636 research outputs found

    Multi-agent based simulations of block-free distributed ledgers

    Get PDF
    In the past ten years distributed ledgers such as Bitcoin and smart contracts that can run code autonomously have seen an exponential growth both in terms of research interest and in terms of industrial and financial applications. These find a natural application in the area of Sensor Networks and Cyber-Physical Systems. However, the incentive architecture of blockchains requires massive computational resources for mining, delays in the confirmation of transactions and, more importantly, continuously growing transaction fees, which are ill-suited to systems in which services may be provided by resource-limited devices and confirmation times and transaction costs should be kept minimal, ideally absent. We focus on a new block-less, feeless paradigm for distributed ledgers suitable for the WSN, IoT and CPS in which transactions are nodes of a directed acyclic graph, that overcomes the limitations of blockchains for these applications, and where e.g. sensors can be at the same time issuers of transactions and validators of previous transactions. In particular, we present and release open-source a simulation environment that can be easily extended and analysed, and confirms the available results on the performance of the network

    Multi-agent based simulations of block-free distributed ledgers

    Get PDF
    In the past ten years distributed ledgers such as Bitcoin and smart contracts that can run code autonomously have seen an exponential growth both in terms of research interest and in terms of industrial and financial applications. These find a natural application in the area of Sensor Networks and Cyber-Physical Systems. However, the incentive architecture of blockchains requires massive computational resources for mining, delays in the confirmation of transactions and, more importantly, continuously growing transaction fees, which are ill-suited to systems in which services may be provided by resource-limited devices and confirmation times and transaction costs should be kept minimal, ideally absent. We focus on a new block-less, feeless paradigm for distributed ledgers suitable for the WSN, IoT and CPS in which transactions are nodes of a directed acyclic graph, that overcomes the limitations of blockchains for these applications, and where e.g. sensors can be at the same time issuers of transactions and validators of previous transactions. In particular, we present and release open-source a simulation environment that can be easily extended and analysed, and confirms the available results on the performance of the network

    Agent-Based Simulations of Blockchain protocols illustrated via Kadena's Chainweb

    Full text link
    While many distributed consensus protocols provide robust liveness and consistency guarantees under the presence of malicious actors, quantitative estimates of how economic incentives affect security are few and far between. In this paper, we describe a system for simulating how adversarial agents, both economically rational and Byzantine, interact with a blockchain protocol. This system provides statistical estimates for the economic difficulty of an attack and how the presence of certain actors influences protocol-level statistics, such as the expected time to regain liveness. This simulation system is influenced by the design of algorithmic trading and reinforcement learning systems that use explicit modeling of an agent's reward mechanism to evaluate and optimize a fully autonomous agent. We implement and apply this simulation framework to Kadena's Chainweb, a parallelized Proof-of-Work system, that contains complexity in how miner incentive compliance affects security and censorship resistance. We provide the first formal description of Chainweb that is in the literature and use this formal description to motivate our simulation design. Our simulation results include a phase transition in block height growth rate as a function of shard connectivity and empirical evidence that censorship in Chainweb is too costly for rational miners to engage in. We conclude with an outlook on how simulation can guide and optimize protocol development in a variety of contexts, including Proof-of-Stake parameter optimization and peer-to-peer networking design.Comment: 10 pages, 7 figures, accepted to the IEEE S&B 2019 conferenc

    On distributed ledger technology for the internet of things: design and applications

    Get PDF
    Distributed ledger technology (DLT) can used to store information in such a way that no individual or organisation can compromise its veracity, contrary to a traditional centralised ledger. This nascent technology has received a great deal of attention from both researchers and practitioners in recent years due to the vast array of open questions related to its design and the assortment novel applications it unlocks. In this thesis, we are especially interested in the design of DLTs suitable for application in the domain of the internet of things (IoT), where factors such as efficiency, performance and scalability are of paramount importance. This work confronts the challenges of designing IoT-oriented distributed ledgers through analysis of ledger properties, development of design tools and the design of a number of core protocol components. We begin by introducing a class of DLTs whose data structures consist of directed acyclic graphs (DAGs) and which possess properties that make them particularly well suited to IoT applications. With a focus on the DAG structure, we then present analysis through mathematical modelling and simulations which provides new insights to the properties of this class of ledgers and allows us to propose novel security enhancements. Next, we shift our focus away from the DAG structure itself to another open problem for DAG-based distributed ledgers, that of access control. Specifically, we present a networking approach which removes the need for an expensive and inefficient mechanism known as Proof of Work, solving an open problem for IoT-oriented distributed ledgers. We then draw upon our analysis of the DAG structure to integrate and test our new access control with other core components of the DLT. Finally, we present a mechanism for orchestrating the interaction between users of a DLT and its operators, seeking to improves the usability of DLTs for IoT applications. In the appendix, we present two projects also carried out during this PhD which showcase applications of this technology in the IoT domain.Open Acces

    Agoric computation: trust and cyber-physical systems

    Get PDF
    In the past two decades advances in miniaturisation and economies of scale have led to the emergence of billions of connected components that have provided both a spur and a blueprint for the development of smart products acting in specialised environments which are uniquely identifiable, localisable, and capable of autonomy. Adopting the computational perspective of multi-agent systems (MAS) as a technological abstraction married with the engineering perspective of cyber-physical systems (CPS) has provided fertile ground for designing, developing and deploying software applications in smart automated context such as manufacturing, power grids, avionics, healthcare and logistics, capable of being decentralised, intelligent, reconfigurable, modular, flexible, robust, adaptive and responsive. Current agent technologies are, however, ill suited for information-based environments, making it difficult to formalise and implement multiagent systems based on inherently dynamical functional concepts such as trust and reliability, which present special challenges when scaling from small to large systems of agents. To overcome such challenges, it is useful to adopt a unified approach which we term agoric computation, integrating logical, mathematical and programming concepts towards the development of agent-based solutions based on recursive, compositional principles, where smaller systems feed via directed information flows into larger hierarchical systems that define their global environment. Considering information as an integral part of the environment naturally defines a web of operations where components of a systems are wired in some way and each set of inputs and outputs are allowed to carry some value. These operations are stateless abstractions and procedures that act on some stateful cells that cumulate partial information, and it is possible to compose such abstractions into higher-level ones, using a publish-and-subscribe interaction model that keeps track of update messages between abstractions and values in the data. In this thesis we review the logical and mathematical basis of such abstractions and take steps towards the software implementation of agoric modelling as a framework for simulation and verification of the reliability of increasingly complex systems, and report on experimental results related to a few select applications, such as stigmergic interaction in mobile robotics, integrating raw data into agent perceptions, trust and trustworthiness in orchestrated open systems, computing the epistemic cost of trust when reasoning in networks of agents seeded with contradictory information, and trust models for distributed ledgers in the Internet of Things (IoT); and provide a roadmap for future developments of our research

    A Block-Free Distributed Ledger for P2P Energy Trading:Case with IOTA?

    Get PDF
    & #x00A9; 2019, Springer Nature Switzerland AG. Across the world, the organisation and operation of the electricity markets is quickly changing, moving towards decentralised, distributed, renewables-based generation with real-time data exchange-based solutions. In order to support this change, blockchain-based distributed ledgers have been proposed for implementation of peer-to-peer energy trading platform. However, blockchain solutions suffer from scalability problems as well as from delays in transaction confirmation. This paper explores the feasibility of using IOTA’s DAG-based block-free distributed ledger for implementation of energy trading platforms. Our agent-based simulation research demonstrates that an IOTA-like DAG-based solution could overcome the constraints that blockchains face in the energy market. However, to be usable for peer-to-peer energy trading, even DAG-based platforms need to consider specificities of energy trading markets (such as structured trading periods and assured confirmation of transactions for every completed period)

    Implications of Dissemination Strategies on the Security of Distributed Ledgers

    Full text link
    This paper describes a simulation study on security attacks over Distributed Ledger Technologies (DLTs). We specifically focus on attacks at the underlying peer-to-peer layer of these systems, that is in charge of disseminating messages containing data and transaction to be spread among all participants. In particular, we consider the Sybil attack, according to which a malicious node creates many Sybils that drop messages coming from a specific attacked node, or even all messages from honest nodes. Our study shows that the selection of the specific dissemination protocol, as well as the amount of connections each peer has, have an influence on the resistance to this attack.Comment: Proceedings of the 3rd Workshop on Cryptocurrencies and Blockchains for Distributed Systems (CryBlock 2020

    Herd Routes: A Preventative IoT-Based System for Improving Female Pedestrian Safety on City Streets

    Full text link
    Over two thirds of women of all ages in the UK have experienced some form of sexual harassment in a public space. Recent tragic incidents involving female pedestrians have highlighted some of the personal safety issues that women still face in cities today. There exist many popular location-based safety applications as a result of this; however, these applications tend to take a reactive approach where action is taken only after an incident has occurred. This paper proposes a preventative approach to the problem by creating safer public environments through societal incentivisation. The proposed system, called "Herd Routes", improves the safety of female pedestrians by generating busier pedestrian routes as a result of route incentivisation. A novel application of distributed ledgers is proposed to provide security and trust, a record of system users' locations and IDs, and a platform for token exchange. A proof-of-concept was developed using the simulation package SUMO (Simulation of Urban Mobility), and a smartphone app. was built in Android Studio so that pedestrian Hardware-in-the-Loop testing could be carried out to validate the technical feasibility and desirability of the system. With positive results from the initial testing of the proof-of-concept, further development could significantly contribute towards creating safer pedestrian routes through cities, and tackle the societal change that is required to improve female pedestrian safety in the long term

    On the Convergence of Artificial Intelligence and Distributed Ledger Technology: A Scoping Review and Future Research Agenda

    Get PDF
    Developments in Artificial Intelligence (AI) and Distributed Ledger Technology (DLT) currently lead to lively debates in academia and practice. AI processes data to perform tasks that were previously thought possible only for humans. DLT has the potential to create consensus over data among a group of participants in uncertain environments. In recent research, both technologies are used in similar and even the same systems. Examples include the design of secure distributed ledgers or the creation of allied learning systems distributed across multiple nodes. This can lead to technological convergence, which in the past, has paved the way for major innovations in information technology. Previous work highlights several potential benefits of the convergence of AI and DLT but only provides a limited theoretical framework to describe upcoming real-world integration cases of both technologies. We aim to contribute by conducting a systematic literature review on previous work and providing rigorously derived future research opportunities. This work helps researchers active in AI or DLT to overcome current limitations in their field, and practitioners to develop systems along with the convergence of both technologies
    • …
    corecore