : 

 
                                  [ ] 1 ( ) 1( ) ( )*xH x t d x t

t t
τ τ

π τ π
+∞

−∞
= =

−∫                                                                                        (1) 

 
Where t is time, x(t) is a time-domain signal, * is the convolution indicates, and H[x(t)] is the Hilbert transform 

of x(t). 
Spectrum analysis of stator current envelope via FFT technique allows the recognising the sidebands of fault 

frequency components, practically the broken rotor bars (2nsf) and static air-gap eccentricity (mfr). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A model-based approach is a concept of analytical redundancy by means of observers in terms of estimated and 
measured outputs (𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐼𝐼�̑�𝑎𝑎𝑎𝑎𝑎), The main equation of residual stator current rI(t) is written as [19].  

 
                                   ( ) ( )I p abc abcr t Z I I= −


                                                                                                       (2) 

 
where, Zp is a weighting matrix. 

The windowed norm can be performed to each residual as follows: 
 

                                    21 ( ( ))
t T

I It
r r t dt

T
+

= ∫                                                                                                         (3) 

 
Fig. 2 shows that the diagnostic logic consists of making decisions from the evaluation of residual stator current 

rI (t). 
 
 
 
 
 
 
 

Figure 2. Fault detection logic of model-based strategy. 
 
3. Reduced model of IM taking into account the faults 

 
The study of any physical system often requires a modelling in order to simulate its behaviour against different 

constraints; to highlights the influence of defects on a measurable magnitude of the machine, and ensures to 
apprehend the mechanisms governing its operation [45,46]. The development of a mathematical reduced model is 
obtained from the multi-winding model of IM as shown in Fig. 3; taking into account the rotor faults such as 
broken rotor bars and static air-gap eccentricity. An extended Park’s transformation will be applied to the rotor 
system to transform Nr bars system into (d, q) system. Afterwards, the system can be written as follows [43]: 
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The total cyclic inductance of a stator phase is equal to the sum of the magnetizing and leakage inductances: 
 
                                      cs sp sfL L L= +                                                                                                                    (5) 
 

where, 
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The maximum value of the stator/rotor mutual inductance is: 
 

b) a) 

Ie 

Figure 3. Rotor cage of induction machine. a) Structure. b) Equivalent circuit.  
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The electrical angle of two adjacent rotor meshes:  
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The cyclic rotor inductance is given by the following: 
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The principal inductance of a rotor mesh can be calculated by 
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The mutual inductance between non-adjacent rotor meshes is defined by 
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The electromagnetic torque developed by the motor is expressed in terms of rotor currents and stator currents 

as: 
 
                                          ( )3
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By considering the electromagnetic torque equation, the rotor speed is given as follows: 
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3.1 Broken rotor bar fault 

The four terms resistances of broken rotor bar fault (Fig. 4) are given by: 
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In this expression, the summation is applied to all bars with fault. Rbfk is the resistance of the bar index k from 

its initial value before the fault. 

Figure 4. Broken rotor bar of induction machine.  
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3.2 Static air-gap eccentricity fault 
The static air-gap eccentricity fault is illustrated in Fig. 5, where the magnetomotive force of the stator windings 

is assumed sinusoidal. The winding function theory is applied for computational of mutual inductance between 
the stator coils and rotor loops in an induction motor taking into account the air-gap eccentricity fault can be 
expressed as [47,48]: 

 

                                         1
0

2

0
( ) ( , ) ( , )( , )sr r sq r e rrk rM Rl N g dn

π
θ µ θ ϕ θ ϕ ϕθ ϕ −= ∫                                                  (11) 

 
The term nrk (θr, φ) is the winding distribution of Kth rotor loop, and Nsq(θr, φ) is called the modified winding 

function of phase ″q″. The inverse air-gap length at any position θr can be illustrated as: 
 
                            1 1( ) (1 cos )e sg
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s
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e
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All the motor inductances can be calculated using Eq. (11) and [47,48]. 
 
 
 
 
 
 
 
 
 
 
 
 

4. Input-output feedback linearization control and sliding mode observer using the 
reduced model of IM 
 
4.1 Input-output feedback linearization control 

The input-output feedback linearization strategy makes it possible to find a state feedback loop in order to 
transform a nonlinear system into a fully or partially linear one [5]. The technique requires measurements of the 
state vector x in order to transform a multi-input nonlinear control system into a linear and controllable one. The 
state space model of an induction motor in the (α, β) frame coordinate is given by [4]:     
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Figure 5. Static air-gap eccentricity Illustration. 
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The Lie derivative notation is used for state function h(x): Rn       R along a vector field f(x) can be written as 

follows [4]: 
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Thus, the derivatives of the outputs are given in the new coordinate system by: 
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This system can be written as: 
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The decoupling matrix D(x) is defined as: 
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The decoupling matrix D(x) has a singularity which occurs at the start-up of the IM (𝛷𝛷𝑟𝑟2=0). To handle this 
situation, one can use an open loop controller at the start-up of the machine, thereafter switch to the nonlinear 
controller once the flux goes up to zero. The nonlinear state feedback control can be modelled as: 
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This controller linearizes and decouples the system, resulting in:       
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From Eq. (21), the input-output of a closed loop system is decoupled and linearized. To ensure perfect tracking 

of speed and flux references, U1 and U2 are chosen as follows: 
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Where k1, k2, k3, and k4 are positive non-zero constants to be determined to make sure that closed loop system 

from Eq. (21), stable and to have a fast response to variable tracking. 
 

4.2 Sliding mode observer  
The reduced model of IM is used to design the SMO to establish a good compromise between the stability and 

the simplicity of the observer [15]. The state equation of the observer can be written in the following way: 
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5. Simulation results for Input-output feedback linearization control IM 

 
The input-output feedback linearization control of IM used in the healthy and faulty state: 1.1 kW, 220V, 50Hz, 

2-pole, a rotor with 16 bars were carried out using the Matlab/Simulink simulation package. The system parameters 
of the induction motor tested in this study are given in the Appendix. 

Fig. 6 presents the input-output feedback linearization control diagram block using the sliding mode observer 
for stator current and flux estimation.  

The variable frequency drive (VFD) is considered as energy saving drives, but on the other hand it generates 
noise in the line currents. However, the input-output linearization control used pulse width modulation (PWM) by 
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means of VFD for controlling of IM. This robust combination (IOFL control+ PWM) has the advantage to control 
a device with high precision and minimize the natural noise due to VFD, which allows a good diagnosis of IM. 
The VFD used in this simulation composed of a rectifier and IGBT inverter uploaded from Matlab/Simulink in 
order to take into account the noise. The PWM switching sequences are calculated with a commutation frequency 
equal to 4 kHz. A supply voltage of (400 V) is filtered through the rectifier in order to fix the UDC bus of the 
inverter. The noise generated by a VFD reduces its signal to noise ratio (SNR). A white Gaussian noise of 10 dB 
of SNR (low SNR) added to the output voltages (Ua, Ub, Uc), in order to model the other noise. 

 

 
Figure 6. Global block diagram of input-output feedback linearization control. 

 
5.1 Healthy state of the machine 

To illustrate the performances of the controller in a healthy state of IM, a simulation with reference speed equal 
to 2600 rpm is realized in Fig. 7, a nominal load torque equal to 3.5 Nm is applied at t=0.5s. The sampling rate 
considered in this simulation 10kS/s using the Matlab/Simulink simulation package. The system parameters of the 
induction motor tested in this study are given in the Appendix. 

Electromagnetic torque follows the load torque, and the stator current has a very good dynamic and estimation 
accuracy, where the real and estimated current shows a perfect superposition. The quadratic rotor flux component

qrΦ is maintained to almost zero. Direct rotor flux component drΦ  tracks the reference values adequately well. 
The speed reverse test is realized by reverse speed reference (25; -25 rpm) under nominal load torque, which 

applied at t=0.5s, where it is noted that the real rotor speed converges to the reference speed with very less errors 
and without any significant overshoot. The application of the load does not affect the rotor speed as shown in Figs. 
7a and 8. The performance of the controller reveals a good robustness and convergence at rated and low speeds. 

 
5.2 Fault detection and diagnosis of the machine   

The fault detection and diagnosis approach of IM in closed loop drives is given in the following steps: 
Firstly, on-line fault detection using the model-based technique in order to highlight the appearance of incipient 

faults based on residual stator current. Finally, off-line diagnosis using a multi-neuro-fuzzy technique based on 
HFFT analysis of stator current. 

 
5.2.1 IM fault detection 

In order to detect faults and study their influences on the residual stator current of IM controlled by feedback 
linearization, the simulations are carried out with low SNR (10 dB), a reference speed equal to 2600 rpm and a 
load torque (TL=3.5 Nm) applied at t=0.5s. All faults are realised at t=1s and their severities changed at t=2s as 
illustrated in Figs. 9, 10, 11 and 12. 
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Figure 7. Electric magnetic and mechanical characteristics for input-output feedback linearization control of IM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figs 9, 10, 11, 12 and Table 1 show that the residual currents start with a very small value in a healthy state, so-

called the threshold ||rIa || = 0.1 A, then increase abruptly when the broken rotor bar, static air-gap eccentricity or 
mixed fault occur at t=1s according to the fault types and their severities. This technique can be considered as a 
reliable indicator for rapid incipient faults detection, even at low slip. 
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Figure 9. Healthy machine. a Stator current with low SNR (10 dB). b Stator residual current. c Norm of the stator residual 
current. 
 

                    
Figure 10. Broken rotor bars fault (Nbb1, Nbb2). a Stator residual current. b Norm of the stator residual current. 

 

            
Figure 11. Static air-gap eccentricity (εs10, εs20). a Stator residual current. b Norm of the stator residual current. 

 
However, the ||rIa|| are not only very sensitive to the faults occurrence but also to the modelling uncertainties, 

parameter variation, and unknown inputs such as external noise, which lead to false fault detection. To overcome 
this problem, neuro-fuzzy technique based on the proprieties of HFFT analysis is applied to confirm the true/false 
fault detection and identify the faults occurred in the IM. 
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Figure 12. Mixed fault (Nbb1εs10, Nbb2εs20). a Stator residual current. b Norm of the stator residual 

Table. 1 Severities of ||rIa || for the different defects 
Motor states ||rIa || (A) 

Healthy motor 
One broken rotor bar (Nbb1) 
Two broken rotor bar (Nbb2) 
10% of static air-gap eccentricity (εs10) 
20% of static air-gap eccentricity (εs20) 
Mixed fault (Nbb1εs10) 
Mixed fault (Nbb2εs20) 

0.10 
0.19 
0.53 
0.62 
1.08 
0.63 
1.54 

 

   

   
Figure 13. HFFT of the stator current. a Healthy motor. b, c, d One broken rotor bar under different loads. e Two broken rotor 
bars. 

Time (s) 

r I
a (

A
) 

0 0.5 1 2 3
-2

-1

0

1

2
(a)  
 

0 0.5 1 2 3
0

0.63

1.54

||r
Ia

 ||
 (A

) 

Time (s) 

Nbb1εs10 
  

Nbb2εs20 
  Fault detection  

(b)  
 

I a
 (d

B
)  

Frequency (Hz) 
0 20 40 60 80 100

-60

-40

-20

0
(a)  

0 2 4 6 8 10

-60

-40

-20

0

X: 1.181
Y: -40.49

(b)  

I a
 (d

B
)  

Frequency (Hz) 

Nbb1     TL=0.60 Nm 

2sf 

Frequency (Hz) 
0 2 4 6 8 10

-60

-40

-20

0

X: 2.952
Y: -37.34

Nbb1     TL=1.75 Nm (c)  

0 2 4 6 8 10

-60

-40

-20

0

X: 5.805
Y: -36.38

I a
 (d

B
)  

Frequency (Hz) 

Nbb1     TL=3.5 Nm  (d)  

Frequency (Hz) 
0 2 4 6 8 10

-60

-40

-20

0

X: 6.198
Y: -27.38

(e)  Nbb2     TL=3.5 Nm 

70

I. Harzelli et al. Journal of Modeling and Optimization 2021;13(2):58-79



 

 
 

5.2.2 Extraction of fault indicators 
The spectrum analysis is performed on the stator current envelope using HFFT technique in order to extract the 

fault indicators under different load conditions (full load, half load and low load) and different severities of broken 
rotor bars and static air-gap eccentricity faults, as shown in Figs. 13 and 14. Mixed fault composite of one broken 
bar and 10% of static air-gap eccentricity (Nbb1εs10) is illustrated in Fig. 15. The HFFT signatures have been 
collected at a sampling rate of 10kS/s for the duration of 12s in each case. 

 

 
Figure 14. HFFT of the stator current. a, b, c 10% of static air-gap eccentricity fault under different loads. d 30% of static air-
gap eccentricity fault. 
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Figure 15. HFFT of the stator current. a, b, c mixed fault (Nbb1εs10) under different loads. 
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Figs 13, 14, 15 and Table 2 show the position of the fault harmonics appeared in frequencies 2sf and fr, 
respectively, for broken rotor bars and static air-gap eccentricity. However, the amplitude of the harmonic fault 
and its position due to broken rotor bars is very sensitive to the load varies, also to the defect severity (number of 
broken bars). Unlike, the position of the harmonic fault generated by static air-gap eccentricity kept the same 
position but its amplitude is affected by the defect severity. Therefore, by the surveillance of the amplitudes 
evaluation of the fault harmonics, the motor state can be predicted by using these relevant indicators. 
 
Table. 2 Magnitude and frequencies of the stator phase current Ia spectrum with different loads and fault severities  

Severity Harmonic (Hz) Load (Nm) Slip fcalculated (Hz) fdeduced (Hz) Magnitude (dB) 

Nbb1 2sf 0.60 0.0134 1.178 1.181 -40.49 
Nbb1 2sf 1.75 0.0325 2.911 2.952 -37.34 
Nbb1 2sf 3.50 0.0627 5.798 5.805 -36.38 
Nbb2 2sf 3.50 0.0667 6.195 6.198 -27.38 
εs10 fr 0.60 0.0134 43.34 43.39 -21.28 
εs10 fr 1.75 0.0349 43.34 43.39 -25.80 
εs10 fr 3.50 0.0696 43.34 43.39 -32.15 
εs30 fr 3.50 0.0704 43.34 43.39 -23.45 

Nbb1εs10 2sf, fr 0.60 0.0145 2.275, 43.34 1.279, 43.39 -40.13, -21.34 
Nbb1εs10 2sf, fr 1.75 0.0370 3.327, 43.34 3.345,43.39 -36.67, -25.66 
Nbb1εs10 2sf, fr 3.50 0.0710 6.622, 43.34 6.592, 43.39 -37.64, -32.52 

 
5.2.3 IM Multi-ANFIS (MANFIS) diagnosis  

A hybrid neuro-fuzzy technique brings the learning capabilities of neural networks to the fuzzy inference system 
of the Takagi-Sugeno type. The role of learning is the adjustment of the parameters of this fuzzy inference system. 
The strength of the adaptive neuro-fuzzy inference system is the ability to generate fuzzy rules using subtractive 
clustering or grid partitioning [49]. However, ANFIS is only suitable for the single output system. For a system 
with multiple outputs, ANFIS is placed side by side to produce a MANFIS. The number of ANFIS depends on the 
number of outputs required, and the input data is coupled to the separate outputs. Fig. 16 shows MANFIS 
architecture, the input data remains the same for each ANFIS; they also have the same initial parameters such as 
the initial step size, membership function type and number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MANFIS network is used to identify automatically the broken rotor bars, static air-gap eccentricity faults, or 
both faults at the same time.  

Two of the fault indicators have been chosen and grouped in a vector Ii= [I1; I2] presents the input vector data 
of the MANFIS network as illustrated in Fig. 17. Where I1 and I2 are respectively, the amplitude of harmonics 2sf 
and fr which are extracted from the simulation of the current envelope spectrum under different loads and fault 
severities.  

Figure 16. MENFIS architecture. 
 

72

I. Harzelli et al. Journal of Modeling and Optimization 2021;13(2):58-79



 

 
 

The MANFIS network is setting into two outputs, grouped in a vector Oi= [O1; O2] indicates the broken rotor 
bars and static air-gap eccentricity faults, respectively. These Outputs are constructed by matching each sample in 
the input data set by its desired output Ti. The targets obtained Ti= [T1; T2] are coded in binary, as follows: 

Ti = [0; 0]: healthy motor, 
Ti = [1; 0]: broken rotor bars fault, 
Ti = [0; 1]: static air-gap eccentricity fault, 
Ti = [1; 1]: mixed fault. 
The input vector data Ii is constituted by a successive series of samples, characterizing the operation of the 

healthy and faulty machine under five different loads (TL= 0.35, 1.05, 1.75, 2.45, 3.5 Nm) as follows:  
1) Healthy motor (5 samples), 
2) Broken rotor bars fault: Nbb1 and Nbb2 (5+5=10 samples),  
3) Static air-gap eccentricity fault: εs10 and εs30 (5+5=10 samples),  
4) Mixed fault (broken rotor bars and static air-gap eccentricity): Nbb1εs10, Nbb1εs30, Nbb2εs10, and Nbb2εs30 

(5+5+5+5=20 samples). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The network designed MANFIS consists of two ANFIS, each ANFIS has two inputs and one output. The input 
variables are I1 and I2, and the output variables are O1 for ANFIS1 and O2 for ANFIS2. For each input variable, 
three Gaussian membership functions are used.  
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Figure 18. Training and errors outputs of MANFIS. 
 

Samples 

Errors 

E
1  

5 10 15 20 25 30 35 40 45
-10

-5

0
x 10-7

E
2  

5 10 15 20 25 30 35 40 45
-10

-5

0
x 10-7

O
2, 

T 2
 

 

5 10 15 20 25 30 35 40 45
0

0.5

1

 

 

Output
Target

O
1, 

T 1
 

Outputs 
 

5 10 15 20 25 30 35 40 45
0

0.5

1

 

 

Output
Target

73

I. Harzelli et al. Journal of Modeling and Optimization 2021;13(2):58-79



 

 
 

The outputs data, as well as network learning errors, are shown in Fig. 18. We noticed that the learning errors 
are very less, which proves that the network has learned well sequences of broken rotor bars and air-gap 
eccentricity failures. 

The MANFIS diagnosis system has been tested under different loads and fault severities not taken in the 
learning phase of the machine (TL=0.7, 2.1, 2.8 Nm).  

For a simple fault (Fig. 19): 
1) Healthy motor (3 samples), 
2) Broken rotor bars fault: Nbb1 and Nbb2 (3+3=6 samples),  
3) Static air-gap eccentricity fault: εs20 and εs40 (3+3=6 samples). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

For a mixed fault (Fig. 21):  
1) Healthy motor (3 samples), 
2)Mixed fault (broken rotor bars and static air-gap eccentricity): Nbb1εs20 and Nbb2εs40 (3+3=6 samples).  
The results of the test illustrated in Figs. 20 and 22 show that the MANFIS outputs and their errors are able to 

report automatically in an efficient and reliable way the simple and mixed broken rotor bars and static air-gap 
eccentricity defects from the beginning of their appearances. This system also has a high accuracy to correctly 
distinguish between the healthy and faulty machine under different severities and load conditions. 

Table 3 presents a summary of other works and their respective results for comparison purposes.  
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Figure 19. Input data set of MANFIS test for a simple fault 
 

Figure 20. MANFIS test and outputs errors for a simple fault. 
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6. Conclusion 

 
This paper presents a fast detection and recognition approach of the mixed and simple fault, particularly, the 

broken rotor bars and the static air-gap eccentricity faults for IM in the closed-loop drive. The IOFL control is 
introduced in order to ensure the operation continuity of defected IM and to investigate the fault effect. A reduced 
model of IM with a rotor cage has been implemented in order to simulate the proposed faults, and also for the 
control and observer design. 

 This advanced approach required a good knowledge of the system, which leads to adopting two strategies for 
detection and diagnosis of the defects. Foremost, model-based strategy with the contribution of SMO has been 
used to generate the residual stator current for rapid incipient fault detection in the control scheme. Furthermore, 
the MANFIS technique is used to confirm if the residuals detected are induced by the faults or other disturbances, 
also distinguish and identify these faults. However, the amplitudes of fault harmonics 2sf and fr, respectively, due 
to the broken rotor bars and static air-gap eccentricity, are obtained via HFFT analysis under different load 
conditions and fault severities. These relevant amplitudes have been used as fault indicators and have been 
considered as two inputs data for the MANFIS. Moreover, the two MANFIS outputs data provide a high accuracy 
on the information of two defects studied, and prove that it is able to identify the fault types in the machines. The 
results obtained with this proposed approach are efficient and accurate to detect and identify the rotor faults of the 
IM operating in the closed-loop drive. 
 
 

Fig. 21. Input data set of MANFIS test for a mixed fault 
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Table. 3 Summary of the recently published papers in comparison with the present research 
Reference Fault type 

(simple / 
mixed) 

Low load Motor 
control 
drive 

Observer Online fault 
detection 

Magnitudes, 
Signal 

processing 

Artificial 
intelligence 
technique 

Accuracy fault 
identification 

[31] Broken rotor 
bars (simple) 

Yes Open 
loop 

No No Magnetic 
flux, FFT 

ANFIS 99% 

[32] stator winding 
(simple) 

Not 
reported 

Open 
loop 

No No Stator 
current, 

SCAI and 
SCPI 

ANFIS Not reported 

[35] Broken rotor 
bars, stator 

winding and 
unbalanced 

supply 
(simple) 

Not 
reported 

Open 
loop 

No PSD Stator 
current, PSD 

and FFT 

FMM-
CART 

100% 

[36] Broken rotor 
bars (simple) 

No Open 
loop 

No No Stator 
current, FFT 

ORF 81.5% 

[38] Bearing 
(simple)  

Not 
reported 

Open 
loop 

No No vibration 
signal, SK 

KNN Not reported 

[37] bearing 
(simple) 

Not 
reported 

Open 
loop 

No No acoustic 
emission 

signal, LDA 

NB 99.44% 

[40] Broken rotor 
bars (simple) 

Not 
reported 

Open 
loop 

No No Stator 
current, 
SWPT 

SVDD 100% 

[41] stator winding 
(simple) 

Yes Open 
loop 

No No Stator 
current, 

phase shift 

NN 100% 

[39] bearing 
(simple) 

No Open 
loop 

No No vibration 
signal, CSM 

ADCNN 95.75% 

This 
research 

Broken rotor 
bars  and 

static 
eccentricity 

(simple/ 
mixed) 

Yes IOFL SMO Residual 
generation 

Stator 
current, 
HFFT 

MANFIS 100% 

 
Nomenclature 

Uds, Uqs (d,q) axis voltages of the stator μ0 Magnetic permeability of the air 
Ids, Iqs (d,q) axis current components of the stator p Number of pole pairs 
Idr, Iqr  (d,q) axis current components of the rotor e Air-gap mean diameter 
Ie Short circuit ring current α Angle between two broken rotor bars 
[U] Voltage vector Rs Stator resistance 
[I] Current vector Rr Rotor resistance 
[L] Inductance matrix Rb Rotor bar resistance 
[R] Resistance matrix Re Resistance of end ring segment 
R Average radius of the air gap Lb Rotor bar inductance 
Udc Direct voltage Le Inductance of end ring 
Ua, Ub, Uc Three phases voltages a, b, c Lsf Leakage inductance of stator 
Ia, Ib, Ic Three phases current a, b, c of the stator Msr Mutual inductance 
Usα, Usβ (α,β) axis voltages of the stator Ns Number of turns per stator phase   
ωr electrical rotor speed in rpm Nr Number of rotor bars 
ωref, Φref Rotor reference speed and flux L Length of the rotor 
Nbbk Number of broken rotor bars J Inertia moment 
Y measurable output F  Coefficient of damping 
U control variable Te , TL Electromagnetic torque, load torque   
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X 
irk 

State variable 
Current of the loop k 

ibk 

iek 

Current of the bar k 
Short circuit ring current of the portion k 

εsk% Static air-gap eccentricity of k% degree φ Particular position along the stator inner 
surface 

θr Angular position of the rotor with respect 
to some stator reference 

ge- 1 Inverse gap function 

l Length of the rotor s Rotor slip 
f Stator frequency fr Rotor frequency 
FMM-
CART 

Fuzzy  Min-Max-  Classification  and  
Regression  Tree 

ORF Oblique Random Forest 

KNN K-Nearest Neighbor NB Naive Bayes 
SVDD Support Vector Data Description NN Neural Networks 
ADCNN Adaptive Deep Convolutional Neural 

Network 
SCAI Sequence Component Amplitude Index 

SCPI Component Phase Index PSD Power  Spectral  Density   
SK Spectral Kurtosis LDA Linear Discriminant Analysis 
SWPT Stationary Wavelet Packet Transform CSM Cyclic Spectrum Maps 

 
Appendix  
Parameters for the simulation of the IM  

Pn Output power 1.1kW 
Us Stator voltage 220 V 
f Stator frequency 50 Hz 
p Number of pole pairs 1 
Rs Stator resistance 7.58 Ω  
Rr Rotor resistance 6.3 Ω 
Rb Rotor bar resistance 0.15 m Ω 
Re Resistance of end ring segment 0.15 m Ω 
Lb Rotor bar inductance 0.1 μH 
Le Inductance of end ring 0.1 μH 
Lsf Leakage inductance of stator 26.5 mH 
Msr Mutual inductance 46.42 mH 
Ns Number of turns per stator phase  160 
Nr Number of rotor bars 16 
l Length of the rotor 65 mm 
e Air-gap mean diameter 2.5mm 
J Inertia moment 0.0054 kgm2 
F  Coefficient of damping 0.0029 Nm/rad/s 
Te , TL Electromagnetic torque, load torque    
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