28 research outputs found

    PROSIS: An isoarchic structure for HMS control

    No full text
    International audienceThis paper presents a holonic and isoarchic approach to the Flexible Manufacturing System (FMS) control. This approach is based on a flat holonic form, where each holon is a model for each entity of the FMS, with a unifying level of communication between holons. After description of this model, called PROSIS, the interaction protocol and decision rules are presented. The objective is to increase the FMS productivity and flexibility, particularly on responsiveness aspects. This responsiveness is achieved through decentralized generation of the production tasks. The reactive behaviour of the FMS control is illustrated by the example of a flexible turning cell, upon occurrence of a failure or of an urgent batch order, and the resulting Gantt charts are shown

    Agent-based manufacturing — review and expert evaluation

    Get PDF
    The advent of smart manufacturing and the exposure to a new generation of technological enablers have revolutionized the way manufacturing process is carried out. Cyber-Physical Production Systems (CPPS) are introduced as main actors of this manufacturing shift. They are characterized for having high levels of communication, integration and computational capabilities that led them to a certain level of autonomy. Despite the high expectations and vision of CPPS, it still remains an exploratory topic. Multi-Agent Systems (MAS) have been widely used by software engineers to solve traditional computing problems, e.g., banking transactions. Because of their high levels of distribution and autonomous capabilities, MAS have been considered by the research community as a good solution to design and implement CPPS. This work first introduces a collection of requirements and characteristics of smart manufacturing. A comprehensive review of various research applications is presented to understand the current state of the art and the application of agent technology in manufacturing. Considering the smart manufacturing requirements and current research application, a SWOT analysis was formulated which identifies pros and cons of the implementation of agents in industry. The SWOT analysis was further validated by an industrial expert evaluation and the main findings and discussion of the results are presented

    Engineering framework for service-oriented automation systems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201

    Design and implementation of a human-robot collaborative assembly workstation in a modular robotized production line

    Get PDF
    Over the last decades, the Industrial Automation domain at factory shop floors experienced an exponential growth in the use of robots. The objective of such change aims to increase the efficiency at reasonable cost. However, not all the tasks formerly performed by humans in factories, are fully substituted by robots nowadays, specially the ones requiring high-level of dexterity. In fact, Europe is moving towards implementing efficient work spaces were humans can work safely, aided by robots. In this context, industrial and research sectors have ambitious plans to achieve solutions that involve coexistence and simultaneity at work between humans and collaborative robots, a.k.a. “cobots” or co-robots, for permitting a safe interaction for the same or interrelated manufacturing processes. Many cobot producers started to present their products, but those arrived before the industry have clear and several needs of this particular technology. This work presents an approach about how to demonstrate human-robot collaborative manufacturing? How to implement a dual-arm human-robot collaborative workstation? How to integrate a human-robot collaborative workstation into a modular interconnected production line? and What are the advantages and challenges of current HRC technologies at the shop floor? by documenting the formulation of a human-robot collaborative assembly process, implemented by designing and building an assembly workstation that exemplifies a scenario of interaction between a dual arm cobot and a human operator, in order to assembly a product box, as a part of a large-scale modular robotized production line. The model produced by this work is part of the research facilities at the Future Automation Systems and Technologies Laboratory in Tampere University

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Smart supply chain management in Industry 4.0

    Get PDF
    The emerging information and communication technologies (ICT) related to Industry 4.0 play a critical role to enhance supply chain performance. Employing the smart technologies has led to so-called smart supply chains. Understanding how Industry 4.0 and related ICT affect smart supply chains and how smart supply chains evolve with the support of the advanced technologies are vital to practical and academic communities. Existing review works on smart supply chains with ICT mainly rely on the academic literature alone. This paper presents an integrated approach to explore the effects of Industry 4.0 and related ICT on smart supply chains, by combining introduction of the current national strategies in North America, the research status analysis on ICT assisted supply chains from the major North American national research councils, and a systematic literature review of the subject. Besides, we introduce a smart supply chain hierarchical framework with multi-level intelligence. Furthermore, the challenges faced by supply chains under Industry 4.0 and future research directions are discussed as well

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Managing distributed flexible manufacturing systems

    Get PDF
    Per molti anni la ricerca scientifica si è concentrata sui diversi aspetti di gestione dei sistemi manifatturieri, dall’ottimizzazione dei singoli processi produttivi, fino alla gestione delle più complesse imprese virtuali. Tuttavia molti aspetti inerenti il coordinamento e il controllo, ancora presentano problematiche rilevanti in ambito industriale e temi di ricerca aperti. L’applicazione di tecnologie avanzate e di strumenti informatici evoluti non riesce da sola a garantire il successo nelle funzioni di controllo e di integrazione. Al fine di ottenere un alto grado di efficienza, è necessario supportare tali tecnologie e strumenti con dei modelli che siano in grado di rappresentare le funzionalità e i processi dei sistemi manifatturieri, e consentano di prevederne e gestirne l’evoluzione. Ne emerge l’esigenza di politiche di controllo e di gestio ne distribuite, che favoriscano l’auto-organizzazione e la cooperazione nei sistemi manifatturieri. I sistemi manifatturieri flessibili distribuiti (DFMS), in risposta a tale esigenza, sono sistemi di produzione dinamici in grado di garantire una risposta in tempo reale alla allocazione ottima delle risorse, e organizzare efficientemente le lavorazioni dei prodotti. In questa tesi viene proposta una modellizzazione a livelli per tali sistemi. Secondo tale rappresentazione un DFMS può essere visto come un grafo strutturato su più livelli, tale che: i vertici del grafo rappresentano le risorse interagenti nel sistema; ogni nodo di un livello rappresenta a sua volta un livello successivo. Partendo da questa rappresentazione, sono stati quindi sviluppati due modelli per lo studio dell’allocazione ottima delle risorse (task mapping) e per l’organizzazione di lavorazioni (task scheduling) che richiedono l’uso simultaneo di risorse condivise nel sistema. Il task mapping problem consiste nella suddivisione bilanciata di un certo insieme di lavorazioni tra le risorse del sistema. In questa tesi si è studiato il caso in cui le lavorazioni sono omogenee, non presentano vincoli di precedenza, ma necessitano di un certo volume di comunicazione tra le risorse cui sono assegnate per garantirne il coordinamento, incidendo in tal senso sulla complessità di gestione. L’analisi critica dei modelli che sono tipicamente usati in letteratura per rappresentare tale problema, ne hanno posto in evidenza l’inadeguatezza. Attraverso alcuni risultati teorici si è quindi dimostrato come il problema possa ricondursi ad un hypergraph partitioning problem. Studiando la formulazione matematica di tali problemi, e limitandosi al caso di due risorse produttive, si è infine giunti alla determinazione di una buona approssimazione sulla soluzione ottima. Il problema di sequenziamento delle lavorazioni (task scheduling) che richiedono l’uso simultaneo di risorse condivise è stato trattato nel caso specifico di celle robotizzate. E’ stata quindi dimostrata l’NP-completezza di questo problema ed è stata progettata una euristica di soluzione, validandone i risultati in diversi scenari produttivi.For several years, research has focused on several aspects of manufacturing, from the individual processes towards the management of virtual enterprises, but several aspects, like coordination and control, still have relevant problems in industry and remain challenging areas of research. The application of advanced technologies and informational tools by itself does not guarantee the success of control and integration applications. In order to get a high degree of integration and efficiency, it is necessary to match the technologies and tools with models that describe the existing knowledge and functionality in the system and allow the correct understanding of its behaviour. In a global and wide market competition, the manufacturing systems present requirements that lead to distributed, self-organised, co-operative and heterogeneous control applications. A Distributed Flexible Manufacturing System (DFMS) is a goal-driven and data-directed dynamic system which is designed to provide an effective operation sequence for the products to fulfil the production goals, to meet real-time requirements and to optimally allocate resources. In this work first a layered approach for modeling such production systems is proposed. According to that representation, a DFMS may be seen as multi-layer resource-graph such that: vertices on a layer represent interacting resources; a layer at level l is represented by a node in the layer at level (l-1). Then two models are developed concerning with two relevant managerial issues in DFMS, the task mapping problem and the task scheduling with multiple shared resources problem. The task mapping problem concerns with the balanced partition of a given set of jobs and the assignment of the parts to the resources of the manufacturing system. We study the case in which the jobs are quite homogeneous, do not have precedence constraints, but need some communications to be coordinated. So, jobs assignment to different parts causes a relevant communication effort between those parts, increasing the managerial complexity. We show that the standard models usually used to formal represent such a problem are wrong. Through some graph theoretical results we relate the problem to the well-known hypergraph partitioning problem and briefly survey the best techniques to solve the problem. A new formulation of the problem is then presented. Some considerations on an improved version of the formulation permit the computation of a good Lower Bound on the optimal solution in the case of the hypergraph bisection. The task scheduling with multiple shared resources problem is addressed for a robotic cell. We study the general problem of sequencing multiple jobs, where each job consists of multiple ordered tasks and tasks execution requires simultaneous usage of several resources. NP-completeness results are given. A heuristic with a guarantee approximation result is designed and evaluated
    corecore