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Abstract—Ensuring and maintaining adequate Quality of Ex-
perience towards end-users are key objectives for video service
providers, not only for increasing customer satisfaction but also
as service differentiator. However, in the case of High Definition
video streaming over IP-based networks, network impairments
such as packet loss can severely degrade the perceived visual
quality. Several standard organizations have established a mini-
mum set of performance objectives which should be achieved for
obtaining satisfactory quality. Therefore, video service providers
should continuously monitor the network and the quality of the
received video streams in order to detect visual degradations.
Objective video quality metrics enable automatic measurement
of perceived quality. Unfortunately, the most reliable metrics
require access to both the original and the received video streams
which makes them inappropriate for real-time monitoring. In this
article, we present a novel no-reference bitstream-based visual
quality impairment detector which enables real-time detection
of visual degradations caused by network impairments. By only
incorporating information extracted from the encoded bitstream,
network impairments are classified as visible or invisible to the
end-user. Our results show that impairment visibility can be
classified with a high accuracy which enables real-time validation
of the existing performance objectives.

Index Terms—Quality of Experience (QoE), Objective video
quality, No-Reference, H.264/AVC, High Definition.

I. INTRODUCTION

QUALITY of Experience (QoE), defined as the overall
acceptability of an application or service as perceived

subjectively by the end-user [1], is considered a key parameter
for determining the success or failure of broadband video
services such as Internet Protocol Television (IPTV) and Video
on Demand (VoD) [2]. When switching to new digital video
services, customers expect superior quality compared to the
traditional TV services (such as analogue TV), for which
they are willing to pay [3], [4], [5]. However, delivering high
quality video services over existing IP-based networks can be
a real challenge for video service providers, certainly when
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taking into account the packet-based, best-effort characteristics
of such networks. In the event of network impairments, the
perceived audiovisual quality can fluctuate significantly and
drop below the acceptability thresholds [6], [7], [8]. To some
extent, consumers tolerate minor impairments if the (discount)
price for the provided service is acceptable and the error fre-
quency remains low enough. But on the other hand, very few
consumers accept more than one visual artifact per hour [5].
Overall, service providers should strive for optimizing and
maximizing the QoE of the offered video services, not only
as a service differentiator but also as means for increasing
customer satisfaction and revenues [9], [10].

Ensuring adequate QoE requires that the quality of the
streamed video sequence is continuously monitored. On the
network level, objective Quality of Service (QoS) parameters
such as packet loss, bandwidth, delay and jitter can be mea-
sured in order to detect possible network failures which could
lead to a degradation of the received video signal [11], [12],
[13], [14].

Several standard organizations have established a minimum
set of objective QoE performance measurements which should
be achieved in order to maintain satisfactory QoE. Recom-
mendations such as ITU-T Recommendation G.1080 [15] or
Technical Report TR-126 of the DSL Forum [2], specify
for example the maximum allowable number of error events,
defined as the loss of a small number of IP packets, per time
unit in order to ensure adequate QoE. In the case of High
Definition (HD) video streaming, a maximum of one error
event per 4 hours of video playback is tolerable.

From the end-user point of view, results have shown that
frame freezes are perceived differently from visual impair-
ments caused by random packet loss [16] and that visual
impairment visibility also depends both on the type of video
content and the location of the loss [17]. As such, not all net-
work impairments result necessarily in a visible degradation,
which has also been accounted for in ITU-T G.1080 and TR-
126. This indicates that additional information from the video
level is required in order to determine and predict the influence
of network impairments on perceived quality.

Measuring perceived video quality can be automated using
objective video quality metrics. Currently, the most reliable
quality metrics either require access to the complete original
video sequence or require a complete decoding of the received
video signal [18], [19], [20]. Furthermore, these metrics usu-
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ally process the entire video sequence and output an overall
average quality rating. In the case of real-time video streaming,
service providers want to receive instantaneous feedback when
visual quality degradations occur.

In this article, we present a novel no-reference bitstream-
based objective video quality metric for real-time detection
of visual artifacts resulting from network impairments. Our
approach focuses on modeling the visibility of network im-
pairments to the average end-user based on a decision tree
classifier. As we are targeting a no-reference bitstream-based
metric, only parameters extracted solely from the received
encoded video bitstream are taken into account.

The remainder of this article is structured as follows. We
start by providing a high level overview on the different
types of metrics and how they can be classified based on
the information they use from the video stream in section II.
Then, in section III, we present related work and highlight
the importance of the research presented in this article. Our
entire test methodology, including a description of the different
sequences, encoding parameters and impairment scenarios is
detailed in section IV. In section V, we motivate the use
of decision trees for modeling packet loss visibility. Based
on different parameters extracted from the received video
bitstream, we constructed several decision trees for modeling
impairment visibility. These results are presented in section VI.
Finally, conclusions are drawn in section VII.

II. OBJECTIVE VIDEO QUALITY METRIC CLASSIFICATION

Objective video quality metrics can be classified into differ-
ent categories based on several criteria as depicted in Figure 1.
A first classification is made based on the availability of the
original video sequence and the amount of information which
is extracted from it. As such, objective quality metrics are
classified into Full-Reference (FR), Reduced-Reference (RR)
and No-Reference (NR) metrics. FR metrics, as standardized
in [19] , require access to the complete original video sequence
whereas NR metrics only estimate visual quality based on
the received video sequence. The RR-based objective metrics
extract certain features from the original video sequence and
signal this information over an ancillary error-free channel
which is then combined with the information extracted from
the received video sequence [18]. Next, quality metrics can
also be categorized based on the type of information or
processing level where the information is extracted. Using
this classification, metrics are called pixel-based, bitstream-
based or parametric-based. Pixel-based metrics process the
decoded video sequence in order to access pixel data whereas
bitstream-based quality metrics extract the necessary infor-
mation directly from the encoded video stream without fully
decoding the sequence. By parsing the encoded video stream,
information on the macroblocks and motion vectors can be
obtained [21]. The third kind of metrics, called parametric
video quality metrics, estimate quality using only information
available in the packet headers in the case of streaming video
delivery [22]. Video quality metrics can also use a combination
of pixel, bitstream and network information for calculating
perceived quality. Such objective metrics are also known as

hybrid metrics and are currently being evaluated by the Video
Quality Experts Group (VQEG) [23], [24].

Full-Reference

Reduced-Reference

No-Reference

Pixel-based

Bit stream-based

Parametric

Processing level for
information gathering

Amount information
of reference sequence

+ Hybrid

Fig. 1. Classification of video quality metrics based on the amount of
information which is used from the reference sequence or based on the
processing level for extracting information in order to model perceived quality.

In order to enable real-time impairment detection, we are
targeting a no-reference bitstream-based objective quality met-
ric which does neither require a complete decoding of the
video stream nor access to the original video sequence. This
way, quality monitoring can also be performed at intermediate
measurement points along the video delivery channel where
the decoded video stream itself is not available.

In this section, we only presented a brief overview of
different types of objective video quality metrics. For a more
complete and detailed overview of objective video quality
metric classifications, the reader is referred to [25] or [26].

III. VISUAL QUALITY IMPAIRMENT DETECTION

Traditionally, most existing objective video quality metrics
output a quality rating for the entire sequence which can be
directly mapped to the Mean Opinion Score (MOS), as used
during subjective video quality assessment [27]. However, as
explained in the introduction, we are interested in real-time
detection of visible impairments resulting from network fail-
ures during video playback. Consequently, our main objective
is to determine when network impairments will be deemed
visible or invisible to the end-users.

Suresh et al. [28] introduced the Mean Time Between
Failures (MTBF), commonly used for measuring QoS, as
a new means for subjective video quality assessment. The
MTBF represents how often a typical viewer perceives a
visual impairment and simplifies subjective testing as viewers
only need to evaluate a video sequence and indicate when
they perceive a visual artifact [29], [30]. Closely related
to the MTBF, the authors define the PFAIL metric as the
fraction of the viewers who find a given video portion of
acceptable quality. During video playback, viewer’s frequency
of indicating the occurrence of visual impairments correlates
well with perceived video quality. As such, lower quality video
will result in a higher frequency of impairment detection and
a lower MTBF.

In order to estimate the MTBF in real-time, the authors
developed the Automatic Video Quality (AVQ) metric [31],
[32], [33], capable of detecting both compression artifacts and
network artifacts. The former are detected using a combination
of the quantization step size and scene activity whereas the
latter are detected during error concealment. Therefore, the
AVQ metric requires access to both the network bitstream and
the decoded video sequence [34].
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Reibman et al. [35] used a decision tree to model the
visibility of individual packet loss in the case of MPEG-2
encoded video. The classifier is built using a combination
of parameters which are extracted from the received and
decoded video stream and parameters which are computed
from the original video sequence and signaled inside the
bitstream. These parameters include, among others, the spatial
and temporal extent of the error and the mean squared error
of the initial error averaged over the macroblocks initially
lost. As the latter can only be estimated from the complete
bitstream, the proposed classifier can be regarded as a hybrid
RR objective metric. In order to construct and validate the
classifier, a subjective experiment was conducted during which
test subjects had to indicate when they perceived a visual
impairment. The followed methodology thus corresponds with
measuring the MTBF as proposed by Suresh et al.

The classification accuracy when only considering parame-
ters which can be extracted from the decoded video stream
or the received encoded bitstream was further investigated
by Kanumuri et al. [36]. Results indicate that there is a
slight drop in performance when only considering NR param-
eters. However, no significant differences were found between
the classifier built using parameters extracted only from the
decoded pictures and the classifier built using parameters
extracted from the encoded bitstream.

Based on a regression analysis, Kanumuri et al. also
modeled the probability that a packet loss is visible to the
average end-user by incorporating the same parameters used
by the decision tree classifier. However, classifying packet loss
visibility using regression resulted in a lower classification
accuracy compared to classification based on the decision tree.

Reibman and Kanumuri both classify packet loss visibility
in MPEG-2 encoded video sequences using two different
detection thresholds. If 75% or more of the subjects perceived
the impairment, the packet loss is classified as visible. When
the visual degradation is detected by only 25% or less of the
subjects, the packet loss remains invisible. All other packet
losses which cannot be classified according to these two
thresholds were not taken into account when constructing
the decision tree. This implies that not every packet loss
occurrence can be classified using the proposed decision tree.

In [37], Kanumuri et al. further applied a linear model to
predict the probability that visual impairments in H.264/AVC
encoded video sequences caused by isolated or multiple lost
packets will be perceivable by the end-user. The study was
focused on small Source Input Format (SIF) 1 resolution video
sequences which were encoded using a fixed number of B-
pictures and a fixed GOP length. The parameters building
up the proposed linear model are extracted from the decoded
(erroneous) video stream and the original encoded video se-
quence resulting in an RR objective quality metric. In [38], the
authors used support vector regression to continuously predict
packet loss visibility for SD and HD H.264/AVC encoded
sequences based on parameters extracted and calculated solely
from the received bitstream.

Lin et al. [39] combined the research of Reibman and

1SIF resolution corresponds with 352 by 240 pixels.

Kanumuri and used the above mentioned visibility models to
implement an efficient packet dropping policy algorithm for
routers. Upon arrival in the router, each packet is labeled high
or low priority depending on whether the loss of that particular
packet would result in respectively a visible or an invisible
degradation in the decoded video.

Research [40] has shown that the accuracy of predicting
packet loss visibility can be increased when taking into
account scene-level characteristics such as camera motion.
Results show that impairments in scenes with a still camera
are significantly less detectable compared to degradations in
scenes with global camera motion. In general, camera motion
(e.g., panning) does influence packet loss visibility. According
to Liu et al. [41], saliency is also an important parameter
for estimating packet loss visibility. Although, it has been
shown [42] that impairments outside of the Region Of Interest
(ROI) are only rated better quality in case of video content
with a clear distinct ROI area.

In previous research [17], we proposed an NR bitstream-
based visual quality impairment detector, called ViQID, for
estimating packet loss visibility in H.264/AVC encoded video
sequences of Common Interchange Format (CIF) 2 resolution.
We also used a decision tree classifier to model packet loss vis-
ibility, but only using parameters which can be extracted solely
from the received encoded video bitstream. Furthermore, the
research was mainly focused on the effect and visibility of
losing one or more entire pictures. Our results show that it is
possible to classify packet loss visibility with high accuracy,
using only a limited number of parameters.

The goal of the research presented in this article is to
extend our existing classifier in order to enable packet loss
visibility prediction of HD H.264/AVC encoded sequences
taking into account NR parameters which can be estimated
using only the received encoded video bitstream without the
need for complete decoding. Furthermore, in this article we
also consider multiple encoding settings.

IV. ASSESSING THE VISIBILITY OF NETWORK
IMPAIRMENTS

Prior to the construction of an objective video quality
metric, proper training data and validation data must be col-
lected [43]. Currently, the most reliable way for obtaining such
data is using subjective video quality assessment where human
observers evaluate the visual quality of a series of short video
sequences. These sequences usually contain visual artifacts
caused by encoding and/or network impairments. As such,
in order to conduct subjective experiments, different video
sequences must be selected, encoded and impaired. In the next
sections, we will discuss in more details how different test
sequences were selected, encoded and impaired. The impaired
sequences where then used to conduct a subjective experiment
in order to assess the visibility of visual artifacts caused by
network impairments.

2CIF resolution corresponds with 352 by 288 pixels.
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A. Source sequences selection and encoding

When assessing the influence of visual impairments on
perceived quality, the type of video can have a significant
impact [44], [45], [46]. It is generally known that, for ex-
ample, the amount of motion and spatial details in a video
sequence affect the visibility of visual degradations [47]. In
order to quantify the spatial and temporal information of
a video sequence, ITU Recommendation P.910 [44] defines
two complexity measures which are calculated for each video
frame at time n (Fn). The spatial perceptual information
measurement (SI) is based on a Sobel-filter and is calculated as
the maximum value of the standard deviations of each Sobel-
filtered frame at time n:

SI = maxtime{stdspace[Sobel(Fn)]}. (1)

The temporal perceptual information (TI) is similarly cal-
culated as SI, but is based on the pixel difference between two
consecutive frames:

TI = maxtime{stdspace[Mn(i, j)]}, (2)

where Mn(i, j) = Fn(i, j)− Fn−1(i, j).

Since both the SI and TI values for a video sequence
are represented by the maximum value over all the video
frames, peaks (caused by for example scene cuts) may result
in an overall SI or TI value which is not representative for
a particular video sequence [48]. Results showed that the
human perception of spatial and temporal information in a
video sequence can be better approximated by calculating the
upper quartile value instead of the maximum value. Hence,
the authors in [48] propose the Q3.SI and Q3.T I perceptual
information measurements. These are calculated similar to
equations 1 and 2, but the third quartile value (Q3) is calcu-
lated over all the video frames instead of taking the maximum
SI and TI value.

In the case of subjective video quality testing, the selected
test sequences should span a wide range of spatial and
temporal information. Therefore, we calculated the Q3.SI and
Q3.T I values for a series of test sequences available from the
Consumer Digital Video Library (CDVL) [49]3, the Technical
University of Munich (TUM) and open source movies and
selected eight different sequences to be used in our subjective
test. All original test sequences were taken from progressively
scanned content with a resolution of 1920x1080 pixels and
a frame rate of 25 frames per second. Each video sequence
was trimmed to a duration of exactly 10 seconds. Figure 2
shows the calculated Q3.SI and Q3.T I values for our selected
sequences and a short description of each sequence is provided
in Table I. Sequences marked with a star indicate that the
content is taken from an open source movie.

For encoding our eight selected HD sequences, we first
collected realistic encoding settings by analyzing HD content
from online video services and by inspecting the default
settings recommended by commercially available H.264/AVC
encoders. More specifically, we are interested in discovering

3http://www.cdvl.org
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Fig. 2. Calculated Q3.SI and Q3.TI values, as suggested in [48], for our
eight selected source sequences.

TABLE I
DESCRIPTION OF THE SELECTED TEST SEQUENCES.

Sequence Source Description
basketball CDVL Basketball game with score. Camera pans

and zooms to follow the action.
BBB* Big Buck

Bunny
Computer-Generated Imagery. Close-up of a
big rabbit. Slight camera pan while follow-
ing a butterfly in front to the rabbit.

cheetah CDVL Cheetah walking in front of a chainlink
fence. Camera pans to follow the cheetah.

ED* Elephants
Dream

Computer-Generated Imagery. Fixed camera
focusing on two characters. Motion in the
background.

foxbird3e CDVL Cartoon. Fox running towards a tree and
falling in a hole. Fast camera pan with zoom.

purple4e CDVL Spinning purple collage of objects. Many
small objects moving in a circular pattern.

rush hour TUM Rush hour in Munich city. Many cars mov-
ing slowly, high depth of focus. Fixed cam-
era.

SSTB* Sita Sings
the Blues

Cartoon. Close-up of two characters talking.
Slight camera zoom in.

the most commonly used number of slices per picture, the
Group Of Pictures (GOP) size and the number of B-pictures.
We found that the video sequences are usually encoded using
1, 4 or 8 slices per picture and a GOP structure containing
0, 1 or 2 B-pictures. We also noticed that different GOP
sizes are used but an average GOP size between 12 and 15
frames is typically used in an IPTV environment [50]. In this
article, we are primarily interested in the influence of network
impairments on perceived quality. Therefore, the encoding bit
rate was set high enough in order to avoid the presence of
visual coding artifacts. Based on this analysis, we used the
following encoding settings:

• Number of slices: 1, 4 and 8
• Number of B-pictures: 0, 1 and 2
• GOP size: 15 (0 or 1 B-picture) or 16 (2 B-pictures)
• Closed GOP structure
• Bit rate: 15 Mbps

This way, each original sequence was encoded using nine
different configurations giving a total number of 72 encoded
sequences. We also visually inspected each encoded sequence
in order to ensure the absence of any coding artifacts.
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B. Impairment generation
Any H.264/AVC compliant bitstream must only contain

complete slices. Even in the case when only a small portion of
a slice is lost, the entire slice should be discarded. Therefore,
we impaired the encoded sequences by dropping particular
slices. We used Sirannon4 [51], our in-house developed open
source modular multimedia streamer, in order to drop specific
slices from an encoded H.264/AVC video stream according
to the configuration depicted in Figure 3. In our setup, a raw
H.264/AVC Annex B bitstream is first packetized into RTP
packets according to RFC3984 [52]. No aggregation was used
during the packetization process which implies that a single
RTP packet never contains data belonging to more than one
encoded picture. Next, slices are dropped by discarding all
the RTP packets carrying data belonging to the same slice.
After unpacketizing, the resulting impaired H.264/AVC Annex
B compliant bitstream is saved to a new file.

Fig. 3. RTP packets, which carry data from particular slices, are dropped
using the nalu-drop classifier component. After unpacketizing, the resulting
impaired sequence is saved to a new file.

We are interested in investigating the visibility of losing one
or more slices and one or more entire pictures. Therefore, the
following parameters were used to create different impairment
scenarios:

• Number of B-pictures between two reference pictures (0,
1 or 2)

• Type of picture in which the first loss is inserted (I, P or
B)

• Location within the GOP where the loss is inserted
(begin, middle or end)

• Number of consecutive slice drops (1, 2 or 4)
• Location within the picture of the first dropped slice (top,

middle or bottom)
• Number of consecutive entire picture drops (0 or 1)

In the case of consecutive slice drops, all dropped slices
belonged to the same picture. As such, dropping two or four
consecutive slices was not taken into account when the pictures
were encoded using a single slice. Consecutive pictures were
only dropped in sequences encoded with one slice per picture.
Furthermore, we only considered dropping two consecutive
P-pictures and two consecutive B-pictures.

Creating a full factorial [53] of all possible combinations
of the parameters for impairing the sequences would result
in 486 scenarios. However, not all combinations are feasible;
for example, changing the location within the picture of the
first dropped slice is only meaningful when the sequence is
encoded using multiple slices. Therefore, all illegal combi-
nations were removed after generating the full factorial. To

4Sirannon is formerly known as xStreamer.

further reduce the number of scenarios we searched for the
least unique scenarios and removed them from the design.
This will result in a design for which the remaining points
lie as far away from each other as possible [54]. As each
scenario is identified by a combination of the six parameters
(6-tuple) described above, the least unique scenario is the one
for which every parameter value occurs the most in the design.
For example, in the following scenarios the third one is the
least unique:

(1, I, begin, 2, bottom, 0)
(1, P, middle, 1, top, 1)
(2, P, begin, 2, top, 0)

Using this experimental design, 48 impairment scenarios
were selected which we applied to our eight selected sequences
resulting in a total number of 384 impaired video sequences.
No visual impairments were injected in the first and last two
seconds of video playback.

Since the impaired video sequences cannot be decoded
properly with the H.264/AVC reference software except in the
simplest cases of loss patterns, we adjusted the JM Reference
Software version 16.1 [55] to enable error concealment in case
of picture drops [56]. As a concealment technique, frame copy
has been implemented.

C. Subjective quality assessment methodology

The different sequences were presented to the subjects
based on the Single Stimulus (SS) Absolute Category Rating
(ACR) assessment methodology as specified in [44]. Using
this methodology implies that the video sequences are shown
one at a time without the presence of an explicit reference
sequence. This also corresponds with watching television,
where viewers can only evaluate the received video signal [57],
[58].

Prior to the start of the subjective experiment, all subjects
received specific instructions on how to evaluate the different
video sequences. After screening the subjects for color vision
and visual acuity (using Ishihara plates and a Snellen chart,
respectively), three training sequences were presented. This
training session was used to get the subjects familiarized with
the different kinds of impairments which could be perceived
during the experiment. After watching each sequence, viewers
first had to indicate whether they perceived a visual impair-
ment. If the latter was the case, they were also asked to provide
a quality score for that particular sequence using the 5-grade
ACR scale depicted in Figure 4.

5 Imperceptible

4 

3 

2 

1 

Perceptible but not annoying

Slightly annoying

Annoying

Very annoying

_ 

_ 

_ 

_ 

_ 

Fig. 4. Five-level grading scale [44] presented to the subjects, after each
sequence, for recording impairment visibility and annoyance.

In order to avoid viewer fatigue, the overall experiment
duration should not exceed 30 minutes. Therefore, we created
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six different datasets each containing 76 sequences, which
include both original encoded and impaired video sequences.
As such, the duration of each dataset was limited to about
20 minutes. The order of the video sequences within a single
dataset was randomized at the start of the trail so that no two
subjects evaluated the sequences in exactly the same order.

The video sequences were displayed on a 40 inch full HD
LCD screen with subjects seated at a distance of 4 times the
picture height.

A total number of 40 non-expert viewers, aged between 18
and 34 years old, participated with the subjective experiment.
Amongst them, 11 were female and 29 were male test subjects.
Each dataset was evaluated by exactly 24 subjects. As a
result, most of the subjects evaluated more than one dataset
although not necessarily on the same day. We also performed
a post-experiment screening of our test subjects using the
methodology described in Annex V of the VQEG HDTV
report [20] in order to ensure no outliers were present in
our subjective data. This methodology is based on the linear
Pearson correlation coefficient and rejects a subject’s quality
scores in case the correlation with the average of all the
other subjects’ quality ratings drops below the acceptability
threshold.

V. DECISION TREE-BASED MODELING OF IMPAIRMENT
VISIBILITY

In this article, we are interested in determining whether the
loss of some part of the video stream will result in a visible
impairment. In other words, we want to be able to classify
the occurrence of packet loss as visible or invisible for the
average end-user.

Reibman et al. [35] and Kanumuri et al. [36] both used
a decision tree classifier for modeling packet loss visibility,
which we also used in our previous research [17].

A decision tree, as depicted in Figure 5, is built up using
different nodes and end nodes (also known as leaves) and is
traversed from top to bottom.

Fig. 5. Basic decision tree composed of different nodes and leaves which is
traversed from top to bottom.

While traversing the tree, a decision on which path to follow
down is made at every node based on the value of one or more
of the attributes used to construct the tree. This evaluation
continues until a leaf node is reached at which point the
classification is completed. The label associated with this leaf
node then determines, for example, error visibility.

The use of a decision tree for performing classification of-
fers several advantages. First of all, the decision tree is a white

box showing the complete internal structure of the classifier.
This implies that an in-depth analysis can be performed which
can lead to better insights and more conclusions on how the
classification is performed. As the evaluation of a node in the
decision tree comes down to an if-else evaluation, a decision
tree can also easily be implemented. Another big advantage
of decision trees is that they can handle both numerical and
categorical parameters [59].

For evaluating the performance and reliability of a decision
tree, the overall classification accuracy and the true positive
(TP) rate can be considered. The classification accuracy is
defined as the ratio between the number of correctly made
classifications and the total number of classifications. In the
case of classifying packet loss as visible or invisible, the TP
rate for the visible packet losses represents the percentage of
visible losses correctly classified as being visible.

VI. RESULTS

For modeling packet loss visibility, parameters need to be
extracted from the network and/or video bitstream in order
to identify the location and extent of the initial loss. These
parameters are then used for building different decision trees.
In this section, we first provide an overview of the different
parameters used for predicting impairment visibility. Next, we
present different decision trees for classifying packet loss as
visible of invisible to the average end-user.

A. Parameter extraction

As we are targeting a no-reference bitstream-based visual
quality metric, only information extracted from the network
and the received encoded (impaired) video stream is available
for constructing our decision tree. Different parameters are
extracted from the network and the video bitstream in order
to identify the location of the loss and characterize the video
sequence.

The location of the loss is identified by the type of the lost
slice, the location of this slice within the picture and the GOP,
and the number of consecutive slice losses.

Characterizing the pictures affected by the loss is performed
by extracting information at the macroblock and the motion
vector level. As such, we calculate the average motion vec-
tor lengths and standard deviations. Statistics concerning the
macroblock partitions and types are also calculated.

All these statistics are calculated within the GOP containing
the loss. In case the loss occurs in the I picture, the statistics
are calculated from the remaining B and P pictures in the GOP.
When the impairment originates from a P picture, statistics are
calculated from the I picture (at the beginning of the GOP)
and all the other P pictures in the GOP, the B-pictures are not
used in this case. Similar when a loss occurs in a B picture,
only the I picture and the other B-pictures in the GOP are
taken into account when calculating the statistics.

An overview of all extracted parameters is listed in Table II.

B. Modeling packet loss visibility

For constructing different decision trees, we used the
Waikato Environment for Knowledge Analysis (WEKA) [60],



IEEE TRANSACTIONS ON BROADCASTING 7

TABLE II
OVERVIEW OF ALL PARAMETERS EXTRACTED FROM THE RECEIVED

VIDEO BITSTREAM IN ORDER TO IDENTIFY THE LOCATION OF THE LOSS
AND CHARACTERIZE THE VIDEO SEQUENCE.

Parameter Description
b pics, nb slices, gop size Number of B-pictures, slices per picture

and GOP size as specified during encod-
ing.

contentclass Sequence content classification (see Ta-
ble IV).

imp pic type, perc pic lost Type (I, P or B) and percentage of slices
lost of the picture where the loss origi-
nates.

imp in gop pos,
imp in pic pos

Temporal location within the GOP (be-
gin, middle, end) and spatial location
within the picture (top, bottom, middle)
of the first lost slice.

imp cons slice drops,
imp cons b slice drops,
imp pic drops

Number of consecutive slice drops, num-
ber of consecutive B-slice drops and
number of entire picture drops.

drift Temporal duration of the loss.
perc pb 4x4, perc pb 8x8,
perc pb 16x16,
perc pb 8x16,
perc pb 16x8, perc i 4x4,
perc i 8x8, perc i 16x16

Percentage of I, P & B macroblocks of
type 4x4, 8x8, 16x16, 8x16 and 16x8,
averaged over the pictures in the GOP
containing the loss.

perc i mb, perc skip,
perc ipcm

Percentage of macroblocks encoded as
I, skip and PCM, averaged over the
pictures in the GOP containing the loss.

I perc 4x4, I perc 8x8,
I perc 16x16

Percentage of macroblocks of type 4x4,
8x8 and 16x16 in the first I or IDR
picture of the GOP containing the loss.

abs avg coeff, avg qp Absolute average value of the mac-
roblock coefficients and QP value, av-
eraged over the P or B pictures in the
GOP containing the loss.

I abs avg coeff, I avg qp Absolute average value of the mac-
roblock coefficients and QP value in
the first I or IDR picture of the GOP
containing the loss.

perc zero coeff,
I perc zero coeff

Percentage of zero coefficients, averaged
over the P or B pictures in the GOP
containing the loss and average of zero
coefficients in the first I or IDR picture
of the GOP containing the loss.

avg mv x, avg mv y,
stdev mv x, stdev mv y

Average absolute motion vector length
and standard deviation in x- and y-
direction, averaged over the P or B pic-
tures in the GOP containing the loss.
Motion vector magnitudes have quarter
pixel precision.

avg mv xy, stdev mv xy Average and standard deviation of the
sum of the motion vector magnitudes
in x- and y-direction, averaged over the
P or B pictures in the GOP containing
the loss. Motion vector magnitudes have
quarter pixel precision.

perc zero mv Average percentage of zero motion vec-
tors, calculated over the P or B pictures
in the GOP containing the loss.

an open source data mining software package. As our total
number of sequences is limited to 384, we used 10-fold
cross validation for constructing and validating the built trees.
During k-fold cross validation, the entire dataset is split into k
subsets of which k− 1 are used for building the tree and one
dataset is used for validating the tree. This process is repeated
exactly k times, each time selecting a different subset for
validation. A common value used for k is 10, which minimizes
the variance over the different runs [61].

During the subjective experiment, subjects were required to

indicate whether they perceived a visual impairment or not.
Based on these results, we classify packet loss to be visible
when 75% or more of the subjects perceived the impairment.
Otherwise, the impairment is classified as invisible. When plot-
ting the Mean Opinion Score (MOS) of each sequence against
the percentage of the subjects who perceived an impairment in
the corresponding sequence, as depicted in Figure 6, we also
noticed that the MOS drops below 4 starting from a detection
threshold of 75%.
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Fig. 6. Percentage of the viewers who perceived the impairment versus the
MOS of the corresponding sequence.

As such, we classify packet loss visibility based on a
single threshold as opposed to the two thresholds (75% and
25%) used by Reibman [35] and Kanumuri [36] as explained
in section III. Our previous research [17] showed that the
classification accuracy can be improved when considering the
two thresholds mentioned above. However, the drawback of
this approach is that not all packet losses can be classified, i.e.
packet losses which have a detection threshold between 25%
and 75%. By using a single detection threshold, we ensure
that all losses will be classified as visible or invisible.

In our previous research [17], we used high-level
information extracted from the bitstream for modeling packet
loss visibility without the need for parsing the video data.
Our results showed that the obtained decision trees had
a high accuracy taking into account that only a limited
amount of parameters were used during the modeling
process. Using the data obtained in this article, we start
off by modeling a decision tree using the following high
level parameters: imp_pic_type, imp_in_gop_pos,
imp_in_pic_pos, imp_cons_slice_drops,
imp_cons_b_slice_drops, perc_pic_lost,
imp_drop_next_pic.

The resulting tree, depicted in Figure 7a, shows that only
five parameters are needed to classify packet loss visibility.

Looking at the tree into more detail, we see that a loss of
up to two B-pictures is not perceivable and that losses in I-
pictures are always perceived, even if only one out of eight
slices is lost. In case the loss originates from a P-picture, error
visibility depends on the percentage of the slices lost and the
location of the P-picture within the GOP. To be more precise,
when only a small portion of the slices is lost, the impairment
is not perceived. When more than 25% of the slices in the
picture is lost, impairment visibility is determined by the
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(a)

(b)

Fig. 7. Decision trees for classifying the occurrence of packet loss as
visible or invisible to the average end-users, using only high level parameters
extracted solely from the received encoded video bitstream (a) and with
additional content classification (b).

temporal extent of the error (drift). As such, impairments are
not visible in case the packet loss affects a P-picture located
at the end of the GOP which results in a short drift of the
error. Table III shows the average drift caused by losses in P-
pictures, depending on the location of that picture within the
GOP. In our experimental design, we dropped up to four slices
in our sequences encoded with eight slices. As such, the branch
imp_cons_slice_drops > 2 implies that the errors are
always perceived when 50% of a P- or I-picture is lost in these
sequences. Our data analysis showed that impairments are not
always perceived when 50% of a picture, encoded with four
slices, is lost. Hence, a lower number of slices per picture
might be preferred as this appears to be better in terms of
error visibility.

The overall classification accuracy of this tree equals 83.1%.
The TP rates for visible and invisible impairments are re-

TABLE III
CALCULATED AVERAGE DRIFT (TEMPORAL EXTENT) AND STANDARD
DEVIATIONS OF IMPAIRMENTS ORIGINATING FROM PACKET LOSS IN

P-PICTURES, DEPENDING ON THE LOCATION WITHIN THE GOP OF THE
FIRST AFFECTED P-PICTURE.

Location within GOP
BEGIN MIDDLE END

avg(drift) 14 9 4
stdev(drift) 1 2 2

spectively 84.0% and 82.1%. Taking into account that only
a limited number of high-level parameters are used, packet
loss visibility can be predicted with a high accuracy.

Results in [17] and [41] show that the prediction accu-
racy can be increased when taking into account the video
content and characteristics. Therefore, we clustered our eight
sequences (cfr. Figure 2) into four different content classes
as shown in Table IV and make this additional parameter
(’contentclass’) available to the modeling process.

TABLE IV
CLUSTERING OF THE DIFFERENT VIDEO SEQUENCES, BASED ON THE

AMOUNT OF MOTION AND SPATIAL DETAILS, INTO FOUR CONTENT
CLASSES.

Content class Characteristics Sequences
A low motion, BBB, rush hour

low spatial details
B high motion, cheetah, foxbird3e

medium spatial details
C high motion, basketball, purple4e

high spatial details
D low motion, ED, SSTB

high spatial details

As can be seen in Figure 7b, including the content classifica-
tion increases the overall complexity of the tree in terms of tree
size. However, still only five parameters are used throughout
the entire tree.

Similar to the previous tree, losses in B-pictures are never
detected, independent of the type of video. According to the
tree, content classification becomes an important factor in case
packet loss occurs in I- or P-pictures. Perceptibility of impair-
ments originating in I-pictures depends on the number of slices
lost. During our impairment generation, we dropped 25%,
50% or 100% of the slices belonging to a particular picture.
As such, the branch corresponding with perc_pic_lost >
0.5 implies that an entire I-picture is lost. At this point, our
error concealment comes into play and shows that impairments
can be masked in sequences with low amounts of motion
(content class D). The fact that packet loss impairments are
less visible in video sequences with still camera motion also
corresponds with the research findings of Reibman et al. [40].
From Figure 2 it can be seen that the amount of motion in the
rush hour sequence corresponds with the sequences of content
class D. According to the tree, losing an entire I-picture in
content class A sequences results in a visible impairment.
However, inspecting the classification accuracy of that branch
revealed that only 50% of the predictions is correct. The data
analysis showed that loosing an entire I-picture in the rush
hour sequence is never perceived whereas the loss is perceived
in case it occurs in the BBB sequence. This indicates that
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it might be better to drop an entire I-picture (even if only
a limited number of slices is lost) in low motion sequences
and use the concealment at the decoder to mask the error. In
our case, low motion sequences are characterized by a Q3.T I
value ≤ 13.

Losses originating from P-pictures are not perceivable in
case only a small portion of the picture is lost. As was the case
in our previous tree, the branch imp_cons_slice_drops
> 2 again only applies to the sequences encoded with eight
slices per picture. Again, losing 50% of the slices in our
sequences encoded with eight slices per picture results in
a visible impairment. The path imp_cons_slice_drops
<= 2 corresponds with losing either 50% or 100% of a
picture encoded with one or four slices per picture. In that
case, impairment visibility again depends on the location of
the P-picture within the GOP but also on the content type.
Corresponding with our previous tree, losses occurring in P-
pictures located in the beginning of the GOP result in a large
drift (cfr. Table III) and always result in a visible impairment.
When the P-picture, where the loss originates from, is located
near the middle or the end of the GOP, impairments are again
masked in low motion sequences.

By taking into account content classification, the accuracy
of the tree increases up to 86.3%. The TP rate for correctly
predicting visible impairments is in this case 84.6%, which is
more or less the same compared to our previous tree. The TP
rate for the invisible impairments increases to 88.3%, which
is an increase of more than 6%. As such, less false alarms of
visible impairments are triggered by this tree.

In [41], the authors showed that visual attention influences
packet loss visibility. Furthermore, motion contrast and scene
movement also determines visual attention [62]. According to
both trees depicted in Figure 7, the location of the loss within
the picture itself is not an important parameter for determining
packet loss visibility. However, Figure 7b shows that packet
loss visibility is influenced by the temporal duration of the
impairment and the amount of motion in the video sequence.
This indicates that impairment drift has a higher impact on
error visibility compared to the initial spatial location of the
loss.

Incorporating content classification, as proposed in the
tree depicted in Figure 7b, implies that this classification is
performed as a pre-processing step and signaled as part of the
bitstream. In the case of RTP streaming, an RTP extension
header [63] could be used to signal this side information.
As part of the H.264/AVC coding standard, content class
identification could be included as unregistered user data
Supplemental Enhancement Information (SEI) messages [64].

Instead of using content classification as a pre-processing
step before streaming the video sequence, content information
can also be extracted from the encoded bitstream [65], [66].
In [67], for example, the amount of details and motion in
a video sequence is determined based on the encoded frame
sizes of I-, P- and B-pictures. As explained in section VI-A,
we also extracted information at the macroblock and motion
vector level in order to characterize the pictures affected by the
loss (see Table II). In a last step towards modeling packet loss
visibility, we replace the content classification by including

the different extracted parameters as part of the decision tree
construction process resulting in the tree depicted in Figure 8.

Fig. 8. Decision tree for classifying packet loss visibility based on parameters
extracted solely from the received (impaired) encoded video bitstream.

Similar to the tree from Figure 7b, impairment visibility
is first determined based on the type of picture where the
loss originates from. Losses occurring in I-pictures are now
generally classified as deemed visible to the average end-
user. However, inspecting our data into more detail showed
that, in correspondence with the previous proposed tree, losses
of entire I-pictures can be masked by the employed error
concealment. When only a very small portion (up to 25%)
of a B- or P-picture is missing, impairments are usually not
perceived.

In case of losses in B-pictures, the impairment is again
properly concealed when entire pictures are dropped. The
branch imp_cons_slice_drops > 1 refers to losses of
half a picture or losing two consecutive B-pictures. In that
case, impairment visibility is content dependent and more
clearly visible in high motion areas. Content is identified based
on the distribution of the macroblocks and the average length
of the motion vectors. As mentioned in section VI-A, these
parameters are calculated only using the information available
in the correctly received B-pictures of the current GOP.

The amounts of motion and spatial details are also important
factors when more than 25% of a P-picture is lost. According
to the tree, impairments are again easier detected in areas
with high motion, corresponding with our previous trees and
our previous research [17]. The classification avg_mv_xy
<= 27.290816 corresponds in our case typically with se-
quences belonging to content classes A or D. In that case,
impairment visibility further depends on the location of the
loss within the GOP which, in turn, affects the impair-
ment drift (cfr. Table III). If the slice loss occurs in a P-
picture located near the middle of the GOP, impairments are
easier detected in our sequences encoded with eight slices
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(imp_cons_slice_drops > 2), similar to our previous
tree. When losing two out of four slices or two consecutive P-
pictures, impairment visibility is dependent on the amount of
spatial information. The parameter perc_pb_16x16 refers
to the average percentage of inter coded 16x16 macroblock
partitions in the correctly received P-pictures of the current
GOP. The split perc_pb_16x16 <= 0.348192 corre-
sponds, in our case, with sequences from content class D.
This indicates that impairments are masked in areas with high
amounts of spatial detail.

In general, the overall structure of the tree presented in
Figure 8 is very similar to the one depicted in Figure 7b
except for the fact that no explicit content classification is
required as a pre-processing step. The classification accuracy
of the last tree equals 85.5% which is also more or less the
same compared to the tree with explicit content classification.
The TP rates for correctly classifying visible and invisible
impairments are respectively 87.8% and 83.2%. This is a small
shift compared to the previous tree but indicates that the tree is
slightly more accurate towards predicting visible impairments.

To summarize, a performance comparison of the different
trees is provided in Table V.

TABLE V
PERFORMANCE COMPARISON OF THE DIFFERENT DECISION TREE.

Only High-level Full
high-level parameters + bitstream

parameters content class processing
Overall accuracy 83.1% 86.3% 85.6%
TP rate visible 84.0% 84.6% 87.8%
TP rate invisible 82.1% 88.3% 83.2%

It is clear that taking into account the type of content
improves classification accuracy. However, no clear difference
is noticed in case this content classification is performed as a
pre-processing step or if the type of video content is identified
by extracting temporal and spatial information directly from
the encoded video stream. The latter influences the depth at
which the encoded video stream must be processed which, in
turn, can result in a higher processing complexity requiring
more processing power [68].

VII. CONCLUSION

In this article, we presented a novel no-reference bitstream
based objective video quality metric which enables real-time
detection of visual degradations caused by network impair-
ments such as packet loss. Based on parameters extracted
solely from the received encoded video bitstream, different
decision tree based classifiers are constructed which classify
each occurrence of packet loss as visible or invisible to the
average end-user. The parameters used during the modeling
process range from high level parameters up to the level of
the macroblocks and the motion vectors.

Our in-depth analysis of the different decision trees showed
that errors are less visible in low motion sequences and that
dropping entire pictures and relying on the error concealment
can result in better error masking in low motion sequences.

We also found that impairment visibility when loosing up
to half of a picture depends on the number of encoded slices

per picture. In our case, impairments are easier detected in the
sequences encoded with eight slices per picture compared to
the sequences encoded with only four slices.

Video content also plays a significant role in determining
error visibility. By taking into account the type of content
during the decision tree modeling process, impairment vis-
ibility can be estimated with a significant higher accuracy.
We also showed that, instead of performing this content
classification as a pre-processing step, information concerning
the macroblock distribution and the magnitude of the motion
vectors can be extracted from the received video bitstream
and used for content classification. This approach no longer
requires a pre-processing step, but requires more in-depth
processing of the received video stream.

Packet loss visibility can also be estimated in a reliable
way by only taking into account high level parameters. Pre-
processing or in-depth processing of the received video se-
quence is therefore not required.

Overall, our results show that impairment visibility can
be determined with high accuracy, even by only taking into
account a limited number of high-level parameters. This en-
ables content providers to continuously monitor video quality
and check conformance with current existing objective QoE
performance indicators as defined in ITU-T Recommendation
G.1080 or Technical Report TR-126.
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