408 research outputs found

    Video streaming

    Get PDF
    B

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe

    Value Creation in a QoE Environment

    Get PDF
    User behavior of multimedia services currently undergoes strong changes. This is reflected in several recent trends, e.g. the increase of rich media content consumption, preferences for more individual and personalized services and the higher sensitivity of end users for quality issues. These changes will eventually lead to strong changes in network traffic characteristics: rising congestion in peak times and less availability of bandwidth for the individual user. As a result, the quality as perceived by the end-user will decrease if network operators and service providers do not anticipate the required changes for the network. Measurable network requirements such as available video and speech quality, security and reliability are addressed by technologies that are commonly summed up in the Quality of Service (QoS) concept. However, the end-users' perception of quality is only reflected in the wider concept of Quality of Experience (QoE). This takes the measurable network requirements into account as well as customer needs, wants and preferences. For the implementation of QoE technologies several network components need to be added or changed resulting in high capital expenditures. Yet, it is not clear if these costs can be compensated with efficiency increases. Thus, new revenue streams for the network operator are necessary to incentivize investments in QoE technologies. In this paper we address four new value creation models that can serve as basis for more elaborated business models for network operators and other actors. We show how interest in QoE of the user, the content provider, the service provider and the advertiser induces new revenue streams. These models are embedded in five possible future QoE scenarios that reveal regulation, end user quality sensibility and end-to-end support as major issues for the future. --Business Models,Quality of Experience (QoE),Quality of Service (QoS),Value Creation

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    No-reference bitstream-based visual quality impairment detection for high definition H.264/AVC encoded video sequences

    Get PDF
    Ensuring and maintaining adequate Quality of Experience towards end-users are key objectives for video service providers, not only for increasing customer satisfaction but also as service differentiator. However, in the case of High Definition video streaming over IP-based networks, network impairments such as packet loss can severely degrade the perceived visual quality. Several standard organizations have established a minimum set of performance objectives which should be achieved for obtaining satisfactory quality. Therefore, video service providers should continuously monitor the network and the quality of the received video streams in order to detect visual degradations. Objective video quality metrics enable automatic measurement of perceived quality. Unfortunately, the most reliable metrics require access to both the original and the received video streams which makes them inappropriate for real-time monitoring. In this article, we present a novel no-reference bitstream-based visual quality impairment detector which enables real-time detection of visual degradations caused by network impairments. By only incorporating information extracted from the encoded bitstream, network impairments are classified as visible or invisible to the end-user. Our results show that impairment visibility can be classified with a high accuracy which enables real-time validation of the existing performance objectives

    A global customer experience management architecture

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. A. Cuadra-Sanchez, M. Cutanda-Rodriguez, I. Perez-Mateos, A. Aurelius, K. Brunnstrom, J. Laulajainen, M. Varela, and J. E. López de Vergara, "A global customer experience management architecture", in Future Network and Mobile Summit, 2012, 1-8The quality of experience (QoE) is one of the main research lines in ITC industry, which seeks to manage quality as perceived by users. This document analyzes and describes requirements of a QoE driven management system architecture, which has been designed in the Celtic IPNQSIS project. The architecture is grouped into different levels: Data acquisition level, Monitoring level and Control Level. Each level comprises a specific set of capacities, such as Data collector, or Traffic Monitor amongst others. The architecture described in this paper constitutes the guidelines of the IPNQSIS project in terms of a QoE ecosystem that will settle the basis of global customer experience management architecture.This work is carried out in the framework of the Celtic and EUREKA initiative IPNQSIS (IP Network Monitoring for Quality of Service Intelligent Support) and has been partially funded by CDTI under Spanish PRINCE (PRoducto INdustrial para la gestión de la Calidad de Experiencia) project, meanwhile the Swedish part of the project is co funded by VINNOVA and the work of Finnish partners has been partially funded by Tekes

    Otimização de distribuição de conteúdos multimédia utilizando software-defined networking

    Get PDF
    The general use of Internet access and user equipments, such as smartphones, tablets and personal computers, is creating a new wave of video content consumption. In the past two decades, the Television broadcasting industry went through several evolutions and changes, evolving from analog to digital distribution, standard definition to high definition TV-channels, form the IPTV method of distribution to the latest set of technologies in content distribution, OTT. The IPTV technology introduced features that changed the passive role of the client to an active one, revolutionizing the way users consume TV content. Thus, the clients’ habits started to shape the services offered, leading to an anywhere and anytime offer of video content. OTT video delivery is a reflection of those habits, meeting the users’ desire, introducing several benefits discussed in this work over the previous technologies. However, the OTT type of delivery poses several challenges in terms of scalability and threatens the Telecommunications Operators business model, because OTT companies use the Telcos infrastructure for free. Consequently, Telecommunications Operators must prepare their infrastructure for future demand while offering new services to stay competitive. This dissertation aims to contribute with insights on what infrastructure changes a Telecommunications Operator must perform with a proposed bandwidth forecasting model. The results obtained from the forecast model paved the way to the proposed video content delivery method, which aims to improve users’ perceived Quality-of-Experience while optimizing load balancing decisions. The overall results show an improvement of users’ experience using the proposed method.A generalização do acesso à Internet e equipamentos pessoais como smartphones, tablets e computadores pessoais, está a criar uma nova onda de consumo de conteúdos multimedia. Nas ultimas duas décadas, a indústria de transmissão de Televisão atravessou várias evoluções e alterações, evoluindo da distribuição analógica para a digital, de canais de Televisão de definição padrão para alta definição, do método de distribuição IPTV, até ao último conjunto de tecnologias na distribuição de conteúdos, OTT. A tecnologia IPTV introduziu novas funcionalidades que mudaram o papel passivo do cliente para um papel activo, revolucionando a forma como os utilizadores consumem conteúdos televisivos. Assim, os hábitos dos clientes começaram a moldar os serviços oferecidos, levando à oferta de consumo de conteúdos em qualquer lugar e em qualquer altura. A entrega de vídeo OTT é um reflexo destes hábitos, indo ao encontro dos desejos dos utilizadores, que introduz inúmeras vantagens sobre outras tecnologias discutidas neste trabalho. No entanto, a entrega de conteúdos OTT cria diversos problemas de escalabilidade e ameaça o modelo de negócio das Operadoras de Telecomunicações, porque os fornecedores de serviço OTT usam a infraestrutura das mesmas sem quaisquer custos. Consequentemente, os Operadores de Telecomunicações devem preparar a sua infraestrutura para o consumo futuro ao mesmo tempo que oferecem novos serviços para se manterem competitivos. Esta dissertação visa contribuir com conhecimento sobre quais alterações uma Operadora de Telecomunicações deve executar com o modelo de previsão de largura de banda proposto. Os resultados obtidos abriram caminho para o método de entrega de conteúdos multimedia proposto, que visa ao melhoramento da qualidade de experiência do utilizador ao mesmo tempo que se optimiza o processo de balanceamento de carga. No geral os testes confirmam uma melhoria na qualidade de experiência do utilizador usando o método proposto.Mestrado em Engenharia de Computadores e Telemátic
    corecore