
Chapter 1
Video Streaming

M.-N. Garcia, S. Argyropoulos, N. Staelens, M. Naccari, M. Rios-Quintero and A.
Raake

Abstract This chapter addresses QoE in the context of video streaming services.
Both reliable and unreliable transport mechanisms are covered. An overview of
video quality models is provided for each case, with a focus on standardized models.
The degradations typically occurring in video streaming services, and which should
be covered by the models, are also described. In addition, the chapter presents the
results of various studies conducted to fill the gap between the existing video quality
models and the estimation of QoE in the context of video streaming services. These
studies include work on audiovisual quality modeling, field testing, and on the user
impact. The chapter finishes with a discussion on the open issues related to QoE.

1.1 Introduction

With the multitude of video transmitted across the internet infrastructure, video QoE
is of large interest for users, internet service or content providers, and component
manufacturers alike. As a consequence, video-related services have received a lot
of attention by research and development activities over the past years. As with
other media applications such as audio entertainment or speech communication,
three principle types of quality assessment can be distinguished:

(1) Explicit quality tests with users evaluating respective sequences in laboratory
tests,
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(2) instrumental quality estimation algorithms, also called quality models, or
(3) possible additional consideration of context and user behavior in conjunction

with the assessment of technical performance parameters, for example capturing
service and user data during large-scale service use [17].

As for the case of other media, test methods involving human viewers can be
distinguished according to the presentation method (method of constants vs. method
of adjustment, and use of single versus multiple stimuli), and the scale being used
for judgment. For an overview of subjective test methods, the interested reader is
referred to [99], Chapter 4, and to the ITU recommendations [45, 46, 47, 30, 31, 19].
In addition, discussions and comparisons of methods can be found in [10, 73, 108,
27].

Quality models have been developed to complement or replace time-consuming
and expensive viewing tests. For an overview, cf. e.g., [98, 9, 75].
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Fig. 1.1 Categorization of video quality assessment algorithms, adapted from [75].

The categorization of algorithms based on the type and amount of information
employed for the quality assessment is depicted in Fig. 1.1, modified from [75].
From this figure, it can be seen that the quality models can be categorized in terms
of:

• the amount of reference information they employ: No-Reference (NR), where
the models do not have access to the original non-degraded signal, Reduced-
Reference (RR), where the models have access to features extracted from the
original signal (see box “Feature extraction” in Fig. 1.1), and Full-Reference
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(FR), where the models have access to the original signal (“Original source” in
Fig. 1.1),

• the type of information that is used for quality predictions: Signals (“signal-
based model” in Fig. 1.1) and/or transmission-related parameters extracted from
packet-header- (“Parametric model” in Fig. 1.1) or bitstream- information (“Bit-
stream model” in Fig. 1.1). Hybrid models take as input signal (pixel), bit-
stream, and/or packet-header information,

• the extent to which they include the explicit modeling of the human visual sys-
tem.

This chapter mainly addresses quality models focusing on IP-based video stream-
ing applications and the most widely used codec in this context, H.264 [38]. How-
ever, the scope of the presented models is broader: Signal-based models are usually
not restricted to H.264, and they can be applied universally. Also, the structure of the
other types of models make them generally adaptable to other codecs and network
types.

Typically, video transmission over IP networks (e.g. for broadcast TV as in IP-
based Television – IPTV) is performed using unreliable transport mechanisms, such
as the Real Time Protocol (RTP) in conjunction with the User Datagram Protocol
(UDP), to ensure limited delay and real-time operation. However, with the increase
of available network bandwidth, multimedia content can now be delivered very ef-
ficiently using TCP and typically HTTP (e.g. in the case of Youtube or other so-
called over-the-top services), which enables traffic reduction by the efficient usage
of caches, for example in the vicinity of end-users. Different considerations for QoE
in the context of UDP-based versus TCP-based transmission are discussed in Sec-
tions 1.2 and 1.3, respectively.

The chapter is structured as follows: Section 1.2 summarizes the video degra-
dations that are encountered in case of streaming with unreliable transport, and re-
spective approaches for instrumental assessment. These include the impact due to
video coding as well as the packet-based transmission, possible packet loss and
its concealment. Here, different types of models are outlined, including packet-
header-based models for network planning and monitoring, bitstream-based mod-
els, pixel-based models and hybrid models. Section 1.3 discusses the differences
between streaming over unreliable and over reliable channels, and how models ini-
tially developed for video streaming with unreliable transport can be used here,
and which additional components are required to also handle adaptive streaming
or re-buffering. In Section 1.4, the rather technical approach followed up to that
point is re-considered, and current trends towards a more QoE-centric assessment
of video streaming services are presented, including added modalities and audiovi-
sual assessment, field rather than lab testing, and the impact due to the type of user.
Finally, in Section 1.5, future work in the field of video streaming QoE assessment
is discussed.
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1.2 Video quality models for streaming with unreliable transport
mechanisms

This section introduces the main degradations occurring due to compression or
packet loss in the case of unreliable transport mechanisms. It also provides an
overview of the different types of video quality models, with a focus on standard-
ized models. Packet-, bitstream-, pixel-based, and hybrid models are addressed, as
well as full-, reduced-, and no-reference models.

1.2.1 Video coding and packet error degradations

Blockiness, also referred to as block distortion or tiling [48], is a distortion of the
image characterized by the appearance of an underlying block encoding structure.
Block distortions are caused by coarse quantization. They comprise other identified
degradations such as the staircase effect, mosaic pattern effect or the DCT basis-
image effect [107]. In modern encoders, coarsely quantized block boundaries are
usually filtered, reducing the visibility of the above artifacts but leading to blurri-
ness, which is characterized by reduced sharpness of edges and spatial details [48].

In order to reduce the amount of video information that the system is required to
transmit or process per unit of time, video frames may be skipped at the encoding
stage. This may result in jerkiness, which is defined in [48] as a “motion which
was originally smooth and continuous, but is now perceived as a series of distinct
“snapshots” of the original scene”. It is often observed in the case of high motion
scene.

During the encoding process, video frames are assigned different types, which
are called “I-frames”, “P-frames” and “B-frames”. The perceptual impact of packet
loss depends on the type of the frame in which the loss occurs. Indeed, P- and B-
frames are predicted from previous I- and P-frames, while I-frames are intra-coded
and therefore do not depend on previous frames. As a consequence, if a loss occurs
on an I- or a P-frame, the loss is typically propagated till the next I-frame. If a loss
occurs on a reference B-frame, which is used in hierarchical coding, the loss propa-
gates till the next P- or I-frame, i.e. it only affects the surrounding non-reference B-
frames. There is no loss propagation if the loss occurs on a non-reference B-frame,
since it is not referenced by other frames.

The perceptual impact of packet loss also depends on the packet loss conceal-
ment applied by the decoder. If slicing is applied as packet loss concealment, one
packet loss results in the loss of the corresponding pixel-area as well as the pixel-
area corresponding to the rest of the affected slice (see red rectangle in Fig. 1.2(a)).
The decoder re-synchronizes its bitstream parsing process at the beginning of the
next slice, using the slice header. Therefore, the spatial extent of the loss depends
on the number of slices per frame. For instance, and as shown in Fig. 1.2(a), the
video was encoded with one slice per frame, the loss of a packet yielded the loss of
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(a) Loss occurred in the current frame (b) Loss propagated from previous frames

Fig. 1.2 Effect of packet loss when one slice per frame is used.

the rest of the frame, and the lossy area was replaced by the same area in the last
reference frame.

In the case of slicing, packet loss may also yield blockiness effect, as shown in
the red rectangle area of Fig. 1.2(b). Indeed, when loss occurs, content from the
previous reference frame is usually copied to the lost portion of the hit frame. If
there is motion in the sequence, this replaced content will not fit well the missing
content. In the subsequent frames, the whole lost block of pixels will be displaced,
resulting in a blocking artifact.

Another loss handling strategy is freezing with skipping. In this case, the frames
affected by loss are completely discarded. According to the encoding process de-
scribed above, the frames referencing the lossy frames are also discarded, and all
discarded frames are replaced by the last unimpaired reference frame. The video is
therefore perceived as frozen.

1.2.2 Packet-based models for network planning

In the case of network planning, parameters of the service to be deployed cannot
be measured. Instead, planning assumptions are made. Typical model input param-
eters used for network planning are the average bitrate and the percentage of packet
loss, as proposed by [92] for variable bitrate, random loss and motion-compensated
transmission-error concealment. Since the impact of packet loss depends on the loss
distribution [7, 21], burst-length-related parameters are commonly used, as pre-
sented in [90] for small video formats and in [21] for IPTV and High Definition
(HD) video. In [105], the authors improved the ITU-T G.1070 model [36] by in-
cluding a burstiness parameter computed from the burst density (fraction of lost or
discarded packets in a burst period), the burst duration, the number of lost pack-
ets and the number of burst periods. Alternatively, the packet loss frequency may
be used instead of the packet loss percentage and packet burst length [102]. Since
the perceptual impact depends on the applied packet loss concealment (slicing or
freezing with skipping) and on the number of slices per frame (in the case of slic-
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ing), both the packet loss concealment and the number of slices per frame should be
considered by the model, as presented in [21] for the IPTV scenario.

1.2.3 Packet-based models for service monitoring

In the case of service monitoring, model parameters are extracted from the bit-
stream. The most applicable case of an encrypted bitstream is considered in this
section. In this case, the model does not have access to the payload or to the pixel
information.

The network planning models can be used in that case. However, additional in-
formation may be extracted from the encrypted bitstream such as the video frame
boundaries and the video frame types (I-, P- or reference/non-reference B- frames).
This allows a more accurate parametric description of the degradations and of the
influence of the content.

Indeed, it is known that the impact of packet loss depends on the type of the frame
in which the loss occurs [92]. In particular, a loss propagates till the next I-frame
when it occurs in an I or a P frame (in contrast to a B-frame, see also Section 1.2.1).
The number of impaired frames is therefore more appropriate than the percentage
of packet loss for capturing the quality impact of packet loss, as proposed in [101]
and [103] for slicing, and in the ITU-T P.1201.2 standard [43], for both slicing and
freezing with skipping.

As previously mentioned, the spatial extent of the loss depends on the slice size
in the case of slicing. This spatial extent is computed in both the ITU-T P.1201.2 and
in [20]. In the ITU-T P.1201.2 standard, the spatial extent of the loss is combined
with the loss duration in a single parameter describing the whole degradation for
directly predicting the perceived quality.

It has often been observed that the spatio-temporal complexity of content in-
fluences the quality impact of coding artifacts and the visibility of the loss. For
instance, slicing degradations are more visible in the case of panning or complex
movements than in the case of almost static-content. In the case of an encrypted
stream, this content complexity may be captured by the frame sizes and frame types,
as proposed in [64, 43, 42, 103, 104, 101]. In particular, in the case of coding degra-
dations, the I-frame sizes are used [43, 42], reflecting the observation that high I-
frame sizes indicate low content complexity at low bitrates. The ratios between B,
P and I frame sizes may also be used [104, 43]. In [43], these ratios capture the
observation that similarly small B- and P- frames sizes, compared to I-frames sizes,
indicate low temporal complexity.
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1.2.4 Bitstream-based models

Bitstream-based objective quality models predict video quality using the encoded
video as it is transmitted through the network (see Fig. 1.1). These models parse the
video bitstream without reconstructing the pixel information and are particularly
interesting for monitoring video quality at any point in the distribution network
(network-based monitoring). However, parsing the bitstream requires coder specific
implementations of each model.

By analyzing the encoded video bitstream beyond the packet headers as de-
scribed in the previous section, additional information can be gathered at the frame
level. For example, quantization and motion vector information can be obtained by
parsing the video data [59, 82]. This provides a first indication of the video quality
and video content characteristics [65].

In [66], quality is estimated in the compressed domain by considering the Quan-
tization Parameter (QP), the motion and the bitrate allocation of inter macroblocks.
Similar information has also been used in [59]. In [85], information on the loca-
tion and spatial extent of the picture loss is extracted from the encoded bitstream to
predict perceived video quality.

Besides predicting video quality, bitstream-based models have also been con-
structed to estimate the visibility of impairments due to, for example, packet loss in
the network [77, 55, 56, 2, 88]. This approach can be used to verify if the delivery
network is able to provide adequate QoE to the end-users [18, 37]. The bitstream
features which are typically used to detect the visibility of loss are the duration and
extent of the propagated error, the motion and the residual error of the degraded
area in order to account for the spatio-temporal complexity of the video sequence
and capture the perceptual effects caused by packet loss. Then, the prediction of vis-
ibility may be performed using classifications methods, such as generalized linear
models [77, 55, 56], support vector regression [2], or binary trees [88].

Bitstream based quality assessment models are standardized in ITU-T Rec.
1202 [32], where P.1202.1 [33] refers to lower resolutions (from QCIF to HVGA)
and P.1202.2 [34] refers to higher resolutions (from Standard Definition (SD) to
HD). In P.1202.1, compression artifacts are computed based on the QP, the key
frame rate, the frame rate, and the motion vector magnitude. Similarly, in P.1202.2,
the compression degradations are computed based on two parameters: the average
QP of the sequence and a parameter which denotes the content complexity (com-
puted based on the bits per pixel and the QP).

The perceived distortion of slicing degradations depends on the effectiveness of
the employed error concealment technique. Thus, the level of visible artifacts is
computed based on the motion information, the residual energy of the erroneous
area, and the error propagation extent to indicate how annoying is the slicing arte-
fact. This reflects the principle that the parts of the sequence which can be easily
predicted (e.g. low texture, low motion) can be efficiently concealed.

The distortion caused by each freezing event is computed based on the freezing
duration and a motion term to reflect the fact that a freezing in the fast moving
part of the video results in larger jerkiness and therefore causes larger perceptual
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annoyance. Finally, the overall freezing degradation is computed as the square root
of the sum of the individual degradations of each freezing event.

1.2.5 Pixel-based models

Pixel-based models estimate the video or image quality using features or informa-
tion associated with pixel data only (see Fig. 1.1). These models are therefore taking
as input the decoded video. They may in addition use the reference (non-degraded)
video signal. The most popular metric in this category is the Peak Signal to Noise
Ratio (PSNR), which is computed based on the Mean Squared Error (MSE) between
the two (degraded and non-degraded) video signals. PSNR is quite popular due to its
inherent properties: it is simple to compute, parameter-free and memory-less, and as
a result, it can be calculated locally without consideration of other source samples.
The MSE is, however, a signal fidelity measure and not a perceived quality metric.
In fact, it shows poor correlation with perceived quality mainly because it does not
take into account the properties of the human visual system [28].

The Human Visual System (HVS) is characterized among other things of contrast
sensitivity and masking which lead to a space and time varying sensitivity of the ar-
tifacts associated with lossy coding and packet errors. As an example, Fig. 1.3 shows
the first frame of the Foreman sequence in CIF resolution. The sequence has been
coarsely quantized and therefore coding artifacts, namely blockiness, are visible.
However, due to the space varying sensitivity to distortion of the HVS, the blocking
is more noticeable around the face, while it is less disturbing on the building wall.
Therefore HVS-based models embed the HVS properties to weight more the arti-
facts present in image areas where the human eye is more sensitive and vice-versa.
One of the first HVS-based model is the Visual Difference Predictor (VDP) [12],
which uses the contrast sensitivity function of the HVS to weight differently the ar-
tifacts in image area. For a thoughtful review of HVS-based models, the interested
reader is referred to [6].

Another well-known pixel-based model is the Structural SIMilarity (SSIM) in-
dex [94], which has been initially proposed for images and eventually extended for
videos [95]. It is a full-reference model and for each pixel computes the distortion
as the contribution of three terms: luminance, contrast and structure. The terms are
then multiplied together and the final SSIM score is obtained as the average over all
pixels. The work in [91] estimates the Mean Square Error (MSE) induced by chan-
nel errors by performing a maximum-a-posteriori estimation to detect the location
of corrupted pixels. After these pixels are detected, the NORM algorithm ([67], see
also Section 1.2.6) is run to estimate the final MSE. Considering also the temporal
component of videos, the work in [74] proposes a general reduced-reference Video
Quality Model (VQM). The VQM uses features computed over the pixels of the
original and processed video and combines all of them according to a linear weight-
ing. The features used by VQM are related to quality degradation introduced by
lossy coding or channel errors. The VQM has been standardised as quality model
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(a) Foreman original frame (b) Same frame coarsely quantized

Fig. 1.3 Space varying sensitivity of the HVS to coding artifacts. The blockiness is more visible
in flat areas than in high contrast areas as the building wall.

in the set of models specified in the ITU-T J.144 [39]. Furthermore, VQuad-HD is
a full-reference video quality model for high definition video signals, which was
selected by ITU-T as Recommendation J.341 [40]. It is based on the computation of
the following quality features: blockiness, slicing, blurring, and jerkiness, as defined
in Section 1.2.1.

1.2.6 Hybrid models

Hybrid video quality assessment models employ a combination of packet infor-
mation, bitstream information and the decoded reconstructed video sequence (see
Fig. 1.1). In general, in a hybrid video quality assessment algorithm the features
extracted or calculated from the bitstream (e.g., motion vectors, macroblock types,
transform coefficients, quantization parameters, loss duration, etc.), and the infor-
mation extracted by packet headers (e.g., bitrate, packet loss, delay, etc.) are com-
bined with the features extracted from the decoded and reconstructed images in the
pixel domain. Since the reconstructed image can be obtained from the decoding de-
vice, this type of model ensures that the error concealment method of the decoder is
taken into consideration. Within the Video Quality Experts Group (VQEG), efforts
are ongoing towards the joint construction and validation of novel objective hybrid
video quality models [87].

The V-Factor [98] model inspects different parts of the encoded bitstream and
extracts information from the packet headers and the encoded and decoded video
to model the impact of packet loss during video streaming. In [63], coding param-
eters are extracted during the decoding process of the video to construct a hybrid
bitstream-based quality model. The model is based on a linear combination of quan-
tization parameters, bitrate and boundary strength parameters. The latter parameter
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influences the intensity of the de-blocking filter in order to minimize blockiness
artifacts. In [57], the authors further extended an existing bitstream based objec-
tive video quality model [58] by including pixel-based features. These features are
based on detecting bluriness, blockiness, motion continuity and other aspects de-
scribing video quality. Their results show that the hybrid model outperforms the
bitstream-based model. Similarly, a hybrid no-reference model for H.264/AVC en-
coded sequences is proposed in [13]. It is based on the quantization parameter and
a pixel difference contrast measure.

The work in [78] estimates the MSE induced by channel errors between the
reconstructed signal at the encoder and decoder. The model targets MPEG-x and
H.26x codecs and is designed in three different versions denoted as Full-Parse (FP),
Quick-Parse (QP) and No-Parse (NP). The FP version estimates the square error on
the luma component for each pixel and then provides the MSE at the required level
of granularity (e.g. macroblock, slice, frame, etc.). The input data to the FP algo-
rithm require entropy decoding and inverse quantisation only. The QP estimates the
MSE at slice level using bitstream parameters such as packet headers, thus without
requiring any decoding operation. Finally, the NP estimates the MSE at sequence
level using a linear relationship between the packet loss rate and the MSE. As may
be noted, the three different versions lead to a different trade-off between model
complexity and accuracy, with the FP being the most complex and accurate ver-
sion. Finally, the work in [67] describes a NO-Reference video quality Monitoring
(NORM) model which estimates the MSE induced by channel losses for H.264/AVC
coded videos at the macroblock level. The NORM algorithm models the channel dis-
tortion as the result of three contributions: lack of motion vectors, lack of prediction
residuals and error propagation from previous frames due to motion compensation.
The contribution to the MSE due to specific coding tools of the H.264/AVC standard
(i.e. intra prediction and deblocking filter) is also addressed. The NORM estimate
has also been used to devise a reduced-reference quality model based on SSIM [94].

1.3 Video quality models for streaming with reliable transport
mechanisms

This section begins with a short description of the progressive download and adap-
tive streaming mechanisms and of the corresponding degradations. Subsequently, an
overview of models developed for the quality assessment of progressive download
and adaptive streaming services is presented.
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1.3.1 Progressive download and adaptive streaming mechanism
and degradations

There are two main types of video streaming over HTTP: (a) progressive download
and (b) HTTP adaptive streaming (HAS). In progressive download, the client may
begin the playback of the media before the whole media is downloaded. However,
if the available throughput is lower than the bitrate of the media, the player will
stall until enough data have been downloaded. This is perceived by the end users as
freezing without skipping, which is typically called rebuffering or stalling. To avoid
stalling during playback and enable smoother flow of video, HAS methods adapt
to the available network conditions. In HAS applications, the video is encoded in
multiple quality versions, called “representations”, which are segmented in short in-
tervals, typically between 2 and 10 seconds long. The adaptive client periodically
requests segments of the video content from an HTTP server, and then decodes and
displays this segment. The client may switch between different representations at
each request depending (mainly) on the available bandwidth. The aim is to provide
the best quality of experience for the user by avoiding stalling events. However, the
perceived artefact in this case is the fluctuating quality of the video sequence and
quality models should consider the impact of temporal quality adaptation. The inter-
ested reader is referred to [83] for more information on standardized HAS methods
such as the Dynamic Adaptive Streaming over HTTP (DASH).

1.3.2 Progressive download models

An audiovisual quality model has been proposed in [26] for rebuffering degrada-
tions1. The model takes as inputs the number of stalling events and the average
length of a single stalling event. It was developed based on the results of laboratory
and crowdsourcing tests. Video sequences had different video resolutions, but no
extremely small or high definition resolutions. The video durations were typical of
Youtube videos (on average 5.54 min and up to 15 min).

Another model has been proposed in the ITU-T P.1202.1 Recommendation [33]
for capturing the quality impact of rebuffering degradations, for low video resolu-
tions (up to HVGA). The model is based on the ratio between the rebuffering dura-
tion of the sequence normalized to the total duration of the sequence (including the
rebuffering duration). The ITU-T P.1202.1 model has been developed based on the
results of subjective laboratory tests. The model was validated on video sequences
of 16 s and up to 30 s. However, the rebuffering ratio parameter is normalized to the
sequence duration and is therefore in principle applicable to longer sequences.

1 Note that the focus was so far on visual stimuli and, therefore, video quality models. Due to its
impact on the scientific work dedicated to rebuffering models, and although it is audiovisual, the
model of [26] is presented in this section.
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The rebuffering quality model of the ITU-T P.1201.1 Recommendation [42] has
been developed using the same test databases as the P.1201.2 model. Similarly
to [26], it uses as input parameters the number of stalling events and the average
length of a single stalling event. In addition, the average distance between two re-
buffering events is used as an input parameter to capture the distribution of the
rebuffering events in the sequence.

Both the ITU-T P.1201.1 and P.1202.1 are addressing the lower video resolu-
tion application area. No rebuffering quality model has been so far standardized
for higher resolution applications such as IPTV. However, the ITU-T is currently
planning to develop a parametric model for progressive donwload (“P.NAMS-PD”)
valid for both lower and higher video resolution application areas. This model will
also capture the quality impact of initial rebuffering. Note that the quality impact of
initial rebuffering has also been studied in [25], with initial delays up to 30 s for 60 s
video duration. This impact was found negligible compared to the quality impact of
stalling events occurring during the playback of the video.

1.3.3 Adaptive streaming models

The main feature of video sequences transmitted using HAS is the changes in qual-
ity over time. Most of the existing quality assessment algorithms of Section 1.2
assume constant base (i.e. without packet loss) quality over the whole sequence and
have been designed for short durations, typically between 10 and 20 seconds. With
HAS services, the base quality is varying over time, and the quality adaptation typi-
cally lasts more than 20 seconds. In addition, these services facilitate the switching
between devices and video resolutions (TV screen, tablet PC, smartphones) during
playback. Quality models have therefore to be adapted to estimate quality for longer
durations sequences (from a few seconds to several minutes), for fluctuating quality
within the sequence, and even for switching between devices. Since quality models
are preferably developed based on the results of subjective tests, a revision of the
existing standardized subjective test methods [29, 45] is needed.

The impact of time-varying quality on human perception was investigated in [23],
and it was shown that subjects react with different time constants to large sudden
quality degradations or improvements. Moreover, it was shown that the location of
a quality degradation or improvement influences subjects’ overall judgements, re-
vealing a recency effect. On the video domain, user perception of adapting quality
was studied in [11, 69], revealing that the perception of spatial distortions over time
can be largely modified by their temporal changes. Moreover, in [80], an hysteresis
effect was observed in the subjective judgment of time-varying video quality. The
video adaptation scheme of [100] for modeling the impact of bitrate and frame rate
adaptation on perceived quality suggests that for video sequences with high tempo-
ral complexity, adaptation on frame rate will result in better quality than adapting
QP; on the other hand, adaptation of QP is beneficial for video with low motion or
fine texture details.
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Quality assessment models for HAS can also employ existing models to assess
the quality of short intervals (e.g., approx. 10 sec) and then combine these scores
into a single quality estimate using temporal pooling techniques. There are several
temporal pooling algorithms ranging from simple approaches which consider the
maximum, minimum, or mean video quality to those which integrate the temporal
properties of human perception, memory effects, and transient properties. For exam-
ple, in [62], temporal pooling is based on motion, while in [70], a content adaptive
spatial and temporal pooling strategy is proposed which takes into consideration
the severity of the quality degradations. In [81], an evaluation of the most popular
pooling techniques using PSNR and SSIM as quality predictors concluded that the
plain average of individual quality scores can achieve comparable results with the
most sophisticated pooling methods. Further extending this study, a temporal pool-
ing scheme based on an auto-regressive moving-average (ARMA) model to simulate
the adaptation of perceived quality over time was presented in [68]. It is based on
the computation of standardized video quality models, such as J.144, J.341, and
P.1201.2, on video chunks of short duration, typically from 5 to 15 seconds. More-
over, a penalty parameter was introduced into the model to take into consideration
the abrupt quality degradation within the sequence and the frequency in representa-
tion switches. In conclusion, the aforementioned approaches indicate that objective
estimates of short sub-sections of a video sequence can be efficiently pooled into a
single score as long as the memory and recency effects are taken into account.

1.4 From video quality towards QoE

The models presented in the previous sections estimate the video quality of short se-
quences, typically 10 s, in the context of laboratory testing, where the viewing and
listening environment as well as the task given to the user deviate from typical view-
ing and listening conditions. These models are therefore not estimating the QoE, and
several aspects need to be taken into account to achieve a more QoE-centric assess-
ment approach. These aspects include audio-visual quality, field testing, and user
impact characterization. An overview of theses aspects is provided in this section.

1.4.1 Audiovisual quality models

Several studies on audiovisual perception, summarized in [60], have been conducted
in the 80’s. However, the first audiovisual quality models to be found in the liter-
ature appeared as late as in the 90’s. At this time, these models addressed either
analog degradations, such as audio and video noise [49, 35, 3], or compression ar-
tifacts, such as blockiness [8, 50, 52, 24]. For an overview of audiovisual quality
models covering analog and compression degradations, see [106]. The interest in
modeling audiovisual quality has risen again in the past ten years, reflected for in-
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stance by standardization activities such as the ITU-T Recommendations P.1201.1
and P.1201.2 [42, 43] or the Audiovisual High Definition Quality (AVHD) project
of VQEG, which intends to evaluate audiovisual quality models for multimedia ap-
plications and HD resolution. Audiovisual quality models for mobile applications
have been developed in 2005 and 2006 [79, 97], but the reported model versions
do not cover the effect of transmission errors. This latter point is problematic since
in the case of the time-varying degradation due to transmission errors, the impact
of audio and video quality on the overall audiovisual quality as well as their in-
teraction might differ from the case of compression artifacts. This influence of the
degradation type has been studied in [22] for higher resolution application areas
such as IPTV. In particular, the authors show that the impact of the audio quality
on the overall perceived audiovisual quality is higher in the case of audio packet
loss than in the case of audio coding degradations. In parallel to this finding, an
audiovisual quality model has been proposed which captures the impact of the au-
dio and video degradation types (coding vs. transmission-error degradations). Both
compression and transmission-error degradations are covered as well in [4] for in-
teractive scenarios and small video resolutions. Based on an extensive review of
the literature, both [22] and [106] highlight that video quality generally dominates
the perceived audiovisual quality, but that this dominance depends on the semantic
audiovisual content. Finally, an overview of existing audiovisual quality models is
provided in [71]. The authors show that a simple model based on the product of au-
dio and video quality terms is valid for a wide range of scenarios and applications.
When a small amount of data is available for a wide range of applications, it is in-
deed a safe choice to use a model as simple and with as few coefficients as possible
to avoid overtraining.

1.4.2 Ecologically valid testing

As detailed in Chapter 10, subjective methodologies for assessing momentary QoE
provide detailed guidelines describing how to conduct such experiments. These rec-
ommendations define different methods for presenting and rating video sequences.
Typically, short duration (10s ∼ 15s) video sequences are presented to the test sub-
jects and rated immediately after watching. In the case of longer video sequences
(up to 30min), continuous quality evaluation is recommended where subjects rate
quality while watching the video [29]. Specific instructions are provided to the test
subjects on how to evaluate the video sequences at the beginning of the experiment.
The assessment methodologies also specify requirements for the environment in
which the subjective experiment is conducted. These requirements are formulated
in terms of room illumination, subject seating position, screen calibration, etc. As
such, subjective quality assessment experiments are usually conducted in controlled
lab environments. These assessment methodologies are still actively used for mea-
suring pure video or audiovisual quality.
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The broad availability of high speed Internet access and growing number of
multimedia-capable devices (such as smartphones and tables) enable watching video
content anyplace, anytime. Thus, the environment in which video is actually con-
sumed does not necessarily comply with the recommended controlled lab setting.
Furthermore, according to its definition ([41, 61] and Chapter 2), Quality of Ex-
perience (QoE), is influenced by user expectations, context, and personal prefer-
ences. Therefore, capturing and understanding end-users’ QoE goes beyond purely
measuring video quality [76]. This calls for new subjective studies and method-
ologies [93, 15, 5, 72, 16] enabling episodic and multi-episodic subjective quality
evaluation in more realistic and ecologically valid environments (cf. Section 10.4).

A first effort towards assessing QoE of IPTV services in real-life environments
has been made in [86, 84]. This study involved conducting subjective experiments
in subjects’ own home environment under realistic viewing conditions. Comparing
the results obtained with subjective tests conducted in a controlled lab highlighted
the importance of the assessment environment, primary focus, and immersion on
impairment visibility and quality perception. It is found that immersion has a major
impact on impairment tolerance and overall QoE.

Field testing can provide new insights and findings which cannot necessarily be
discovered in a controlled lab setting. In this respect, field testing should comple-
ment lab testing rather than replace it.

1.4.3 User impact

The viewing and listening environmental set-up is thoroughly controlled in stan-
dardized video quality test methods [30, 44]. These systematic methodologies re-
duce significantly the amount of noise in the results and enable the comparison of
test results between labs. However, the outcome of these tests cannot be easily ex-
trapolated to more realistic scenarios due to variable factors such as the context of
use.

As presented in Chapter 4, the main limitation in the development of more realis-
tic tests is the complex interaction between all determinant influential factors of the
ecosystem. Hence, researchers from the field of social sciences and economy tried
to analyse how factors such as user demography, overall service quality and con-
text of use interact and influence the perception. New approaches were developed,
such as the Theory of Acceptance Model (TAM) [14], and more recently the Unified
Theory of Acceptance and Use of Technology (UTAUT) [1]. These theories intend
to understand the development of intention of use of a service, based on strong be-
havioural elements such as external influential variables, perceived usefulness and
perceived ease of use.

First uses of these theories can be seen in [96, 51], where modified versions
of TAM are utilized to predict the adoption of IPTV services. The results are sur-
prisingly aligned to studies in the context of mobile television [53], demonstrating
that the content offered, the technological knowledge of the user, his/her attitude



16 Authors Suppressed Due to Excessive Length

towards technology, and socio-economic factors are crucial for a positive experi-
ence of the service. The above-mentioned findings suggest that users with similar
characteristics show similar behaviour, an observation that, in spite of being studied
in other services for decades, has been little explored in the study of multimedia
services. Among the most relevant factors, the degree of expertise of the users with
the service greatly influences the way in which they perceive and evaluate quality.
However, this type of classification only gives a general idea concerning the main
factors influencing the users’ evaluation process. It has therefore been necessary to
combine cognitive and psycho-perceptual methods that provide the user with the
freedom to assess the service attributes in their own words, as seen in the work of
Strohmeier and Jumisko-Pyykkö [89, 54].

1.5 Discussion

The literature is rich in video quality models, with different model types accord-
ing to the application needs. The first models were developed in order to address
compression artifacts. Then, new models appeared for covering packet loss degra-
dations yielding slicing or freezing with skipping degradations in the case of unreli-
able network such as RTP over UDP. Other models have recently been proposed for
addressing the progressive download scenario.

These models all target short-term video quality predictions and ignore which
user and in which context the user utilizes the video streaming service. Some studies
have already been conducted for addressing longer term quality predictions. Other
subjective tests have been conducted to address the context- and user-impact. How-
ever, this topic needs much more investigation, especially with the new emerging
types of video streaming applications such as adaptive streaming and complex sce-
narios such as portable TV, where the user can watch TV in different locations and
on different screens.

It is still open which subjective tests should be conducted to address these com-
plex scenarios and to identify which factors, in addition to the perceived video qual-
ity, influence the overall QoE. Also open is the type of measurement tools to be
targeted. Indeed, a “measurement-window” approach, with which quality scores are
output for example every 10 s, is traditionally used in service monitoring. With
the diversity of degradations, and in order to better capture the long-term QoE pre-
diction, a “remembered-event” approach may become more appropriate, where an
event represents any kind of degradations of any duration. In that case, efforts should
be spent on the identification and characterisation of these “events”, as well on the
weighting of their contribution to the overall QoE.
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