
PhD Thesis

Imperial College London

Dyson School of Design Engineering

On Distributed Ledger Technology for the

Internet of Things: Design and Applications

Author:
Andrew Cullen

Supervisor:
Prof. Robert Shorten

December 21, 2022

1

Statement of Originality

I declare that the work presented in this thesis is my own, and that all contributions of others
are appropriately acknowledged throughout. Specifically, joint authorships, collaborations and
previously published work relevant to each chapter are clearly stated in Section 1.5.

2

Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are
licenced under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC
BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You
may also create and distribute modified versions of the work. This is on the condition that: you
credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming
the licence and linking to the licence text. Where a work has been adapted, you should indicate
that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in
this licence or permitted under UK Copyright Law.

3

Abstract

Distributed ledger technology (DLT) can used to store information in such a way that no individual
or organisation can compromise its veracity, contrary to a traditional centralised ledger. This
nascent technology has received a great deal of attention from both researchers and practitioners
in recent years due to the vast array of open questions related to its design and the assortment novel
applications it unlocks. In this thesis, we are especially interested in the design of DLTs suitable
for application in the domain of the internet of things (IoT), where factors such as efficiency,
performance and scalability are of paramount importance.

This work confronts the challenges of designing IoT-oriented distributed ledgers through analysis
of ledger properties, development of design tools and the design of a number of core protocol
components. We begin by introducing a class of DLTs whose data structures consist of directed
acyclic graphs (DAGs) and which possess properties that make them particularly well suited to IoT
applications. With a focus on the DAG structure, we then present analysis through mathematical
modelling and simulations which provides new insights to the properties of this class of ledgers
and allows us to propose novel security enhancements. Next, we shift our focus away from the
DAG structure itself to another open problem for DAG-based distributed ledgers, that of access
control. Specifically, we present a networking approach which removes the need for an expensive
and inefficient mechanism known as Proof of Work, solving an open problem for IoT-oriented
distributed ledgers. We then draw upon our analysis of the DAG structure to integrate and test
our new access control with other core components of the DLT. Finally, we present a mechanism
for orchestrating the interaction between users of a DLT and its operators, seeking to improves the
usability of DLTs for IoT applications. In the appendix, we present two projects also carried out
during this PhD which showcase applications of this technology in the IoT domain.

4

Acknowledgements

The research presented in this thesis was funded in part by a grant from IOTA Foundation and in
part by a 2020 IBM PhD Fellowship Award1. I am grateful both to IOTA Foundation and to IBM
Research for their support.

Despite the challenges and uncertainty that a PhD and a pandemic bring, my three years in
London have been happier and more fulfilling than I could have hoped for. I attribute this to the
relationships that I have formed/maintained during my time here.

Firstly, I am grateful to my supervisor, Prof. Robert Shorten for supporting and believing in me,
for nurturing my creativity, and for always treating me and everyone around him with equal respect
and kindness. I am also thankful for the support and guidance of Dr. Pietro Ferraro, especially
during the early stages of my PhD. Working closely with Bob and Pietro has been formative for
me, both academically and personally.

I had several fruitful collaborations with other researchers both from Imperial and other uni-
versities. I learned a great deal from Prof. Christopher King of Northeastern University, and from
Roman Overko of University College Dublin. From Imperial, co-workers and friends who have
enriched my experience include Lianna Zhao, Aida Manzano Kharman, Steve Kench, Liam Yassin
and Cesare Caputo.

With the primary focus of my research revolving around distributed ledger technology, I had
the opportunity to work closely with many brilliant scientists at IOTA Foundation. Some of
the individuals who have contributed hugely to this thesis and to my own development include
Bartosz Kuśmierz, Dr. Luigi Vigneri, Dr. William Sanders, Dr. Olivia Saa, Jonas Theis, Piotr
Macek, Dr. Wolfgang Welz and Dr. Angelo Capossele.

I have also been fortunate enough to work closely with a number of exceptional researchers from
IBM Research. Primarily, I would like to thank Dr. Sergiy Zhuk who mentored me as part of my
IBM PhD Fellowship. I thoroughly enjoyed our weekly discussions and I am grateful to him for
giving me autonomy to run with ideas and think deeply about problems. I am also thankful for the
support of Dr. Mykhaylo Zayats and Dr. Jonathan Epperlein who shared their time and insights
with me on numerous occasions.

Another activity which brought me great joy and satisfaction during my PhD was teaching. I
would like to thanks Prof. Peter Cheung and Dr. David Boyle as well as Prof. Robert Shorten and
Dr. Pietro Ferraro again, for entrusting me with teaching responsibility for their classes. I would
also like to thank all the brilliant students from the Dyson School of Design Engineering for their
enthusiastic engagement in all the modules I taught.

There are also a number of people who aren’t quite sure what a distributed ledger is and were
still indispensable to me during these three years. I thank my family for getting me here and
making me who I am today. I thank Rob and Olly for their continued friendship and for giving me
a solid base when we first moved to London. Finally, I thank my best friend and partner, Ciara,
for always being there with a fresh perspective and a warm embrace.

1https://research.ibm.com/university/awards/fellowships.html

5

“It is as if the feel of thinking reveals something in the object itself, as if I were magically
capable of grasping the ungraspable thing-in-itself, what in the thing is distinctly itself,
not its data, its phenomena.”

—Timothy Morton

6

Contents

1 Introduction 15
1.1 Distributed Ledger Technology . 15
1.2 Research Objective . 15
1.3 Background . 16

1.3.1 Confirmation . 18
1.3.2 Tip Selection . 18
1.3.3 Access Control . 19

1.4 Related Research . 20
1.5 Thesis Structure, Contributions and Collaborations 22

1.5.1 Chapter 2 . 22
1.5.2 Chapter 3 . 22
1.5.3 Chapter 4 . 22
1.5.4 Chapter 5 . 22
1.5.5 Chapter 6 . 23
1.5.6 Publications . 23

2 DAG-based Distributed Ledgers and Variable Delay Models 25
2.1 Directed Acyclic Graphs . 25

2.1.1 Confirmation . 26
2.1.2 Tip Selection . 26
2.1.3 Access Control . 28

2.2 Variable Delay Models . 29
2.2.1 Tip Selection Probability . 30
2.2.2 The Fluid Limit . 31
2.2.3 Comparison with Previous Work for Fixed Delay 32

2.3 The Stationary Solution . 33
2.3.1 Simulator Description . 33
2.3.2 Special Case: Fixed Delay H = h . 33
2.3.3 Special Case: Exponential Delay H . 33
2.3.4 Special Case: Uniform Delay H . 35

2.4 Chapter Summary . 35

3 Parasite Chain Attacks and Tip Selection Algorithm Design 36
3.1 The Parasite Chain Attack . 38
3.2 The Biased Random Walk Algorithm . 39

3.2.1 Matrix Model . 39
3.3 Resistance to Parasite Chain Attacks . 41
3.4 Extending the BRW Algorithm . 43
3.5 Chapter Summary . 46

4 Access Control for DAG-based DLTs without Proof of Work 48
4.1 Background and Related Research . 49

4.1.1 Access Control for Distributed Ledgers . 49
4.1.2 DAG-Based Distributed Ledgers . 50
4.1.3 Networking Concepts . 50

7

4.2 Problem Statement . 51
4.3 Model and Notations . 52

4.3.1 Definition of Requirements . 55
4.4 Access Control Algorithm . 56

4.4.1 Scheduler . 56
4.4.2 Rate Setter . 57
4.4.3 Buffer Manager . 58

4.5 Simulations . 59
4.5.1 Honest Environment . 60
4.5.2 Adversarial Environment . 62
4.5.3 Sensitivity Analysis . 65
4.5.4 IoT Devices and Variable Block Work . 66
4.5.5 Comparison to Proof of Work Access Control 68

4.6 Chapter Summary . 70

5 Co-Design of Access Control, Tip Selection and Confirmation 73
5.1 Model and Notations . 75

5.1.1 Definition of Requirements . 75
5.2 Access Control, Tip Selection and Confirmation . 76

5.2.1 Rate Setter . 76
5.2.2 Block Factory . 77
5.2.3 Parser . 77
5.2.4 Solidifier . 77
5.2.5 Scheduler and Buffer Manager . 77
5.2.6 Tip Set Manager . 77
5.2.7 Confirmation Manager . 78

5.3 Simulations . 79
5.3.1 Honest Environment . 80
5.3.2 Adversarial Environment . 83
5.3.3 Tip Set Analysis . 86

5.4 Chapter Summary . 89

6 User-Node Interaction Mechanisms for DLTs in Enterprise Applications 90
6.1 Related Research . 92
6.2 System Model . 92
6.3 User-Node Interaction Mechanism . 94

6.3.1 Naive Policies . 95
6.3.2 Selection Policy Based on Delay . 96
6.3.3 Including Transaction Fees . 96

6.4 Simulations . 97
6.5 Chapter Summary . 101

A DockChain: A Sharing Platform for Electric Vehicle Chargepoints 113
A.1 System Overview . 114

A.1.1 Hardware Layer . 116
A.1.2 Network Layer . 116
A.1.3 DLT-Based Trading Layer . 118

A.2 Cooperative Charging Frameworks . 118
A.2.1 Earliest Deadline First Scheduling . 119
A.2.2 V2V Trading . 120

A.3 Case Study: City Centre Workplace . 120
A.3.1 Dimensioning . 120
A.3.2 Implementation . 120

A.4 Summary . 121

B SPToken: DLT-augmented Reinforcement Learning 123
B.1 Related Work . 124
B.2 SPToken: DLT for Crowdsourced Smart Mobility 125
B.3 Reinforcement Learning with SPToken . 127

8

B.3.1 Modified UBEV algorithm . 127
B.3.2 Notation for MUBEV and the Reward Function. 129

B.4 Simulations . 130
B.4.1 Experiment 1: Optimal Route Estimation Under Uncertainty 131
B.4.2 Experiment 2: Optimal Route Planning Under Multiple Uncertainties. . . . 132
B.4.3 Experiment 3: Route Recommendations from the UBEV-Based System and

Speedup in Learning. 132
B.5 Summary . 133

C Distributed Random Number Generation 139
C.1 Introduction . 139
C.2 State of the Art . 140

C.2.1 Threshold-Based Approaches . 140
C.2.2 Delay-Based Approaches . 142

C.3 IOTA dRNG . 142
C.3.1 Seeding the dRNG . 142
C.3.2 Chained Randomness . 143
C.3.3 Choosing dRNG Nodes . 144

D Milestone-based results for Chapter 5 145

9

List of Figures

1.1 A DLT network with a variety of IoT devices participating as nodes. Nodes store a
copy of the ledger and share ledger updates with neighbouring nodes. 17

1.2 A node’s local view of a blockchain ledger. 17

2.1 Sequence to issue a block in a directed acyclic graph. On the left, we see the first
part of the sequence in which a new grey block arrives and selects two red tips. On
the right, we see that once the grey block is added to the DAG, it becomes a tip
and the two blocks it approves cease to be tips. 26

2.2 Evolution of the cumulative weight of three blocks as three new blocks enter the DAG. 27
2.3 Milestone-based confirmation—all blocks in the past cone of the yellow milestone

block are immediately confirmed. 28
2.4 Two main classes tip selection algorithms: URTS (above) and BRW (below). URTS

simply selects two tips at random from the tip set, while BRW uses a random walk
from deep in the DAG. The red and green lines represent two independent random
walks. 29

2.5 150 Monte Carlo simulations of the DAG with constant delay (� = 20, h = 5). The
single realisations are shown in blue, while the average value is shown in red. Notice
that we obtain the predicted average value L = 200. 34

2.6 150 Monte Carlo simulations of a DAG-based ledger with exponential delay (� =
20, µ = 0.2 = 5�1 = h�1). The single realisations are shown in blue, while the
average value is shown in red. Notice that we obtain the predicted average L = 128. 34

2.7 150 Monte Carlo simulations of a DAG-based ledger with uniform delay (� =
20, h0 = 1, h1 = 11). The single realisations are shown in blue, while the aver-
age value is shown in red. Notice that we obtain the predicted average L = 214. . . 35

3.1 The blue and the green transactions are incompatible with each other. This image
was also present in [1]. 37

3.2 A kth-order simple parasite chain: The yellow and green blocks constitute a double
spend. 39

3.3 Convergence of BRW Monte Carlo simulation results to matrix model formula. . . 42
3.4 Probability of selecting an SPC tip: � = 15, µ = 5, k = 1, TDS = 120. 44
3.5 Probability of selecting an SPC tip: � = 15, µ = 5, k = 1. 44
3.6 Growth of cumulative weight in the main sub-DAG and SPC. 44
3.7 An approximate illustration of how cumulative weight grows in a DAG (blue) and

a parasite chain (red). The blue and red circles at time zero represent the first and
second spends, respectively, and the thickness of the shaded area represents the rate
of new blocks that reference these spends as they are attached to each structure. . 45

3.8 Probability of selecting an SPC tip: � = 15, µ = 5, k = 1, TDS = 60. 45
3.9 Probability of selecting an SPC tip: � = 15, µ = 5, ↵ = 0.005, TDS = 120. 46
3.10 Probability of selecting an SPC tip: � = 15, µ = 5, k = 1, TDS = 120. 47

4.1 Model for a node m, indicating the actions taken by each node to process a block,
namely, receiving, issuing, scheduling, writing and forwarding. �m denotes node m’s
block issuing rate, ⌫ denotes its maximum scheduling rate, and with � ⌫ denotes
its writing rate which must be at least ⌫. 52

10

4.2 Reputation distribution follows a Zipf distribution with exponent 0.9. Nodes are
content, best-effort, or inactive as indicated by each bar’s colour. 60

4.3 Dissemination rate and mean dissemination latency over all blocks. 61
4.4 Maximum time since issue for all undisseminated blocks, demonstrating that con-

sistency is achieved. 61
4.5 Dissemination rate and scaled dissemination rate of each node. The bottom plot of

scaled dissemination rate demonstrates that fairness in dissemination rate is achieved. 62
4.6 Dissemination rate and scaled dissemination rate of each node. The highest rep-

utation content node (purple) switches to best-effort after 90 seconds and other
best-effort nodes must adapt their rates. 63

4.7 Cumulative distribution of dissemination latency for each node for DRR scheduler
and DRR� scheduler. It is shown that only approximate fairness in dissemination
latency is achieved, but DRR� performs far better than standard DRR in this respect. 64

4.8 Reputation distribution following a Zipf distribution with exponent 0.9. Nodes are
content, best-effort, inactive or malicious as indicated by the colour of each bar. . . 64

4.9 Maximum time since issue for undisseminated blocks issued by honest nodes. . . . 65
4.10 Dissemination rate and scaled dissemination rate for each node. The bottom plot of

scaled dissemination rate demonstrates that fairness in dissemination rate is achieved
for honest nodes, while malicious nodes are penalised by the buffer management and
experience lower dissemination rates. 66

4.11 Cumulative distribution of dissemination latency for each node. Malicious nodes
are shown to experience higher latency, while approximate fairness in dissemination
latency is retained for honest nodes. 67

4.12 Combined dissemination rate as a percentage of ⌫, and mean dissemination latency,
changing the additive increase parameter A. 67

4.13 Combined dissemination rate as a percentage of ⌫, and mean latency, changing the
multiplicative decrease parameter �. 68

4.14 Combined dissemination rate as a percentage of ⌫, and mean latency, changing the
work threshold parameter W . 68

4.15 Combined dissemination rate as a percentage of ⌫, and mean dissemination latency
with varying number of nodes |M| in the network. 69

4.16 Dissemination rates of each node with a mixture IoT nodes and value nodes. The
bottom plot demonstrates that fairness in dissemination rate is achieved in the
presence of variable block work requirements. 70

4.17 Cumulative distribution of dissemination latency for each node with a combination
of IoT nodes and value nodes. It is clear that approximate fairness in dissemination
latency is still achieved in the presence of variable block work requirements. 71

4.18 Dissemination rate as a percentage of maximum scheduling rate, ⌫, and mean la-
tency for cases 1)–3) of PoW access control, shown alongside our algorithm with
parameters given in Table 4.4. 71

5.1 Left: the red block is solid for this node. Right: the red block is not solid for this
node because the orange block was never received. 74

5.2 Node model: arrows indicate the flow of blocks through the node with red arrows
indicating conditions under which blocks are dropped. 76

5.3 Reputation distribution follows a Zipf distribution with exponent 0.9. Nodes are
content, best-effort, or inactive as indicated by each bar’s colour. 80

5.4 Confirmation rate and mean confirmation latency over all blocks. 81
5.5 Maximum time since partial confirmation for all partially confirmed blocks. 81
5.6 Confirmation rate (CRi) and scaled confirmation rate (CRi/�i) for each node i. The

bottom plot scales each confirmation rate by their assured issuing rate, �i, which
demonstrates that fairness in confirmation rate is achieved. 82

5.7 Cumulative distribution of confirmation latency for each node. This demonstrates
that fairness in confirmation latency is achieved. 83

5.8 Confirmation rate and confirmation latency. Comparison of networks with 20, 40
and 60 nodes. 83

5.9 Maximum time since partial confirmation for all partially confirmed blocks. Com-
parison of networks with 20, 40 and 60 nodes. 84

11

5.10 Confirmation rate and mean confirmation latency over all blocks. 84
5.11 Maximum time since partial confirmation for all partially confirmed blocks. 85
5.12 Confirmation rate (CRi) and scaled confirmation rate (CRi/�i) for each node i. The

bottom plot scales each confirmation rate by their assured issuing rate, �i, which
demonstrates that fairness in confirmation rate is achieved. 85

5.13 Cumulative distribution of confirmation latency for each node. This demonstrates
that fairness in confirmation latency is achieved. 86

5.14 CDF of tip set latency, H, for the honest environment of Section 5.3.1. Also shown
are the average latency, h, the exponential CDF with rate µ = h�1, and uniform
CDF with h0 = 0.03 and h1 = 0.83 per Section 2.3. 87

5.15 Tip set size for each node in the honest environment of Section 5.3.1. The dotted
line highlights the average tip set size over the final 40 seconds of the simulation
when it has stabilised. 88

5.16 CDF of tip set latency, H, for the adversarial environment of Section 5.3.2. Also
shown are the average latency, h, the exponential CDF with rate µ = h�1, and
uniform CDF with h0 = 0.13 and h1 = 1.13 per Section 2.3. 88

5.17 Tip set size for each node in the adversarial environment of Section 5.3.2. The
dotted line highlights the average tip set size of the honest nodes over the final 40
seconds of the simulation when it has stabilised. 89

5.18 Tip set size for each node in the adversarial environment of Section 5.3.2. The
dotted line highlights the average tip set size of the honest nodes over the final 100
seconds of the simulation when it has stabilised. 89

6.1 Basic network model for user-node interaction mechanism. 93
6.2 User-node interaction mechanism . 95
6.3 Uniform random node selection (URNS): delays experienced in the LTP of each node. 99
6.4 Uniform random node selection (URNS): zoomed in view of delays experienced in

the LTP of each node. 100
6.5 Reputation-based node selection (RBNS): delays experienced in the LTP of each node.101
6.6 Delay-based node selection (DBNS): delays experienced in the LTP of each node. . 102
6.7 Delay-based node selection with fees (DBNS+): delays experienced in the LTP of

each node. 103

A.1 Two DockChains chained together, extending the reach of the right hand side outlet
on a public charge point. Three EVs have connected to a single outlet via the
DockChains, and one potential extra charging socket has been blocked by a regular
vehicle. 114

A.2 A render of DockChain devices deployed in a car park. Produced for marketing
purposes by Go Eve. 115

A.3 Renders of DockChain products available from Go Eve. Left: a DC charging cabinet
used to a supply a chain of DockChain devices. Centre and right: DockChain options
for different deployment locations. Produced for marketing purposes by Go Eve. . 115

A.4 A prototype DockChain device. 116
A.5 The DockChain manipulates the CP signal so as to appear like an EV from the

viewpoint of the EVSE and appear like an EVSE from the viewpoint of an EV or
another DockChain. 117

A.6 A chain of DockChain devices: adjacent DockChain devices communicate over Blue-
tooth, and EV owners communicate with DockChain devices via a touchscreen in-
terface and/or a smartphone app. 118

A.7 Earliest deadline first algorithm: standard use. 121
A.8 Earliest deadline first algorithm: changing deadline. 122
A.9 Earliest deadline first algorithm: trading places in the queue. 122

B.1 The sequence to issue new data from vehicles. Here denotes a token. 126
B.2 A piece of a road network with five road links representing states s0, s1, s2, s3, s4.

Note that state s3 is marked in gray since it is not accessible from state s0. 129
B.3 Realistic road network used in the experiments: a part of Dublin, Republic of Ire-

land. Four road segments of interest are highlighted, namely O, D, C1 and C2. . . 131

12

B.4 State model: a state corresponds to a set of road links. Road links marked in blue
are merged into one state. 132

B.5 Experiment 1: travel time and travel distance of a single token during the iterative
learning process on a changing environment, using a fixed OD pair and approaching
an intermittently congested road link. Each datapoint corresponds to information
registered at the end of each episode (i.e., trip). 133

B.6 Experiment 2: travel time and travel distance of a single token using a fixed OD
pair during the iterative learning process with multiple uncertainties on the envi-
ronment (two intermittently congested road links). Each datapoint corresponds to
information registered at the end of each episode (i.e., trip). 134

B.7 Experiment 3: average travel time/distance of a test vehicle using route recom-
mendations from a UBEV-based routing system involving multiple MUBEV tokens.
Each datapoint corresponds to the average value collected at the end of each episode
from 10 different realisations of the experiment, and a moving average with window
size 2 was later used to smooth the resulting signals. 137

B.8 Experiment 3: average learning speed using multiple MUBEV tokens. Each data-
point corresponds to the average value obtained at the end of 10 different realisations
of the experiment. 138

C.1 Chained randomness generation with t-of-n threshold signatures. 143

D.1 Milestone-based confirmation: confirmation rate and mean confirmation latency over
all blocks. Milestone-based equivalent of Figure 5.4. 145

D.2 Milestone-based confirmation: maximum time since partial confirmation for all par-
tially confirmed blocks. Milestone-based equivalent of Figure 5.5. 146

D.3 Milestone-based confirmation: confirmation rate and scaled confirmation rate for
each node. The bottom plot of scaled confirmation rate demonstrates that fairness
in confirmation rate is achieved. Milestone-based equivalent of Figure 5.6. 147

D.4 Milestone-based confirmation: cumulative distribution of confirmation latency for
each node. This demonstrates that fairness in confirmation latency is achieved.
Milestone-based equivalent of Figure 5.7. 148

D.5 Milestone-based confirmation: confirmation rate and mean confirmation latency over
all blocks. Milestone-based equivalent of Figure 5.13. 148

D.6 Milestone-based confirmation: maximum time since partial confirmation for all par-
tially confirmed blocks. Milestone-based equivalent of Figure 5.11. 149

D.7 Milestone-based confirmation: confirmation rate and scaled confirmation rate for
each node. The bottom plot of scaled confirmation rate demonstrates that fairness
in confirmation rate is achieved. Milestone-based equivalent of Figure 5.12. 150

D.8 Milestone-based confirmation: cumulative distribution of confirmation latency for
each node. This demonstrates that fairness in confirmation latency is achieved.
Milestone-based equivalent of Figure 5.13. 151

13

List of Tables

4.1 Notation for node and network model. 55
4.2 Scheduling algorithm parameters. 57
4.3 Rate setting algorithm parameters. 58
4.4 Access control algorithm parameters. 60

5.1 Notation for node and network model. 75
5.2 Access control algorithm parameters with weight-based confirmation. 81

6.1 Expected LTP delay . 102
6.2 Probability of LTP delay greater than 20 seconds. 102

A.1 Scenarios 1, 2, and 3. Changes from the previous scenario are highlighted in bold. 121

D.1 Access control algorithm parameters with milestone-based confirmation. 145

14

Chapter 1

Introduction

1.1 Distributed Ledger Technology

Ledgers are record-keeping tools that play a vital role in our everyday lives. Consider, for example,
the digital ledgers maintained by banks to facilitate and keep track of transactions between account
holders—each time we make a purchase, our bank and the merchant’s bank each update their
ledgers to reflect the new balances in our accounts. We place our trust in the banks to maintain
their ledgers securely to protect our funds and our privacy, and this in turn allows us to establish
trust with other people. Ledgers enable us to transact safely not only with other humans but with
machines, and they also support the reliable operation of fully automated machine to machine
economies.

The ledgers maintained by banks and many other service providers are centralised in the sense
that a single organisation has complete control over how the ledger is stored and updated. As such,
any user of these ledgers must be willing not only to trust the managing organisation to behave
honestly and maintain data securely but are often required to pay fees for the service provided,
sometimes on a per-transaction basis. In light of recent scandals involving the unethical use of
data by large organisations such as Facebook2 and Google3 as well as controversies regarding the
high fees charged by ledger operators such as Visa4, an alternative to centralised ledgers would be
of great value. Distributed ledger technology (DLT) offers a promising solution.

A distributed ledger serves the same purpose as a traditional centralised ledger, but it is governed
by more than one entity. In order for any changes to be made to the contents of a distributed ledger,
agreement must be reached between these entities. Due to this decentralisation, appropriately
designed DLTs prevent censorship, tampering and improper use of data by any individual or
organisation. Additionally, a DLT presents a means for agents to transact in a trusted manner
without paying fees to a central intermediary which unlocks a range of novel mechanisms in settings
where connected computing devices gather and share data, i.e., the internet of things (IoT) [1].

1.2 Research Objective

The basic property required from a distributed ledger is that it should be a tamper-proof record
of the data it stores. More specifically, data should be immutable and irreversible once it has been
confirmed as part of the ledger. DLTs can also offer transparency because the ledger can often be
viewed publicly whilst also preserving privacy because only cryptographic public keys of users are
revealed on the ledger rather than their full identities. Other desirable properties for a distributed
ledger may depend on the application, but for use in IoT settings the following are of particular
importance to the design of a DLT.

2https://www.bbc.com/news/technology-54722362
3https://www.nature.com/articles/d41586-019-03574-5
4https://www.bbc.com/news/business-54606252

15

1. Performance and efficiency: the ledger should be able to efficiently process new updates at
a high rate and with low latency/delay (the exact throughput and latency required depends
on the specific application).

2. Decentralisation and scalability: control over the ledger state should be decentralised and
distributed over a large number of entities.

3. Fairness and security: access to update the ledger state should be allocated fairly among the
controlling entities and resilient against attacks by malevolent actors.

4. Usability and fees: individuals and organisations should be able to use the ledger easily and
without paying fees or to pay fees for guaranteed quality of service.

The objective of this research is to advance the state of the art in distributed ledger design
for IoT applications. In particular, we aim to analyse key aspects of existing DLTs which hinder
their utility in the IoT domain with respect to the above properties. We then seek to find novel
alternative approaches to DLT design which offer improvements with respect to the desirable
properties listed above.

1.3 Background

DLTs consist of a ledger which is stored locally by nodes in a network, where each node or some
subset can update the ledger locally and propagate these changes to neighbouring nodes. A node
can be any computing device with sufficient resources and the ability to connect to a network, as
depicted in Figure 1.1. In the context of IoT networks, edge devices with substantial computing
and storage resources are the most likely candidates to operate as nodes, while smaller, more
constrained devices may need to rely on these edge nodes to interact with the ledger on their
behalf to avoid the often heavy burden of operating as a node. Nodes can apply updates to the
ledger by appending a block to their local copy of the ledger and then broadcasting this update to
neighbouring nodes. Blocks can include one or more transactions which change the balance of some
accounts, for example, or may contain a collection of arbitrary data such as a sensor measurement
from IoT devices. When nodes receive blocks from their neighbours, they must make decisions
including whether it should be kept and whether it should be passed on to further neighbours.

Let us assume, for now, that each time a new block is issued by a node, they choose exactly
one existing block to reference or approve, forming a chain of blocks which together comprise the
ledger. This type of ledger is referred to as blockchain. When a node attaches a new block onto an
existing chain of blocks, this signifies that the node agrees with the contents of these past updates
to the ledger and that they wish to update the ledger with the contents of their new block. A
node’s local view of a blockchain is illustrated in Figure 1.2. The gray square represents the node’s
newly created block, while red squares represent blocks that do not yet appear to have received any
approvals. These unapproved blocks are known as tips. Blue squares represent approved blocks,
and green squares represent blocks that have received enough approvals to be deemed confirmed.
The transparent blocks are not on the longest chain so may become orphans, as we shall explain
in more detail below. For the remainder of this introductory section, we will focus on blockchains,
but the terminology we introduce is applicable to a more general class of DLTs, some of which do
not have a blockchain structure.

The precise details of how nodes append blocks to the ledger and disseminate them around the
network vary between DLTs, but the key aspects of node behaviour that set DLTs apart from one
another are as follows.

• Confirmation: the protocol used to decide when a block should be considered confirmed is
a critical aspect of a DLT. A block should only ever be confirmed by a node if it is also
eventually confirmed by all other nodes. Some DLTs provide only probabilistic finality for
confirmed blocks, which means they will remain confirmed with high probability but there
is some chance they will be reverted. Others provide deterministic finality meaning that a
confirmed block is guaranteed to remain confirmed.

16

Figure 1.1: A DLT network with a variety of IoT devices participating as nodes. Nodes store a
copy of the ledger and share ledger updates with neighbouring nodes.

Figure 1.2: A node’s local view of a blockchain ledger.

• Tip selection: the algorithm employed by a node to decide how to append a newly created
block is another core component. New blocks are cryptographically linked to one or more
existing blocks and attaching to a block signifies agreement with its contents and the contents
of all blocks to which it points. In this way, attaching a block in a certain position signifies
agreement with a particular portion of the ledger. A block attachment strategy is referred to
as a tip selection algorithm (TSA). As we shall see, the TSA employed has a great influence
on the entire structure of the ledger.

• Access control: the rules used to decide which blocks a node should process and forward on
to neighbours are referred to as access control. Access control defines the governance of a
DLT, prevents spamming and mitigates Sybil attacks in which an attacker attempts to gain
an advantage by creating multiple identities.

We now delve into these three key aspects in further detail with a specific reference to blockchains,
the simplest ledger structure.

17

1.3.1 Confirmation
When a node confirms a block, this means that they accept the data within as part of the ledger,
and they can act on it. For example, any merchant should always wait for a customer’s payment to
be confirmed on the ledger before delivering any goods or services. Different DLT implementations
will use different criteria to assess confidence in a block and decide when a block can be considered
confirmed. There are generally two kinds of confirmation rule for blockchains: the first is referred
to as weight-based confirmation; and the second is named milestone-based confirmation.

Weight-Based

The simplest weight-based confirmation rule is the k-block longest chain rule—a block can be
considered confirmed if it is at least k blocks deep on the longest chain. The longest chain in
Figure 1.2 is highlighted by the opaque blocks, while the blocks that are not on the longest chain
are transparent. The reasoning behind this rule is that if a block has received a large number of
approvals, it is highly likely that other nodes will continue to attach new blocks to this chain. In
the Bitcoin blockchain [2], a 6-block longest chain rule is used to confirm blocks. We can think
of each newly attached block as adding confidence or weight to the blocks it approves directly or
indirectly. We can then define the cumulative weight of a block i as the sum of the weights of all
blocks that approve i either directly or indirectly. Another way of stating the k-block rule is then
to say that a block must be on the heaviest chain and have cumulative weight of at least k to be
considered confirmed.

Weight-based confirmation gives probabilistic finality meaning that for sufficiently large k, it is
highly unlikely that a longer/heavier chain will appear and replace the confirmed chain. Other
weight-based rules attempt to include more than one chain so that the other chains (the transparent
blocks in Figure 1.2) do not go to waste. We discuss other weight-based approaches in Section 1.4.

Milestone-Based

Milestone-based confirmation does not rely directly on the notion of cumulative weight. Instead,
we introduce special blocks called milestones which have been agreed upon in a more concrete way
than a normal block, and everything that is approved directly or indirectly by a milestone can
be considered immediately confirmed. Milestones may be issued by a central authority to provide
security for a DLT in the early stages of adoption when a reputation is not yet well distributed
across nodes5. Milestones may also be issued by elected leaders or may alternatively be issued via
multi-signatures (see Appendix C and [3]) by a consortium of high reputation nodes. The latter
approach requires Byzantine fault tolerant (BFT) agreement on where to attach each milestone so
milestones can only be issued by consortiums in this way if the group of signers is reasonably small
and the interval between milestones is reasonably long. This is due to the fact that while BFT
algorithms can cope with nodes that deviate arbitrarily from the protocol (Byzantine nodes), they
do not scale well to large groups of participating nodes.

Milestone-based confirmation provides deterministic finality. Some DLTs with a small and tightly
controlled group of governing nodes may have every block as a milestone so they can provide
immediate and irreversible finality from every block. However, this approach does not scale well to
large numbers of nodes, so it comes at the cost of centralisation. Other DLTs may use a combination
of weight-based and milestone-based confirmation, where milestones are issued at regular intervals
but not for every block.

1.3.2 Tip Selection
The algorithm used to select which existing block to approve with a newly created block is known
as a tip selection algorithm (TSA). As discussed above, appending a block to a particular chain
directly contributes to the blocks in that chain becoming confirmed, so it can be thought of as
casting a vote on this part of the ledger. As such, the decision rules for where to attach new blocks
require careful consideration. The most common TSA for blockchains is the longest chain rule,
as employed in the Bitcoin blockchain, wherein new blocks are attached to the tip of the longest

5
https://blog.iota.org/coordinator-part-1-the-path-to-coordicide-ee4148a8db08/

18

chain visible to the node creating the block. The idea of the longest chain rule is simply to vote on
the version of the ledger which the majority of other nodes have voted on, so if all nodes see the
same blocks, they should all attach their blocks to the same chain and contribute to its eventual
confirmation.

Note that if more than one node attempts to attach a block to a blockchain at the same moment,
only one of these blocks can ultimately make it on to the longest chain and become part of
the ledger. This fact severely limits the throughput of blockchains and result in many blocks
(the transparent blocks in Figure 1.2) never being confirmed, hence wasting resources. If the
size of blocks is increased and/or the interval between them decreased in an attempt to improve
throughput, block propagation delays eventually result in forking of the blockchain and many
blocks never being confirmed. Another path to improving throughput without wasting blocks is
to allow each new block to select more than one tip for approval. This results in a directed acyclic
graph (DAG) structure instead of a chain. The various classes of tip selection algorithm for DAGs
are more complex than for blockchains so we defer further discussion to Chapter 2.

1.3.3 Access Control
Distributed ledgers are not maintained by any single actor, and as such, access to modify the ledger
must be carefully controlled by predefined rules—an access control mechanism is required. Due to
the fact that attaching a new block constitutes a vote, the rate at which a node can write new blocks
directly determines their power over the network, which makes access control vital to the security
of any distributed ledger. A naive implementation of a public DLT without access control would
be to assign a fixed block rate to each digital identity. This implementation would be vulnerable to
Sybil attacks in which a malicious actor creates numerous identities to gain additional control over
the ledger. Access control is sometimes referred to as Sybil protection because it prevents these
kind of attacks by imposing objective criteria for writing new blocks. Access control types include
Proof of Work (PoW), Proof of Stake (PoS), permissioned systems and Proof of Reputation (PoR),
which generalises PoS, permissioned systems and delegated PoS.

Proof of Work

PoW is the access control type employed in Bitcoin [2] and many of the world’s most prominent
DLTs at the time of writing. PoW access control requires nodes to solve a computationally chal-
lenging puzzle, namely inverting a hash function, to write a block to the ledger. Inclusion of a
solution to the PoW puzzle in a block proves that energy has been consumed to create it and if
a node wished to write blocks at a greater rate, it has no option but to acquire more computing
power and consume it. Broadly speaking, the majority holders of computing power control the
state of the ledger in DLTs with PoW access control. PoW has been popular to date due to its
robustness and the simplicity of implementing it in blockchain or DAG-based ledgers. However,
PoW remains unsuitable for many DLT applications due to issues such as the enormous amount of
power consumed to maintain such a ledger. PoW also creates a barrier to participation for nodes
with limited computing resources such as IoT devices, so alternative access control methods are
of great importance for IoT applications of DLT. PoW ledgers rely on weight-based confirmation
which only offers probabilistic finality.

Proof of Stake

PoS access control offers an appealing alternative to PoW, eliminating the latter’s need for wasteful
energy consumption. PoS assigns nodes access to write blocks at a rate proportional to their wealth
in the native ledger currency. Implementation of PoS is generally not as straightforward as PoW,
but a number of solutions have been proposed for blockchains. One method of implementing PoS
access control is to use a decentralised random beacon to elect a stakeholder node at random to
issue each block with probability of election proportional to their stake [4]. Such protocols can also
be modified to remove the need for a random beacon [3]. Weight-based confirmation can be used
in these cases, or alternatively, milestone-based confirmation can be achieved with the use of BFT
algorithms among a committee of stakeholders to agree on blocks at fixed intervals [5]. BFT-based
methods do not scale well to large numbers of nodes so a sub-committee must be elected to perform
the BFT protocol [6]. No methods for incorporating PoS access control into DAG-based ledgers

19

had been proposed prior to [7, 8] which is presented in Chapter 4 of this thesis.

Permissioned Ledgers

Permissioned ledgers are those in which the participating nodes and their voting power is defined
from the outset, as opposed to a public ledger in which any node can join the network and par-
ticipate by simply acquiring some resource such as computing power (PoW) or some coins (PoS).
Permissioned ledgers have an element of centralised control in the form of the individual or commit-
tee that decides the initial distribution of voting rights [9]. These ledgers are popular in enterprise
settings where an organisation of group of organisations wish to share a ledger, so the consensus
group (nodes with voting rights) is relatively small. As a result, permissioned ledgers can employ
milestone-based confirmation to achieve excellent performance and deterministic finality, albeit at
the cost of centralisation [10].

Proof of Reputation

Definition 1.3.1 (Reputation). Reputation is a quantity associated with each node’s identity
which is difficult to obtain and on which all nodes have consensus.

Examples of reputation include stake (as in PoS), delegated stake (dPoS) such as IOTA’s mana
system, and externally managed access rights as in permissioned ledgers. We use the term reputa-
tion in this work because the access control presented in Chapter 4, initially designed for IOTA’s
mana system, is more broadly applicable and PoR captures its generality. In other words, by
designing an access control mechanism for PoR, it can be readily applied to any PoS, dPoS or
permissioned system.

1.4 Related Research

This thesis covers a wide range of problems all of which relate to the design and application of
distributed ledgers. Each chapter draws on previous research from different areas to find novel
solutions to emerging problems related to DLT. As such, we reference the literature most relevant
to each chapter therein, and for now we simply give an overview of other DLT research as it relates
to the background we have provided so far. It is worth noting that this section is not intended to
serve as a complete survey of the state-of-the-art in DLT research—numerous papers already serve
this purpose and to repeat their efforts would be of little value [11, 12, 13, 14].

The Bitcoin blockchain [2] represents the first public DLT and still holds the highest market
value at the time of writing this thesis. Bitcoin employs PoW for access control, the longest chain
rule for tip selection and a 6-block rule for confirmation. A maximum block size of 1MB is also
specified in the protocol which limits the number of transactions per block, and the difficulty of
the PoW is adapted so that new blocks can be created every ten minutes, on average. These
two parameters (block size and interval) determine the theoretical maximum throughput of a
blockchain, which in the case of Bitcoin is around 7 transactions per second (TPS), and with a
6-block rule, confirmation takes over an hour. The reasonably small block size and long interval
used in Bitcoin makes the network highly robust and resilient against poor network connectivity
and long delays but severeley limits its performance in terms of TPS and confirmation times [15].
Many other cryptocurrency market leaders are derivatives of Bitcoin with changes made to these
key parameters and other features such as the hashing algorithm used. For example, [16, 17, 18]
are simply variants of this traditional PoW model, whilst others are merely tethered to or hosted on
existing blockchains [19, 20]. One approach to improving the scalability of these PoW blockchains
are so-called layer 2 solutions which operate outside of the core DLT protocol and periodically
reference the blockchain for security [21, 22].

Another avenue of research towards improving upon the aforementioned blockchain architectures
is focussed on novel ledger structures. Specifically, by using different confirmation rules and tip
selection algorithms we end up with more complex ledger structures than a simple blockchain. An
early proposal for a more flexible structure than a blockchain was the Greedy Heaviest Observed
Sub-Tree (GHOST) confirmation rule [23] proposed to modify the bitcoin longest chain rule. The
idea behind GHOST, a version of which is employed in the Ethereum blockchain [24] is to allow

20

multiple branches of a tree to be confirmed rather than a single chain, provided there are no
conflicts between branches. This reduces the number of orphan branches and permits higher
throughput (larger blocks and shorter block intervals) whilst retaining security properties in the
presence of long network delays. This concept of allowing more branches to be confirmed can be
extended into tip selection, i.e., each new block can be allowed to approve two or more existing
blocks. This gives rise to the DAG structure [25]. A number of distributed ledgers now employ
DAG structures, including IOTA [26], Hedera [27], Meshcash [28] and Byteball [29]. Other ledgers
use more restrictive DAG-based structures such as that of Nano [30] which comprises a separate
chain for each individual user account. Numerous experimental and theoretical studies of DAG-
structured ledgers have appeared in recent years [31, 32, 33, 34, 35, 36, 37, 13].

An alternative research direction aimed at improving upon early blockchains is based around
alternative access control to replace PoW. PoW is highly wasteful of energy [38] and presents an
entry barrier for contribution to a DLT network because specialised hardware must be acquired to
participate. PoS, as introduced in 1.3.3 is a promising alternative which has received a great deal
of attention in recent years. A number of PoS blockchains have entered the cryptocurrency market
such as Algorand [4] and Cardano [39], and the Ethereum blockchain is making a transition to
PoS from PoW [40] at the time of writing. These PoS blockchain solutions all consist of sequential
leader elections which are made in a distributed manner, and consensus is based on rules such
as the longest chain rule [2] or GHOST [23] just as in PoW blockchains. Decentralised random
number generators (dRNGs) are the core component of any such protocol. We explain the role of
dRNGs and review the state of the art in Appendix C. Other approaches to implementing PoS
access control in blockchains are based on combination of committee selection and BFT voting
algorithms for milestone-based confirmation rather than weight-based confirmation [41, 42]. An
excellent survey of PoS blockchain solutions with a focus on attacks and security vulnerabilities
is presented in [43]. It is worth noting once again that the fundamental operation of any of these
PoS approaches can be extended to more general PoR by using any other uninflatable quantity,
which we refer to as reputation, in the place of stake. The design of a robust reputation systems or
system for delegating voting rights to other individuals (delegated PoS) can generally be treated
as a separate problem [44]. PoS access control can not be applied to DAG-based ledgers with the
techniques discussed above and as such, no PoS DAGs have been proposed prior to [8] which is
the subject of Chapter 4 of the present thesis.

Both PoW and PoR (including PoS) are prone to centralisation for a variety of reasons. Any un-
regulated scarce resource is subject to economic factors that can lead to accumulation and result in
unequal distribution [45]. Permissioned distributed ledgers offer a predefined and accepted degree
of centralisation which can greatly simplify almost every aspect of their design. When a suffi-
ciently small committee of trusted nodes are responsible for consensus over the ledger, BFT voting
algorithms can be used to rapidly reach agreement on every block and confirm transactions with
latency comparable to centralised systems [10]. Permissioned blockchains such as Hyperledger [9]
are popular in enterprise settings for these reasons. Voting algorithms are also increasingly being
used in public distributed ledgers to provide final confirmation of transactions [46, 41, 47]. A
key challenge for incorporating such voting algorithms into public DAG-based ledgers is that of
committee selection [48].

While DLT is best known for its use in cryptocurrencies, many novel applications areas in
the realm of the IoT have also been actively studied as the technology develops. Supply chain
management is one such area where DLT offers clear advantages for its ability to establish trust
and cut out intermediaries to improve the efficiency of supply chains [49]. Electronic health provides
another example of an area where DLT can be a powerful aid because of its ability to provide both
transparency and privacy-preserving properties (users do not need to reveal their identities in order
to write information to a public distributed ledger). [50] discusses how DLTs can be used to ensure
integrity and authenticity of health-related data collected from embedded and wearable IoT devices.
A broad range of challenges related to applying DLTs in a healthcare setting are addressed in [14],
ranging from verifying credentials of medical practitioners and managing clinical trials to designing
privacy-preserving machine learning tools with health data. DLT has also been proposed as a tool
to combat Covid-19 with the help of various medical IoT devices [51]. In [1], DLT is proposed
to enforce compliance with social contracts and actuate agents in emerging problems from the
domain of smart cities, and in [52], DLT tokens are used to support efficient and private sampling

21

for routing problems. Further applications of DLT to smart mobility problems are discussed in
Appendix B.

1.5 Thesis Structure, Contributions and Collaborations

1.5.1 Chapter 2
In Chapter 2, we describe DAG-based ledgers in detail as a generalisation of the blockchains detailed
above. We then present a fluid model for a DAG-based ledger and predict the properties of the
ledger under various delay models. The models and accompanying simulations in this chapter
contribute new insights to the behaviour of DAG-based ledgers under varying network conditions
which can be used to guide the design of core components of these protocols.

The work on variable delay models was conducted in collaboration with Prof. Christopher King
of Northeastern University and Dr. Pietro Ferraro and Prof. Robert Shorten of Imperial College
London. Prof. King provided the fluid models while Dr. Ferraro and Prof. Shorten formulated
the discrete model from which the fluid model is derived [1]. The present author designed test
scenarios and implemented all simulations and tests.

1.5.2 Chapter 3
In Chapter 3, we continue our analysis of DAG-based ledgers by considering an attack known as a
parasite chain attack. We analyse the security of a DAG-based ledger under a biased random walk
tip selection algorithm, and we then present modifications which further improve security. The
analysis performed in this chapter contributes new knowledge of how parasite chain attacks can be
prevented through appropriate choice of protocol parameters as well as proposing an improvement
to state of the art tip selection algorithms.

This chapter contains joint work with Prof. Christopher King of Northeastern University and
Dr. Pietro Ferraro and Prof. Robert Shorten of Imperial College London. All three of these
collaborators contributed to the formulation of the simple parasite chain model and design of testing
scenarios, Dr. Ferraro proposed the model for the random walk tip selection based on absorbing
Markov chains. The present author played a central role in all of the above and additionally coded
and executed the simulation scenarios and presented results and insights.

1.5.3 Chapter 4
In Chapter 4, following on from our analysis of the DAG-structured ledger, we address the problem
of access control for DAG-based DLTs. Specifically, we present a new access control algorithm which
removes the need for PoW in DAG-based DLTs for the first time. The removal of the need for PoW
in DAG-based DLTs represents a marked improvement in the state of the art. In particular, this
contribution serves to dramatically improve the efficency of this class of DLTs, and the analysis
provided here suggests that other desirable properties of DLTs for IoT applications are also retained
by this approach.

This chapter contains joint work with Dr. Luigi Vigneri and Dr. William Sanders of IOTA
Foundation and Dr. Pietro Ferraro and Prof. Robert Shorten of Imperial College. Dr. Vigneri and
Dr. Sanders provided an initial problem statement, driven by a need from IOTA Foundation to
remove PoW from their IoT-oriented DLT. All four of these collaborators then contributed parts of
this solution over the course of our collaboration. The present author designed the key components
of the solution such as the scheduler and implemented all simulations and analysis presented here.

1.5.4 Chapter 5
In Chapter 5, we present an extended form of the core access control algorithm which additionally
takes the DAG structure of the ledger into account and incorporates tip selection directly into
the data flow. Chapter 5 builds on all prior chapters and contributes a deeper understanding of
how access control and the DAG-structured ledger are linked. The chapter also provides the first

22

integration of access control into a more complete DLT protocol and demonstrates its impact on
other modules including consensus.

Contributors to the development of the access control improvements in this chapter include
numerous members of the IOTA Foundation’s networking team, including Piotr Macek, Dr. Olivia
Saa, Dr. William Sanders, Jonas Theis, Dr. Luigi Vigneri and Dr. Wolfgang Welz. The present
author played a leading role in these design improvements and is responsible for all implementations
and testing presented here.

1.5.5 Chapter 6
In Chapter 6 we present a user-node interaction mechanism which addresses another vital aspect
of DLT for IoT applications, namely usability. Whilst mechanisms of this kind are well studied
for blockchains, the solution presented in Chapter 6 is the first to address this problem for DAG-
based DLTs. This work represents an important step towards making DAG-based ledgers more
practically usable in a broader range of settings.

Development of this mechanism was joint work with Dr. Luigi Vigneri of IOTA Foundation and
Lianna Zhao and Prof. Robert Shorten of Imperial College London. Simulations were carried out
by Lianna Zhao under the guidance of the present author by building code on top of the simulator
used to produce the results in the two preceding chapters. The present author played a leading
role in the design of the solution and the experiments carried out.

1.5.6 Publications
Some of the work presented in this thesis has also been included in the following publications:

• A. Cullen, P. Ferraro, C. King, and R. Shorten, "Distributed ledger technology for smart
mobility: Variable delay models," in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 8447–8452.

• A. Cullen, P. Ferraro, C. King, and R. Shorten, "On the resilience of DAG-based distributed
ledgers in IoT applications," IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7112-7122,
2020.

• A. Cullen, P. Ferraro, R. Shorten, W. Sanders, and L. Vigneri, "Access control in adver-
sarial environments for IoT-oriented distributed ledgers," in 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), 2021, pp. 968-973.

• A. Cullen, P. Ferraro, R. Shorten, W. Sanders, and L. Vigneri, "Access control for distributed
ledgers in the internet of things: A networking approach," IEEE Internet of Things Journal,
vol. 9, no. 3, pp. 2277–2292, 2022.

• L. Zhao, L. Vigneri, A. Cullen, W. Sanders, P. Ferraro, and R. Shorten, "Secure access
control for DAG-based distributed ledgers," IEEE Internet of Things Journal, vol. 9, no. 13,
pp. 10792–10806, 2022.

• A. Cullen, L. Zhao, L. Vigneri, and R. Shorten, "Improving quality of service for users of
DAG-based distributed ledgers," 2022. Available: https://arxiv.org/pdf/2203.12076.
pdf.

Other outputs produced during this PhD related to the application of DLT in IoT settings which
have not been included in the main body of this thesis (see Appendix A and B) are presented in
the following publications:

• A. Cullen, P. Ferraro, G. Russo, and R. Shorten, "Ad-hocChain: Cooperative sharing and
trading infrastructure for electric vehicle charging networks," in 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC), 2019, pp. 207-212.

• R. Overko, R. Ordónez-Hurtado, S. Zhuk, P. Ferraro, A. Cullen, and R. Shorten, "Spatial

23

positioning token (SPToken) for smart mobility," IEEE Transactions on Intelligent Trans-
portation Systems, vol. 23, no. 2, 2022.

24

Chapter 2

DAG-based Distributed Ledgers and
Variable Delay Models

Abstract— Early distributed ledger technologies exclusively adopted blockchain struc-
tures. This simple structure requires any updates to the ledger to be added sequen-
tially, so any concurrent attempts to add a block to the ledger will result in only one
of these blocks being confirmed. Directed acyclic graphs (DAGs) represent a gener-
alisation of the chain structure which allows blocks to be added in parallel and hence
removes the limitations placed on blockchains. In this chapter we give an overview of
how DAG-based ledgers operate, extending the DLT concepts introduced in Chapter 1
to cover DAGs. We then present a model for the evolution of a DAG-based ledger in
a network with variable delays, building on previous modelling work for DAG-based
DLTs. Analytical expressions are derived, and simulation results are provided to show
how the DAG evolves as a dynamical system. Part of the work on variable delay mod-
els presented in this chapter also appears in [53].

In this chapter, we introduce a class of distributed ledgers with more flexible structures than
blockchains, namely DAGs. DAG-based ledgers are promising alternatives for IoT applications, as
we can highlight with reference to the design principles outlined in Chapter 1: high throughput, low
latency, decentralisation, usability and fees, security, and fairness. Blockchains are fundamentally
limited in their performance because blocks must be added in sequence and sufficient time must
be left between blocks to allow for network delays. DAG-based DLTs allow blocks to be added to
the ledger in parallel which removes the limitations of the blockchain structure and permits high
throughput and low latency. Due to the competitive nature of issuing blocks in a blockchain, nodes
are incentivised to pool their resources6 and it is not feasible for less powerful actors to participate
as nodes and issue blocks. In DAG-based ledgers, on the other hand, the ability to issue blocks
in parallel reduces competition between nodes to issue blocks because more than one concurrent
block can be confirmed. As a result, less powerful actors can participate as nodes and issue blocks
which leads to improved decentralisation over blockchains. When users can easily operate as nodes
and issue their own blocks in this way, this also allows them to avoid paying fees to other nodes
as is required in most blockchains [54]. DAG-based ledgers can be designed to have good security
and fairness properties as we shall show in later chapters when we present the design of specific
tip selection and access control algorithms.

2.1 Directed Acyclic Graphs

A sequence illustrating blocks being issued in a DAG is shown in Figure 2.1. Similarly to Figure 1.2,
the grey square represents a newly created block, red squares represent tips, blue squares represent
approved blocks and green are confirmed. Suppose we have one block A which is approved directly

6https://btc.com/stats/pool

25

Figure 2.1: Sequence to issue a block in a directed acyclic graph. On the left, we see the first part
of the sequence in which a new grey block arrives and selects two red tips. On the right, we see
that once the grey block is added to the DAG, it becomes a tip and the two blocks it approves
cease to be tips.

by another block B: we then refer to A as B’s parent and we refer to B as A’s child. The sequence
of Figure 2.1 shows how the newly issued blocks become tips and the blocks that they approve
cease to be tips once they become visible to other nodes. The opaque blocks are those that are
directly or indirectly approved by the new grey block, and we refer to this as the past cone of
the grey block. Similarly, the term future cone can be used to refer to all blocks that directly
or indirectly approve a block. All blocks in a new block’s past cone must be consistent with one
another for the new block to be deemed valid, for example, if blocks contain transactions they
must all be consistent with one another and not spend the same tokens more than once. The topic
of double spending is discussed in detail in Chapter 3. In general, a new block in a DAG-based
ledger can approve two or more tips, but for the purpose of our analysis we will always assume that
each block approves exactly two existing blocks. As in the previous chapter when we introduced
blockchains, we can discuss the key features of a DAG-based ledger with reference to the three
categories: confirmation, tip selection and access control.

2.1.1 Confirmation
Confirmation in DAG-based ledgers follows similar principles as for blockchains, and we can also
identify the same two main types of confirmation for DAGs, namely weight-based and milestone-
based confirmation.

Weight-Based

Each time a new block is appended to the DAG, the cumulative weight of all blocks in the new
block’s past cone are increased by the weight of the new block. Figure 2.2 shows an example of
how cumulative weight changes in time, where the weight of each block is assumed to be exactly
one. Weight-based confirmation rules can be generalised to DAG-based ledgers using the notion
of cumulative weight. The k-block rule for blockchains, for example, generalises easily to DAGs—
nodes should wait until a block has cumulative weight of at least k to consider it confirmed.

Milestone-Based

Similarly, milestone-based confirmation can be applied to DAGs—every block in the past-cone
of a milestone can be considered confirmed, as illustrated in Figure 2.3 where the yellow block
represents a milestone. Just as in blockchains, milestones may be issued by a single central entity,
although this essentially results in a completely centralised ledger and many of the benefits of
decentralisation are lost. Committees can also be elected and BFT voting algorithms used to agree
on milestones among a small subset of powerful nodes.

2.1.2 Tip Selection
While simple tip selection policies such as the longest chain rule are sufficient in blockchains, the
equivalent policies for a DAG require more careful consideration due to the added complexity of the
ledger structure. However, the principle behind tip selection is the same for DAGs as blockchains

26

6

7

4

9

10

7

Figure 2.2: Evolution of the cumulative weight of three blocks as three new blocks enter the DAG.

in the sense that a node attaching a new block can be thought of as casting its vote on the part
of the DAG that this node believes to be correct and consistent with the majority of other nodes.
The security of DAG-based ledgers depends heavily on how tips are selected by new blocks, as we
shall discuss in Chapter 3. An overview of TSAs that have been proposed for DAGs can be given
as follows.

Uniform Random Tip Selection

Uniform random tip selection (URTS) algorithms select two tips randomly from the set of all tips
or from a subset of these tips. URTS in its basic form, where all tips are considered eligible,
can be vulnerable to attack as it does not give any sense of which tips correspond to good or
bad parts of the DAG. URTS can be made secure by considering only the subset that meet some
locally measured and objective criteria such as time since block creation. This can help to ensure
that honest nodes only attach their blocks to good parts of the DAG rather. The upper panel of
Figure 2.4 shows an example of the basic URTS procedure. The interested reader can refer to [26]
for a detailed discussion on this topic.

Biased Random Walk

Biased Random Walk (BRW) algorithms (also referred to as Monte Carlo Markov chain (MCMC)
tip selection algorithms [26]) involve creating two independent random walks in the interior of
the DAG, as illustrated in the lower panel of Figure 2.4. Note that while the two random walks
displayed in this figure are disjoint, this need not be the case, however, if the second random walk

27

Figure 2.3: Milestone-based confirmation—all blocks in the past cone of the yellow milestone block
are immediately confirmed.

terminates at the same tip as the first then it must be repeated. The walk may start at the very
first block (known as the genesis block) or somewhere deep in the DAG and move along the edges
of the graph. The start point of the random walk can be chosen, for example, to be any block with
cumulative weight above a chosen threshold, or could be selected to be some past milestone (see
Section 2.1.1). When a new node joins the network, they must bootstrap from some neighbouring
nodes and passively observe the growth of the DAG for some time before performing BRW tip
selection because they must know of all the blocks in the future cone of the walk’s start point. The
probability of jumping along an edge from block j to block k is proportional to f(�↵(Hj �Hk)),
where f(·) is a monotonic increasing function (generally an exponential), ↵ is a positive constant
and Hi represents the cumulative weight of a block i. The walk stops when it reaches a tip, which
is then selected for approval.

Hybrid Approaches

Due to the fact that two independent tip selections must be made for the attachment of each new
block, hybrid approaches can be employed which combine a URTS and a BRW selection in an
attempt to capture the good properties of each [31].

URTS algorithms are cheap and simple to implement, which is of high importance for DLTs
to prevent barriers to network participation. Simple rules for selection of a subset of tips can
make these simple algorithms effective and secure. BRW algorithms, on the other hand, can be
expensive to implement due to the computational cost of random walks on DAGs. However, BRW
algorithms offer better security properties and are the closest analogue of the longest chain rule for
blockchains—they are more likely to select tips of heavier branches in a DAG which can be thought
of as voting for the branch of the DAG which some majority has voted for. For the remainder this
chapter, we restrict our attention to URTS to simplify our analysis, and we revisit BRW algorithms
in Chapter 3 where we explore their security properties.

2.1.3 Access Control
As mentioned in Chapter 1, PoW access control can be easily applied to DAG-based ledgers—
nodes must solve a computationally difficult puzzle and include the solution for each block they
issue. This essentially allocates a block issuing rate to each node proportional to their expended
computing power. However, PoR access control such as PoS cannot be generalised so easily to
DAG-based ledgers. PoR implementation for blockchain involve leader elections in which a node

28

Figure 2.4: Two main classes tip selection algorithms: URTS (above) and BRW (below). URTS
simply selects two tips at random from the tip set, while BRW uses a random walk from deep in
the DAG. The red and green lines represent two independent random walks.

is elected at each round to issue a block, where the leader node is selected using some trustworthy
source of randomness. These approaches are inherently sequential, relying on the existence of some
fixed rounds, so they do not extend to DAG-based ledgers in a straightforward way because blocks
do not have a total ordering in DAGs. The first PoR access control for DAG-based distributed
ledgers is the subject of Chapter 4 of this thesis.

2.2 Variable Delay Models

We now present a more precise model for a DAG-based distributed ledger as a dynamical system to
gain a better understanding of how the DAG structure evolves. In a real DLT network, there would
be multiple local copies of the DAG and each user would independently update its own copy, but
for simplicity of our analysis we consider only one such local copy. We assume that all nodes access
this single DAG, but new blocks experience a delay before appearing in the ledger. We assume
that each new block selects two tips for approval at random from the set of all visible tips (the
URTS algorithm) and attempts to validate them. The DAG, G(t), contains the record of all blocks
which arrived at or before time t. If validation fails, the choices are discarded, and another two tips
are selected for validation. This continues until the process is successful, and we assume that this
whole validation effort is essentially instantaneous. However, after the validation there is a waiting
period, H, before the new block becomes eligible to be selected as a tip by subsequent blocks. This
delay seeks to model processes such as finding a PoW solution, propagating blocks to neighbouring
nodes, or any other time-consuming processes required by a particular DLT implementation.

It is important to note that the tips selected by a new block remain as tips during this delay
period, so they may be selected by one or more other new blocks. After the delay period, the new
block appears in the ledger, and the two parent blocks cease to be tips and are no longer available
for selection by other new blocks (at least, by the ones that follow the protocol). In the remainder
of this section, we assume that the delays for new blocks are random and independent, with some
fixed distribution. Let L(t) denote the set of tips at time t. Then we assume that when a new

29

block arrives at time t, it has selected two tips at random from the set L(t�H) (where H is the
random delay time). Thus, there are two random elements in the algorithm: the random delay
time H; and the random selection of two tips from the tip set at the earlier time. For simplicity
of analysis, we assume that URTS is used here (see Section 2.1.2).

Note that the work presented in this section builds upon earlier research into modelling DAG-
based distributed ledgers as dynamical systems [1] where delays were assumed to be constant. The
model presented here assumes the delay of each block to be a random variable and solutions are
given for a number of special cases of its distribution. Since the publication of this work [53],
other research has emerged which takes a different approach to studying variable delay models of
DAG-based DLTs. [36] assumes the delay of each block belongs to one of discrete set of delay
classes, and similar results are presented to model the behaviour of DAG-based DLTs.

2.2.1 Tip Selection Probability
Let {Tn} denote the increasing sequence of times when new tips are added to the DAG so that

0 T1 T2 · · · Tj · · · . (2.1)

We will label a block by the time when it was added to the DAG. Thus block j was added to the
DAG at time Tj , and remains in the tip set until some future time when it is approved. For j < n
we define aj(Tn) to be the indicator variable for the event that block j is still a tip at time Tn.

aj(Tn) =

(
1 if j 2 L(Tn)

0 otherwise
an(Tn) = 1

Note that aj(Tn) � aj(Tm) for all n m. Also, defining L(t) as the number of tips at time t, we
have

L(Tn) =
nX

j=1

aj(Tn) (2.2)

Consider now the arrival of a new block at time Tn. This new block must select two tips for
validation from the set L(Tn �H), where H is the random delay time. We define ⌧(Tn) to be the
set of two blocks which are selected for validation by block n (i.e., at time Tn). Suppose that block
j is a tip at time Tn, and that the random delay time H satisfies H Tn�Tj . Since Tn�H � Tj ,
this means that the block j had already been added at time Tn�H, and since it is assumed to still
be a tip at time Tn, it must also be in the tip set L(Tn �H). Thus the probability that block j is
selected for validation at time Tn is simply the probability that any tip is selected for validation
out of all the tips in L(Tn �H), which is

p(Tn �H) =
2

L(Tn �H)
�

1

L(Tn �H)2
(2.3)

(the second term in (2.3) accounts for the fact that the same tip can be chosen twice by the URTS
algorithm). This result can be formalised in the following way. We define F(n) to be the �-algebra
generated by the DAG up to time Tn. Thus by conditioning on F(n) we are fixing the history of
the DAG, including of course the tip sets at all previous times. Also note that aj(Tn) = 1 if and
only if the block j is a tip at time Tn. Thus

P(j 2 ⌧(Tn) | aj(Tn) = 1, H, F(n)) =

=

(
p(Tn �H) if H Tn � Tj

0 if H > Tn � Tj

. (2.4)

We will write 1A to denote the indicator random variable for event A. Then undoing the condi-
tioning on H gives

P(j 2 ⌧(Tn) | aj(Tn) = 1, F(n)) =

= EH

⇥
1{HTn�Tj}

p(Tn �H)
⇤

(2.5)

30

where the expected value is taken over the distribution of H. We also have

P(aj(Tn) = 1 | F(n)) = E[aj(Tn) | F(n)] (2.6)

and therefore

P(j 2 ⌧(Tn) \ L(Tn) | F(n)) = (2.7)
= E[aj(Tn) | F(n)] EH

⇥
1{HTn�Tj}

p(Tn �H)
⇤
.

We now undo the conditioning on F(n) (the history of the DAG) and obtain

P(j 2 ⌧(Tn) \ L(Tn)) = (2.8)
= E

⇥
aj(Tn) 1{HTn�Tj}

p(Tn �H)
⇤
.

Note also that aj(Tn+1)�aj(Tn) = �1 if and only if the block j is a tip at time Tn and is approved
by the new transaction which arrives at time Tn, and is zero otherwise. Therefore, we get

E[aj(Tn+1)� aj(Tn)] =

= �E
⇥
aj(Tn) 1{HTn�Tj}

p(Tn �H)
⇤
. (2.9)

2.2.2 The Fluid Limit
The fluid limit is reached as the arrival rate of new blocks, �, goes to infinity. For convenience we
will assume that the time between arrivals is fixed and equal to ��1, so Tn = n��1, and we extend
aj to be piecewise constant in each interval [Tn, Tn+1). Given s > 0 let m = b�sc, and define
the set A(s) = {m,m + 1, . . . ,m + q} where q is an integer depending on � such that {q ! 1,
q��1

! 0} as �!1. We define

b(t, s) = q�1
X

j2A(s)

aj(t), l(t) = ��1 L(t) (2.10)

(assuming that t � s+ q��1 in b). Our main assumption for the fluid limit is that b(t, s) and l(t)
converge to non-random differentiable functions as �!1. So, in particular we assume that

q�1
X

j2A(s)

aj(t)! b(t, s) as �!1. (2.11)

We also assume that for all j 2 A(s) and all n 2 A(t), as �!1,

q�1
X

j2A(s)

aj(Tn)1{HTn�Tj}
p(Tn �H)

= ��1 b(t, s)1{Ht�s}

2

l(t�H)
+ o(��1). (2.12)

We now sum over j 2 A(s) and n 2 A(t) in (2.9), leading to
P

n2A(t) q
�1

P
j2A(s) E[aj(Tn+1)� aj(Tn)] =

=
P

n2A(t) b(Tn+1, s)� b(Tn, s) =

= b(t+ q��1, s)� b(t, s) =

= �
P

n2A(t) {�
�1 b(t, s) EH

h
1{Ht�s}

2
l(t�H)

i
+

+o(��1)} = �q ��1 b(t, s) EH

h
1{Ht�s}

2
l(t�H)

i
+

+o(q��1). (2.13)

Since q��1
! 0 as �!1, we get

@b

@t
(t, s) = �b(t, s) EH

1{Ht�s}

2

l(t�H)

�
. (2.14)

31

It is convenient to change variables at this point and define the age of the current tips to be
v = t � s, and define a new density g(t, v) = b(t, s), where g(t, v) represents the density of tips
present at time t which were added at time t � v (or, equivalently, the density of tips present at
time t with age v). Note also the total number of tips (rescaled by ��1) is

l(t) =

Z
t

0
b(t, s) ds =

Z
t

0
g(t, v) dv. (2.15)

Furthermore the condition an(Tn) = 1 leads to the condition b(t, t) = 1, which in turn gives

g(t, 0) = 1. (2.16)

In terms of these new variables, the fluid limit is described by the following set of equations:

@g

@t
+

@g

@v
= �g(t, v)EH

1
{H v}

✓
2

l(t�H)

◆�

l(t) =

Z
t

0
g(t, v) dv

g(t, 0) = 1. (2.17)

The right side of (2.17) can be written more explicitly using the pdf for H. That is, assume that
H is continuous with pdf f(x), then (2.17) can be written

@g

@t
+

@g

@v
= �g(t, v)

Z
v

0

2

l(t� x)
f(x) dx. (2.18)

2.2.3 Comparison with Previous Work for Fixed Delay
In previous work [1], the case of fixed delay H = h was analysed by different means, and it was
shown that the fluid limit was described by a delay differential equation. Here we compare that
result with the present work. For the case of constant H = h, the PDE (2.17) leads to the equation

dl

dt
=

8
<

:

1 t < h

1�
2

l(t� h)

Z
t

h

g(t, v) dv t � h
. (2.19)

In [1] the following equation was derived:

dl

dt
= 1�

2

l(t� h)
x(t� h) (2.20)

where x(s) is the number of ‘free’ tips at time s, which is the number of tips that have not yet been
selected at time s for validation by any newly created blocks. Since the validation time is fixed
to be h, it follows that all these free tips at time t � h must still be tips at time t. Furthermore
any ‘pending’ tips at time t � h will no longer be tips at time t. Thus the set of tips at time t
will consist of the free tips at time t� h, plus any additional tips that arrived in the time interval
[t� h, t]. These latter tips are the tips whose age is less than h, thus we can write

l(t) = x(t� h) +

Z
h

0
g(t, v) dv. (2.21)

Combining with the relation l(t) =
R
t

0 g(t, v) dv we deduce that for t � h

x(t� h) =

Z
t

h

g(t, v) dv. (2.22)

Therefore, the two expressions (2.19) and (2.20) are identical for all t � h. Hence the method
presented here leads to the same result as the method from [1].

32

2.3 The Stationary Solution

We expect that the solution of the system (2.17) will converge to a time-independent solution as
t!1. We can compute this time-independent solution: assume that there is a function g(v) and
constant l such that

g(t, v)! g(v), l(t)! l as t!1. (2.23)

Substituting in (2.17) we find

g0(v) = �g(v)
2

l
P(H v), g(0) = 1 (2.24)

which leads to

g(v) = exp

�
2

l

Z
v

0
P(H u) du

�
. (2.25)

This can be used to get an implicit equation for l:

l =

Z
1

0
g(v) dv. (2.26)

2.3.1 Simulator Description
In what follows, we consider some specific examples for delay distributions. For each of these
special cases, we derive the corresponding tip equilibrium and then verify this result with Monte
Carlo simulations7. We simulate a single node and we generate new blocks according to a Poisson
arrival process with rate �, where � is specified for each experiment. Blocks are produced by a large
number of independent agents which makes the Poisson process a natural and standard choice for
generating arrivals. The simulations operate in discrete time increments of 0.1 seconds. When a
new block is generated, tips are selected from the node’s current tip set, but the new block does
not become visible to the node until the delay time h for the new block has passed. The delay, h,
for each block is randomly drawn from the chosen distribution of H in each experiment.

2.3.2 Special Case: Fixed Delay H = h

Here we assume that H = h is constant for all tips. Then solving (2.24) we get

g(v) =

(
1 v h

e�2(v�h)/l v > h
. (2.27)

We can also use (2.26) to compute l: this gives

l =

Z
1

0
g(v) dv = h+

Z
1

0
e�2(v�h)/l dv = h+

l

2
(2.28)

which leads to the value

l = 2h. (2.29)

Figure 2.5 shows 150 Monte Carlo simulations of the DAG with fixed delay (� = 20, h = 5). Note
that the average value corresponds to L = �l = 2�h = 200.

2.3.3 Special Case: Exponential Delay H

Here we assume that H is exponential with rate µ, so that (2.24) is

g0(v) = �g(v)
2

l
(1� e�µv), g(0) = 1. (2.30)

7
Source code available at https://github.com/cyberphysic4l/iota-sim.

33

Figure 2.5: 150 Monte Carlo simulations of the DAG with constant delay (� = 20, h = 5). The
single realisations are shown in blue, while the average value is shown in red. Notice that we obtain
the predicted average value L = 200.

This leads to the solution

g(v) = exp

2

l

�
v + µ�1e�µv

� µ�1
��

. (2.31)

Using (2.26) we can compute l. With h = µ�1 this gives

l = 1.2839h. (2.32)

Figure 2.6 shows 150 Monte Carlo simulations of a DAG with exponential delay (� = 20, µ = 0.2 =
5�1 = h�1). Note that the average value corresponds to L = �l = 1.28�h = 128.

Figure 2.6: 150 Monte Carlo simulations of a DAG-based ledger with exponential delay (� =
20, µ = 0.2 = 5�1 = h�1). The single realisations are shown in blue, while the average value is
shown in red. Notice that we obtain the predicted average L = 128.

34

2.3.4 Special Case: Uniform Delay H

Here we assume that H is uniform on some interval [h0, h1]. This gives

Z
v

0
P(H u) du =

8
>>>>>>>><

>>>>>>>>:

0 v h0

(v � h0)2

2(h1 � h0)
h0 v h1

v �
h0 + h1

2
v > h1

. (2.33)

Also we define � =
p
h1 � h0 then the equation for l is

l = h0 +
l

2
e��

2
/l + �

Z
�

0
e�w

2
/l dw. (2.34)

One particular case: h0 = 1, h1 = 11, gives l = 10.69. In terms of the mean delay h = 6 this is

l = 1.782h. (2.35)

Figure 2.7 shows 150 Monte Carlo simulations of the DAG with uniform delay (� = 20, h0 = 1,
h1 = 11). Note that the average value corresponds to L = �l = 1.78�h = 214.

Figure 2.7: 150 Monte Carlo simulations of a DAG-based ledger with uniform delay (� = 20, h0 = 1,
h1 = 11). The single realisations are shown in blue, while the average value is shown in red. Notice
that we obtain the predicted average L = 214.

2.4 Chapter Summary

In this chapter, we have introduced DAG-based distributed ledgers which represent a natural
extension of the blockchain as we have highlighted with reference to their core constituents. We
presented a fluid model for the evolution of a DAG under URTS and variable network delays.
We then verified our model’s accuracy for a number of special cases of delay distributions. At
the time of this work’s original publication [53], PoW was a necessary feature of any DAG-based
DLT and it was generally expected that the primary source of delays in DAG-based ledgers could
be attributed to the process of finding a PoW solution. The exponential delay model presented
here can be expected to accurately model this case. However, since [53], new approaches to access
control have been developed, removing the need for PoW [8]. The time-consuming processes which
determine delay distributions in these new DLT networks are more complex and distributed than
those of PoW ledgers, but the modelling work presented in this chapter has contributed greatly to
the analysis of measurements and prediction of new behaviour in these more complex networks.

Future work on variable delay models should be focused on finding appropriate delay distribu-
tions to model real modern DLT networks and to take into account modifications of the basic
URTS algorithm for tip selection.

35

Chapter 3

Parasite Chain Attacks and Tip
Selection Algorithm Design

Abstract— Secure distributed ledgers should operate as immutable records and it
should be impossible for any malicious agent to reverse or erase any data that has
been confirmed by the network. It is customary in the domain of cyber security
to test new architectures by studying their resilience against specific attacks which
attempt to break the network. One such attack on DAG-based distributed ledgers,
known as a parasite chain attack, seeks to reverse blocks that have been confirmed
by the network, allowing the attacker to spend the same token twice. The general
class of attacks to which parasite chains belong, known as double spending attacks,
are straightforward to analyse for blockchains but are more complex and varied in the
case of DAGs. In this chapter, we present a model for BRW tip selection on DAG-
based ledgers and analyse parasite chain attacks. Our results provide useful insights
to guide the design of tip selection algorithms with a view to preventing such attacks.
Finally, we present a new variant of BRW tip selection inspired by the results of our
analysis which we show to offer improved security against these attacks. Part of the
work presented in this chapter also appears in [55].

Distibuted ledgers are record-keeping tools which allow untrusting agents to interact with one
another without the need for a trusted intermediary. A simple example of how a distributed ledger
can be used is to transfer funds from a customer to a merchant in exchange for some goods. To
achieve this, the customer adds a block to the ledger containing a transaction which transfers funds
to the merchant’s account. The merchant waits for the block to be confirmed and then hands over
the goods to the customer, with the understanding that the funds are now irreversibly recorded
on the ledger to be in the merchant’s account. If the customer could then somehow reverse this
transaction by creating a conflicting version of the ledger which the network then confirms instead,
we would refer to this as a double spend. This essentially equates to the customer stealing from
the merchant, so in order for a distributed ledger to be deemed secure it must be resilient against
double spend attacks.

Let us consider an example of double spending in DAG-based DLTs to develop the idea further:
Figure 3.1 shows an instance of a DAG-based distributed ledger. A malicious node adds some data
to the ledger which we represent as the yellow block in the figure. The same node subsequently
writes multiple blocks to the ledger, represented by green blocks, which contain data conflicting
with the yellow block. It is worth stressing, at this point, that there is no mechanism to force
a user to select certain blocks for approval. Any pair of blocks can be selected as long as they
are mutually consistent with all blocks they approve (directly or indirectly), in other words, all
blocks in the past cone of the new blocks must be without conflicting data. In this scenario, all
the blocks that approve the original yellow block (the blue blocks) are inconsistent with the green
ones, and therefore any new blocks can either approve the green/black blocks or the blue/black

36

Figure 3.1: The blue and the green transactions are incompatible with each other. This image was
also present in [1].

ones. The green/blue combination would be considered invalid (as there is an inconsistency in the
ledger) and a new selection would be made. The objective of a double spend attacker would be to
publish the yellow block and for this to be acted on in some way, for example, if the yellow block
transfers token to a merchant, the attacker would wait for this transaction to be confirmed and
goods to be transferred by the merchant. The attacker would then release the green blocks to the
network which spend the same tokens as the yellow block in such a way that they get approved
by the majority of the network rather than the original data (thereby reversing the record of
the data that has already been acted upon). However, it is not straightforward for an attacker
to convince the majority of other nodes to approve the double spend blocks: it requires careful
choice of the structure of the conflicting sub-DAG, timing of publishing the conflicting blocks, and
requires consumption of a great deal of resources. The parasite chain attack which we discuss in
this chapter exemplifies an effective and efficient approach that an attacker could take to maximise
its chances of succeeding.

The contributions of this chapter can be briefly summarised as below.

• A mathematical description of the DAG, together with a Markov chain model for BRW8 tip
selection algorithms. This model allows for rapid computation of the expected outcome of
random walks and hence the probability of the success of an attack on a given DAG. The
model may also be used to efficiently implement the BRW algorithm in practice.

• An analysis of the parasite chain attack, wherein the attacker attempts to alter or reverse one
or more transactions previously added to the ledger. The insights gained from this analysis
can be used to guide parameter selection when designing a real DAG-based DLT network to

8
see Section 2.1.2 for an introductory discussion of BRW tip selection

37

be resilient against attacks of this kind.

• A proposal for a new variant of the BRW tip selection algorithm, which is shown to improve
the resistance of the ledger to parasite chain attacks. This improved tip selection algorithm
is inspired by the results of our analysis and simulations.

The remainder of this chapter is organised as follows. In Section 3.1 we introduce a double
spending mechanism known as a parasite chain attack. Section 3.2 summarises the stochastic
model for the DAG and presents a new formulation for the BRW tip selection algorithm as an
absorbing Markov chain. This formulation is used to analyse the algorithm’s resistance to parasite
chain attacks over a range of parameter choices and can also be used as an efficient implementation
of the BRW algorithm in practice. Section 3.4 introduces a modification to the BRW which makes
use of the growth of the cumulative weight in the DAG and presents results showing its improved
resilience against parasite chain attacks.

3.1 The Parasite Chain Attack

To see how in practice a hypothetical attacker could carry out a double spending attack in a
DAG-based ledger, we consider the attack scenario known as a parasite chain attack. A simple9

parasite chain (SPC) is illustrated in Figure 3.2: we refer to this as kth-order SPC because the
first k transactions in the chain reference the main DAG . The attacker publishes the yellow block
in the DAG and simultaneously, in secret, creates a conflicting block (the green one) followed by
a chain of blocks which validate it. The attacker waits for the yellow block to be confirmed10 and
then broadcasts the parasite chain to its neighbouring nodes and continues publishing blocks which
validate it. Recall from the brief description in Section 2.1.2 that the BRW tip selection algorithm
employed by honest nodes favours heavier branches of the DAG, so the goal of the attacker is
then to “race” the main DAG, creating a sub-DAG (parasite chain) whose cumulative weight will
outmatch the main body of the ledger. If the attack were to succeed, the parasite chain would
become the main DAG which the majority of nodes attach their blocks to and the original yellow
block would be reverted along with the sub-DAG that approves it.

An SPC can be characterised by three parameters:

1) TDS is the time between the arrival of the original block and the broadcast of the SPC;

2) k is the ‘order’ of the SPC, i.e. the number of blocks in the chain referencing the main DAG;

3) µ is the rate at which the attacker can add blocks to the parasite chain.

It is important to remark that TDS and k can be freely chosen by the attacker, but µ is determined
by the resources available to them which are difficult or expensive to obtain. For example, in a
PoW-based network, µ is determined by the computing power available to the malicious node,
whilst in a PoR-based network, µ is determined by the attacker’s reputation (e.g., wealth).

Note that it is possible to create parasite chains with more complex structure than the one
presented above. However due to the complexity of the analysis it is not yet clear how to optimally
design such a structure. Therefore, in the remainder of this chapter we will focus solely on the SPC,
and use this special case to draw conclusions about the DAG’s ability to resist double spending
attacks.

9
We refer to the SPC as simple because we assume that the chain is attached at a single point on the main DAG

in order to simplify analysis.
10

Recall that, in general, a block must receive a minimum number of approvals before it is considered to have

been confirmed. This ensures that some majority of nodes agree with this block and that it is very unlikely to be

reverted. A merchant will not accept a transaction until it is confirmed, so the attacker should wait at least until

the first block is confirmed before broadcasting the SPC and attempting to revert it.

38

1 2 k

Figure 3.2: A kth-order simple parasite chain: The yellow and green blocks constitute a double
spend.

3.2 The Biased Random Walk Algorithm

In this section, we present a Markov chain model for the BRW algorithm which allows us to
compute the probability that a BRW will terminate on a given tip of a DAG. We consider a single
local copy of the ledger, and in order to generate a random instance thereof, we use an agent
based model: at each time step a random number of blocks are generated, according to a Poisson
distribution with rate �; an agent selects two random blocks from the DAG via the BRW tip
selection algorithm and references these in the new block; the block appears in the ledger and
becomes available for subsequent tip selection after a short time delay which simulates processes
such as PoW and dissemination of the block through the network.

3.2.1 Matrix Model
First we recall the description of the agent-based model which is used to generate a random instance
of the DAG. Each new transaction selects two tips for approval, and attempts to validate them.
To take into account possible conflicts we assume that d conflicting sub-DAGs exist on the DAG,
where each block from a sub-DAG is mutually consistent only with transactions from the same
sub-DAG. Thus every block has a label from the set 1, . . . , d, indicating the sub-DAG to which it
belongs. We will call this the type of the block. If validation fails (i.e., transactions from different
sub-DAGs are selected) both choices are discarded and another two tips are selected for validation.
This continues until the process is successful, and we assume that this whole validation effort is
essentially instantaneous. After the validation there is a delay h before the new block becomes
visible to the network. During this time the approvals of the selected tips are pending, so the
tips may still be available for selection by other new transactions. After the waiting time h the
two blocks which were successfully approved are removed from the tips set, and so are no longer
available for selection by other new blocks (at least, by the ones that follow the protocol)11.

Next we review the BRW algorithm for tip selection, initially described in Section 2.1.2: for a
given DAG instance, a random walk is initiated starting somewhere in the interior of the graph,
and the BRW subsequently jumps randomly along its edges. A jump along an edge can be either
forward (meaning from an older block to a newer block) or backward. A forward jump from a
block i to a block j occurs with a probability that is proportional to exp(�↵(Hi �Hj)), where ↵
is a positive tuning parameter of the BRW algorithm. The walk terminates when it reaches a tip,

11
It may happen that some of these blocks had already ceased to be tips at an earlier time, due to their being

validated by some other new block.

39

which is then selected for approval. Thus, to model the BRW algorithm we need to define explicitly
the cumulative weight of each block and find an expression for the probability of terminating on a
given tip.

Let B(t) denote the set of blocks in the DAG at time t. The cumulative weight Hi(t) of block i
is defined as the number of blocks that directly or indirectly approve it at time t:

Hi(t) = #{z 2 B(t) : z approves i}. (3.1)

The weight Hi(t) can be computed using the adjacency matrix M(t) of the DAG, by noting
that [Mk(t)]ij represents the number of paths of length k that connect block i to block j. In what
follows, we assume that block indexes provide a total ordering such that if block i arrived earlier
than block j, then i < j. Let ti denote the time at which block i appears in the DAG and becomes
available for tip selection. Furthermore, define

i(t) = b(t� ti)/hc, (3.2)

Pi(t) =

i(t)X

k=1

Mk(t), (3.3)

where b·c is the floor operator. Then Hi(t) is equal to

Hi(t) = 1 +

N(t)X

j=i+1

min{ei
TPi(t)ej, 1} (3.4)

where ei is the i-th vector of the canonical orthonormal basis. Notice that:

• we use min{·, 1} in order to avoid counting the same block more than once (since there could
be several paths with a different number of steps connecting two blocks);

• the value i(t) represents the maximum number of forward jumps that can occur along a
directed path from block i to the tips set (as each new block take h seconds to become visible
and available for tip selection).

Given (3.4), we can go back to the BRW algorithm: in the most general case, the random walk
starts at a random block and we can define ⇡ 2 RN(t) as the vector whose i-th entry represents
the probability that the walk starts at block i. Furthermore we define the difference in cumulative
weight between block j and block k to be #jk(t) = Hj(t) � Hk(t). Then the transition matrix
T (t) whose jk entry characterises the probability of jumping from block j to block k is defined as
follows in the case where j is not a tip:

[T]jk(t) =

8
>>><

>>>:

q/m if k 2 Pj

(1� q)
e�↵#jk(t)

P
z2Ij

e�↵#jz(t)
if k 2 Cj

0 otherwise

(3.5)

where q 2 [0, 1/2) represents the probability of going backwards, Pj ⇢ B(t) is the set of all parents
of block j, m = |Pj | is the number of parents of block j, Cj ⇢ B(t) is the set of all children of block
j, and ↵ is a positive tuning parameter. When the walk hits a tip, it remains there indefinitely,
therefore when the transaction j is a tip we have

[T]jk(t) =

(
1 if j = k

0 otherwise
. (3.6)

40

(3.5) and (3.6) provide us with useful information on the BRW algorithm: the jumping process
is an absorbing Markov chain with N(t) � L(t) transient states and L(t) absorbing states, where
N(t) = |B(t)| is the number of blocks in the DAG at time t, and L(t) is the number of tips at
time t. Therefore, by properly rearranging and re-labelling the blocks, the transition matrix can
be written as follows:

T (t) =

✓
Q(t) R(t)
0 I

◆

where Q(t) is the transition matrix between transient states, R(t) is the transition matrix from tran-
sient states to absorbing states, and I is the identity matrix for the absorbing states. Standard anal-
ysis of absorbing Markov chains yields the absorbing probability matrix B(t) = (I �Q(t))�1R(t),
whose (i, j) entry is the probability for the BRW to be absorbed at tip j given that it started at
block i.

Next we include the effects of conflicting sub-DAGs. Define Li(t) to be the set containing the
indices of the tips of type i at time t, and recall that ⇡ is the initial probability distribution of the
random walk. Then the probability for the random walk to terminate at a tip of type i (i.e., to be
absorbed by the subset Li of the absorbing states) is

pi(t) =

P
j2Li(t)

⇡TBej
P

d

k=1[
P

j2Lk(t)
⇡TBej]

. (3.7)

Furthermore the probability for a new block at time t to join the tip set of type i is then

P (Type = i) = pi(t)
m

0

@
dX

j=1

pj(t)
m

1

A
�1

(3.8)

where the second factor on the right side of (3.8) accounts for the requirement that all m selections
must have the same type.

The validity of (3.7) was investigated using a Monte Carlo analysis of random walks on a ran-
domly generated DAG with two sub-DAGs. In each run of the Monte Carlo analysis a random walk
was generated starting at the genesis, and the type of the terminal tip of the walk was recorded as
either Type 1 or Type 2. We observe that as the number of Monte Carlo simulations increases the
empirical probability distribution of the BRW’s type converges to the value computed by (3.7).
This is illustrated in Figure 3.3. Two sub-DAGs of similar size and structure were generated for
the simulation shown in Figure 3.3, so the probability of the BRW terminating on either type is
close to 0.5 (p2, the probability of terminating on a tip of the second sub-DAG, is shown here).

3.3 Resistance to Parasite Chain Attacks

In this section, we report on our investigations of the SPC (see Figure 3.2) attack on a DAG-based
ledger, when the BRW algorithm is used to select tips12. In particular we are interested in how the
parameters of the SPC and of the BRW algorithm affect the likelihood of a BRW terminating on a
dishonest tip. Notice that for an SPC attack to succeed, the majority of newly arriving blocks must
eventually validate tips on the SPC. While it should be worthwhile to investigate the probability
of this event, it would require an analysis of the whole dynamical system and of its equilibrium
states, and would stretch beyond the scope of this work. Furthermore, the probability of this event
would be closely related to the probability of a single BRW selecting a tip of the SPC, which is
the focus of the analysis presented here.

We denote tips on the main DAG (which reference the first of the double spend transactions) as
Type 1, and tips on the SPC as Type 2. Then (3.8) gives us:

12
Source code available at https://github.com/cyberphysic4l/iota-sim.

41

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

Matix Model

Monte Carlo Simulations

Figure 3.3: Convergence of BRW Monte Carlo simulation results to matrix model formula.

p2(t) =

P
j2L2(t)

⇡TBejP
l2L1(t)

⇡TBel +
P

j2L2(t)
⇡TBej

. (3.9)

We first investigate the effect of the parameter ↵ by simulating this probability for a randomly
generated instance of a DAG and a first order SPC with TDS = 120 seconds and where the attacker
has 25% of the total network access resources (i.e., µ = �/3). Results are shown in Figure 3.4.
It can be seen from this figure that as ↵ increases, the probability of selecting the SPC increases
at first (from a nonzero value), reaches a maximum, and then decreases again: the reason for
this behaviour is that as ↵ approaches infinity the BRW will always move in the direction of the
greatest increase in cumulative weight and hence always choose tips on the heaviest branch of
the DAG. Therefore, as long as µ < � and nodes wait long enough to confirm blocks, the attack
will always fail. Note that since the attacker’s aim is to be able to effectively spend its money
twice, the attack would fail if they revealed the parasite chain before the original block had gained
sufficient cumulative weight to be confirmed by other nodes. This would happen because if the
original transaction was orphaned before its confirmation, then it would not be considered valid
by the network and the second spend transaction would become the only transaction in which the
attacker was able to successfully spend any currency. Accordingly, in the simulations presented in
Figure 3.4, we assume that by TDS = 120 the initial spend on the main branch will be confirmed
and, consequently, acted upon. On the other hand, when ↵ is equal to zero the selection will
not depend on the cumulative weight but only on the structure of the graph, in which case an
SPC attack is also unlikely to succeed because the attack is only attached at a single point and
is therefore less likely to be selected. However, slightly more complicated attacks with multiple
attachment points could very easily succeed in this case.

Next, we investigated the effect of the double spend time, TDS , with some results depicted in
Figure 3.5. Recall that in the simulations presented in Figure 3.4, we took TDS = 120, i.e. we
assumed that the transaction will be confirmed and acted upon within this time. The reason for
the evident decrease in probability of selecting an SPC tip as TDS increases, as shown in Figure 3.5,
is related to how the cumulative weights of blocks grow. A block in the main DAG must wait for
an adaptation period before all new arriving blocks will indirectly approve it, so the cumulative
weight initially grows slowly and then gradually increases to grow linearly with rate �. However,
due to the chain structure of the SPC, each SPC block references the second spend block from
the outset, and hence its cumulative weight will immediately grow linearly at the rate of arrival
of the attacker’s blocks, namely µ, with no adaptation period. This phenomenon is illustrated in
Figure 3.6 which plots the average cumulative weight trajectories of 100 blocks of each type in a
simulated DAG with an SPC. Additionally, Figure 3.7 provides an approximate illustration of the

42

DAG and SPC structures that result in this cumulative weight growth profile. The intersection
point of the two traces in Figure 3.6 at around 90 seconds indicates that if TDS could be chosen
to be less than this, the cumulative weight of the second spend would be larger than the first,
and selecting the SPC would be highly likely. Indeed, Figure 3.8 confirms that for TDS = 60
increasing ↵ leads to an increase in the probability of selecting a tip that belongs to the double
spending sub-DAG. However, provided a merchant waits sufficiently long to confirm the first spend,
this apparent advantage to the attacker will be of no use as the attacker must wait at least TDS

seconds for the first spend to be confirmed before releasing the SPC.

The results presented above not only demonstrate how parameter choices of the BRW tip selec-
tion affect success rates of SPC attacks, but also provide a more general intuition about how an
honest node should decide when to consider a block confirmed in a given DAG-based DLT network.
In particular, recall that Figure 3.5 shows us that the probability of an attack succeeding decreases
if the attacker must wait longer to reveal the parasite chain, and furthermore, Figure 3.8 teaches us
that an attack can be highly likely to succeed if the attacker can release their SPC early. Therefore,
it is crucial to ensure that blocks are not confirmed too soon as this could allow an attacker to
subsequently reverse them with a double spend and an SPC. The reason a parasite chain is more
likely to be selected when released early is that the chain structure allows all attacker blocks to
immediately add to the cumulative weight, whilst blocks in the main DAG take some time to be
referenced by all new blocks, as depicted in Figure 3.6. The growth of cumulative weight over
time of any block in a DAG depends on the structure of that DAG, which in turn depends on a
variety of factors associated to a given DLT network such as the network delay, the computations
required for each block and the tip selection strategies. As such, this growth is difficult to predict,
however, it can be readily measured in a real network and one could produce a plot comparable to
Figure 3.6 for a predicted attacker power. This plot could then be used to select an appropriate
confirmation criterion by observing the intersection of these two traces and ensuring the attacker
is forced to release their SPC after this time. For example, the nodes in the experiments presented
here could choose to consider a block confirmed when its cumulative weight exceeds 1000—we see
in Figure 3.6 that blocks in the main DAG reach this cumulative weight after around 130 seconds,
so the attacker would be forced to wait at least this long to release their parasite chain.

The other key parameter of the SPC is the order, k, which indicates the number of blocks in
the SPC which reference the main DAG. It is worth noting that adding additional references to
the main DAG does not cost the attacker any additional computational resources, so they do not
need to consider this as a factor in their choice of k. There are, however, two key factors which
will influence the attackers optimal choice of k. The larger the choice of k, the more likely the
BRW is to jump on to the parasite chain from the main DAG at the attachment point. However,
more links also means more opportunities to jump back on to main DAG from the SPC (since at
every step the walk may backstep with probability q). The relationship between the probability of
selecting an SPC tip, the attacker’s choice of k, and the BRW backstepping probability parameter
q is illustrated in Figure 3.9.

3.4 Extending the BRW Algorithm

The original motivation for using the BRW selection algorithm was to incentivise network users to
validate the most recently arrived tips, and thereby defend the DAG against attacks such as the
parasite chain attack. Theoretically, if the BRW parameter ↵ is high enough and if the attacker
does not possess the majority of the resources of the network, then the attack should never succeed.
However an excessively high value of ↵ would result in many honest blocks never being approved.
The design trade-off between security and liveness involved in choosing ↵ is discussed in [32], and
solutions to the issue of blocks being orphaned are proposed in [31].

We now propose a modification to the BRW algorithm which seeks to reduce the efficacy of
double spending attacks whilst allowing us to maintain a low ↵, and hence a wide DAG in which
there is a low probability of blocks being orphaned. The intuition for our modification stems from
the phenomenon illustrated in Figure 3.6: although the cumulative weight of a block on the main
sub-DAG may lag behind due to the initial adaptation period it underwent, we can be quite sure
that if the point of attachment of a parasite chain is deep in the DAG, then the rate of growth of

43

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 3.4: Probability of selecting an SPC tip: � = 15, µ = 5, k = 1, TDS = 120.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 3.5: Probability of selecting an SPC tip: � = 15, µ = 5, k = 1.

Figure 3.6: Growth of cumulative weight in the main sub-DAG and SPC.

44

Figure 3.7: An approximate illustration of how cumulative weight grows in a DAG (blue) and a
parasite chain (red). The blue and red circles at time zero represent the first and second spends,
respectively, and the thickness of the shaded area represents the rate of new blocks that reference
these spends as they are attached to each structure.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

Figure 3.8: Probability of selecting an SPC tip: � = 15, µ = 5, k = 1, TDS = 60.

45

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Figure 3.9: Probability of selecting an SPC tip: � = 15, µ = 5, ↵ = 0.005, TDS = 120.

the cumulative weight of blocks at the attachment site should be equal to � (the slope of the blue
curve in Figure 3.6). Our modification utilises the first order time derivative of the cumulative
weight in calculating the jumping probabilities of the BRW—we call this a First Order BRW.
Define #(1)

jk
(t) = |H

0

j
(t)�H

0

k
(t)|, where H

0

k
(t) is the time derivative of the cumulative weight:

[T]jk(t) =

8
>>>><

>>>>:

q/m if k 2 Pj

(1� q)
e�↵#jk(t)��#

(1)
jk

(t)

P
z2Ij

e�↵#jz(t)��#
(1)
jz

(t)
if k 2 Cj

0 otherwise

where � is a positive tuning parameter. Of course the time derivative H
0

k
(t) must be computed

using a suitable discrete approximation (for example using the backward-difference operator and
storing the previous value of the cumulative weight of each block).

The rationale for this approach can be summarised as follows: the cumulative weight of a block
in a parasite chain grows linearly with rate proportional to the resources of the attacker, µ, whilst
the main DAG will grow at the rate of the computing power of the rest of the network, �, as
illustrated in Figure 3.6. Therefore, the parasite chain will be heavily penalised by the First Order
BRW.

Simulation results for the same instance of the DAG used for examples in Section 3.2 are shown in
Figure 3.10. This figure consists of several traces, each for different values of the newly introduced
parameter, �. Note that the trace corresponding to � = 0 is identical to that of Figure 3.4, because
the new random walk model reduces to the original model in this case. These preliminary results
suggest that the First Order BRW achieves its goal and effectively mitigates the chance of an
attacker successfully double spending. Of course, the performance of the algorithm will start to
deteriorate when the particle approaches a tip, as at this height, the cumulative weight on the main
DAG grows at a lower rate. While we have not investigated mitigations for this issue in depth, it
could be useful to modify the derivative term to decay with each jump forward.

3.5 Chapter Summary

In this chapter, we investigated the security of DAG-based DLTs under a well known double
spending attack scenario called the parasite chain attack. Our analysis used a novel Markov
chain model for the BRW tip selection algorithm (referred to as MCMC in the IOTA white paper
[26]), and we validated this model using Monte Carlo simulations of random walks on randomly

46

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 3.10: Probability of selecting an SPC tip: � = 15, µ = 5, k = 1, TDS = 120.

generated DAG instances. We also presented an extension of the BRW algorithm called First
order -BRW, which uses the first order time derivative of the cumulative weight. Our simulations
demonstrate the modified algorithm’s effectiveness at mitigating parasite chain attacks, compared
to the standard BRW algorithm.

47

Chapter 4

Access Control for DAG-based DLTs
without Proof of Work

Abstract— Distributed ledgers are not governed by any single entity, but rather by a
collection of nodes that each make updates and contribute to maintaining the ledger.
The degree of power that each node has in a given DLT network depends on the
access control employed, so appropriate design of this component prevents tampering
and misuse of the ledger by any individual or organisation with selfish or malicious
motives. PoW access control, for example, allocates power to nodes based on how
much computational power they can expend on appending blocks to the ledger, while
PoR access control allocates power based on the reputation of each node. PoW ac-
cess control is straightforward to implement for DAG-based distributed ledgers, but
requires significant energy consumption which is not only wasteful and unethical but
also prevents devices with contrained resources from participating. PoR access con-
trol overcomes these issues, but PoR solutions for blockchains do not generalise to
DAGs. In this chapter, we present the first ever PoR access control for DAG-based
ledgers which elimenates the need for PoW and all its associated issues.

In this chapter, we propose an access control mechanism for DAG-based DLTs in order to guarantee
full utilisation of network resources and fair access based on reputation (see Definition 1.3.1).
Access control, as introduced in Section 1.3.3, enforces the chosen governance model of a DLT: for
example, PoW access control ensures that those who can collectively consume the greatest amount
of energy govern the state of the ledger. An alternative to PoW is sought after because it is highly
inefficient and offers unsatisfactory performance [10]. Additionally, documented attacks on a DLT
known as Nano13 have demonstrated that PoW is not secure in the context of IoT networks with
limited resources. Our access control algorithm offers the first IoT-friendly alternative, allowing
block throughput to be controlled across the network in a manner that is fair and resistant to
manipulation by malicious actors. Our solution represents a new design paradigm for DLTs, a
networking-based approach which permits reputation-based access control to be integrated, in the
place of PoW, into DAG-based ledgers for the first time. The contributions of this chapter are as
follows.

• We model the access control problem for a class of DAG-based DLTs and provide a net-
work model which takes into account limited buffer capacity and computational limitation
of devices.

• We then present an access control algorithm for DAG-based distributed ledgers. The algo-

13
Nano experienced a severe spam event which damaged their DLT network—https://www.coindesk.com/

nanos-network-flooded-spam-nodes-out-of-sync. They have since announced primitive measures to prevent

attacks on their PoW DAG which have similar motivation to our work—https://senatusspqr.medium.com/
nanos-latest-innovation-feeless-spam-resistance-f16130b13598

48

rithm components include:

i) a scheduling algorithm which ensures fair access for all nodes according to their reputa-
tion and prevents honest nodes from being adversely affected by dishonest nodes seeking
to take more than their fair share;

ii) a rate setting algorithm, inspired by transmission control protocol (TCP), which allows
nodes to optimise their block issuing rate in a decentralised manner;

iii) A buffer management scheme to ensure that misbehaving actors can not cause buffers
to overflow and compromise consistency for honest nodes.

• We provide extensive simulation results which demonstrate that the algorithm performs as
intended, is robust to changes in the algorithm parameter choices, and is resilient against
actors that deviate from the protocol by attempting to take more than their fair share of
resources.

Remark: At the time of writing, this algorithm is under active development and its implemen-
tation and testing in IOTA’s GoShimmer network is underway [56]. As such, additional features
continue to be developed to enhance the security of the core algorithm. The model and algo-
rithms presented in this chapter correspond to those in the original publications of this work [7, 8],
whilst the following chapter will capture an updated version in line with current research and
development. To the best of our knowledge, this algorithm is the first of its kind.

The remainder of this chapter is structured as follows. In Section 4.1 we provide an overview of
relevant material and prior art from both the DLT and broader networking domain. In Section 4.2
we give a precise problem statement and state the requirements for our access control solution. In
Section 4.3 we model the problem and provide the notation required to effectively describe and
evaluate our solution. Section 4.4 presents the access control algorithm in detail, while Section 4.5
validates it and evaluates its efficacy through extensive simulations. Finally, in Section 4.6, we
summarise the findings of the chapter.

4.1 Background and Related Research

This work lies at the boundary of DLT and the broader networking literature, including topics such
as TCP, quality of service (QoS), gossip protocols and many more. We begin with the necessary
DLT backdrop which also serves to motivate our problem. As we have already mentioned, to the
best of our knowledge, our networking approach to DLT access control is completely new, so our
review of literature only covers related technologies rather than comparable solutions.

4.1.1 Access Control for Distributed Ledgers
Access control for DLTs refers to how nodes determine who gets to write new data to the ledger
in a secure and distributed manner. This is also known as Sybil protection, because it prevents so
called Sybil attacks in which an attacker creates multiple identities in order to gain an illegitimate
advantage [57]. PoW access control, used in blockchains such as Bitcoin [2], involves solving a
computationally difficult puzzle to prove possession of computing resources to be allowed write to
the ledger. PoW, however, consumes vast quantities of energy [38], which is unacceptable from an
environmental standpoint, unfeasible for IoT devices and inevitably concentrates computing power
in the hands of those who can access specialised hardware and cheap energy. This is the case
in the Bitcoin network [58] where miners select which transactions to include in blocks during
busy periods (typically based on which offer the highest transaction fees), providing an intrinsic
mechanism for filtering transactions and preventing congestion. [59] proposes a credit-based system
for adapting the difficulty of the PoW for certain nodes which behave well, aiming to make PoW
more suitable for IoT scenarios. A similar approach involving adaptive PoW is examined in [60].

The access control algorithm presented here, on the other hand, accommodates a more general
reputation model for Sybil protection mechanisms which do not require the use of computing
resources, and are therefore more suitable for the IoT setting.

49

Reputation, as defined in Definition 1.3.1, is an input to our access control algorithm. Proof of
Stake (PoS) is an example of reputation-based access control in which reputation is the currency
owned by a node. In blockchains, PoS access control is typically implemented through some form
of leader election in which a node or group of nodes becomes eligible to write a block each round
through some randomised process [9, 39, 40]. Other examples of reputation-based access control
include IOTA’s mana system [44], delegated PoS and preconfigured node permissions as found in
permissioned DLTs [61].

4.1.2 DAG-Based Distributed Ledgers
Our interest in DAG-based DLTs, rather than blockchains, lies in their ability to accommodate high
block throughput with low latency, and their low barriers to participation which improve usability
and decentralisation (see Chapter 2). Blocks may contain one [26] or more transactions [62].
Recall that in DAG-based ledgers, each new block can be cryptographically linked to more than
one existing block, and many valid new blocks can be pointing to the same older block. The result
is that many users of these ledgers can write blocks simultaneously, and therefore, there is no block
throughput limit enforced by the ledger structure itself, as there must be in blockchains. Chapter 3
discusses the DAG structure and the security of these ledgers in more detail.

DAG-based ledgers traditionally rely on PoW for access control. It is difficult to incorporate
reputation-based access control such as PoS due to the lack of structured rounds for leader elections.
[63] attempts to avoid this issue by using a so called structured DAG for their PoS ledger which
imposes strict limitation on when and how blocks can be added to the ledger. Due to our focus on
IoT scenarios, we do not want to impose any such additional constraints, and hence, the rate at
which nodes can issue and disseminate blocks must be controlled by some other mechanism. The
access control algorithm we present here solves this problem by incorporating Sybil protection at
the level of dissemination of blocks in the peer-to-peer network, regulating block throughput on a
per-node basis. This new paradigm requires concepts from computer networking which we review
next.

4.1.3 Networking Concepts
From the domain of replicated databases, [64] presents a flow control algorithm. The principle of
what the authors of [64] aim to achieve is similar in nature to that of our access control algorithm,
albeit in a trusted setting (without concern for adversarial behaviour). The flow control algorithm
of [64] adaptively sets the update rate (block issuing rate) of nodes using a TCP-like algorithm,
but the algorithm they present is designed for a controlled setting and no measures are taken to
defend against nodes that issue updates at a higher rate than the protocol dictates. A simple First
In First Out (FIFO) scheduler is assumed to be used in [64], and buffer overflows are used to signal
congestion and reduce update rate. This presents an opportunity for malicious nodes to deflate the
rate of others by simply setting their own rate too high. Additionally, trusted communication is
used by nodes in [64] to explicitly negotiate fair update rates, which is also exploitable by malicious
agents in the DLT setting.

QoS in packet switched networks is related to our problem because we wish to fairly regulate
flows of blocks from different sources. Classic examples of QoS architectures include Diffserv [65]
and Intserv [66], which offer course and fine-grained QoS respectively. Both of these architectures
rely on a backbone of trusted routers which are assumed to follow the protocol. Conversely, in DLT
networks, no other individual node can be trusted to provide reliable information, making these
classical architectures unsuitable. However, some of the core principles from these architectures
are still applicable to DLTs, for example, the use of packet schedulers. A router employing a
fair scheduling algorithm, in contrast to a simple FIFO scheduler, protects the flows of honest
nodes from congestion caused by misbehaving flows [67]. Fair schedulers have been proposed with
varying levels of complexity, each trying to emulate generalised processor sharing (GPS) as closely
as possible. Weighted fair queuing [68] provides a good approximation of GPS, but with significant
computational overhead for routers, while simpler schedulers such as those based on Deficit Round
Robin (DRR) [69, 70] provide lightweight and scalable alternatives.

Another feature of QoS networks and of IP networks in general which is relevant to our access

50

control problem is transmission control. TCP [71] typically involves a distributed Additive In-
crease Multiplicative Decrease (AIMD) algorithm to set the transmission rate: nodes additively
increase their transmission rate until congestion occurs (or is pre-empted), as signalled by some
feedback from the network; and multiplicatively decrease their transmission rate in response to
this congestion. In most forms of TCP, congestion is signalled when an acknowledgement is not
received for a packet, and some other variants are based on Random Early Detection and require
Explicit Congestion Notifications (ECNs) [72]. All of these AIMD algorithms require feedback
from other nodes, which leaves these protocols open to attack in the DLT setting, so none of them
are applicable to our problem in their entirety.

Remark: The algorithm that we shall propose is designed to operate in adversarial environments
where nodes can deviate from the recommended protocol (this is a baseline assumption under which
DLTs are designed). The need for resilience to attacks is not typically considered in traditional
networking applications such as those discussed above, which makes importing ideas from the
traditional networking community difficult, and makes benchmarking our algorithm against similar
work difficult, because it simply does not exist.

4.2 Problem Statement

We propose an access control algorithm for regulating block throughput, on a per-node basis, in
a DAG-based DLT network with reputation-based Sybil protection. The goal of the algorithm
is to allocate a portion of the network resources to each node proportional to their reputation
and to prevent detrimental congestion. Blocks are issued by nodes and disseminated around the
peer-to-peer network. Each node must validate all blocks, add them to its local copy of the ledger,
and then run some consensus algorithm. We call these steps writing. Writing is the bottleneck
at which congestion can occur, and the goal of our algorithm is to allocate constrained resources
fairly at this bottleneck.

The specifics of writing will vary across DLT implementations and may even vary from node to
node. For example, in certain DLTs some nodes may do the most computationally heavy tasks while
other limited nodes, such as IoT devices, perform lighter tasks while writing. Severely constrained
devices may operate simply as users, relying on trusted nodes for a reliable view of the ledger14. In
Chapter 6, we consider how to orchestrate the interaction between users and nodes in an enterprise
setting to ensure good network usability for all parties involved.

Our access control algorithm seeks to maximise the rate of dissemination of blocks, subject to
the writing bottleneck, while minimising delays. The algorithm must also meet the requirements
listed below. These requirements are described at a very high level here, and defined more precisely
before presenting our access control algorithm in Section 4.4.

• Consistency : if a block issued by an honest node15 is written by one honest node, it should
eventually be written by all honest nodes.

• Fairness in dissemination rate: the dissemination rate of each node should be allocated fairly
according to the node’s reputation.

• Fairness in latency : for a given dissemination rate, relative to the node’s reputation, a node’s
blocks should experience similar latency.

• Security : malicious nodes16 should be unable to interfere with any of the above requirements.

Remark: we do not write of fairness here in any ideological sense of the word, but in a far
more specific and relative sense. We assume that we have some agreed-upon measure of reputation
(recall Definition 1.3.1) for each node in our system and we seek to provide fairness relative to this
metric. One could, for example, create a DLT network in which only a small preselected group
of wealthy individuals hold any reputation and all other participants hold no reputation. Our

14
trinity.iota.org/nodes

15
An honest node is a node that follows the proposed protocol.

16
A malicious node is a node that issues blocks at a higher rate than that which the protocol dictates.

51

access control would then seek to allocate all resources to the wealthy individuals and none to
anyone else—this could be viewed as entirely unfair from an ideological standpoint while perfectly
satisfying our fairness requirements.

The physical limits of devices and the particular consensus algorithm employed determine the
rate of the writing bottleneck. This in turn determines the maximum performance of the network
(blocks/transactions per second, confirmation time, etc.), and our access control algorithm ensures
that this maximum performance can be reached.

4.3 Model and Notations

Figure 4.1: Model for a node m, indicating the actions taken by each node to process a block,
namely, receiving, issuing, scheduling, writing and forwarding. �m denotes node m’s block issuing
rate, ⌫ denotes its maximum scheduling rate, and with � ⌫ denotes its writing rate which must be
at least ⌫.

The model introduced in this section is illustrated in Figure 4.1, and the associated notation is
summarised in Table 4.1 at the end of this section. The ledger is distributed over a set of nodes M
in a peer-to-peer network, where a node m in M has a set of neighbours Nm ⇢M with which it
communicates directly. Each node locally processes each block which they either issue themselves
or receive from neighbouring nodes, as indicated in Figure 4.1. The subset of nodes which correctly
follow the protocol, referred to as honest nodes, is denoted M

⇤. The reputation distribution over
the nodes (see Definition 1.3.1) is denoted rep, where repm denotes the reputation of node m. In
the experiments presented here, rep is assumed not to vary with time.

Blocks are cryptographically signed, which links them to the identity of their issuer. The set of
blocks that are visible to (i.e., scheduled by) node m (either issued by node m itself or received from
neighbours) is denoted by Vm. Each node additionally confirms a subset of these visible blocks
and they are added the set of confirmed blocks Cm ✓ Vm. Confirmation in DAGs is discussed in
Chapter 2 and will be revisited in further detail in Chapter 5.

Definition 4.3.1 (Disseminated block). We say that a block is disseminated when it has been
received by all honest nodes, M⇤. The set of disseminated blocks, V, is defined as follows:

V =
\

m2M⇤

Vm (4.1)

and V
i denotes the subset of blocks in V which were issued by node i.

Nodes in a given DLT have some constrained resource (e.g., computation or storage) that limits
the rate at which they can process incoming blocks. The writing work of a block u is the work
required from this constrained resource at each node in order to reach consensus and decide if u
should be confirmed. We assume the expected writing work for u, denoted by |u|, to be known

52

in advance as it depends on known information such as the block payload type or size. Note that
this modeling choice permits us to have a flexible algorithm where specific class of blocks can be
prioritised, if needed. The expected writing work required to make decision on whether to confirm
the blocks in a set A is denoted by W (A), i.e.:

W (A) =
X

u2A

|u| (4.2)

and writing power corresponds to the rate at which this writing work is done. As writing power
is the limited resource in our network model, the rate of dissemination of blocks must be measured
in terms of the power required to write them.

Definition 4.3.2 (Dissemination rate). The dissemination rate, DR, is the rate of dissemination
of blocks, weighted by their work. This dissemination rate and the dissemination rate of node i’s
blocks, respectively, are defined as follows:

DR =
�W (V)

�t
(4.3)

DRi =
�W (V

i

)

�t
(4.4)

where �t is the time window over which we measure the dissemination rate.

Another important quantity for evaluating the performance of our access control algorithm is
dissemination latency, which is defined as follows.

Definition 4.3.3 (Dissemination Latency). The dissemination latency of a block is the time from
when the block is issued to when it is added to V. In other words, dissemination latency is the
random variable of the time it takes for a block to reach all honest nodes after it is issued.

Note that in order to achieve a consistent distributed ledger, all nodes must possess some min-
imum writing power to ensure that they can write blocks sufficiently quickly to keep up with the
network’s dissemination rate DR. For this reason we enforce a global writing power, ⌫, which all
nodes must be able to achieve. This constraint is highlighted in Figure 4.1 by the circle beneath
the word “Write”.

The actions taken by nodes are highlighted in boldface on the node model diagram in Figure 4.1,
and described as follows.

Receive
We assume reliable communication channels17, hence a node m must receive all blocks sent by its
neighbours Nm. If communication channels are unreliable, no guarantees can be provided that a
node will be able to acquire their fair share of resources, because other nodes must first be able to
receive their blocks. These blocks are filtered at this point to remove duplicates and invalid blocks.
A block can be considered invalid depending on the specific protocol employed: at a high level,
this filtering criterion concerns signature and timestamp validation, and protection against denial
of service attacks [73]. Filtered blocks are added to node m’s inbox buffer, Inboxm.

Issue
Nodes can additionally issue their own blocks, and these blocks are also added to the issuing node
m’s inbox buffer, Inboxm. The rate at which node m issues blocks is denoted by �m, and this is
controlled by node m using a rate setting algorithm. If all nodes wished to have as many blocks as
possible written at all times, then a fair allocation of the writing power would permit each node
to have an assured issuing rate, �̃m, defined as:

�̃m =
⌫ · repmP
i2M

repi
. (4.5)

17
Point-to-point connections are handled with TCP on a separate network layer, and hence can be considered

reliable.

53

with units of work per second. Assuming a fair allocation of writing resources in the network can
be achieved, node m can issue blocks at a rate less than or equal to �̃m, safe in the knowledge
that these blocks will be written by all nodes without causing backlogs and delays, regardless of
what rate other nodes issue blocks at. If a node wishes to issue blocks at a rate greater that �̃m,
this must be done taking the issuing rate of other nodes into account so as to avoid excessive
congestion. This latter observation motivates the need for the rate setting component of our access
control algorithm to allow nodes to effectively use excess capacity.

To capture the varying demand across nodes to issue blocks, we define four modes of operation
for nodes issuing blocks.

Definition 4.3.4 (Inactive). A node m is said to be in inactive mode if it is not issuing any blocks,
i.e., �m = 0.

Definition 4.3.5 (Content). A node m is said to be in content mode if it is issuing blocks at
a fixed rate �m �̃m. This is modelled as a Poisson process with rate parameter �m, which
is a standard model for arrival processes. There is no need for content nodes to regulate their
issuing rate in response to network traffic because they are content to issue at a rate below their
guaranteed minimum.

Definition 4.3.6 (Best-effort). A node m is said to be in best-effort mode if it is issuing blocks at
the highest rate possible under the current traffic conditions, without causing excessive congestion.
This requires a node to use the rate setting algorithm, outlined in Section 4.4, to utilise unused
network resources and adaptively set �m > �̃m. We assume that a leaky bucket regulator with rate
�m is used to achieve the set issuing rate i.e. the issuing rate is deterministic, rather than Poisson.

Definition 4.3.7 (Malicious). A node m is said to be in malicious mode if it is issuing blocks at
a rate �m � �̃m, without concern for the congestion caused. We assume that a malicious node
immediately writes and forwards its own blocks rather than including them in the scheduling steps.

Schedule
Blocks issued by node m itself and those received from neighbours are all added to Inboxm, as
described above. Inboxi

m
denotes the blocks in Inboxm issued by node i. Blocks from Inboxm

are then scheduled, added to the set of visible blocks, Vm, and forwarded to neighbours. A fair
scheduling algorithm [67] should be used to ensure that malicious agents issuing blocks at an
excessive rate can not delay the blocks of honest nodes at the inbox buffers. This scheduling
algorithm is discussed further in Section 4.4.

The scheduling process is deterministic, with rate ⌫, when there are blocks in the inbox to be
scheduled. Note that this deterministic scheduling rate is in units of writing power and is imposed
to ensure that the visible set of blocks can be written by all nodes having at least the minimum
writing power ⌫.

Write
When a block has been scheduled, it is added to Vm. The block is not yet considered confirmed
at this point. Rather, the block must still satisfy the consensus rules of the DLT. The consensus
protocol can vary between DLTs. For example, weight-based confirmation could be used, whereby
the cumulative weight of the block must be computed to exceed some threshold. Alternatively, or
indeed additionally, milestone-based confirmation can be employed, in which a voting algorithm
such as [46] or [74] is used to achieve consensus on a milestone block which confirmes everything
in its past cone. Each of these kinds of confirmation will be discussed in further detail and applied
in Chapter 5.

The complexity of the aforementioned consensus protocols increases with the number of blocks
involved, and varies with the type of blocks (for example, blocks containing sensor measurement
data may be cheaper to reach consensus on than blocks with transaction payloads which transfer
currency between accounts). The limit ⌫ is a parameter of the DLT which is configured to ensure
that any node with some minimum writing power can participate in the consensus.

54

Forward
After a block is scheduled by node m, it is forwarded to all neighbours Nm except for the neighbours
from which the block has already been received (these are the only nodes that m can be sure already
have this block). This is known as flooding, and while it is a highly inefficient use of communication
resources, we defer any optimisation for the sake of robustness and simplicity of analysis of our
access control solution. Duplicate blocks received as a result of flooding can easily be filtered out
and do not affect our results here.

Table 4.1: Notation for node and network model.

M set of all nodes in the network
M

⇤ set of all honest nodes
Nm set of nodes that are neighbours of node m
repm reputation of node m
Vm set of blocks visible to node m
Cm set of confirmed blocks in node m’s ledger
V set of all disseminated blocks
V
i set of disseminated blocks issued by node i

DR dissemination rate (all blocks)
DRi dissemination rate (blocks issued by node i)
⌫ global block writing power
�m issuing rate of node m
�̃m assured issuing rate of node m

4.3.1 Definition of Requirements
We now provide more precise definitions for each of the requirements stated in Section 4.2.

Definition 4.3.8 (Consistency). Consider a finite time window w 2 R+, and a finite offset h 2 R+.
At time t+ h, if all blocks added to Vm for any node m within time [t� w, t] are in V, the access
control algorithm of this network is said to satisfy the consistency requirement.

The interpretation of this consistency requirement all nodes must eventually receive all blocks,
which is essential if consensus on the ledger is to be achieved.

Definition 4.3.9 (Fairness in dissemination rate). An access control algorithm satisfies the fair-
ness in dissemination rate requirement if allocation of dissemination rate among nodes is max-
min fair, weighted by each node’s reputation. An allocation is max-min fair if an increase in any
node’s dissemination rate decreases the dissemination rate of another node m with equal or smaller
reputation-scaled dissemination rate, DRm/repm.

This fairness in dissemination rate requirement ensures that network resources are allocated to
nodes based on their reputation so that each node gets fair access to issue blocks, and hence a fair
vote. If this requirement is even approximately satisfied, then the ledger is resilient against Sybil
attacks and can be safely deployed in public and adversarial settings.

Definition 4.3.10 (Fairness in dissemination latency). We say that an access control algorithm
satisfies the fairness in dissemination latency requirement if the expected18 dissemination latency
of a node’s blocks is independent of its reputation, and increases with its reputation-scaled dissem-
ination rate.

This fairness in dissemination latency requirement ensures that blocks belonging to honest nodes
do not experience excessive delays. This requirement also ensures that nodes attempting to achieve
a higher dissemination rate than they should be entitled to will experience high delays. Delay does
not directly translate to a node’s ability to contribute to consensus as dissemination rate does, so
this is a soft requirement and approximate fairness in dissemination latency is sufficient.

18
This property may also be defined in terms of maximum latency, rather than expected latency, depending on

the requirements of the specific ledger.

55

Definition 4.3.11 (Security). An access control algorithm satisfies the security requirement if
the requirements defined in Definitions 4.3.8–4.3.10 are still satisfied in the presence of malicious
actors.

This final requirement of security is essential for the public DLT environment in which some
nodes (malicious actors) may try to gain an unfair advantage by deviating from the protocol. The
security requirement ensures that this can not happen.

4.4 Access Control Algorithm

The relevant notation and definitions are now in place, and we can now present our solution which
consists of three core components, namely a scheduler, a rate setter and a buffer manager.

Scheduler: The scheduling component aims to ensure that blocks issued by honest nodes do not
experience delays due to congestion caused by dishonest nodes. To this end, in the presence of
congestion, blocks should be scheduled at a rate proportional to the reputation of the node that
issued the blocks.

Rate setter: The rate setting component seeks to allow best-effort nodes (see Definition 4.3.6) to
issue at a rate above their assured rate, �̃m, without causing excessive congestion and large delays
which could cause a violation of the consistency requirement.

Buffer manager: The buffer management component decides when to drop blocks to protect
honest nodes’ blocks from being dropped due to congestion caused by malicious nodes. Under
normal network operation, the rate setting component should prevent the need for any dropped
blocks, but in the event of a malicious agent issuing blocks at an excessively high rate, buffer
management can ensure that only this malicious node’s blocks are dropped and the buffer does
not reach its physical capacity.

4.4.1 Scheduler
Nodes in our setting are capable of more complex and customised behaviour than a typical router
in a packet-switched network, but our scheduler must still be efficient and scalable due to the
potentially large number of nodes requiring differentiated treatment. It is estimated that over
10,000 nodes operate on the Bitcoin network19, and we expect that an even greater number of
nodes are likely to be present in the IoT setting. We therefore adopt an efficient and scalable
scheduler based on Deficit Round Robin (DRR), with modifications to deal with particular features
of a DLT network, namely high variance in reputation among nodes and potentially bursty traffic.
[69]. The standard Linux implementation of the DRR-based scheduler used in [75] permits up to
65,535 separate queues, which demonstrates the scalability of these methods.

DRR-based scheduling algorithms are very simple: each flow of packets (blocks) is visited in
a round robin cycle, and deficit is assigned to the flow. Deficit can be thought of as credits to
schedule packets, where sufficient credits must be accrued by a flow in order to have a packet
scheduled. Our scheduling algorithm, DRR�, is presented in Algorithm 1. Node m maintains a
deficit counter, DCi

m
, for each node i in M. Each node in M is considered in a round robin cycle,

one after another. Regardless of whether Inboxi

m
has any blocks in it, DCi

m
is incremented by a

quantum, Qi, which is proportional to repi, up to a maximum DCmax. The unit of deficit here is
that of writing work, and deficit |u| must be spent from DCi

m
in order to schedule a block u from

Inboxi

m
. Blocks in Inboxi

m
for each i are scheduled in FIFO order. The parameter DCmax should

be chosen to be higher than the maximum work required to write a single block, and such that
Qi ⌧ DCmax for all nodes.

In standard DRR [69], a flow must be backlogged (packets from this flow must be waiting in
the queue) in order to gain deficit. This feature of DRR presents problems for bursty traffic,
because queues may periodically empty between bursts. This is problematic in DLTs because
blocks must traverse multihop paths in the P2P network and the dynamics of these paths result

19
https://bitnodes.io/.

56

in bursty arrivals at nodes’ inbox queues. In our setting, higher reputation nodes can issue at
a higher rate, meaning that queues are backlogged with their blocks more often even when the
arrival of their blocks is bursty. Conversely, low reputation nodes issue at a lower rate, and queues
may be completely emptied of their blocks between bursts. This gives higher reputation nodes
an advantage in the standard DRR scheduler. DRR++ is a modification of the standard DRR
scheduler designed to ensure low delays for so-called latency-critical flows in the presence of bursty
arrivals [70]. DRR++ performs well for a small portion of latency-critical flows but becomes more
comparable to standard DRR when all flows are deemed latency-critical, as we require in the DLT
setting.

DRR�, on the other hand, can accommodate bursty traffic from all nodes. The principle behind
DRR++ is essentially to allow latency-critical flows to go into negative deficit so that they can be
scheduled rapidly. Our approach instead allows flows to gain deficit up to some limit, even when
the flow is not backlogged, saving rather than going in to debt. This allows bursty traffic while
maintaining efficiency because nodes with maximum saved deficit (indicating that they are inactive)
do not need to be visited by the scheduler. The scheduler presented in [76] also uses a concept of
deficit savings to accommodate bursty flows. However, [76] does not permit differentiated treatment
of flows based on reputation and their analysis focuses primarily on active queue management to
prevent bufferbloat [77].

Algorithm 1 DRR� Scheduler
Initialise:

1: DCi

m
 0, 8i 2M

Repeat for i 2M in a round robin cycle:
2: if DCi

m
< DCmax then

3: DCi

m
 DCi

m
+Qi

4: end if
5: while

��Inboxi

m

�� > 0 do
6: u oldest block in Inboxi

m

7: if DCi

m
� |u| then

8: Schedule u
9: DCi

m
 DCi

m
� |u|

10: Wait |u|

⌫
seconds

11: else
12: break
13: end if
14: end while

Table 4.2: Scheduling algorithm parameters.

⌫ scheduling rate
Qi quantum added to DCi

j
, 8j in each round (/ repi)

DCmax maximum deficit for an empty queue

4.4.2 Rate Setter
If all nodes always had blocks to issue, the problem of rate setting would be very straightforward:
nodes could simply operate in content mode, at a fixed, assured rate, �̃m (see Definition 4.3.5). The
scheduling algorithm ensures that this rate is enforceable and that increasing delays or dropped
blocks are only experienced by misbehaving nodes. However, it is highly unlikely that all nodes will
always have blocks to issue, and we would like best-effort nodes to better utilise network resources,
without causing excessive congestion and violating requirements.

Our rate setting algorithm, for best-effort nodes, is inspired by TCP — each node uses AIMD
(see Section 4.1) rules to update their issuing rate in response to congestion events [78]. However,
in the trustless DLT setting, the traditional means of responding to congestion is compromised.
For example, malicious nodes could attempt to deflate the issuing rate of their neighbours by not

57

sending acknowledgements, or sending illegitimate congestion notifications. We observe, however,
that in distributed ledgers, all block traffic passes through all nodes, contrary to traffic typically
found in packet switched networks and other traditional network architectures. Under these condi-
tions, local congestion at a node indicates congestion elsewhere in the network. This observation is
crucial, as it presents an opportunity for an access control algorithm based entirely on local traffic
and without the need for additional (potentially corruptible) interactions between nodes.

Recall that when a node m issues a block, it is added to its inbox buffer to be scheduled. Node
m’s own blocks in its inbox, Inboxm

m
, are then scheduled at a rate which depends on the other

traffic present in the buffer. We observe that the length of Inboxm

m
gives an estimate of congestion

in node m’s traffic, not only at its own inbox buffer but at Inboxm

i
for all nodes i in M

⇤, within
some network delay.

Algorithm 2 outlines the AIMD rules used by each node to set their issuing rate, and the
parameters of the rate setting algorithm are outlined in Table 4.3. Each node sets their own local
additive-increase parameter based on the global increase rate A, and their reputation. Specifically,
each node sets their local increase parameter as follows:

↵m A ·
repmP
i
repi

. (4.6)

An appropriate choice of A ensures a conservative global increase rate which does not cause prob-
lems even when many nodes increase their rate simultaneously. Updates are made to the issuing
rate each time a block is scheduled, at a rate proportional to the writing work of the block, |u|,
which allows the rate setter to accommodate variable block types and sizes. Nodes wait ⌧ sec-
onds after a multiplicative decrease, during which there are no further updates made, to allow the
reduced rate to take effect and prevent multiple successive decreases. Waiting after decreases is
common in implementations of AIMD algorithms, such as sliding window flow control in TCP [71].
The rate is updated each time a block is scheduled. At each update, node m checks the work
|Inboxm

m
| and responds with a multiplicative decrease if this is above a threshold, W · repm, where

W is a global parameter. If |Inboxm

m
| is below this threshold, m’s issuing rate is incremented by

its local increase parameter ↵m. |Inboxm

m
| is measured as an exponential moving average with

samples taken each time a block is scheduled.

Table 4.3: Rate setting algorithm parameters.

A global additive increase parameter
� global multiplicative decrease parameter
⌧ wait time parameter
W inbox work threshold

Algorithm 2 AIMD Rate Setter (Best-effort Mode)
Repeat each time a block u is scheduled:

1: if |Inboxm

m
| > W · repm then

2: �m �m · �
3: Pause issuing and rate setting for ⌧ seconds
4: else
5: �m �m + ↵m · |u|
6: end if

4.4.3 Buffer Manager
Nodes’ inbox buffers do not have infinite capacity, and buffer capacity can be particularly limited
in the case of IoT devices. Even if the capacity of buffers could be made arbitrarily large, an
excessively full buffer could result in large delays [77]. Our buffer management seeks to drop
blocks fairly (with respect to issuing node’s reputation) whenever the buffer exceeds a certain size.
The objective of our buffer management differs from than that of typical active queue management
(AQM) systems. AQM is generally used to regularly drop packets and generate explicit congestion
notifications (ECNs), forming a key component of how congestion is detected for rate setting. An

58

early example of this kind of AQM can be found in [72], and it is also a component of the schedulers
discussed above [76, 75]. However, dropped blocks or ECNs are not used to detect congestion in
our setting, so our buffer management does not play a direct role in rate setting. Rather, buffer
management plays the important role of ensuring that malicious nodes that do not abide by the
rate setting rules can not fill the buffers and cause honest blocks to be dropped. Our rate setting
algorithm prevents excessive congestion under normal operation and buffer management should
only take effect in the presence of malicious behaviour.

The simple buffer management rule employed in this chapter is stated in Algorithm 3. This buffer
management is equivalent to the longest queue drop scheme proposed in [79]. The parameter Wmax

is the maximum work in the inbox buffer after which blocks should be dropped. We assume that
each block has some maximum size in memory and requires some minimum work, so Wmax bounds
the memory needed. Provided the buffer memory is specified to be larger than this worst case
memory, the buffer management will prevent the buffer from overflowing.

If the work in the buffer exceeds Wmax, the node with the greatest amount of work in the
buffer, relative to its reputation, is identified, and the first received block is dropped, as outlined
in Algorithm 3. This buffer management strategy ensures that consistency is preserved for honest
nodes, because the work from honest nodes in the buffer should remain modest and hence their
honest blocks will not be dropped — the scheduler ensures that this is the case as it will continue
to schedule fairly without regard for large influxes of blocks from malicious nodes.

Algorithm 3 Buffer Manager
1: while |Inboxm| > Wmax do
2: d argmax

i2M

|Inbox
i

m
|

repi

3: Drop block from head of Inboxd

m

4: end while

4.5 Simulations

We now present simulations to evaluate the efficacy of our approach. The main focus of our
evaluation is to verify that the requirements have been met, as these guarantee that the resources
available to the nodes are optimally utilised both fairly and securely. To this end, we provide
simulations for both honest and malicious environments, then demonstrate the robustness of our
solution to parameter choices. After that, we demonstrate how our algorithm can accommodate
different node types and their differing usage of the ledger in IoT settings. Finally, we benchmark
our work against PoW access control, which represents the current state of the art access control
solution for DAG-based DLTs.

In terms of evaluating performance, our results show that we can achieve close to 100% utilisation
of node resources up to the limit, ⌫, set to ensure all nodes can keep up with the rate of newly issued
blocks. The number of blocks per second that a DLT employing this access control can handle will
therefore depend on the resources available to nodes and the consensus algorithm employed which
together will determine the achievable rate ⌫.

The results in this section are produced with a Python simulator for DAG-based distributed
ledgers20. We consider a network of 50 nodes, each storing a copy of the ledger, and each with
4 randomly selected neighbours, resulting in a random 4-regular topology of the peer-to-peer
network. The mean propagation delay of each communication channel between neighbours is chosen
uniformly at random between 50 ms and 150 ms, and the delay for each block on these channels
is normally distributed around this average with standard deviation 20 ms. Node reputation is
computed according to real data, that is, the number of blocks issued by each account in the IOTA
network and follows a Zipf distribution21 with exponent 0.9. Simulation results are averaged over
20 Monte Carlo simulations, each 180 seconds simulation time, where the simulator is stepped in

20
Source code available at https://github.com/cyberphysic4l/DLTCongestionControl/tree/iotj.

21
Wealth has also been shown to follow similar distributions, so this model is also well suited to reputation systems

derived from wealth, i.e., PoS [45].

59

increments of 10 milliseconds. We assume that each node has buffer capacity greater than the
parameter Wmax specified for the buffer management, so no buffer overflows occur.

4.5.1 Honest Environment
The first set of simulations is in an honest environment, where each node is operating in one of
the three honest modes: inactive, content, or best-effort (see Definitions 4.3.4–4.3.6). We evaluate
whether dissemination rate is maximised, dissemination latency is minimised, and the first three
requirements are met, namely consistency, fairness in dissemination rate and fairness in dissemi-
nation latency (see Definitions 4.3.8–4.3.10). The distribution of reputation and operating mode
is illustrated in Figure 4.2. The global block writing rate is ⌫ = 50 units of work per second and
each block requires one unit of work unless otherwise specified, i.e., |u| = 1 for all blocks u. The
parameters of the access control algorithm for this set of simulations, given in Table 4.4, are chosen
experimentally.

Figure 4.2: Reputation distribution follows a Zipf distribution with exponent 0.9. Nodes are
content, best-effort, or inactive as indicated by each bar’s colour.

Table 4.4: Access control algorithm parameters.

Scheduler Rate Setter Buffer Man.
⌫ Qi DCmax A � ⌧ W Wmax

50 repiP
rep

1 0.075 0.7 2 2 200

Figure 4.3 shows the overall dissemination rate, DR, (see Definition 4.3.2) for this set of simula-
tions alongside the mean dissemination latency (see Definition 4.3.3) over all disseminated blocks.
DR is shown as a percentage of ⌫ because ⌫ is the maximum rate blocks can be disseminated.
We observe that the dissemination rate converges to a value close to 100% and that the mean
dissemination latency converges to a steady state, in this case around 5 seconds. The mean dis-
semination latency depends heavily on the network diameter and delays associated with each hop,
and the dissemination rate and latency convergence values depend on the rate setting parameters
as demonstrated below.

The consistency requirement is demonstrated by Figure 4.4 which shows the maximum time
in transit. The time in transit can be measured for a block that is not yet disseminated, and is
the time spent in the system, i.e., the time from when it was issued to the present. This value
converges to a finite value in Figure 4.4, demonstrating that consistency is achieved in the honest
environment. Also note that no blocks were dropped by the buffer manager in these simulations,

60

Figure 4.3: Dissemination rate and mean dissemination latency over all blocks.

in line with research in [79]. We can observe small oscillations in these measurements which can
be explained by the AIMD rate setter employed by best effort nodes which periodically increases
the rate of these nodes until congestion occurs, and then decreases the rate.

Figure 4.4: Maximum time since issue for all undisseminated blocks, demonstrating that consis-
tency is achieved.

Fairness in dissemination rate is demonstrated by Figures 4.5. The upper subplots show the
dissemination rate of each node, and the lower plot shows this dissemination rate scaled by each
node’s reputation. Best-effort nodes are plotted in red, and content nodes in blue, with the
thickness of each trace proportional to the reputation of the relevant node, i.e., higher reputation
nodes’ rates are plotted with thicker lines. The bottom plot shows a particularly crucial result,
namely it demonstrates that each node gets fair access to write to the ledger according to its
reputation. In other words it implements Sybil protection, and we will show below that malicious
actors can not tamper with this by deviating from the protocol.

To further demonstrate fairness in dissemination rate, Figure 4.6 shows results from simulations

61

Figure 4.5: Dissemination rate and scaled dissemination rate of each node. The bottom plot of
scaled dissemination rate demonstrates that fairness in dissemination rate is achieved.

in which the highest reputation content node switches to best-effort mode after 90 seconds. This
node’s dissemination rate is shown in purple and we can clearly see that all best-effort nodes adapt
their issuing rates to maintain fairness under the new traffic conditions.

Fairness in dissemination latency is demonstrated by Figure 4.7, which shows the cumulative
density function of dissemination latency across blocks issued by each node. Figure 4.7 includes
a comparison between the DRR� scheduler and a standard DRR scheduler to demonstrate the
improvements made by our design. The same convention for colour and line thickness as Figure 4.5
is used here. Clearly, fairness in dissemination latency is only approximately achieved, with lower
reputation nodes experiencing higher latency than higher reputation nodes. However, our DRR�
scheduler a significant improvement over the standard DRR scheduler. Low reputation nodes
receive slightly unfair treatment from the scheduler because their blocks are emptied more often
from inboxes since they have a lower issuing rate and hence less backlog. In standard DRR, deficit
can not be gained when an inbox is empty, so lower reputation nodes gain less deficit and inboxes
become disproportionately backlogged with their blocks, resulting in higher delays. This problem
is ameliorated in our scheduler (DRR�) by sometimes allowing deficit to be gained with an empty
inbox.

4.5.2 Adversarial Environment
In order to test the security requirement, malicious nodes must be introduced to the simulation
while consistency, fairness in dissemination rate and fairness in dissemination latency are not

62

Figure 4.6: Dissemination rate and scaled dissemination rate of each node. The highest reputation
content node (purple) switches to best-effort after 90 seconds and other best-effort nodes must
adapt their rates.

compromised for honest nodes. We focus our attention on the malicious behaviour defined in
Definition 4.3.7 as we can not anticipate all potential attack strategies. This attack serves to show
that a node can not simply inflate their dissemination rate beyond what its reputation allows.
Retaining the above network topology and reputation distribution, we introduce malicious nodes
as illustrated in Figure 4.8, where we simply make every fourth node malicious.

Figure 4.9 shows the maximum time spent in the system for blocks issued by honest nodes. This
measurement considers all undisseminated blocks in the system at each time step. This appears
to converge as before, indicating that consistency is still achieved.

Figure 4.10 shows the dissemination rates and scaled dissemination rates for this set of simula-
tions. Clearly, fairness is still achieved for honest nodes. The dissemination rate of the malicious
nodes initially begins to converge to the max-min fair value also, but when they begin to cause
excessive congestion, the buffer management component begins dropping malicious blocks and the
malicious nodes’ dissemination rate falls to zero.

Figure 4.11 demonstrates that approximate latency fairness is still achieved for the honest nodes
but that malicious nodes experience far higher latency. Only the DRR� scheduler is displayed in
this case as there is no further need to compare with standard DRR as in Figure 4.7.

Note that 12 of the 50 nodes simulated in this section issue at a greater rate than they should

63

Figure 4.7: Cumulative distribution of dissemination latency for each node for DRR scheduler and
DRR� scheduler. It is shown that only approximate fairness in dissemination latency is achieved,
but DRR� performs far better than standard DRR in this respect.

Figure 4.8: Reputation distribution following a Zipf distribution with exponent 0.9. Nodes are
content, best-effort, inactive or malicious as indicated by the colour of each bar.

be allowed, and yet the fairness properties remain well satisfied. This is due to the fact that all an
honest node requires in order to schedule all blocks at a fair rate is to receive the blocks in the first
place. This means that the access could theoretically tolerate an arbitrary number of malicious
nodes of this kind. In order to break the fairness requirement for an honest node, an attacker
would need to prevent their blocks from reaching the rest of the network by ensuring they are not
connected to any honest neighbours. This kind of attack is known as an eclipse attack, and can
be prevented through measures at the level of the peer-to-peer network formation. Attacks of this
kind on the network topology are beyond the scope of this work.

64

Figure 4.9: Maximum time since issue for undisseminated blocks issued by honest nodes.

4.5.3 Sensitivity Analysis

We now demonstrate how the network responds to tuning of the rate setting parameters. We focus
particularly on the increase parameter A, the decrease parameter �, the work threshold W , and
the total number of nodes |M|. The wait time ⌧ should simply be chosen long enough so that
successive decreases do not falsely occur after a congestion event.

First, consider the increase parameter A. Beginning with the simulation parameters given in
Table 4.4, we demonstrate the effect of increasing and decreasing A in Figure 4.12. It is shown
that increasing A results in faster convergence to the equilibrium dissemination rate and mean
dissemination latency, but that it has little impact on the equilibrium expected values.

Next, we analyse the impact of the decrease parameter �. Similar to the last experiment,
we adjust � while fixing the other simulation parameters listed in Table 4.4. Figure 4.13 shows
the corresponding results. A lower decrease parameter causes the issuing rate to decrease more
drastically at congestion events. Thus we observe more oscillation in the mean latency, indicating
that queue lengths oscillate more. Also we observe a very slight decrease in dissemination rate as
� is decreased.

Finally, we demonstrate the impact of the work threshold W . This threshold corresponds to the
level of backlog which is considered congestion, so this parameter has a significant impact on the
queue lengths and hence the latency. This is illustrated in Figure 4.14, in which W is changed
while keeping all other simulation parameters from Table 4.4 fixed. We observe that there is a very
clear impact on the mean latency resulting from this choice, and less so from different choices of
A and �. The significance of W is directly linked to the equilibrium level of congestion at which
the rate setting responds, while A and � primarily determine how quickly the system reaches that
equilibrium, and how aggressively the rate setting reacts to each congestion event, respectively.
Note that if we decrease the threshold W too much, noise in the measurements of the inbox can
become significant and fairness of the rate setting can be compromised. The lower limit of W to
minimise latency while preserving fairness should be determined experimentally for deployment in
a real network.

The rate setting parameters here are designed to scale with the network, so new nodes joining
should not require re-tuning of parameters. Figure 4.15 presents dissemination rate and delay
as the number of nodes is changed, with all other access control algorithm parameters remaining
unchanged. The total reputation as given in Figure 4.2 is conserved, but is redistributed among

65

Figure 4.10: Dissemination rate and scaled dissemination rate for each node. The bottom plot of
scaled dissemination rate demonstrates that fairness in dissemination rate is achieved for honest
nodes, while malicious nodes are penalised by the buffer management and experience lower dis-
semination rates.

nodes to retain the Zipf distribution as nodes join and leave the network. It is clear that the
algorithm performs well without requiring retuning of parameters as the network scales, although
delay is increased slightly as the diameter of the network increases.

Deployment of our algorithm in a real DLT network (IOTA’s GoShimmer network [56]) with
varying number of nodes, real traffic and a range of network topologies will allow us to further
verify the robustness of our parameter choices. Parameters relating to inbox lengths and scheduler
parameters will require consideration of the buffer capacity available to nodes and the number
of nodes in the network, which will also be examined when the algorithm is deployed in our test
network.

4.5.4 IoT Devices and Variable Block Work
For simplicity of presentation, all blocks in the simulations presented so far require equal work
to write and are therefore treated equally by the access control. In the IoT setting, blocks may
contain varying payloads, such as sensor readings, machine-to-machine micro-payments, or a range
of application-specific data, all of which require different levels of work to write. Contrary to IoT
data blocks, we expect that blocks which transfer currency will typically require more work due to
processes such as validity checks and updating account balances. In the following set of simulations,
we demonstrate that our algorithm can handle variable block work requirements, and that lower

66

Figure 4.11: Cumulative distribution of dissemination latency for each node. Malicious nodes are
shown to experience higher latency, while approximate fairness in dissemination latency is retained
for honest nodes.

Figure 4.12: Combined dissemination rate as a percentage of ⌫, and mean dissemination latency,
changing the additive increase parameter A.

work blocks actually experience lower latency, giving an advantage to IoT devices issuing such
blocks. In order to illustrate the impact of varying block work, consider two representative node
types.

• Value node: all blocks are value transfers and require one unit of work.

• IoT node: blocks contain an array of data types and require random work uniformly dis-
tributed on the interval [0.25, 0.75].

Consider the same reputation distribution and operation modes as illustrated in Figure 4.2 with
all even numbered nodes as value nodes and all odd number nodes as IoT nodes (note that nodes
are numbered from 0 to 49). The access control parameters are as given in Table 4.4.

67

Figure 4.13: Combined dissemination rate as a percentage of ⌫, and mean latency, changing the
multiplicative decrease parameter �.

Figure 4.14: Combined dissemination rate as a percentage of ⌫, and mean latency, changing the
work threshold parameter W .

Figure 4.16 shows that fairness is still achieved with this combination of IoT nodes and value
nodes. Figure 4.17 shows the dissemination latency for each node. Approximate fairness in dis-
semination latency is still achieved, and more notably, IoT nodes have lower latency compared
with the equivalent nodes in earlier simulations.

4.5.5 Comparison to Proof of Work Access Control
At the time of invention of the present access control algorithm, PoW access control was the
state-of-the-art for DAG-based DLTs. PoW access control for DAGs is very straightforward: the
difficulty of the PoW is set for the protocol and this determines how rapidly a node can create
blocks with a valid PoW puzzle solved given its available computing resources. Blocks are simply
scheduled in FIFO order. The PoW difficulty should be set such that writing resources are well
utilised, but nodes with scarce writing resources can write all incoming blocks to their ledger
without becoming congested. However, if the PoW difficulty is set too high, writing resources will
be underutilised and dissemination rate will not be maximised. On the other hand, if it set too

68

Figure 4.15: Combined dissemination rate as a percentage of ⌫, and mean dissemination latency
with varying number of nodes |M| in the network.

low, blocks could be issued too rapidly for nodes with low writing power, and they would become
overwhelmed.

For the purpose of illustration, suppose we estimate the combined computing power of all nodes
in a network, and we set the PoW difficulty such that if all nodes were active at the same time,
the nodes with the lowest writing power would just be able to keep up. We then have three cases
that can arise:

1) some nodes are inactive, or the actual active computing power is lower than estimated;

2) the estimate of computing power matches the active computing power in the network;

3) the active computing power in the network is higher than estimated, or new nodes have
recently joined with additional computing power, bringing the total above the estimated
level.

Cases 1)–3) are compared to our algorithm in Figure 4.18. We simulate these cases using the
network from Section 4.5.1, with computing power distribution as per the Zipf distribution of
reputation given in this section. We set the PoW difficulty such that all nodes using their full
computing power could issue blocks at a rate ⌫. For case 1), the inactive nodes as shown in
Figure 4.2 are inactive, and all others use their full computing power, resulting in lower active
computing power than estimated. For case 2), we take all nodes as active and utilising their full
computing power, which results in the active computing power precisely matching the estimate.
For case 3), we increase each node’s computing power by 5%, resulting in higher active computing
power than estimated.

From Figure 4.18 we see that: in case 1), latency is low but resources are underutilised as is
evident from the dissemination rate below 80%; in case 2) the utilisation is good, but the latency
gradually increases as some queues build up at the slowest nodes; in case 3) the utilisation is high
but latency explodes due to nodes with low resources being unable to keep up with the rate of
blocks being issued; with our algorithm we achieve high utilisation and maintain a stable latency
as nodes can all manage their queues.

It is clear that PoW is very sensitive to the difficulty setting, performing poorly or failing
completely if this is estimated incorrectly. This is a major issue because techniques for adapting
the difficulty of PoW based on the estimated active computing power, such as that used in the
Bitcoin network [2], operate over excessively long time scales of many hours or even days. In

69

Figure 4.16: Dissemination rates of each node with a mixture IoT nodes and value nodes. The
bottom plot demonstrates that fairness in dissemination rate is achieved in the presence of variable
block work requirements.

our access control algorithm, on the other hand, nodes do not need to waste energy on solving
PoW puzzles and can adapt their issuing rate immediately in response to traffic observed in their
inboxes.

Remark: the results for PoW access control presented above demonstrate just some of the
weaknesses of existing access control for DAG-based DLTs. Case 2) may seem almost acceptable,
but note that this is not even practically achievable. Moreover, all three PoW cases correspond to
hugely wasteful energy consumption and performance limitation, and the reality is that PoW is a
legacy access control mechanism which prevents mainstream adoption of DLT in the IoT setting.
This work offers the first IoT-friendly alternative.

4.6 Chapter Summary

We have presented an access control algorithm for DAG-based distributed ledgers which enforces
a resource allocation to nodes based on their reputation. Our solution is especially suitable for
the IoT setting because nodes are not required to wastefully commit computing resources in order
to contribute to the ledger, as is the case in traditional PoW DLTs. Additionally, the DAG-based
ledger structure permits high throughput and low latency because blocks are not limited to being
added sequentially.

70

Figure 4.17: Cumulative distribution of dissemination latency for each node with a combination
of IoT nodes and value nodes. It is clear that approximate fairness in dissemination latency is still
achieved in the presence of variable block work requirements.

Figure 4.18: Dissemination rate as a percentage of maximum scheduling rate, ⌫, and mean latency
for cases 1)–3) of PoW access control, shown alongside our algorithm with parameters given in
Table 4.4.

The main features of our access control solution are an efficient fair scheduler, a TCP-inspired
rate setting algorithm, and a buffer management scheme. We have shown, via network simulations,
that our algorithm:

• ensures resources are allocated fairly and securely. The algorithm permits high utilisation of
resources while preventing excessive congestion which could otherwise cause large delays and
buffer overflows;

• is resilient against malicious agents wishing to claim more than their fair share of network
resources;

71

• is robust to changes in parameters;

• permits a range of block types and sizes which may require differentiated treatment, making
our algorithm applicable to networks with mixed node types, such as IoT nodes storing sensor
data on the ledger, and larger devices making financial transactions;

• improves significantly on the state of the art in access control, namely PoW. Our comparisons
demonstrate PoW’s shortcomings and further motivates our new approach.

72

Chapter 5

Co-Design of Access Control, Tip
Selection and Confirmation

Abstract— In this chapter, we present a co-design that unifies the work of all pre-
vious chapters, namely the tip selection analysis of Chapters 2 and 3 and the access
control algorithm of Chapter 4, and we additionally confront confirmation in DAGs.
This work not only allows us to understand each of the components of the data flow
and how they interact more deeply, and to evaluate the end-to-end performance of
the network in a more meaningful manner, but the preliminary results presented
also demonstrate that excellent performance and security properties can be acheived.
This is ongoing research in collaboration with a number of researchers from IOTA
Foundation including Piotr Macek, Dr. Olivia Saa, Dr. William Sanders, Jonas Theis,
Dr. Luigi Vigneri and Dr. Wolfgang Welz, as well as Lianna Zhao and Prof. Robert
Shorten from Imperial College London. Other preliminary results related to this work
and more extensive attack analysis also appear in [80].

The core access control algorithm presented in Chapter 4 manages who gets to write what to
a distributed ledger and, as such, the security of every part of that ledger relies on the access
control component. Every decision made by nodes in a DLT (e.g., which transactions to confirm
and which ones to reject) are based on the contents and structure of the ledger and metrics such
as cumulative weight. For the sake of simplicity, we have mostly avoided discussion of the DAG
structure in our discussion of access control up to this point, but the other key DLT components
governing the DAG structure, such as tip selection, are inextricably linked to access control. In this
chapter, we confront the link between access control and tip selection and present a new data flow
which integrates tip selection and management of the DAG directly into the core access control
framework.

Under normal operation of the core access control algorithm, each node schedules blocks at a
maximum rate ⌫ and allocates this scheduler capacity to the traffic of each node based on that
node’s reputation. This ensures a fair allocation of the network resources when demand is high.
Additionally, nodes with blocks to issue regulate their issuing rate based on current traffic via the
rate setter component. This ensures that the node’s blocks are not delayed excessively or even
dropped from the inbox of other nodes. If, however, a particular node does not follow the protocol
and issues blocks at a greater rate than they should, some nodes may drop their blocks whilst
others keep them and use them for tip selection. This can be problematic and prevent honest
nodes’ blocks from being scheduled if not carefully managed. Addressing these problems related
to the DAG structure is the primary reason for the changes we propose here to the core access
control algorithm of Chapter 4.

To develop these ideas further, recall that a node requires the entire past cone of any newly
received block (all blocks it approves either directly or indirectly) to ensure that there are no

73

conflicts in what it approves and to compute quantities such as cumulative weight which may be
required for consensus. We refer to a block without any missing information about its past cone
as solid.

Definition 5.0.1 (Solid). A block u is said to be solid for a node m if node m has seen all blocks
in u’s past cone, i.e., if node m has seen all blocks approved either directly or indirectly by u.

For the purpose of illustration of what it means to be solid, Figure 5.1 depicts the local ledger
view of two nodes. The left node has not dropped the orange block, so the red block is said to be
solid, while the node on the right has dropped the orange block, meaning that the red block is not
solid for this node.

Figure 5.1: Left: the red block is solid for this node. Right: the red block is not solid for this node
because the orange block was never received.

Blocks may be lost in transit from one node to another or arrive out of order for a variety of
reasons. For example, a malicious actor could intentionally withhold certain blocks. However,
the reason we are now concerned with solidification is that, as we observed in our experiments in
Chapter 4, blocks from nodes which issue at excessively high rates may be dropped from scheduling
buffers and hence may not be forwarded to neighbours. If blocks are dropped without consideration
for their ordering in the DAG, this can result in blocks not being solid for neighbours. Nodes can
request missing blocks from neighbours by sending them a solidification request22, although we
would like to avoid such requests as much as possible in the interest of minimising delays, backlogs
and potential resulting cascades of dropped blocks. As we explain below, our new data flow
minimises solidification requests by ensuring that blocks are always scheduled and forwarded in
the order they appear in the DAG. Recall that communication between nodes in the peer-to-peer
network is handled by TCP so packet ordering can generally be maintained effectively during data
transmission.

Another key difference between the present chapter and Chapter 4 is in our evaluation. In
Chapter 4, we evaluated our access control algorithm primarily based on dissemination rates (see
Definition 4.3.2) achieved by each node and their dissemination latency (see Definition 4.3.3),
which allowed us to show that nodes were allocated a fair throughput and delay based on their
reputation. In this chapter, we are not only concerned with whether or not a block reaches all
nodes (i.e., whether it is disseminated), but with how the DAG structure develops as a result and
whether or not blocks become confirmed. In order to evaluate this, we require some new definitions.

Recall from Chapter 4 that Cm is the set of blocks confirmed by node m. We now define C as
the set of all blocks confirmed by all honest nodes, and C

i is the subset of blocks in C that were
issued by node i. Furthermore, we define the notions of partial and full confirmation as follows.

Definition 5.0.2 (Partially Confirmed). We say that a block is partially confirmed if the block is
in Cm for some honest node m and it is not in C.

Definition 5.0.3 (Fully Confirmed). We say that a block is fully confirmed if the block is in C.
22

A special message requesting a missing block in order to make another block solid.

74

We then introduce the confirmation rate and confirmation latency metrics, defined as follows.

Definition 5.0.4 (Confirmation rate). The confirmation rate, CR, is the rate of full confirmation
of blocks, weighted by their work. This confirmation rate and the confirmation rate of node i’s
blocks, respectively, are defined as follows:

CR =
�W (C)

�t
(5.1)

CRi =
�W (C

i

)

�t
(5.2)

where �t is the time window over which we measure the confirmation rate and W (A) denotes the
work of blocks in the set A, as defined in (4.2).

Definition 5.0.5 (Confirmation Latency). The confirmation latency of a block is the time from
when the block is issued to when it is added to C. In other words, confirmation latency is the
random variable of the time it takes for a block to become fully confirmed.

5.1 Model and Notations

The updated data flow, depicted in Figure 5.2, and modifications of the core access control algo-
rithm aim to ensure that blocks are scheduled in the order they appear in the DAG, preventing
solidification issues propagating through the network. By linking tip selection and tip set manage-
ment explicitly to the scheduler, we aim to prevent honest nodes from selecting malicious tips and
having their own blocks delayed as a result.

Table 5.1 provides notation relevant to the model presented in this chapter, with some notation
carried over from Chapter 4 .

Table 5.1: Notation for node and network model.

M set of all nodes in the network
Nm set of nodes that are neighbours of node m
repm reputation of node m
Cm set of blocks confirmed blocks by node m
CR confirmation rate (all blocks)
CRi confirmation rate (blocks issued by node i)
⌫ global block writing power
�m issuing rate of node m
�̃m assured issuing rate of node m

The actions outlined in Section 4.3, namely to receive, issue, schedule, write and forward are
all still carried out by nodes in this modified data flow. However, the writing step is now dealt
with explicitly by the confirmation manager, and the details of each of the processes are modified
as discussed below. Our focus in this chapter is on the modified processes highlighted by the
components of Figure 5.2.

5.1.1 Definition of Requirements
We now provide a new set of requirement for our modified access control algorithm which focus on
confirmation of blocks rather than simply dissemination.

Definition 5.1.1 (Consistent Confirmation). Consider a finite time window w 2 R+, and a finite
offset h 2 R+. At time t+h, if all blocks added to Cm for any node m within time [t�w, t] are in C

(see Definition 5.0.4), the access control algorithm of this network is said to satisfy the consistent
confirmation requirement.

The interpretation of this consistent confirmation requirement is that if one node confirms a
block, all nodes must eventually confirm this block, which is essential if consensus on the ledger is

75

Figure 5.2: Node model: arrows indicate the flow of blocks through the node with red arrows
indicating conditions under which blocks are dropped.

to be achieved. In other words, we will need to show that if a block becomes partially confirmed, it
eventually becomes fully confirmed. The finite time window, w, after which we expect a partially
confirmed block to become fully confirmed can be specified precisely in practice when evaluating
whether a network achieves this property.

Definition 5.1.2 (Fairness in confirmation rate). An access control algorithm satisfies the fairness
in confirmation rate requirement if allocation of confirmation rate (see Definition 5.0.4) among
nodes is max-min fair, weighted by each node’s reputation. An allocation is max-min fair if an
increase in any node’s confirmation rate decreases the confirmation rate of another node m with
equal or smaller reputation-scaled confirmation rate, CRm/repm.

This fairness in confirmation rate requirement ensures that network resources are allocated to
nodes based on their reputation.

Definition 5.1.3 (Fairness in confirmation latency). We say that an access control algorithm
satisfies the fairness in confirmation latency requirement if the expected confirmation latency
(see Definition 5.0.5) of a node’s blocks is independent of its reputation, and increases with its
reputation-scaled confirmation rate.

This requirement ensures that blocks belonging to honest nodes do not experience excessive
delays in being confirmed. This requirement also ensures that nodes attempting to achieve a
higher confirmation rate than they should be entitled to will experience high delays.

Definition 5.1.4 (Security). An access control algorithm satisfies the security requirement if the
requirements defined in Definitions 5.1.1–5.1.3 are still satisfied in the presence of malicious actors.

This final requirement of security is essential for the public DLT environment in which some
nodes (malicious actors) may try to gain an unfair advantage by deviating from the protocol. The
security requirement ensures that this can not happen.

5.2 Access Control, Tip Selection and Confirmation

Our co-design spans the three main aspects of a DLT highlighted in Chapter 1, namely access
control, tip selection and confirmation. As shown in Figure 5.2, the data flow is comprised of a
number of interconnected modules which we now describe in further detail.

5.2.1 Rate Setter
The rate setter remains unchanged from that of Chapter 4, although rather than issuing blocks
directly to the scheduling buffer, we now deal separately with block creation. As such, when a
block is issued by the rate setter, it is passed to the block factory.

76

5.2.2 Block Factory
The block factory module is responsible for creating blocks to be issued to the ledger. This process
includes selecting tips to which the new block is attached. Specifically, we use URTS (see Sec-
tion 2.1.2) on a subset of tips which is determined by the tip set manager as described below. A
timestamp is also added to every newly created block in the block factory.

5.2.3 Parser
Blocks received from neighbouring nodes go to the parser which checks basic validity information.
For example, the parser verifies that the syntax of the block is consistent with any constraints of
the DLT protocol and ensures that the timestamp of a block is greater than that of its parents.
Invalid blocks are dropped and valid blocks are forwarded to the solidifier. In the simulations
presented in this thesis, all blocks are valid and we assume that it is trivial to detect invalid blocks.

5.2.4 Solidifier
The solidifier module checks whether the full past cone of each new block has been received. If
the parents of the new block are missing, the solidifier sends a solidification request to the node
from which it received the new block. This may need to be done recursively if the parents of the
requested parent are also missing, and so on.

5.2.5 Scheduler and Buffer Manager
The scheduling buffer, illustrated in Figure 5.2, consists of an inbox buffer, Inboxm (as described
in Chapter 4), which is serviced according to the scheduler described in Algorithm 4 and managed
according to the buffer manager described in Algorithm 5. Both of these algorithms are modified
versions of those presented in Chapter 4. Note that there are only two modifications to the scheduler
from the original access control algorithm: the first is that we order blocks by their timestamp
rather than the time they become visible; and the second is that we require the blocks to be ready
to be scheduled, which is defined as follows.

Definition 5.2.1 (Ready). A block u is ready if u’s parents are scheduled.

By scheduling in timestamp order and requiring blocks to be ready, we ensure that a node
only forwards a block if it has also forwarded the block’s parents and hence prevents solidification
problems at neighbouring nodes. This also penalises nodes that attach their blocks to malicious
blocks because their block will not be scheduled until the malicious parent is scheduled. When
blocks are scheduled, they are passed to the tip set manager and confirmation manager and are
forwarded.

Note that the timestamp of a block does not necessarily reflect standard time. However, it does
provide an objective way to order the blocks because the timestamp is in the signed part of the
block and can not be tampered with. Additionally, the ordering provided by these timestamps is
consistent with the partial ordering provided by the DAG structure—this is enforced by the parser
(see Section 5.2.3) which checks that a block’s timestamp is newer than that of its parents.

The buffer manager also uses the timestamp of blocks to decide the order in which blocks are
dropped. The consequence of a block being dropped is that it will not be used for tip selection
or considered for confirmation and it will not be forwarded to any neighbours. However, dropped
blocks are not removed from memory, so children of these blocks will still be solid and dropped
blocks can be added back in to the scheduling buffer if they are needed in order to schedule a child
block.

5.2.6 Tip Set Manager
The tip set manager provides the subset of tips Tm which should be used for tip selection by node
m’s block factory. To understand the rationale behind tip set management policy of Algorithm 6,
note that the blocks of nodes that issue at an excessively high rate or otherwise misbehave will be
delayed by the scheduler—we do not include these blocks for tip selection if they are delayed by

77

Algorithm 4 DRR�� Scheduler
Repeat for i 2M in a round robin cycle:

1: if DCi

m
< DCmax then

2: DCi

m
 DCi

m
+Qi

3: end if
4: while Ready blocks in |Inboxi

m
| do

5: u ready block in Inboxi

m
with oldest timestamp

6: if DCi

m
� |u| then

7: Schedule u
8: DCi

m
 DCi

m
� |u|

9: Wait |u|

⌫
seconds

10: else
11: break
12: end if
13: end while

Algorithm 5 Buffer Manager
1: if |Inboxm| > Wmax then
2: d argmax

i2M

|Inbox
i

m
|

repi

3: u block in Inboxd

m
with most recent timestamp

4: Remove u from Inboxm

5: end if

more than hmax seconds. Recall from Chapter 2 that the size of a node’s tip set is proportional to
the average delay between blocks being issued and reaching the tip set (denoted by h), so malicious
nodes delaying their blocks can inflate the size of the tip set and reduce the chances of honest nodes
having their blocks selected as tips and approved. Our data flow prevents this in two ways: old
blocks (delayed in scheduler) are not included in the tip set; and blocks of severely misbehaving
nodes are dropped by the scheduler and never make it in to the tip set manager in the first place.
The formulae for tip set size derived in Chapter 2 can be used to approximately dimension the tip
set capacity. For example, if we set hmax to be 3 seconds in a congested/fully utilised network with
a scheduling rate ⌫ = 250 blocks per second, we can dimension the tip set for a maximum number
of tips, Lmax, according to the worst case that all blocks are delayed by hmax using (2.29):

Lmax = 2 ⌫ h = 1500

.

Algorithm 6 Tip Set Manager
Repeat each time a block u is scheduled:

1: t current time
2: tu timestamp of u
3: if tu � t < hmax then
4: Append u to Tm

5: Remove any parents of u from Tm

6: end if

5.2.7 Confirmation Manager
All scheduled blocks are passed to the confirmation manager where they are considered for confir-
mation. The tasks required by the confirmation manager depend on what notion of confirmation
is used. As discussed in Chapter 2, there are two main types of confirmation that can be employed
in DAG-based ledgers, namely weight-based and milestone-based, and we consider each of them in
this chapter.

Algorithm 7 describes a weight-based confirmation manager. Each time a new block, u, is
scheduled, the weight of this new block is added to the cumulative weight, Hu, of the block itself

78

and to the cumulative weight of every block in its past cone. This cumulative weight update is
performed recursively in Algorithm 7, and the cumulative weight of a block is not updated any
further once it is confirmed. The only parameter required for weight-based confirmation is the
cumulative weight threshold Hconf after which a block is deemed to be confirmed.

Algorithm 7 Weight-based Confirmation Manager
1: function UpdateCumulativeWeight(W , u, Hconf)
2: if statusu = not updated and confu = not confirmed then
3: Hu Hu +W
4: statusu updated
5: if Hu � Hconf then
6: confu confirmed
7: end if
8: UpdateCumulativeWeight(W , v, Hconf), for all v in parents of u
9: end if

10: end function

Repeat each time a block u is scheduled:
11: confu not confirmed
12: Hu 0
13: statusv not updated, for all v in scheduled blocks
14: UpdateCumulativeWeight(|u|, u)

Algorithm 8 outlines a milestone-based confirmation manager. When a milestone block is sched-
uled, all blocks in its past cone are marked as confirmed. Once again, this recursive function termi-
nates when it reaches a block that is already confirmed. Whilst no parameters are required for the
milestone-based confirmation manager, one parameter that must be specificified for a milestone-
based DLT network is the milestone period, TMS , which specifies how often milestones are issued
by the elected node or group of nodes responsible for issuing them.

Algorithm 8 Milestone-based Confirmation Manager
1: function AddMilestone(u)
2: if confu = not confirmed then
3: confu confirmed
4: AddMilestone(v), for all v in parents of u
5: end if
6: end function

Milestone issuer
Repeat every TMS seconds:

7: Issue a milestone block

All nodes
Repeat each time a block u is scheduled:

8: confu not confirmed
9: if u is a milestone then

10: AddMilestone(u)
11: end if

5.3 Simulations

We now present simulations to verify that our new approach is effective. We have introduced
components to our data flow which take the DAG structure into account, so we are now primarily
concerned with whether each block is confirmed rather than simply disseminated. Specifically,
we are now interested in verifying that the requirements laid out in Section 5.1.1 are satisfied.
We begin by considering an honest environment in which all nodes follow the protocol, and we
subsequently introduce a number of potential attack scenarios.

79

All simulations23 in this chapter are carried out on a network of 20 nodes, unless otherwise
specified, and connected in a random 4-regular graph topology where each communication link
is bidirectional. 20 nodes is deemed sufficient to show the important properties of our system
because it permits multiple nodes of each type and multihop paths between nodes while remaining
computationally feasible to run the simulations. However, we shall also provide additional contrast
experiments with larger networks to demonstrate that the results scale. As in Chapter 4, the
mean propagation delay of each communication channel between neighbours is chosen uniformly
at random between 50 ms and 150 ms, and the delay for each block on these channels is normally
distributed around this average with standard deviation 20 ms. Node reputation is once again
computed according to real data (the number of blocks issued by each account in the IOTA
network) and follows a Zipf distribution with exponent 0.9. Simulation results are averaged over
20 Monte Carlo simulations. In this chapter, we increase the scheduling rate of nodes, ⌫, from 50
to 250. We also decrease the simulation time from 180 seconds to 60 seconds which is sufficient
to demonstrate that a stable state is reached with this increased scheduling rate and we step the
simulation in increments of 1 millisecond rather than 10 milliseconds. We assume that each node
has buffer capacity greater than the parameter Wmax specified for the buffer management, so no
buffer overflows occur.

5.3.1 Honest Environment
The first sets of simulations we present is for an honest environment, i.e., a scenario in which
all nodes follow the protocol and operate in one of the three honest modes of operation outlined
in Definitions 4.3.4–4.3.6. The reputation distribution and modes of operation for each nodes is
illustrated in Figure 5.3. Recall that we defined a confirmation manager from both weight-based
confirmation (Algorithm 7) and milestone-based confirmation (Algorithm 8). The weight-based
simulations provide clearer results than milestone-based simulations so we present only weight-
based simulations here, and we show the milestone-based equivalents in Appendix D. The access
control parameters were chosen experimentally for these simulations and are laid out in Table 5.2.

Figure 5.3: Reputation distribution follows a Zipf distribution with exponent 0.9. Nodes are
content, best-effort, or inactive as indicated by each bar’s colour.

Figure 5.4 shows the confirmation rate and mean confirmation latency over all blocks for this first
set of simulations. The confirmation rate oscillates between approximately 200 and 300 blocks per
second, with an average close to 250 blocks per second—recall that all blocks must pass through the
scheduler to be confirmed so the scheduler rate of 250 blocks per second represents the maximum
achievable average confirmation rate. The mean confirmation latency, on the other hand, settles

23
Source code available at https://github.com/cyberphysic4l/DLTCongestionControl/tree/thesis_ch5.

80

Table 5.2: Access control algorithm parameters with weight-based confirmation.

Scheduler Rate Setter Buffer Man. Tip Set Man. Conf. Man.
⌫ Qi DCmax A � ⌧ W Wmax hmax Hconf
250 repiP

rep
1 0.075 0.7 0.2 1 500 3 200

at around 7 seconds. Note that if the scheduling rate of the network can be further increased, then
confirmation latency can be further decreased.

Figure 5.4: Confirmation rate and mean confirmation latency over all blocks.

Satisfaction of the consistent confirmation requirement is demonstrated by Figure 5.5 which
shows the maximum time since partial confirmation (see Definition 5.0.2) for all partially confirmed
blocks. The fact that this value reaches a steady state demonstrates that consistent confirmation
is satisfied because it shows that all partially confirmed blocks eventually become fully confirmed.

Figure 5.5: Maximum time since partial confirmation for all partially confirmed blocks.

Fairness in confirmation rate is demonstrated by Figure 5.6 which shows the confirmation rate
CRi for each node i in the network in the top plot, and these same confirmation rates scaled by

81

the reputation of the issuing node in the bottom plot. The bottom plot illustrates clearly that the
confirmation rate achieved by each node is fair relative to their reputation.

Figure 5.6: Confirmation rate (CRi) and scaled confirmation rate (CRi/�i) for each node i. The
bottom plot scales each confirmation rate by their assured issuing rate, �i, which demonstrates
that fairness in confirmation rate is achieved.

The fairness in confirmation latency requirement is verified in Figure 5.7 which shows the cumu-
lative density of confirmation latencies for each node’s blocks. It is clear that each node experiences
approximately equal distribution of confirmation latency, relative to its reputation-scaled confir-
mation rate: best-effort nodes experience slightly higher confirmation latency than content nodes
in line with their increased confirmation rate as shown in Figure 5.6.

In order to demonstrate how our approach scales, we next compare some results from networks
with different numbers of nodes, |M|. Figure 5.8 compares the confirmation rate and confirmation
latency for networks of 20, 40 and 60 nodes. The only visibly significant difference between these
results is that the confirmation latency is slightly increased as the network becomes larger. This
can most likely be attributed to the increased expected number of hops required for a block to
traverse a larger network which results in some delay in each block reaching all nodes.

Next, we compare the maximum time partially confirmed for the three networks mentioned
above, as shown in Figure 5.9. It is clear that the consistent confirmation requirement is still satis-
fied in the larger networks. There is also an evident increase in the max time partially unconfirmed
for larger networks which can once again be attributed to the increased number of hops for blocks
to traverse the network.

Milestone-based simulations for this honest environment can be found in Appendix D.

82

Figure 5.7: Cumulative distribution of confirmation latency for each node. This demonstrates that
fairness in confirmation latency is achieved.

Figure 5.8: Confirmation rate and confirmation latency. Comparison of networks with 20, 40 and
60 nodes.

5.3.2 Adversarial Environment

In order to check the security requirement, we introduce malicious behaviour to our simulations.
Specifically, we begin by introducing one malicious node, i, which issues blocks at 5 times their
assured rate, �̃i (see Table 4.1). The reputation distribution remains the same as depicted in
Figure 5.3, but node 2 is now in malicious mode.

Figure 5.10 shows the confirmation rate and mean confirmation latency across all blocks for this
set of simulations. The confirmation rate is now below 100% which is due to the fact that the
malicious node’s blocks get scheduled and hence take up some of the scheduler’s capacity, but they
do not get confirmed, as we shall see in other plots below. Note that although the confirmation
rate is reduced, it can only be reduced as much as the reputation of an attacker allows because it is
a result of the attacker simply wasting their allocated proportion of the scheduler throughput. The

83

Figure 5.9: Maximum time since partial confirmation for all partially confirmed blocks. Compari-
son of networks with 20, 40 and 60 nodes.

confirmation latency is also increased compared to the honest environment due to the additional
congestion introduced by the malicious node which was inactive in the honest environment.

Figure 5.10: Confirmation rate and mean confirmation latency over all blocks.

The consistent confirmation requirement is not compromised by the malicious actor, as we can
see from Figure 5.11, which shows the maximum time since partial confirmation across partially
confirmed blocks. Despite the presence of a malicious node, this maximum time reaches a steady
value which shows that all partially confirmed blocks eventually become fully confirmed.

Figure 5.12 demonstrates that the fairness in confirmation rate requirement is also still satisfied.
As we can see, the honest nodes all achieve a fair reputation-scaled confirmation rate while the
malicious node’s confirmation rate drops to zero. The reason for the drop in the malicious node’s
confirmation rate is that the scheduler delays this node’s blocks and, as a result, these blocks are
not used for tip selection by any honest nodes so their cumulative weight does not grow. The
fact that the malicious blocks are not used for tip selection also means that honest blocks are
not affected as they essentially remain on a separate branch of the DAG whose cumulative weight
grows as normal.

84

Figure 5.11: Maximum time since partial confirmation for all partially confirmed blocks.

Figure 5.12: Confirmation rate (CRi) and scaled confirmation rate (CRi/�i) for each node i. The
bottom plot scales each confirmation rate by their assured issuing rate, �i, which demonstrates
that fairness in confirmation rate is achieved.

85

Figure 5.13 shows the confirmation latency of each node. Although it appears that the malicious
node achieves a reduced confirmation latency, this is because the most of this node’s confirmed
blocks are early on in the simulation,before the other nodes have adapted their issuing rates to the
network traffic conditions, and once the network has settled, the confirmation rate of the malicious
node drops to zero. The honest nodes that continue to have blocks confirmed maintain fairness in
their confirmation latency as in the honest environment.

Figure 5.13: Cumulative distribution of confirmation latency for each node. This demonstrates
that fairness in confirmation latency is achieved.

As before, milestone-based simulations for this adversarial environment are presented in Ap-
pendix D.

5.3.3 Tip Set Analysis

In the tip set analysis of Chapter 2, we used a simplified model in which we only considered a
single node and we generated delays using a variety of probability distributions which sought to
model real network processes. The simulator developed for this chapter provides a significantly
more sophisticated model for a DLT network and allows us to study the tip set of each node
individually.

First, we define tip set latency as follows.

Definition 5.3.1 (Tip set latency). The tip set latency, H, of a block added to a node’s tip set is
the difference between the time the block is added to the tip set and the timestamp of the block
(i.e., the time the block was created by the block factory).

Note that we referred to this quantity simply as a random delay in Chapter 2 because it was the
only delay we were concerned with. The tip set latencies were also explicitly sampled from specific
distributions of our choosing in Chapter 2 which sought to model the real delays experienced in
DLT networks. We can now observe the actual tip set latencies and tip set sizes generated by our
complete network simulator and compare the results to those of Chapter 2.

Beginning with results from the honest environment presented in Section 5.3.1, Figure 5.14 shows
the CDF of the measured tip set latency, H, for the tip sets of each individual node in the network.
We also include the following on the plot: the mean tip set latency, h = 0.43, highlighted by a
vertical dotted line; an exponential CDF with rate µ = h�1; and a CDF for a uniform distribution
with the same mean, h, lower latency limit h0 = 0.03 and upper latency limit h1 = 0.83.

86

Figure 5.14: CDF of tip set latency, H, for the honest environment of Section 5.3.1. Also shown are
the average latency, h, the exponential CDF with rate µ = h�1, and uniform CDF with h0 = 0.03
and h1 = 0.83 per Section 2.3.

From 2.32 we can compute the expected size of the tip set, L, according to the exponential
distribution in Figure 5.14 as follows:

L = 1.2839 ⌫ h = 1.2839 (250) (0.43) ⇡ 138 (5.3)

In the case of the uniform distribution plotted in Figure 5.14, the expected size of the tip set
can be obtained from (2.34) with h0 = 0.03 and h1 = 0.83 as follows:

L = 1.72 ⌫ h = 1.72 (250) (0.43) ⇡ 185 (5.4)

With these predictions of tip set size in mind, we can plot the actual tip set size as measure
in our simulations. Figure 5.15 shows the number of tips in each node’s tip set in the honest
environment simulations. We can see the tip set size for each node converges to an average value
of around 168 tips, which lies between the two predicted values associated with the exponential
and uniform distributions.

Next, we consider the equivalent results for the adversarial environment of Section 5.3.2. Figure
5.16 shows the CDF of H as measured at each node. We can see that around 45% of the blocks
added to the malicious node’s tip set experience zero latency—these are the malicious node’s own
blocks which bypass the scheduler and are immediately added to the tip set by the malicious node.
The CDFs of honest nodes maintain a similar shape, but the average tip set latency, h, is increased.
However, many of the malicious node’s blocks do not even make it in to the tip set as they have
been delayed by more than hmax (3 seconds in these simulations).

From 2.32 we can compute the expected size of the tip set, L, according to the exponential
distribution in Figure 5.16 as follows:

L = 1.2839 ⌫ h = 1.2839 (250) (0.63) ⇡ 202. (5.5)

In the case of the uniform distribution plotted in Figure 5.16, the expected size of the tip set
can be obtained from (2.34) with h0 = 0.13 and h1 = 1.13 as follows:

L = 1.80 ⌫ h = 1.80 (250) (0.63) ⇡ 283 (5.6)

87

Figure 5.15: Tip set size for each node in the honest environment of Section 5.3.1. The dotted line
highlights the average tip set size over the final 40 seconds of the simulation when it has stabilised.

Figure 5.16: CDF of tip set latency, H, for the adversarial environment of Section 5.3.2. Also
shown are the average latency, h, the exponential CDF with rate µ = h�1, and uniform CDF with
h0 = 0.13 and h1 = 1.13 per Section 2.3.

We can then once again compare these predictions to the actual tip set sizes measured in our
simulations, which are shown in Figure 5.17. The average tip set size of the honest nodes, L = 214,
most closely matches the value of 202 predicted by the exponential distribution. The tip set of
the malicious node, on the other hand, begins at a similar size to those of the honest nodes,
but decreases as the simulation goes on because honest nodes stop selecting the malicious node’s
blocks as tips due to their tip set latency exceeding hmax. When the honest nodes stop selecting
the malicious blocks as tips, they no longer get selected multiple times due to delays which is the
process that results in a increases in the size of a tip set.

Figure 5.18 shows the tip set size for each node over a single simulation of 120 seconds in order
to show that the malicious node’s tip set size decreases drastically, but the honest nodes’ tip sets
are not affected.

88

Figure 5.17: Tip set size for each node in the adversarial environment of Section 5.3.2. The dotted
line highlights the average tip set size of the honest nodes over the final 40 seconds of the simulation
when it has stabilised.

Figure 5.18: Tip set size for each node in the adversarial environment of Section 5.3.2. The
dotted line highlights the average tip set size of the honest nodes over the final 100 seconds of the
simulation when it has stabilised.

5.4 Chapter Summary

We have presented an extension of the access control algorithm in Chapter 4 which additionally
accounts for both tip selection and confirmation processes. The preliminary results presented
focus on confirmation rates rather than simply dissemination rates which provides a more mean-
ingful evaluation of the effectiveness of our approach. Results for weight-based confirmation have
been included above, and equivalent results with milestone-based confirmation are included in
Appendix D. We have also presented analysis of how the tip set of each node in our simulations
evolves and compared this with previous results from a more primitive simulator in Chapter 2.

The co-design presented here is the subject of intense ongoing research with IOTA Foundation
including implementation and demos in the GoShimmer network [56]. Future work of immediate
importance will include extended analysis of attacks, including attacks in which malicious nodes
make use of alternative tip selection strategies.

89

Chapter 6

User-Node Interaction Mechanisms
for DLTs in Enterprise Applications

Abstract— Despite growing interest in DLT across a wide array of industries and
continued academic research in the area, distributed ledgers are not yet ubiquitous,
even in highly technologically advanced sectors. One explanation for this delay in
their adoption for more practical applications is that little research has focussed on
usability of DLTs. In this chapter, we propose a mechanism for users to interact with
DLT networks without needing to operate as a fully-functional node. The focus of
our solution is on quality of service with a view to bridging the gap between everyday
users of these technologies who simply wish to make use of the ledger, and the node
operators who support this service and invest thier resources into the functioning of
the network. The work in this chapter is the first to focus on network usability for
DAG-based DLTs and aims to pave the way for further research in this direction.
This is joint work with Dr. Luigi Vigneri of IOTA Foundation and Lianna Zhao and
Prof. Robert Shorten of Imperial College London.

Distributed ledgers have been intensely studied in recent years, and the main topics of these
studies concern aspects of their design such as consensus mechanisms, scalability and security,
some of which have been addressed in the preceeding chapters of this thesis. A number of real use
cases and applications have also been studied, for instance in the areas of transportation [81, 82].
In particular, ledgers based on directed acyclic graphs (DAGs), have arisen as a promising solution
for IoT applications because they can facilitate high throughput and low delays, and they present
fewer barriers to participation than blockchain alternatives [26]. As DLTs and their applications
become better known and accepted in the wider technology community, the related issue of network
usability is being recognised as a bottleneck issue hindering applications of this nascent technology.
In some sense, this is to be expected as the underlying technology is not yet mature. Nevertheless,
the fact that in many ledger architectures, users report lengthy and variable times for transactions
to complete, as well as unfairness in the service experienced by users of the technology, is a
significant impediment to its adoption. Consequently, the issue of network usability represents a
significant research challenge for the DLT community.

In many DLT architectures, the variation in the experience amongst users can be attributed
to two factors. The first comes down to the design of core components of the ledger architecture
and how these affect the efficiency and performance of the system. The second, equally important
factor, is connected to the interaction between human decision makers and the DLT network, and
the incentive structure that guides this interaction. This second factor is our primary concern
in this work. In a typical DLT architecture, two distinct types of network actors can be readily
identified. First, there are individuals or organisations who maintain a copy of all transactions
on the ledger and participate fully in network activities such as consensus and validation. These
actors, which we refer to as nodes, have been the primary focus of all research presented up to

90

this point of the thesis. They have the power to modify the ledger to include transactions which
they may use to transact themselves or may offer this as a service, perhaps for economic gain. A
second type of network actors are basic actors, referred hitherto as users, who are simply interested
in utilising the network as part of some enterprise. For users (humans or software agents), the
network is a tool to be utilised as part of some application, and their only objective is to send
transactions through the network for a specific purpose. Users can only add data to the ledger by
sending it to a node, usually via a digital wallet, and in many cases these users are willing to pay
a fee to nodes to achieve a good quality of service (QoS).

The experience of users is strongly influenced by the manner in which users and nodes interact,
which is driven by the different factors that motivate each actor’s participation in a DLT network.
Typically, users wish to transact as cheaply as possible while receiving some level of QoS from the
network. For example, users may wish to transact with guaranteed delay; minimise the financial
cost of transactions or their energy consumption; or be simply assured of fairness and value for
money they receive with respect to other users of the network. Nodes, on the other hand, are
driven by the desire to use of their resources (e.g., computational power or reputation24) for both
personal or societal gain. The desires and objectives of users and nodes are not always mutually
inclusive. In other infrastructures, the interaction between users and nodes can sometimes lead
to unstable network behaviour. For example, parallels can be found in road networks, where toll
roads (nodes) are attractive to vehicles (users) precisely because they offer faster and more reliable
transit times. However, if they attract too much traffic, precisely the opposite can be the effect,
leading to unpredictable and sometimes catastrophic user experience. Problems of this nature are
not unique to transportation and arise also in other domains - for example in job scheduling and
queuing problems that arise in many applications (we shall have more to say on this in the next
section). Here we simply note that similar issues can arise in DLT networks if the interaction
between users and nodes is poorly designed [83] and while node-user interaction mechanisms have
been designed for blockchains (based on transaction fee incentives), there is currently no user-node
interaction mechanism designed for DAG-based DLTs of the kind considered here. The problem of
designing such a mechanism for DAG-based ledgers differs fundamentally from that of blockchains
because nodes can add transactions to DAGs in parallel rather than sequentially as in blockchains.
This feature of DAGs restricts users of these networks to selecting specific nodes to process each
of their transactions and results in an entirely new paradigm for user-node interaction.

Our goal in this chapter is to suggest an interaction mechanism between nodes and users which
allows both users and nodes to achieve their objectives and leads to networks that are stable,
robust and fully utilised. Our idea is simple. Nodes broadcast a QoS indicator for the service
they can offer, and users respond probabilistically to this signal. We shall show that this simple
algorithm equalises the QoS experienced by users, avoids large deviations in QoS experienced by
individual users, whilst allowing nodes to be rewarded for the service they provide to the network.
Moreover, the mechanism is inherently robust to the behaviour of dishonest nodes and users. Nodes
advertising false QoS information can be rapidly detected and blacklisted by users. The proposed
policies are also agnostic with respect to specific implementation issues, such as node discovery, and
assume users have full access to QoS signals from nodes. As a final comment on the contribution
of this work, it is important to note once again that the DAG-based DLT setting considered here
requires a fundamentally different user-node interaction mechanism than those found in traditional
blockchain architectures such as Bitcoin. The key difference lies in the fact that users must select
a specific node to issue their transactions in our setting rather than broadcasting them to as many
nodes as possible. To the best of our knowledge, this work is the first to consider the design of a
user-node interaction mechanism for DLTs of this kind.

This chapter is structured as follows. In Section 6.1, we present related work. In Section 6.2, we
give a basic system model for the relevant components of DAG-based DLT networks including some
basic concepts, such as users, nodes and QoS indicators. In Section 6.3, we present a user-node
interaction mechanism for DAG-based DLT networks and propose a variety of policies for users
and nodes to orchestrate their relationship. The proposed policies range from naive approaches to
more sophisticated strategies which take into account different indicators of QoS. In Section 6.4, a
set of simulations are performed to validate and contrast the proposed policies.

24
Reputation is a numeric value associated to a node which affords it ledger access. In principle, reputation should

be difficult to gain and easy to lose.

91

6.1 Related Research

Before proceeding, it is worth noting that the research in this chapter builds on a number of
seemingly unrelated prior works. First, the issue of user-network interaction arises in several
domains. For example, stochastic policies to guide this interaction (of the nature proposed here)
have been studied and analysed in the context of transportation networks [84, 85, 86, 87]. The
authors in [88] and further work in [89] propose an algorithm enabling the number of arriving,
departing cars and the instantaneous occupancy to be counted by car parks. Based on broadcasts
from the car parks, cars then can predict the parking space availability at the estimated time that
the car will arrive there. In [90], the authors propose a stochastic policy to associate cars with
parking spaces and balance cars across a network of car parks and charge points in a manner
that minimises the probability of a space not being available when cars arrive at a car park. The
problem discussed in this chapter is also closely related to a host of other load balancing problems
that can be found in the networking literature—one example is that of server farms with immediate
dispatching of jobs requiring task assignment policies [91]. Well-known policy examples that arise
in this context include the random selection policy, the round-robin selection policy and the join the
shortest queue policy (the algorithms proposed in this chapter are variants of the random selection
policy in which a non-uniform distribution is sampled to select a node). Examples of relevant work
in this direction can be found in [92, 93, 94, 95, 96, 97, 98] and the references therein.

It is also worth noting that the user-node interaction problem arises in the design of other DLTs,
namely those based on blockchain technology. The best known such network is the Bitcoin network.
In Bitcoin each miner (node) maintains a pool of transactions referred to as a mempool [91]. Miners
select transactions from their mempool to include in block proposals, and if they are successful
in adding a block, they receive fees from all the included transactions. In the blockchain setting,
users aim to send their transactions to the mempools of all miners to maximise their chances of
having them included in a block. Due to the sequential nature of how blocks are appended to a
blockchain, miners can share identical mempools without the risk of adding the same transaction
to the ledger twice. As such, users do not need to send their transactions to specific nodes in
blockchain networks but should aim to get their transactions to as many nodes as possible. In
the DAG-based DLT setting we consider here, however, nodes cannot share mempools because
transactions can be added in parallel rather than sequentially and nodes would risk adding the same
transactions more than once causing conflicts in the ledger. While the ability to add transactions
in parallel is a desirable property for a DLTs, particularly in IoT settings, it renders the design
of a user-node interaction mechanism significantly more complex. Some primitive techniques to
improve the usability of DAG-based DLTs have been employed in practice, for example, some of
the more strenuous tasks required to issue a transaction were offered as a service by a third party
provider in a early implementation of the IOTA network25. However, to the best of our knowledge,
no solutions for improving the interactions between users and nodes have been proposed in this
setting.

6.2 System Model

We consider the network architecture as depicted in Figure 6.1 which shows users accessing a DLT
network via nodes, and nodes which communicate directly with one another, forming a distributed
ledger network. More specifically, users make a selection from a set of nodes according to some
criteria, and then send their transactions to these nodes to be processed. Furthermore, in this
initial simplified model (neglecting some networking details such as availability of IP addresses)
where users are able to query all nodes, users are free to select a node to process their transactions,
and nodes are free to accept or reject transactions from individual users. It is important to note
that, in contrast to blockchain-based DLT networks, users only send each transaction to a single
node, and nodes do not share these transactions with one another prior to issuing them to the
ledger.

Nodes may offer ledger access as a public service and can offer different levels of QoS to users
(some nodes may be operated by private organisations who reserve resources for their own gain,
however, we do not consider such nodes any further in this work). Generally speaking, nodes

25
https://ecosystem.iota.org/projects/powsrv-io

92

must consume resources in order to add transactions to the ledger, and providing better QoS
consumes more resources. For example, in a PoW ledger, the consumed resource is computation
power, whereas in PoS ledgers, the consumed resource is wealth in the native ledger currency.
A generalised version of PoS known as delegated PoS allows this resource to be transferred to
nominated nodes, serving as a proxy for reputation. In the remainder of this chapter, we adopt
the PoR model and we refer to this resource simply as reputation, where the reputation of a node
i is denoted repi, as in earlier chapters. Although small inconsistencies in reputation calculation
across nodes can typically be permitted and reputation can be changed over time, we assume that
each node’s reputation is a constant quantity that is agreed upon and publicly known. In what
follows, we also make the following assumptions.

• Ledger access is limited by scarce resources so providing ledger access with low delay is costly
to nodes. This is generally true for all DLT architectures (beyond the DAG-based DLTs
considered here), for example, in a conventional PoW-based ledger, a node must consume
more power to find PoW solutions more frequently and issue transactions with lower delay.

• Each node in our network is equipped with a Local Transaction Pool (LTP) that is used as
a buffer to store pending transactions. Transactions sent from a user to a particular node
enter that node’s LTP. Note that similar pools of transactions can also be found in other
ledger architectures, such as the mempool in the Bitcoin network, although nodes typically
share a common mempool which is not permitted in our setting.

• Nodes can advertise their expected QoS that they can offer via some proxy. For example,
nodes may advertise the expected delay from receiving a new transaction to writing it to the
ledger. Additionally, nodes may require a fee for issuing a transaction and this can also be
taken into account as part of a node’s overall QoS.

A model for our user-node interaction mechanism is depicted in Figure 6.1. The sending rate of
user i is denoted by µi, while the service rate of node i’s LTP is denoted by �i. The QoS indicator
for each node is represented by the coloured bars above their LTP. Here, a red QoS indicator simply
means poor QoS is offered by this node (for example, this could be due to high delay and/or high
fees), while yellow indicates average QoS and green indicates good QoS.

Figure 6.1: Basic network model for user-node interaction mechanism.

In what follows, we are specifically interested in designing a mechanism to orchestrate the inter-
action between users and nodes in DAG-based DLT networks. Our goal is to deliver a uniformly
good QoS to all users and ensure that the probability of any user experiencing a very bad QoS is
low, while allowing nodes to profit by processing a regular stream and (on average) fair share of
transactions. While our results generally apply to any DAG-based DLT, we evaluate our solution
using the DLT architecture described in Chapter 4 which includes PoR access control. In other
words, each node regulates its own issue rate via a distributed algorithm based on the additive

93

increase multiplicative decrease (AIMD) algorithm [99, 100, 101]. Fair issue rates are then en-
forced throughout the network via a scheduling algorithm based on deficit round robin (DRR)
algorithm [69]. The result of this mechanism is a network that is attack resistant and where each
node achieves a transaction issue rate proportional to its reputation.

While the definition of QoS is quite broad, we will focus our attention on delay and fees as
measures of QoS in this work. In order to provide an indicator of QoS to users, nodes must
estimate the expected delay for them to issue a newly arriving transaction. This delay depends
on two factors: the number of transactions in the node’s LTP at the time of the new transaction’s
arrival; and the service rate of the LTP. As mentioned above, in the IOTA network, the service
rate of each node’s LTP is determined by the AIMD-based rate setting algorithm employed by the
node. Given this background, we now propose policies by which users and nodes can interact with
each other in order to achieve good network behaviour.

6.3 User-Node Interaction Mechanism

We now propose simple but powerful policies by which users and nodes can interact with each
other in order to achieve good network behaviour. Specifically, we propose allocation strategies for
users with the objective of minimising the probability of experiencing bad QoS when connecting to
a given node. Additionally, we propose a policy for nodes to adapt their fees and incentivise users
to reduce their demand in the presence of congestion. Our policies generally operate as follows.

• Nodes measure the expected delay that is associated with processing a transaction. Nodes
may additionally require a fee for their service that can be adapted in response to congestion,
and this can also be provided as a QoS indicator for users.

• Users gather these QoS indicators provided by the nodes and construct a vector p representing
a probability distribution over the nodes. Users then sample this distribution to select a node
based on a probability that is proportional to the QoS indicator (inversely proportional to
expected delay/fees) of a given node.

In Figure 6.2, we show an example of this user-node interaction in which users directly query
nodes for their QoS indicators. In practice, nodes would most likely broadcast these values by
writing to a commonly accessible resource for the users to query which could provide a more
efficient solution.

Stochastic policies of this nature have been studied and analysed in the context of transportation
networks [85, 86, 87]. We shall not repeat this analysis here. Intuitively, when all users operate
this policy, nodes are kept busy, and users minimise their probability of experiencing a large delay.
While such policies operate well in transportation and mobility networks, a defining characteristic
of DLT based environments is that they are adversarial. Our mechanism can be adapted to deal
with an adversarial setting by requiring users to complete a small PoW to prevent spamming or
by introducing fees as we shall demonstrate in Section 6.3.3.

Another consideration worth discussing is whether or not we can expect users to follow such
policies, and this can not be determined definitively until implemented in a real system with
human actors involved. However, the choice faced by users can be intuitively thought of in a
similar manner to the choice faced by network users in TCP—following the stochastic policy is
an unstable Nash equilibrium in which an individual user could benefit from deviating from the
protocol, but if all users defected then they would all be worse off. Just as in TCP, if the user’s
choice can be abstracted away effectively and the default option is set to our stochastic policy, it
is reasonable to expect that most users will not deviate from this.

In the algorithms outlined in this section, N is the set of all available nodes, p is a vector whose
ith element, pi, represents the probability of selecting node i, and repi is node i’s reputation. In
this work, we assume that N includes all nodes, i.e., all nodes make their service available to all
users. In reality, some nodes may not wish to make their services available to users or may even
make them available to a select group of users, perhaps on a subscription basis. However, we defer
further considerations of such complexities to future work.

94

Figure 6.2: User-node interaction mechanism

6.3.1 Naive Policies
To provide a benchmark for comparison to the policies we will propose, we begin by describing
two stochastic policies that may seem reasonable. We refer to these as naive policies as they do
not attempt in any serious manner to shape traffic reaching the nodes based on prevailing network
conditions. It is important to reiterate that no state of the art exists in the context of DAG-based
DLTs, as user-node interaction usually refers to blockchain where a common mempool is used.
The first policy we describe is a simple uniform random node selection (URNS) policy, as outlined
in Algorithm 9. The second, less naive, policy which we will compare to our proposed policies is
referred to as reputation-based node selection (RBNS), as described in Algorithm 10.

Algorithm 9 URNS executed by users
1: pj 1/|N |, 8j 2 N . Initialise probabilities

Repeat each time a transaction is sent:
2: j random sample from p
3: Send transactions to node j

Algorithm 10 RBNS executed by users
1: pj =

repjP
i2N repi

, 8j 2 N . Initialise probablities

Repeat each time a transaction is sent:
2: j random sample from p
3: Send transactions to node j

As can be seen from these algorithms, URNS involves selecting nodes uniformly at random,
without taking into account any information about the node whatsoever. RBNS, on the other
hand, makes use of the globally known reputation of each node which gives some information
about the rate at which each node can issue new transactions. Both URNS and RBNS are open
loop policies in the sense that they do not make use of feedback from nodes about the current
QoS indicators such as delay as we do in the policies which we propose next. As we shall see in
Section 6.4, closed loop policies based on measured QoS metrics offer significant improvement over

95

these open loop alternatives.

6.3.2 Selection Policy Based on Delay
In order to improve upon the naive policies stated above, we would like to introduce QoS metrics
from nodes. We first focus our attention on delay as the primary indicator of QoS. As such, we
refer to our solution as delay-based node selection (DBNS) as presented in Algorithm 11.

Algorithm 11 DBNS executed by users
Repeat each time a transaction is sent:

1: pj
repj/⌧jP

i2N repi/⌧i
, 8j 2 N . Update probabilities

2: j random sample from p
3: Send transaction to node j

Algorithm 11 is executed by a user each time it wishes to have a transaction issued to the ledger.
The probability update of line 1 is the critical step of the algorithm, namely:

pj =
repj/⌧jP
i2N

repi/⌧i

where pj is the probability that a user chooses node j and ⌧i is the expected delay in node j’s LTP.
Note that this policy is decentralised, requiring no information about the operation of other users.
The only information required by users from each node is their reputation and their expected delay.
Moreover, recall that the reputation of each node is a quantity that is known by all users.

The expected delay, on the other hand, can be calculated by nodes at regular intervals and
broadcast to all users. The delay signal, ⌧i, broadcast by nodes acts as a feedback to users about
the state of the network, resulting in a closed loop system. The expected delay for a transaction
arriving to node i’s LTP at time t can be estimated as follows:

⌧i(t) =
Li(t)

�̃i(t)
(6.1)

where Li(t) is the number of transactions in node i’s LTP at time t (including the newly arrived
transaction). �̃i(t) is the expected average service rate of the LTP over the time this new transaction
spends waiting to be issued. In a PoW ledger, this would be a fixed value, �̃i(t) = �i, based on
the computing power of node i (provided the node’s computing power remains constant). In this
work, however, we focus our attention on the IOTA protocol in which the service rate of the LTP
is governed by an AIMD rate setter as described in Chapter 4. We employ a moving average filter
to estimate the issue rate of each node.

6.3.3 Including Transaction Fees
The above policy can be extended to include transaction fees which offers improved security for
nodes against malicious users and demonstrates the ability of our approach to capture broader
notions of QoS. This extension requires a policy for nodes as well as for users. Specifically, nodes
require a fee �i to be included in any transaction and they broadcast this along with their expected
delay ⌧i, to users. When congestion is detected by nodes, they increase their fee to reduce the
load on themselves. To achieve this goal, a simple P controller (it also can be adapted to PI/PID
equivalent) is adopted here for node i.

�i(t) = max (0,Kpi (⌧i(t)� ri)) (6.2)

where Kpi is the proportional gain (a positive constant) and ri is a delay setpoint. If the expected
delay of node i’s LTP, ⌧i(t), is less that ri, then node i will set their fee to zero, and as delay
increases beyond this setpoint, the fee �i(t) will increase at a rate proportional to Kpi. Both Kpi

and ri can be tuned by nodes on an individual basis, but we will assume that they are equal for
all nodes in this work.

Note that this policy does not require nodes to be altruistic. On the contrary, if parameters
are chosen appropriately, we intuitively expect this policy to maximise a node’s income from fees.

96

This is because the policy maintains some LTP delay which implies that some transactions are
maintained in the node’s LTP, and furthermore, the fee for each of these transactions is set as high
as possible without deterring too many users and ending up with an empty LTP. For this reason,
we can expect that nodes would follow this policy, or some similar policy optimised for their needs,
out of their own selfish desire to make profit.

Meanwhile, users can compute a cost function based on their desired trade-off between fee and
delay to get a QoS metric for each node. The cost function for user m can be specified as follows

cmi(t) = am⌧i(t) + (1� am)�i(t)

where cmi(t) is the QoS metric used by user m for node i at time t, am determines the weights
assigned to delay ⌧i(t) and fees �i(t) for user m. Larger values for am indicate that user m cares
greatly about having low delay whilst lower values reflect that this user is more concerned about
paying low fees. Users also define a cost threshold, cmax

m
, above which this user will not continue

sending transactions, which means when congestion increases, fees go up and some users stop
sending transactions until the QoS metric is lower than their threshold. The algorithm employed
by users, which we call DBNS+, including both delay and fees, is described in Algorithm 12.

Algorithm 12 DBNS+ executed by user m

Repeat each time a transaction is sent:
1: N

⇤
 N

2: for j 2 N do
3: cmj = am⌧i + (1� am)�i

4: if cmj > cmax
m

then
5: remove j from N

⇤

6: end if
7: end for
8: if N

⇤ is not empty then
9: pj

repj/cmjP
i2N⇤ repi/cmi

, 8j 2 N
⇤

10: j random sample from p
11: Send transaction to node j
12: end if

6.4 Simulations

In the following experiments, 50 nodes are available to issue transactions for user, where each node
in the network is peered with 4 randomly chosen neighbours. The nodes we discuss in this chapter
are obeying restrictions imposed by the access control algorithm of Chapter 4 wherein the issue
rates of nodes are controlled by an AIMD algorithm. Transactions issued by nodes need to be
forwarded to neighbours to achieve a shared view of the ledger. As described in Chapter 4, the
total rate at which nodes can process new transactions is given by ⌫. In the below simulations,
⌫ is set to 50 transactions per second. All simulations are 3 minutes of simulation time, and
results are averaged over 10 Monte Carlo simulations, unless otherwise specified. The reputation
distribution of the nodes follows a Zipf distribution with exponent 0.9. These statistics are chosen
to be representative of real values that have been measured from the IOTA network26.

We organise our simulation results as follows. Experiments were conducted by changing the
node selection policy employed by users from the portfolio of stochastic policies: (i) URNS which
selects nodes uniformly at random (see Algorithm 9); (ii) RBNS which selects nodes based on their
reputation (see Algorithm 10); (iii) DBNS which selects nodes based on their reputation and delay
of their service (see Algorithm 11); (iv) DBNS+ which builds on DBNS by including transaction
fees (see Algorithm 12). Apart from changing the node selection policy employed by users, all
other simulation parameters are the same in each scenario.

For each group of simulations (i)–(iv), we consider three different scenarios based on the combined
sending rate of users which represents the total traffic which nodes must process. In all scenarios,

26
This model is well suited to reputation systems derived from wealth, i.e., PoS[45].

97

each new transaction is generated by a new user, and these transactions follow a Poisson arrival
process. Each new user is independent of all others and they select a node according to the policy
being tested. Each policy is tested in isolation, i.e., we do not consider mixtures of different policies
from different users in this work.

• In scenario (a), users send transactions at an average rate that is 90% of the total network
scheduling rate. Note that as transactions do not arrive uniformly over time (they follow a
Poisson arrival process), the instantaneous arrival rate will sometimes exceed the scheduling
rate of the network.

• In scenario (b), we consider an average sending rate at 98% of the total network scheduling
rate to demonstrate behaviour very close to full capacity.

• Finally, in scenario (c), we set the average sending rate to 120% to simulate how these
approaches deal with congestion in high-load situations above the network capacity.

Summary of Findings
To compare each policy, we consider the delays experienced by users in the LTP of their chosen
node.

(i) URNS policy: for each scenario, (a)–(c), Figure 6.3 plots traces for the delays experienced at
each of the 50 nodes, where the thickness of each trace is proportional to the reputation of the
node. We observe that lower reputation nodes experience severe delays and high reputation
nodes are underutilised and hence experience very low delays. Figure 6.4 shows a zoomed
in view of the same data. From the perspective of nodes, traffic from users is very poorly
balanced, resulting in low reputation nodes being overwhelmed and high reputation nodes
being underutilised.

(ii) RBNS policy: in Figure 6.5, which shows the LTP delays of nodes in the RBNS simulations,
the improvement over the URNS policy is immediately evident. The plots once again show
traces for the delays experienced at each of the 50 nodes, where the thickness of each trace is
proportional to the reputation of the node. We can see from these plots that at 98% capacity,
fluctuations in delay of some nodes become more evident due to the fact that no feedback is
used here. In the high load scenario of 120% capacity, we see that higher reputation nodes
experience higher delays which is related to the fact that the issue rates of nodes are not
perfectly fair with respect to their reputation. It is clear that a closed loop approach is
required to achieve better fairness.

(iii) DBNS policy: Figure 6.6 again illustrates the delays experienced at each of the 50 nodes,
where the thickness of each trace is proportional to the reputation of the node, this time
for the DBNS policy. We see that there is less fluctuation in scenario (a) and (b) than was
the case for RBNS, and in case (c) we observe that the traffic is balanced more fairly among
nodes due to the use of feedback in DBNS. However, there is still no policy in place to control
congestion in the LTP effectively so DBNS still performs poorly in scenario (c) with the delay
continuing to grow throughout simulation.

(iv) DBNS+ policy: Finally, we present preliminary results for DBNS+. The proportional gain
Kpi is set to 0.8, and desired level of delay ri(t)) is set to 15 for all nodes. am is set to
0.6 for all users and cmax

m
is set randomly between 8 and 10 for each user to capture some

variation in what users expect in terms of delay and fees. As can be seen from the plots
in Figure 6.7, in scenarios (a) and (b), DBNS+ performs similarly to DBNS, but when we
introduce more severe congestion in scenario (c), there are clear advantages to the DBNS+
policy. In particular, we see in scenario (c) that the delay of each node is effectively stabilised
by DBNS+. The reason for the stabilisation of delays after a certain point is that nodes
increase their fees in response to congestion and the QoS metric, cmi(t), for some users
eventually exceeds the threshold cmax

m
. At this point, users stop sending transactions to node

i. Note that the oscillations evident in the plots for scenario (c) in Figure 6.7 are a direct
result of the AIMD algorithm governing the service rate of the LTP which in turn determines
the estimated delay serving as feedback to users.

98

Figure 6.3: Uniform random node selection (URNS): delays experienced in the LTP of each node.

The results provided by Figures 6.3–6.7 primarily focus on the perspective of nodes rather
than directly considering the experience of users. To capture the user perspective more
effectively, we can consider the statistics provided by Table 6.1 which gives the expected delay
experiences by a user and Table 6.2 which provides the probability that a user experiences a
delay of greater than 20 seconds. This latter statistic is of interest because some users may
not care about the exact delay of their transaction as long as does not exceed some threshold
that they deem unreasonable. The threshold of 20 seconds applies well to the scenarios
considered here but a different acceptable threshold may be considered depending on the
needs of users in a given application. This statistic can be thought of as the probability that
a random user will get unlucky and have a bad experience, which may turn them off using
the technology again in the future.

Table 6.1 confirms that URNS performs poorly in all scenarios from the perspective of a user
with expected delays higher across the board. RBNS, DBNS, and DBNS+ all perform well
from the perspective of a user when demand is at 90% and 98%, as we see from the expected
delays below 1 second in these scenarios. In the high load scenario (c), we only see a slight
improvement in each more advanced policy, with the expected delay of DBNS+ just over

99

Figure 6.4: Uniform random node selection (URNS): zoomed in view of delays experienced in the
LTP of each node.

a 1 second less than that of DBNS. However, we expect that if these simulation were run
for longer, we would see a larger difference due to the growing LTP delays in DBNS as we
observed in Figure 6.6.

Table 6.2 tells a similar story—the probability of being unlucky (experiencing a delay greater
than 20 seconds) in URNS is high for users in all scenarios. RBNS, DBNS and DBNS+
all operate very well in this regard in scenarios (a) and (b), with no instances of delays
greater than 20 seconds recorded during the simulations of these scenarios. The high load
scenario (c) reveals the improvement offered by DBNS+ from the perspective of users, with
a probability of 0.01 of experiencing a delay greater than 20 seconds. It is worth noting once
again that the threshold of 20 seconds is selected here because it applies well to the scenarios
and parameters chosen, but some threshold related to a meaningful delay should be chosen
when evaluating these policies in practice.

100

Figure 6.5: Reputation-based node selection (RBNS): delays experienced in the LTP of each node.

6.5 Chapter Summary

In this chapter, we proposed a user-node interaction mechanism for DAG-based DLTs which seeks
to improve the usability of such networks for basic users who do not wish to run a fully operation
node. The mechanism involves nodes calculating QoS metrics and providing this information to
users. Users then use this feedback in a stochastic policy to select a node. Experiments were
carried out to validate the effectiveness of the proposed algorithms. In particular, our experiments
show that by combining fees and measurements of expected delays, QoS can be provided in a fair
manner to users and the demand from users can be allocated fairly among nodes.

There are a number of simplifying assumptions used in this work, for example, we assumed that
users have full knowledge of nodes statistics, which is probably unfeasible for large networks. For
future work, it would be interesting to study how our policies perform when users query only a
subset of nodes for QoS indicators. It would also be interesting to consider heterogenous user
behaviour and to introduce more complex node behaviours such as collaboration between nodes
and sharing of fees through mechanisms such as Shapley value [102]. Other work to be considered
includes attack analyses for the policies presented here.

101

Figure 6.6: Delay-based node selection (DBNS): delays experienced in the LTP of each node.

Table 6.1: Expected LTP delay

(a) 90% capacity (b) 98% capacity (c) 120% capacity
URNS 10.83 s 12.84 s 17.24 s
RBNS 0.29 s 0.40 s 11.80 s
DBNS 0.15 s 0.26 s 11.58 s

DBNS+ 0.15 s 0.21 s 10.17 s

Table 6.2: Probability of LTP delay greater than 20 seconds.

(a) 90% capacity (b) 98% capacity (c) 120% capacity
URNS 0.21 0.25 0.32
RBNS 0.00 0.00 0.25
DBNS 0.00 0.00 0.20

DBNS+ 0.00 0.00 0.01

102

Figure 6.7: Delay-based node selection with fees (DBNS+): delays experienced in the LTP of each
node.

103

Bibliography

[1] P. Ferraro, C. King, and R. Shorten, “Distributed ledger technology for smart cities, the
sharing economy, and social compliance,” IEEE Access, vol. 6, pp. 62 728–62 746, 2018.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. [Online]. Available:
https://bitcoin.org/bitcoin.pdf

[3] M. Drijvers, S. Gorbunov, G. Neven, and H. Wee, “Pixel: Multi-signatures for consensus.” in
USENIX Security Symposium, 2020, pp. 2093–2110.

[4] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling Byzantine
agreements for cryptocurrencies,” in Proceedings of the 26th Symposium on Operating Systems
Principles, 2017, pp. 51–68.

[5] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, “A survey on long-range attacks
for proof of stake protocols,” IEEE Access, vol. 7, pp. 28 712–28 725, 2019.

[6] T. Hanke, M. Movahedi, and D. Williams, “DFINITY technology overview series, consensus
system,” 2018. [Online]. Available: arXivpreprintarXiv:1805.04548

[7] A. Cullen, P. Ferraro, R. Shorten, W. Sanders, and L. Vigneri, “Access control in adver-
sarial environments for IoT-oriented distributed ledgers,” in 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM). IEEE, 2021, pp. 968–973.

[8] A. Cullen, P. Ferraro, W. Sanders, L. Vigneri, and R. Shorten, “Access control for distributed
ledgers in the internet of things: A networking approach,” IEEE Internet of Things Journal,
vol. 9, no. 3, pp. 2277–2292, 2022.

[9] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart,
C. Ferris, G. Laventman, Y. Manevich et al., “Hyperledger fabric: a distributed operating
system for permissioned blockchains,” in Proceedings of the thirteenth EuroSys conference,
2018, pp. 1–15.

[10] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication,”
in International Workshop on Open Problems in Network Security. Springer, 2015, pp.
112–125.

[11] M. C. Ballandies, M. M. Dapp, and E. Pournaras, “Decrypting distributed ledger de-
sign—taxonomy, classification and blockchain community evaluation,” Cluster Computing,
pp. 1–22, 2021.

[12] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of blockchain: A survey,”
IEEE Access, vol. 8, pp. 16 440–16 455, 2020.

[13] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “Sok: Diving into DAG-based blockchain systems,”
2020. [Online]. Available: https://arxiv.org/abs/2012.06128

[14] T. K. Mackey, T.-T. Kuo, B. Gummadi, K. A. Clauson, G. Church, D. Grishin, K. Obbad,
R. Barkovich, and M. Palombini, “ ‘Fit-for-purpose?’–challenges and opportunities for appli-

104

cations of blockchain technology in the future of healthcare,” BMC Medicine, vol. 17, no. 1,
pp. 1–17, 2019.

[15] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin network,” in IEEE
P2P 2013 Proceedings. IEEE, 2013, pp. 1–10.

[16] C. Lee, “Litecoin,” GitHub Repository, 2011. [Online]. Available: https://github.com/
litecoin-project/litecoin

[17] BitCoin Cash, “Bitcoin Cash,” GitHub Repository, 2017. [Online]. Available: https:
//github.com/bitcoin-cash-node/bitcoin-cash-node

[18] S. Inu, “Dogecoin,” GitHub Repository, 2013. [Online]. Available: https://github.com/
dogecoin/dogecoin

[19] Binance, “Binance chain whitepaper,” 2020. [Online]. Available: https://github.com/
bnb-chain/whitepaper

[20] Centre, “USD coin whitepaper,” 2018. [Online]. Available: https://f.hubspotusercontent30.
net/hubfs/9304636/PDF/centre-whitepaper.pdf

[21] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra,
J. Timón, and P. Wuille, “Enabling blockchain innovations with pegged sidechains,” 2014.
[Online]. Available: https://blockstream.com/sidechains.pdf

[22] C. Decker and R. Wattenhofer, “A fast and scalable payment network with Bitcoin duplex
micropayment channels,” in Symposium on Self-Stabilizing Systems. Springer, 2015, pp.
3–18.

[23] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in Bitcoin,” in In-
ternational Conference on Financial Cryptography and Data Security. Springer, 2015, pp.
507–527.

[24] V. Buterin, “Ethereum whitepaper,” 2014. [Online]. Available: https://ethereum.org/en/
whitepaper/

[25] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “SPECTRE: A fast and scalable
cryptocurrency protocol,” 2016. [Online]. Available: https://eprint.iacr.org/2016/1159.pdf

[26] S. Popov, “The tangle (IOTA whitepaper),” 2016. [Online]. Available: http://www.
descryptions.com/Iota.pdf

[27] L. Baird, M. Harmon, and P. Madsen, “Hedera: A public hashgraph network and governing
council,” 2020. [Online]. Available: https://hedera.com/hh_whitepaper_v2.1-20200815.pdf

[28] I. Bentov, P. Hubáček, T. Moran, and A. Nadler, “Tortoise and hares consensus: the meshcash
framework for incentive-compatible, scalable cryptocurrencies,” in International Symposium
on Cyber Security Cryptography and Machine Learning. Springer, 2021, pp. 114–127.

[29] A. Churyumov, “Byteball: A decentralized system for storage and transfer of value,” 2016.
[Online]. Available: https://byteball.org/Byteball.pdf

[30] C. LeMahieu, “Nano whitepaper,” 2022. [Online]. Available: https://docs.nano.org/
living-whitepaper/

[31] P. Ferraro, C. King, and R. Shorten, “On the stability of unverified transactions in a DAG-
based distributed ledger,” IEEE Transactions on Automatic Control, vol. 65, no. 9, pp.
3772–3783, 2019.

[32] B. Kuśmierz, W. Sanders, A. Penzkofer, A. Capossele, and A. Gal, “Properties of the tangle
for uniform random and random walk tip selection,” in 2019 IEEE International Conference

105

on Blockchain (Blockchain). IEEE, 2019, pp. 228–236.

[33] G. Bu, Ö. Gürcan, and M. Potop-Butucaru, “G-IOTA: Fair and confidence aware tangle,”
in IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). IEEE, 2019, pp. 644–649.

[34] S. Popov, O. Saa, and P. Finardi, “Equilibria in the tangle,” Computers & Industrial Engi-
neering, vol. 136, pp. 160–172, 2019.

[35] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, and J. Yu, “Direct acyclic graph-based
ledger for internet of things: Performance and security analysis,” IEEE/ACM Transactions
on Networking, vol. 28, no. 4, pp. 1643–1656, 2020.

[36] A. Penzkofer, O. Saa, and D. Dziubałtowska, “Impact of delay classes on the data struc-
ture in IOTA,” in Data Privacy Management, Cryptocurrencies and Blockchain Technology.
Springer, 2021, pp. 289–300.

[37] A. Penzkofer, B. Kuśmierz, A. Capossele, W. Sanders, and O. Saa, “Parasite chain detection
in the IOTA protocol,” in 2nd International Conference on Blockchain Economics, Security
and Protocols, 2021.

[38] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy footprint,” in Proceedings of
25th IET Irish Signals and Systems Conference, 2014.

[39] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure proof-of-
stake blockchain protocol,” in Annual International Cryptology Conference. Springer, 2017,
pp. 357–388.

[40] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv preprint
arXiv:1710.09437, 2017.

[41] J. Kwon, “Tendermint: Consensus without mining,” 2014. [Online]. Available:
https://tendermint.com/static/docs/tendermint.pdf

[42] DFINITY Team, “The internet computer for geeks,” 2022. [Online]. Available:
https://dfinity.org/whitepaper.pdf

[43] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, “A survey on long-range attacks
for proof of stake protocols,” IEEE Access, vol. 7, pp. 28 712–28 725, 2019.

[44] S. Popov, H. Moog, D. Camargo, A. Capossele, V. Dimitrov, A. Gal, A. Greve,
B. Kuśmierz, S. Müller, A. Penzkofer et al., “The coordicide,” 2020. [Online]. Available:
https://files.iota.org/papers/Coordicide_WP.pdf

[45] C. I. Jones, “Pareto and Piketty: The macroeconomics of top income and wealth inequality,”
Journal of Economic Perspectives, vol. 29, no. 1, pp. 29–46, 2015.

[46] S. Popov and W. J. Buchanan, “FPC-BI: Fast probabilistic consensus within Byzantine
infrastructures,” Journal of Parallel and Distributed Computing, vol. 147, pp. 77–86, 2021.

[47] S. Popov and S. Müller, “Voting-based probabilistic consensuses and their applications in
distributed ledgers,” Annals of Telecommunications, vol. 77, no. 1, pp. 77–99, 2022.

[48] B. Kuśmierz, S. Müller, and A. Capossele, “Committee selection in DAG distributed ledgers
and applications,” in Intelligent Computing. Springer, 2021, pp. 840–857.

[49] S. E. Chang and Y. Chen, “When blockchain meets supply chain: A systematic literature
review on current development and potential applications,” IEEE Access, vol. 8, pp. 62 478–
62 494, 2020.

[50] J. Brogan, I. Baskaran, and N. Ramachandran, “Authenticating health activity data using

106

distributed ledger technologies,” Computational and structural biotechnology journal, vol. 16,
pp. 257–266, 2018.

[51] H.-N. Dai, M. Imran, and N. Haider, “Blockchain-enabled internet of medical things to
combat covid-19,” IEEE Internet of Things Magazine, vol. 3, no. 3, pp. 52–57, 2020.

[52] R. Overko, R. Ordóñez-Hurtado, S. Zhuk, P. Ferraro, A. Cullen, and R. Shorten, “Spatial
positioning token (SPToken) for smart mobility,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 23, no. 2, pp. 1529–1542, 2022.

[53] A. Cullen, P. Ferraro, C. King, and R. Shorten, “Distributed ledger technology for smart
mobility: Variable delay models,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 8447–8452.

[54] D. Easley, M. O’Hara, and S. Basu, “From mining to markets: The evolution of Bitcoin
transaction fees,” Journal of Financial Economics, vol. 134, no. 1, pp. 91–109, 2019.

[55] A. Cullen, P. Ferraro, C. King, and R. Shorten, “On the resilience of DAG-based distributed
ledgers in IoT applications,” IEEE Internet of Things Journal, 2020.

[56] IOTA Foundation, “GoShimmer,” GitHub Repository, 2020. [Online]. Available: https:
//github.com/iotaledger/goshimmer

[57] J. R. Douceur, “The Sybil attack,” in International workshop on peer-to-peer systems.
Springer, 2002, pp. 251–260.

[58] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of Bitcoin mining, or Bitcoin in
the presence of adversaries,” in Proceedings of WEIS, 2013, p. 11.

[59] J. Huang, L. Kong, G. Chen, M.-Y. Wu, X. Liu, and P. Zeng, “Towards secure industrial
IoT: Blockchain system with credit-based consensus mechanism,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 6, pp. 3680–3689, 2019.

[60] L. Vigneri and W. Welz, “On the fairness of distributed ledger technologies for the internet of
things,” in 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
IEEE, 2020, pp. 1–3.

[61] S. Biswas, K. Sharif, F. Li, S. Maharjan, S. P. Mohanty, and Y. Wang, “PoBT: A lightweight
consensus algorithm for scalable IoT business blockchain,” IEEE Internet of Things Journal,
vol. 7, no. 3, pp. 2343–2355, 2020.

[62] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block chain protocols,” in Inter-
national Conference on Financial Cryptography and Data Security. Springer, 2015, pp.
528–547.

[63] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism: Deconstructing the
blockchain to approach physical limits,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 585–602.

[64] R. Van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient reconciliation and flow
control for anti-entropy protocols,” in proceedings of the 2nd Workshop on Large-Scale Dis-
tributed Systems and Middleware, 2008, pp. 1–7.

[65] D. Grossman et al., “New terminology and clarifications for DiffServ,” in RFC 3260, April,
2002.

[66] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie, J. Wro-
clawski, and E. Felstaine, “A framework for integrated services operation over DiffServ net-
works,” in RFC 2998, November, 2000.

[67] J. Nagle, “On packet switches with infinite storage,” IEEE Transactions on Communications,

107

vol. 35, no. 4, pp. 435–438, 1987.

[68] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,”
Internetworking: Research and experience, vol. 1, no. 1, pp. 3–26, 1990.

[69] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,” IEEE/ACM
Transactions on Networking, vol. 4, no. 3, pp. 375–385, 1996.

[70] M. H. MacGregor and W. Shi, “Deficits for bursty latency-critical flows: DRR++,” in Pro-
ceedings IEEE International Conference on Networks 2000 (ICON 2000). Networking Trends
and Challenges in the New Millennium. IEEE, 2000, pp. 287–293.

[71] J. Postel et al., “Transmission control protocol,” in RFC 793, September, 1981.

[72] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”
IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413, 1993.

[73] V. Attias, L. Vigneri, and V. Dimitrov, “Preventing denial of service attacks in IoT networks
through verifiable delay functions,” in IEEE GLOBECOM 2020, 2020.

[74] S. Müller, A. Penzkofer, B. Kuśmierz, D. Camargo, and W. J. Buchanan, “Fast probabilistic
consensus with weighted votes,” in Proceedings of the Future Technologies Conference (FTC)
2020, Volume 2. Springer Nature, 2020, p. 360.

[75] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet, “The flow queue
CoDel packet scheduler and active queue management algorithm,” in RFC 8290, 2018.

[76] M. Menth, M. Mehl, and S. Veith, “Deficit round robin with limited deficit savings (DRR-
LDS) for fairness among TCP users,” in International Conference on Measurement, Modelling
and Evaluation of Computing Systems. Springer, 2018, pp. 188–201.

[77] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,” Queue, vol. 9, no. 11,
pp. 40–54, 2011.

[78] M. Corless, C. King, R. Shorten, and F. Wirth, AIMD dynamics and distributed resource
allocation. SIAM, 2016.

[79] B. Suter, T. Lakshman, D. Stiliadis, and A. K. Choudhury, “Design considerations for sup-
porting TCP with per-flow queueing,” in Proceedings of IEEE INFOCOM’98, vol. 1, 1998,
pp. 299–306.

[80] L. Zhao, L. Vigneri, A. Cullen, W. Sanders, P. Ferraro, and R. Shorten, “Secure access control
for DAG-based distributed ledgers,” IEEE Internet of Things Journal, Early Access, vol. 9,
no. 13, pp. 10 792–10 806, 2022.

[81] M. Zichichi, S. Ferretti, and G. D’Angelo, “A distributed ledger based infrastructure for smart
transportation system and social good,” in 2020 IEEE 17th Annual Consumer Communica-
tions & Networking Conference (CCNC). IEEE, 2020, pp. 1–6.

[82] M. N. Kamel Boulos, J. T. Wilson, and K. A. Clauson, “Geospatial blockchain: promises,
challenges, and scenarios in health and healthcare,” International journal of health geograph-
ics, vol. 17, no. 1, pp. 1–10, 2018.

[83] J. J. Hunhevicz and D. M. Hall, “Do you need a blockchain in construction? use case cate-
gories and decision framework for DLT design options,” Advanced Engineering Informatics,
vol. 45, p. 101094, 2020.

[84] E. Crisostomi, B. Ghaddar, F. Häusler, J. Naoum-Sawaya, G. Russo, and R. Shorten, Analyt-
ics for the sharing economy: Mathematics, Engineering and Business perspectives. Springer,
2020.

108

[85] E. D. Miller-Hooks and H. S. Mahmassani, “Least expected time paths in stochastic, time-
varying transportation networks,” Transportation Science, vol. 34, no. 2, pp. 198–215, 2000.

[86] H. Gehlot, H. Honnappa, and S. V. Ukkusuri, “An optimal control approach to day-to-
day congestion pricing for stochastic transportation networks,” Computers & Operations
Research, vol. 119, p. 104929, 2020.

[87] C. F. Daganzo and Y. Sheffi, “On stochastic models of traffic assignment,” Transportation
Science, vol. 11, no. 3, pp. 253–274, 1977.

[88] M. Caliskan, D. Graupner, and M. Mauve, “Decentralized discovery of free parking places,”
in Proceedings of the 3rd international workshop on Vehicular ad hoc networks, 2006, pp.
30–39.

[89] M. I. Idris, Y. Leng, E. Tamil, N. Noor, Z. Razak et al., “Car park system: A review of
smart parking system and its technology,” Information Technology Journal, vol. 8, no. 2, pp.
101–113, 2009.

[90] A. Schlote, C. King, E. Crisostomi, and R. Shorten, “Delay-tolerant stochastic algorithms
for parking space assignment,” IEEE Transactions on Intelligent Transportation Systems,
vol. 15, no. 5, pp. 1922–1935, 2014.

[91] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing out: Bitcoin “stress testing”,”
in International Conference on Financial Cryptography and Data Security. Springer, 2016,
pp. 3–18.

[92] F. Semchedine, L. Bouallouche-Medjkoune, and D. Aissani, “Task assignment policies in dis-
tributed server systems: A survey,” Journal of Network and Computer Applications, vol. 34,
no. 4, pp. 1123–1130, 2011.

[93] G. Ciardo, A. Riska, and E. Smirni, “Equiload: a load balancing policy for clustered web
servers,” Performance Evaluation, vol. 46, no. 2-3, pp. 101–124, 2001.

[94] M. Harchol-Balter, M. E. Crovella, and C. D. Murta, “On choosing a task assignment policy
for a distributed server system,” Journal of Parallel and Distributed Computing, vol. 59,
no. 2, pp. 204–228, 1999.

[95] B. Schroeder and M. Harchol-Balter, “Evaluation of task assignment policies for supercom-
puting servers: The case for load unbalancing and fairness,” Cluster Computing, vol. 7, no. 2,
pp. 151–161, 2004.

[96] M. Colajanni, P. S. Yu, and D. M. Dias, “Analysis of task assignment policies in scalable
distributed web-server systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no. 6, pp. 585–600, 1998.

[97] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing in homogeneous
distributed systems,” IEEE Transactions on Software Engineering, no. 5, pp. 662–675, 1986.

[98] K. Ramamritham, J. A. Stankovic, and W. Zhao, “Distributed scheduling of tasks with
deadlines and resource requirements,” IEEE Transactions on Computers, vol. 38, no. 8, pp.
1110–1123, 1989.

[99] L. Cai, X. Shen, J. Pan, and J. W. Mark, “Performance analysis of TCP-friendly AIMD
algorithms for multimedia applications,” IEEE Transactions on Multimedia, vol. 7, no. 2,
pp. 339–355, 2005.

[100] R. Shorten, F. Wirth, and D. Leith, “A positive systems model of TCP-like congestion control:
asymptotic results,” IEEE/ACM Transactions on Networking, vol. 14, no. 3, pp. 616–629,
2006.

[101] R. N. Shorten, D. J. Leith, J. Foy, and R. Kilduff, “Analysis and design of AIMD congestion

109

control algorithms in communication networks,” Automatica, vol. 41, no. 4, pp. 725–730,
2005.

[102] A. M. Kharman, C. Jursitzky, Q. Zhao, P. Ferraro, J. Marecek, P. Pinson, and
R. Shorten, “On the design of decentralised data markets,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.06299

[103] A. Cullen, P. Ferraro, G. Russo, and R. Shorten, “Ad-hocChain: Cooperative sharing and
trading infrastructure for electric vehicle charging networks,” in 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC), 2019, pp. 207–212.

[104] P. Richardson, D. Flynn, and A. Keane, “Impact assessment of varying penetrations of electric
vehicles on low voltage distribution systems,” in IEEE PES general meeting. IEEE, 2010,
pp. 1–6.

[105] ——, “Optimal charging of electric vehicles in low-voltage distribution systems,” IEEE Trans-
actions on Power Systems, vol. 27, no. 1, pp. 268–279, 2011.

[106] S. Deilami, A. S. Masoum, P. S. Moses, and M. A. Masoum, “Real-time coordination of
plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage
profile,” IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 456–467, 2011.

[107] R. Shorten, J. O’Connell, B. Cardiff, G. Russo, P. Ferraro, and P. Cuffe, “Apparatus for
directing power flow between multiple devices,” U.S. Patent US 2020/0 376 969, 2017.

[108] E. Thompson, R. Ordóñez-Hurtado, W. Griggs, J. Y. Yu, B. Mulkeen, and R. Shorten, “On
charge point anxiety and the sharing economy,” in 2017 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE, 2017, pp. 1–6.

[109] J. O’Connell, B. Cardiff, and R. Shorten, “dockchain: A solution for electric vehicles charge
point anxiety,” in 2018 Intelligent Transportation Systems Conference (ITSC). IEEE, 2018,
pp. 1136–1142.

[110] International Electrotechnical Commission, “Electric vehicle conductive charging system—
part 1: General requirements,” 2017. [Online]. Available: https://webstore.iec.ch/
publication/33644

[111] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algorithms and
applications. Springer Science & Business Media, 2011, vol. 24.

[112] Irish Central Statistics Office, “Census of population 2016—profile 6 commuting in Ireland,”
2016. [Online]. Available: https://www.cso.ie/en/releasesandpublications/ep/p-cp6ci/p6cii/
p6td/

[113] D. Lazer, R. Kennedy, G. King, and A. Vespignani, “The parable of Google Flu: Traps in
big data analysis,” Science, vol. 343, pp. 1203–5, 2014.

[114] A. Sinha, D. Gleich, and K. Ramani, “Deconvolving feedback loops in recommender sys-
tems,” in Proceedings of the 30th International Conference on Neural Information Processing
Systems (NIPS’16), Barcelona, Spain, 2016, pp. 3251–3259.

[115] E. Crisostomi, R. Shorten, and F. Wirth, “Smart cities: A golden age for control theory?”
IEEE Technology and Society Magazine, vol. 35, no. 3, pp. 23–24, 2016.

[116] L. Bottou, J. Peters, J. Quiñonero Candela, D. X. Charles, D. M. Chickering, E. Portugaly,
D. Ray, P. Simard, and E. Snelson, “Counterfactual reasoning and learning systems: The
example of computational advertising,” Journal of Machine Learning Research, vol. 14, no. 1,
pp. 3207–3260, Jan. 2013.

[117] J. P. Epperlein, S. Zhuk, and R. Shorten, “Recovering markov models from closed-loop data,”
Automatica, vol. 103, pp. 116 – 125, 2019.

110

[118] R. Overko, R. Ordóñez-Hurtado, S. Zhuk, and R. Shorten, “Reinforcement learning aug-
mented optimization for smart mobility,” in 2019 IEEE 58th Conference on Decision and
Control (CDC), 2019, pp. 1286–1292.

[119] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[120] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, and Z. Zhang, “CreditCoin: A privacy-
preserving blockchain-based incentive announcement network for communications of smart
vehicles.” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 7, pp. 2204–
2220, 2018.

[121] Y. Yuan and F.-Y. Wang, “Towards blockchain-based intelligent transportation systems,” in
IEEE Intelligent Transportation Systems Conference (ITSC), 11 2016, pp. 2663–2668.

[122] A. Dorri, M. Steger, S. S. Kanhere, and R. Jurdak, “Blockchain: A distributed solution to
automotive security and privacy.” CoRR, vol. abs/1704.00073, 2017.

[123] J. Krumm, “A Markov model for driver turn prediction,” SAE Technical Paper, Tech. Rep.,
2008.

[124] R. Simmons, B. Browning, Y. Zhang, and V. Sadekar, “Learning to predict driver route and
destination intent,” in 2006 IEEE Intelligent Transportation Systems Conference (ITSC),
Sep. 2006, pp. 127–132.

[125] F. Belletti, D. Haziza, G. Gomes, and A. M. Bayen, “Expert level control of ramp metering
based on multi-task deep reinforcement learning,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 19, no. 4, p. 1198–1207, 2017.

[126] L. Fridman, J. Terwilliger, and B. Jenik, “Deeptraffic: Crowdsourced hyperparameter
tuning of deep reinforcement learning systems for multi-agent dense traffic navigation,”
2019. [Online]. Available: https://arxiv.org/abs/1801.02805

[127] P. Mannion, J. Duggan, and E. Howley, “An experimental review of reinforcement learning
algorithms for adaptive traffic signal control,” Autonomic Road Transport Support Systems.
Springer, pp. 47–66, 2016.

[128] M. O’Kelly, A. Sinha, H. Namkoong, J. Duchi, and R. Tedrake, “Scalable end-to-
end autonomous vehicle testing via rare-event simulation,” 2019. [Online]. Available:
https://arxiv.org/abs/1811.00145

[129] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent reinforcement learning for in-
tegrated network of adaptive traffic signal controllers (MARLIN-ATSC): Methodology and
large-scale application on downtown Toronto,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 14, no. 3, pp. 1140–1150, 2013.

[130] J. W. Vaughan, “Making better use of the crowd: How crowdsourcing can advance machine
learning research,” Journal of Machine Learning Research, vol. 18, no. 1, pp. 7026–7071,
2017.

[131] F. Hausler, E. Crisostomi, A. Schlote, I. Radusch, and R. Shorten, “Stochastic park-and-
charge balancing for fully electric and plug-in hybrid vehicles,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 15, pp. 895–901, 2014.

[132] A. Schlote, B. Chen, and R. Shorten, “On closed-loop bicycle availability prediction,” IEEE
Transactions on Intelligent Transportation Systems, vol. 15, pp. 1499–1455, 2015.

[133] H. R. Varian, “Causal inference in economics and marketing,” Proceedings of the National
Academy of Sciences of the United States of America, p. 7310–7315, 2016.

[134] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and J. Riedl, “Is seeing believing?: How rec-
ommender system interfaces affect users’ opinions,” in Proceedings of the SIGCHI Conference

111

on Human Factors in Computing Systems. ACM, 2003, pp. 585–592.

[135] I. D. Loram, H. Gollee, M. Lakie, and P. J. Gawthrop, “Human control of an inverted
pendulum: Is continuous control necessary? Is intermittent control effective? Is intermittent
control physiological?” The Journal of Physiology, vol. 589, no. 2, pp. 307–324, 2011.

[136] C. Dann, T. Lattimore, and E. Brunskill, “Unifying PAC and regret: Uniform PAC bounds
for episodic reinforcement learning,” in Advances in Neural Information Processing Systems,
2017, pp. 5713–5723.

[137] J. F. T. Hastie, R. Tibshirani, The Elements of Statistical Learning: Data Mining, Inference
and Prediction. Springer, 2001.

[138] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,
L. Lücken, J. Rummel, P. Wagner, and E. WieBner, “Microscopic traffic simulation using
sumo,” in IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2018, pp.
2575–2582.

[139] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik,
pp. 269–271, 1959.

[140] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer, and B. Ford,
“Scalable bias-resistant distributed randomness,” in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 444–460.

[141] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed key generation for
discrete-log based cryptosystems,” in International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 1999, pp. 295–310.

[142] DFINITY Team, “Threshold relay: How to achieve near-instant finality in public blockchains
using a VRF,” 2017. [Online]. Available: https://cryptorating.eu/whitepapers/DFINITY/
threshold-relay-blockchain-stanford.pdf

[143] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Hydrand: Efficient continuous
distributed randomness,” 2018. [Online]. Available: https://eprint.iacr.org/2018/319.pdf

[144] A. K. Lenstra and B. Wesolowski, “A random zoo: sloth, unicorn, and trx.” 2015. [Online].
Available: https://eprint.iacr.org/2015/366.pdf

[145] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and randomness beacons in
ethereum,” in IEEE Security and Privacy on the blockchain (IEEE S&B), 2017. [Online].
Available: https://jbonneau.com/doc/BGB17-IEEESB-proof_of_delay_ethereum.pdf

[146] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” in Interna-
tional Conference on the Theory and Application of Cryptology and Information Security.
Springer, 2001, pp. 514–532.

[147] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably encrypted sig-
natures from bilinear maps,” in International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2003, pp. 416–432.

[148] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology, vol. 4,
no. 3, pp. 161–174, 1991.

112

Appendix A

DockChain: A Sharing Platform for
Electric Vehicle Chargepoints

Abstract— Insufficient availability of charging facilities presents a major challenge for
electric vehicle adoption as the automotive industry races to transition away from
fossil fuels. The DLT-enabled sharing platform presented in this appendix seeks to al-
leviate this problem by improving the accessibility of existing charging infrastructure
using a novel combination of specialised sharing hardware and a DLT-based plat-
form for payment and vehicle-to-vehicle trading. Our solution, which we refer to as
DockChain, allows multiple electric vehicles to connect to a single charge point and
share its capacity in a fair and collaborative manner. DockChain is the subject of
ongoing research and development alongside Go Eve, a company founded to com-
mercialise the technology. Part of this work, which was completed in collaboration
with Dr. Giovanni Russo of University College Dublin and Dr. Pietro Ferraro and
Prof. Robert Shorten of Imperial College London, also appears in [103].

Distributed ledgers are useful tools for untrusting agents to transact pseudo-anonymously with
one another without the need for a trusted intermediary. As such, DLT is well suited for sharing
applications such as the one presented in this appendix—DockChain. DockChain technology,
depicted in Figure A.1, allows multiple electric vehicles (EVs) to connect to a single charge point
and share the available power. Poor access to charging facilities is a major hindrance to large
scale adoption of EVs, but scaling of charging infrastructure is far from straightforward due to
the detrimental effects of high EV penetration on the grid [104]. It has been shown however that
cooperative charging can mitigate the negative effects of EV charging loads [105], and indeed,
can be beneficial in stabilising the grid in the presence of intermittent generation [106] although
smart grid infrastructure to facilitate this is costly and time-consuming to implement. DockChain
technology solves these problems by allowing available capacity of charge points to be shared in a
cost-effective and straightforward manner.

The initial development of DockChain technology predates the start of this research [107, 108,
109], but a number of key innovations were developed as part of this PhD [103] which have unlocked
new use cases and functionalities which would not otherwise have been possible. The most notable
contributions of this PhD to the development of DockChain have been the following innovations:

• the first prototype of DockChain compatible with mode 327 public charge points, enabling ap-
plications where temporary and semi-permanent extension of existing charging infrastructure
is required;

• a scheduling system and trading layer based on DLT for facilitating sharing of public charge
points by untrusting agents.

27
Mode 3 charging is AC charging from 2.3kW–22kW

113

Figure A.1: Two DockChains chained together, extending the reach of the right hand side outlet
on a public charge point. Three EVs have connected to a single outlet via the DockChains, and
one potential extra charging socket has been blocked by a regular vehicle.

The first prototype of DockChain compatible with mode 428 charge points has also been devel-
oped during this PhD, although these innovations are the primary focus of Go Eve29, a company
co-founded by the present author focussed on commercialising DockChain technology. As such,
the specifics of the DC implementation are beyond the scope of this thesis. The scheduling and
DLT-based trading approaches presented here are equally applicable to DC rapid charging, but we
focus our attention in this appendix on the AC system presented in [103]. The interested reader
can visit the Go Eve website for up-to-date information on commercially available DockChain so-
lutions. Figure A.2 shows a render of DockChain deployed in a car park which has been used for
marketing purposes by Go Eve. Figure A.3 shows further marketing renders of Go Eve’s Dockchain
products.

The appendix is organised as follows. In Section A.1 we give a high level overview of the main
components of the DockChain system (we focus on mode 3 charging as presented in [103]) and
describe its operation. In Section A.2 we outline a framework for cooperative charging based on
earliest deadline first (EDF) scheduling and discuss V2V and V2G trading in this context. We
present a typical use case of this system and provide simulations in Section A.3. We summarise
results and suggest directions for future research and development in Section A.4.

A.1 System Overview

The proposed solution to the problem of rapidly expanding EV charging networks is a lightweight
and low cost device that can be connected to existing public charge points and can sequentially
reroute the charge point’s power to multiple EVs. A prototype is pictured in Figure A.4. This
embodiment of DockChain has two outputs for EVs on each device and an additional socket for
connecting additional DockChains to form a chain, as illustrated in Figure A.1. A similar device
was presented in [108] for the purpose of monetising private charge points in homes or business.
This concept was then extended in [109] with the idea of cascading these devices to allow sharing
of public charge points, but the means of accessing the power of public charge points was not
addressed. The DockChain system presented here utilises the protocols by which EVs must interact
with public charge points and vice versa as outlined in IEC-61851 standards [110].

28
Mode 4 charging is DC rapid charging 22kW–350kW

29
Go Eve have been recipient of numerous innovation awards including University College Dublin’s start up of

the year and a Department of Transport grant. Visit https://www.goeve.co.uk/about for more information.

114

Figure A.2: A render of DockChain devices deployed in a car park. Produced for marketing
purposes by Go Eve.

Figure A.3: Renders of DockChain products available from Go Eve. Left: a DC charging cabinet
used to a supply a chain of DockChain devices. Centre and right: DockChain options for different
deployment locations. Produced for marketing purposes by Go Eve.

115

Figure A.4: A prototype DockChain device.

A.1.1 Hardware Layer
IEC-61851 compliant Electric Vehicle Supply Equipment (EVSE) communicates with EVs over
the Control Pilot (CP) on a standard Type 2 plug. The EVSE produces a ±12 V PWM signal,
the duty cycle of which indicates the charge rate available from the EVSE. On the EV side, a
pull-down resistor indicates the state of the EV to the EVSE i.e. its readiness to charge. What
we would like to be able to do when we plug in a DockChain device to the EVSE is to have the
DockChain appear identical to an EV from the perspective of the EVSE. Meanwhile we would like
the DockChain to appear identical to an IEC-61851 compliant EVSE from the perspective of the
EV. This man-in-the-middle approach allows us to take control of the power available from the
EVSE and distribute it as we please to EVs in compliance with IEC-61851 standards. Figure A.5
illustrates how DockChain handles the CP signal. The inlet coming from the EVSE passes in to
an array of resistors which we can control to mimic different EV states via the Raspberry Pi 3B+
controller, as indicated in the figure. The CP signal (whose voltage has now been pulled down
by these resistors) then passes through comparator circuits to produce two new ±12 V signals
identical to the original signal produced by the EVSE. One of the generated CP signals is directed
to an outlet intended for connecting further DockChain devices and the other can be directed to
either of the outlets available for connecting EVs.

The approach described above and illustrated in Figure A.5 allows multiple DockChain devices to
be connected in series—the CP signal from the output socket for additional DockChain devices will
be identical to that produced by the EVSE. Note that bidirectional charging will require different
hardware due to the more complex communication protocols required and the more complex routing
of power, whether it be V2V or V2G.

A.1.2 Network Layer
In order to have multiple DockChain devices connected to a single charge point and have the avail-
able power reliably distributed, we must enable communication both between adjacent DockChain
devices and between users and DockChain devices. Bluetooth communication between adjacent
DockChain devices allows them to coordinate charging and ensure that the overall power demand
on the EVSE never exceeds the capacity indicated by its CP signal. As for users communicating

116

Figure A.5: The DockChain manipulates the CP signal so as to appear like an EV from the view-
point of the EVSE and appear like an EVSE from the viewpoint of an EV or another DockChain.

117

Figure A.6: A chain of DockChain devices: adjacent DockChain devices communicate over Blue-
tooth, and EV owners communicate with DockChain devices via a touchscreen interface and/or a
smartphone app.

with the system to indicate their charging needs and the system communicating its status to users,
we can achieve this in two ways: the touchscreen interface allows two way communication directly
between the users and the system; a smartphone application presents updates on charging status
to the users in real-time and allows modification of desired charge and deadlines etc. by users.

A.1.3 DLT-Based Trading Layer

The DLT-based trading layer facilitates two kinds of transaction. Firstly, we would like to enable
EVs to easily and securely make real-time payments to the DockChains for the charging service.
The cost per unit of electricity could, for instance, depend on grid capacity and renewable gen-
eration at any given time. Secondly, we would like to enable V2V trading. When a number of
DockChains have been deployed at a charge point, multiple EVs will be able to contend for the
available power. DockChain is capable of intellegent scheduling of charging which takes each user’s
requirements into account. This is discussed in further detail in Section A.2, but with an algorithm
for optimally scheduling charging, we would like users to be able to trade places in the queue by
making direct payments to other EVs ahead of them. Direct V2V payments can also be made for
V2V charging with the addition of bidirectional charging hardware.

A.2 Cooperative Charging Frameworks

Various cooperative charging policies have been discussed in relation to the prior iterations of this
charge point extender [108, 109]. We now seek to formalise the problem and propose a means of
implementing such policies.

We wish to distribute the total capacity P of an EVSE among n EVs that are connected to the
EVSE via a chain of DockChain boxes. In what follows, we assume that a chain of DockChain boxes
acts as a single central controller which may be achieved by configuring the box connected directly
to the EVSE as the master. The algorithms described in this section may be implemented in a
distributed manner across the boxes, however we do not discuss this further here. The controller
of the master box has access to the following information on the EVs connected to the system:

• x(t) 2 Rn⇥1, the state of charge (SoC) of the EVs at each socket at time t;

• xref 2 Rn⇥1, the desired SoC for each EV;

• Ti, the deadline for charging the EV at socket i;

• ⇢i(t) 2 [0, 1], the charging efficiency of EV at socket i at time t: ⇢(t) = diag (⇢i(t));

• u(t) 2 Rn⇥1, the binary control vector indicating the state (on/off) of each socket at time t.

We now present an algorithm for choosing u(t).

118

A.2.1 Earliest Deadline First Scheduling

When an EV connects to the system, the owner can request their desired final state of charge,
xref,i, and their deadline, Ti. We aim to assign a charging slot to this EV to guarantee that it will
be ready for the requested deadline, provided the request is feasible under the current conditions,
including the state of other vehicles connected and the charging rate of the EVSE, P . We can
borrow an important result from CPU task scheduling [111] which tells us that by catering to the
task with the earliest deadline first (EDF), we make optimal use of the resource in this case because
we know the deadlines and the time required for each task ahead of time. Note that this is not
quite like a typical CPU task scheduling problem because tasks are not periodic. Nonetheless, an
implementation of an EDF algorithm for this system is described in Algorithm 13.

Algorithm 13 Earliest Deadline First Scheduling
Initialise:

1: ⇡ empty list
Repeat:

2: t current time
3: if event at socket i then
4: (⇡, statusi) UpdateSchedule(i,⇡)
5: if ⇡ is empty then
6: u(t) = 0 . switch off all sockets
7: else
8: i⇤ index of socket listed first in ⇡
9: u(t) = ei⇤ . switch on socket i⇤

10: end if
11: end if

12: function UpdateSchedule(i,⇡old)
13: if EV present at socket i and xref,i(t) > xi(t) then
14: ⇡new ⇡old

15: ⌧i (xref,i (t)� xi (t)) /P
16: ⇡new.append ({⌧i, Ti})
17: sort ⇡new by deadline . earliest first
18: l index of last socket in ⇡new

19: if t+
P

n

i=1 ⌧i Tl then . schedulable
20: return (⇡new, success)
21: else . not schedulable
22: return (⇡old, failure)
23: end if
24: else
25: ⇡new ⇡old

26: ⇡new.remove ({⌧i, Ti})
27: return (⇡new, success)
28: end if
29: end function

Note that schedule updates in Algorithm 13 are triggered by events at the sockets. Such events
include:

• a new EV is connected at socket i;

• the EV at socket i is disconnected;

• the desired battery level, xref,i(t), or the deadline, Ti are updated for socket i;

• the EV at socket i has reached its desired battery level xref,i(t).

The status of socket i, referenced in Line 4 of Algorithm 13, indicates whether a requested
battery level and deadline is schedulable for the EV at socket i or not.

119

A.2.2 V2V Trading
If the status is “failure”, then the request is not schedulable and the EV owner has two options:
they can request a lower battery level or a later deadline; or they can request to trade places in
the queue with other EV owners who connected before them in exchange for a payment.

A.3 Case Study: City Centre Workplace

Consider the following illustrative deployment scenario, dimensioned using Irish commuter data
and typical EV battery usage: a company has installed a 7kW EVSE at a workplace car park in a
city centre location, but wishes to expand the number of sockets to facilitate the rising number of
EV owners in the company.

A.3.1 Dimensioning
Between 8am and 6pm we have a capacity of around 70kWh to charge EVs from each socket of the
EVSE. Assuming the average city commute distance to be around 10km each way 30 an inefficient
EV would only need around 4kWh (0.2kWh/km) of charge to cover their commute
The 2018 Nissan leaf claims a range of 270km for the 40kWh battery i.e. using less than 0.15kWh/km,
and this can be improved upon with city driving. This means that in the use case of interest here
(day-to-day commuting within a city) this 7kW EVSE should reasonably have the capacity to
service 17–18 EVs for their full commuting needs. We need to unlock this capacity by allowing
more EVs to connect and by managing the distribution of the available power so that everyone
gets their fair share.

For this use case, we could deploy 8 DockChains at each EVSE socket, allowing 16 average
commuters to charge more than they would need for their daily commute from a single socket.

A.3.2 Implementation
Let us now provide preliminary results for each of the Algorithms described in Section A.2 for
a typical workplace deployment. For the purpose of a clear illustration with a legible plot, we
simulate just 4 EVs and scale their expected charging requirements, calculated above, by a factor
of 4 to be representative of a similar system with 16 EVs.

Standard Use

Consider a typical work day in which all users arrive in the morning at similar times and leave
in the evening at similar times. The first section of Table A.1 contains the charge and timing
requirements of each EV in this scenario. We can clearly see from the results in Figure A.7 that
the EDF algorithm successfully schedules all charging without issue, as expected.

Changing Deadline

Suppose now that at 9:30am, the owner of EV 4 has realised they need their car by 1pm after all
as they are taking a half-day. They update their charging deadline to reflect this, as the schedule is
still feasible. The second section of Table A.1 contains the updated charge and timing requirements.

We see in the results presented in Figure A.8 that at 9:30am, when EV 4 updates their deadline,
the algorithm updates the schedule to ensure that EV 4 charges on time, and all other EVs still
charge on time.

V2V Trading

Suppose now that, in addition to the changes made by EV 4 above, the owner of EV 2 has realised
during the day that they will actually need around 30 kWh in their battery for a long journey that
evening. The maximum charge achievable under the conditions at this stage is around 20 kWh.

30
The average straight line distance for commuters in Dublin City is actually only 5.88km according to the 2016

census of Ireland [112]

120

EV Initial
SoC

Arrival
Time

Desired
SoC

Deadline

1) Standard Use
1 6 kWh 8:10am 27 kWh 5pm
2 4 kWh 8:20am 12 kWh 5:30pm
3 10 kWh 8:30am 18 kWh 4:40pm
4 5 kWh 8:50am 25 kWh 6pm

2) Changing Deadline
1 6 kWh 8:10am 27 kWh 5pm
2 4 kWh 8:20am 12 kWh 5:30pm
3 10 kWh 8:30am 18 kWh 4:40pm
4 5 kWh 8:50am 25 kWh 1pm

3) V2V Trading
1 6 kWh 8:10am 17 kWh 5pm
2 4 kWh 8:20am 30 kWh 5:30pm
3 10 kWh 8:30am 18 kWh 4:40pm
4 5 kWh 8:50am 25 kWh 1pm

Table A.1: Scenarios 1, 2, and 3. Changes from the previous scenario are highlighted in bold.

The owner of EV 2 broadcasts to the other EVs in the system that they would like to pay someone
for their charging slot. EV 1 accepts the offer and EV 2 makes a payment in DLT tokens to the
digital wallet of EV 1, and in return, the requested charge of EV 1 is reduced by 10 kWh to allow
EV 2 get the full 30 kWh desired. The third section of Table A.1 contains the charge and timing
requirements of each EV in this scenario.

The results, presented in Figure A.9 for this scenario, show that the EDF algorithm adapts
successfully to this change in desired charge.

8am 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm

Time

0

5

10

15

20

25

30

35

40

S
ta

te
 o

f
C

h
ar

g
e

(k
W

h
)

EV 1
EV 2
EV 3
EV 4

Figure A.7: Earliest deadline first algorithm: standard use.

A.4 Summary

The system described here can be rapidly deployed at existing EV charge points at a low cost
compared with installation of additional charge points. The system allows multiple EVs to connect
to a single charge point, and an adaptive scheduling algorithm ensures that the needs of each
user are met, where possible within the constraints of the system. The DLT-based trading layer
allows users to trade places in the queue for monetary reward. Further extensions of this system

121

8am 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm

Time

0

5

10

15

20

25

30

35

40
S

ta
te

 o
f

C
h
ar

g
e

(k
W

h
)

EV 1
EV 2
EV 3
EV 4

Figure A.8: Earliest deadline first algorithm: changing deadline.

8am 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm

Time

0

5

10

15

20

25

30

35

40

S
ta

te
 o

f
C

h
ar

g
e

(k
W

h
)

EV 1
EV 2
EV 3
EV 4

Figure A.9: Earliest deadline first algorithm: trading places in the queue.

could incorporate V2V and V2G charging, and the DLT-based trading layer could also seamlessly
facilitate trading of charge in this way. These extensions would allow the system to offer a valuable
service to the grid in providing a readily available pool of EVs with the capacity to sell stored
energy and allow EV owners to monetise their vehicle’s battery when it is not in use.

122

Appendix B

SPToken: DLT-augmented
Reinforcement Learning

Abstract— Recommender systems now play a role in delivering personalised services
to millions of people on a daily basis. The providers of these services must, by the
very nature of recommender systems, gather personal data on their users to provide
updated recommendations. However, the manner in which data has been stored and
used by organisations in recent years has raised ethical concerns and created a demand
for more decentralised and transparent modes of data management. The prolifera-
tion of distributed ledger technology presents a new paradigm for data management
which is more private and transparent than the current model, and returns control
over data to consumers and regulatory agencies alike. In this appendix, we present
a framework for building recommender systems in which data is sampled and man-
aged on a distributed ledger. We apply this framework to a route recommendation
problem using reinforcement learning and show that our approach not only imple-
ments a more ethical model for data management but supports efficient sampling and
faster learning. This is joint work with Roman Overko of University College Dublin,
Dr. Rodrigo Ordónez-Hurtado and Dr. Sergiy Zhuk of IBM Research, Ireland, and
Dr. Pietro Ferraro and Prof. Robert Shorten of Imperial College London. This re-
search also appears in [52].

Companies such as Facebook, Google, Amazon, Waze and Garmin are just some examples of the
many corporations that have built successful service delivery platforms using personalised data to
develop recommender systems. While products gleaned from data mining of personal information
have undoubtedly delivered great societal value, they also have given rise to a number of ethical
questions that are causing a fundamental revision of how data is collected and managed. Among
the most pressing ethical issues are the following:

1. preservation of individuals’ privacy (including GDPR compliance);

2. the ability for individuals to retain ownership of their own data;

3. the ability for consumers and regulatory agencies to confirm the origin, veracity, and legal
ownership of data, products and services;

4. protection against misuse by malevolent actors.

It is in these context that DLT has much to offer and our objective in this appendix is to
design a DLT-based architecture to address these concerns. We are particularly interested in using

123

DLT to realise crowdsourced collaborative recommender systems to support a range of mobility
applications for smart cities. The DAG-based distributed ledgers which have been the primary
focus of this thesis are particularly suitable for such applications for a number of reasons. First,
we require the ledger to facilitate high-frequency micro-transactions in order to support the rapid
exchange of information between the multitude of IoT devices found in cities. Second, as the DLT
must support multiple control actions and recommendations in real-time, transaction times should
be fast with low or zero transaction fees. Finally, the DLT should penalise malevolent actors who
attempt to spam the system or lie to attack the design of any recommender system based on the
DLT.

It should be noted that wrapping a DLT layer around personal information will fundamentally
change the business model of many companies. Many corporations currently monetise recorded
personal data with no explicit reward returned to the owner of such data (other than personalised
recommendations or free access to products in return for the collected data). If such data is no
longer available free of charge to these corporations, that will surely jeopardise existing business
models. In future, most data will be privately held and not available in a public manner, and
companies seeking to develop services will need to purchase this data to sample an unknown
density. In this context, a fundamental challenge is to do this at minimum cost, as quickly as
possible, given some desired level of accuracy (e.g., a minimum quality of service) and to develop
a set of tools to enable such companies to sample these large data sets, secured in a distributed
ledger, in an economic manner.

A second challenge arises from the design of the recommender systems themselves. In many
important applications, the development of complex decision making tools is inhibited by difficulties
in interpreting large-scale, aggregated data sets. This difficulty stems from the fact that data
sets often represent closed-loop situations, where actions taken under the influence of decision
support tools (i.e. recommenders), or even due to probing of the environment as a part of the
model building, affect the environment and consequently the model building itself. Recently a
number of papers have appeared highlighting the problem of recommender design in closed loop
environments [113, 114, 115, 116, 117, 118]. Even in cases when there is a separation between the
effect of a recommender and its environment, the problem of recommender design is complex in
many real world settings due to the challenge of sampling and obtaining real-time data at low cost.

In this appendix we bring both of the above problems together in one framework. In particular,
we consider the problem of sampling an unknown density representing traffic flow in a city, using a
DLT-based architecture that allows for data collection through secured access points, and without
perturbing the density through probing actions. Specifically, we will use reinforcement learning
(RL) [84, 119] to sample the density in order to build a model of the environment. However, classical
implementations of RL are usually not applicable in many smart city applications due to their long
training time, the disruptive effects of probing, and poor availability of data. We shall demonstrate
how DLT allows us to achieve rapid probing actions without affecting the environment, and also
enabling individuals to retain ownership of their own data while being rewarded for contributing
to the RL algorithm.

B.1 Related Work

Our work brings together ideas from many areas. The first key area, DLT, has been the primary
focus of this thesis. The interested reader can refer Chapter 1 and the references therein for an
overview of DLT. For the purpose of this application, we are mostly interested in DAG-based
distributed ledgers due to the fact that these architecture are designed to facilitate high-frequency
microtrading, they place a low computational and energy burden on devices, they do not require
transaction fees, and transactions are pseudo-anonymous [34]. In terms of mobility applications,
we note that several blockchain-based DLT architectures have already been proposed. Recent
examples include [120, 121, 122] and the references therein. To the best of our knowledge, our
work is the first to use a DAG-based distributed ledger to support distributed machine learning
(ML) algorithms.

124

In terms of ML, we borrow heavily from RL, Markov decison processes (MDPs), and, in particu-
lar, crowdsourced ML. The literature on MDPs and RL algorithms is vast and we simply point the
reader to some relevant publications in which some of this work is discussed (see [117, 123, 124]).
With specific regard to RL and mobility, some applications are presented in [125, 126, 127, 128, 129].
We exploit the idea of using crowdsourced behavioural experience to augment the training of ML
algorithms (see a recent survey for an overview of this area in [130]).

Finally, it is worth mentioning that we are ultimately interested in the design of recommender
systems that account for feedback effects in smart city applications. In [131, 132], different in-
formation is sent to different agents in an attempt to mitigate closed-loop effects. An alternative
and more formal approach is presented in [117]. There, the authors attempt the identification of
a smart city system from closed-loop data sets. Similar issues have drawn interest from various
domains including economics [133], recommender systems [134, 114], physiology [135], and control
engineering in the context of smart cities [115].

B.2 SPToken: DLT for Crowdsourced Smart Mobility

Our aim is to design a DLT-based system for crowdsourcing data in a smart mobility environment.
In particular, we explore how to apply this framework to an RL setting where a third party is
interested in acquiring information from vehicles in order to solve an optimisation problem.

The underlying idea is to use a set of virtual tokens as a proxy to indicate specific geographical
points of interest whose states and conditions (e.g., position, speed, nearby air pollution) are of
significance for dedicated algorithms. In routing algorithms, for example, we are interested in
maximising the expected reward (relative to an objective function) for taking a specific route
across a city. To make this process clearer, consider the following example. Figure B.1 shows an
instance of a typical scenario where two road junctions A and B are connected to one another
through the road segment

��!
AB. At time TA, a vehicle updates the ledger with some collected

information xTA (e.g., air pollution level, travel time) by registering at a given visited intersection
(A, in this example). Intuitively, this can be depicted as if the vehicle leaves a token with
associated information xTA at junction A. Then, a new vehicle passing via junction A and directed
to junction B can “collect” token and, as it passes by junction B at time TB > TA, it updates
the ledger with new information xTB regarding route link

��!
AB and the new position of the token.

It is noteworthy that in Figure B.1 a vehicle leaves the token when it deviates from the token
route. Thus, a new car that passes by junction B whose immediate future trajectory coincides
with the token’s route will be able to collect the token and the procedure is repeated for a new
road segment.

The concept of using tokens to be deposited at specific locations where measurements are needed
perfectly conforms with a DLT-based system. In fact, it is natural to use distributed ledger
transactions to update the position of available tokens and register the associated data to the
points of interest by using transactions (which can be done, for example, using smart sensors at
various junctions linked to digital wallets, as shown in Figure B.1). Of course, the design of such
a network poses a number of challenges that need to be addressed.

• Privacy: In the DLT, transactions are pseudo-anonymous31. This is due to the cryptographic
nature of the addressing, which is less revealing than other forms of digital payments that
are uniquely associated with an individual [31]. Thus, from a privacy perspective, the use of
DLT is desirable in a smart mobility scenario.

• Ownership: Transactions in the DLT can be encrypted by the issuer, thus allowing every
agent to maintain ownership of their own data. In the aforementioned setting, the only
information required to remain public is the current ownership of the tokens.

• Microtransactions: Due to the amount of vehicles in the city environment, and also due to
31https://laurencetennant.com/papers/anonymity-iota.pdf

125

A B

Token Route
Car Route

κ

κ

(a) A vehicle passes through a junction A where another car has recently issued some data (this is displayed
by a token). This makes the agent eligible to write transactions to the ledger.

A B

Data at

Junction B

Token Route κ
Car Route

κ

(b) The same vehicle passes through junction B. It then writes some data, relative to the road link
�!
AB,

to the ledger and deposits the token so that another vehicle will be able to collect it.

Figure B.1: The sequence to issue new data from vehicles. Here denotes a token.

the need of linking the information to real-time conditions (such as traffic or pollution levels),
there is the demand for a fast and large data throughput.

• Resilience to Misuse: The system must be resilient to attacks and misuse from malevolent
actors. Typical examples include double spending attacks and spamming of the system as
discussed in earlier chapters.

To meet all the design objectives described above, in the next section we propose Spatial Posi-
tioning Token (SPToken), a platform built on top of a suitable distributed ledger with an additional
regulatory policy in order to prevent agents from adding transactions that do not possess any rele-
vant data. Specifically, SPToken makes use of PoP to authenticate transactions: for a transaction
to be authenticated, it has to carry proof that the agent was indeed in an area where a token
was present, which is achieved via special nodes called observers linked to physical sensors in a
city32. Whenever a participating car passes by an observer that is in possession of a token, a
short range wireless connection is established (e.g., via Bluetooth) and the token is transferred to
the vehicle’s account if the requirements are met (e.g., the immediate vehicle’s and token’s future
trajectories intersect). To deposit the token and to issue a transaction containing data, the agent

32
A sensor can be a fixed piece of infrastructure, or a vehicle whose position is verified.

126

needs to pass by another observer and establish a short range connection. See Figure B.1 for a
better understanding of this process. This process ensures that vehicles have to be physically at
the observation points to be able to issue transactions.

B.3 Reinforcement Learning with SPToken

Our objective now is to implement an RL strategy using the token-passing architecture described
in the previous section. Specifically, instead of using vehicles as RL agents [118] to probe an
unknown environment, we use tokens “jumping” among vehicles to effectively create virtual agents
and emulate the behaviour of commanded agents designed to probe the surroundings of arbitrary
routes. For this, we employ a modified version of the recently proposed RL algorithm called
Upper Bounding the Expected Next State Value (UBEV) [136]. UBEV involves a combination
of backward induction with maximum likelihood estimation to (i) construct optimistic empirical
estimates of state transition probabilities, (ii) assign empirical immediate reward, and (iii) compute
optimal policy. In fact, our design of the state-action space allows us to avoid estimating the
transition probabilities, which significantly reduces the training time. Effectively, the algorithm
learns only the reward function which describes the environment (e.g., traffic patterns in a city).

Since the training time is a common disadvantage of RL algorithms, we propose to launch a
high number of independent tokens, which act as virtual vehicles and use the same MDP’s policy
matrix to explore different areas of a city. Further details of the proposed approach, together with
the corresponding experimental assessment, are provided in the following sections. In particular,
we experimentally assess:

• how fast the system learns to avoid traffic jams;

• how quickly the system returns to the shortest path policy once the traffic jams clear up;

• how the training time varies with respect to the number of independent tokens.

The original UBEV algorithm in [136] performs a standard expectation-maximisation trick.
Namely, it first fixes the state transition probabilities of the MDP and the expected reward esti-
mates, and uses backward induction to design the optimal deterministic policy which maximises the
expected reward. Next, this policy is used to probe the environment, and the statistics collected
over the course of probing are used to update transition probabilities by employing a standard
“frequentist” maximum likelihood estimator [137], which simply computes the frequencies of tran-
sitioning from one state to another subject to the current action (that can be a function of the
current state). Then, the optimal policy (for the updated estimates of the transition probabilities
and reward) is recomputed again. This procedure is treated as an episode of the training process
and is iterated until convergence (as demonstrated in [136]).

B.3.1 Modified UBEV algorithm
Our decision problem is a finite horizon problem with time horizon length H, where we assume
that the model is known and that the environment is fully observable. An MDP can be represented
as a tuple hS,As,P,Ri, where

• S is the set of states, with |S| = S being the number of states;

• As is the set of allowable actions, with |As| = As being the number of allowable actions in
state s, A =

S
s2S

As, and with |A| = A being the total number of actions;

• P(s0|s, a, t) is the probability of transition from state s under action a 2 As to state s0 at
decision epoch t 2 H, H = {1, 2, . . . , H};

• R(s, a, t) is the reward of choosing the action a 2 As in the state s at decision epoch t 2 H.

127

In an MDP, an agent (i.e., the decision maker) chooses action at 2 As at time t 2 H based on
observing state st, and then receives a reward rt. The trajectory of the MDP is defined as follows:
it is assumed that st+1 ⇠ P(·|st, at, t), i.e., the state at time t + 1 is drawn from a distribution
P which depends on st, at 2 As and decision epoch t. In this case, the total expected reward
associated to the policy ⇡ : S ! A is defined as

⇢(⇡) := Es1...sH

"
X

t2H

R(st,⇡(st, t), t)

#
=

X

s2S

P0(s)V
⇡

1 (s) , (B.1)

where P0 is the distribution of the initial state, and V ⇡

t
is the value function from decision epoch

t for policy ⇡, formally defined as follows:

V ⇡

t
(s) = R(s,⇡(s, t), t) +

X

s02S

P(s0|s,⇡(s, t), t)V ⇡

t+1(s
0),

V ⇡

H+1 := 0.

(B.2)

Then, the goal of an agent is to find an optimal trajectory which maximises the expected reward
(B.1), and the optimal MDP policy (i.e., the policy maximising (B.1)) is calculated through the
backward induction process given by:

⇡(s, t) = argmax
a2As

(
R(s, a, t)+

X

s02S

P(s0|s, a, t)V ⇡

t+1(s
0)

)

⇡(s,H) = argmax
a2As

R(s, a,H).

(B.3)

We are now in a position to present the Modified UBEV (MUBEV) algorithm as described in
Algorithm 14 which is a result of adapting the original UBEV algorithm to our target problem.
Our first modification is to use a specific type of state-action space. A state is represented as a
collection of road links, while the action space consists of possible directions of connections between
the edges of a road network33. Namely, we apply the actions 's'—go straight, 'l'—turn left, 'L'—
turn partially left, 'R'—turn partially right, 'r'—turn right, and action 'u'—stay in the same state
(which prevents leaving the destination state). We also exclude U-turns to favor the exploration
of the environment, as U-turns may result in undesirable recurrent attempts to use the shortest
path policy. The proposed model of the state-action space, based on directions between road links,
allow us to provide the algorithm with the set of predefined trivial transition probabilities.

For example, let us construct stochastic rows of transition matrices for all possible transitions
from state s0 assuming that actions 's', 'l', and 'r' are allowable in this state as shown in Figure B.2.
Clearly, it is not required to learn such trivial transition probabilities, which is a significant advan-
tage especially for large road networks. Note that, in our model, the action 'u' (stay in the same
state) is allowable at each state s 2 S.

Our second modification addresses the following situation. At the beginning of the training,
there is little or no information on the reward distribution, and the algorithm explores rather than
exploiting. By default, the original algorithm always selects the first component of Q if all the
components of the Q-function are equal(Algorithm 14, line 24), and thus it probes the environment
without any preference in terms of the direction of the exploration. In contrast, we force it to stick
to the shortest path policy whenever Qi = Qj , 8i, j, so that our algorithm explores the area around
the shortest route. If the agent faces a traffic jam after a certain action a 2 As, it gets delayed,
which in turn introduces the negative reward for the action a 2 As at state s. As a result, the
reward distribution changes, and the shortest path policy is amended to avoid the jam by looking
for a detour. By operating in this fashion, we sample along near optimal trajectories.

33
In this work, we do not consider lane-changing behaviour for the agents on multi-lane roads.

128

s0

s1

s2

s4

s3

Figure B.2: A piece of a road network with five road links representing states s0, s1, s2, s3, s4.
Note that state s3 is marked in gray since it is not accessible from state s0.

Concerning the third modification, we aim to launch multiple tokens always starting at different
(randomly sampled) origins and having the same destination. All these tokens follow the same
MDP’s policy matrix, and the corresponding collected statistics are then used to update the policy.
Therefore, learning and adaptation happen more rapidly.

Finally, we propose a stationary model of the MDP (i.e., transition probabilities and the reward
distribution do not vary with time) where each independent agent (token) contributes to the MDP’s
reward matrix, and they all use new updated policy in the next episode of the learning process.

B.3.2 Notation for MUBEV and the Reward Function.
In Algorithm 14: S is the set of states; As is the set of allowable actions in state s, A =

S
s2S

As;
S and A denote cardinality of finite sets S and A respectively; As denote cardinality of a finite
set As; H is the length of the MDP’s time horizon, with H = {1, 2, · · · , H}; P is an array of
predefined transition probabilities; ⇧SP is the shortest path policy; M is the number of MUBEV
tokens; � is the failure probability (see [136] for details); n(s, a, t) is the number of actions a 2 As

taken from state s at time t; R(s, a, t) is accumulated reward from state s under action a 2 As at
time t; V̂ (s, t0) is the value function from time step t0 for state s; Q̂(s, a, t) is the Q-function for
the appropriate state, action and time [136]. Initial values of elements in arrays n, R, V̂ and Q̂ are
zeros for all s 2 S, a 2 As, t 2 H, t0 2 {1, 2, · · · , H+1}. Additionally: rmax is the maximum reward
that the agent can receive per one transition; Vmax is the maximum value for next states; V̂ (·, t+1)
and P (·, s, a, t) denote vectors of length S, and Q̂(s, ·, t) is interpreted as a vector of length As; �
is the width of the confidence bound [136]; e is the Euler’s number; r̂(s, a, t) is normalised reward
from state s under action a 2 As at time t; and r and EV are auxiliary variables. Vector s̃ is a
vector of initial states of MUBEV tokens, which is uniformly sampled in range from 1 to S with
no repeated entries. The agents (tokens) interact with the environment each time step t 2 H, and
receive reward rt determined by the reward function defined in Function 1.

Concerning Function 1, it returns total reward, i.e., distance reward plus time reward, at time
t. Additionally: ⌧(st+1) is actual travel time on edges that correspond to state st+1; ↵ is a scale
factor that increases minimum travel time on edges due to traffic uncertainties; � is a parameter
used for faster learning of congestions; !D and !T are the weights of distance and time reward,
respectively; ⌦ is the absolute value of penalty given to the agent if it takes action 'u' if not at
the destination state or when it leaves the destination; D(st) is the shortest route length from
state st to the destination state sf ; and L(st) is the length of edges that correspond to state st.
Finally, RY (st+1) is the duration of yellow and red phases of traffic light signals (TLS) that control
edges that represent state st+1; if all edges in some state are not controlled by a TLS, we apply
RY = 0 for that state. If some edges are not controlled by traffic light signals, we employ the edge
coefficient EC for them (Function 1, line 15) which is computed as follows: if the length Lt+1 of
edges that correspond to state st+1 is smaller than the average length of edges included in states

129

L̄, then EC(st+1) =
⇥
L(st+1)/L̄

⇤4, otherwise EC = 1.

B.4 Simulations

In the following application, we are interested in designing a recommender system for a community
of road users. We distribute a set of MUBEV tokens so that the uncertain environment can
be probed by passing these tokens from vehicle to vehicle via the DLT. The token positioning
is determined by the operation of the MUBEV algorithm and vehicles possessing a token are
permitted to write data to the DLT. We refer to such vehicles as virtual MUBEV vehicles. In
this way, the token passing emulates the behaviour of real agents (vehicles) that are probing the
environment.

For the experimental evaluation of our proposed approach, we designed a number of numerical
experiments based on traffic scenarios implemented with the open source traffic simulator SUMO
[138]. Interaction with running simulations is achieved using Python scripts and the SUMO pack-
ages TraCI and Sumolib. The general setup used in our simulations is as follows.

• In all our experiments, we make use of the area in Dublin, Republic of Ireland shown in
Figure B.3 (roughly speaking, south Dublin city centre to the canal), with all the U-turns
removed from the network file, and a total of S = 3, 663 states.

• A number of roads are selected as origins, destinations, and sources of congestion (see Fig-
ure B.3). In all experiments we use the set {O, D} as an origin-destination (OD) pair. We
use C1 in Experiment 1 and 2 and {C1, C2} in Experiment 3 to simulate traffic jams on
them.

• In all simulations we use a new vehicle type based on the default SUMO vehicle type34 with
maximum speed = 118.8 km/h and impatience = 0.5.

• For the generation of traffic jams, we modify the maximum speed of certain cars to be 6.12
km/h and populate the selected roads with them. When these vehicles are in possession of
a token, they become virtual MUBEV vehicles.

• Whenever required, the shortest path is obtained via SUMO using the default routing algo-
rithm (dijkstra [139]).

• We refer to a state of an agent as a set of road sections (see Figure B.4) and to a token trip
as an RL episode.

• We set H = 85 for the length of the MDP’s time horizon35.

To reduce the size of the state space, we pre-process the road network to allow the merging
of different road links into one state: for a given road link, whenever there is only one incoming
direction and only one outgoing direction with neighbour road links, we join these edges into a
single state (as shown in Figure B.4). With this preparatory step, the map shown in Figure B.3
that contains 10,803 road links results in a graph with only 3,663 states.

Concerning the design parameters of the reward funcion and the MUBEV algorithm, in all our
experiments we set !D = !T = 1, rmax = 1, � = 1, and tuned the other design parameters as
follows: ↵ = 1.2, � = 1.3, ⌦ = 20. All the experiments rely on a number of background vehicles
with random routes which will potentially carry tokens if required. Any specific additional setup
for each individual experiment will be described in the corresponding subsection.

34https://sumo.dlr.de/wiki/Definition_of_Vehicles_Vehicle_Types_and_Routes
35

This number corresponds to the length of the largest shortest path between an arbitrary origin and destination

D (55 transitions in our case) plus a degree of freedom of 30 transitions to properly cope with uncertainties.

130

0 1000m

C2

O
C1

D

Figure B.3: Realistic road network used in the experiments: a part of Dublin, Republic of Ireland.
Four road segments of interest are highlighted, namely O, D, C1 and C2.

B.4.1 Experiment 1: Optimal Route Estimation Under Uncertainty

The purpose of the first experiment is to determine if our DLT-enabled RL approach can estimate
a simple unknown environment. To this end, we define the following experiment. We specify an
OD pair for which shortest path is known and then, at various time instances, artificially introduce
congestion along the shortest path. For this scenario, we should show that the token-enabled
MUBEV algorithm can distinguish between these two situations, and, in the case of congestion,
find the next best route between origin and destination.

Specifically, this first experiment is conducted as follows. We use a single token over each episode
of the learning process, meaning that data from the token over every episode is used to update the
MUBEV policy. For this, the MUBEV token has a fixed OD pair, and we select the road section
labelled as C1 (which belongs to the shortest path for the selected OD pair) to generate a traffic jam
on it at different intervals (see Figure B.3). Then, over each new episode we start the token from
O and ask it to travel to D, keeping a record of its performance in terms of travel distance (route
length) and travel time regardless of its success in attempting to reach D. Additionally, a token
has a maximum number of allowed links (defined by the length of the MDP’s time horizon) that it
can traverse, and if it does not reach its destination within this restriction, then the token trip is
declared incomplete (i.e., unsuccessful). The results for this experiment are shown in Figure B.5,
from which we can draw two main conclusions:

• in general, we can see that the token succeeds in both avoiding the traffic jam once congestion
is created, and returning to the shortest path once congestion is removed, using a reasonably
small number of episodes (see Figure B.5 bottom);

• as time passes, more information is collected from the environment in the form of reward,
and the token is more likely to fully complete a trip for the given OD pair (i.e., fewer red
crosses are obtained as the experiment progresses in Figure B.5).

These two observations validate our expectations about the UBEV-based routing system: (i) it
is able to adapt to uncertain environments, and (ii) its performance improves as time passes. It
is worth noting that this experiment is useful to analyse the performance of a single token in the
iterative learning process from the environment using a fixed OD pair.

131

0 10m

Figure B.4: State model: a state corresponds to a set of road links. Road links marked in blue are
merged into one state.

B.4.2 Experiment 2: Optimal Route Planning Under Multiple Uncer-
tainties.

Now we want to evaluate optimal routing under multiple uncertainties. For this, we use a similar
setup as in Experiment 1 (i.e., same OD pair, intermittent traffic jam on C1, and one MUBEV
token probing the environment), and additionally include a second traffic jam using the following
procedure: 1) traffic jam on C1 is introduced, 2) the system learns the optimal detour, and 3)
second traffic jam is introduced on such an optimal detour (specifically on road link C2, as seen
in Figure B.3). The results of a single realisation of this procedure are shown in Figure B.6.

As can be seen from Figure B.6, a new optimal detour can be learnt after the second traffic jam
is created, and once the two congestions are removed the system rapidly returns to the shortest
path policy. Recall that red marks represent uncompleted routes (i.e., the destination state is not
reached within an episode), which are more likely to appear when congestions are introduced.

Note that once the environment has been learned, the resulting route recommendations gleaned
from the environment can be made available to the wider community of vehicles. We explore this
in the following experiment.

B.4.3 Experiment 3: Route Recommendations from the UBEV-Based
System and Speedup in Learning.

The previous experiments are a simple demonstration of the use of MUBEV in a mobility context.
We now explore a scenario where multiple tokens, starting from different origins, are used to
update the MDP’s policy over each episode. Specifically, in this third experiment, we evaluate
the performance of MUBEV as a function of the number of tokens over each episode, subject
to a uniform geographical distribution of origins and a common destination (namely, road link
D). Additionally, we analyse the performance of a test (non-MUBEV) vehicle trying to reach
destination D from the given fixed origin O, using a recommendation from a simplistic UBEV-
based routing system. In this case, the initial recommendation corresponds to the shortest path
policy, and further recommendations come from the refinement of such a policy. In addition, if a
complete route cannot be calculated using the MUBEV recommender system, then the most recent
valid recommendation is reused. Remember that the MDP’s policy is updated at the end of each
episode, and hence we only release a new test vehicle at the end of each episode once the policy

132

0 50 100 150 200 250 300 350
0

5

10

15

20

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

Figure B.5: Experiment 1: travel time and travel distance of a single token during the iterative
learning process on a changing environment, using a fixed OD pair and approaching an intermit-
tently congested road link. Each datapoint corresponds to information registered at the end of
each episode (i.e., trip).

has been updated. The results for this experiment are depicted in Figure B.7 and Figure B.8.

In Figures B.7 and B.8, it can be observed that the number of participating tokens directly
affects the convergence rate of the algorithm. As expected, the more tokens involved, the faster
the learning process. Clearly, these values cannot reach zero as at least one episode of learning is
required regardless of how many tokens are used to explore the environment.

B.5 Summary

We introduced a DLT design for smart mobility applications. The objectives of the DLT are: (i)
preserving the privacy of the individuals, including General Data Protection Regulation (GDPR)
compliance; (ii) enabling individuals to retain ownership of their own data; (iiii) enabling consumers
and regulatory agencies alike to confirm the origin, veracity, and legal ownership of data, products
and services; and (iv) securing such data sets from misuse by malevolent actors. As a use case
of the proposed approach, we successfuly presented a DLT-supported distributed RL algorithm to
determine an unknown distribution of traffic patterns in a city.

133

0 10 20 30 40 50 60 70 80
0

5

10

15

20

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

Figure B.6: Experiment 2: travel time and travel distance of a single token using a fixed OD
pair during the iterative learning process with multiple uncertainties on the environment (two
intermittently congested road links). Each datapoint corresponds to information registered at the
end of each episode (i.e., trip).

134

Algorithm 14 Modified Upper Bounding the Expected Next State Value (UBEV) Algorithm -
MUBEV
Require: S; A; H; P; ⇧SP ; M ; � 2 (0, 1]; rmax.
1: n(s, a, t) = R(s, a, t) = 0; V̂ (s, t0) = 0; Q̂(s, a, t0) = 0
8s, s0 2 S, a 2 As, t 2 H, t0 2 {1, 2, . . . , H + 1}.

2: �0 = �/9; Vmax = H ⇤ rmax.

3: for k = 1, 2, 3... do
// Optimistic planning loop

4: for t = H to 1 do
5: V̂t+1 = V̂ (·, t+ 1)
6: Ṽmin = min

�
min(V̂t+1), Vmax

�

7: Ṽmax = min
�
max(V̂t+1), Vmax

�

8: �Ṽ = Ṽmax � Ṽmin

9: for s 2 S do
10: for a 2 As do
11: r = rmax; EV = Ṽmax

12: if n(s, a, t) > 0 then
13: ⌘1 = 2 ln ln (max (e, n(s, a, t)))
14: ⌘2 = ln (18 ⇤ S ⇤As ⇤H/�0)

15: � =
q

⌘1+⌘2

n(s,a,t)

16: V̂next = P (·, s, a, t)⇥ V̂t+1

17: EV = min
⇣
Ṽmax, V̂next + � ⇤�Ṽ

⌘

18: r̂(s, a, t) = R(s,a,t)
n(s,a,t)

19: r = min (rmax, r̂ + �)
20: end if
21: Q(a) = r + EV
22: end for
23: Q̂(s, ·, t) = Q;
24: if Qi = Qj 8Qi, Qj 2 Q then
25: ã = ⇧SP (s, t)
26: else
27: ã = argmax

a2As
Q(a)

28: end if
29: ⇡k(s, t) = ã; V̂ (s, t) = Q(ã)
30: end for
31: end for

// Execute policy for one episode
32: s̃ =

⇥
s(1)1 , ..., s(M)

1]⇠U
�
1, S

�
, s(i)1 6=s(j)1 8i, j2[1,M]

33: for t = 1 to H do
34: a(m)

t
= ⇡k(s

(m)
t

, t)

35: s(m)
t+1 ⇠ P (·|s(m)

t
, a(m)

t
, t)

36: rt = R
�
s(m)
t

, s(m)
t+1) . Call to Function 1

37: R
�
s(m)
t

, a(m)
t

, t0
�
+ = rt, 8t0 2 H

38: n
�
s(m)
t

, a(m)
t

, t0
�
++, 8t0 2 H

39: end for
40: end for

135

Function 1 The Reward Function
Require: st; st+1; ⌧(st+1); ↵; �; wD; wT ; ⌦; rmax.
Ensure: rt.
1: function R(st; st+1)
2: if st+1 6= st then

// Distance reward computation
3: d = D(st)� L(st)
4: if d 6= 0 then
5: rD = rmax �

D(st+1)
d

6: else
7: rD = rmax

8: end if
// Time reward computation

9: ⌧ref = RY (st+1) + ↵ ⇤ ⌧min(st+1)
10: if ⌧(st+1) ⌧ref or st+1 = sf then
11: rT = 0
12: else
13: rT = �� ⇤ ⌧(st+1)

⌧ref

// Applying the edge coefficient
14: if RY (st+1) = 0 then
15: rT = rT ⇤ EC(st+1)
16: end if
17: end if
18: rt = wD ⇤ rD + wT ⇤ rT . Total reward
19: else . Jumping to the same state
20: if st+1 6= sf then

// Penalty: staying at not destination
21: rt = �⌦
22: else
23: rt = rmax

24: end if
25: end ifreturn rt
26: end function

136

10 20 30 40 50 60 70
11

12

13

14

15

16

17

18

10 20 30 40 50 60 70
6

6.5

7

7.5

8

Figure B.7: Experiment 3: average travel time/distance of a test vehicle using route recommen-
dations from a UBEV-based routing system involving multiple MUBEV tokens. Each datapoint
corresponds to the average value collected at the end of each episode from 10 different realisations
of the experiment, and a moving average with window size 2 was later used to smooth the resulting
signals.

137

20 30 40 50 60 70 80
2

3

4

5

6

7

8

20 30 40 50 60 70 80
0

5

10

15

Figure B.8: Experiment 3: average learning speed using multiple MUBEV tokens. Each datapoint
corresponds to the average value obtained at the end of 10 different realisations of the experiment.

138

Appendix C

Distributed Random Number
Generation

Abstract—The work presented in this appendix is an excerpt from a report produced
for IOTA Foundation as part of a Summer internship. It outlines the importance of
trustworthy shared randomness in the IOTA protocol and reviews the state of the art
for distributed random number generation. The report concludes with a proposal for
a random number generator to be used in the IOTA DLT network.

C.1 Introduction

Reliable randomness is essential to many distributed consensus protocols, and to the operation of
many distributed systems. Examples include early randomised consensus protocols employing a
common coin to achieve consensus in the Byzantine setting, and more recent PoS systems which
often require agreement on a random number to be used for leader election. A random element
in a distributed system has a clear motivation—attackers can’t influence the progression of the
protocol as easily if they can’t predict what is going to happen next, and randomness can play a
part in many aspects of a distributed system, as we shall discuss here. But the question of whether
an attacker can predict what will happen next depends on the source of the randomness. How do
nodes agree on a random number? Do they all receive a random number from some trusted central
entity? Do they use some distributed protocol in which each node contributes to the randomness?
Or perhaps something in between, in which a number of high reputation nodes or a consortium
of some kind produces a random number to be used by all other nodes. Each of these approaches
has its advantages and drawbacks.

Following the removal of the Coordinator from the IOTA Network (a node operated by IOTA
Foundation which issues milestones and controls all confirmation), nodes will need to decide on
confirmation of transactions without the stamp of approval from the IOTA Foundation’s node.
The solution to this problem is outlined in the Coordicide white paper [44], and contains a number
of ingredients—layers of finality on top of the existing tip selection algorithms and fundamental
DAG-structure of the ledger. One of the proposed protocols for deciding on conflicts is known as
Fast Probabilistic Consensus (FPC) [46, 74] which has been shown to achieve consensus in the
Byzantine setting with high probability. FPC requires a random number to be agreed upon as a
threshold for deciding upon opinions on transactions in each round of FPC voting. This threshold
must not be able to be predicted by adversaries, or it could be possible to delay consensus and could
make the DAG less secure against forks. Although FPC is the main reason the IOTA network needs
shared random numbers at the time of writing, a trusted random beacon could be very useful for
a variety of other services for IOTA in the future. There are a number of approaches to producing

139

random numbers, with varying degrees of decentralisation.

One option (although perhaps not a very good one) is to use a centralised beacon to obtain
random numbers. The advantage of this approach is that it requires practically no additional
work for nodes—all they would have to do is query the beacon for a fresh random number when
it is required. IOTA Foundation could operate a reliable beacon which satisfies all of the above
properties, and indeed this could be done in a publicly verifiable manner. However, this solution
is rather unappealing as there remains a degree of centralisation which we hope to elimenate by
removing the coordinator. It would also be possible to use a beacon operated by another trusted
organisation such as the NIST beacon36, but concerns remain about the trustworthiness of such
sources.

Ideally, we would like to distribute trust in the generation of this random number across partic-
ipating nodes somehow. In this appendix, we present a number of methods for achieving this.

C.2 State of the Art

A distributed random number generator (dRNG) with the desired properties of being available,
unpredictable, unbiasable and with light requirements from nodes is not a straightforward task. To
motivate the need for careful thought, we begin by presenting a naive solution.

Perhaps the simplest approach one could take would be for everyone to generate a random
number and send it to everyone else. When each node has a random value for every other node,
they combine the values with a bitwise exclusive or operator. Provided everyone contributes a
number at the same time without the knowledge of what others are committing, this protocol
succeeds. However, in a realistic network, an attacker could simply wait until they have received
values from all other nodes, and then select their value too such that the result will be precisely
what they want.

Suppose we try to solve this problem with a commit-reveal approach, i.e., each node submits a
hash of their random value (commitment), and after a suitable number of participants have com-
mitted, each participant reveals their value. However, the issue here is that a malicious participant
could choose not to reveal their value, resulting in the protocol having to restart. The attacker
could repeat this process until the protocol produces a number to their liking. Suppose instead
that we require only a subset of the committed values to be revealed and used—a malicious actor
could wait until only one more reveal is required before deciding whether they would reveal or not,
allowing them to bias the random number to some extent.

The issues discussed here are a result of the “last actor" problem, and we need to employ some
new cryptographic primitives to get around it. The solutions in the literature are mainly based
around publicly verifiable secret sharing (PVSS) and threshold signature schemes such as TSS and
TBLS. The basic algorithms here are very high in communication complexity, because they are
essentially BFT agreement protocols. The optimisations and reductions in complexity are generally
case-specific, e.g., we may need sequences of random numbers, or perhaps just a one-off number
for a lottery draw. Other solutions have been based on proofs of delay, or verifiable delay functions
(VDFs).

C.2.1 Threshold-Based Approaches
Threshold-based approaches are essentially a more advanced commit-and-reveal, where it does not
matter which subset of the committers contribute to revealing. The random output commitment is
generated in a distributed manner in the form of a secret which is shared among the n participants.
For the random output to be revealed, a threshold t of the n participants must contribute their
signature, so we can use a (t,n)-threshold signature scheme with t=f +1, where f is the maximum
number of malicious actors that can be tolerated by the protocol. The issue with these approaches

36
https://beacon.nist.gov/home

140

is that the allocation of shares requires either a trusted dealer or Byzantine agreement in the form
of a distributed key generation (DKG) process. Some examples of these approaches are as follows.

Randshare, Randhound and Randherd37 are described in [140]. Randshare is the name given to
the distributed key generation protocol described. Randhound is a protocol for a client to request
a random number from a group of servers. The Randhound client arranges the servers into disjoint
groups and requests a random number from each group, which are then combined. This improves
the scalability over doing one DKG among all servers. Randherd is a protocol aimed at producing
a beacon in which a “cothority” divide in to groups randomly (seeded by a run of Randhound) and
share secrets in the group which are aggregated by the Randherd leader. The protocol is slow and
does not scale particularly well despite optimisations.

Drand is a more recent project of the authors of [140]. The cryptographic background of Drand
is described concisely in a blog post38 by a member of DEDIS research group. Drand is still in
development, with improvements being made to the signature scheme and the curves used, and the
code is available on the EPFL DEDIS group’s github39. The protocol involves a DKG to generate
public and private keys for each participant, and public and private shared keys. Once this process
is complete, random numbers can be produced by signing a message which is the hash of the last
random number produced—the first random number needs to be provided as a seed for this chain
of random numbers, and can, for example, be produced by running another DKG for a once off
random number, or a protocol similar to Randhound [140].

The League of Entropy Beacon40 is a cothority random beacon project based on Drand. The
cothority is made up of a number of trusted institutions from industry and academia, each of
whom use their own local source of entropy for a Pederson DKG [141] which seeds the chained
randomness of Drand. An example of one such source of entropy is LavaRand41 from cloudflare,
one of the cothority participants. LavaRand generates random numbers with high entropy using
images captured continuously from a wall covered in Lava lamps in cloudflare HQ office.

DFINITY [6] provides a random beacon (referred to as threshold relay chain42 [142]) as the
backbone of the consensus mechanism for their “internet computer”. Their beacon is also based on
threshold signatures and relies on similar primitives to Drand. DFINITY is permissioned, and for
random number generation, the nodes are divided into groups. Keys for the BLS signature scheme
are generated with a Joint-Feldman DKG [141] in each group separately. The Joint-Feldman DKG
is a simpler form of DKG that can be performed in a single round when all nodes participate,
but it is known to be biasable, albeit in a way that does not generally weaken the hardness of
the discrete-log problem. Note also that the grouping of signers allows the protocol as a whole
to scale. As long as a t-majority of each group are honest, a group can issue a signature and
produce a random number, similarly to Drand. However, the random numbers from each round
are used to select the group who are to issue the random number in subsequent rounds. This
grouping approach is a trade-off between scalability and security, because random numbers can be
produced faster, but we rely on assumptions that each and every group has t honest participants.
The increase in speed arises from the fact that for each random number, partial signatures only
need to be gathered from t nodes, where t is less than the group size. However, the fact that the
group for subsequent round is chosen at random based on random beacon values means that it
is difficult to target attacks at specific groups effectively. The signature scheme used is based on
Schnorr signatures in paper, but they have now upgraded implementation to BLS43.

Hydrand [143] is not based on threshold cryptography, but is rather a Byzantine agreement
protocol which has reduced communication complexity from O(n3) to O(n2). The protocol is a
propose, acknowledge, vote structure in which each round has a leader. The leader is exempt

37
https://github.com/dedis/cothority

38
https://hackmd.io/@nikkolasg/HyUAgm234

39
https://github.com/dedis/drand

40
https://blog.cloudflare.com/league-of-entropy/

41
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/

42
Go implementation available at https://github.com/dfinity/random-beacon

43
https://github.com/dedis/cothority/tree/master/blscosi

141

from being leader for the next f rounds which provides a beacon in which unpredictability is
probabilistically guaranteed, and guaranteed after f+1 rounds. The main relevance of this paper
to this report is that it provides a good literature review with a comprehensive comparison of key
features of some other distributed randomness beacons.

Algorand [4] is a cryptocurrency whose PoS-based consensus mechanism is implemented using
leader elections which they refer to as cryptographic sortition. Algorand does not explicitly output
a random beacon, but threshold cryptography primitives are employed to privately elect block
proposers. The approach creates a chain of verifiable random numbers, just like in Drand and
DFINITY i.e. the seed for each round is derived from the random output of the last round. In
fact, it is not specified how the initial seed is to be generated in [4], but it is stated that some
random number generation protocol will be required to be carried out by the initial users.

C.2.2 Delay-Based Approaches
Another solution to the last actor problem in the generation of randomness is to enforce a time
delay between the commitments of contributions and the calculation of the resulting value. In
other words, rather than XOR the contributions together, we concatenate all contributions and
apply a VDF. Alternatively, a delay can be applied to a high entropy random source, such as block
hashes in a blockchain or stock market prices. The below examples illustrate these delay-based
approaches.

[144] presents “the random zoo” which refers to a collection of three modules which are proposed
for generating random elliptic curve parameters. The sloth module is a VDF based on iteratively
calculating modular square roots [73]. The unicorn module is a protocol which involves collecting
contributions from the public and concatenating them all with a salt from a central authority. This
salt could be issued by an IOTA Foundation node or a high-reputation node and could perhaps
include information about the DAG at that time or some other high entropy source of randomness
which will be combined with all the other public contributions. The trx module simply involves
the application of unicorn to generation of elliptic curve parameters so is not directly relevant to
this report.

[145] presents a protocol for applying VDFs to data from Ethereum [24] blocks to generate
unpredictable randomness. VDFs are applied to block hashes to prevent even the most powerful
miners from tampering with the random beacon value, because by the time the VDF output can
be known, the block corresponding to the input is finalised.

C.3 IOTA dRNG

In this section, we provide recommendations for how a random number generator should be imple-
mented as part of the IOTA protocol, referring to the techniques discussed in the above sections.
The proposed approach is based heavily on Drand and DFINITY—we propose using threshold
signatures and a feedback loop to create chained random numbers, and we propose a number of
options for seeding the chain. Our reasoning for choosing this approach is that the other approaches
based on threshold signatures, or those based on VDFs are all more computationally intense and
require more time. However, we can still use some of these slowly, more computationally intense
techniques to seed the chain of random numbers. We assume here that not all nodes will par-
ticipate in random number generation, but rather a subset of nodes, which we shall refer to as
dRNG nodes. We discuss how we might choose these nodes further below. Figure C.1 illustrates
the high-level operation of the proposed dRNG.

C.3.1 Seeding the dRNG
The chain of random numbers we propose to create must be seeded with an initial random number,
denoted as �0 in Figure C.1. The goal of the process of creating an initial condition with high
entropy and this can be done in a variety of ways.

142

Figure C.1: Chained randomness generation with t-of-n threshold signatures.

Threshold DKG

We can use a t-of-n threshold DKG, and use the shared secret key as �0. This is similar to
Randhound from [140]. The entropy of �0 depends on the entropy contributed by each of the
participants. In the League of Entropy beacon, each of the participants has a local RNG which
they can use for this DKG.

Entropy from the Community Using VDFs

VDFs can be used in a process similar to [144] to gather contributions of random numbers from the
IOTA community on some public forum. The contributions would all be concatenated, along with
a high entropy salt provided by IOTA Foundation (this does not need to be publicly verifiable,
as it only adds entropy, but can’t be used to influence the output), and a VDF applied to them
to produce the first random number, �0. Every community member could easily verify that their
contribution has been included.

Entropy from the DAG Using VDFs

Entropy from the DAG can be derived from a number of transactions that have been fully agreed
upon (e.g., milestones), and the protocol from [145] employed to apply a VDF and produce a
random �0.

C.3.2 Chained Randomness
Once a high entropy seed, �0, has been produced, we propose using threshold signatures to produce
a chain of random numbers in a fast, non-interactive manner.

Distributed Key Generation

This phase only needs to be complete once for a group of n dRNG nodes. The dRNG nodes will
be discussed further below, but they may not need to change very often. The signature scheme we
propose to use is BLS [146, 147], as signatures are significantly shorter than the popular alternative,
Schnorr signatures [148], with the slight trade-off that the pairing operation required for verification
of signatures can be computationally intensive.

Partial Signature Generation

To generate a partial signature which will be combined with other partial signatures to compute
the next random number, a dRNG node computes a hash of the last random number, and computes
a signature using their partial secret key, si.

�r(i) = siH(r||�r�1) (C.1)

143

where �r(i) denotes the partial signature of dRNG node i for the rth random number in the chain,
and �r�1 denotes the reconstructed full signature from round r � 1. Note that the full signature,
�r, serves as the random beacon value for round r.

Signature Reconstruction and Distribution

In order to reconstruct a full signature, which will be the next random beacon value, any t of the
partial signatures, �r(i), must be gathered from the dRNG nodes, and a Lagrange interpolation
performed to reconstruct the full threshold signature, �r. This interpolation can be carried out by
any node(s) and the reconstructed signature distributed as needed.

Signature Verification

Verification of the threshold signature, �r, requires the verifier to compute two pairings and verify
that

e (H (r||�r�1) , S) = e (�r, g2) (C.2)

where e(·) is a pairing function, S is the collective public key generated in the DKG, and g2 is
the generator of a bilinear group, G2, to which the shared public key belongs. Note that a similar
verification step can be carried out on partial signatures prior to the reconstruction of the threshold
signature.

C.3.3 Choosing dRNG Nodes
The dRNG nodes (the n nodes participating in the random number generation) should be carefully
chosen, as any t colluding adversarial nodes chosen to be dRNG nodes could influence the random
numbers produced without being detected.

n Highest Repuation Nodes

The n highest reputation nodes seem to be a good candidate as trustworthy dRNG nodes. It can
also be assumed that nodes with high reputation are well connected and can hence propagate new
random numbers through the network faster. n and t must be chosen and the n highest reputation
nodes would change over time, so when some limit of k nodes are no longer in the top n, we
would need to invoke a new DKG to update the dRNG nodes. As mentioned above, DKG takes a
significant amount of time and could not be run regularly.

Industry Partners as dRNG Nodes

A more static and centralised solution would be to designate a number of trusted dRNG nodes
to be run by industry partners of IOTA Foundation such as Volkswagen, Jaguar Land Rover and
Bosch. This would produce a somewhat centralised random beacon similar in spirit to that of
The League of Entropy. It is likely that such organisations will want to run nodes in the future
and could reasonably take on the additional task of generating random numbers. This solution,
although somewhat more centralised, has the advantage that DKG would only need to be run in
the event of new partners joining or old partners dropping out.

144

Appendix D

Milestone-based results for Chapter 5

Here we present equivalent results for a number of plots presented in Chapter 5, but here we use
milestone-based confirmation (Algorithm 8) rather than weight-based confirmation (Algorithm 7).
These results are not as effective for visually illustrating satisfaction of the algorithm requirements
as their weight-based counterparts due to the periodic nature of milestones, but they are of interest
all the same.

Table D.1 gives the access control parameters for the first set of milestone-based simulations
which correspond to the honest environment simulations of Section 5.3.1. In this milestone-based
setting, node 0 (the highest reputation best-effort node illustrated in Figure 5.3) issues a milestone
block every 10 seconds, and everything in this milestone’s past cone can be marked as confirmed.

Table D.1: Access control algorithm parameters with milestone-based confirmation.

Scheduler Rate Setter Buffer Man. Tip Set Man. Conf. Man.
⌫ Qi DCmax A � ⌧ W Wmax hmax TMS

250 repiP
rep

1 0.075 0.7 0.2 1 500 3 10

Figure D.1: Milestone-based confirmation: confirmation rate and mean confirmation latency over
all blocks. Milestone-based equivalent of Figure 5.4.

145

Figure D.2: Milestone-based confirmation: maximum time since partial confirmation for all par-
tially confirmed blocks. Milestone-based equivalent of Figure 5.5.

146

Figure D.3: Milestone-based confirmation: confirmation rate and scaled confirmation rate for each
node. The bottom plot of scaled confirmation rate demonstrates that fairness in confirmation rate
is achieved. Milestone-based equivalent of Figure 5.6.

147

Figure D.4: Milestone-based confirmation: cumulative distribution of confirmation latency for
each node. This demonstrates that fairness in confirmation latency is achieved. Milestone-based
equivalent of Figure 5.7.

Figure D.5: Milestone-based confirmation: confirmation rate and mean confirmation latency over
all blocks. Milestone-based equivalent of Figure 5.13.

148

Figure D.6: Milestone-based confirmation: maximum time since partial confirmation for all par-
tially confirmed blocks. Milestone-based equivalent of Figure 5.11.

149

Figure D.7: Milestone-based confirmation: confirmation rate and scaled confirmation rate for each
node. The bottom plot of scaled confirmation rate demonstrates that fairness in confirmation rate
is achieved. Milestone-based equivalent of Figure 5.12.

150

Figure D.8: Milestone-based confirmation: cumulative distribution of confirmation latency for
each node. This demonstrates that fairness in confirmation latency is achieved. Milestone-based
equivalent of Figure 5.13.

151

