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Abstract. Across the world, the organisation and operation of the elec-
tricity markets is quickly changing, moving towards decentralised, dis-
tributed, renewables-based generation with real-time data exchange-based
solutions. In order to support this change, blockchain-based distributed
ledgers have been proposed for implementation of peer-to-peer energy
trading platform. However, blockchain solutions suffer from scalability
problems as well as from delays in transaction confirmation. This paper
explores the feasibility of using IOTA’s DAG-based block-free distributed
ledger for implementation of energy trading platforms. Our agent-based
simulation research demonstrates that an IOTA-like DAG-based solution
could overcome the constraints that blockchains face in the energy mar-
ket. However, to be usable for peer-to-peer energy trading, even DAG-
based platforms need to consider specificities of energy trading markets
(such as structured trading periods and assured confirmation of transac-
tions for every completed period).

Keywords: blockchain · peer to peer energy trading platform · DAG-
based distributed ledger · block-free ledger · IOTA · agent-based simula-
tion.

1 Introduction

In the current energy market, utility companies act as intermediaries between
householders and the market, purchasing any excess generation that households
produce. This is shown in Fig. 1.a. In contrast to this, a peer-to-peer (p2p)
energy market enables any two individuals to directly buy from and sell to
each other, without the utility-intermediaries [1], as shown in Fig. 1.b. Such
households can be both prosumers (i.e., producing and consuming own electric-
ity, as well as selling the excess to others), or only consumers (if they don’t own
any generation facilities). The key advantages here are in providing avenues for:

? This work is supported by the UK EPSRC funding for Refactoring Energy Systems
(EP/R007373/1) and Household Supplier Energy Market (EP/P031838/1) projects.
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Fig. 1. Energy Market Disintermediation(from [2])

– Additional income streams to households with small-scale generation - via
sale of their excess energy to other peers in the market3. Moreover, the price
of the locally generated energy is likely to be more competitive than that of
the grid supply, as the microgenerators would have lower generation costs,
and no intermediation fees paid to utilities4.

– Additional (non-monetary) value proposition of small-scale generation and
energy storage - the microgenerators not only get return on their invest-
ment into generation equipment, but also support the energy needs of local
communities, contributing to efforts on decarbonisation and energy security.

– Increased control over source/destination of supply - consumers are able to
express their preferences on energy purchase: do they wish to buy solar or
wind, from the local producer or from the cheapest supplier; do producers
wish to donate their excess generation to the local school or sell it to the
highest bidder? All these options become viable when peers directly buy and
sell from/to each other.

Such an energy system, however, requires a digital platform which will
remove intermediation from the utilities (so that control is fully retained by the
market participants), advertise the sale and purchase orders between the trading
parties, undertake matching of these orders, based on the users’ preferences, en-
sure security of the transactions, transparency of the trades, and accountability
of the transaction participants.

Recently a number of researchers have advocated use of the blockchain ledgers
to create such a p2p energy trading platform.This is due to the functionality that
the blockchains enable. They:

– provide full support for distributed, decentralised data storage and
processing. Thus, there is no need to use and pay for any centralised data
storage organisations and facilities.

3 Currently in the UK the excess generation must be sold back to the utility provider
at a set rate (the so called feed in tariff set by the UK government). However, for
many types of household generation this scheme will cease as of March 31 2019.

4 Please note: each locality remains interconnected with the grid, the energy costs will
still include grid connection and maintenance charges. This is because the households
wish to be insured against the intermittency of the renewables-based generation, and
the grid provides such insurance and balancing services.
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– remove the need for trusting a third party intermediary, as the
blockchain ledgers rely on agreement of the majority of the participants on
the state of the chain, not on any external party;

– maintain tampering-resistant and accountable records of transactions.

Yet, the unpermissioned blockchains [27] (i.e., ledgers where all participants
have unrestricted right to participate in transaction validation and data access
- which is critical for an open and trusted p2p trading environment) also suffer
from a number of drawbacks, such as:

– Scalability limitations when handling a large number of transactions, due to
block size constraints and increasingly high transaction processing fees,

– Latency of transaction confirmation (particularly for low-fee transactions)
due to low incentives to the miners to include such transactions into blocks.

In this paper, employing the IOTA ledger as a sample, we explore the feasi-
bility of using the Directed Acyclic Graph-based block-free ledgers (abbreviated
to DAG-BF) for p2p energy trading. Unlike blockchains, DAG-BF ledgers do not
structure transaction records into blocks, and do not rely on specialist miners to
process the transactions. Thus, we expect that the above mentioned blockchain
limitations would be addressed. Moreover, the DAG-FB ledgers maintain trans-
parent and decentralised transaction records, which fit with the needs of the p2p
energy trading domain.

This paper proceeds by outlining the current state of the research and devel-
opments of blockchain solutions in the energy sector (section 2). An introduction
to the key characteristics of the DAG-BF ledgers is also presented (section 2).
Section 3 of the paper presents the p2p energy trading model and outlines the
study design. Employing agent-based simulation, this study then sets out to in-
vestigate the feasibility of using DAG-BF ledgers for p2p energy trading. The
findings of this study suggest that such ledgers could indeed be used for p2p-
based energy trading (section 4). A discussion on how the peculiarities of the
energy market would align with the present findings is also presented (section
4).

2 Distributed Ledgers in the Energy Sector: a
Background Overview

A distributed ledger is a database architecture which facilitates peer-to-peer
transactions in a distributed and decentralised way without the need for an
intermediary or a centralised authority [27]. The following subsections provide
a brief overview of blockchains and DAG-FB distributed ledgers in the energy
sector.

2.1 Blockchains in the Energy Sector

Blockchain is a distributed ledger which records transactions, agreements, con-
tracts, and sales [27, 7]. Here, a set of transactions is collected into a block. Each
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block of transactions is then validated by specialised peers on the network, called
miners. Miners are rewarded for the validation effort with transaction fees. The
validated transactions are recorded into the ledger (or chain).

The idea of using blockchains in the energy sector is becoming increasingly
popular, as shown by the growing number of pilots and research projects [8]. It
is often considered to be a game-changer for the energy industry [3, 27], as it
has the potential to enable transition to low-carbon sustainable energy systems
[4]; foster innovation in development of IoT platforms [5], digital applications for
P2P energy trading and smart grids [8, 9].

Various electricity and gas distributors in different countries (such as Vector
in New Zealand, Vattenfall in Sweden, EDF Energy and Verv in the UKto name
a few) are already testing blockchain platforms for local p2p energy markets [8].

The research community has also explored the use of blockchain ledgers in
P2P energy trading. Mengelkamp at el. [10] simulated a local energy market
of 100 residential households where consumers and prosumers can trade energy
within their community on a private blockchain platform. Murkin et al. [11]
proposed a p2p electricity trading platform under a blockchain scheme to auto-
matically buy and sell electricity in each household as microgeneration increases.
Pop at el. [12] used a blockchain mechanism to manage the demand response in
smart grids. Oh et al. [13] implemented an energy-trading system using Multi-
Chain and demonstrated that transactions worked correctly over blockchain. The
use of blockchains for sharing of renewable electricity through smart contracts
was studied in NRGX-Change [22] and the Crypto-Trading projects [23].

However, the structure of blockchain-based solutions has recently been criti-
sised due to the difference between mining and other nodes, as well as block
size restrictions [10, 13]. The miners (i.e., block validator nodes) are motivated
by transaction processing fees for including a transaction into the block-to-be-
validated. Consequently, the transactions willing to pay higher fees are given
priority for inclusion into the blocks, pushing the fees to increase as the num-
ber of waiting transactions increases. Transactions with low allocated processing
fees may remain in the queue of unconfirmed transactions for a long time, as the
block sizes are limited and higher-fee transactions are always chosen first.

2.2 DAG-based Block Free Distributed Ledgers

In a block-free ledger the individual transactions are directly introduced into
the ledger (without aggregation into blocks). The newly introduced transactions
also cross-verify other transactions, thus carrying out the task which was done by
the dedicated miners in the blockchain. Thus, the block-free distributed ledger
removes the distinction between miner and participant nodes. Here all nodes of
the network must participate in the transaction approval.

In many current block-free ledgers (BF) [16–18] the cross-validating transac-
tions are structured into a Directed Acyclic Graph (DAG). Such a DAG consists
of vertices and edges, where each vertex represents a transaction and each di-
rected edge a reference. The referencing edges validate and approve the transac-
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tions to which they point. The DAG serves as a truly distributed ledger, which
reaches consensus by accumulating information about the state of the network.

It must be noted that a DAG structure can also be used within blockchains,
for instance, Ethereum [19] employs a DAG where blocks of transactions com-
prise the vertices. The problems of block size, transaction validation latency,
and use of dedicated miners, however, remain. Thus, we focus on DAG-based
block-free (DAG-BF) alternative in our study.

Several DAG-BF cryptocurrencies have recently gained recognition, such as
RaiBlocks [16], Byteball [17] and IOTA [18]. These differ from each other in the
details of implementation and consensus protocols. For instance, IOTA requires
that each transaction is referenced by two other transactions for verification,
while, for Byteball, references to a number of trusted nodes are necessary. IOTA
achieves consensus via the cumulative proof-of-work of confirmed transactions,
while, in RaiBlocks, consensus is achieved via balance-weighted vote on conflict-
ing transactions. Yet, they all have a common set of characteristics which are
relevant for implementing a distributed ledger-based platform for a p2p energy
trading market:

1. transactions are processed individually, without block formation, which over-
comes the processing latency due to block size constraint;

2. processing is carried out asynchronously, “upon arrival” of each new trans-
action, tackling the delay of block formation;

3. each network participant is also a validator, without distinction between min-
ing and other nodes;

4. newly arriving transactions are added as leaf nodes into a DAG, and are to
be confirmed by accumulating references within the DAG.

In this work IOTA is used as a sample DAG-BF ledger to investigate the fea-
sibility of using such ledgers in p2p energy trading. While the details of the
simulation are, by necessity, aligned with the IOTA specifics (e.g., referencing 2
parent nodes, cumulative weight calculation method), the results that relate to
the above DAG-BF ledger characteristics could be considered of wider relevance.

2.3 IOTA

IOTA is a DAG-BF distributed ledger; its DAG is called the Tangle [20]. When a
new transaction enters the Tangle, it selects two existing transactions to approve,
and an edge is created between the new transaction and each of its selected
predecessors. The new transaction then approves the two selected transactions
(by solving a cryptography puzzle that links it to its approved transactions) and
waits for another transaction to approve it. (e.g., see Fig. 2).

An unconfirmed transaction in a DAG is called a tip (e.g., the transactions
A, B, X, C, E in Fig. 2, as these have less than 2 incoming transactions con-
firming them). The average time that a transaction remains unconfirmed in the
Tangle (i.e., transaction confirmation latency) and the number of unconfirmed
transactions (i.e. tips) at any given time are key parameters when considering
the use of Tangle as a candidate for a p2p energy trading platform.
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Fig. 2. View of IOTA Tangle (from [20]. Boxes represent transactions, number at the
bottom of a box is own weight, number at the top is the cumulative weight.)

Both the transaction confirmation latency and the number of unconfirmed
tips at any given time are heavily dependent on how new transactions select the
tips to validate, i.e., on their tip-selection algorithm [20]. Additionally the number
of unconfirmed tips is also dependent on the rate of arrival of new transactions
into the Tangle. Examples of tip selection algorithms are:

– Uniform random selection, whereby each new transaction randomly selects
two tips to confirm, (without having to traverse the graph);

– Unweighted random walk, whereby starting from the genesis node, the walker
chooses which transaction to move to with equal probability; and

– Weighted random walk where each transaction is assigned a weight (e.g., 1 for
D in Fig. 2) and a cumulative weight [20] (e.g., 9 for D in Fig. 2). The weight
defines how much work has been invested into each transaction by the issuing
node. Cumulative weight is the sum of the weights of the given transaction
and all other transactions that directly or indirectly reference the given one.
For instance, cumulative weight for D in Fig 2 is 9, and it comprises the
weight of D (1), weights of B(3), A (1), X (3) which indirectly references D
through A, and C (1). Under the weighted random walk selection algorithm,
a validating node selects a tip based on the tip’s weight.

The complexity of the weights is introduced into the tip selection algorithms
so as to penalise the so-called lazy (and/or malicious) nodes [20]. Lazy nodes
send new transactions and attach them to already approved transactions, in-
stead of approving new ones. Such behaviour saves computation time for the
lazy nodes, but results in a larger number of unconfirmed transactions. Neither
uniform random selection nor unweighted random walk algorithms can discrimi-
nate against the lazy nodes. The weighted random walk, on the other hand, can
use the cumulative weights as an indicator for selection of ‘honest’ transactions.
IOTA does this through use of the α parameter that can be set between 0 and
1, biasing the graph traversing towards the selection of higher-weighted transac-
tions [20]. Thus (as shown in [20]) if y approves x then the transition probability
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Pxy is:

Pxy = exp (−α(Hx −Hy))/
∑

z:z→x

exp (−α(Hx −Hz)) (1)

where Hx and Hy are the cumulative weights of nodes x and y respectively. If
z approves x, then z → x and α > 0 needs to be chosen. When α is set to 0 the
algorithm reverts to unweighted random walk, as then there is no bias towards
choosing the path through transactions with a higher cumulative weight. As α
approaches 1, the walker will always choose only the path through the transac-
tion with the highest cumulative weight, continuously increasing the weight of
transactions in that path (by adding new indirect references).

3 Modelling a Block-Free P2P Energy Trading Platform

In this exploratory study we wish to investigate whether p2p energy trading
would be feasible on a DAG-BF ledger with respect to transaction confirmation
latency and large volume of transactions to be processed. As noted before, we
opt to use IOTA as the sample DAG-BF ledger, as it is one of the most widely
publicised such ledgers. Yet IOTA’s current implementation is also strongly crit-
icised [28, 30, 29]. For instance, presently IOTA relies on a centralised coordina-
tor5 node, which renders it a centrally controlled network [30] (though there are
claims that the coordinator will be removed imminently [31]). It could also suffer
from replay vulnerability [29].

In order to abstract from the specifics of the current implementation, while
retaining the key characteristics of IOTA’s DAG-FB ledger, we turn to an
agent-based simulation (instead of on-chain implementation), assuming that the
coordinator-free version of the ledger is in place. Agent-based (AB) modelling
is particularly suitable for the present research as it allows us to focus on the
defining properties of DAG-BF.

Thus, we set the characteristics and behavioural rules for each individual
undertaking the transactions (i.e., agent) in the simulation, then observe the
collective impact of these behaviours and interactions among agents [22, 23] and
their impact on the ledger. To build an AB model, we must detail its constituent
parts, i.e.:

– Agents, who are defined as heterogeneous entities with different character-
istics and individual behaviours. They are situated in an environment and
perform actions.

– Interactions between agents change the agents’ state;
– Environment is the space in which agents are located (e.g., longitude and

latitude), and the rules under which they operate (e.g., the excess energy
that has been generated is to be sold).

5 Note: in case of the energy sector such a coordinator may be acceptable, if run by
the energy regulator providing governance to the system.
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3.1 Study Design

To develop a P2P energy trading platform, we must first consider the charac-
teristics of the energy market (i.e., the environment within which the actors
operate), including trade organisation, and the properties of traders.

Market Structure: Trade Periods. On the current energy market, energy is
bought and sold per 30 min. intervals. This structure is dictated by the nature
of the market itself, as the amounts of electricity generation and consumption
(and so its prices) vary due to:

– external environmental conditions (especially for renewables-based genera-
tion) as, for instance, PV panels generate more in the summer than in the
winter and consumers use more electricity in cold weather, as well as

– time of day, e.g., PV panels have highest output around midday; while most
individuals wake up and have breakfast between 6.30 AM and 9 AM on
weekdays, (causing increased demand in the morning), yet

– the electricity grid must be balanced for every time period, which requires
for the peak-time energy use (when grid is under stress to meet the high
consumption requirements) to be more expensive than off-peak.

Thus, we too keep to the period-based trading, where the trading is carried
out every t period (where t can be 30 min, or less). During each current period
the sellers and buyers publish their desired sell/buy request for the next period.
At the end of the current period the buy and sell requests are matched and
recorded as transactions into the ledger. A new period then begins. For simplicity
we do not consider cases where advertised sell/buy requests are not satisfied and
further settlement is required, as this does not affect the ledger’s scalability or
latency, but depends on the trading and settlement algorithm used [24]. Similarly,
though the matching algorithm allows for partial trading, where one individual
buys/sells to many in a given trading period, to fill his/her order, these are
simply extra transactions to the ledger, and are not further discussed. The key
result of such trade structuring decision is that all the sell/buy requests are
processed together, and their results are released for committing into the ledger
at the same time.

Households and Interactions. We model individual households as automated
software buyer or seller agents that express their trading preferences, and can
generate (as producers) or use (as consumers) energy. The households periodi-
cally (e.g., every 30 min) advertise the amount of generation (sell requests) and
use (buy requests) they provide/require. A p2p trading algorithm then calcu-
lates a stable match for each of the buyer-seller pair of agents, while taking into
account their individual preferences (e.g., as much as possible, buy only solar
energy, or sell to local buyers). The national grid acts as the default seller/buyer
where the p2p market under/over produces. Once the stable match is found (i.e.,
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there is no buyer/seller pair that would prefer to be matched to a different part-
ner), transactions are sent to the distributed ledger by the buyers. The attributes
of the agents are illustrated in Table 1.

Table 1. Agent Structure.

Properties Definition

Agent ID Unique agent identifier
Agent location Agent location in terms of latitude and longitude
Amount of electricity Amount of electricity to buy or sell for every trading period
Generation Type Generation type (i.e., solar PV, wind, anaerobic digestion,

hydro, and micro CHP)
Distance preference Distance preference for the trade
Price preference Minimum price (willing to sell) for seller agent or maximum

price (willing to buy) for buyer agent

A seller agent’s properties are the amount of electricity to sell, the location,
the generation type, the distance preference (how far the buyer can be located),
and the minimum price at which the seller is willing to sell. A buyer agent’s
properties are the amount of electricity to buy, his/her location, distance prefer-
ences, the maximum price at which the buyer is willing to buy, and the preferred
generation-type to purchase (as a priority list, ranked from 1 to 5).

The agents’ attributes are used to express agent preferences and to influence
with which other agents a given agent will trade. Thus, the distance preferences
of each seller/ buyer are used to determine which potential trading partners
are located within his/her preferred distance. If a party is located outside the
distance preference, then the matching score to this party will be lowered. The
seller’s minimum price at which (s)he is willing to sell is the minimum sales price
per 1 kWh of electricity, and the buyer’s maximum price at which (s)he is willing
to buy should be greater than the seller’s minimum sales price in order for these
two agents to enter into a transaction.

The p2p electricity trading process starts with sellers and buyers publish-
ing their desired sell/buy requests. Then, the trading algorithm6 scores each
buyer-seller combination, and ranks the matches based on their scores. The high-
est scoring pairs are matched. The buyer then creates a transaction, which is
recorded into the ledger. The transaction is initiated by the buyer, as it is fully
dependent on his/her willingness to pay. Each transaction contains the trans-
action ID, the buyer’s ID, the seller’s ID, the amount of electricity exchanged,
the unit price, and the timestamp. This information about each transaction is
saved in a file and is used to check the shape of the transaction graph using
the GraphViz [26] visualisation tool. The AB model was developed with the
AnyLogic [21] simulation tool7.

6 The details of the matching algorithm are not the focus of this study. The base
algorithm is given in [24], though this study uses an extended version.
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Model Setup Before the model can be executed, it needs to be set up7. The
accounts are randomly generated for the simulation. We assume that buyers and
seller of the p2p electricity market area are located in an arbitrary area in the
UK, with latitude randomly chosen between 50.956870 and 52.438562, and lon-
gitude between -2.386779 and 0.292914. Sellers’ generation types are uniformly
distributed, and sellers generate from 5 to 10 kWh every trading period. Five
types of generation are used: solar, wind, hydro, anaerobic digestion, and micro
CHP. Distance preference is set for all accounts between 5-10km. For buyers,
the maximum price to buy is set randomly between 14p and 16p per kWh, and
the demand is set randomly between 1 kWh and 6 kWh. Buyers’ generation-
type preferences are set randomly. During model testing, a percentage of these
accounts were assigned to be sellers. Simulations were run for 16 replications for
each model, where the percentage of sellers in the market ranged from 5% to
20% in 5% increments, and the number of participants ranged from 500 to 3000
in increments of 500.

4 Findings and Discussion

After setting the number of sellers and buyers that participate in the electricity
trading market, as well as their location, sales volume, and demand quantity,
we can observe the changes in the metrics and monitor the transactions that
occur among them. The metrics of this feasibility study are the transaction
confirmation latency and the number of unconfirmed tips per trading period.

Fig. 3. Shapes of Tangle under various transaction release rates (the last nodes in parts
b and c are termination nodes, see section 4.1).

7 This model can be accessed via: https://cloud.anylogic.com/model/966f6846-62e0-
460e-bf69-2a1b00317128?mode=SETTINGS from the Anylogic Cloud.
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4.1 Impact of Market Structure

Trade Periods: As previously discussed, the nature of the energy market re-
quires that trades are structured into fixed time intervals8. As the trades are
agreed at the end of the trading period, the buyers’ agents will simultaneously9

send the transactions into the ledger. Simultaneous arrival of large groups of
transactions into the ledger could result in several transactions simultaneously
selecting and confirming the same tip with some other tips remaining uncon-
firmed for a longer time [20]. For instance, as shown in Fig. 3.a, all transactions
released in the first group confirm solely the genesis node, while they themselves
remain unconfirmed until transactions from the next group are released.

Fig. 3 illustrates the shape of the block-free distributed ledger under various
(uniformly distributed) delay ranges in sending transactions (Fig. 3.(b) delay of
0.1s to 0.3s, (c) from 0.7s to 0.9s, (d) from 1.3s to 1.5s.) 10. As the agents’ delay
in setting out transactions increases, the shape of the Tangle of the block-free
distributed ledger converges to the shape of a chain.

Termination Nodes: The interval-based market structure in energy trading
(e.g., per 30 min) implies that transactions which were not confirmed at the end
of one trading period cannot be settled until the next trading period releases
transactions. Yet, energy generation and consumption cannot be postponed un-
til the next period during which transactions would be confirmed. To address
this concern, we suggest the need for a termination node that would confirm all
unconfirmed transactions at the end of each trading period. The work for cre-
ation of a termination node could be allocated to all network participants, with
one or two participants randomly selected for such node generation at the end of
each trading period. Two nodes will ensure that each unconfirmed transaction
has two validators (as required per Iota’s protocol). The termination nodes can
then serve as the starting nodes for the DAG of the next set of trade transac-
tions, as illustrated in Fig. 4. This structure both ensures the transactions are
confirmed for each trading period and the DAG nodes are clearly allocated to
each trading period. IOTA’s current solution whereby all nodes maintain statis-
tics on new transactions received from the neighbours [20] could still be sufficient
in excluding transactions from “too lazy” nodes, and prevent a behaviour where
nodes expect that the termination node “will confirm all transaction anyhow”.

8 While this study considers buy/sell requests published at period (t) for period (t+1),
further periods (e.g., t+10, as different markets) can also be studied with this model.

9 Specific implementations of the trading algorithms could vary the transaction release
rate. For instance, when the ranked order algorithm is applied in trade matching,
the matching is carried out in several cycles, and trades are agreed and released into
the ledger in groups [24]. In this case, the following discussion relates to a single
group release.

10 As we focus on the shape of the ledger not transaction content, figure read-
ability is not strictly necessary. Yet, if need be, the figures can be accessed via:
https://jmp.sh/WNkIbZp



12 J. Park et al.

Genesis

t1.1

t1.2

t1.3

t1.4

t1.5

t1.6

t1.7

t1.8

t1.9

Ter_1.1

Ter_1.2
t2.1

t2.2

t2.3

t2.4

t2.7

t2.6

t2.5

Ter_2.1

Ter_2.2

Period 1 Period 2

Fig. 4. Connecting two Directed Acyclic Graphs

4.2 Impact of Tip Selection Algorithm

As previously discussed, the transaction confirmation time and the number of
unconfirmed tips present in the ledger at any given time are dependant on the
tip selection algorithm [20].

To analyse the impact of the tip selection algorithms, the market in the
AB model was simulated for 2,500 buyers and 375 sellers, with an average of
1,000 transactions generated and recorded into the block-free distributed ledger
during the trading period. The delay of releasing the transactions into the ledger
is uniformly distributed between 0.3 to 0.9 seconds.

Transaction confirmation time: The transaction confirmation time is defined
as the difference between the time when a transaction is connected to the block-
free distributed ledger and the time of its first transmission into the network.

The transaction confirmation times aggregated from the above discussed sim-
ulation are depicted in Fig. 5 when (a) uniform random selection, (b) unweighted
random walk, and (c) weighted random walk are used.
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FIGURE 4.16: Transactions sent at once

FIGURE 4.17: Transactions sent sequentially by agents

We experimented with the effect of delay when sending transactions to the DAG.
Assuming a market with 10 sellers and 20 buyers, we analyzed how the shape of the
DAG varies according to the delay range of each buyer when the transaction is sent
after matching. To analyze the shape of the DAG, we measured the length and width
of DAGs. In order to calculate the average width of the DAG, 20 DAGs were made
under the same delay conditions.

As described earlier, if delay is zero, all transactions are placed in the DAG at
once, and newly added transactions will only discover the genesis in the DAG. All
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transactions will only authenticate genesis, and there will be no edge between trans-
actions. The length of the DAG in this experiment is 2 and the width of the DAG in
this experiment is 25.

In the next experiment, DAGs were created assuming that the delay was uni-
formly distributed between 0.1s and 0.3s. Figure 4.18 illustrates an example of DAG
in this experiment. It can be seen that the width of the DAG is larger than the case
of the delay of the experiment which was tested in the above. Repeating 20 times
resulted in an average length of 5 and an average width of 7.

FIGURE 4.18: DAG with short delays

In the next experiment, DAGs were made after setting the delay to be uniformly
distributed between 0.7 s and 0.9 s. Figure 4.19 shows an example of DAG in this
experiment. The average length of the DAG made by repeating 20 times was 10.85,
and it can be seen that the average length increases as the delay increases. The
average width of the DAG was 3.

FIGURE 4.19: A DAG with long delays

After setting the delay to be uniformly distributed between 1.3s and 1.5s, DAGs
will have the shape of a chain. Figure 4.20 shows only a portion of the DAG created
in this experiment.

Figure 4.21 summarizes the length of DAG experiment results with various de-
lays. The x-axis represents delay in seconds and the y-axis represents the average
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FIGURE 4.20: A chain DAG

length of DAGs. As the delay becomes longer, the length of the DAG becomes
longer, and the delay setting of the agent affects the shape of the DAG. When the
delay becomes very large, the DAG will have the shape of a chain.

FIGURE 4.21: The average length of DAGs

Figure 4.22 summarizes the width of DAG experiment results with various de-
lays. As the delay becomes longer, the average width of the DAG becomes shorter.

FIGURE 4.22: The average width of DAGs
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4.3.5 Transaction Confirmation Time

In this project, the transaction confirmation time is defined as follows. There is a
start time for the transaction to be connected to the DAG since it is first transmitted
to the network, and the end time to be selected by the next transaction and con-
nected to the edge. The time required for confirmation is defined as the difference
between the end time and the start time.

A market of 2,500 buyers and 375 sellers was simulated for the confirmation-time
experiment using the DAG. During the trading period, the averages of 1,000 trans-
actions were generated and recorded in the DAG. We assume that each agent will
use the same tip-selection algorithm after each transaction. The delay when writing
the transaction to the DAG is uniformly distributed between 0.3 to 0.9 seconds.

FIGURE 4.24: Confirmation time distribution with uniform random se-
lection

FIGURE 4.25: Confirmation time distribution with unweighted random
walk
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FIGURE 4.26: Confirmation time distribution with weighted random
walk

Uniform random selection

Figure 4.24 shows the confirmation time distribution of uniform random selection.
The X-axis represents time in seconds, and the Y-axis is the number of transactions.
600 transactions were confirmed in 2 seconds and the average confirmation time
was 2.26.

Unweighted random walk

Figure 4.25 illustrates the confirmation time distribution of unweighted random
walk. 500 transactions were confirmed in 2 seconds. The number of transactions
that were confirmed in 2 seconds is less than that of uniform random selection. The
average confirmation time of unweighted random walk was 2.63.

Weighted random walk

Figure 4.26 shows the confirmation time distribution when weighted random walk
was used. Similar to the confirmation time distribution of uniform random selec-
tion and unweighted random walk, most of the transactions were confirmed in 2
seconds, but the average confirmation time was 7.91 seconds. The reason for the in-
crease in the average confirmation time was that it took a long time to confirm some
of the transactions. We could observe these outliers when using weighted random
walk.

4.3.6 Unconfirmed Transactions (Tips)

The number of tips was measured when the transaction occurred and then recorded
in the DAG. The pattern of the tip number at which the transaction is recorded

Fig. 5. Confirmation time distribution using (a) uniform random selection (b) un-
weighted random walk (b) weighted random walk.

While all 3 tip selection algorithms confirm between 500 and 600 transactions
within 2 seconds, the average confirmation time varies from 2.26 for uniform
random walk to 2.63 for unweighted and 7.91 sec for weighted random walk. The
length of the last case is due to delays in confirming some outlier transactions.
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Unconfirmed Transactions (Tips): The number of unconfirmed transactions
recorded from the above noted simulation are depicted in Fig. 6 with: (a) uniform
random selection, (b) unweighted random walk, and (c) weighted random walk.
We observe that both uniform random selection and unweighted random walk
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After setting the delay to be uniformly distributed between 1.3s and 1.5s, DAGs
will have the shape of a chain. Figure 4.20 shows only a portion of the DAG created
in this experiment.

Figure 4.21 summarizes the length of DAG experiment results with various de-
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FIGURE 4.20: A chain DAG

length of DAGs. As the delay becomes longer, the length of the DAG becomes
longer, and the delay setting of the agent affects the shape of the DAG. When the
delay becomes very large, the DAG will have the shape of a chain.

FIGURE 4.21: The average length of DAGs

Figure 4.22 summarizes the width of DAG experiment results with various de-
lays. As the delay becomes longer, the average width of the DAG becomes shorter.

FIGURE 4.22: The average width of DAGs
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4.3.5 Transaction Confirmation Time

In this project, the transaction confirmation time is defined as follows. There is a
start time for the transaction to be connected to the DAG since it is first transmitted
to the network, and the end time to be selected by the next transaction and con-
nected to the edge. The time required for confirmation is defined as the difference
between the end time and the start time.

A market of 2,500 buyers and 375 sellers was simulated for the confirmation-time
experiment using the DAG. During the trading period, the averages of 1,000 trans-
actions were generated and recorded in the DAG. We assume that each agent will
use the same tip-selection algorithm after each transaction. The delay when writing
the transaction to the DAG is uniformly distributed between 0.3 to 0.9 seconds.

FIGURE 4.24: Confirmation time distribution with uniform random se-
lection

FIGURE 4.25: Confirmation time distribution with unweighted random
walk
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FIGURE 4.26: Confirmation time distribution with weighted random
walk

Uniform random selection

Figure 4.24 shows the confirmation time distribution of uniform random selection.
The X-axis represents time in seconds, and the Y-axis is the number of transactions.
600 transactions were confirmed in 2 seconds and the average confirmation time
was 2.26.

Unweighted random walk

Figure 4.25 illustrates the confirmation time distribution of unweighted random
walk. 500 transactions were confirmed in 2 seconds. The number of transactions
that were confirmed in 2 seconds is less than that of uniform random selection. The
average confirmation time of unweighted random walk was 2.63.

Weighted random walk

Figure 4.26 shows the confirmation time distribution when weighted random walk
was used. Similar to the confirmation time distribution of uniform random selec-
tion and unweighted random walk, most of the transactions were confirmed in 2
seconds, but the average confirmation time was 7.91 seconds. The reason for the in-
crease in the average confirmation time was that it took a long time to confirm some
of the transactions. We could observe these outliers when using weighted random
walk.

4.3.6 Unconfirmed Transactions (Tips)

The number of tips was measured when the transaction occurred and then recorded
in the DAG. The pattern of the tip number at which the transaction is recorded
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differs depending on which tip-selection algorithm the agent participating in the
DAG uses.

Uniform random selection

Figure 4.27 shows that the number of tips remained stable within a certain range
when uniform random selection was used. It can be seen that the minimum number
of tips was 2 and the maximum number of tips was 14.

FIGURE 4.27: The number of tips with uniform random selection

Unweighted random walk

Figure 4.28 illustrates that the number of tips also remained stable within a certain
range between 2 and 16. The pattern of the number of tips when using unweighted
random walk is similar to that of uniform random selection.

FIGURE 4.28: The number of tips with unweighted random walk

Weighted random walk

In Figure 4.29, when weighted random walk was used, the number of tips was un-
stable according to the alpha value. In weighted random walk, if the alpha in Equa-
tion 2.1 is closer to zero, the algorithm is similar to uniform random walk. If the
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alpha is closer to 1, the transactions with a large cumulative weight are selected,
and the number of tips increases as time goes on [57]. As shown in Figure 4.29, the
number of tips increases as the alpha approaches 1; in contrast, the number of tips
is stabilized as the alpha approaches zero.

FIGURE 4.29: The number of tips with weighted random walk

4.3.7 The Degree Distribution of DAGs

We analysed the degree distribution to investigate the shape of the DAG after the
trading period. A market of 1000 buyers and 100 sellers was assumed, and trans-
actions were recorded in the block-free distributed ledger. After 20 trading periods,
we aggregated the statistical results from different DAGs. We examined whether
there is a difference in degree distribution according to which tip-selection algo-
rithm the participants who managed and operated the DAG used; we also analysed
how network latency affects the DAG.

Figures 4.30, 4.31, and 4.32 show the degree distribution when participants used
uniform random selection, unweighted random walk, and weighted random walk
algorithms. We found that the ratio of the two degrees was between 0.45 and 0.5 of
the whole degree. This situation occurred because when a new transaction is added
to the DAG, two existing transactions must be selected and confirmed. A degree

(A) latency=1.0 (B) latency=1.5 (C) latency=2.0

FIGURE 4.30: Degree distributions with uniform random selection

Fig. 6. Number of unconfirmed tips under (a) uniform random selection, (b) un-
weighted random walk, and (c) weighted random walk.

maintain stable ranges of unconfirmed tips (2 to 14 for random selection and 2
to 16 for unweighted random walk). However, under the weighted random walk,
the number of unconfirmed tips could become divergent. Here the range stability
depends on the alpha value (which was discussed in section 2.2 equation (1).

To analyse this, we recorded the number of unconfirmed transactions per
unit time for the following α values: 0.02, 0.05, 0.1, 0.2 and 0.5(see Fig. 6.c). We
noticed that as the value of alpha increases, the number of unconfirmed trans-
actions shows an upwards trend, rather than being stably maintained. Thus,
as alpha approaches 1, predominantly the transactions with larger cumulative
weight are selected for confirmation, while other tips remain unconfirmed (see
Fig. 6.c). On the other hand, when alpha approaches zero, the number of un-
confirmed tips becomes stabilised.

Thus, though the weighted random walk tip selection algorithm can penalise
lazy and malicious behaviour by isolating lazy nodes, our experiment suggests
that it could also lead to increased transaction confirmation delay. As discussed
in section 2.3, as α increases, the algorithm will converge to a single traversal
path. Thus, any transactions that had chosen to confirm any tips outside of
this “main path” will forever remain unconfirmed. Consequently, should α be
wrongly chosen, the ledger will be destabilised.

5 Conclusions

Using the IOTA as an example, this paper explores the feasibility of utilis-
ing (IOTA-like) DAG-based block-free distributed ledgers for implementation of
peer-to-peer energy trading platforms. This effort is motivated by the promise of
the DAG-BF ledgers to remove the need for specialist miners/validators and their
respective fees, threat of over-centralisation due to dominance of large mining
pools, and the risk of long transaction confirmation delays for some (low value)
transactions.
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Our agent-based simulation experiments for a p2p energy market suggest that
the functioning of this simulated market can indeed be successfully supported
by a IOTA and similar DAG-FB ledgers. However, we also noted the need to
carefully design the shape of the block-free ledger:

1. The peculiarity of the p2p energy market structure (i.e., the need to trade
over discrete time periods, where all trade transactions agreed for one pe-
riod could potentially be released simultaneously) necessitates a uniformly
randomised process of releasing transactions into the ledger for each trading
period.

2. As energy generation and consumption have to be continuously balanced in
the grid, all trades for a given period should be confirmed and completed
before the start of the next period. We have suggested to use a dedicated
kind of nodes, (so called termination nodes) that guarantee confirmation of
all ‘honest’ transactions at the end of each trading period. They help to both
finalise sales for each period and to clearly structure records per each trading
period. We also note that the termination nodes provide an ideal location for
the so-called ledger maintenance tasks (such as pruning and confirmation)
[20]. This, however, also leaves an open question as to if and how exactly
should the termination nodes avoid confirmation of transactions from lazy
nodes. For instance, one could explore the impact of choosing the lazy nodes
as the main workers in the generation of the termination nodes, thus forcing
them into active participation.

3. There is no single “best” tip selection algorithm, as some of the most fre-
quently used solutions (i.e., uniform random walk and unweighted random
walk) do not safeguard against potential lazy and malicious behaviour of
some nodes at the expense of the others. The choice of the weighted ran-
dom walk, on the other hand, could lead to an increased average transaction
confirmation delay (due to some outlier tips and/or inappropriately set α).

Finally, we must also note that, though this simulation study suggests that IOTA
(and similar DAG-FB ledgers) appear(s) to be feasible for implementation of
p2p energy trading platforms, this conclusion cannot be fully verified without
an actual implementation of such a platform. Such an implementation is our
immediate future work.
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