1,087 research outputs found

    SAP HANA: The Evolution from a Modern Main-Memory Data Platform to an Enterprise Application Platform

    Get PDF
    Sensors in smart-item environments capture data about product conditions and usage to support business decisions as well as production automation processes. A challenging issue in this application area is the restricted quality of sensor SAP HANA is a pioneering, and one of the best performing, data platform designed from the grounds up to heavily exploit modern hardware capabilities, including SIMD, and large memory and CPU footprints. As a comprehensive data management solution, SAP HANA supports the complete data life cycle encompassing modeling, provisioning, and consumption. This extended abstract outlines the vision and planned next step of the SAP HANA evolution growing from a core data platform into an innovative enterprise application platform as the foundation for current as well as novel business applications in both on-premise and on-demand scenarios. We argue that only a holistic system design rigorously applying co-design at different levels may yield a highly optimized and sustainable platform for modern enterprise applications

    Handling Tradeoffs between Performance and Query-Result Quality in Data Stream Processing

    Get PDF
    Data streams in the form of potentially unbounded sequences of tuples arise naturally in a large variety of domains including finance markets, sensor networks, social media, and network traffic management. The increasing number of applications that require processing data streams with high throughput and low latency have promoted the development of data stream processing systems (DSPS). A DSPS processes data streams with continuous queries, which are issued once and return query results to users continuously as new tuples arrive. For stream-based applications, both the query-execution performance (in terms of, e.g., throughput and end-to-end latency) and the quality of produced query results (in terms of, e.g., accuracy and completeness) are important. However, a DSPS often needs to make tradeoffs between these two requirements, either because of the data imperfection within the streams, or because of the limited computation capacity of the DSPS itself. Performance versus result-quality tradeoffs caused by data imperfection are inevitable, because the quality of the incoming data is beyond the control of a DSPS, whereas tradeoffs caused by system limitations can be alleviated—even erased—by enhancing the DSPS itself. This dissertation seeks to advance the state of the art on handling the performance versus result-quality tradeoffs in data stream processing caused by the above two aspects of reasons. For tradeoffs caused by data imperfection, this dissertation focuses on the typical data-imperfection problem of stream disorder and proposes the concept of quality-driven disorder handling (QDDH). QDDH enables a DSPS to make flexible and user-configurable tradeoffs between the end-to-end latency and the query-result quality when dealing with stream disorder. Moreover, compared to existing disorder handling approaches, QDDH can significantly reduce the end-to-end latency, and at the same time provide users with desired query-result quality. In this dissertation, a generic buffer-based QDDH framework and three instantiations of the generic framework for distinct query types are presented. For tradeoffs caused by system limitations, this dissertation proposes a system-enhancement approach that combines the row-oriented and the column-oriented data layout and processing techniques in data stream processing to improve the throughput. To fully exploit the potential of such hybrid execution of continuous queries, a static, cost-based query optimizer is introduced. The optimizer works at the operator level and takes the unique property of execution plans of continuous queries—feasibility—into account

    Weiterentwicklung analytischer Datenbanksysteme

    Get PDF
    This thesis contributes to the state of the art in analytical database systems. First, we identify and explore extensions to better support analytics on event streams. Second, we propose a novel polygon index to enable efficient geospatial data processing in main memory. Third, we contribute a new deep learning approach to cardinality estimation, which is the core problem in cost-based query optimization.Diese Arbeit trägt zum aktuellen Forschungsstand von analytischen Datenbanksystemen bei. Wir identifizieren und explorieren Erweiterungen um Analysen auf Eventströmen besser zu unterstützen. Wir stellen eine neue Indexstruktur für Polygone vor, die eine effiziente Verarbeitung von Geodaten im Hauptspeicher ermöglicht. Zudem präsentieren wir einen neuen Ansatz für Kardinalitätsschätzungen mittels maschinellen Lernens

    Gamification as a Service: Conceptualization of a Generic Enterprise Gamification Platform

    Get PDF
    Gamification is a novel method to improve engagement, motivation, or participation in non-game contexts using game mechanics. To a large extent, gamification is a psychological- and design-oriented discipline, i.e., a lot of effort has to be spent already in the design phase of a gamification project. Subsequently, the design is implemented in information systems such as portals or enterprise resource planning applications. These systems act as mediators to transport a gameful design to its users. However, the efforts for the subsequent development and integration process are often underestimated. In fact, most conceptual gamification designs are never implemented due to the high development costs that arise from building the gamification solution from scratch, imprecise design or technical requirements, and communication conflicts between different stakeholders in the project. This thesis addresses these problems by systematically defining the phases and stakeholders of the overall gamification process. Furthermore, the thesis rigorously defines the conceptual requirements of gamification based on a broad literature review. The identified conceptual requirements are mapped to a domain-specific language, called the Gamification Modeling Language. Moreover, this thesis analyzes 29 existing gamification solutions that aim to decrease the implementation efforts of gamification. However, using the different language elements, it is shown that none of the existing solutions suffices all requirements. Therefore, a generic and reusable platform as runtime environment for gamification is proposed which fulfills all presented functional and non-functional requirements. As another benefit, it is shown how the Gamification Modeling Language can be automatically compiled into code for the gamification runtime environment and, thus, further reduces development efforts. Based on the developed artifacts and five real gamified applications from industry, it is shown that the efforts for the implementation of the gamification can be significantly reduced from several months or weeks to a few days. Since the technology is designed as a reusable service, future projects benefit continuously with regards to time and efforts

    Evidence-enabled verification for the Linux kernel

    Get PDF
    Formal verification of large software has been an elusive target, riddled with problems of low accuracy and high computational complexity. With growing dependence on software in embedded and cyber-physical systems where vulnerabilities and malware can lead to disasters, an efficient and accurate verification has become a crucial need. The verification should be rigorous, computationally efficient, and automated enough to keep the human effort within reasonable limits, but it does not have to be completely automated. The automation should actually enable and simplify human cross-checking which is especially important when the stakes are high. Unfortunately, formal verification methods work mostly as automated black boxes with very little support for cross-checking. This thesis is about a different way to approach the software verification problem. It is about creating a powerful fusion of automation and human intelligence by incorporating algorithmic innovations to address the major challenges to advance the state of the art for accurate and scalable software verification where complete automation has remained intractable. The key is a mathematically rigorous notion of verification-critical evidence that the machine abstracts from software to empower human to reason with. The algorithmic innovation is to discover the patterns the developers have applied to manage complexity and leverage them. A pattern-based verification is crucial because the problem is intractable otherwise. We call the overall approach Evidence-Enabled Verification (EEV). This thesis presents the EEV with two challenging applications: (1) EEV for Lock/Unlock Pairing to verify the correct pairing of mutex lock and spin lock with their corresponding unlocks on all feasible execution paths, and (2) EEV for Allocation/Deallocation Pairing to verify the correct pairing of memory allocation with its corresponding deallocations on all feasible execution paths. We applied the EEV approach to verify recent versions of the Linux kernel. The results include a comparison with the state-of-the-art Linux Driver Verification (LDV) tool, effectiveness of the proposed visual models as verification-critical evidence, representative examples of verification, the discovered bugs, and limitations of the proposed approach

    State Management for Efficient Event Pattern Detection

    Get PDF
    Event Stream Processing (ESP) Systeme überwachen kontinuierliche Datenströme, um benutzerdefinierte Queries auszuwerten. Die Herausforderung besteht darin, dass die Queryverarbeitung zustandsbehaftet ist und die Anzahl von Teilübereinstimmungen mit der Größe der verarbeiteten Events exponentiell anwächst. Die Dynamik von Streams und die Notwendigkeit, entfernte Daten zu integrieren, erschweren die Zustandsverwaltung. Erstens liefern heterogene Eventquellen Streams mit unvorhersehbaren Eingaberaten und Queryselektivitäten. Während Spitzenzeiten ist eine erschöpfende Verarbeitung unmöglich, und die Systeme müssen auf eine Best-Effort-Verarbeitung zurückgreifen. Zweitens erfordern Queries möglicherweise externe Daten, um ein bestimmtes Event für eine Query auszuwählen. Solche Abhängigkeiten sind problematisch: Das Abrufen der Daten unterbricht die Stream-Verarbeitung. Ohne eine Eventauswahl auf Grundlage externer Daten wird das Wachstum von Teilübereinstimmungen verstärkt. In dieser Dissertation stelle ich Strategien für optimiertes Zustandsmanagement von ESP Systemen vor. Zuerst ermögliche ich eine Best-Effort-Verarbeitung mittels Load Shedding. Dabei werden sowohl Eingabeeevents als auch Teilübereinstimmungen systematisch verworfen, um eine Latenzschwelle mit minimalem Qualitätsverlust zu garantieren. Zweitens integriere ich externe Daten, indem ich das Abrufen dieser von der Verwendung in der Queryverarbeitung entkoppele. Mit einem effizienten Caching-Mechanismus vermeide ich Unterbrechungen durch Übertragungslatenzen. Dazu werden externe Daten basierend auf ihrer erwarteten Verwendung vorab abgerufen und mittels Lazy Evaluation bei der Eventauswahl berücksichtigt. Dabei wird ein Kostenmodell verwendet, um zu bestimmen, wann welche externen Daten abgerufen und wie lange sie im Cache aufbewahrt werden sollen. Ich habe die Effektivität und Effizienz der vorgeschlagenen Strategien anhand von synthetischen und realen Daten ausgewertet und unter Beweis gestellt.Event stream processing systems continuously evaluate queries over event streams to detect user-specified patterns with low latency. However, the challenge is that query processing is stateful and it maintains partial matches that grow exponentially in the size of processed events. State management is complicated by the dynamicity of streams and the need to integrate remote data. First, heterogeneous event sources yield dynamic streams with unpredictable input rates, data distributions, and query selectivities. During peak times, exhaustive processing is unreasonable, and systems shall resort to best-effort processing. Second, queries may require remote data to select a specific event for a pattern. Such dependencies are problematic: Fetching the remote data interrupts the stream processing. Yet, without event selection based on remote data, the growth of partial matches is amplified. In this dissertation, I present strategies for optimised state management in event pattern detection. First, I enable best-effort processing with load shedding that discards both input events and partial matches. I carefully select the shedding elements to satisfy a latency bound while striving for a minimal loss in result quality. Second, to efficiently integrate remote data, I decouple the fetching of remote data from its use in query evaluation by a caching mechanism. To this end, I hide the transmission latency by prefetching remote data based on anticipated use and by lazy evaluation that postpones the event selection based on remote data to avoid interruptions. A cost model is used to determine when to fetch which remote data items and how long to keep them in the cache. I evaluated the above techniques with queries over synthetic and real-world data. I show that the load shedding technique significantly improves the recall of pattern detection over baseline approaches, while the technique for remote data integration significantly reduces the pattern detection latency

    Faculty of Computer Science

    Get PDF
    Information about the Faculty of Computer Science of the Technische Universität Dresden, data and facts and a selection of current research projects, 2009Informationen über die Fakultät Informatik der TU Dresden, Daten und Fakten sowie eine Auswahl aktueller Forschungsprojekte, 200
    • …
    corecore