
State Management for Efficient Event
Pattern Detection

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
BO ZHAO, M. Eng.

Präsident (komm.) der Humboldt-Universität zu Berlin:
Prof. Dr. Peter Frensch

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Elmar Kulke

Gutachter/innen: 1. Prof. Dr. Matthias Weidlich

Gutachter/innen: 2. Prof. Dr. Prof. Dr. Kurt Rothermel

Gutachter/innen: 3. Prof. Prof. Dr. Boris Koldehofe

Tag der mündlichen Prüfung: 1. März 2022

ABSTRACT

Systems for event stream processing continuously evaluate queries over high-velocity event
streams to detect user-specified patterns with low latency. Since the patterns become
less important over time, it is crucial to detect them as quickly as possible. However,

low-latency pattern detection is challenging, because query processing is stateful and the set of
partial matches maintained by common algorithms for query evaluation grows exponentially in
the size of the processed event data.

Handling this state during query evaluation is further complicated by the dynamicity of
streams and the potential need to integrate remote data. First, heterogeneous event sources
may yield streams with dynamic, unpredictable input rates and data distributions, and hence,
query selectivities. During short peak times, exhaustive processing is no longer reasonable, or
even infeasible, and systems shall resort to best-effort query evaluation: They shall strive for
optimal result quality while staying within a latency bound. Second, some queries require access
to remote data from external sources to determine whether a specific event is part of a pattern.
Such dependencies are problematic, since waiting for remote data to be fetched interrupts the
evaluation of queries over the streams. Yet, without event selection based on remote data, the
growth of the number of partial matches maintained during query evaluation is amplified.

In this dissertation, we present strategies for optimised state management in event pattern
detection. First, we enable best-effort query evaluation with load shedding that discards both
input events and partial matches. We carefully select the partial matches and input events to
drop in order to satisfy a latency bound while striving for a minimal loss in result quality. Second,
to efficiently integrate remote data, we decouple the fetching of remote data from its use in query
evaluation through a caching mechanism. Based thereon, we hide the transmission latency of
remote data by prefetching data based on anticipated use and by lazy evaluation that postpones
the event selection based on remote data to avoid interruptions. A cost model is proposed to
determine when to fetch which remote data items and how long to keep them in the cache.

We evaluated our techniques for load shedding and the integration of remote data with
queries over synthetic and real-world event data. We show that our load shedding technique
significantly improves the recall of pattern detection over baseline approaches under different
latency bounds, while our technique for remote data integration can drastically reduce the
detection latency. Moreover, we report on a case study on smart grid management where event
stream processing is employed to alleviate stress on the grid during peak demand hours. This is
achieved by monitoring how consumers alter their consumption as requested by a utility, and by
predicting potential non-compliance in real-time. Our simulation results show that load shedding
and remote data integration enable the design of a system that scales up to 1.6 million residents.

i

ZUSAMMENFASSUNG

Systeme zur Event Stream Processing überwachen kontinuierliche Datenströme, um nutzer-
definierte Patterns zu detektieren. Diese Patterns sollen schnellstmöglich erkannt werden,
um die Latenz einer Reaktion auf ein Pattern zu minimieren. Dies ist sehr herausfordernd,

weil die Verarbeitung der entsprechenden Queries zustandsbasiert erfolgt und die Größe des
Zustands durch partielle Patternübereinstimmungen exponentiell wächst.

Die Handhabung dieser Zustände während der Evaluation einer Query wird zusätzlich durch
die möglicherweise existierende Notwendigkeit Remote-Daten für die Evaluation heranzuziehen
verkompliziert. Als weiteres Hindernis sorgen heterogene Datenstrom-Quellen für sich dynamisch
ändernde Datenströme mit unvorhersehbaren Inputraten und Datenverteilungen. Entsprechend
variieren die Query Selektivitäten. Während kurzer Peaks ist eine vollumfassende Query Evalu-
ation nicht praktikabel und teilweise unmöglich. Somit wird eine best-effort Query Evaluation
notwendig, welche eine optimale Query Evaluation anstrebt, bei gleichzeitiger Einhaltung von
Latenzbedingungen. Desweiteren erfordern einige Queries die Abfrage von Remote-Daten um die
Relevanz einzelner Events für ein Pattern zu bestimmen. Diese Abhängigkeit ist problematisch,
weil die Wartezeit, welche beim Zugriff auf Remote-Daten entsteht, die Evaluation der Queries
verzögert. Dennoch ist eine solche Überprüfung notwendig, weil sonst die Anzahl der partiellen
Patternübereinstimmungen weiter wachsen würde.

In der vorliegenden Disseration werden verschiedene Strategien für das optimierte Zustands-
management während der Event Pattern Detection vorgestellt. Als erstes wird ein Ansatz für
die Best-effort Query Evaluation mittels Load Shedding vorgestellt, welcher sowohl partielle
Patternübereinstimmungen, als auch Input Events selektiert. Diese Selektion erfolgt mit den Ziel
der Einhaltung einer Latenzgrenze, bei gleichzeitiger Minimierung des Qualitätsverlustes bei der
Query Evaluation. Außerdem stellen wir eine Strategie zur Integration von Remote-Daten vor,
welche Abfragen jener von der Query-Evaluation durch einen Caching Mechanismus entkoppelt.
So können Übertragungslatenzen bei der Abfrage von Remote-Daten mittels Prefetching und
Lazy Evaluation Techniken vermieden werden. Mit Hilfe eines Kostenmodells wird bestimmt,
welche Remote-Daten wann abgerufen werden sollen und wie lange sie zwischengespeichert
werden müssen.

Die Evaluation unserer Ansätze für Load Shedding und die Integration von Remote-Daten
erfolgt auf synthetischen und real-world Datensätzen. Dabei wird aufgezeigt, dass die in dieser
Arbeit vorgestellten Ansätze eine signifikante Verbesserung gegenüber dem Stand der Technik ist.
Beispielsweise kann der Ansatz für die Remote-Daten Integration die Detektionslatenz drastisch
reduzieren. Außerdem wird eine Fallstudie aus dem Smart Grid Bereich vorgestellt, welche einen
Anwendungsfall illustriert, bei dem mit Event Stream Processing Lastspitzen abgeschwächt
werden. Im Rahmen der Fallstudie kann aufgezeigt werden, wie unsere Optimierungstrategien
diesen Ansatz für ein System mit bis zu 1,6 Millionen Konsumenten skalieren.

iii

ACKNOWLEDGEMENTS

First of all, I want to thank my supervisor, Prof. Matthias Weidlich, who supported me throughout
my PhD journey, gave me the full freedom to explore research ideas and constantly sharpened
my research skills such as analytical thinking. Prof. Weidlich is also a role model for me. His
politeness, patience, friendliness, and the ability to balance the work and family commitments,
taught me characters beyond academic research.

Thank you to my collaborators, Prof. Han van der Aa, Dr. Nguyen Quoc Viet Hung, and Dr.
Nguyen Thanh Tam, with whom I am always enjoying the discussion about research ideas and
casual chats, not to mention happy coffee and beer time. I also thank Dr. Gururaghav Raman and
Prof. Jimmy Chih-Hsien Peng for helping me apply the research ideas on efficient event stream
processing to smart grid management.

Thank you to my lovely colleagues and friends, Samira Akili, Stephan Fahrenkrog-Petersen,
Galina Greil, Simon Heiden, Martin Kabierski, Yannic Noller, Robert Prüfer, Hermann Stolte,
Jan Sürmeli, Marvin Triebel, and Kim Völlinger, with whom I enjoyed the lunchtime, the coffee
break, the badminton play, birthday parties, the movie nights, and casual chats, among other
events. This really helped me as an expatriate living in Germany to continue my PhD journey.

Thank you to my Chinese friends, Jinchun Chi, Wuqi Guo, Lei Sun, Chao Wang, Xifan Wang,
Linyan Zhu, and Hui Zhu. We had some fruitful discussions and wonderful times. Hanging out
together alleviates my occasional homesickness. A special thank you goes to Yanmeng Liu, who
spent quite some time on the proofreading of this dissertation.

Last but not least, I would like to thank my family for their endless love, especially during
the COVID-19 pandemic. They shared my ups and downs, supported my decisions, and gave me
motivation and confidence to continue this path. Thank my parents for raising me up to more
than I can be.

v

ERKLÄRUNG / DECLARATION

Hiermit erkläre ich, die Dissertation selbstständig und nur unter Verwendung der
angegebenen Hilfen und Hilfsmittel angefertigt zu haben. Ich habe mich nicht
anderwärts um einen Doktorgrad in dem Promotionsfach beworben und besitze
keinen entsprechenden Doktorgrad. Die Promotionsordnung der Mathematisch-
Naturwissenschaftlichen Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt der
Humboldt-Universität zu Berlin Nr. 42 am 11. Juli 2018, habe ich zur Kenntnis
genommen.

I declare that I have completed the thesis independently using only the aids and tools
specified. I have not applied for a doctor’s degree in the doctoral subject elsewhere
and do not hold a corresponding doctor’s degree. I have taken due note of the Faculty
of Mathematics and Natural Sciences PhD Regulations, published in the Official
Gazette of Humboldt-Universität zu Berlin no. 42 on July 11, 2018.

Berlin, Germany, September 2021

SIGNATURE: ..

vii

TABLE OF CONTENTS

Page

List of Tables xiii

List of Figures xv

1 Introduction 1
1.1 Motivation . 1

1.2 Research Problem . 5

1.3 Overview of the research contributions . 6

1.4 Publications . 7

1.5 Dissertation Outline . 8

2 Foundations 11
2.1 Data Model . 11

2.1.1 Event and Event Stream . 11

2.1.2 External Data Enrichment . 13

2.2 Query Model . 15

2.2.1 Language Model . 15

2.2.2 Execution Model . 16

2.3 Performance Model . 21

3 Literature Review 23
3.1 General Data Stream Processing . 23

3.1.1 Relational Data Stream Processing . 24

3.1.2 XML Data Stream Processing . 25

3.2 State Management . 25

3.3 Efficient Pattern Detection in Event Stream Processing 28

3.3.1 Lossless Optimisations . 28

3.3.2 Lossy Optimisations . 30

3.4 Efficient Remote Data Integration in Event Stream Processing 32

4 Hybrid Load Shedding 35

ix

TABLE OF CONTENTS

4.1 Problem Illustration . 36

4.2 Foundations of Hybrid Load Shedding . 39

4.2.1 The Load Shedding Problem in Pattern Detection Queries 40

4.2.2 Hybrid Shedding Approach . 41

4.2.3 Cost Model . 42

4.2.4 Shedding Set Selection . 43

4.2.5 Shedding Functions . 45

4.3 Implementations of Hybrid Load Shedding . 46

4.3.1 Granularity of the Cost Model . 46

4.3.2 Estimating the Cost Model . 47

4.3.3 Approximated Shedding Sets . 48

4.3.4 Managing Partial Matches Efficiently . 48

4.4 Evaluations . 50

4.4.1 Experimental Setup . 50

4.4.2 Overall Effectiveness and Efficiency . 52

4.4.3 Sensitivity Analysis . 55

4.4.4 Case Studies . 62

4.5 Summary . 64

5 Efficient Remote Data Integration 65
5.1 Problem Illustration . 66

5.2 Foundations of Remote Data Integration . 68

5.2.1 A Closer Look at Remote Data . 69

5.2.2 Problem Statement . 69

5.2.3 The EIRES Framework . 69

5.3 Utility Modelling . 74

5.3.1 Utility Definition . 74

5.3.2 Utility Estimation . 75

5.4 Remote Data Fetching . 77

5.4.1 Prefetching . 77

5.4.2 Lazy Evaluation . 82

5.5 Cache Management . 84

5.6 Evaluations . 85

5.6.1 Experimental Setup . 86

5.6.2 Overall Effectiveness and Efficiency . 87

5.6.3 Sensitivity Analysis . 93

5.6.4 Case Studies . 96

5.7 Summary . 98

x

TABLE OF CONTENTS

6 Case Study: Demand Response Management in Smart Grids 99
6.1 Problem Illustration . 99

6.2 Adaptive DR Management with Event Stream Processing 102

6.2.1 DR Compliance Assessment and Prediction 103

6.2.2 Scalable Monitoring through Event Stream Processing 105

6.2.3 Utility Intervention during an Unsuccessful DR Event 108

6.3 Evaluations . 111

6.3.1 Experimental Setup and Case Description . 111

6.3.2 Effectiveness of Adaptive Demand Response Approach 113

6.3.3 Efficiency of Distributed Event Stream Processing 114

6.3.4 Hybrid Load Shedding and Remote Data Integration in DR Management 115

6.4 Summary . 117

7 Conclusion 119
7.1 Summary and Impact . 119

7.2 Future Work . 120

Bibliography 123

xi

LIST OF TABLES

TABLE Page

2.1 Notations for ESP data model. 12

2.2 A snippet of a credit-card-transaction event stream. 13

2.3 A snippet of a remote data source. 14

2.4 Event selection policies. 19

2.5 Notations for ESP execution model. 20

2.6 Query processing procedure. 20

2.7 Notations for ESP performance model. 21

4.1 Synthetic datasets for load shedding. 50

5.1 Synthetic datasets for efficient remote data integration. 86

6.1 Schema of smart meter reading event smartMeterEvent. 107

6.2 Smart grid DR management simulation parameters. 112

xiii

LIST OF FIGURES

FIGURE Page

1.1 Event stream processing framework . 2

1.2 Importance vs latency. 6

2.1 Sliding window (the window size is six time units and the slide size is one time unit). 16

2.2 Execution model for pattern detection queries. 17

4.1 Number of partial matches over time for the evaluation of the pattern detection query

in Listing 4.1. 37

4.2 Example partial matches maintained by the pattern detection query in Listing 4.1. . 39

4.3 Input-based vs. state-based shedding for automaton and tree-based execution models. 42

4.4 Indexing partial matches. 49

4.5 Experiments when varying the bound enforced for the average latency. 53

4.6 Experiments when varying the bound enforced for the 95th percentile latency. 54

4.7 Details on workings of hybrid load shedding. 55

4.8 Evaluation of the effectiveness of the selection of data to shed. 56

4.9 Impact of variance of query selectivity. 57

4.10 Impact of time window size. 57

4.11 Impact of queried pattern length. 58

4.12 Impact of temporal granularity. 59

4.13 Cost model estimation. 59

4.14 Impact of resource costs of partial matches. 60

4.15 Impact of indexing and early curbing. 60

4.16 Adaptivity of the cost model. 61

4.17 Impact of monotonicity violation. 62

4.18 Case study: Bike sharing. 63

4.19 Case study: Cluster monitoring. 64

5.1 Illustration of EPICIS in supply chain management. 67

5.2 Strategies to integrate remote data in event stream processing: Naive integration;

prefetching based on anticipated use; lazy evaluation once data is available. 68

xv

LIST OF FIGURES

5.3 Intuition of the proposed strategies. 70

5.4 Components of the EIRES framework. 72

5.5 Recent cache hit history H implemented as a cache hit matrix. 80

5.6 Automata-based execution model with the partial order of partial match evolvement. 80

5.7 The two-tier cache management. 85

5.8 Overall effectiveness and efficiency for Q5 over DS3. 88

5.9 Overall effectiveness and efficiency for Q6 over DS3. 89

5.10 Overall effectiveness and efficiency for Q5 over DS4. 90

5.11 Overall effectiveness and efficiency for Q6 over DS4. 91

5.12 Throughput for Q5 under non-greedy selection. 92

5.13 Sensitivity analysis for utility estimation, cache size and remote data transmission

latency. 93

5.14 Sensitivity analysis for utility weighting factor. 95

5.15 Sensitivity analysis for PFetch and LzEval category selection. 95

5.16 Case studies. 97

6.1 Demand response management in smart grid. 100

6.2 Peak load shift. 101

6.3 Traditional approach for DR management. 102

6.4 Adaptive DR management via event stream processing. 102

6.5 Inadequate and complete demand responses of a residential consumer. 104

6.6 Profile of the cumulative energy reduction from the baseline during a DR event. . . . 105

6.7 Infrastructure for dynamic DR based on distributed event stream processing. 106

6.8 DR participants’ expected payoffs (in square braces) under three possible strategies. . 109

6.9 Mapping the incentive offered by the utility to the consumer response. 110

6.10 Average load profile for: (a) home appliances in one residence, and (b) charging one

residential EV. 112

6.11 System demand for different baseline and DR approaches. 114

6.12 Impact of the speed of non-compliance detection to the DR performance. 114

6.13 Communication and computation costs as the number of DR participants increases. . 115

6.14 Comparison of DR management approaches with (denoted by OP) and without (de-

noted by BL) hybrid load shedding and EIRES framework. 116

xvi

C
H

A
P

T
E

R

1
INTRODUCTION

Event stream processing (ESP) is a computing paradigm for processing continuous streams

of event data to extract semantic insights [61]. An event is an instantaneous, unique, and

atomic occurrence of interest at a point in time and an event stream is an unbounded se-

quence of events [70]. By analysing correlations and causal relations among events, ESP provides

higher-level semantic abstractions compared to events themselves, thus supporting decisions and

triggering actions in real-world applications. Unlike traditional database management systems

(DBMS) and recent batch-based big data processing platforms that process static data sets, ESP

enables low-latency analytics over event streams, which allows actions to be taken as soon as a

situation of interest materialises.

This chapter discusses the motivation of this dissertation (Section 1.1). Based thereon, we

present the research problem addressed in this dissertation (Section 1.2), the overview of our

research method and the specific contributions (Section 1.3). Some of these contributions have

been published as peer-reviewed scientific papers as summarised in Section 1.4. Lastly, we sketch

the dissertation’s outline in Section 1.5.

1.1 Motivation

Event stream processing (ESP) engines continuously evaluate user-defined queries over event

stream data from different sources and applications, as shown in Figure 1.1. Here, events are

represented by different geometric shapes. ESP queries define sequence patterns of multiple

events that follow a strict temporal order. For instance, in Figure 1.1, query Q1 defines a sequence

pattern of three events, such that a rectangle event must be followed by a triangle event, which

is again followed by another rectangle event. On top of sequence patterns, ESP queries define

1

CHAPTER 1. INTRODUCTION

ESP Engine
 pattern detection, correlation,

aggregation, join, UDFs, …

Q2Q1

Remote Data Source

Input event streams Output event streams

ESP Query Workloads

Figure 1.1: Event stream processing framework

value predicates of events, including aggregations and user-defined functions. In addition, value

predicates may also correlate events with data that does not reside in the ESP engine due to

privacy concerns or implementation considerations. As a result, ESP engines have to fetch the

required data before evaluating related value predicates. We refer to such data as originating

from remote data sources. Event streams are generally unbounded and common real-world

applications focus on sequence patterns happening in a certain time duration. Therefore, an ESP

query defines a time window: The sequence of events that satisfies the pattern and all value

predicates must happen within a time interval specified by the time window.

Without loss of generality, we take an example of fraud detection in credit card transactions

to illustrate aspects of ESP. Assuming that the triangles and rectangles in Figure 1.1 represent

credit card transaction events, query Q1 detects fraudulent transactions as follows. Suppose that

three time-ordered transactions (sequence pattern) of the same account (value predicate) happen

in different locations (value predicate) within 20 minutes (time window). In this case, an ESP

engine looks up data from remote data sources that store location and transportation information.

If the above three locations cannot be reached within 20 minutes according to remote data sources

(value predicates on remote data), the ESP engine reports a fraudulent transaction.

An ESP engine evaluates queries event by event in an online fashion. This means that the

ESP engine must process an event at the moment when it arrives, instead of batching a set of

events and then processing them later. An even kept longer than a time window is discarded

permanently. Once a pattern has been detected, the ESP engine immediately materialises it and

generates a corresponding complex event in one or more output streams, as shown in Figure 1.1.

Each complex event consists of multiple input events and has higher-level semantics than an

individual input event, enabling humans or automation systems to take further actions.

2

1.1. MOTIVATION

Query processing incurs latency—the time delay between the appearance of all input events

needed to materialise a pattern in an ESP engine and the actual detection of that pattern. For a

certain complex event, the query processing latency consists of the latency to evaluate the pattern

(pattern evaluation latency) and the latency to look up remote data sources (remote data fetching

latency). ESP engines aim at low-latency processing. For instance, in the context of fraudulent

transaction detection, the sooner a fraud is detected, the smaller financial losses the credit card

company bears.

Having explained the main aspects of ESP, we turn to a more detailed discussion of its

essential properties.

ESP is becoming ubiquitous.

Due to the unique characteristics of ESP, researchers have focused on designing and imple-

menting efficient ESP engines and optimisations to cope with the increasing growth of streaming

data that needs to be analysed in science, engineering, and business scenarios, see the survey [64].

Commercial ESP software products are also offered by leading industry enterprises including

Microsoft [43], Google [6], Amazon [8], IBM [82], SAP [198], and Oracle [188]. ESP has emerged

from niche applications such as algorithmic trading to broader markets including health monitor-

ing, smart grids, logistics, telecommunication, energy, manufacturing, supply chain management,

and transportation. Nowadays, we are in the big data era with rapid deployments of 5G networks

and internet of things (IoT) devices around the world in both industrial and consumer fields.

High-speed data streams are constantly generated and need to be analysed in real time, which

leads to various real-world applications of ESP:

• Algorithmic trading. Trading companies define complex patterns that trigger trading

algorithms for high-frequency trading (HFT) in stock markets. HFT processes a large

number of orders in fractions of a second. The quickest reactions to certain patterns are the

most profitable.

• Urban transportation. Ride-hailing services may specify patterns that correlate user

requests, nearby available vehicles, and drivers’ responses to match costumers and drivers.

• Security systems. Sophisticated access control systems define patterns of CCTV camera

footages and RFID badges in correlation with access permissions for employees and visitors

to detect unauthorised intrusions.

• Internet of Things (IoT). Fire alarm systems define patterns of measurements from

smoke sensors, temperature sensors, and humidity sensors to detect fire alarms. Modern

manufacturing companies define patterns of various sensor readings from Industry Internet

of Things (IIoT) devices to improve automation efficiency and detect failures.

Despite the different semantics and functionalities, the above applications have in common

3

CHAPTER 1. INTRODUCTION

that they require low-latency processing. For instance, ride-hailing services aim at sub-second

latency for smooth user experience [33]. Credit card fraud detection enforces a strict latency

bound of 25ms [71]. HFT systems even require a latency below single-digit microseconds [103].

Common ESP queries for pattern detection are stateful.

ESP, in general, may involve operations ranging from filtering and aggregating event data

to complex pattern detection and sophisticated mathematical algorithms including machine

learning. However, pattern detection queries are commonly stateful, which means that an ESP

engine processes each input event in a way that previous events influence how the current

event is processed. To this end, an ESP engine has to maintain partially processed results of

previous events (e.g., partial matches of pattern detection): When an ESP engine receives an

input event, it processes that event together with the maintained partial results and generates

new partial results. These new partial results that satisfy the complete query (sequence pattern,

value predicates and time window) denote the output of ESP, i.e., the complex events. In this

dissertation, we refer to partial results at a specific time as state. A single partial result is denoted

as a state element. Therefore, the ESP engine, at runtime, can be viewed as an infinite sequence

of evolving state.

State affects pattern evaluation latency.

State impacts on the efficiency of ESP engines, particularly in latency performance. It affects

pattern evaluation latency—the computational overhead of processing state elements. The

number of state elements can be significantly large due to expensive operators such as Kleene

closure that detects arbitrarily long sequence patterns. In the worst case, the number of state

elements grows exponentially in the number of processed events [196], which is unbounded.

Moreover, state changes dynamically with input event streams [202]. Analysing the fast-growing

state increases the processing latency and decreases the throughput of ESP engines.

Stateful pattern detection operations render parallelisation schemes non-trivial or even

impossible, because of data dependencies between state elements and input events. In addition,

it is difficult or even impractical for parallelisation schemes to predict how many computing

resources to allocate beforehand. Elastically scaling on demand, on the other hand, interrupts

stateful processing until additional computing resources have been successfully acquired. Besides,

state migration incurs additional overhead.

When the computational overhead of processing state elements is beyond the computing

capacity of an ESP engine, the ESP engine is in an overload situation with increasing processing

latency. In the worst case, the ESP engine is not able to deliver any query results at all. This

4

1.2. RESEARCH PROBLEM

makes low-latency processing challenging.

State affects remote data fetching latency.

State also impacts remote data fetching latency—the overhead for fetching remote data to

ESP engines as part of query processing, due to both privacy concerns and implementation

considerations:

• State of an ESP engine may be stored in persistent databases for failure recovery.

• Large number of state elements may not completely fit in the ESP engine. Therefore, part

of them need to be temporarily moved to disks or external databases.

• Data regulations require sensitive data to be decoupled from ESP engines. For example,

the general data protection regulation (GDPR) in the European Union (EU) enforces strict

constraints about how organisations outside the EU can access its residents’ personal data.

Nonetheless, fetching remote data results in data being transmitted along network connections

and therefore, significantly increases the overall processing latency. This latency of data transmis-

sion is referred to as remote data transmission latency and it is part of the remote data fetching

latency. For a certain pattern detection result, its remote data transmission latency is usually at

least one order of magnitude higher than its pattern evaluation latency [203].

State elements and input events govern what remote data is required for query processing.

However, the dynamics of input streams and state elements in ESP engines lead to unpredictable

and irregular access patterns of looking up remote data sources. This makes prefetching and

caching the required remote data challenging.

All the above issues deteriorate an ESP engine’s performance and are caused by insufficient

state management. Efficient event pattern detection requires new perspectives and optimisation

techniques on state management.

1.2 Research Problem

This dissertation addresses the problem of low-latency pattern detection over event

streams.

As discussed in Section 1.1, ESP query processing incurs latency that consists of pattern evalu-

ation latency and remote data fetching latency. For real-world applications, the importance of

detected patterns decreases with the increasing processing latency, as illustrated in Figure 1.2.

Above a certain latency bound, the query results may become useless. In this dissertation, we

aim at efficient pattern detection over event streams with low processing latency. Specifically, we

solve the following research problems:

5

CHAPTER 1. INTRODUCTION

• R1 To reduce pattern evaluation latency of an ESP engine.

• R2 To reduce remote data fetching latency of an ESP engine.

Latency

Im
po

rt
an

ce

Figure 1.2: Importance vs latency.

1.3 Overview of the research contributions

This dissertation achieves low-latency event pattern detection by efficient state manage-

ment.

We argue that the two research problems in Section 1.2 can be solved by efficient state manage-

ment. As a foundation, we provide insights into the pivotal role of state management in efficient

event pattern detection over event streams. Based thereon, we propose a hybrid load shedding

technique that discards both input events and state elements during query processing to reduce

pattern evaluation latency (R1). As to the problem of reducing remote data fetching latency (R2),

we propose the EIRES framework that holistically combines prefetching, lazy evaluation, and

caching techniques for remote data based on state management. In this dissertation, we make

the following specific contributions:

• Input-based and state-based load shedding techniques. We present a hybrid load

shedding approach for best-effort query processing in event pattern detection. It strives

for optimal result quality while staying within a bound for the pattern evaluation latency.

The hybrid load shedding combines input-based load shedding with a fundamentally new

approach to shed state elements. To realise this idea, we first propose a cost model to

quantify the utility of state elements (partial results), which is directly linked to the utility

of input events. Based on this cost model, we develop efficient decision procedures for hybrid

load shedding which automatically balance input-based and state-based load shedding. We

show how the selection of shedding candidates can be formulated as a Knapsack problem

and how shedding strategies are based on its solution. In overload situations, it is infeasible

to run complex forecasting procedures for deciding and balancing shedding strategies. To

overcome this issue, we report an efficient implementation strategy to tune the cost model

6

1.4. PUBLICATIONS

granularity, its estimation and adaptation, and approximation schemes for efficient online

decision making.

• Efficient integration with remote data in event stream processing. We propose a

framework called EIRES in order to reduce the remote data fetching latency for queries

that depend on remote data. EIRES employs a cache to decouple fetching remote data from

its actual use in pattern detection. Fetching may happen before the need for remote data

materialises (i.e., preparing data beforehand) and the evaluation of partial results based on

it may be postponed after the remote data is available (i.e., lazy evaluation). To this end,

we present a cost model to assess the utility of remote data based on state elements. We

show how the model is approximated efficiently in an online manner. Based on this cost

model, prefetching, lazy evaluation, and cache management are integrated to hide remote

data transmission latency. We propose mechanisms to decide when and which remote data

elements to prefetch, and when to postpone the evaluation if the required remote data

element is unavailable. We elaborate on strategies for cache management, based on simple

yet widely used policies (e.g., the least-recently-used (LRU) eviction algorithm) and based

on the proposed cost model.

• A comprehensive case study of adaptive demand response management in smart
grids. To illustrate the effectiveness and efficiency of the proposed hybrid load shedding

technique and EIRES framework in real-world applications on a large scale, we investigate

a comprehensive case study of a crucial operation problem in smart grid management—

demand response (DR) management. DR refers to the actions taken by the consumers to

alter their energy usage patterns as requested by the utility operator for financial incentives.

Its goal is to alleviate stress on the power grid during peak demand hours, shifting the

required energy load to non-peak hours. We show that distributed ESP enables the utility

operator to monitor consumers’ compliance with energy reduction requests in real time. By

detecting predefined patterns over smart meter reading event streams, the utility operator

predicts non-compliance before the initial DR program (peak hours) ends and adaptively

schedules further DR requests. Therefore, the utility operator is able to fully exploit the

flexibility of consumers’ energy demand reductions. We show that distributed ESP with

hybrid load shedding and the EIRES framework enables adaptive DR management at

utility-grid scale.

1.4 Publications

The contributions of this dissertation have been published in peer-reviewed scientific outlets. The

following list provides an overview of these publications.

7

CHAPTER 1. INTRODUCTION

• Bo Zhao, Han van der Aa, Nguyen Thanh Tam, Nguyen Quoc Viet Hung, Matthias Weidlich,

EIRES: Efficient Integration of Remote Data in Event Stream Processing, in the 47th ACM

SIGMOD International Conference on Management of Data (SIGMOD), Xi’an, China, June

20-25, 2021, ACM, pp. 2128-2141.

• Bo Zhao, Nguyen Quoc Viet Hung, Matthias Weidlich, Load Shedding for Complex Event

Processing: Input-based and State-based Techniques, in the 36th IEEE International Con-

ference on Data Engineering (ICDE), Dallas, TX, USA, April 20-24, 2020, IEEE Computer

Society, pp. 1093–1104.

• Gururaghav Raman, Jimmy Chih-Hsien Peng, Bo Zhao, Matthias Weidlich, Dynamic

Decision Making for Demand Response through Adaptive Event Stream Monitoring, in

2019 IEEE Power and Energy Society General Meeting (PES-GM), Atlanta, GA, USA,

August 4-8, 2019, The IEEE Power and Energy Society, pp. 1–5.

• Bo Zhao, Complex Event Processing under Constrained Resources by State-Based Load

Shedding, in the 34th IEEE International Conference on Data Engineering (ICDE), Paris,

France, April 16-19, 2018, IEEE Computer Society, pp. 1699–1703.

1.5 Dissertation Outline

The reminder of this dissertation is organised in six chapters:

• Chapter 2 : Foundations. This chapter provides essential background information of event

stream processing. It formally defines core concepts of the data model, query model, and

performance model of ESP. Specifically, it defines the concept of state that is maintained by

an ESP engine during query execution. These concepts lay the foundation for a systematic

discussion of the problem of efficient pattern detection over event streams and elaborate

the contributions made by this dissertation.

• Chapter 3 : Literature Review. This chapter investigates the existing approaches for efficient

ESP. Before examining ESP, we first present the state of the art in a broader context—

efficient general data stream processing. We then review the recent advancements in state

management for various big data processing systems and their differences compared to ESP.

Turning to the context of ESP, we examine lossy and lossless optimisation techniques for

efficient pattern detection and optimisation techniques for efficient remote data integration.

We discuss the limitations of the state of the art in pattern detection over event streams.

• Chapter 4 : Hybrid Load Shedding. This chapter addresses the research problem R1
to reduce the pattern evaluation latency of ESP. To this end, we first discuss how the

pattern evaluation latency deteriorates due to dynamic and rapidly growing state elements.

8

1.5. DISSERTATION OUTLINE

Based thereon, we present a lossy optimisation technique—hybrid load shedding that

discards both input events and state elements. We show how its cost model is based on

state management, and present its efficient implementation. This chapter concludes with

evaluations of synthetic datasets and real-world use cases.

• Chapter 5: Efficient Remote Data Integration. This chapter addresses the research problem

R2 to reduce the remote data fetching latency of ESP. We first discuss how the irregular

access pattern for remote data source affects remote data fetching latency and its root

cause—the dynamics of input streams and state elements. Based thereon, we propose

the EIRES framework that hides remote data transmission latency by employing caching,

prefetching, and lazy evaluation techniques. We show how these three techniques are

integrated by a cost model based on state management. This chapter concludes with

evaluations of synthetic datasets and real-world use cases.

• Chapter 6: Case Study: Demand Response Management in Smart Grids. This chapter

applies efficient distributed ESP with the proposed hybrid load shedding technique and

EIRES framework in demand response (DR) management in a smart grid. We first discuss

the context of DR management and the limitations of the state of the art. Based thereon,

we show how the distributed ESP enables the adaptive DR management with improved

efficacy. We then present how hybrid load shedding technique and EIRES framework help

to realise efficient adaptive DR management on a utility scale. This chapter concludes with

evaluations of a real-world use case.

• Chapter 7: Conclusion. This chapter concludes this dissertation. In this chapter, we sum-

marise the main contributions and results presented throughout this dissertation. Further

more, we reflect on future work and how the contributions in this dissertation can be

applied to other research fields beyond ESP.

9

C
H

A
P

T
E

R

2
FOUNDATIONS

This chapter discusses the foundations of event stream processing. Section 2.1 describes the

data model of event stream processing and presents formal definitions of core concepts.

Section 2.2 explains the query model including a language model and an execution

model, which also covers a formal definition of the state maintained during query execution.

Section 2.3 provides performance models to evaluate the properties of query execution, including

the definition of query processing latency and throughput.

2.1 Data Model

2.1.1 Event and Event Stream

Event stream processing (ESP) engines continuously evaluate queries over high-velocity event

streams from different sources and applications. Query processing generates output event streams

with higher-level semantics than the input events, and thus triggers real-world actions. Formally,

we define notions of an event schema, an event, and an event stream as follows.

Definition 2.1 (Event schema). An event schema is a finite sequence of attributes A = 〈A1, ..., An〉,
each attribute A i, 1≤ i ≤ n, being of a primitive data type (e.g., integer or floating-point format).

An event schema must include a timestamp attribute.

The timestamp attribute defines an event’s occurrence time or arrival time, depending on the

application requirement. It is necessary to enforce a temporal order for sequence patterns over

event streams.

11

CHAPTER 2. FOUNDATIONS

Table 2.1: Notations for ESP data model.

Notation Explanation

A = 〈A1, . . . , An〉 Event schema
A i Event attribute
e = 〈a1, . . . ,an〉 Event
e.t Event timestamp
S = 〈e1, e2, . . .〉 Event stream
S(..k) Event stream prefix at up to the k-th input event
S(k) The k-th event in the input stream
d = 〈a1,a2, ..,an〉 A remote data element
D = {d1, . . . ,dn} Remote data elements

Example 2.1. The event schema of a credit card transaction may be Transaction= 〈timestamp,

location,cardnumber,cardholder,amount,merchantID〉. The attributes timestamp, location,

cardnumber, and cardholder are string types. The attribute amount is a float type, whereas the

attribute merchantID is an integer type.

Definition 2.2 (Event). An event is an instantaneous, unique, and atomic occurrence of interest

at a point in time. An instance of the event schema A = 〈A1, ..., An〉 is an event e = 〈a1, ...,an〉
with ai being the value of attribute A i, 1≤ i ≤ n. One of the attributes must be the timestamp

and its value is denoted by e.t.

The event schema is usually referred to as an event type and the attribute values are referred

to as event payload.

Example 2.2. A credit card transaction event of the schema defined in Example 2.1 may look like

t= 〈10 : 00−11−11−2020, Berlin, 4301500567784004, JohnSmith, 100.00EUR, 9527〉. This

event means that John Smith, a credit card holder, paid 100.00 Euro in a shop (id 9527) in Berlin

at 10:00 on November 11th, 2020.

Definition 2.3 (Event stream). An event stream is an infinite sequence of events, S = 〈e1, e2, . . .〉,
that respects the order of event timestamps: For any two events e i and e j, i < j implies e i.t ≤ e j.t.

We further define the notion of a finite stream prefix, up to index k, as S(..k) = 〈e1, . . . , ek〉.
Table 2.1 summarises our notations.

Example 2.3. A sequence of credit card transactions ordered by timestamps is an event stream.

Table 2.2 illustrates a snippet of such an event stream. Each row shows an event and each column

represents attribute values of the event payload defined in the event schema (Example 2.1). Note

that the first column does not belong to the event payload and represents the stream index—the

offset of an event compared to the beginning of the input stream.

12

2.1. DATA MODEL

Table 2.2: A snippet of a credit-card-transaction event stream.

Attribute: time stamp location card number card holder amount merchant ID
Type: string string string string float integer

· ·
320 ‘10:00-11-11-2020’ ‘Berlin’ ‘4301 5005 6778 4004’ ‘John Smith’ 100.00 9527
321 ‘10:18-11-11-2020’ ‘Zürich’ ‘4301 5005 6778 4004’ ‘John Smith’ 432.00 1024
322 ‘10:19-11-11-2020’ ‘Paris’ ‘3475 4511 5085 6060’ ‘John Wick’ 14,456.78 6256
323 ‘10:20-11-11-2020’ ‘London’ ‘4546 5600 6062 3619’ ‘Tony Stark’ 294,687.00 1984
· ·

As explained in Section 1.1, an ESP engine takes input as event streams and processes

pattern detection queries. The results of query processing are event streams of output events.

An output event may have a different schema compared to its input counterparts. For instance,

assume that an pattern detection query detects fraudulent credit card transactions based on

locations, timestamps, and the possibility of travelling between different locations within the

corresponding time interval. The schema for output events may look like FraudTransactions

= 〈timestamp1, timestamp2,location1,location2, cardnumber,cardholder〉. It contains the

timestamps and locations of two (potential) fraudulent transactions of the same credit card.

Such an output event has higher-level semantics compared to an input event (fraud transactions

versus general transactions).

Example 2.4. For the fraudulent transaction detection over the input stream in Table 2.2, the

output event consists of the payload of the 320th and the 321st input events : 〈10 : 00−11−11−2020,

10 : 18−11−11−2020, Berlin, Zürich, 4301500567784004, JohnSmith〉. For the same credit card of

John Smith, there were two transactions within 18 minutes in Berlin and Zürich, which may be

considered implausible.

2.1.2 External Data Enrichment

As explained in Section 1.1, when processing a query, an ESP engine may need to lookup

remote data, which is not directly available at the ESP engine, due to both privacy concerns and

implementation considerations. Remote data sources may be key–value databases or relational

databases. Without loss of generality, we assume that remote data sources can be queried by

look-up requests sent from an ESP engine. A remote look-up request contains a look-up-query

string and parameters to query the remote data sources. A certain look-up query string may be

sent once and indexed by a unique identifier in remote data sources for further requests with

different parameters. In this dissertation, we abstract a look-up query string as an identifier and

the parameters as data values. Based thereon, we define a remote look-up request as follows.

Definition 2.4 (Remote look-up request). A remote look-up request Qd is a tuple composed of

a look-up query id qid, and parameters pi. Qd = 〈qid,p1,p2, ...,pn〉. Here, qid is an an identifier

and each pi is a primitive data type value.

13

CHAPTER 2. FOUNDATIONS

Example 2.5. A remote look-up request to retrieve John Smith’s top three locations for most credit

card transactions might be 〈1027,4301500567784004〉. 1027 is the look-up query id. It is regis-

tered as “SELECT location FROM history WHERE cardNumber=%P1 ORDER BY transactionVolume

LIMIT 3” and the place holder, %P1, is materialised by John Smith’s credit card number 4301 5005 67

78 4004.

After processing a remote look-up request, remote data sources return the look-up results as

a remote data element to an ESP engine. The ESP engine uses a remote data element to correlate

and select input events according to the predicates of a pattern detection query. Moreover, a

remote data element can also be integrated as an attribute value of the output event payload,

depending on the output event schema. We define the schema of a remote data element as follows.

Definition 2.5 (Remote data schema). The schema of a remote data element is defined as a tuple

of attributes D = 〈A1, A2, .., An〉, each A i being a primitive data type.

Definition 2.6 (Remote data element). A remote data element, d = 〈a1,a2, ..,an〉, is an instance

of a remote data schema D = 〈A1, A2, .., An〉, each ai being a data value.

Note that the schema of a remote data element does not specify the number of attributes. The

reason is that the size of the look-up results may only be known after they are materialised by

querying remote data sources.

Example 2.6. Assuming the look-up request in Example 2.5 is sent to the remote data source

in Table 2.3, the remote data element of the look-up result is {Potsdam, Berlin, Paris}—the top

three locations in terms of transaction volume.

Table 2.3: A snippet of a remote data source.

Attribute: card number location volume
Type: string string float

‘4301 5005 6778 4004’ ‘Potsdam’ 24,357.78
‘4301 5005 6778 4004’ ‘Berlin’ 14,268.49
‘4301 5005 6778 4004’ ‘Paris’ 4,018.00
‘4301 5005 6778 4004’ ‘London’ 1,129.35
‘4301 5005 6778 4004’ ‘Brussels’ 901.05

· · · · · · · · ·

The remote data element in Example 2.6 (top three locations of credit card transactions)

can be used to enrich the query processing in Example 2.4 (fraudulent credit card transaction

detection) as follows. The output event in Example 2.4 indicates that both transactions happened

in Berlin and Zürich could be fraudulent. However, the remote data element in Example 2.6

provides evidence that Berlin is the second highest-transaction-volume location, whereas Zürich

14

2.2. QUERY MODEL

is not among the top three locations. Therefore, the transaction in Zürich may be more likely to

be fraudulent than the one in Berlin.

2.2 Query Model

A pattern detection query is expressed by a query language. An ESP engine parses the query

and generates a query plan based on an execution model. The query results are generated by the

materialised execution model.

2.2.1 Language Model

Queries can be expressed by SQL-like high-level query languages (e.g., SASE [5, 189]), or by low-

level application programming interface (API) (e.g., Apache Flink [38]). Common query languages

and APIs define sequence event patterns, value predicates, and time windows. In this dissertation,

our research problems (Section 1.2) and contributions (Section 1.3) focus on the execution model

and are independent of specific languages and APIs in terms of certain ESP engines, because

a query language is eventually materialised by the execution model. However, for illustrative

purpose, we use a language model that extends the SASE query language [5, 189]. Specifically, we

integrate remote data look-up requests and support nested sequence patterns. Here, we omit the

detailed formal definitions and provide a descriptive definition of our proposed query language.

The detailed definitions will be formalised in the execution model in Section 2.2.2.

In a nutshell, a query begins with the keyword PATTERN that is followed by the sequence

pattern using the keyword SEQ which enforces a strict temporal order of a sequence of events.

Value predicates that correlate event payloads are specified by a WHERE clause and are connected

by logical operators including conjunction (AND), disjunction (OR), and negation (NEG). For remote

data look-up requests, we omit the specific look-up queries sent to remote data sources, but

highlight which value predicates involve remote data look up by the keyword REMOTE and the

look-up parameters within square brackets (e.g., REMOTE[parameter]). A time window is specified

by a WITHIN clause. In this dissertation, we employ the concept of sliding time widow that consists

of a window and a slide: Events are grouped within a window (defined by a window size) that

slides across an event stream by a specified time interval (slide size). Figure 2.1 illustrates a

time window with the window size of six time units and the slide size of one time unit, which

means that the pattern and value predicates are evaluated per time window (six time units) and

after one time unit a new time window is constructed. Figure 2.1 shows three overlapping time

windows W1, W2, and W3. If not specified, we assume the default slide size to be one time unit.

We elaborate on the above query language model using a representative query given in

Listing 2.1, to detect fraudulent credit card transactions. Specifically, it defines sequence patterns

of three types of events, Transaction, Deny, and Limit, using the key words PATTERN and SEQ. The

pattern is triggered by a transaction event t1 (type Transaction) of high volume (t1.volume>10). A

15

CHAPTER 2. FOUNDATIONS

e6 e7 e8
2 3 4 8 9 10 14 time

e1 e2 e3 e4 e5

W1

W2

W3

Figure 2.1: Sliding window (the window size is six time units and the slide size is one time unit).

suspicious pattern may emerge in two ways based on other events recorded for the same credit

card (SAME VALUE[creditCard]): First, the event may be followed by a denied transaction d (type

Deny) and another high-volume transaction t2 that occurred at a location that differs from t1

(t1.location<>t2.location) and is not in the set of known locations for the user, which is fetched

from remote data sources (t2.location NOT IN REMOTE[t1.user]). Second, the initial event may be

followed by a change in the spending limit (event l of type Limit), where the new limit is larger

than the maximum limit of all credit cards within the same organisation (queried from remote

data sources, REMOTE[t1.organisation]). Afterwards, another transaction is observed with a very

high volume (t3.volume>50k), for which the beneficiary is not in the set of pre-authorised clients,

as stored at a remote data source (t3.beneficiary NOT IN REMOTE[t3.organisation]). All this shall

happen within a five-minute time window.

PATTERN SEQ(Transaction t1,
(SEQ(Deny d, Transaction t2) OR SEQ(Limit l, Transaction t3)))

WHERE SAME VALUE[creditCard] AND t1.volume > 10k
AND t2.volume > 10k
AND t1.location <> t2.location
AND t2.location NOT IN REMOTE[t1.user]
AND l.limit > REMOTE[t1.organisation]
AND t3.volume > 50k
AND t3.beneficiary NOT IN REMOTE[t3.organisation]
WITHIN 5min

Listing 2.1: Query to detect fraudulent credit card transactions.

2.2.2 Execution Model

To evaluate a pattern detection query, various formalisms have been proposed in the literature,

most of them being based on automata, see [5, 32, 60], as well as operator tree structures [127].

We illustrate these two types of formalisms in Figure 2.2 for the example query in Listing 2.1.

Here, the automata-based model defines automaton states and transitions between them to

describe how query results are step-wise constructed when processing an event stream. The query

results (output events) are constructed at accepting automaton states (q5 and q6), whereas the

16

2.2. QUERY MODEL

q1

q3

σ1

¬ σ1

Predicates:
σ0: x.time<q1.time+5min ∧ x.creditCard=q1.creditCard
σ1: x.type=Transaction ∧ x.volume > 10k
σ2: σ0 ∧ x.type=Deny
σ3: σ0 ∧ σ1 ∧ x.location്q2.location
 ∧ x.location ∉ REMOTE[q2.user]
σ4: σ0 ∧ x.type=Limit ∧ x.limit>REMOTE[q2.organisation]
σ5: σ0 ∧ x.type=Transaction ∧ x.volume > 50k
 ∧ x.beneficiary ∉ REMOTE[x.organisation]

q4

q5

q6

q2

σ2

σ3

¬ σ2∧¬ σ4

¬ σ3

σ4 σ5

¬ σ5

b1 b2 b3

σ'1

b4

SEQ

σ'3

SEQ SEQ

OR

b5

σ'2

σ'6

Predicates:
σ'1: x.type=Transaction ∧ x.volume > 10k
σ'2: x.type=Deny
σ'3: σ'1 ∧ x.time<b2.time+5min ∧ x.creditCard=b2.creditCard
σ'4: x.type=Limit
σ'5: x.type=Transaction ∧ x.volume > 50k
 ∧ x.time<b4.time+5min ∧ x.creditCard=b4.creditCard
 ∧ x.beneficiary ∉ REMOTE[x.organisation]
σ'6: (b1.creditCard=b3.creditCard ∧ b1.location്b3.location
 ∧ b3.location∉REMOTE[b1.user]) V (b1.creditCard=b4.creditCard
 ∧ b4.limit>REMOTE[b1.organisation] ∧ b5.time<b1.time+5min)σ'4 σ'5

Figure 2.2: Execution model for pattern detection queries.

non-accepting ones (q2, q3, and q4) construct intermediate results that are necessary to generate

query results. These intermediate results are stored at buffers attached to the corresponding

automaton states. Note that, the automata states are different from the conceptual state in

the evaluation of a pattern detection query, which captures partial matches of the query. This

conceptual state is independent of a specific execution model and refers to the intermediate

results of query processing at a specific time.

The tree-based model defines a hierarchy of buffers. Inserting events into the leaf buffers, the

tree is traversed from the leaves to the root, filling the operator buffers with intermediate results

based on the child buffers. The query results are constructed at the root node.

In either evaluation model, event selection is governed by the value predicates. They correlate

the current input event (denoted by x in Figure 2.2), events that are part of intermediate results

(denoted by automaton state identifiers such as q1, or tree buffer identifiers such as b1), and data

elements from remote sources (denoted by a parametrised variable such as REMOTE[q1.user]). An

example is the predicate σ3 in Figure 2.2 that checks the time window, x.time < q1.time+5min

(i.e., σ0), a condition over the event’s payload data, x.type = Transaction∧ x.volume > 10k (i.e.,

σ1), and a condition using remote data, x.location ∉ REMOTE[q1.user].

We formalise the essence of pattern detection query evaluation, under an automata-based or

tree-based model, as follows.

Definition 2.7 (Query match). Let Q be a query and τQ its time window. The results of evaluating

17

CHAPTER 2. FOUNDATIONS

Q over a stream S = 〈e1, e2, . . .〉 are matches. A query match is a finite sequence of events

〈e′1, . . . , e′m〉 of the stream that is order-preserving, i.e., for e′i = ek and e′j = e l , 1 ≤ k < l, it holds

that i < j implies k < l, and respects the time window of the query, i.e., e′m.t− e′1.t ≤ τQ .

If the sequence of events 〈e′1, . . . , e′m〉 satisfies all the value predicates (i.e., the sequence is

constructed at an accepting state of an automaton or the root node of an operator tree), it is

a complete match. Otherwise, it is a partial match (i.e., the sequence is constructed at a

non-accepting state of an automaton or a child node of an operator tree).

To derive complete matches, an ESP engine processes input streams incrementally, event

by event. It maintains a set of partial matches. In the above execution models, partial matches

correspond to partial runs of an automaton or the buffer content of non-root nodes in an operator

tree. Partial matches in a certain automaton state or a tree node buffer are referred to as a

category of partial matches. All the maintained partial matches of an ESP engine at a specific

time are referred to as state. In any case, the number of partial matches is potentially exponential

in the number of processed events [196], due to non-determinism in the automaton or the

enumeration of all subsequences in a tree buffer. Given the current set of partial matches, an

ESP engine checks how a new event of the stream changes the partial matches, i.e., whether

it leads to a partial match being discarded, extended, or split up. To this end, the query time

window and the value predicates are evaluated, which potentially involves remote data elements.

Event selection policies also affect the consumption and selection of events during query

execution [3]. An event selection policy defines how many events can be skipped from the input

stream for sequence pattern detection. Specifically, we consider a greedy policy, under which

an arbitrary number of input events can be skipped. This means that, based on the transition

guards in the automaton or a tree structure, a partial match that can be extended with an input

event from the input stream is always split up into at least two partial matches, one extended

with the event and one left unchanged. The latter models the case that an input event may be

skipped, to derive matches constructed from any set of events that satisfy the value predicates.

This selection semantics is also known as unconstraint [40] or skip-till-any-match [5].

We also consider a non-greedy policy, also known as continuous or skip-till-next-match [5].

Here, a partial match would only be extended, i.e., only events that do not satisfy the value

predicates are skipped to always select the next event that satisfies these value predicates. We

illustrate the semantics of greedy and non-greedy policies with a concrete example step by step

in Example 2.7.

Example 2.7. We consider an event stream consisting of event types A and B. Accordingly, an

event is represented by ai or b j, with each subscript being the timestamp. For instance, a1 means

an event of type A at timestamp 1. To illustrate the event selection policies, we ignore the value

predicates and only detect a sequence pattern PATTERN SEQ (A a, B b, A c) WITHIN 10 time units

18

2.2. QUERY MODEL

Table 2.4: Event selection policies.

Index Input stream Greedy selection Non-greedy selection

1 a1 b2b3a4b5a6 〈a1〉 〈a1〉

2 a1b2 b3a4b5a6 〈a1〉, 〈a1b2〉 〈a1b2〉

3 a1b2b3 a4b5a6 〈a1〉, 〈a1b2〉, 〈a1b3〉 〈a1b2〉

4 a1b2b3a4 b5a6 〈a1〉, 〈a1b2〉, 〈a1b3〉, 〈a1b2a4〉 , 〈a4〉
〈a1b2a4〉 , 〈a1b3a4〉 , 〈a4〉

5 a1b2b3a4b5 a6 〈a1〉, 〈a1b2〉, 〈a1b3〉, 〈a1b5〉, 〈a4b5〉
〈a4〉, 〈a4b5〉

6 a1b2b3a4b5a6 〈a1〉, 〈a1b2〉, 〈a1b3〉, 〈a1b5〉, 〈a4b5a6〉 , 〈a6〉
〈a1b2a6〉 , 〈a1b3a6〉 , 〈a1b5a6〉 ,
〈a4〉, 〈a4b5〉, 〈a4b5a6〉 , 〈a6〉

over a six-event snippet of an input event stream: a1 b2 b3 a4 b5 a6 . Table 2.4 shows the query

execution event by event. Each row demonstrates the maintained partial matches and detected

complete matches (coloured in orange) after processing a new input event (coloured in red), under

different event selection policies. The processed stream prefix is within a box.

We observe that the greedy selection policy generates more state elements (partial matches)

and query results (complete matches) compared to the non-greedy one. This is because a partial

match can only be extended under non-greedy policy, whereas it is also split up under greedy

policy. For instance, upon the arrival of event b2, the greedy policy splits up partial match 〈a1〉 into

two partial matches. One is extended to 〈a1b2〉. The other is unchanged. However, the non-greedy

policy only extends 〈a1〉 to 〈a1b2〉. As a result, under the greedy policy, 〈a1〉 contributes to three

partial matches (〈a1b2〉, 〈a1b3〉, 〈a1b5〉), and five complete matches (〈a1b2a4〉, 〈a1b3a4〉, 〈a1b2a6〉,
〈a1b3a6〉, 〈a1b5a6〉). However, the same partial match only contributes to one partial match 〈a1b2〉
and one complete match (〈a1b2a4〉) under the non-greedy policy.

In our formal execution model, we capture the core concepts of query execution that applies

to both automata-based and tree-based execution models. To this end, we model the state of

query execution at the stream index k as P(k)= {〈e1, . . . , en〉, . . . ,〈e′1, . . . , e′m〉}. It is the set of partial

matches maintained by the ESP engine for query Q after processing a stream prefix S(..k). The

next input event in the stream is S(k+1). Processing it potentially requires remote data elements.

We model the set of remote data elements needed by a partial match p ∈ P(k) when processing

event S(k+1) by a set D(p,k+1)⊆D. All remote data elements required by state P(k) and input

19

CHAPTER 2. FOUNDATIONS

Table 2.5: Notations for ESP execution model.

Notation Explanation

D = {d1, . . . ,dn} Remote data elements
fQ The query processing function
p A partial match
P(k) Partial matches up to the k-th input event
D(p,k),D(k) Remote data needed by partial match p, or all partial

matches, to process the k-th input event
C(k) Complete matches up to the k-th input event
R Output stream of complete matches

Table 2.6: Query processing procedure.

k S(k+1) P(k) D(k+1) P(k+1) C(k+1)

0 a1 ; ; ; ;

1 b2 〈a1〉 ; 〈a1〉,〈a1b2〉 ;

2 b3 〈a1〉,〈a1b2〉 ; 〈a1〉,〈a1b2〉,〈a1b3〉 ;

3 a4 〈a1〉,〈a1b2〉,〈a1b3〉 REMOTE[b2.v] 〈a1〉,〈a1b2〉,〈a1b3〉, 〈a1b2a4〉,〈a1b3a4〉
REMOTE[b3.v] 〈a4〉

4 b5 〈a1〉,〈a1b2〉,〈a1b3〉,〈a4〉 ; 〈a1〉,〈a1b2〉,〈a1b3〉, ;
〈a1b5〉, 〈a4〉 ,〈a4b5〉

5 a6 〈a1〉,〈a1b2〉,〈a1b3〉,〈a4〉 REMOTE[b2.v] 〈a1〉,〈a1b2〉,〈a1b3〉, 〈a1b2a6〉,〈a1b3a6〉
〈a1b5〉,〈a4b5〉 REMOTE[b3.v] 〈a1b5〉,〈a4〉,〈a4b5〉 〈a1b5a6〉,〈a4b5a6〉

REMOTE[b5.v]

event S(k+1) are given by D(k+1)=⋃
p∈P(k) D(p,k+1). Based thereon, the functionality of an

ESP engine can be described as defined in Definition 2.8. Table 2.5 summarises our notations.

Definition 2.8 (Query processing). Query processing is a function fQ that takes the current

input event S(k+1), the current state P(k), and the required remote data D(k+1) as input and

returns sets of new partial matches P(k+1) and complete matches C(k+1):

(2.1) fQ(S(k+1),P(k),D(k+1)) 7→ P(k+1),C(k+1).

Applying this function repeatedly for an input stream constructs a stream of sets of complete

matches, R = 〈C(1),C(2), . . .〉. To achieve compositionality of the model, an ESP engine may order

the matches per set and construct a single event per match. This way, R is transformed into

another event stream again (e.g., an input event stream for another query). We illustrate this

formal execution model using a concrete example in Example 2.8.

20

2.3. PERFORMANCE MODEL

Table 2.7: Notations for ESP performance model.

Notation Explanation

c A complete match
`match(c) Pattern evaluation latency of the match c
F(c) Remote data fetch operation of the match c
` f etch(c) Remote data fetching latency of the match c
`(c) Query processing latency of the match c
`(k) Query processing latency at the k-th input event
t(k) Query processing throughput at the k-th input event

Example 2.8. We consider the same input event stream and query in Example 2.7: Detect the

sequence pattern, PATTERN SEQ (A a, B b, A c) WITHIN 10 time units, over a snippet of an input

event stream a1 b2 b3 a4 b5 a6 under greedy selection policy. Here, we assume that an event of

type B, bi, requires a remote data element REMOTE[bi .v] based on its attribute value bi.v. Table 2.6

shows the materialisation of query processing function fQ with an increasing stream index k,

which depicts the changes of partial matches P(k) and P(k+1), the required remote data elements

D(k+1) and the detected complete matches C(k+1).

For instance, at the stream index of 3 (the 4th row in Table 2.6), the current set of main-

tained partial matches, P(3), includes 〈a1〉, 〈a1b2〉, and 〈a1b3〉. When processing the next input

event S(4)= a4, the query processing function fQ needs remote data elements D(4)= {REMOTE[b1.v],

REMOTE[b2.v]}. After elevating fQ(S(4),P(3),D(4)) 7→ P(4)),C(4), the ESP engine generates a new set

of partial matches P(4)={〈a1〉,〈a1b2〉,〈a1b3〉,〈a4〉} and complete matches C(4)= {〈a1b2a4〉,〈a1b3a4〉}.

2.3 Performance Model

The performance of an ESP engine is measured by throughput and latency. Throughput is the

number of input events being processed within a unit of time (e.g., events per second). Latency is

the time between the arrival of the last event needed to detect a complete match at the ESP engine

and the actual detection of that match. ESP query processing aims for both high-throughput

and low-latency analysis. It should be noted that high throughput does not necessarily mean low

latency. For instance, batch-based data analytic systems (e.g., Apache Hadoop [92]) achieve high

throughput, but also suffer from the problem of high latency.

In our query execution model, the query processing latency corresponds to the time needed to

evaluate function fQ in Equation 2.1. We denote the processing latency for a complete match c by

`(c). The query processing latency consists of two aspects. One is the pattern evaluation latency

`match(c) that is inherent to the evaluation of partial matches when processing all events of the

stream from the first to the last event that get selected as part of the creation of match c. The

21

CHAPTER 2. FOUNDATIONS

other is the latency of fetching remote data elements that was required to process these events,

denoted by `fetch(c). Table 2.7 summarises our notations. We define them formally as follows:

Definition 2.9 (Pattern evaluation latency). Assuming the last event of the complete match c

arrives at the ESP engine at time ta and c is detected at time td, the pattern evaluation latency

`match(c) is defined as

(2.2) `match(c)= td − ta

A fetch operation of the remote data is defined by two timestamps (tnr, tar), i.e., the time

tnr ∈N at which the need for remote data is detected during query evaluation and the time tar ∈N

at which the data is available and processing can continue.

Definition 2.10 (Remote data fetching latency). Assuming the construction of the complete

match c requires a set of fetch operations F(c) ⊆N×N , the remote fetching latency `fetch(c) is

defined as

(2.3) `fetch(c)= ∑
(tnr ,tar)∈F(c)

tar − tnr

Note that the sum means that multiple remote data elements are required sequentially at

different automaton states or operator tree nodes. If one single automata state or operator tree

node needs multiple remote data elements, the corresponding fetching latency is the maximal

latency, because these remote data elements can be transmitted in parallel.

Definition 2.11 (Latency). The processing latency of the complete match c, `(c), is defined as

(2.4) `(c)= `match(c)+`fetch(c)= `match(c)+ ∑
(tnr ,tar)∈F(c)

tar − tnr

For a particular point in stream processing, i.e., when a set of matches C(k) have been

generated at stream prefix S(..k), the latency is derived through an aggregation function α (e.g.,

median, mean, 95th-percentile) from all these matches,

(2.5) `(k)=α{`(c) | c ∈ C(k)}

The throughput measures the number of processed events per time unit for an ESP engine. It

is defined as follows:

Definition 2.12 (Throughput). Assuming the arrival time of the (k−1)-th event, S(k−1), and

the k-th event, S(k), are ts(k−1) and ts(k), k ≥ 1, the throughout at S(k), t(k), is defined as

(2.6) t(k)= 1
ts(k)− ts(k−1)

22

C
H

A
P

T
E

R

3
LITERATURE REVIEW

This chapter discusses the state of the art for efficient ESP. We first present the context of

general data stream processing in Section 3.1 including relational data streams and XML

(extensible markup language) data streams, as well as their major challenges. Section 3.2

discusses state management in data stream processing systems. Turning to the more specific

topic of efficient ESP, we discuss optimisations for efficient pattern detection over event streams

(Section 3.3). Lastly, in Section 3.4 we examine different optimisation techniques for efficient

data enrichment from external sources in ESP.

Note that, we aim to provide a broad overview spectrum of data stream management sys-

tems and the challenges addressed by them. We present the background for related work on

optimisations for state management and efficient pattern detection in ESP. A recent survey [77]

comprehensively examines the evolution of stream processing systems.

3.1 General Data Stream Processing

Data stream management systems continuously evaluate queries over unbounded streams of data.

Tapestry [179] is one of the first data stream management systems. It is an extension of relational

database systems to evaluate continues queries over append-only databases. Henceforth, a lot of

research on stream processing focused on relational data. In addition, another branch of research

on stream processing explored data captured in an XML format. This section summarise these

two branches of research.

23

CHAPTER 3. LITERATURE REVIEW

3.1.1 Relational Data Stream Processing

Most of the academic prototypes and commercial products focus on relational data streams.

This is because the fundamental concepts and ideas of data stream processing have originally

been derived from the well-established database community. Representatives of those early

prototypes include NiagaraCQ [47], TelegraphCQ [44], STREAM [12], Auroral/Borealis [1, 39],

and Gigascope [59]. Even though they all share a similar relational data model, they differ in

query semantics [13, 30]. These systems mainly address the challenges of efficient sliding window

aggregation operations [14, 117], fault tolerance [17, 171], adaptive query processing [167], and

queries for pattern detection [189]. Early systems usually employed a micro/mini-batch paradigm

to realise stream processing [116].

Modern stream processing systems are influenced by the development of large-scale dis-

tributed data management systems [111], especially open-source systems like MapReduce [65].

The focus shifted towards scaling-out, data-parallel stream processing engines on shared-nothing

architectures that run on commodity hardware, where the challenges of high robustness [115],

fault tolerance [10, 72], and out-of-order stream processing [100, 118] need to be addressed. Some

important examples include Millwheel [6], Apache Storm [183], Spark Streaming [63], Apache

Flink [38], and Samza [138]. They organise streaming computations as dataflow graphs and

transparently partition streams for execution on computer clusters to achieve data parallelism

and high throughput [2]. Users can specify such dataflow graphs using SQL-like query language

or low-level APIs [96]. A recent survey [124] discussed resource management and scheduling in

distributed stream processing systems, showing that an SLA (service level agreement)-aware,

cost-efficient, and self-adaptive resource management and scheduling framework is a promising

future direction.

Another trend for modern stream processing systems is to exploit parallelism on heteroge-

neous hardware inducing multicore CPUs, GPUs and FPGAs (Field programmable gate arrays).

Instead of scaling out, they focus on scaling up to achieve efficient computation. For instance,

Trill [43], StreamBox [129, 130], BriskStream [197], and LightSaber [180] leverage parallelism

on shared-memory multicore architectures. Turning to GPU acceleration, GStream [200] sup-

ports data streaming on GPU clusters, while SABER [110] allows hybrid processing on both,

CPUs and GPUs, with dynamic scheduling. FPGAs are hardware chips that users can reprogram

to achieve high performance. Hagiescu et al. [93] address challenges related to implementing

stream processing on FPGAs. Sidler et al. [172] accelerate pattern matching queries in hybrid

CPU-FPGA architectures. Compared to shared-nothing computer clusters, these systems have

significantly higher interconnect bandwidth and, therefore, avoid the overhead of data transfer

and migration between nodes in clusters. In addition to high throughput, they achieve low-latency

processing. In this dissertation, we aim for low-latency pattern detection at microsecond level

and build our prototype stream processing system for multicore processors with shared memory.

24

3.2. STATE MANAGEMENT

Turning to queries for pattern detection over event streams, the SASE system [91, 189]

presents a query language and an automata-based execution model to support sequential pattern

detection [5], Kleene closure operator [90], and imprecise timestamps [195]. The authors also

analysed the computational complexity of expensive queries [196]. Cugola and Margara [61]

surveyed the different data stream systems and complex event processing systems, and elaborated

their relations. We cover more ESP systems and their optimisations in Section 3.3 and Section 3.4.

3.1.2 XML Data Stream Processing

While XML was originally designed as an extensible markup format for document management,

it has been quickly extended to other areas because of the wide-availability of free XML parsers,

its readability, and flexibility. Besides the use of document markup, the two key application

scenarios of XML-based middleware/systems are the use for interoperable data interchange

in loosely-coupled systems and for ad-hoc modelling of semi-structured data. SQL-like query

languages such as XPath [55] and XQuery [27] have been among the first to express query

semantics for general-purpose applications.

In the context of XML stream processing [107], the filter problem is the core technical chal-

lenge, which has been a subject of intense research [7, 41, 42, 66, 89]. There, a collection of

user-defined XPath/XQuery queries are executed on streams of XML documents. The goal is to

identify the elements that satisfy each query, as well as to route content to appropriate end-

points. Several XPath streaming engines have been proposed, including XSQ [145], SPEX [139],

XAOS [22], and TwigM [51]. Turning to XQuery streaming engines, BEA [75] provides high

performance for message-processing applications. FluXQuery [109] proposes optimisations based

on rewriting of XQuery queries and buffer management in main memory. In the same vein,

GCX [108] reduces main memory consumption and execution time by dynamically updating the

maximum capacities of buffers.

Turning to more complex pattern detection queries, Mozafari et al. [132] present the XSeq

language and a system that supports queries with sequential patterns and Kleene closure

operators on XML streams. The execution model of the XSeq system is based on the visibly

pushdown automata (VPA).

3.2 State Management

The concept of state and its applications vary widely across different big data processing systems.

Roy and Haridi [166] define state to be “a sequence of values in time that contain the intermediate

results of a desired computation.” Recently, To et al. [182] surveyed state management in modern

big data processing systems including those implementing a batching or streaming paradigm.

They define the state as “the intermediate value of a specific computation that will be used in

subsequent operations during the processing of a data flow.”

25

CHAPTER 3. LITERATURE REVIEW

In this dissertation, we focus on pattern detection over event streams. Hence, we define the

state as partially matched patterns at a specific time during query evaluation. State management

plays a pivotal role for stateful stream processing where state elements are heavily and frequently

reused among different executions of a step function. Reusing state elements increases the

expressiveness of streaming systems and enables complex analytical queries including streaming

join, sequential pattern detection, common machine learning algorithms, and complex user-

defined functions. Early distributed stream processing systems usually lack support for explicit

state management, due to their focus on scaling-out via data parallelism. Several research

prototypes have been proposed to overcome this issue. We discuss them in four dimensions.

Scalability. Scalable state management is the main optimisation direction for distributed

stream processing systems, where state elements are typically partitioned by predefined keys

and are carefully placed for different operators in a data flow graph. The primary goal is to

scale out a system by exploring data parallelism. For example, Fernandez et al. [72] propose data

structures, such as key-value pairs, to represent various state types (e.g., processing state, buffer

state, and routing state). They further propose stateful dataflow graphs (SDG) as a model for

parallelisation [73]. With the help of explicit annotations (according to application semantics),

SDGs separate data from mutable state elements and partition them for distributed computing.

In the same vein, ChronoStream [191] divides computation state into a collection of fine-grained

slice units and provides transparent elasticity support in cloud computing. Similar strategies

have been applied in popular open-source systems, such as Apache Flink [37], and commercial

industry projects, such as Samza [138]. However, the drawback of these distribution strategies

is the large overhead to migrate state between distributed machines. This will significantly

increase the overall processing latency. An alternative solution is to scale up state management

in multicore CPUs, GPUs, and FPGAs, where state migration happens in main memory with

significantly higher bandwidth than in the case of inter-machine network connections [197, 199].

Storage. States may be stored internally in main memory or in external storage such as disks and

remote databases. In general, the number of state elements and the applications’ latency bounds

determine where state shall be stored. For a small number of state elements and low-latency

requirements, researchers [135, 161, 194] proposed maintaining state in main memory, which

can accelerate stream processing [194], but can also make failure recovery difficult: Replicating

state to different machines will be needed, in order to recover from machine failures. In contrast,

for large numbers of state elements and relaxed latency bounds, state elements are kept in

persistent storage, such as disks [113, 122, 135]. However, this incurs a larger overhead for data

movement. Nonetheless, deciding where to optimally store state is not always trivial and a hybrid

approach is usually employed. For instance, Spark streaming [193] represents state as resilient

distributed datasets (RDDs). RDDs are stored in disks and parts of them are cached in the main

memory. Samza [138] can manage a large number of state elements (e.g., several gigabytes in

each partition) by preserving them in local storage and using Kafka [168] to maintain state

26

3.2. STATE MANAGEMENT

changes. Flink [37] keeps state in main memory (i.e., holds state elements internally as objects

on the Java heap), and periodically backs up state in a file system (e.g., HDFS [92]), or persists

state in RocksDB [164].

Programmability. Most data stream processing systems forbid users to manage state directly.

The state is also referred to as internal synopsis, which is only visible to internal system compo-

nents. Most systems allow users to define a state partition scheme before the SQL-like queries

are compiled to data flow graphs. However, some systems provide APIs to query the internal state.

For example, Flink introduces the concept of queryable state [37] that enables queries to access

state’s statistics. Yet, manipulation of internal state is typically not allowed for users, which

guarantees the correctness of the query evaluation, but fails to leverage semantic optimisations

gained from domain experts (i.e., domain experts may be aware that some state elements will be

filtered out eventually and therefore, prune them early during the runtime).

Fault tolerance. Fault tolerance refers to a system’s ability to continue query processing despite

of failures and to deliver the expected results as if no failures had happened. It is curial for data

stream processing systems for two reasons. First, data stream processing systems perform stateful

computations over unbounded data streams. Without fault tolerance, data stream processing

systems would have to redo computations from scratch given that the state would be lost when a

failure happens. However, re-computation may be infeasible because the processed segment of

a data stream has been permanently discarded. Second, modern distributed stream processing

systems deploy the data flow graph of queries on multiple commodity machines where failures

are inevitable. Against this background, various strategies have been proposed to achieve fault

tolerance in data stream processing systems.

Fault-tolerant data stream processing systems usually persist snapshots of state in reliable

storage and update them periodically as checkpoints [17, 52, 72, 97, 98, 121, 153]. When failure

occurs, data stream processing systems restore the state to another node, thereby recovering

the computation from the last checkpoint. Fault tolerance, in general, requires redundancy,

which can be achieved in several ways. According to Hwang et al. [98], there are three fault

tolerance mechanisms: passive standby, active standby, and upstream backup. The passive

standby approach only backs up the modified part of the state periodically. The active standby

approach replicates the input data stream for another compute node and evaluates the queries in

parallel. Regarding the upstream backup mechanism, each primary compute node retains the

output, while the backup is still inactive. If a primary compute node fails, the backup restores its

state by reprocessing data tuples stored at upstream backup nodes.

Note that there exit other challenges and optimisation opportunities in the context of state

management. We discuss load balancing in Section 3.3 and state access patterns in Section 3.4. For

a more comprehensive and detailed investigation, we refer to the recent survey by To et al. [182].

27

CHAPTER 3. LITERATURE REVIEW

3.3 Efficient Pattern Detection in Event Stream Processing

The inherent complexity of evaluating pattern detection queries over event streams is widely ac-

knowledged [15, 196]. To tackle this issue, various optimisations have been proposed. Nonetheless,

they can be categorised as either lossless or lossy optimisations. Representative lossless optimisa-

tions include parallelisation schemes [18, 95, 126], pattern sharing [149, 159, 196], and semantic

query rewriting [68, 187]. In contrast, lossy optimisations include load shedding [94, 173–175]

and approximate query processing (AQP) [120]. We discuss these two categories separately.

3.3.1 Lossless Optimisations

Lossless optimisations do not discard any processing elements (input events or state) and

guarantee accurate query results. Recall that the primary goal of event stream processing is

low latency. When facing high-velocity input streams and a large number of state elements

(partial matches), lossless optimisations achieve low-latency processing by increasing a system’s

computing capacity, by reusing already computed state, by rewriting queries to leverage semantic

constrains (i.e., reduce unnecessary state elements), and by encoding the state in a compact way.

Parallelisation. Recently, Röger and Mayer [165] comprehensively surveyed different paralleli-

sation schemes in stream processing. The main idea of parallelisation is to partition the input

stream or state elements into multiple subsets which are processed in parallel. Parallelisation

can be realised by partitioning an input stream into multiple sub-streams or shards based on

predefined keys [20, 81, 134, 169]. Each sub-stream or shard is handled independently by multi-

ple instances of the event stream processing engine. Another parallelisation scheme is based on

time windows [125, 126]. Specifically, a so-called splitter partitions the input event stream into

subsequences, i.e.windows of events. It then assigns each window to an instance of the engine.

However, processing each window in isolation may neglect opportunities for optimisation as

results for overlapping sections of windows may be shared. Therefore, pane-based splitting has

been proposed [19, 116]. It partitions the input stream into non-overlapping sub-sequences, called

panes. Each pane belongs to one or more windows and is processed independently. In the same

vein, Balkesen et al. [18] propose run-based intra-operator parallelisation (RIP), a window-based

parallelisation scheme tailored for automata-based queries, where an input event stream is split

into batches of events according to the windowing policy. Each batch is assigned to an instance of

an automata-based ESP engine.

The major assumption of parallelisation schemes is the independence of different sub-streams,

windows, panes, and runs. However, such an assumption may not always hold, especially for

pattern detection queries over event streams, where new state elements are iteratively computed

from previous ones. The other limitation of parallelisation schemes is that they have to be

decided in advance, as well as the assumption of steady input event streams. Users shall

allocate computing resources before compiling queries into a data flow graph via the ESP engine.

28

3.3. EFFICIENT PATTERN DETECTION IN EVENT STREAM PROCESSING

Over-provisioning of resources will result in wasted computing power. In contrast, insufficient

resources increase processing latency. Even though approaches for elastic scale out may improve

performance after additional computing resources have been acquired, ESP suffers from a

performance bottleneck during the resource allocation phase and state migration. For instance,

resharding a stream in Amazon Kinesis to double the throughput may take up to an hour if the

input stream comprises around 100 shards already [8].

Pattern sharing. If multiple queries contain overlapping sub-patterns, the ESP engine shall

share partial matches of these common sub-patterns in order to reuse the already computed

state for high performance. E-Cube [123] exploits a hierarchy of query refinement from abstract

patterns to more specific ones for multiple queries, thereby enabling the reuse of intermediate

results along the refinement hierarchy. Cao et al. [36] achieve minimal utilisation of both compute

and memory resources for processing a query workload in which queries share parts of patterns.

They formulate the selection of shared patterns as a skyline problem [29] and present efficient

strategies to solve this problem. Ray et al. [159] leverage time-based event correlations among

queries and employ stream transactions that assure concurrent shared maintenance and reuse

of sub-patterns across queries. Poppe et al. [152] propose the sharon optimiser which compactly

encodes sharing candidates, their benefits and conflicts among candidates into a graph. Based

thereon, they map the problem of finding an optimal sharing plan to an optimisation problem of

the maximum weight independent set (MWIS).

The limitation of pattern sharing approaches is that they contribute little for query workloads

with few common sub-patterns. For the query workloads that indeed have overlapping sub-

patterns, the benefits largely depend on the size of shared sub-patterns and how many instances

of them will be eventually materialised.

Query rewriting. When users specify complex patterns through SQL-like query languages,

they are usually unaware of the actual query plan generation (data flow graphs) and optimal

operator placement. In traditional database management systems, these optimisations are

usually achieved by query rewriting. Similarly, ESP engines may rewrite the original query to

generate more efficient query plans and carefully organise operators in a data flow graph or an

operator tree. Schultz-Møller et al. [170] proposed a ESP engine called NEXT. It translates a

high-level query language to an automata-based execution model. These automata are rewritten

to enable more efficient processing. The automata are further distributed across a cluster of

compute nodes for scalability. Li et al. [119] let users specify constraints about the input stream.

Based thereon, the ESP engine can terminate corresponding pattern detection earlier and release

unnecessary computing resources. Weidlich et al. [187] proposed a comprehensive method for

pattern detection query optimisation using business process models. The method is based on the

extraction of behavioural constraints used to rewrite patterns for event detection, and to select and

transform execution plans. Ding et al. [68] utilise dynamic substream metadata at runtime to find

29

CHAPTER 3. LITERATURE REVIEW

more efficient query plans than the one selected at compilation time. They instantiate multiple

concurrent logical query plans, each processing different partially overlapping substreams and

execute them in a single physical plan. Calbimonte et al. [34] show the possibility of leveraging

optimisation techniques of ontology-based data access (OBDA) for relational databases to rewrite

continuous queries over resource description framework (RDF) data streams.

Even though query rewriting can improve event stream processing performance in general, it

lacks the ability to keep the steady performance when facing with an overload situation with

highly dynamic input streams, where the number of state elements changes irregularly. The

upper-bound of processing performance is determined once the query plan is generated. Even if

the actual query plan can be dynamically adapted, state migration is inevitable and significantly

increases the overall end-to-end processing latency.

Compact representation of state. Compact encoding of the state reduces both memory and

CPU usage. Poppe et al. [149] define a graph to compactly encode all patterns matched by a

query. Based on this graph, they define the spectrum of pattern detection algorithms from

CPU-optimal to memory-optimal approaches. They further propose GRETA [150], a graph that

dynamically propagates aggregations along its edges. Based on this graph, the final aggregation

is incrementally updated and instantaneously returned at the end of each query window. In the

same vein, they abstract the graph to minimise the number of aggregations – reducing both time

and space complexity [151].

The limitation of optimisations based on the compact encoding of the state is that the

performance gain is bound to a certain level – the most compact encoding. If the system load

exceeds the computing capacity, the ESP engine becomes overloaded and low-latency processing

is no longer possible.

3.3.2 Lossy Optimisations

Lossy optimisations improve the performance of event stream processing at the expense of

result quality. This can be achieved by discarding some input events or state elements (i.e.,

load shedding). Alternatively, an ESP engine may also deliver approximated query results (i.e.,

approximate query processing). The actual usefulness of the lossy query results depends on the

requirements of specific applications. Some applications enforce strict latency bounds (e.g., 25ms

for credit card fraud detection), where delivering some results in time is more important than late,

yet accurate and complete query answers. Note that lossy optimisations are largely orthogonal to

their lossless counterparts. For instance, an ESP engine may employ parallelisation schemes to

enable scale-out when faced with increasing load, while during the resource allocation phase and

state migration, load shedding techniques may be employed to keep the processing latency low.

Load shedding. Load shedding schemes improve stream processing performance by discarding

stream elements without processing them. However, the side effect is that query processing

30

3.3. EFFICIENT PATTERN DETECTION IN EVENT STREAM PROCESSING

becomes lossy. A range of optimisation techniques have been proposed to improve performance

as much as possible while minimising the loss of query results. Load shedding has received

considerable attention in the broad field of general stream processing. To cope with bursty input

rates, random shedding strategies have been implemented in widely-used streaming systems,

e.g., Apache Pulsar [11], Apache Heron [74, 79], and Apache Kafka [21]. Shedding may also

be guided by the queueing latency [163], the concept drift detection [102], and the expected

quality of service [148]. These techniques are operator independent and mainly focus on efficient

distribution of query processing, so that there is a notable research gap related to load shedding

for pattern detection queries.

Advanced shedding strategies have been presented for relational data stream processing.

Aurora [1] and Borealis [39] are among the first systems to include load shedding functionality.

In this context, Tatbul et al. [178] proposed semantic load shedding to discard input tuples based

on their contribution to the query result, measured by a notion of utility. Similar approaches

have been presented for relational range queries [83] and path selection queries over XML

data [186]. All these approaches, however, assume that the utility can be assessed precisely per

tuple without considering the state of query evaluation. This is the case for traditional selection

and aggregation queries, but not for pattern detection queries, for which the utility of load

shedding largely depends on the state.

Load shedding was also explored for join operations of data streams. For binary equi-join

operations, Kang et al. [101] showed how to allocate computing resources across two input

streams based on arrival rates to maximise the number of output tuples. Load shedding decisions

may also be taken based on value distributions of the join attributes [62]. In the same vein,

GrubJoin [85] realises load shedding for multi-way streaming joins based on value distributions

of attributes. Still, these approaches define cost models for individual elements of a stream,

instead of assessing the contribution and consumption of state elements. Gedik et al. [84] propose

an adaptive load shedding approach for windowing stream joins, which allows stream tuples

to be stored in the windows and shed excessive CPU load by performing the join operations.

However, their major goal is to maximise the output rate of relational operators instead of the

maximum result quality of detected sequence patterns within a strict latency bound. Also, their

adaptiveness is based on input rates, time correlation between the streams, and join directions.

They did not consider a cost model combining consumptions and contributions with complex

correlation predicates.

A first formulation of the load shedding problem for pattern detection queries has been

presented by He et al. [94]. They point out that shedding algorithms developed for traditional

data stream processing are not applicable for pattern detection queries and analyse the theoretical

complexity of shedding problems. The presented algorithms, however, are limited to input-based

shedding and optimise shedding decisions for a set of queries based on pre-defined weights. As a

31

CHAPTER 3. LITERATURE REVIEW

result, they cannot optimise the load shedding problem for a single query. In addition, their load

shedding algorithms lack the fine-granular control of the lossy results: There is a strong bias

towards the queries of higher weights and those queries with smaller weights may not generate

any results at all.

Recently, the idea of state-based load shedding [201] for CEP has been sketched: For a CEP

query, the importance of an event is highly dynamic and largely depends on the state (i.e., partial

matches). Therefore, instead of dropping input events, the state-based load shedding technique

discards partial matches to realise best-effort processing. In the same vein, Slo et al.proposed

pSPICE [173] to drop partial matches. To this end, they model the pattern detection as a Markov

reward process and use Markov chain to predict the importance of partial matches to determine

the ones to be dropped. The eSPICE [174] load shedding framework, on the other hand, leverages

a probabilistic model to learn the importance of events to select ones to be discarded. It considers

an event type and its position in a time window. The main idea is that the importance of events

is influenced by other events in the same pattern. The hSPICE [175] load shedding framework

extends eSPICE [174] by considering the importance of both events and partial matches. To

drop input events, in addition to the event type and its position in a time window, hSPICE [175]

also considers the current state of the partial match associated with the input events. Although

pSPICE [173], eSPICE [174], and hSPICE [175] strive for minimum quality loss while keeping

the processing latency below a certain bound, they focus on either input-based load shedding or

its state-based counterpart, but not a combination of the two.

Approximate query processing (AQP). AQP aims to estimate the result of queries [45]. It

may be based on sampling, exploiting preprocessing of the data or knowledge about the expected

workload [4, 144]. Other approaches rely on online aggregation [143, 190] and continuously refine

query answers. Moreover, sketches [56, 58] may be employed for efficient, but lossy data stream

processing. These approaches focus on traditional aggregation queries, though, so that they are

inapplicable for pattern detection queries.

Recently, AQP has been investigated for sequential pattern matching. Li and Ge [120] showed

how to learn characteristics of subsequences of a pattern from historic data to prioritise input data

for processing. Their focus, however, is on matches that deviate slightly from what is specified in

the pattern detection query, such as a perturbed order of events, instead of reducing the query

processing latency.

3.4 Efficient Remote Data Integration in Event Stream
Processing

There has been little research on a holistic approach that integrates remote data in event stream

processing for low-latency analysis. Nonetheless, related topics such as prefetching and caching

32

3.4. EFFICIENT REMOTE DATA INTEGRATION IN EVENT STREAM PROCESSING

techniques have been incorporated in data management systems for decades. Below, we review

some important related techniques in diverse contexts and application scenarios.

Prefetching in relational database systems. Two surveys [131, 184] review general mecha-

nisms for prefetching. Many of them are based on data access patterns derived from static and

dynamic program analysis. Early work prefetches data blocks based on sequential access patterns

for operators like ‘scan’ to hide I/O latency [176] and memory-cache latency [185]. Moreover,

Chen et al. [49, 50] employ software-based prefetching to improve the indexing performance with

B+-Trees. Furthermore, combined with a group fetching technique, they also improved the perfor-

mance of hash joins [48]. Asynchronous memory access chaining (AMAC) [106] uses prefetching

to hide the memory access latency for in-memory databases. Recently, Menon et al. [128] pro-

pose a compiler pass for automatically inserting prefetch instructions that can handle irregular,

data-dependent memory accesses.

Query result prefetching. Scalpel [31] performs semantic prefetching for query patterns

involving batches, nesting, and data structure correlations. Ramachandra and Sudarshan [155]

propose a program-analysis-based approach to automatically detect opportunities to prefetch

query results across call procedures by inserting prefetch instructions at the earliest possible

points. ForeCache [23] learns and models user behaviour to predict future queries for exploratory

visualisation of large datasets. It partitions data to tiles, ranks them, and fetches the most likely

candidates. However, it assumes certain data access patterns and a restricted set of operations.

Query result caching. Kossmann [111] surveyed optimisation techniques for distributed query

processing, including caching mechanisms to reduce communication costs. Here, the focus has

been on the design of database proxies to generate distributed query plans that efficiently

synchronise cached data with the original database. Scalable query caching mainly focuses

on consistency management instead of latency reduction. DBProxy [9], DBCache [28], and

MTCache [114] rely on dedicated database proxies to generate distributed query plans that can

efficiently combine cached data with the original database. These systems need built-in tools of the

database system for consistency management. Ferdinand [80] is a proxy-based cooperative query

result cache with fully distributed consistency management achieved by a publish / subscribe

system. Blanco et al. [26] investigate query caching in the context of incremental search indices

by developing invalidation predictors and defining metrics to evaluate invalidation schemes.

Caching in analytical big data systems. Systems like Spark employ distributed data abstrac-

tions for in-memory computation [193], using the least recently used (LRU) eviction algorithm

for managing the data hold in memory. Moreover, least reference count (LRC) [192] improves the

cache hit ratio by recording the reference count between the current data block and the awaiting

blocks. Most reference distance (MRD) [146] extends LRC by recording the reference distance

among data blocks in a job.

33

CHAPTER 3. LITERATURE REVIEW

Web Caching. CachePortal [35] is a dynamic content cache management system that detects

invalidation-based changes of web pages by analysing corresponding SQL queries. Gessert et al.

propose Orestes [86], a scheme for leveraging HTTP caching for database records. Based thereon,

Quaestor [87] considers the setting of a full DBaaS API including arbitrary query workloads.

The prefetching and caching approaches proposed in the above areas face similar tradeoffs

with ESP with remote data, e.g., between dataset sizes and their usage frequency. Naturally,

though, the actual cost models and problem formulations to address these tradeoffs are very

different, since the remote data access pattern in ESP is highly dynamic and largely depends on

the state during query execution.

34

C
H

A
P

T
E

R

4
HYBRID LOAD SHEDDING

This chapter addresses the problem of efficient pattern detection over event streams in

an overload situation. Specifically, it aims to reduce pattern match evaluation latency.

ESP engines that evaluate queries over event streams may face with unpredictable

input rates and query selectivities. During short peak times, exhaustive processing is no longer

reasonable, or even infeasible, and ESP engines shall resort to best-effort query evaluation and

strive for optimal result quality while staying within a latency bound. In traditional data stream

management systems, this is achieved by load shedding that discards some stream elements

without processing them based on their estimated utility for the query result. However, such

input-based load shedding is not always suitable for pattern detection queries. It assumes that

the utility of each individual element of a stream can be assessed in isolation. For pattern

detection queries, however, this utility may be highly dynamic: Depending on the presence of

partial matches, the impact of discarding a single event can vary drastically. In this chapter,

we therefore complement input-based load shedding with a state-based technique that discards

state elements—the partial matches. We introduce a hybrid shedding model that combines both

input-based and state-based shedding to achieve high result quality under constrained resources.

This chapter is organised as follows: We first illustrate the problem of load shedding in

event stream processing with examples in Section 4.1. Section 4.2 formally defines the load

shedding problem and complement input-based load shedding with a new state-based technique

that discards partial matches. The selection of shedding elements is guided by a cost model to

access the importance of partial matches and input events. We show how the setting can be

formulated as a Knapsack problem [104] and how shedding strategies are based on its solution.

Section 4.3 discusses implementation considerations for hybrid load shedding related to the cost

model granularity, its estimation and adaptation, and approximation schemes. Comprehensive

35

CHAPTER 4. HYBRID LOAD SHEDDING

evolutions are detailed in Section 4.4, and Section 4.5 summarises this chapter.

4.1 Problem Illustration

Recall from Section 1.1 and Section 2.2 that pattern detection queries are stateful: The number of

state elements may grow exponentially in the number of processed events and common evaluation

algorithms show an exponential worst-case runtime complexity [196]. The inherent complexity of

pattern detection queries imposes challenges especially in the presence of dynamic workloads.

When input rates and query selectivities are volatile, hard to predict, and change by orders of

magnitude during short peak times, preallocating sufficient computational resources is no longer

reasonable. Permanent over-provisioning of resources to cope with peak demands incurs high

costs or is even infeasible.

Moreover, ESP applications differ in the required guarantees for the latency and results

quality of pattern detection. While ESP engines strive for low-latency processing, the precise

requirements are application-specific. How the usefulness of query matches deteriorates over time

varies greatly, and matches may become completely irrelevant after a certain latency threshold.

Yet, depending on the application, it may be acceptable to miss a few matches if the latency for the

detected matches is much lower. We illustrate the above properties with example applications:

Fraud detection. To detect fraudulent credit card transactions, ESP queries identify suspicious

patterns (e.g., a credit card is suddenly used at various locations). The event streams vary in

their input rates and query selectivities, e.g., due to data breaches being exploited. While such

variations can hardly be anticipated, there are tight latency bounds for processing: In 25ms, a

credit card transaction needs to be cleared or flagged as fraud [71]. Also, payment models of

companies such as Fraugster [78] that penalise false positives make it impossible to simply deny

all transactions in sudden overload situations. Hence, an ESP engine shall resort to best-effort

processing, detecting as many fraudulent transactions as possible within the strict latency bound.

Urban transportation. Operational management may exploit movements of buses and shared

cars or bikes, as well as travel requests and bookings by users [16]. Yet, the resulting streams are

unsteady, as, e.g., a large public happening leads to spikes in event rates and query selectivities

(many ride requests to a single location). Also, the utility of pattern detection deteriorates quickly

over time, whereas the result quality may be compromised for some queries. For instance, queries

to correlate requests and offers for shared rides must be processed with sub-second latency to

achieve a smooth user experience. Yet, in overload situations, detecting some matches quickly is

more profitable than detecting all matches too late or investing in resource over-provisioning.

Example 4.1. Consider CitiBike, a New-York-based bike sharing provider that published bicycle

trip data of its 146k members [54]. Bikes are rented through a smartphone application, where users

search bicycles at nearby docking stations, start rides, and finish trips, again at other docking

36

4.1. PROBLEM ILLUSTRATION

stations. Since bikes quickly accumulate in certain areas, the operator moves more than six

thousand bicycles per day among stations. Hence, the detection of ‘hot paths’ of bike trips promises

to improve operational efficiency. ‘Hot paths’ consist of stations where bicycles are accumulated

faster than at other stations. They indict the trend of movement for the bike fleet.

PATTERN SEQ(BikeTrip+ a[], BikeTrip b)
WHERE a[i+1]. bike=a[i].bike AND b.end∈{7,8,9}
AND a[last].bike=b.bike AND a[i+1]. start=a[i].end
WITHIN 1h
RETURN (a[1]. start ,a[i].end ,b.end)

Listing 4.1: Query to detect ‘hot paths’ of stations.

Listing 4.1 shows a pattern detection query to detect such ‘hot paths’, using the SASE query

language [5]: Within an hour time window, a bike is used in several subsequent trips, ending

at particular stations, No. 7, No.8, and No.9 ({7,8,9}). Here, the Kleene closure operator detects

arbitrary lengths of paths.

Evaluating the query over the citibike dataset [54] reveals a drastic spike in the number of

partial matches maintained by the ESP engine, see Figure 4.1. While higher resource demands

may eventually be addressed by scaling out the system, load shedding helps to keep the system

operational in peak situations by detecting most of the matches with low latency.

 0

 40000

 80000

 120000

 160000

 200000

 0

 5
0
0
0

 1
0
0
0
0

 1
5
0
0
0

 2
0
0
0
0

 2
5
0
0
0

 3
0
0
0
0

 3
5
0
0
0

 4
0
0
0
0

#
P

a
rt

ia
l
M

a
tc

h
e
s

Time Point (minute)

Figure 4.1: Number of partial matches over time for the evaluation of the pattern detection query
in Listing 4.1.

Moreover, scaling-out of stream processing infrastructures provides only limited flexibility.

For instance, resharding a stream in Amazon Kinesis to double the throughput may take up to

an hour if the stream comprises around 100 shards already [8]. In addition, while scaling the

system indeed improves performance when the number of partial matches is stable at a higher

level load after the spike, it is not effective for dynamic and unpredictable loads. It is also not

37

CHAPTER 4. HYBRID LOAD SHEDDING

economically efficient when most of the computing resources are idle, because overload situations

may last for short time spans which are even shorter than state migration time during scaling.

Against this background, ESP engines shall employ best-effort processing, when resource

demands peak dynamically [94]. Using resources effectively, an ESP engine shall maximise the

result quality of pattern detection, while satisfying a latency bound. Best-effort stream processing

may be achieved by load shedding [178] that discards some elements of the input stream. Simple

strategies that shed events randomly have been implemented for many state-of-the-art streaming

systems, e.g., Heron [74], and Kafka [21]. More advanced strategies discard elements based on

their estimated utility for traditional selection and aggregation queries [83, 148, 178, 186].

However, such input-based load shedding is not always suited for pattern detection queries [94].

The reasons become clear when reviewing three fundamental questions for the design of load

shedding mechanisms, as brought forward in [178]:

(Q1) When to shed? An overload situation needs to be detected quickly for prompt load shedding.

(Q2) What to shed? One needs to decide which data shall be shed at which component in a system.

(Q3) How much to shed? One needs to decide on the amount of data to shed per overload situation.

Approaches for load shedding in traditional data stream processing systems answer Q1 by

relating input rates of streams to processing rates of query operators [83, 178]. Following [94],

however, such an approach cannot be realised for pattern detection queries. The reason is that

the sequential pattern operator is very sensitive to a volatile query selectivity, which differs

drastically per event depending on the query evaluation state with different maintained partial

matches. As such, the processing rate of an ESP engine is also highly volatile.

Question Q2, the selection of data to discard, is commonly approached based on the selectivity

of relational operators for data streams [83, 178, 186]. In essence, these approaches exploit that

the impact of shedding can be determined rather accurately per stream element. For pattern

detection queries, however, this is not the case. The utility of a single event, again, largely depends

on the state of an ESP engine in terms of currently maintained partial matches. Under different

sets of partial matches, an event may lead to none or a large number of complete matches.

The decision about the amount of data to shed, question Q3, is typically governed by the

difference of the input rates of streams and the processing rates of query operators [83, 148,

178, 186]. The bigger this difference is, the more data is shed. Again, large fluctuations in query

selectivity render such an approach unsuitable for ESP engines .

The above difficulties lead to the following observation: “The CEP load shedding problem is

significantly different and considerably harder than the problems previously studied in the context

of general stream load shedding” [94].

Example 4.2. We illustrate the challenges of realising load shedding in event pattern detection in

Figure 4.2, using the pattern detection query in Listing 4.1. Assume that we detect ‘hot paths’ that

38

4.2. FOUNDATIONS OF HYBRID LOAD SHEDDING

x1<5,8>x5<5,8>

x2

x3

x4

x2x4

x3x4

x2x4x5

x3x4x5

x1

x2

x3

x4

x2x4

x3x4

x1

x2

x3

x2

x2<2,4>x3<3,4>x4<4,5>

12345
Time

Event
Stream

Partial
Matches

Complete
Matches

x1x1

Window 4

Window 1
Window 2

Window 3

Figure 4.2: Example partial matches maintained by the pattern detection query in Listing 4.1.

are indicated by three trip events within a time window of four time units. The stream comprises

event xi of the schema 〈start station,end station〉, with i being the timestamp. Events x1 and x5

denote the same trip 〈5,8〉 that is the bike trip from docking station No.5 to station No.8. However,

due to different sets of partial matches maintained at time points 1 and 5, respectively, only event

x5 contributes to complete matches. Hence, an event with payload 〈5,8〉 may be discarded at time 1,

whereas discarding it at time 5 implies lost matches in three time windows, i.e. window 2, 3 and 4.

This problem illustration shows that previous input-based load shedding techniques and scal-

ing systems are insufficient for pattern detection query processing in dynamic and unpredictable

overload situations. To overcome this problem, this chapter argues for a fundamentally new

perspective on load shedding for ESP. Since the state of query evaluation governs the complexity

of query processing, we introduce the state-based load shedding that discards partial matches,

thereby maximising the result quality of query processing in overload situations. Based thereon,

we further propose a hybrid approach that combines state-based and input-based load shedding.

4.2 Foundations of Hybrid Load Shedding

Both input-based and state-based load shedding have their advantages and disadvantages. State-

based shedding offers more fine-granular control of latency reduction and result quality, compared

to shedding input events. Discarding a partial match only affects matches that could be derived

from it, whereas dropping a single event may lose hundreds of matches. However, input-based

shedding is generally more efficient: A discarded event is not processed at all, whereas a partial

match already incurred some computational effort. When striving for a balance between result

quality and efficiency for a given ESP application for pattern detection, we propose a hybrid

approach that combines both state-based and input-based load shedding.

39

CHAPTER 4. HYBRID LOAD SHEDDING

4.2.1 The Load Shedding Problem in Pattern Detection Queries

To realise load shedding in an ESP engine, we revisit the three questions raised in Section 4.1:

when to conduct load shedding (Q1), and what (Q2) and how much (Q3) data to shed. We first

define the overload situation of an ESP engine.

Definition 4.1 (Overload situation). An ESP engine is in an overload situation if the query

processing latency at stream prefix S(..k), `(k), exceeds a predefined latency bound θ.

The latency of query processing, `(k), and the latency bound θ are subject to application-

specific requirements (Section 4.1). We thus consider a model in which load shedding is triggered

when the ESP engine is overloaded (the latency `(k) exceeds a bound θ (Q1)). In practice, the

effect of load shedding may materialise only with a minor delay, so that the bound θ shall be

chosen slightly smaller than the bound that renders matches irrelevant in the application domain.

Solutions for the decisions of what and how much to shed (Q2 and Q3) have to consider the

result quality of query evaluation. We assess this quality as the loss in complete matches induced

by shedding. Let R = 〈C(1), . . . ,C(k)〉 be the results (sets of complete matches) obtained when

processing a stream prefix S(..k), and let R′ = 〈C′(1), . . . ,C′(k)〉 be the results obtained when

processing the same prefix, but with load shedding. The quality loss is defined as δ(k)= |R \ R′|,
which means the number of the lost complete matches due to load shedding.

Problem 4.1. The problem of load shedding in ESP for pattern detection is to reduce the pattern

evaluation latency `match(k) to ensure that when evaluating a pattern detection query for a stream

prefix S(..k), it holds that `(k)≤ θ for k ≥ 1 and the quality loss δ(k) is minimal.

In the remainder of this chapter, we focus on queries that are monotonic in the input streams

and the partial matches. We define monotonic queries as follows:

Definition 4.2 (Monotonic queries). Let P(k) and P(l) be the set of partial matches after evalu-

ating query Q over stream prefix S(..k) and S(..l), k < l. A query is monotonic in the stream, if

the partial matches P(k′) obtained when evaluating Q over an order preserving projection S′(..k′)
derived by removing some events of S(..k) is a subset of the original ones, P(k′)⊆ P(k). A query

is monotonic in the partial matches, if the complete matches C′(l) obtained when evaluating Q

over S(..l) using only a subset P ′(k)⊆ P(k) of the partial matches yields a subset of the original

complete matches, C′(l)⊆ C(l).

Put differently, for monotonic queries, removing input events may only reduce the set of

partial matches and removing partial matches may only reduce the set of complete matches.

Pattern detection queries that include conjunction, sequencing, Kleene closure, correlation

conditions, and time windows are monotonic under a greedy event selection policy (e.g., skip-

till-any-match [5], see Section 2.2.2). The same holds true for common aggregations, such as a

40

4.2. FOUNDATIONS OF HYBRID LOAD SHEDDING

query assessing whether the average of attribute values of a sequence of events is larger than a

threshold. Because for a sequence of events that is not subject to this predicate, shedding some of

its events or partial matches can only make the average value smaller than the threshold, but

will not generate any extra matches. However, it is non-monotonic for the query to detect whether

the average of attribute values of a sequence of events is smaller than a given threshold. Because

for a sequence of events that is not subject to the predicate, shedding some of its events or partial

matches reduces the average value, which may satisfy the predicate and generate extra matches.

Intuitively, a greedy event selection policy leads to all possible combinations of events and,

hence, aggregate values being represented by partial matches derived from the original stream.

Therefore, removing an input event or a partial match can only lead to missing complete matches,

but will never create additional partial or complete matches. Counter-examples for the monotonic-

ity are queries with more selective policies, e.g., those that require strict contiguity [5] of events,

and negation operators. Note that greedy event selection policies represent the most challenging

scenario from a computational point of view, so that load shedding is particularly important.

For monotonic queries, it holds that C′(i) ⊆ C(i), 1 ≤ i ≤ k, so that the quality loss caused

by load shedding, δ(k) = |R(k) \ R′(k)| = ∑
1≤i≤k |C(i) \ C′(i)|, is the recall loss. That is the total

number of the lost complete matches due to shedding. Any shedding decision (what and how

much) shall therefore aim at minimising this loss in the recall.

4.2.2 Hybrid Shedding Approach

To address the load shedding problem, we propose a new perspective on deciding what (Q2)

and how much (Q3) data to shed. We introduce hybrid load shedding that discards both input

events and partial matches. Taking up our formalisation of query evaluation as a function fQ (see

Equation 2.1) that is applied to the next event of the input stream and the current partial matches,

we distinguish input-based shedding and state-based shedding, formalised by two functions ρI

and ρS:

Definition 4.3 (Hybrid load shedding for pattern detection queries).

(4.1) ρI (e) 7→
e

⊥
and ρS(P) 7→ P ′, s.t. P ′ ⊆ P.

That is, ρI filters a single input event and potentially discards it (denoted by ⊥), whereas ρS

filters a set of partial matches (state elements at the time of processing), potentially discarding

a subset of them. Based thereon, processing of a streaming event S(k+1) is represented in our

formal model as the application of the evaluation function fQ to the results of load shedding,

(4.2) fQ(ρI (S(k+1)),ρS(P(k)),D(k)) 7→ P(k+1),C(k+1).

41

CHAPTER 4. HYBRID LOAD SHEDDING

Here, we assume that fQ(⊥,ρS(P(k)),D(k)) 7→ ρS(P(k)),;, i.e., shedding an input event does not

change the maintained partial matches, nor does it generate complete matches. Figure 4.3 links

the two shedding strategies to the aforementioned automata-based and operator-tree-based

computational models for ESP.

1 2Input‐based Shedding State‐based Shedding

q0 q1 q2 q4

KSEQ

T1 T2 T3q3
T4

SEQ

1

1 1 1 1
2 2 2

22 2 2

2

Input Stream

Input
Stream Output

Stream

Output
Stream

Figure 4.3: Input-based vs. state-based shedding for automaton and tree-based execution models.

4.2.3 Cost Model

The above approach for hybrid load shedding calls for an instantiation of the input-based and

state-based shedding functions. This requires determining the amount of data to shed to ensure

that the latency bound is satisfied as well as assessing the utility of input events and partial

matches to minimise the loss in the recall. To this end, we introduce a cost model.

Input-based and state-based techniques for load shedding differ in the granularity with which

the recall and computational effort of query evaluation are affected. Input-based shedding offers

coarse-granular control, since a discarded event cannot be part of any partial or complete matches.

It yields comparatively large savings of computational resources (preventing an exponential

number of partial matches), while it may also have a large negative impact on the recall of

query evaluation results (an exponential number of complete matches may be lost). State-based

shedding, on the other hand, provides relatively fine-granular control, as the events of a discarded

match may remain part of other partial matches. Consequently, the resulting computational

savings and recall loss are also comparatively small.

The above difference in shedding granularity is important to handle different levels of

variance in query selectivity. With small variance, the utility of an input event can be assessed

precisely and input-based shedding is preferred: It avoids spending any computational resources

for processing events with low utility. For a query with a large variance in selectivity, however,

an assessment of the utility per event is inherently imprecise, so that resorting to state-based

shedding promises a higher recall at the expense of smaller resource savings.

To reason on the impact of shedding strategies on the quality of query evaluation and the

imposed computational effort, we define a cost model. Striving for a fine-granular assessment,

this model is grounded in partial matches. However, it later also serves the selection of input

events for input-based load shedding.

42

4.2. FOUNDATIONS OF HYBRID LOAD SHEDDING

Consider the moment in time after a stream prefix S(..k) has been processed. At this moment,

we assess a partial match along the following dimensions:

Contribution. We assess the contribution of a partial match to the query result, i.e., to the

construction of complete matches. It is defined by the number of complete matches that are

generated from it. With C(k+1),C(k+2), . . . as the complete matches derived in the future, the

contribution of a partial match p = 〈e1, . . . , en〉 ∈ P(k) is defined as:

Definition 4.4 (Contribution).

(4.3) Γ+(p)=
∣∣∣{〈e′1, ..., e′m〉 ∈ C(i) | i > k∧∀1≤ j ≤ n : e′j = e j

}∣∣∣ .

Consumption. We assess the consumption of computational resources induced by a partial

match by considering all partial matches that are derived from it. Unlike for the contribution

defined above, we capture the resource consumption explicitly instead of abstracting it by the

count of derived matches. The rationale behind is that the resource consumption may vary greatly

between partial matches. For instance, the number and complexity of predicates that need to be

evaluated for a partial match per input event may differ drastically.

We capture the resource cost of a partial match p by a function Ω(p) 7→ o, where o ∈N. The

exact value may be defined as the number of query predicates to evaluate for p (to capture

runtime costs) or as its length (to capture the memory footprint). With P(k+ 1),P(k+ 2), . . .

as the sets of partial matches constructed in the future, the consumption of a partial match

p = 〈e1, . . . , en〉 ∈ P(k) is defined as:

Definition 4.5 (Consumption).

(4.4) Γ−(p)= ∑
〈e′1,...,e′m〉∈ ⋃

i>k P(i)
∀ 1≤ j≤n: e′j=e j

Ω(〈e′1, . . . , e′m〉).

Contribution and consumption are well-defined, since complete and partial matches obey the

time window of a query (see Definition 2.7). This limits the number of matches that a single

partial match can generate. However, the contribution and consumption of a partial match are

measures in the future and can only be calculated in retrospect. We therefore later discuss how

to construct effective and efficient estimators for these measures.

4.2.4 Shedding Set Selection

Once the contribution and consumption values are known or estimated for partial matches, load

shedding is performed based on the following idea. The severity of the violation of the latency

bound for query evaluation shall govern the severity of load shedding: The more the latency

bound is violated, the higher the relative share of data that is shed. Specifically, we consider the

43

CHAPTER 4. HYBRID LOAD SHEDDING

extent of latency violation as a lower bound for the extent of resource consumption that shall be

saved by discarding partial matches.

Consider the situation that shedding has been triggered after a stream prefix S(..k) had been

processed. Then, the relative extent of the latency violation is given as (`(k)−θ)/`(k). Let P(k)

be the set of current partial matches. For a partial match p, we assess its relative amount of

consumed computational resources compared to all partial matches, ∆−(p,P(k)) in Equation 4.5:

Definition 4.6 (Relative consumption).

(4.5) ∆−(p,P(k))= |Γ−(p)|/ ∑
p′∈P(k)

∣∣Γ−(p′)
∣∣.

Taking this relative extent of latency violation as a lower bound for the relative amount of

resource consumption to save, we control the amount of data to shed. That is, we select a subset

of partial matches D⊆ P(k), called a shedding set, such that:

(4.6)
∑
p∈D

∆−(p,P(k))> `(k)−θ

`(k)
.

While the above formulation provides guidance on the partial matches to consider, shedding

shall aim at minimising the loss in recall of query evaluation (see Problem 4.1). This loss is

defined in terms of the missing complete matches due to shedding, which links it with our above

notion of contribution of a partial match. We therefore assess the relative contribution of a partial

match p ∈ P(k) to avoid any loss in recall, as showed in Equation 4.7:

(4.7) ∆+(p,P(k))= ∣∣Γ+(p)
∣∣/ ∑

p′∈P(k)

∣∣Γ+(p′)
∣∣.

Based thereon, we phrase the selection of a shedding set from the set of partial matches as an

optimisation problem (Equation 4.8) to guide the decisions on what and how much data to shed:

(4.8)

select D⊆ P(k) that minimizes
∑
p∈D

∆+(p,P(k))

subject to
∑
p∈D

∆−(p,P(k))> `(k)−θ

`(k)
.

The above problem is a application of the Knapsack problem [104]. Its capacity is defined by

the extent of latency violation, which varies among different moments in which load shedding

is triggered. Hence, the problem needs to be solved in an online manner. However, Knapsack

problems are NP-hard [104]. To avoid the computational overhead of solving Equation 4.8, we

later show how to obtain an approximated solution in Section 4.3.

44

4.2. FOUNDATIONS OF HYBRID LOAD SHEDDING

4.2.5 Shedding Functions

When load shedding is triggered, a shedding set is computed as detailed above. It is then used

to define different shedding strategies by instantiating the functions ρI and ρS introduced in

Equation 4.1 for input-based and state-based shedding.

State-based shedding is achieved by not discarding input events and removing all partial

matches of the shedding set D from the ESP engine. Then, ρI is the identity function, while ρS is

defined as ρS(P(k)) 7→ P(k)\D. For practical considerations, state-based shedding should not be

triggered again immediately, i.e., by the latency `(k+1) being above the threshold, but only after

some delay j ∈N, i.e., by `(k+ j) the earliest. The intuition is that the effects of shedding first

need to materialise, before it is assessed whether further shedding is still needed.

Input-based shedding is achieved by not discarding partial matches (ρS is the identity

function), but deriving the filter ρI for input events from the partial matches in the shedding

set D. Intuitively, the partial matches that are most suitable for load shedding are exploited to

derive the conditions based on which input events shall be discarded. Recall that events have

a schema, A = 〈A1, . . . , An〉, so that each event is an instance e = 〈a1, . . . ,an〉 of this schema (see

Section 2.1.1). Given the set of events that are part of matches in the shedding set, defined as

ED = {e | ∃ 〈e′1, . . . , e′m〉 ∈D,1≤ i ≤ m : e′i = e}, the input-based shedding function is defined as:

(4.9) ρI (e) 7→
e if ψ(e) ∉ ED,

⊥ otherwise.

Here, ψ is the mapping of value predicates that correlate input event e and partial matches. Put

differently, an event filter can be derived based on the shedding set D and the value predicates

in the query. For instance, if the value predicate regarding to input event type e is t.v+e.v=10

(t.v, e.v ∈N), and event type t’s attribute v’s value ranges from 1 to 5 and is incorporated in the

shedding set D, we can infer that events of type e with attribute v that is less than 5 can not

satisfy predicate t.v+e.v=10. Therefore, the event filter ρI (e) for type e can be materialised as

e.v<5.

Input-based shedding by ρI applies to the single input event S(k+1), the (k+1)-th event in

stream S, that is to be handled next, after processing the stream prefix S(..k). Hence, unlike for

state-based shedding, to have any effect, input-based shedding needs to be applied for a certain

interval. The length of this interval is determined by the latencies `(k+1),`(k+2), . . . observed

after load shedding was triggered. Once the latency bound is satisfied, `(k+ j)≤ θ for some j ∈N,

input-based shedding is stopped.

Hybrid shedding combines the above two strategies. The shedding set D is defines function

ρS to remove partial matches and also serves as the basis for function ρI for input-based shedding.

Again, the latter function is applied for some interval based on the observed latencies. A major

advantage of hybrid shedding is that it does not require explicit balancing of input-based and

45

CHAPTER 4. HYBRID LOAD SHEDDING

state-based shedding, e.g., by a fixed weighting scheme. Since both strategies are grounded in the

same cost model, balancing is achieved directly by the unified assessment of the consumption

and contribution of partial matches and, thus, input events.

4.3 Implementations of Hybrid Load Shedding

When implementing our cost model for hybrid load shedding, several practical aspects have to be

considered. In this section, we first elaborate on the granularity of the cost model (Section 4.3.1),

before introducing strategies for its efficient estimation and adaptation (Section 4.3.2). Finally,

we discuss how to approximate shedding sets (Section 4.3.3) and how to manage state (partial

matches) efficiently (Section 4.3.4).

4.3.1 Granularity of the Cost Model

Our cost model for partial matches (Section 4.2.3) is very fine-granular to enable precise shedding

decisions. Yet, considering each partial match at any point in time leads to very large compu-

tational overhead: The selection of shedding sets (Section 4.2.4) is then based on a Knapsack

problem with a large quantity of items, while input-based shedding (Section 4.2.5) also becomes

costly, due to a potentially complex derivation of input event filters. We therefore tune the granu-

larity of the cost model through temporal and data abstractions, striving for a balance between

the precision of the cost estimation and the computational overhead.

Temporal abstractions. Even though contribution and consumption of matches may change

when a single event is processed, there are typically only a few important change points over

the entire lifespan of a partial match. Since exact measurements are not needed for shedding

decisions, a partial order of the cost of partial matches is sufficient. Therefore, we employ the

temporal abstraction of time slices. The query time window, which determines the maximal

time-to-live of a partial match, is split into a fixed number of intervals. Each interval is a time

slice. The cost model is then instantiated per time slice, rather than per time point. Specifically,

given m time slices and a partial match p = 〈e1, . . . , en〉 ∈ P(k), p’s contribution and consumption

values are estimated by values at time point d tn−t1
dτ/me e. That is, with τ as the query time window,

the cost models are materialised at every dτ/me time interval.

Data abstractions. Partial matches that overlap in their events and the events’ attribute values

are likely to show similar contribution and consumption values. We therefore lift the cost model

to classes of partial matches. Each class is characterised by a predicate over the attribute values

of the respective events. For instance, in Example 4.1, partial matches for which the last event

denotes a trip ending at one of stations {3,4,5,6} may have similar consumption and contribution

values. Assessing the cost model per class, shedding sets (Section 4.2.4) and shedding functions

46

4.3. IMPLEMENTATIONS OF HYBRID LOAD SHEDDING

(Section 4.2.5) are also realised per class. If a class is part of the selected shedding set, the

function for input-based shedding uses the predicate of this class to filter related input events.

4.3.2 Estimating the Cost Model

Recall that the value of contribution and consumption can only be computed in retrospect (see

Section 4.2.3). Therefore, to enable decision-making based on our cost model, we need to estimate

the contribution and consumption of partial matches. Such an estimation is first performed

offline, using historic data, while the estimates are then adapted in an online manner.

Offline estimation. We evaluate a query over historic data and record partial matches and com-

plete matches to derive the contribution and consumption of each match. For each partial match,

its contribution value is computed by checking how many times its payload was incorporated into

complete matches, in the relevant time slice of a time window. Its consumption value is computed

in a similar way, by checking against both partial matches and complete matches.

For each category of partial matches of the execution model (defined by an NFA state or a

buffer in an operator tree, see Section 2.2.2), the partial matches are then clustered based on their

contribution and consumption values per time slice. Here, clustering algorithms that work with a

fixed number of clusters (e.g., K-means) enable direct control of the granularity of the employed

data abstraction: Each cluster induces one class for the definition of the cost model. We employ

the gap statistic technique [181] to estimate an optimal number of clusters. The contribution and

consumption per class (cluster) are computed as the 90th percentiles of the values among all the

partial matches in that class. We keep a lookup table that maps the class labels to these values.

To use the class estimates in online processing, we need an efficient mechanism to classify

a partial match immediately after its creation. Put differently, during pattern detection query

processing, we need to maintain the newly created partial matches into their corresponding

classes learned from the offline estimation. We therefore train a classifier for the partial matches

of the classes obtained for each of the categories of the execution model, i.e., one classifier per cat-

egory. The classifier uses the attributes of partial matches that appear in the query predicates as

features for training. The choice of the classification algorithm is of minor importance, assuming

that the classifier can be evaluated efficiently. In this dissertation, we employ balanced decision

trees, setting the maximal depths to the numbers of classes for the respective categories.

Online adaptation. An instantiation of the cost model based on online clustering and classifica-

tion is infeasible. Because the computational overhead will thwart any benefit of load shedding

in the first place. However, the estimates per class and time slice may be monitored and adapted.

Initially, we start with the classifiers obtained through offline estimation and the mapping of

cluster labels to contribution and consumption values. Once a partial match is generated, it is

classified using the classifier of the respective category. As a consequence, partial matches are

maintained in different classes. However, the contribution and consumption values may change

47

CHAPTER 4. HYBRID LOAD SHEDDING

as more events are processed because of the dynamics of stream and hence, the drift of the con-

tribution and consumption values. Therefore, we monitor updates to these values by streaming

counts: We maintain the contribution and consumption per class via a lookup table for each

category. Upon the creation of a match, the counts for the class and time slice of the originating

partial matches are incremented in the lookup table (consumption values). If the new match is

a complete match, the counts for contribution values are also incremented. At the end of each

time slice, the new contribution value of a class is calculated as Γ+
new = (1−w)Γ+

old+wΓ+
incremented.

Here, w is the weight of incremented contribution and large values increase the pace of value

updating (we set w = 0.5). Consumption values are updated following the same procedure. This

way, adaptation is based on sketches [57] for efficient streaming counts.

4.3.3 Approximated Shedding Sets

Selecting a shedding set requires solving the Knapsack problem (see Section 4.2.4), which is

NP-hard [104]. To solve it efficiently online, we prune the search space by coarsening the cost

model granularity (see Section 4.3.1). We found that by lifting the cost model from millions

of individual partial matches to tens of classes of them, computation of shedding sets using

dynamic programming [147] takes a few nanoseconds on modern CPUs, which is feasible for

online processing in overload situations.

If the number of classes is large due to results quality requirements, the computational over-

head is high. Therefore, dynamic programming approaches become infeasible and approximations

shall be applied. One approximation is to reuse previous shedding decisions. Specifically, the size

of the shedding set (the capacity of the Knapsack problem) is determined by the extent of latency

violation (see Section 4.2.4). For similar latency violations, we may employ the same shedding

set. To this end, we maintain the mapping of latency violations and shedding sets (indexes of

classes of partial matches). For repeated load shedding, shedding sets may be reused, assuming

stable contribution and consumption values per class and time slice for a short time duration.

The other approximation is about the Knapsack problem itself. In this dissertation, we aim at

approximated solutions, see [46], rather than exact solutions using dynamic programming. A

simple greedy strategy is to select classes of partial matches in the order of their contribution

and consumption ratios, until the capacity bound of the Knapsack problem is reached.

4.3.4 Managing Partial Matches Efficiently

In order to access and maintain partial matches efficiently in main memory, we employ indexing

and early curbing techniques for partial matches.

Indexing. Common ESP engines build indexes over the attribute values of events based on the

query predicates to evaluate. To enable efficient access of matches in the construction of shedding

sets, we further define indexes based on the predicates that define the classes of the cost model.

48

4.3. IMPLEMENTATIONS OF HYBRID LOAD SHEDDING

We maintain the partial matches in the main memory in a column-store manner. Specifically,

each attribute is a column. The materialised value of each attribute of partial matches is stored

in consecutive memory blocks for efficient random access. Indexes are built for related attributes

and are sorted. We maintain the mapping of partial matches’ classes and their starting memory

address. The actual memory address of an attribute value is computed by the starting address of

the memory block and its offset.

1 2Input‐based Shedding State‐based Shedding

q0 q1 q2 q4q3Input
Stream

Output
Stream

A1 A2 A3 A4

Class 1

Time slice 1

Time slice 2

Time slice 3
A1 A2 A3 A4

Class 2

Index for A
4

1

2 2 2

Figure 4.4: Indexing partial matches.

Figure 4.4 illustrates the organisation of partial matches of category q2 in the automata-based

ESP engine shown in Figure 4.3. Here, the partial matches are split into two classes and three

time slices. Each partial match consists of four attributes (A1, A2, A3 and A4). The values of

each attribute are stored in consecutive main memory blocks. Attribute A4 is indexed. Different

colours represent different values. Same values are indexed by a single pointer for fast lookup.

i.e., if a red data item is not selected by value predicates, all partial matches whose A4 values are

red shall be ignored directly without evaluating query predicates on the payload.

Early curbing. Once a shedding set is computed, the respective partial matches are discarded.

However, processing the current input event, new partial matches that would be part of the

shedding set may be generated. Put differently, these partial matches are created first but will be

discarded later, which wastes computing resources. To avoid this effect, we curb the creation of

these partial matches in the first place during shedding, based on the predicates that define the

classes of partial matches in the shedding set.

49

CHAPTER 4. HYBRID LOAD SHEDDING

Table 4.1: Synthetic datasets for load shedding.

Attribute Value Distribution
D

S1

Type U ({A,B,C,D})
ID U (1,10)
V U (1,10) (or controlled)

D
S2

Type U ({A,B,C,D})
ID U (1,10)
A.x, A.y, B.x, B.y P (0<X ≤ 2)= 33%, P (2<X ≤ 4)= 67%
B.v P (X = 2)= 33%, P (X = 5)= 67%
C.v P (X = 3)= 33%, P (X = 5)= 67%
D.v P (X = 5)= 33%, P (X = 2)= 67%

4.4 Evaluations

This section presents the evaluation of our approach for hybrid load shedding. We first give

details on the experimental setup (Section 4.4.1), before turning to the overall effectiveness and

efficiency (Section 4.4.2) of the proposed hybrid load shedding technique. Section 4.4.3 discusses

the sensitivity analysis of a range of parameters. Finally, we apply hybrid load shedding to two

real-world use cases (Section 4.4.4).

4.4.1 Experimental Setup

Datasets and queries. For controlled experiments, we generated two synthetic datasets as

detailed in Table 4.1. The first dataset, DS1, comprises events with a three-valued, uniformly

distributed payload: A categorical type, a numeric event ID, and a numeric attribute V . This

dataset enables us to evaluate queries of a common structure: Queries test for sequences of events

of particular types that are correlated by an ID, whereas further conditions may be defined for

attribute V . To explore the impact of diverse resource costs of matches (see Section 4.2.3), we

generated a second dataset, DS2. As shown in Table 4.1, the events’ payload includes multiple

numeric attributes with the values being drawn from partially overlapping ranges.

We execute queries Q1, Q2, and Q4 of Listing 4.2 over dataset DS1, and query Q3 over dataset

DS2. Note that Q1-Q3 are monotonic, whereas Q4 is not. The queries will be explained further in

the respective subsections.

We further use the real-world dataset of citibike [54], introduced already in Example 4.1. Here,

we use a pattern detection query to detect ‘hot paths’ with low latency. As a second real-world

dataset, we use the Google Cluster-Usage Traces [160] for cluster monitoring. We employ a

pattern detection query to detect abnormal scheduling behaviours of a 12.5k-machine cluster

with low latency. The details of these two use cases are presented in Section 4.4.4.

50

4.4. EVALUATIONS

Q1: PATTERN SEQ(A a, B b, C c)
WHERE a.ID=b.ID AND a.ID=c.ID AND a.V+b.V=c.V
WITHIN 8ms

Q2: PATTERN SEQ(A a, A+ b[], B c, C d)
WHERE a.ID=b[i].ID AND a.ID=c.ID AND a.ID=c.ID AND b[i].V=a.V
AND a.V+c.V=d.V
WITHIN 1ms

Q3: PATTERN SEQ(A a, B b, C c, D d)
WHERE a.ID=b.ID AND a.x≥ b.v

2 AND a.x≤b.v AND a.y≥ b.v
2

AND a.y≤b.v AND b.ID=C.ID AND c.ID=d.ID AND b.v=d.v
AND AVG(sqrt((a.x)2+(a.y)2)+sqrt((b.x)2+(b.y)2))<c.v
WITHIN 5ms

Q4: PATTERN SEQ(A a, NEG B b, C c)
WHERE a.ID=b.ID AND a.ID=C.ID
WITHIN 4ms

Listing 4.2: Queries for experiments with synthetic data.

Shedding strategies. We compare against several baseline shedding strategies:

1. Random input shedding (RI) discards input events randomly (e.g., Apache Kafka [21]).

2. Selectivity-based input shedding (SI) discards input events by assessing the query selectivity

per event type, which corresponds to semantic load shedding as developed for traditional

data stream processing with Borealis [39].

3. Random state shedding (RS) discards partial matches randomly.

4. Selectivity-based state shedding (SS) discards partial matches based on the query selectivity

for the incorporated events, which is inspired by techniques for approximate ESP [120].

For our approach, we test three instantiations of the shedding functions (see Section 4.2.5):

Input-based shedding (HyI), state-based shedding (HyS), and hybrid shedding (Hybrid).

We estimate the cost models for 4 time slices and 10 clusters (using K-Means) for each

category of queries Q1, Q2, and Q4, while 4 clusters per state are derived for query Q3. The

number of clusters was used as the maximum depth for the decision tree classifier learned for

each category.

For the citibike scenario, we considered 3 time slices, while the number of clusters in K-Means

and the maximal tree depth of the classifiers were set to 15. Turning to the cluster monitoring

application, we also relied on 3 time slices. The number of clusters and the maximal tree depth

were set to 30.

Measures. We measure the performance of query evaluation under a strict latency bound. In

our experiments, this bound is typically defined as a percentage of the latency observed without

load shedding. Enforcing the latency bound, we measure the effect of shedding on the result

quality and the throughput of the ESP engine. Result quality is mostly assessed in terms of recall,

i.e., the ratio of complete matches obtained with shedding within the latency bound, and all

51

CHAPTER 4. HYBRID LOAD SHEDDING

complete matches, derived without shedding. For monotonic queries, false positives will not occur,

so that precision is not compromised. For the non-monotonic query Q4, we also measure precision,

though. Throughput is measured in the number of processed events per second (events/s).

Implementation and environment. We developed a stand-alone ESP engine in C++ for

automata-based execution model of pattern detection queries.1 The offline estimation of the

cost model was parallelised for different sets of partial matches. To reduce the overhead during

online adaptation, we further derived lookup tables from the learned classifiers. Most experiments

ran on a workstation with an i7-4790 CPU, 32GB RAM, with operating system Ubuntu 16.04.

Cost model estimation took between 0.75 and 4.5 seconds on this machine, which we consider

feasible for offline bootstrapping. The results of real-world case studies were obtained on a NUMA

node with 4 Intel Xeon E7-4880 CPU (60 cores, 120 threads) and 1TB RAM, running the operating

system openSUSE 15.0.

4.4.2 Overall Effectiveness and Efficiency

We test the general performance of hybrid load shedding with query Q1 over dataset DS1, drawing

the values of attribute V for events of type C from a uniform distribution U (2,10). The attribute

values of event A and B obey U (1,10). Hence, all events of types A and B may, in general, be

part of complete matches. However, partial matches (consist of events A and B) whose payloads

satisfy a.V +b.V > 10 will never lead to a complete match (recall the value predicate a.V+b.V=c.V)

and can thus be discarded without compromising the recall.

We test the baseline approaches (RI, SI, RS, SS) against our hybrid strategy when varying

the latency bound. Without load shedding, the average and 95th percentile latencies are 1,033µs

and 1,673µs, respectively, so that we consider latency bounds ranging from 100µs to 900µs. The

recall and throughput performance of the query processing under different latency bounds is

illustrated in Figure 4.5 (average latency) and Figure 4.6 (95th percentile latency).

Figure 4.5(a) and Figure 4.6(a) show that hybrid load shedding yields the highest recall.

With tighter latency bounds, the recall quickly degrades with the baseline strategies, whereas

our hybrid approach keeps 100% recall for an average latency bound between 900µs and 500µs

(Figure 4.5(a)). Turning to the stricter 95th percentile latency bound (Figure 4.6(a)), 100% recall

is still achieved for the bound of 900µs. This highlights that our approach is able to assess the

utility of partial matches and input events. Therefore, it is able to discard the least promising

data. In contrast, random and selectivity-based strategies are unaware of such utilities and tend

to discard data that induces a loss of many complete matches, leading to much lower recall value.

Specifically, in this setting, events of type A with a.v1 = 10 and events of type B with a.v1 =
10 have zero contribution to complete matches. Partial matches that consist of events instances

of type A and B with a.v1 +b.v1 > 10 have zero contribution. The hybrid approach is able to
1The code and datasets are publicly available at https://github.com/zbjob/AthenaCEP

52

https://github.com/zbjob/AthenaCEP

4.4. EVALUATIONS

 0

 20

 40

 60

 80

 100

9 7 5 3 1

R
e
c
a
ll
 (

%
)

Latency Bound (×100 µs)

RI
RS

SI
SS

Hybrid

(a) Recall.

 0×10
0

 1×10
4

 2×10
4

 3×10
4

 4×10
4

 5×10
4

 6×10
4

 7×10
4

 8×10
4

 9×10
4

 1 3 5 7 9

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Latency Bound (×100 µs)

RI
SI

RS
SS

Hybrid

(b) Throughput.

10

20

30

40

50

 1 3 5 7 9

R
a

ti
o

 o
f

S
h

e
d

 E
v

e
n

ts
 (

%
)

Latency Bound (×100 µs)

RI
SI

Hybrid

(c) Ratio of shed events.

0

10

20

30

40

50

60

70

 1 3 5 7 9

R
a

ti
o

 o
f

S
h

e
d

 P
M

s
 (

%
)

Latency Bound (×100 µs)

RS
SS

Hybrid

(d) Ratio of shed partial matches (PMs).

Figure 4.5: Experiments when varying the bound enforced for the average latency.

capture these differences and discard input events and partial matches with zero contribution. In

contrast, RI and RS randomly drop input events and partial matches without considering their

contributions. SI only distinguishes an order of selectivity at event type level: Events of type D

have the lowest selectivity (zero) and type A and B have lower selectivity than type C. But it is

unable to distinguish the importance of different event instances that are incorporated in partial

matches – not considering the state. Similarly, SS only distinguishes a partial order between

partial matches at the type-level, instead of partial match at an instance-level.

Moreover, state-based strategies yield better recall than their input-based counterparts, be-

cause they make shedding decisions based on cost models at a more fine-granular level. However,

input-based techniques yield higher throughput, see Figure 4.5(b) and Figure 4.6(b). The reason

is that RI and SI immediately discard the input events, while shedding with RS and SS still con-

sumes computational resources to construct the partial matches that will be shed eventually. Our

hybrid approach also turns out to be efficient, showing nearly the same throughput performance

as the input-based strategies. This is remarkable, given the aforementioned high recall results.

The reason for the above result becomes clear when exploring the ratios of shed events and

partial matches among different approaches. According to Figure 4.5(c), our hybrid strategy

discards fewer input events compared to RI and SI. Up to the average bound of 500µs, our

53

CHAPTER 4. HYBRID LOAD SHEDDING

0

20

40

60

80

100

9 7 5 3 1

R
e

c
a

ll
 (

%
)

Latency Bound (×100 µs)

RI
RS

SI
SS

Hybrid

(a) Recall.

0.0×10
0

2.0×10
4

4.0×10
4

6.0×10
4

8.0×10
4

1.0×10
5

1.2×10
5

1.4×10
5

1.6×10
5

1.8×10
5

 1 3 5 7 9

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Latency Bound (×100 µs)

RI
SI

RS
SS

Hybrid

(b) Throughput.

0

10

20

30

40

50

60

 1 3 5 7 9

R
a

ti
o

 o
f

S
h

e
d

 E
v

e
n

ts
 (

%
)

Latency Bound (×100 µs)

RI
SI

Hybrid

(c) Ratio of shed events.

20

30

40

50

60

70

80

 1 3 5 7 9

R
a

ti
o

 o
f

S
h

e
d

 P
M

s
 (

%
)

Latency Bound (×100 µs)

RS
SS

Hybrid

(d) Ratio of shed partial matches (PMs).

Figure 4.6: Experiments when varying the bound enforced for the 95th percentile latency.

strategy discards a steady ratio of input events, but an increasing number of partial matches

(Figure 4.5(d)). As such, the required reduction of latency is achieved by an increasing ratio of

shed partial matches, which does not compromise the recall value, see Figure 4.5(a). Once more

input events need to be shed to satisfy the latency bound, however, the ratio of discarded partial

matches flattens, see Figure 4.5(d) for bounds from 500µs to 300µs. Shedding more input events

also decreases the number of generated partial matches, thereby reducing the pressure to shed

partial matches. With tighter latency bounds, the shedding ratio of partial matches increases

again, since the bound cannot be met by mainly shedding input events. The above effects are

mirrored in the results obtained for the 95th percentile latency in Figure 4.6(c) and Figure 4.6(d).

The above results illustrate that state-based shedding, in general, leads to higher recall.

However, throughput is increased more rapidly through input-based shedding, since it completely

avoids to spend computational effort on the creation of (potentially irrelevant) partial matches.

Hybrid load shedding strives for both, high recall and high throughput, by balancing input-based

and state-based shedding. Figure 4.7(a) shows a turning point at the aforementioned latency

bound of 500µs, at which the number of shed partial matches decreases and the number of shed

input events increases. This behaviour is explained as follows. For tighter bounds, the filter

function for input-based shedding (Section 4.2.5) derived from the shedding set (Section 4.2.4)

54

4.4. EVALUATIONS

0.0×10
0

5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

2.5×10
5

3.0×10
5

 1 3 5 7 9
0.0×10

0

2.0×10
6

4.0×10
6

6.0×10
6

8.0×10
6

1.0×10
7

N
u

m
b

e
r

o
f

S
h

e
d

 E
v
e
n

ts

N
u

m
b

e
r

o
f

S
h

e
d

 P
M

s

Latency Bound (×100 µs)

#event #PM

(a) Average latency bound.

0.0×10
0

5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

2.5×10
5

3.0×10
5

 1 3 5 7 9
0.0×10

0

2.0×10
6

4.0×10
6

6.0×10
6

8.0×10
6

1.0×10
7

1.2×10
7

N
u

m
b

e
r

o
f

S
h

e
d

 E
v
e
n

ts

N
u

m
b

e
r

o
f

S
h

e
d

 P
M

s

Latency Bound (×100 µs)

#event #PM

(b) 95th percentile latency bound.

Figure 4.7: Details on workings of hybrid load shedding.

contains more heterogeneous partial matches (i.e., from a larger number of classes and time

slices), which increases the selectivity of the filter function, while filtering is also applied for

longer intervals (until the latency drops below the threshold). Since more input events are filtered,

fewer partial matches are created in the first place, so that the absolute number of shed partial

matches also decreases. The result is mirrored for the 95th percentile latency in Figure 4.7(b),

with a turning point at the bound of 700µs

4.4.3 Sensitivity Analysis

We investigate how different query and data characteristics and settings of parameters affect the

effectiveness and efficiency of load shedding approaches, as listed below.

• How good is the selection of data to shed (Section 4.4.3.1)?

• How sensitive is the approach to query properties, such as its selectivity, time-window size,

and pattern length (Section 4.4.3.2)?

• What is the impact of cost model properties (Section 4.4.3.3)?

• What is the benefit of indexing and early curbing (Section 4.4.3.4)?

• Does the model adapt to changes in the stream (Section 4.4.3.5)?

4.4.3.1 Selection of Data to Shed

Using the same dataset DS1 and query Q1, we explore how well the different load shedding

strategies select input events or partial matches that do not incur a loss in the recall. To this end,

we fix the ratio of shed events and partial matches. Figure 4.8(a) and Figure 4.8(b) illustrate that

input-based shedding using our cost model (HyI) yields significantly better recall with slightly

worse throughput compared to random-based (RI) and selectivity-based (SI) input shedding. We

conclude that our cost model enables a precise assessment of the utility of partial matches based

on which we characterise the input events to shed.

55

CHAPTER 4. HYBRID LOAD SHEDDING

0

20

40

60

80

100

10 30 50 70 90

R
e

c
a

ll
 (

%
)

Shedding Ratio (%)

RI SI HyI

(a) Recall (input-based).

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

 10 30 50 70 90

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Shedding Ratio (%)

RI
SI

HyI

(b) Throughput (input-based).

0

20

40

60

80

100

10 30 50 70 90

R
e

c
a

ll
 (

%
)

Shedding Ratio (%)

RS SS HyS

(c) Recall (state-based).

0.0×10
0

3.0×10
4

6.0×10
4

9.0×10
4

1.2×10
5

1.5×10
5

1.8×10
5

 10 30 50 70 90

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Shedding Ratio (%)

RS
SS

HyS

(d) Throughput (state-based).

Figure 4.8: Evaluation of the effectiveness of the selection of data to shed.

Figure 4.8(c) shows the recall for state-based strategies. Our approach (HyS) shows better

recall than random (RS) or selectivity-based strategies (SS). The margin becomes larger with

more data being shed. When discarding 50% of the partial matches, our approach keeps 100%

recall, whereas the baseline strategies drop to 30%. Interestingly, at that point, all approaches

show similar throughput, see Figure 4.8(d). With high shedding ratios, our approach is less

efficient than the baselines. Yet, the comparatively higher throughput is of little practical value,

given the very low recall.

4.4.3.2 Sensitivity to Query Properties

Variance of query selectivity. We test the impact of the variance of query selectivity with

query Q1 over dataset DS1. Specifically, we change the distribution of attribute V for type C

events in the range [2, x] with x ∈ [2,11]. This way, we control the overlap of the distributions of

attribute V for type A and B events that lead to complete matches. Setting a bound for the 95th

percentile latency as 800µs (50% non-shedding latency), Figure 4.9(a) shows that, as expected,

the recall is not affected. Also, our hybrid load shedding always achieves the highest recall.

56

4.4. EVALUATIONS

0

20

40

60

80

100

2 4 6 8 10

R
e

c
a

ll
 (

%
)

Variance Control (C.V)

RI
RS

SI
SS

Hybrid

(a) Recall.

0.0×10
0

2.0×10
4

4.0×10
4

6.0×10
4

8.0×10
4

1.0×10
5

1.2×10
5

1.4×10
5

 2 4 6 8 10

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Variance Control (C.V)

RI
SI

RS
SS

Hybrid

(b) Throughput.

Figure 4.9: Impact of variance of query selectivity.

Figure 4.9(b), in turn, shows a major impact on throughput. If selectivity shows low variance

(x= 2), our hybrid approach is able to precisely assess the utility of input events and discard

irrelevant ones. Hence, the throughput is 120× higher than the baseline approaches. If the

variance of the selectivity is high, the utility of input events cannot be assessed precisely, so that

shedding happens at the more fine-granular level of partial matches. This leads to the throughput

becoming similar to one of the baseline strategies.

0

20

40

60

80

100

1 2 4 8 16

R
e
c
a
ll
 (

%
)

Time Window Size (ms)

RI
RS

SI
SS

Hybrid

(a) Recall.

0.0×10
0

1.0×10
5

2.0×10
5

3.0×10
5

4.0×10
5

5.0×10
5

 1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(e

v
e
n

ts
/s

)

Time Window Size (ms)

RI
SI

RS
SS

Hybrid

(b) Throughput.

Figure 4.10: Impact of time window size.

Time window size. Under a steady input rate, the size of a query time window affects the

growth of partial matches. Because it defines the life span of partial matches. A large time

window leads to more partial matches which grow rapidly. We evaluate this effect by varying the

time window size of query Q1 over dataset DS1 from 1ms to 16ms, with an 800µs bound on the

95th percentile latency (50% non-shedding latency). The input rate is 1 million events per second.

Figure 4.10(a) shows that with increasing window size, recall improves for all approaches, while

our strategy yields the best results. According to Figure 4.10(b), input-based baseline strategies

achieve the best throughput. Our hybrid approach has comparable performance to the state-based

57

CHAPTER 4. HYBRID LOAD SHEDDING

0

20

40

60

80

100

4 5 6 7 8

R
e

c
a

ll
 (

%
)

Pattern Length

RIS
RPMS

SlIS
SlPMS

Hybrid

(a) Recall.

5.0×10
3

1.0×10
4

2.0×10
4

4.0×10
4

8.0×10
4

1.6×10
5

 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Pattern Length

RI
SI

RS
SS

Hybrid

(b) Throughput.

Figure 4.11: Impact of queried pattern length.

strategies. With an increasing time window size, the differences become marginal due to the

exponentially growing number of partial matches and their increased lifespans.

Pattern length. We consider the length of the sequential pattern to detect and the number of

correlation predicates. Using query Q2 over dataset DS1 and a bound for the 95th percentile

latency (800µs), we vary the limit of the Kleene closure operator to obtain patterns of length

from four to eight. As shown in Figure 4.11(a) and Figure 4.11(b), the recall remains stable with

increasing pattern length, whereas throughput decreases drastically. Because longer patterns

and more correlation predicates increase the computational overhead and thus reduce throughput

performance. Interestingly, our hybrid approach shows a less severe reduction than the other

strategies, achieving the highest throughput for pattern lengths above six. The reason is that

for more complex quires, consumption of partial matches grows rapidly and reduce process-

ing throughput. However, this is exactly what our cost model is able to exploit. Compared to

other baselines, it can target the most computationally expensive partial matches with small

contributions. Hence, more complex queries may particularly benefit from our approach.

4.4.3.3 Impact of Cost Model Properties

Temporal granularity. To assess the effect of temporal abstractions in our cost model (Sec-

tion 4.3.1), we use query Q1 (time window 2ms) over dataset DS1 with a bound 350µs on the 95th

percentile latency (20% non-shedding latency), varying the number of time slices. Figure 4.12(a)

depicts the observed recall, where our hybrid approach is annotated with the number of time

slices (e.g., 3TS means three time slices). While our approach outperforms all baseline strate-

gies in the recall, we see evidence for the benefit of using time slices as the maximum recall

is obtained with four or more slices. Increasing the number of time slices leads to decreased

throughput, see Figure 4.12(b), due to the implied overhead. The throughput observed for hybrid

shedding is between the input-based (RI and SI) and state-based strategies (RS and SS). Yet,

58

4.4. EVALUATIONS

0

10

20

30

40

50

60

R
I

SI R
S

SS
H
ybrid

1TS

H
ybrid

2TS

H
ybrid

3TS

H
ybrid

4TS

H
ybrid

5TS

H
ybrid

6TS

R
e

c
a

ll
 (

%
)

Shedding Approach

(a) Recall.

1.5×10
5

2.0×10
5

2.5×10
5

3.0×10
5

3.5×10
5

4.0×10
5

 1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(e

v
e
n

ts
/s

)

Number of Time Silces

RI
SI

RS
SS

Hybrid

(b) Throughput.

Figure 4.12: Impact of temporal granularity.

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

C
lu

s
te

rs
 i

n
 C

a
te

g
o

ry
 2

Number of Clusters in Category 1

0.80 0.84 0.86 0.88 0.89 0.89 0.89 0.89 0.89

0.83 0.84 0.91 0.91 0.93 0.94 0.93 0.94 0.93

0.85 0.89 0.91 0.92 0.94 0.95 0.94 0.95 0.94

0.85 0.89 0.91 0.92 0.96 0.95 0.95 0.95 0.94

0.85 0.89 0.92 0.95 0.96 0.96 0.96 0.94 0.94

0.89 0.92 0.93 0.96 0.96 0.96 0.96 0.95 0.95

0.89 0.92 0.96 0.96 0.96 0.96 0.96 0.96 0.97

0.89 0.92 0.96 0.96 0.96 0.96 0.96 0.96 0.97

0.90 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

R
e

c
a

ll

Impact of Training Models

Figure 4.13: Cost model estimation.

when throughput is comparable to RI and SI, the recall of our hybrid approach is 3.8× higher.

Similar trends are observed with respect to the state-based baseline load shedding strategies.

Data granularity. We assess the impact of data abstraction of the cost model (Section 4.3.1)

by evaluating query Q1 over dataset DS1. Q1 has two intermediate categories of state (partial

matches that consist of type A events and partial matches that consist of type A,B events). We

vary the number of clusters from 2 to 10 for each state for clustering (K-means) and set the

maximum depth of decision tree classifiers as 10. Under a 500µs average latency bound, we

measure the recall as illustrated in Figure 4.13. Overall, the observed recall is not very sensitive

to the number of clusters. More clusters lead to higher recall scores, but only until reaching a

certain number (e.g., 8), after which the gain becomes marginal.

59

CHAPTER 4. HYBRID LOAD SHEDDING

0

20

40

60

80

100

80 60 40 20

R
e

c
a

ll
 (

%
)

Latency Bound (%)

w/o PM resource cost
PM resource cost

(a) Recall.

2.0×10
3

6.0×10
3

1.0×10
4

1.4×10
4

 20 40 60 80

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Latency Bound (%)

w/o PM resource cost
PM resource cost

(b) Throughput.

Figure 4.14: Impact of resource costs of partial matches.

0.0×10
0

2.0×10
3

4.0×10
3

6.0×10
3

8.0×10
3

1.0×10
4

1.2×10
4

1.4×10
4

1.6×10
4

Q1NS
Q4NS

Q1Hybrid
Q4Hybrid

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Queries

w/o Indexing
Indexing

(a) Indexing.

0.0×10
0

4.0×10
4

8.0×10
4

1.2×10
5

1.6×10
5

2.0×10
5

 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Shedding Ratio (%)

w/o Early curbing
Early curbing

(b) Early curbing.

Figure 4.15: Impact of indexing and early curbing.

Resource costs of partial matches. For some queries, the consumption of resources may differ

greatly among partial matches. We explore this aspect with query Q3 over dataset DS2. The

query computes the average Euclidean distance to pairs of numeric values of type A and B events,

checking whether the result is larger than a numeric attribute of type C event. We established

empirically that handling partial matches comprising an A and a B event requires 5× more run-

time than handling matches of a single A event. We compare hybrid shedding with and without

incorporating an explicit resource cost for the consumption of partial matches (Section 5.3). Ap-

plying a bound on the average latency (certain ratio of the non-shedding latency), Figure 4.14(a)

shows that our comprehensive cost model leads to higher recall. This improvement comes at a

small expense, as there is only a minor reduction in throughput, as seen in Figure 4.14(b).

4.4.3.4 Impact of Indexing and Early Curbing

Indexing. Turning to efficient management of matches (Section 4.3.4), we evaluate two queries,

Q1 and Q4, that differ in pattern lengths and the variance of selectivity, over dataset DS1. We

apply our hybrid strategy and an 800µs bound on the 95th percentile latency. We measure the

throughput performance of the baseline pattern detection without any shedding (NS) and hybrid

60

4.4. EVALUATIONS

 0

 20

 40

 60

 80

 100

 2
46

00
0

 2
48

00
0

 2
50

00
0

 2
52

00
0

 2
54

00
0

 2
56

00
0

 2
58

00
0

 2
60

00
0

R
e

c
a

ll
 (

%
)

Event Offset of the Event Stream

1k Events Time Window
2k Events Time Window
4k Events Time Window
8k Events Time Window

Figure 4.16: Adaptivity of the cost model.

shedding approach (Hybrid) , as well as with and without indexing. Figure 4.15(a) illustrates the

importance of indexing partial matches which increases throughput by up to 2×.

Early curbing. We further evaluate hybrid shedding using query Q4 over dataset DS1, with and

without early curbing, under different shedding ratios. Figure 4.15(b) shows that early curbing

leads to a significant increase of throughput. This is expected since early curbing avoids the

computational overhead of creating partial matches that are discarded again at later time.

4.4.3.5 Adaptivity to Changes in the Stream

We consider the adaptivity of our cost model, when the value distribution of the input events’

payload data changes. For dataset DS1, we change the value distribution of attribute V for C

events at a fixed point (the 250kth event in the stream) from U (2,10) to U (12,20). This is the

worst-case scenario where the costs of partial matches totally flip: The previous shedding sets

before the change point become the most promising matches and events to retain. Setting a bound

on the average latency (400µs), we run query Q1 with four different sizes of time windows (1k,

2k, 4k, and 8k events). Figure 4.16 shows how our approach (Section 4.3.2) adapts the estimates

for the contribution and consumption of partial matches: At the change point, the recall drops to

zero as outdated cost model estimates lead to shedding of all relevant partial matches. However,

the change is quickly detected and incorporated, so that the recall converges to the previous level.

Convergence is quicker for smaller window sizes, because partial matches obtained by outdated

shedding decisions have a shorter lifespan and therefore, higher updating rate for the cost model.

4.4.3.6 Non-Monotonic Queries

To test the impact of query monotonicity, we evaluate query Q4 over dataset DS1. As discussed in

Section 5.2.1, shedding may produce false positives for non-monotonic queries’ results, so that

we measure both precision and recall for these queries. To this end, we control the extent of

non-monotonicity by varying the occurrence probability of the negated event type B from 5% to

50%. The other types are evenly distributed. Figure 4.17 shows the results when shedding 10% of

partial matches. The recall is stable, as our approach discards only the least important partial

61

CHAPTER 4. HYBRID LOAD SHEDDING

0.0

0.2

0.4

0.6

0.8

1.0

 5 10 15 20 25 30 35 40 45 50

Probability of Negation (%)

Precision
Recall

Figure 4.17: Impact of monotonicity violation.

matches and all complete matches are detected (recall value is 1.0). Yet, precision decreases

when increasing the probability of the negation (type B events), i.e., the number of false positives

becomes larger. Whether this effect is acceptable, depends on the selectivity of the sub-query that

violate the monotonicity property and the specific requirements of certain applications.

4.4.4 Case Studies

We test the proposed hybrid load shedding techniques on two real-world scenarios: citibike [54], a

bike sharing provider in New York City and Google cluster-usage traces [160].

4.4.4.1 Bike Sharing

To assess real-world feasibility, we use the aforementioned dataset of citibike [54], introduced

already in Example 4.1. Here, the event stream comprises information about trips by individual

users of the service. For the trip data of October 2018, we test the query given in Listing 4.1

that checks for ‘hot paths’. We configure the query such that a path has to contain at least five

stations, i.e., five is the minimal length of the Kleene closure operator in the query. We test our

hybrid strategy against the baseline approaches with four latency bounds, 80%, 60%, 40% and

20% of 99th percentile latency in non-shedding cases. Here, the selectivity-based approaches (SI,

SS) exploit the user type (annual member users, 3-day pass users, and 24-hour pass users).

Our hybrid approach consistently yields the best recall, see Figure 4.18(a), with the margin

becoming larger for tighter latency bounds. At a 20% bound, the recall of our approach reaches

11.4×, 11×, 3.9×, 2.7× the recall of RI, SI, RS, SS, respectively. Figure 4.18(b) shows that the

throughput of our hybrid approach is comparable to the state-based strategies (RS and SS), but

lower than the input-based strategies (RI and SI). We found the reason to be that, for this dataset,

our approach tends to shed more partial matches than input events. While this leads to high

recall, shedding is less efficient.

62

4.4. EVALUATIONS

0

20

40

60

80

100

80 60 40 20

R
e

c
a

ll
 (

%
)

Latency Bound (%)

RI
RS

SI
SS

Hybrid

(a) Recall comparison.

8.0×10
5

1.2×10
6

1.6×10
6

2.0×10
6

 20 40 60 80

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Latency Bound (%)

RI
SI

RS
SS

Hybrid

(b) Throughput comparison.

Figure 4.18: Case study: Bike sharing.

4.4.4.2 Cluster Monitoring

As a second real-world dataset, we use the Google Cluster-Usage Traces [160] that have been

obtained from a 12.5k-machine cluster over about a month-long period in May 2011. The dataset

contains events that indicate the lifecycle (e.g., submit, schedule, evict, and fail) of tasks running

in the cluster. We evaluate the query given in Listing 4.3, which detects the following pattern:

A task is submitted, scheduled, and evicted on one machine; later it is rescheduled and evicted

again on another machine; and finally it is rescheduled on a third machine, but fails execution

eventually; all within one hour.

PATTERN SEQ(Submit a, Schedule b, Evict c, Schedule d, Evict e, Schedule f,
Fail g)

WHERE [task_id] AND b.machine=c.machine
AND b.machine !=d.machine AND d.machine=e.machine
AND d.machine !=f.machine AND f.machine=g.machine
WITHIN 1h

Listing 4.3: Query for Google cluster dataset.

Again, we tested our hybrid approach and the RI, SI, RS, and SS baseline strategies with

different latency bounds on the average latency. Figure 4.19(a) illustrates that hybrid shedding

yields the best recall, up to 4× better than with input-based shedding (RI, SI) and 1.5× better than

with state-based shedding (RS, SS). Figure 4.19(b) shows the observed throughput, hinting at

the general trade-off of input-based and state-based shedding. The former tend to achieve higher

throughput at the expense of lower recall. Our hybrid approach achieves similar throughput to

the best performing baseline strategy (SI), being slightly slower only for the 20% latency bound.

However, hybrid shedding achieves much higher recall, thereby confirming the observations

obtained in the controlled experiments.

63

CHAPTER 4. HYBRID LOAD SHEDDING

0

20

40

60

80

100

80 60 40 20

R
e

c
a

ll
 (

%
)

Latency Bound (%)

RI
RS

SI
SS

Hybrid

(a) Recall comparison.

1.0×10
5

2.0×10
5

3.0×10
5

4.0×10
5

5.0×10
5

 20 40 60 80

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
)

Latency Bound (%)

RI
SI

RS
SS

Hybrid

(b) Throughput comparison.

Figure 4.19: Case study: Cluster monitoring.

4.5 Summary

In this chapter, we proposed hybrid load shedding for pattern detection queries over event streams.

It enables best-effort query evaluation, striving for maximal result quality while staying below a

latency bound. Since the utility of an event in a stream may be highly dynamic, we complemented

traditional input-based shedding with a novel perspective of state-based approach—shedding

partial matches. We presented a cost model to balance various shedding strategies and decide on

what and how much data to shed. To realise these ideas, we built a prototype system and evaluated

it on both synthetic and real-world datasets. Our experiments highlight the effectiveness and

efficiency of our proposed hybrid shedding approach.

64

C
H

A
P

T
E

R

5
EFFICIENT REMOTE DATA INTEGRATION

This chapter addresses the problem of efficient integration of remote data in event stream

processing. Specifically, it aims to reduce the remote data fetching latency, `fetch(c).

Many ESP applications require the combination of the events’ payload with data from

remote sources to determine whether a partial match shall be processed further. However,

such dependencies are problematic, since waiting for remote data to be fetched interrupts

the processing of the stream. Yet, without event selection based on remote data, the query

state to maintain may grow exponentially. In either case, the performance of the ESP engine

degrades drastically. To tackle these issues, this chapter presents EIRES, a framework for efficient

integration of data from remote sources in the context of event stream processing. It employs a

cache to decouple fetching of remote data and its use in query evaluation. We present a cost-model

to determine when to fetch certain remote data elements and how long to keep them in a cache

for future use. EIRES combines strategies for (i) prefetching technique that queries remote data

based on the anticipated use and (ii) lazy evaluation that postpones the event selection based on

remote data without interrupting the stream processing.

This chapter is organised as follows: We first illustrate the problem of integrating remote

data in event stream processing with examples in Section 5.1. In Section 5.2, we formally

define the remote data integration problem and propose the EIRES framework that consists

of three core components, utility modelling (Section 5.3), remote data fetching (Section 5.4)

and cache management (Section 5.5). The utility modelling component provides a unified cost

model to guide remote data prefetching, lazy evaluation, and cache management. Comprehensive

evaluation results are detailed in Section 5.6 to illustrate the effectiveness and efficiency of

EIRES. Section 5.7 closes this chapter with a summary.

65

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

5.1 Problem Illustration

Many ESP applications require the combination of the events’ payload with data from remote

sources to determine whether a partial match shall be processed further. For instance, in financial

fraud detection [112], a decision about suspicious transactions relies on contextual information

on a user’s spending history, the transactional volume at a specific location, or the behaviour

of other users. Similarly, the control of logistic processes is often based on patterns of events

sensed from RFID- or barcode-tagged packages. Decision-making is then based on a combination

of these events with static data [204], e.g., on a package’s content or customs clearance, that is

queried from remote databases as part of the EPCglobal infrastructure [76]. Moreover, virtually

all ESP engines, from enterprise offerings such as Oracle CEP [140] to open-source systems such

as Esper [69] enable the integration of static data in the specification of pattern detection queries,

through SQL interfaces or user-defined functions. Below, we review two exemplary use cases to

illustrate the need for efficient integration of remote data in event stream processing.

Fraud detection. The detection of fraud in credit card usage is a common use case for event

pattern detection. Here, events denote financial transactions or indicate status changes, such as

a transaction denied by one of the involved operators or a change in the spending limit. Based

on these events, pattern detection queries identify patterns of suspicious usage and potentially

block the respective transactions. Yet, many of these patterns involve contextual information,

e.g., related to a user’s spending history or the behaviour of related accounts. Recall that the

previous example query in Listing 2.1 illustrates this setting. Its semantics has been explained

in Section 2.2. In a nutshell, it detects suspicious patterns that query remote data including

historical frequent locations (REMOTE[t1.user]), maximum spending limit enforced by costumers’

organisations (REMOTE[t3.user]) and pre-authorised clients (REMOTE[t3.org]). Note that the same

remote data queried for a partial match can also be useful when evaluating other partial matches,

e.g., the organisation-wide spending limits and pre-authorised clients that apply to all corporate

credit cards of a single organisation (business unit). The query in Listing 2.1 is evaluated under

tight latency bounds. Clearance of a credit card transaction needs to happen within 25ms [71],

which includes data ingestion and forwarding of the clearance decision. Yet, ignoring event

selection based on remote data leads to non-determinism (e.g., both possible outcomes of l.limit

> REMOTE[t1.org] are considered) and false positives and false negatives may lead to significant

financial losses [71].

Logistics processes. Tracking packages in logistics processes based on RFID or barcode tags

is an integral part of applications for the supply chain management. It enables the detection of

events that indicate progress, milestones, or exceptional situations of business processes. Based

thereon, service level agreements (SLAs) are monitored [25] and fine-granular operational deci-

sion making is facilitated [204]. As an example, consider a conveyor belt system at a warehouse

intake, which may route packages based on their content or customs clearance. To make the

66

5.1. PROBLEM ILLUSTRATION

Supplier Warehouse

Manufacturer

Distribution centerRetail store

What? When? Where? Why?

Raw materials Raw materials

Finis
he

d goods

Finished goods

EPC/barcode data Real-world goods

Figure 5.1: Illustration of EPICIS in supply chain management.

routing decision, a pattern of events emitted by tag readers is detected. This involves a lookup of a

package’s content and clearance information at a remote database. In supply chain management,

such a lookup is facilitated by the EPCglobal infrastructure as depicted in Figure 5.1, which

provides the so-called EPC Information Services (EPCIS) to query for an object identifier along

the supply chain [162]. The evaluation of such queries with low latency is crucial to enable

effective routing and warehouse management. However, since EPCIS are shared among globally

distributed enterprises, fetching remote data incurs a significant overhead in event stream pro-

cessing that aims at microsecond-latency [204]. We further observe that bundling and unbundling

operations, which are common in logistics processes, impact the access to remote data in event

stream processing. That is, the detected event patterns may refer to individual packages, while

some of the information fetched from remote databases is actually aggregated per container or

complete shipment (e.g., customs details).

For applications like the above examples, a naive integration of remote data reduces the

performance of an ESP engine drastically. Fetching data once it is needed to proceed with query

evaluation, see Figure 5.2 (top), interrupts the processing of the stream and temporarily increases

the latency by orders of magnitude. Even a small latency of dozens of milliseconds to look up

remote data is problematic, given that contemporary ESP engines achieve microsecond latency

and many applications enforce tight latency bounds. While the assessment of remote data is

mandatory to maintain result correctness, only incorporating it in a post-processing step, while

ignoring it as part of event selection during query evaluation, is also not a viable option: The

resulting non-determinism in query evaluation would add further to the exponential growth of

the number of partial matches, thereby increasing the overall query processing latency.

To address the above issues, this chapter presents the framework for efficient integration

of remote data in event stream processing (EIRES). As illustrated in Figure 5.2, our idea is

to decouple (i) fetching of remote data from (ii) its use in query evaluation. While under a

67

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

Naive
Integration
of Remote

Data

Processed
Event
Stream

Time

Need for remote
data materializes

Remote data
is available

Remote DB
Fetch
request

Fetch
response

Prefetching

Need for remote
data is anticipated

Cache

Prefetch
request

Fetch request
to cache

Fetch response
from cache

Lazy
Evaluation

?

Need for remote
data at 1st state

Fetch
request

At 2nd
state

At 3rd
state

Figure 5.2: Strategies to integrate remote data in event stream processing: Naive integration;
prefetching based on anticipated use; lazy evaluation once data is available.

naive model, data is fetched once it is needed and then used immediately, EIRES employs a

local cache to decouple both operations. Fetching may happen before the need for remote data

materialises (i.e., prefetching in Figure 5.2 (middle)) and the evaluation of partial matches based

on it may be postponed until after the remote data is available (i.e., lazy evaluation in Figure 5.2

(bottom)). While both strategies hide the data transmission latency, they also come with side

effects. Prefetching may fill the cache with superfluous data because of inaccurate prediction of

remote data usage, while lazy evaluation may suffer from the growth of the number of partial

matches. To mitigate these issues, we carefully balance the strategies’ application based on their

expected benefits and costs in a given situation.

5.2 Foundations of Remote Data Integration

This section first refines the formal data model for remote data integration in ESP (Section 5.2.1),

before introducing the latency minimisation problem for this setting (Section 5.2.2), which is

addressed in the remainder.

68

5.2. FOUNDATIONS OF REMOTE DATA INTEGRATION

5.2.1 A Closer Look at Remote Data

Recall that the remote data is formally defined in Section 2.1.2. Here, we focus on what data

elements are fetched from remote data sources, rather than how they are retrieved. That is, we

abstract from the specific look-up queries executed at remote sources and use data elements as

the basis for our model. A data element may be thought of as a key-value pair or a relational

tuple. Formally, we use a set D = {d1, . . . ,dn} to capture the remote data elements. Moreover, we

write |d| ∈N for the size of a data element. Since fetching data elements from different sources

can result in different transmission latencies. Fetching data from a cloud infrastructure may

incur higher network delays compared to fetching from local clusters. Here, we assume that

latency is monitored per data element, and denoted as `remote(d).

Notably, data models are hierarchical in many applications (e.g., logistic containers or organi-

sation-hold credit card accounts), which means that there exists a containment relation between

remote data elements. Therefore, we also consider a function ρ : D 9D that maps an element

to another one if the former is contained in the latter. The size of the containing element is

then given as the sum of the contained elements, i.e., |d| =∑
d′∈D,ρ(d′)=d |d′|. In the above fraud

detection example, remote data would capture the known locations of credit card usage per client,

the limits of card accounts, and the set of pre-authorised clients for a specific organisation. The

set of pre-authorised clients may also be organised hierarchically, i.e., it can be fetched per credit

card, per user, or for the organisation as a whole.

5.2.2 Problem Statement

Recall that query evaluation incurs latency — the time between the arrival of the last event of a

match at the ESP engine and the actual detection of the match (see Section 2.3). Based thereon,

we formulate the problem of efficiently evaluating a pattern detection query with remote data as

the minimisation of the respective latency. This chapter realises the minimal latency by reducing

the remote data fetching latency.

Problem 5.1. Let Q be a pattern detection query and S(..k) be a stream prefix. The problem of

efficient remote data integration is to compute all matches R = 〈C(1), . . . ,C(k)〉 defined by Q, while

minimising the remote data fetching latency `fetch(k), with k →∞.

5.2.3 The EIRES Framework

To address Problem 5.1, we propose the EIRES framework. We summarise its intuition in

Section 5.2.3.1 and introduce its components in Section 5.2.3.2.

69

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

5.2.3.1 Framework Intuition

We first reflect on the factors that constitute the latency `(c) of a match c, and hence, the ag-

gregated latency `(k) (see Section 2.3). The overall processing latency `(c) consists of pattern

evaluation latency, `match(c), and the remote data fetching latency, `fetch(c). Many optimisations

for event pattern detection , such as those based on state sharing [159, 196], semantic rewrit-

ing [67, 187], or load shedding [94, 202], will ultimately reduce the inherent latency of query

evaluation, i.e., `match(c).

Time

tnta Prefetching

tnta
Lazy
Evaluation

Figure 5.3: Intuition of the proposed strategies.

By contrast, this chapter focuses on the latency induced by fetching remote data, `fetch(c).

Acknowledging that this latency corresponds to the time interval between the need (tn) and

availability of remote data (ta), Figure 5.3 illustrates that it may be reduced from either end. That

is, `fetch(c)= ta− tn (see Definition 2.10): The closer ta and tn are, the smaller `fetch(c) is. Here, we

assume that the latency of the actual transmission of a data element d, i.e., `remote(d), as induced

by the requests and responses sent over the network, is monitored. This property, for example,

applies to the use cases outlined in Section 5.1, where remote data resides at databases that

external parties operate. As such, without any optimisation, ta − tn = `remote(d) holds. However,

the latency `remote(d) may solely be hidden by either moving ta closer to tn, i.e., by fetching

the data earlier than it is actually needed, or by moving tn closer to ta, i.e., by postponing the

evaluation of the predicates that are based on the remote data. The more `remote(d) is hidden, the

more `fetch(c) is reduced. We realise both ideas with a strategy for prefetching, coined PFetch,

and a strategy for lazy evaluation, referred to as LzEval.

PFetch fetches remote data before it is actually needed, thereby hiding the data transmission

latency. Data is then kept in a local cache at the ESP engine, from which it may be retrieved with

negligible latency (in comparison to remote data transmission latency). Specifically, PFetch needs

to realise the following operations:

(P1) Decide when prefetching a data element may be beneficial.

(P2) At a specific time, select which data elements to prefetch.

(P3) Prefetch the set of selected data elements.

Here, operation (P3) is trivial and performs data transmissions. In contrast, operations (P1) and

(P2) induce optimisation problems. Determining the most beneficial time to prefetch a single

70

5.2. FOUNDATIONS OF REMOTE DATA INTEGRATION

element, i.e., (P1), involves conflicting goals. Fetching an element later has a positive effect on

the prediction accuracy (the later, the more accurate) and efficient cache usage (the later, the

better the cache utilisation). Yet, fetching should not occur too late, since the fraction of the

transmission latency that is hidden decreases after a certain time point (the later, the smaller

this fraction). As such, it is desirable to prefetch as late as possible while ensuring that the data

still arrives on time, i.e., just before it is needed.

Similarly, the selection of elements to actually prefetch, (P2), requires optimisation across

a set of data elements. Intuitively, the elements that have the largest positive impact on the

performance of query evaluation shall be selected. Yet, this impact depends on the currently

maintained partial matches as well as on future partial matches to be generated while the data

is fetched and kept in the cache.

LzEval postpones the evaluation of predicates based on remote data until the data is avail-

able in the cache. While fetching is triggered once the data is needed, pattern detection query

evaluation of other non-remote data predicates continues in parallel to this fetching operation

without interruption. The respective predicates are evaluated only at later stages, so that fetching

of remote data is no longer a blocking operation. LzEval includes the following operations:

(L1) Initiate the fetching of remote data if it is needed during query evaluation and not available

in the cache.

(L2) Decide on the partial matches for which lazy evaluation is applied, i.e., for which the

evaluation of predicates is postponed.

(L3) Adapt the evaluation procedure for the partial matches with lazy evaluation. Verify the

predicates based on remote data once the remote data is available in the cache.

Here, operation (L1) is trivial, whereas operations (L2) and (L3) jointly induce a trade-off.

Postponing the evaluation of predicates leads to additional partial matches being created, because

event selection becomes less strict (relaxing remote-data-related predicates). As mentioned

previously, the set of partial matches may grow exponentially in the number of processed events

and the inherent evaluation latency `match(c) directly depends on this number. Consequently,

postponing the evaluation of the respective predicates may help to hide the transmission latency

of remote data, `remote(d), while at the same time increasing the inherent evaluation latency

`match(c). Therefore, lazy evaluation of predicates shall be applied only when its benefits outweigh

the increase in the inherent evaluation latency.

Both PFetch and LzEval strategies have in common that they require cache management,

which corresponds to the following operation:

(C1) Maintain a set of data elements in the cache based on its current content and newly fetched

elements.

71

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

Remote
DB

Input Event Stream

Cache

Partial Matches

Utility Modelling
Remote Data
Fetching

Cache
Management

Output Event Stream
CEP Engine

Figure 5.4: Components of the EIRES framework.

Cache management calls for a mechanism to use the available storage optimally, which again

requires to assess the impact that data elements have on the performance of query evaluation.

5.2.3.2 Framework Components

To realise the above ideas, the EIRES framework comprises three main components. As illustrated

in Figure 5.4, these components extend the functionality of a traditional ESP engine.

Utility modelling. This component includes a cost model to assess the (expected) utility of

remote data elements for pattern detection query evaluation. As such, it provides the basis

to select data elements for prefetching (P2); to decide on the partial matches for which lazy

evaluation is applied (L2); and to govern the cache management (C1). Since realisations of all

three operations interact with each other, the respective cost model shall provide a unified view

on the utility of remote data elements. This component is discussed in Section 5.3.

Remote data fetching. This component realises the PFetch and LzEval strategies. Using the

cost model for the utility of remote data elements, it manages the trade-offs induced by operations

(P1) and (P2) for PFetch, and by (L2) and (L3) for LzEval. It is important to note that these

trade-offs are managed in an online manner, i.e., based on the information available at a specific

point in time. The component does not create an optimal plan that combines PFetch and LzEval

for some future state, because such an optimal plan requires the stable utility of data elements.

Yet, because utility modelling is based on the maintained partial matches, the utility of an

element may be subject to change. In particular, it may differ at the time a (pre)fetching decision

is taken and at the time the data arrives at the ESP engine, i.e., the utility changes during the

remote data transmission. Therefore, this component realises the operations for prefetching and

lazy evaluation, whereas the cache management is handled separately. We introduce the details

in Section 5.4.

Cache management. This component realises operation (C1), i.e., retains the data elements in

the cache that are most beneficial. To this end, it exploits the aforementioned cost model. Following

72

5.2. FOUNDATIONS OF REMOTE DATA INTEGRATION

Algorithm 1: EIRES workflow.
Input: Input event S(k+1);

Query Q with time window τQ ;
Partial matches P(k), . . . ,P(k−τQ);
ESP engine fQ;
Cache C.

Output: Matches C(k+1);
Partial matches P(k+1).

1 U,#P(k)← utilityEstimation (Q,P(k), . . . ,P(k−τQ)); // Alg. 2

2 T,O←prefetchTiming(); // P1 in PFetch, Alg. 3

3 P′,C′ ← fQ(S(k+1),P(k),D(k+1)∩C);

4 D′ ←;;
// Determine data elements for prefetching by lookahead timing

5 foreach p ∈ P ′ \ P(k) do // For each new partial match
// For each d for which p is in its prefetch category

6 ∀ d ∈ D(p,k+1) : if p is in category T(d) then D′ ← D′∪ {d};

// Determine data elements for prefetching by estimated arrival timing

7 foreach p ∈⋃
k−τQ≤i≤k P(i) do // For each partial match

// For each d for which the time offset to fetch has passed for p

8 ∀ d ∈ D(p,k+1) : if p is older than O(d) then D′ ← D′∪ {d};

// P2 in PFetch: Prefetch elements not in cache that have high utility

9 foreach d ∈ D′ \C do
10 if U(d,k,k+τQ)>mind′∈C U(d′,k,k+τQ) then Prefetch d;

11 P′′,C′′ ← LzEval(S(k+1),P′,D(k+1),C, fQ,#P(k)); // Alg. 4

12 C(k+1)← C′∪C′′;
13 P(k+1)← P ′∪P ′′;
14 return P(k+1),C(K +1);

the above argument on the infeasibility of an optimal plan of prefetching and lazy evaluation for

some future state, cache management is also conducted online, using the information currently

available. As such, cache management decisions are taken independently of the component for

remote data fetching, even though both are potentially linked through the unified assessment of

the utility of data elements. We elaborate on cache management policies in Section 5.5.

EIRES workflow. All above components must cooperate for the desired efficacy. As shown in

Alg. 1, when processing an input event, EIRES first estimates utility of remote data (line 1),

which is further detailed in Alg. 2. It then computes remote data prefetching time (operation (P1)

in PFetch, line 2), based on Alg. 3. After retrieving and evaluating required data elements that

are cached locally (line 3), EIRES performs operation (P2) in PFetch, prefetching remote data

according to the computed prefetch timing (line 5-10). It prepares remote data to process current

73

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

and future input events. If required data elements are not available from the cache, EIRES

performs lazy evaluation (line 11), which is further explained in Alg. 4. Finally, new matches and

partial matches are derived (line 12-13).

5.3 Utility Modelling

We first present a cost model to assess the utility of remote data elements (section 5.3.1). Because

the utility is in part determined by future system state which can only be computed in retrospect,

we also present a method for its efficient estimation (section 5.3.2).

5.3.1 Utility Definition

During query evaluation, the role of a remote data element is to enable the evaluation of some

query predicate that determines whether a partial match shall be discarded, extended, or split

up. Therefore, the utility of a data element is primarily based on the number of partial matches

for which the element is required in their evaluation. However, since a fetched data element is

cached, it may be used to evaluate respective predicates for upcoming partial matches as well.

Against this background, our utility assessment considers both, the currently maintained partial

matches, which induce the urgent utility, and future partial matches potentially derived from

them, which induce the future utility.

Consider a point in time when a stream prefix S(..k) has been processed, so that P(k) is the

set of current partial matches. The ESP engine needs to handle event S(k+1). Recall that, for

a partial match p ∈ P(k), D(p,k+1) is the set of remote data elements required for processing,

see Section 2.2.2. For a data element d ∈D, at this point in time, the urgent utility is defined as

the number of partial matches that require d or one of its constituents (with ρ∗ as the reflexive

transitive closure of the part-of-relation ρ), weighted by its transmission latency `remote(d):

(5.1) UU(d,k)= `remote(d) · ∣∣{p ∈ P(k) | ∃ d′ ∈ D(p,k+1) : d ∈ ρ∗(d′)}
∣∣ .

In the same vein, the number of partial matches that require d, or its constituents, can be

considered for some future state of query evaluation. Given perfect information about the future

stream up to a stream index k′ > k, the future utility of d is given by the urgent utilities of future

partial matches in k < i ≤ k′:

(5.2) FU(d,k,k′)= ∑
k<i≤k′

UU(d, i)

However, because information about future state is inherently uncertain, we actually need to

compute an estimate for the future utility up to a time point k′ (see Section 5.3.2), which we

74

5.3. UTILITY MODELLING

denote as ˆFU(d,k,k′). As such, in the remainder we rely on an overall utility that is defined as

the weighted sum of the above measures, defined, with ω ∈ [0,1], as:

(5.3) U(d,k,k′)=ω ·UU(d,k)+ (1−ω) · ˆFU(d,k,k′)

Here, the rational is that the weighting enables tuning of the respective importance of the known

utility UU and the estimated utility ˆFU . Moreover, different weighting schemes are applied when

incorporating the utility assessment for the realisation of PFetch, LzEval, and cache management.

Specifically, the strategies for fetching remote data, PFetch and LzEval, assign higher weights to

the urgent utility than the cache management. The latter is more effective when catering for the

requirements of partial matches in terms of remote data over a longer time span.

Note that the greediness of event selection (Section 2.2.2) is implicitly incorporated in the

above utility model, because its semantics is reflected in the number of partial matches, which is

directly captured by the urgent utility. While the estimation of future utility does not directly

capture greediness, it is indirectly taken into account: The estimation implicitly incorporates

dependencies between counts of partial matches at different categories of state (Section 2.2.2), at

least on an aggregated level (aggregation from stream index k to k′ in Equation 5.2).

Furthermore, our utility model is able to cope with multiple queries in a straightforward

manner: The utility of a data element is assessed based on its related current and future partial

matches, regardless of the query for which these partial matches have been created. Sharing

of data elements among queries is thereby captured directly in our cost model. If queries are

assigned priorities, these need to be used as weights in the utility definition in Equation 5.1.

5.3.2 Utility Estimation

To estimate the future utility ˆFU of a data element, we determine the expected number of partial

matches for which the element is relevant to its evaluation. Since the utility of data elements

needs to be materialised in an online manner, estimating this should not incur significant

overhead. Therefore, we estimate the number of relevant partial matches by considering two

aspects: (i) how many partial matches of a particular category are expected at a time point and

(ii) to what fraction of these partial matches an element is relevant. Algorithm 2 demonstrates

the estimation procedure. Note that the urgent utility, UU , is directly monitored (line 2 and 6).

Number of partial matches. Recall that we partition partial matches into categories, where

the partitioning is determined by the adopted computational model (Section 2.2.2). That is, in

an automata-based model, each state of the automaton denotes a category, while in a tree-based

model, the partitioning stems from the operator buffers. Intuitively, the category of a partial

match, through a set of query predicates, induces a category of data elements that may be needed

for the evaluation of its predicates. e.g., in Figure 2.2, all partial matches of state q3 of the

automaton require the evaluation of predicate σ3 when processing an event. The evaluation of σ3

75

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

Algorithm 2: Utility estimation.
Input: Query Q with time window τQ ;

Partial matches P(k), . . . ,P(k−τQ), partitioned in categories 1≤ j ≤ n, i.e., P1(k),
P2(k), . . . , Pn(k−τQ);
System configuration parameter: Weighting factor ω.

State: Maintained transition counts per remote reference key tranKey and per category
of partial matches tranCategory.

Output: Utility function U;
Estimated number of partial matches #P(k) partitioned in categories
#Pi(k),1≤ i≤ n.

1 foreach d ∈D required by a partial match p ∈P(k)\P(k−1) of category j do
// Increase urgent utility because of new partial match

2 UU(d,k)←UU(d,k)+1 ;

// Update auxiliary counts for future utility estimation

3 tranKey(d, j,k)← tranKey(d, j,k)+1;
4 tranCategory(j,k)← tranCategory(j,k)+1 ;

5 foreach d ∈D required by a partial match p ∈P(k−1)\P(k) do
// Decrease urgent utility due to timed out partial matches

6 UU(d,k)←UU(d,k)−1 ;

7 foreach d ∈D required by partial matches of category j do
// Estimate future utility

8 Pr(j,d,k)←∑k
i=k−τQ

tranKey(d, j, i) /
∑k

i=k−τQ
tranCategor(j, i) ;

9 #Pj(k)←AVG
(∣∣Pj(k−τQ)|, |Pj(k−τQ +1)|, . . . , |Pj(k)

∣∣);
10 ˆFU(d,k,k+τQ)←∑

1≤i≤n
d′∈D,d∈ρ∗(d′)

#Pi(k) ·Pr(i,d′,k);

// Compute overall utility

11 U(d,k,k+τQ)←ω ·UU(d,k)+ (1−ω) · ˆFU(d,k,k+τQ);

12 return U, #P(k);

refers to the remote data element r[q1.user], i.e., the set of known locations associated with a

particular user. Therefore, a data element d that refers to such a set of locations is potentially

relevant to any such partial match.

Let {1, . . . ,n} be the identifiers of the categories of partial matches (i.e., automaton states or

tree buffers). Then, we denote the expected number of matches of a category j at time point k as

#P j(k). To efficiently estimate #P j(k), we compute it as the average number of partial matches of

category j over a time window of fixed size, as shown in line 9, Alg. 2.

Partial match relevance. However, a specific element is only truly relevant to a subset of

partial matches of a particular category, which is determined based on the payload of a partial

match’s events. e.g., continuing on the above example, a data element d, capturing the locations

associated with a particular user, is only relevant to those partial matches of which the first

76

5.4. REMOTE DATA FETCHING

event relates to that same user. To estimate the fraction of partial matches of a category to which

a particular data element is relevant, we incorporate a stochastic model. Given a category of

partial matches j and a data element d ∈D, we use Pr(j,d,k) to capture, at time point k, the

probability that element d is required to evaluate the predicates of partial matches of category j

when processing an input event. We assume that such a probability is relatively stable in the

short term. The probability distribution may be derived from the value distribution of the events’

attributes that serve as a reference for the selection of data elements. Here, the value distribution

and, hence, the probability distribution, again, is computed adopting a sliding window. In Alg. 2,

line 3, 4, and 8 show how to monitor and maintain it online.

Future utility. Based on the above, we estimate the future utility at the time the stream prefix

S(..k) has been processed up to some future stream index k′ > k for a data element d ∈ D, as

follows:

(5.4) ˆFU(d,k,k′)= (k′−k)
∑

1≤ j≤n
d′∈D,d∈ρ∗(d′)

#P j(k) ·Pr(j,d′,k)

Both, the average number of partial matches per category and the distribution of attribute

values (as the basis for the probability distribution of the data access per category), are based

on simple counts, which is why they can be maintained efficiently for a sliding window (line 3-4

and 8-10 in Alg. 2). Nevertheless, their computation still involves computational effort. Instead

of recomputing all utility values every time a single event is processed, we lift the utility model

through a temporal abstraction. Specifically, we consider the utility values as being static for a

time slice, i.e., a number of subsequent stream indices. Recall that τQ denotes the time window of

a query Q, which determines the maximal time-to-live of a partial match. Then, using m as the

number of slices in which a window is split, the length of a time slice, and thus the frequency

with which utility values are recomputed, is given by τQ /m. Here, parameter m allows one to

trade off the precision of the utility model versus the incurred computational overhead.

5.4 Remote Data Fetching

The EIRES framework defines PFetch and LzEval as two strategies to fetch remote data, which

we describe in Section 5.4.1 and Section 5.4.2, respectively. As illustrated in line 5-10, Alg. 1,

EIRES always performs prefetching. If prefetching failed to prepare required remote data on

time, EIRES performs lazy evaluation (line 11).

5.4.1 Prefetching

As explained in Section 5.2.3, three operations need to be instantiated for PFetch: deciding when

prefetching is beneficial for a data element (P1), selecting the elements to prefetch (P2) and

77

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

Algorithm 3: Prefetch timing (operation (P1) in PFetch)
State: Monitored event input rates λ[n];

Latest prefetch cache hit history H .

Output: Prefetch timing function T;
Offset timing function O.

1 T ←;; O←;;
2 foreach d ∈D required by partial matches of category m do
3 j←m’s directly preceding category;
4 while j ≺ m do

// Check if lookahead timing can be applied

5 if partial matches of category j require d∧ j > 1 then
6 if H (m, j,d)= true then // Prior cache hit successful

7 O(d)← 0, T(d)← j ; // Set time offset to be 0

8 break;

9 else j← j’s directly preceding category ; // Try next category

10 else // Use estimated-arrival timing

11 O(d)← 1/λ[j]−`remote(d), T(d)← j ; // Set time offset

12 break;

13 return T, O;

performing the actual fetch operation (P3). Here, operation (P3) is straightforward. Hence, we

explain operations (P1) and (P2) in detail.

(P1): Prefetch timing. Intuitively, the best time to prefetch a data element d is such that it

arrives right before it is needed. As discussed in Section 5.2.3.1, let tn be the time when a data

element is needed for query evaluation. Then, with `remote(d) as the transmission latency, and

under a negligible latency for accessing the cache, the perfect time to trigger prefetching for the

data element is tp = tn −`remote(d).

Now, let ti be the time at which a fetch request for a data element is actually initiated.

Prefetching early (ti > tp) hides the transmission latency completely. Yet, early fetching may

be based on an inaccurate estimation of the (future) utility of d. Hence, in the worst case, d is

prefetched and consumes space in the cache, but is never used in query evaluation before it is

evicted due to limited cache capacity. On the contrary, late prefetching (ti < tp) generally benefits

from a more accurate utility estimation, but hides the transmission latency only partially. To

estimate the appropriate time to prefetch in light of this trade-off, we propose complementary

techniques: lookahead timing and estimated-arrival timing, with the workflow shown in Alg. 3.

Lookahead timing. First, we strive to identify partial match categories that provide useful

indicators of when to prefetch a data element related to another match category, i.e., a lookahead

category. To do this, we exploit the partial order of the categories of partial matches as they are

derived from the query predicates. This order corresponds to an order of states of an automaton

78

5.4. REMOTE DATA FETCHING

or buffers in a tree-based model, which captures that partial matches of one category may become

those of another category during query evaluation.

Let {1, . . . ,n} be the identifiers of categories of partial matches with m being a category of

matches that require a data element d (line 2 in Alg. 3). Then, we determine a lookahead category

j of matches that is a predecessor of m in the partial order of categories, denoted j ≺ m, meaning

that partial matches of category j potentially develop into those of category m. From the set of all

preceding categories {1≤ j ≤ n | j ≺ m}, we choose j such that (i) its partial matches contain events

of which the payload serves as a reference to identify d, and (ii) it is closest to m in the partial

order while still allowing for timely and accurate prefetching. This process is detailed in line 3-9

in Alg. 3. Here, without loss of generality, we illustrate the situation that category m has one

directly preceding category, though in practice it may have multiple such categories. If multiple

categories contain references to the same data elements, multiple prefetches could be merged

into a single fetch through semantic query rewriting. If they contain references to different data

elements, a traverse order could be enforced over all these directly preceding categories, i.e.,

ordered by monitored transmission latencies. EIRES incorporates both of these approaches.

To achieve this, we determine the lookahead category j in a dynamic manner, based on the

recent cache hit history from cache management (input H in Alg. 3). Particularly, for a given

data element d, H maintains cache hit/miss information, where H (i, i′,d) returns false if d was

prefetched upon the construction of a partial match of category i, but was not available when

required during the evaluation of a partial match of category i′. Such a cache miss can have two

causes: First, it may hold that ti→i′ < `remote(d), i.e., prefetching happens too late because the

time for a partial match to develop from category i to i′ is shorter than the transmission latency.

Second, when constructing a partial match of category i, the utility estimation may have been

inaccurate, so that the wrong data elements have been fetched. Either way, such a recent cache

miss indicates that the respective category is not suited to trigger prefetching.

In sum, for a partial match of category m that requires a data element d, we select the

preceding category j closest to m for which H (j,m,d)= true (line 6 in Alg. 3). Then, the point

in time to prefetch data element d for partial matches of category m is defined as the moment

that a partial match for category j is constructed. For example, if H (j1,m,d) and H (j2,m,d) are

both true, and j1 ≺ j2, we select j2 as the lookahead category for m, avoiding the unnecessarily

early fetching that using j1 would yield. If partial matches of multiple categories m reference

d, the smallest index j, in terms of the partial order ≺, is chosen. Intuitively, the recent cache

hit history H can be implemented as a matrix, as shown in Figure 5.5, where a cell with value

one means a cache hit and value zero means a cache miss. A cell with a box means the selected

lookahead category.

In practice, we deal with event stream fluctuations, as follows. The recent cache history H

contains counts of cache misses, so that a threshold determines what to interpret as negative

79

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

evidence. Also, count values are reset to zero after a fixed time period after their last increment.


... q3(t1.user) ...

q1 ... 1 ...
q2 ... 1 ...
q3 ... 0 ...
...


(a) Cache hit matrix at S(k).


... q3(t1.user) ...

q1 ... 1 ...
q2 ... 0 ...
q3 ... 0 ...
...


(b) Cache hit matrix at S(k′),k′ > k.

Figure 5.5: Recent cache hit history H implemented as a cache hit matrix.

q1

q3

σ1

¬ σ1 q4

q5

q6

q2

σ2

σ3

¬ σ2∧¬ σ4

¬ σ3

σ4 σ5

¬ σ5

PFetch
REMOTE[t1.user]

PFetch
REMOTE[t1.user]

Need
REMOTE[t1.user]

Remote
Data Source

Need
REMOTE[t3.org]

Input event

Input event

Estimate
event arrival

Figure 5.6: Automata-based execution model with the partial order of partial match evolvement.

To illustrate the lookahead timing mechanism, we revisit the automaton of Figure 2.2 by

adding the partial order ≺ of different categories of partial matches, as shown in Figure 5.6. Here,

categories of predicates are given by the automaton states and it holds, e.g., that q1 ≺ q2 ≺ q3.

Consider partial matches of category q3 that require the set of known locations of a credit

card for evaluation (in predicate σ3). The attribute value used to identify this remote data

(r[q1.user]), is part of partial matches of categories q1 and q2. Hence, fetching may be triggered

when constructing a partial match of either of the categories q1, q2, and q3. If the recent cache

hit history (matrix) at the k-th event S(k) is given as in Figure 5.5(a), we observe that triggering

the fetching of r[q1.user] only upon the creation of a partial match of category q3 is not sufficient

to hide the transmission latency `remote, because H (q3, q3,t1.user) = 0. However, prefetching

when creating a partial match of category q1 or q2 is shown to hide `remote (H (q1, q2,t1.user)= 1,

H (q1, q3,t1.user) = 1). Because q2 is closer to q3 than q1, it becomes the lookahead category,

avoiding the unnecessarily early fetching that q1 would yield. At a later time (the k′-th event

S(k′), k′ > k), due to the dynamics of the stream and the variation of the network connection, the

recent cache hit history H is changed as illustrated in Figure 5.5(b). This time, prefetching upon

80

5.4. REMOTE DATA FETCHING

the creation of a partial match of category q2 is not sufficient and the category of q1 is selected as

the lookahead category.

Note that there may be partial match categories for which lookahead timing is unsuitable, i.e.,

cache misses occur since there is no lookahead category enabling timely and accurate prefetching.

This occurs, e.g., when the reference required to identify d is part of the payload of the input event

that leads to the creation of the partial match of category m. An example for that is the category

q4 in Figure 2.2, which requires the evaluation of a predicate using remote data on pre-authorised

clients (r[q3.org]) that can only be fetched based on the event that lead to the respective match.

For those cases, we instead determine the time to prefetch based on estimated-arrival timing.

Estimated-arrival timing. When lookahead timing is not applicable for a partial match cate-

gory m, we instead determine the time to prefetch by incorporating the inter-arrival time of events

that satisfy the predicates to check for partial matches of category m but are not based on remote

data. Consider again category q4 in Figure 5.6. The respective partial matches are extended

when an event with x.type=T, x.vol>50k, and x.ben ∉ r[q4.org] is received. Since lookahead timing

is not applicable for the remote data, we estimate the expected time until an event satisfying

x.type=T and x.vol>50k is received. This way, we obtain an estimate for the time between the

creation of a partial match of category q4 and the time the data element r[q4.org] is actually

needed. To derive this inter-arrival time, various stochastic processes for event arrival may serve

as a foundation. Selecting one of them, their parameters shall be learned from historic data or

through monitoring by the ESP engine.

Here, we illustrate the general procedure when the event arrival follows a Poisson pro-

cess [105], as observed in many domains where events correspond to requests triggered by people.

Then, events are independent and occur with a constant mean arrival rate λ, which is the only

parameter that needs to be monitored. Inter-arrival times are exponentially distributed with

their expectation being E = 1/λ. Based thereon, at time t, we estimate the time the remote data

is needed as t+ 1/λ, so that the time for prefetching becomes tp = t+ 1/λ−`remote(d) (line 11 in

Alg. 3). Taking up the previous example, events with x.type = T and x.vol > 50k may be rare,

such that the expected inter-arrival time is E = 300ms. Then, with a data transmission latency

of `remote = 50ms, we trigger prefetching only 250ms after the creation of the respective partial

match (i.e., when processing the next input event after this period).

(P2): Prefetch selection. Using the above techniques, we determine the point in time at which

prefetching is beneficial for a particular data element. However, at a specific moment while

processing the event stream, we still need to select those data elements for which prefetching

shall actually be invoked. This decision is taken using our utility model: We only prefetch data

elements, for which prefetching is beneficial at that point in time and for which the utility is

higher than the minimum utility value of an element currently in the cache (line 9-10 in Alg. 1).

At time (stream index) k, let C(k)⊆D be the content of the cache and D(k) the set of data elements

81

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

Algorithm 4: Lazy evaluation (LzEval)
Input: Input event S(k+1);

Partial matches P(k);
Remote data D(k+1);
Cache C;
ESP engine fQ;
Estimated number of partial matches #P(k) partitioned in categories
#Pi(k),1≤ i≤ n.

State: Monitored event input rates λ[n].

Output: Matches C(k+1); partial matches P(k+1).

1 C(k+1)←;; P(k+1)←;; ˆsucc←;;
2 foreach d ∈D(k+1)\C required by partial matches of category j do
3 λ←λ[j]; `← `remote(d);
4 foreach category m, j≺m do

// if not yet known, estimate if postponing is beneficial

5 if 〈m,`〉 is not checked against ˆsucc(j,`) then
6 λ←λ+λ[m]; E(j,m)← 1/λ;
7 ∆−`remote ←min(E(j,m),`);
8 ∆+`match ← `pm

∏
1≤i≤m

(
#Pi(k) ·λ[i+1] ·E(j,m)

)
;

9 if ∆−`remote >∆+`match then
10 ˆsucc(j,`)← ˆsucc(j,`)∪ {m};

11 else ˆsucc(j,`)← ˆsucc(j,`)\{m} ;
// benefit expected, postpone evaluation of d’s predicates

12 if 〈m,`〉 ∈ ˆsucc(j,`) then
13 Fetch d;
14 P′ ← fQ(S(k+1),P(k)) ; // ignore d’s predicates

15 else Fetch d, block stream processing until after d arrives at C ;

16 P′′,C′′ ← fQ(S(k+1),P(k)∪P′,D(k+1)∩C);
17 P(k+1)←P(k+1)∪P′′;
18 C(k+1)←C(k+1)∪C′′;

19 return C(k+1),P(k+1);

for which prefetching at time k would be beneficial. We select D′(k) for prefetching, defined as

(5.5) D′(k)= {d ∈ D(k) |U(d)> min
d′∈C(k)

U(d′)}.

5.4.2 Lazy Evaluation

For LzEval, in turn, three operations need to be instantiated (Section 5.2.3): Operation (L1),

fetching remote data on demand is trivial. Therefore, we mainly discuss operation (L2), selecting

the partial matches for which the strategy is applied and operation (L3), adapting the evaluation

procedure for those matches. The workflow of LzEval is sketched in Alg. 4.

82

5.4. REMOTE DATA FETCHING

(L2): Selection of partial matches. LzEval triggers a fetch operation for remote data d when

required, but postpones the actual evaluation of the respective predicates. While this hides the

transmission latency `remote(d), it also makes event selection less strict, possibly resulting in an

exponentially increasing number of partial matches. As such, the inherent evaluation latency

`match may increase, which may thwart the benefit of the reduction of `remote(d). Recognizing

this trade-off, we therefore only apply LzEval to those partial match categories where an actual

benefit is expected.

To determine these categories, we estimate the time gained by hiding the transmission latency,

denoted as ∆−`remote, and the overhead incurred by the additional partial matches, ∆+`match. The

latency gain, ∆−`remote, depends on the difference between the time tn at which a data element

is needed (and fetching is triggered), and when the predicate is actually evaluated te. Ideally,

evaluation happens after the data is available (i.e., ta < te), so that the entire transmission

latency is hidden, i.e., ∆−`remote = `remote(d). The overhead ∆+`match depends on the number of

additional partial matches caused by lazy evaluation during te − tn and the additional latency

incurred per partial match. While the latter is assumed to be a known constant, `pm, the other

parameters need to be estimated.

To estimate the number of additional partial matches, we follow an approach similar to the

estimated-arrival timing (Section 5.4.1). Assume that the evaluation of a predicate of category j

requires remote data, yet that this evaluation may be postponed until the creation of a partial

match of a later category m, j ≺ m. Then, we estimate the average time t j→m for a partial match

of category j to develop into one of category m, ignoring all predicates that are related to remote

data. As before, we assume that, for each possible extension of a partial match, the respective

event arrivals follow a separate Poisson process of a monitored rate. Then, we derive an estimate

for t j→m based on a compound Poisson process induced by the sequence of intermediate categories

{r1, . . . , rs} of partial matches, j ≺ r1 ≺ . . .≺ rs ≺ m. With λi as the rate of the process describing

the arrivals that construct partial matches of category i, the expectation of the compound Poisson

process is E(j,m) = 1/∑i∈{r1,...,rs ,m} λi (line 6 in Alg. 4). Although the estimate assumes all Poisson

processes to be independent, i.e., it ignores sequential dependencies between the categories, it

suffices as an upper bound for our purposes.

Using E(j,m) as an estimate for t j→m, we derive the remaining parameters. The hidden

part of the transmission latency is given as ∆−`remote(j,m) = min(E(j,m),`remote(d)) (line 7

in Alg. 4). The estimation of ∆+`match(j,m) is time-varying and incorporates #P i(k), i.e., the

expected number of partial matches of category i, as estimated at time point (stream index)

k, see Section 5.3.2. For each category i, this number is multiplied with the arrivals of events

that may extend the match by satisfying all the predicates not based on remote data (λi+1) and

the estimate for t j→m (E(j,m)) (line 8 in Alg. 4). While this estimates the number of additional

partial matches during te − tn, multiplying it with the constant additional evaluation latency

83

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

per partial match (`pm) yields the estimate for accumulated increase in evaluation latency (to

simplify notation, we define rs+1 = m):

(5.6) ∆+`match(j,k)(k)= `pm
∏

1≤i≤s

(
#Pr i (k) ·λr i+1 ·E(j,m)

)
For each category j that requires remote data during query evaluation, we determine the set of

succeeding categories for which lazy evaluation is beneficial. This set is defined as ˆsucc(j)= {
m ∈

{1, . . . ,n} | j ≺ m∧∆−`remote >∆+`match
}
, i.e., the hidden part of the transmission latency is larger

than the overhead by the increased evaluation latency. Then, all partial matches of a category j,

for which ˆsucc(j) is non-empty, are selected for lazy evaluation (line 9-11 in Alg. 4). Conceptually,

ˆsucc(j) must be computed for every different transmission latency, `remote(d) (line 5 in Alg. 4). In

practice, to improve efficiency and to reuse results, transmission latency may be lifted to coarser

granularities, e.g., to a millisecond-level.

(L3): Adapted evaluation procedure. Consider partial matches of a category j and ˆsucc(j) as

the succeeding categories for which lazy evaluation is beneficial. Also, let S(..k) be the time the

stream prefix was processed and C(k)⊆D as the cache content. Then, query evaluation to process

event S(k+1) is adapted for the partial matches of category j, as follows. For each predicate

that requires a remote data element d, the availability in the cache is checked. If d ∈C(k), the

predicate is directly evaluated (line 16 in Alg. 4). If not, a fetch request for d is triggered and the

predicate is marked as postponed (line 12-14 in Alg. 4). The same procedure is followed as long as

the partial match of category j develops into one of a category m ∈ ˆsucc(j). Upon construction of

a respective partial match, the cache is checked and, upon data availability in the cache, each

predicate is evaluated.

Once a partial match of category j develops into a category m′ ∉ ˆsucc(j) for which lazy evalu-

ation is not beneficial, a different strategy is implemented. Postponing the predicate evaluation

further would increase the overall latency. Hence, query evaluation is blocked and only continues

after the data element d becomes available (line 15 in Alg. 4).

5.5 Cache Management

Cache management in EIRES shall retain the data elements that are most beneficial in the

cache, thereby realising operation (C1) as introduced in Section 5.2.3. Although the benefit of a

data element strongly relates to its expected utility (see Section 5.3), certain query semantics

suggests cache management based on a relatively simple policy. Recalling the greediness of

pattern detection queries in event selection (Section 2.2.2), either semantics (greedy selection or

non-greedy selection) motivates a different policy for cache management.

LRU policy. Under a greedy query semantics, a large number of partial matches that require

the same data elements can be expected to materialise. This, in turn, will induce a large number

84

5.6. EVALUATIONS

of access requests to the cache for the respective data. In our utility model, the urgent utility then

becomes a good estimator for the future utility. We can exploit this effect, even without using any

computed utility value, by adopting the widely-established least-recently-used (LRU) policy for

cache management. Data elements in the cache are ranked by the time of the last access to them,

evicting those that have not been accessed for the longest time.

Cost-based policy. With non-greedy query semantics, individual data elements are expected

to be accessed less often and in a diminishing manner. Hence, the current access frequency, i.e.,

the urgent utility, no longer provides a good estimator for the future utility. In that case, cache

management shall exploit the computed utility. In our cost-based policy, we separate the handling

of data elements based on the fetching strategy that led to their retrieval. The reason being

that, while any element requested through LzEval will certainly be required by some partial

matches, this is not necessarily the case for data elements requested through, possibly inaccurate,

predictions of PFetch. Against this background, we adopt two, purely conceptual, cache tiers,

T1 and T2, to separate elements that will certainly be used (T1) from those for which usage is

uncertain (T2). Then, elements in T1 will be retained over all elements of T2, but are moved to

T2 after a first access. This two-tier cache management is illustrated in Figure 5.7.

Remote
Data Source

Cache

Tier T1

Tier T2

LzEval

PFetch
First access

Evict

Figure 5.7: The two-tier cache management.

Once the cache capacity is reached, data elements (from T2 before T1) are evicted based

on their utility. Let C⊆D denote the current content of the cache and b ∈N its capacity. Then,

incorporating the size of data elements, the selection of the data elements R ⊆C to retain can be

formulated as a Knapsack problem:
select R ⊆C that maximizes

∑
d∈R

U(d) subject to
∑

d∈R

|d| ≤ b

This is a standard, NP-hard, Knapsack problem [104]. Yet, similar to Section 4.3.3, the Knapsack

problem may be approximated [46], e.g., by selecting data elements in the order of their utility

and size ratios, until the capacity is reached.

5.6 Evaluations

We evaluated the EIRES framework on various scenarios. Section 5.6.1 first outlines the ex-

perimental setup including datasets, queries, measures, implementations and hardware. For

85

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

Table 5.1: Synthetic datasets for efficient remote data integration.

Attribute Value Distribution
D

S3

Type U ({A,B,C,D})
ID U (1,100)
V1 U (1,100000)
V2 U (1,100000)

D
S4

Type U ({A,B,C,D})
ID U (1,100)
V1 Zipf distribution, probability density P(x)= x−1.01

ζ(1.01)

V2 Zipf distribution, probability density P(x)= x−1.01

ζ(1.01)

Q5: PATTERN SEQ(A a, B b, C c, D d, B e, C f, A g, D h)
WHERE SAME[ID] AND a.v1=REMOTE[d.v1] AND a.v2=h.v2
WITHIN 8min

Q6: PATTERN SEQ(A a, (SEQ(B b, C d, D f) OR SEQ(C c, B e))
WHERE a.v1=b.v1 AND a.v2=e.v1
AND d.v1=REMOTE[a.v1] AND c.v2=REMOTE[a.v2]
WITHIN 50K

Listing 5.1: Queries for the synthetic dataset.

controlled experiments, Section 5.6.2 reports on the overall efficiency and effectiveness, while

Section 5.6.3 explores the sensitivity of a range of parameters that affect the processing latency.

Finally, Section 5.6.4 discusses experiments on two real-world scenarios.

5.6.1 Experimental Setup

Datasets and queries. For controlled experiments, we generated two synthetic datasets, DS3

and DS4, with event schemas and value distributions as given in Table 5.1. Each of them has a

numeric ID, two numeric attributes v1 and v2. These attributes are uniformly distributed in DS3

but subject to zipf distribution in DS4. These datasets enable us to evaluate common queries that

test for sequences of events of different types, which are correlated by an ID. Further correlation

predicates and references to remote data may be defined for attributes v1 and v2. Remote data

elements are also referenced by v1 and v2. Their attribute value distributions represent two

extreme cases. DS3 considers the uniformly distributed values where variance is low. DS4, in

turn, considers an extremely skewed distribution. For the synthetic datasets, we evaluate the

queries Q5 and Q6 of Listing 5.1. They differ in their structures (pure sequence vs. disjunction

of sequences) and the remote data integration in predicates. We further use two real-world

dataset for low-latency bushfire detection and low-latency cluster monitoring. The details are be

presented in Section 5.6.4.

86

5.6. EVALUATIONS

Baselines. We compare our approaches for data fetching, PFetch, LzEval, and their combination

(Hybrid) against three baselines.

• The first baseline, BL1, denotes the naive integration of data fetching. It interrupts query

evaluation when remote data is needed and continues once it has been fetched.

• The second baseline, BL2, employs a cache of remote data to improve the efficiency of query

evaluation. For this cache, we consider both policies discussed in Section 5.5, i.e., LRU and the

cost-based policy.

• The third baseline, BL3, first ignores all predicates related to remote data. Upon reaching

a final state of the evaluation model, it fetches the remote data and conducts the respective

predicates evaluation and event selection.

Measures. Our focus is the overall latency of query evaluation (defined in Section 2.3), i.e., the

time between the ingestion of the last event needed to construct a match and its actual detection.

Depending on the experimental setting, our latency measurements are based on from 100k to

5 million matches. Specifically, we report the 5th, 25th, 50th, 75th, and 95th percentiles of the

latency values. Moreover, we report the throughput (defined in Section 2.3), i.e., the number of

events processed per second.

Implementation and environment. For the evaluation, we implemented EIRES in an automata-

based ESP engine1, written in C++. All reported results are averaged over 20 runs on a NUMA

node with 4 Intel Xeon E7-4880 CPUs (60 cores, 120 threads) and 1TB RAM, running openSUSE

15.0 operating system.

5.6.2 Overall Effectiveness and Efficiency

Figure 5.8-5.11, respectively, depict the overall performance obtained for Q5 and Q6 on the

synthetic datasets DS3 and DS4. We compare the PFetch, LzEval, and Hybrid strategy against

the three baselines under both greedy and non-greedy selection policies for two cache eviction

policies. Here, the cache capacity is set to 10% of a remote key’s value range, i.e., 10,000 items,

while the transmission latency of remote data is uniformly distributed between 10µs and 100µs.

As shown in the figures, the Hybrid strategy consistently outperforms all other approaches.

Furthermore, both PFetch and LzEval also always outperform all three baselines considerably,

though it depends on the context which of these achieves better results. We also observe similar

trends for both datasets DS3 and DS4. Therefore, in the following, we focus detailed analysis on

DS3, and also report results from DS4.

Selection strategies. For non-greedy selection in Q5 (Figure 5.8(a)-5.8(b)), the median latencies

of Hybrid are 10µs (cost-based cache) and 16µs (LRU). Since the median latencies for the baselines

range between 264µs (BL3) and 314µs (BL1), Hybrid reduces the median latency by at least

1The implementation and datasets are publicly available at https://github.com/zbjob/EIRES.

87

https://github.com/zbjob/EIRES

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

0.0×10
0

2.0×10
2

4.0×10
2

6.0×10
2

8.0×10
2

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

(a) Cost cache non-greedy selection.

0.0×10
0

2.0×10
2

4.0×10
2

6.0×10
2

8.0×10
2

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

(b) LRU cache non-greedy selection.

0.0×10
0

3.0×10
2

6.0×10
2

9.0×10
2

1.2×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

1.0×10
4

2.0×10
4

3.0×10
4

4.0×10
4

5.0×10
4

(c) Cost cache greedy selection.

0.0×10
0

3.0×10
2

6.0×10
2

9.0×10
2

1.2×10
3

BL1
BL2

LB3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

1.0×10
4

2.0×10
4

3.0×10
4

4.0×10
4

5.0×10
4

(d) LRU cache greedy selection.

Figure 5.8: Overall effectiveness and efficiency for Q5 over DS3.

26×. For the 95th percentiles, the reduction is at least 4× (cost-based cache) and 2.5× (LRU).

For Q6 (Figure 5.9(a)-5.9(b)), we observe smaller gains in median latencies, yet bigger gains for

the 95th percentile latencies. We also observe different performance of BL3 for Q5 and Q6: BL3

outperforms both BL1 and BL2 for Q5, but the trend is opposite for Q6. The reason is that Q5

has two states requiring different remote data in its execution model, whereas Q6 has one at

each branch of disjunction sequences. BL3 is able to hide some transmission latency by fetching

different data items at once. Therefore, for a single complete match of Q5, BL3’s aggregated

transmission latency is the maximal latency of all required remote data, instead of their sum

(as in BL1 and BL2). This benefit outweighs the overhead caused by extra partial matches for

non-greedy selection. Hence, BL3 performs better. But for Q6, BL3 has little to hide but creates

extra partial matches and therefore performs worse than BL1 and BL2 even under non-greedy

88

5.6. EVALUATIONS

0.0×10
0

3.0×10
2

6.0×10
2

9.0×10
2

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

(a) Cost cache non-greedy selection.

0.0×10
0

3.0×10
2

6.0×10
2

9.0×10
2

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

(b) LRU cache non-greedy selection.

0.0×10
0

2.0×10
3

4.0×10
3

6.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

4.0×10
5

1.4×10
6

2.4×10
6

3.4×10
6

(c) Cost cache greedy selection.

0.0×10
0

2.0×10
3

4.0×10
3

6.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

4.0×10
5

1.4×10
6

2.4×10
6

3.4×10
6

(d) LRU cache greedy selection.

Figure 5.9: Overall effectiveness and efficiency for Q6 over DS3.

selection.

The results show greater variety for greedy selection policies. For Q5 (Figure 5.8(c)-5.8(d)),

Hybrid reduces the median latency by 111× (cost-based cache) and 63× (LRU) when compared to

BL1. Further more, the reductions for BL3 are 283× (cost-based cache) and 160× (LRU), yet the

reductions are only 6× (cost-based cache) and 2.8× (LRU) when compared to BL2. The reductions

for the 95th latencies are 62× (BL1, cost-based), 44× (BL1, LRU), 6× (BL2, cost-based), 2.8× (BL2,

LRU), 558× (BL3, cost-based) and 392× (BL3, LRU). For Q6 (Figure 5.9(c)-5.9(d)), gains are even

more extreme, i.e., Hybrid reduces median latencies by up to 2,726× and the 95th percentiles

latency by up to 3,752×.

Similar trends are observed for DS4, under non-greedy selection policy for Q5 (Figure 5.10(a)-

89

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

5.0×10
3

6.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

(a) Cost cache non-greedy selection.

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

5.0×10
3

6.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

(b) LRU cache non-greedy selection.

0.0×10
0

5.0×10
3

1.0×10
4

1.5×10
4

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
) 1.0×10

6

2.0×10
6

3.0×10
6

4.0×10
6

5.0×10
6

(c) Cost cache greedy selection.

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

BL1
BL2

LB3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
) 1.0×10

6

2.0×10
6

3.0×10
6

4.0×10
6

5.0×10
6

(d) LRU cache greedy selection.

Figure 5.10: Overall effectiveness and efficiency for Q5 over DS4.

5.10(b)), compared to BL1, BL2, and BL3, with cost-based and LRU cache, Hybrid reduces median

latency by 10×, 10×, 5×, 5×, 5× and 5×. It reduces the 95th percentile latency by 2.7×, 2.7×,

2.4×, 2.3×, 2.2× and 2.2×. Turning to greedy selection policy (Figure 5.10(c)-5.10(d)), Hybrid

reduces median latency by 266×, 1,818×, 5×, 2.2×, 2664× and 6,160×. It reduces the 95th

percentile latency by 599×, 1,248×, 5.5×, 2×, 1,625× and 1,348×. For Q6 non-greedy selection

(Figure 5.11(a)-5.11(b)), the median latency reductions are 132×, 168×, 73×, 96×, 96× and

177×. The 95th latency reductions are 4×, 4×, 3.6×, 3.6×, 4.6× and 4.5×. For Q6 under greedy

selections (Figure 5.11(c)-5.11(d)), the median latency reductions are 266×, 644×, 2.3×, 4.7×,

2,664×, 6,161×. The 95th latency reductions are 599×, 1,248×, 5.5×, 2.4×, 1,625×, 2,560×.

Caching policies. The impact of a local cache differs considerably depending on the scenario.

90

5.6. EVALUATIONS

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

5.0×10
3

6.0×10
3

7.0×10
3

8.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

(a) Cost cache non-greedy selection.

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

5.0×10
3

6.0×10
3

7.0×10
3

8.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

(b) LRU cache non-greedy selection.

0.0×10
0

2.0×10
3

4.0×10
3

6.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

2.5×10
5

(c) Cost cache greedy selection.

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
µ

s
)

5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

2.5×10
5

(d) LRU cache greedy selection.

Figure 5.11: Overall effectiveness and efficiency for Q6 over DS4.

Adding a cache contributes little for non-greedy selection, as illustrated by the comparable

performance of BL1, BL2 and BL3 in Figure 5.8(a)-5.8(b) and Figure 5.9(a)-5.9(b). Reusability

of data elements is low for non-greedy selection, since few partial matches have overlapping

payloads. For greedy selection, in turn, adding a cache reduces latencies by at least two orders

of magnitude, see BL1, BL2 and BL3 in Figure 5.8(c)-5.8(d) and Figure 5.9(c)-5.9(d). In such

settings, LRU outperforms cost cache for BL2 due to small computation overhead.

By contrast, when combining a cache with PFetch or LzEval, the cost-based policy achieves

better performance. For instance, LzEval with a cost-based cache (Figure 5.8(a)) outperforms its

counterpart with LRU (Figure 5.8(b)), especially for the median latency. While both employ the

same LzEval procedure, the LRU policy ignores utilities, so that promising data elements may be

fetched, but not kept in cache for sufficient time. This same trend is observed for PFetch.

91

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

0.0×10
0

2.0×10
4

4.0×10
4

6.0×10
4

8.0×10
4

1.0×10
5

BL1
BL2

BL3
PFetch

LzEval

Hybrid

E
v

e
n

ts
 p

e
r

s
e

c
o

n
d

(a) Cost-based cache.

0.0×10
0

2.0×10
4

4.0×10
4

6.0×10
4

8.0×10
4

1.0×10
5

BL1
BL2

BL3
PFetch

LzEval

Hybrid

E
v

e
n

ts
 p

e
r

s
e

c
o

n
d

(b) LRU cache.

Figure 5.12: Throughput for Q5 under non-greedy selection.

We also observe that for DS4 (Zipf-distributed attributes), under greedy selection, different

fetching approaches combined with an LRU cache performs better than the cost-based cache.

This is because for such highly skewed value distribution, remote data access patterns show more

locality. In this situation, a small fraction of remote data elements are frequently accessed, which

is well served by an LRU cache. Cost-based cache, on the other hand, is still able to exploit such

locality, but incurs big overhead to compute utilities compared to simple LRU eviction policy.

Benefits of Hybrid. When comparing the performance among PFetch, LzEval and Hybrid,

Hybrid is shown to always outperform the others. The reason is that the benefits of PFetch and

LzEval are complementary, whereas their combination does not come with any side effects and

actually mitigates some of the strategies’ downsides.

The performance of PFetch is closely related to the quality of the prefetching predictions that

are made (based on the estimated future utility of data elements). Therefore, when it fails to

prefetch a data element, PFetch still interrupts query evaluation and starts fetching on demand,

resulting in high tail latencies (95th percentile), see Figure 5.8(d). LzEval, in turn, generally has

lower median and 75th percentile latencies (Figure 5.8(a)-5.8(b)) because its fetching decision is

always accurate. Yet, the resulting additional partial matches affect the latency under greedy

selection, see Figure 5.8(c)-5.8(d) and Figure 5.9(c)-5.9(d).

Hybrid combines their advantages and alleviates the aforementioned side effects. If the

PFetch part of Hybrid fails to prepare the correct data beforehand due to an inaccurate prediction,

it still performs lazy evaluation, thereby avoiding the problem of blocking query processing for

PFetch. The latency caused by the overhead of additional partial matches is also significantly

reduced, compared to LzEval alone, since a lot of matches are already handled by prefetching.

Throughput. We also investigate the throughput performance. Without loss of generality, we

show the throughput for Q5 under non-greedy selection with either policy for cache management

in Figure 5.12. Throughput performance is largely in line with the observed latencies, with a

few deviations. For instance, while LzEval with a cost-based cache has a lower median latency

92

5.6. EVALUATIONS

compared to LzEval with an LRU cache, the observed throughput is virtually equivalent.

5.6.3 Sensitivity Analysis

0

500

1000

1500

2000

2500

10% 30% 50% 70% 90%

L
a
te

n
c
y
 (

µ
s
)

Estimation noise ratio

PFetch
LzEval
Hybrid

(a) Sensitivity of utility estimation.

0

500

1000

1500

2000

2500

1k 2k 3k 4k 5k

L
a
te

n
c
y
 (

µ
s
)

Cache size

PFetch
LzEval
Hybrid

(b) Sensitivity of cache size.

1.0×10
1

1.0×10
2

1.0×10
3

1.0×10
4

1.0×10
5

1-10 10-100 100-1k 1k-10k

L
a
te

n
c
y
 (

µ
s
)

Transmission latency (µs)

PFetch
LzEval
Hybrid

(c) Sensitivity of transmission latency.

Figure 5.13: Sensitivity analysis for utility estimation, cache size and remote data transmission
latency.

We assess the sensitivity of the proposed strategies concerning the utility estimation quality,

the cache size, the remote data transmission latency, and the weighing factor ω which tunes the

share of urgent utility and future utility in Equation 5.3. All results were obtained for query Q5,

with a cost-based cache and greedy selection.

Utility estimation quality. The utility model lays the foundation for remote data fetching

and cache management, so that its quality affects the efficacy of all strategies. We assess the

impact of the estimation quality by injecting noise into the employed estimations, where a noisy

estimation means that an expected partial match will not actually materialise. We compare the

corresponding latency variations by injecting noise into 10% to 90% of the estimations.

Figure 5.13(a) illustrates that PFetch is sensitive to such noise, since its median latency grows

significantly for higher noise levels. The reason is twofold: Latency increases because PFetch

prefetches the wrong data elements, whereas poor utility estimation also negatively impacts the

93

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

elements that are evicted from the cache. Above a 50% noise ratio, its median latency already

exceeds LzEval’s 75th percentile and Hybrid’s 95th percentile.

LzEval is less sensitive to noise, even obtaining stable latencies across noise levels for the

5th and 25th percentile, as well as the median. This is because LzEval’s initial decision about

what to fetch is not affected by utility, unlike for PFetch. Still, low quality utility estimations can

lead to poor decisions on which partial match evaluations to postpone and, thus, to additional

partial match growth and associated overhead. Again, the cache management also deteriorates

for higher noise levels. As a result, especially LzEval’s 95th percentile latency grows along with

an increasing noise ratio.

Since Hybrid combines the advantages of both PFetch and LzEval, it generally outperforms

the individual strategies. However, an exception is observed at the 90% noise ratio, where Hybrid’s

75th percentile latency is higher than LzEval’s. Given such inaccurate utility estimations, the

downsides of PFetch outweigh its benefits, resulting in a better latency for LzEval than Hybrid.

Cache size. The size of the employed cache naturally affects all fetching strategies, where a

larger cache is beneficial, see Figure 5.13(b). In these results, we also observe that PFetch is more

sensitive than the other strategies. This is because a larger cache allows for more tolerance in

terms of incorrectly prefetched data elements, whereas a smaller cache will be clogged by them.

Remote data transmission latency. We consider that for higher transmission latencies, failing

to fetch a data element leads to longer delays. We tested this aspect by evaluating the performance

for different transmission latencies. The transmission latency is uniformly distributed in four

different ranges: 1-10µs, 10-100µs, 100-1,000µs and 1,000-10,000µs. As shown in Figure 5.13(c),

the overall processing latency of all strategies increases along with the transmission latency.

However, PFetch is again most sensitive here. This is because prefetching needs to occur earlier

for increased transmission latencies, which results in less accurate prefetch decisions.

Weighting factor in utility definition. We consider the impact of the weighting factor ω, which

balances the urgent and future utility in our model (Section 5.3.1, Equation 5.3). We consider the

impact of ω in the utility to guide the fetching of remote data (Section 5.4.1) and to manage the

cache (Section 5.5). We refer to these, respectively, as ω f etch and ωcache.

Figure 5.14(a) shows the results obtained when varying ω f etch, while fixing ωcache at 0.5.

Here, increasing the weight reduces the 75th and 95th percentile latencies. This is expected, as a

low weight results in the current demand for remote data (urgent utility) being largely ignored.

Yet, beyond ω f etch = 0.7, performance starts to deteriorate. For such high weights, decisions are

strongly based on the current demand for remote data, but ignore the future demand. As such,

we observe optimal results for ω f etch = 0.7.

Yet, utility modelling turns out to be robust: For any factor that emphasizes the urgent de-

mand, but does not ignore the future usage of remote data, i.e., ω f etch ∈ [0.5,0.9], the performance

94

5.6. EVALUATIONS

0

200

400

600

800

0.1 0.3 0.5 0.7 0.9

L
a

te
n

c
y

 (
u

s
)

Weight ω in Equation 5

(a) Fetch utility (ω f etch).

0

200

400

600

800

1000

0.1 0.3 0.5 0.7 0.9

L
a

te
n

c
y

 (
u

s
)

Weight ω in Equation 5

(b) Cache utility (ωcache).

Figure 5.14: Sensitivity analysis for utility weighting factor.

is close to the optimal, with especially stable median latencies.

With ω f etch set to 0.7, varying ωcache shows a similar trend, as shown in Figure 5.14(b). Here,

the optimal value turns out to be 0.5, which indicates that cache management considers the

current demand and the future usage of remote data equally. Values in the range [0.3,0.7] achieve

comparable performance, though, which again points to a certain robustness of our utility model.

0

500

1000

1500

2000

 1 2 3 4 5 6 7

L
a
te

n
c
y
 (

µ
s
)

Number of PFetch lookahead category

(a) PFetch lookahead category selection.

0

200

400

600

800

 1 2 3 4 5 6 7

L
a
te

n
c
y
 (

µ
s
)

Number of LzEval postpone category

(b) LzEval postpone category selection.

Figure 5.15: Sensitivity analysis for PFetch and LzEval category selection.

Selection of lookahead categories for PFetch. PFetch’s performance largely depends on

when to trigger prefetching – lookahead categories of partial matches. We demonstrate this

aspect by manually selecting lookahead categories, how early prefetching occurs, rather than

95

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

determining it dynamically based on the strategies in Section 5.4.1. To this end, we modify Q5

by moving the remote data evaluation to the end of the pattern sequence, providing up to seven

preceding categories for prefetching. As shown in Figure 5.15(a), the optimal performance is

achieved when prefetching three preceding categories in advance. These results demonstrate the

intuition that when prefetching occurs too late (i.e., less than two preceding categories), it only

hides a fraction of the transmission latency. In contrast, prefetching earlier than three preceding

categories means that the prediction of which elements to fetch is inaccurate, compromising

PFetch’s benefits.

Selection of categories of partial matches for LzEval. We also test the impact of the selec-

tion of categories of partial matches for which LzEval is applied. We again modify Q5, setting the

remote data evaluation categories to the beginning of the pattern sequence, allowing us to control

the number of its succeeding categories (candidates for LzEval) between one and seven. It should

be noted that changing remote data evaluation point actually results in different queries and the

partial match distribution and latencies are changed with it. The results are demonstrated in

Figure 5.15(b). The optimal results are achieved when selecting four succeeding categories for

lazy evaluation, though the performance between selecting three and six succeeding categories

is comparable. However, lazy evaluation for only one or two succeeding categories hides little

latency, whereas the exponential growth in the number of additional partial matches becomes

too large when selecting seven of them. There, the additional overhead mitigates the potential

benefit of lazy evaluation.

5.6.4 Case Studies

Finally, we applied our approach in the aforementioned real-world scenarios, comparing our

fetching strategies against the baselines, with a cost-based cache under greedy selection.

PATTERN SEQ(Satellite a, Satellite b, Satellite c)+)
WHERE SAME[OVERLAP(boundary)] AND a.channel =7 AND a.time >=6:00
AND a.level=high AND b.channel =14 AND UDF1[a.level ,b.level]=high
AND c.channel =16 AND c.time <18:00 AND REMOTE[c.temperature] >=46.51◦C
AND c.level=high AND REMOTE[c.humidity] <=23.38
WITHIN 1h

Listing 5.2: Query for the satellite/sensor-network dataset.

Bushfire detection. We use a real-world dataset of a bushfire detection system composed

of ground-based sensor networks and the geostationary operational environmental satellite,

GOES-16 [136]. GOES-16 captures the earth’s radiance in 16 spectral channels with different

wavelengths and is capable of detecting heat signatures produced by fires [137]. While it may

track fires in real-time, the obtained information is combined with data from a sensor network

for fine-grained validation. For this dataset, Listing 5.2 shows a query to detect a bushfire in the

96

5.6. EVALUATIONS

0

50

100

150

200

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
m

s
)

(a) Bushfire detection.

 0

10

20

30

40

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a

te
n

c
y

 (
m

s
)

500

1500

2500

3500

(b) Cluster monitoring.

Figure 5.16: Case studies.

PATTERN SEQ(Submit a, Schedule b, Evict c, Schedule d, Evict e, Schedule f,
Fail g)

WHERE [task_id] AND b.machine=c.machine
AND b.region NOT IN REMOTE[d.machine]
AND d.machine=e.machine AND f.machine=g.machine
AND d.region NOT IN REMOTE[f.machine]
WITHIN 1h

Listing 5.3: Query for the Google Cluster Traces dataset.

daytime [137]. In essence, it describes the repeated occurrence of a specific radiation pattern for a

geographical area (boundary) in the satellite data: Within one hour, the energy level of channel 7 is

high, mid-wave IR bands (channel 7) signals are stronger than long wave IR bands (channel 14),

and the CO2 (channel 16) level is above a threshold. This area is probably on fire, which is further

validated by remote data reference fetched from ground sensor networks. If its temperature

is above 46.51◦C and its humidify measure is above 23.38, the ESP engine reports a bushfire

detection. We configure the data transmission latency uniformly distributed from 10ms to 100ms.

As shown in Figure 5.16(a), the results obtained for this case follow the trend observed for the

synthetic dataset, with all our approaches outperforming the baselines and Hybrid performing

best. Hybrid reduces median latencies for BL1 and BL2 by 206× and 20×, respectively. For the

95th percentile latencies, the improvements are 18× and 13×. We also observe that PFetch has

similar performance as Hybrid, except for the long tail, 95th percentile latency, which shows that

PFetch is able to accurately anticipate the need for remote data.

Cluster monitoring. As a second real-world dataset, we rely on the Google Cluster Traces [160].

It contains events that indicate the lifecycle (e.g., submit, schedule, evict, and fail) of tasks

97

CHAPTER 5. EFFICIENT REMOTE DATA INTEGRATION

running in a large-scale cluster of 12.5k machines. We employ the query of Listing 5.3, which

detects the following pattern: A task is submitted, scheduled, and evicted on one machine; later, in

a different region, it is rescheduled and evicted on another machine; and finally it is rescheduled

on a third machine, in another region, but fails execution. Here, information on the regions needs

to be fetched from a remote database. we adopted a data transmission latency drawn uniformly

from 1ms to 10ms. The results in Figure 5.16(b) again highlight that Hybrid outperforms all

other approaches. It reduces the median latencies by 73× and 47× for BL1 and BL2, respectively.

For the 95th percentile latencies, Hybrid improves 13× and 7×.

5.7 Summary

In this chapter, we proposed EIRES, a framework for efficient integration of remote data in

evaluating patter detection queries over event streams. Our core idea is to decouple the fetching

of remote data and its use in query evaluation. Data elements may be fetched before the need for

them materialises and the evaluation of partial matches may be postponed until after the data is

available. The EIRES framework facilitates these ideas through a cost model to evaluate data

utility; strategies for fetching remote data, either through prefetching or lazy evaluation; and

policies for cache management. Our experimental results show that EIRES improves the latency

of query evaluation by up to 3,752× for synthetic data and 47× for real-world data.

98

C
H

A
P

T
E

R

6
CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

This chapter illustrates the usefulness of the event pattern detection and the optimisation

techniques presented in Chapter 4 and Chapter 5 in a real-world scenario: We present a

complete use case of applying efficient event pattern detection in demand-response (DR)

management in smart grid systems. DR management aims to shift consumers’ peak-hour energy

demand load to off peak times by offering them financial incentives, in order to use energy in an

efficient, economic, and environmentally friendly manner. However, traditional DR management

approaches are static and do not react to users’ behaviour in terms of peak energy reduction.

Therefore, such approaches may fail to fully exploit the flexibility of users’ energy use patterns

and therefore, fail to meet the peak energy reduction goal. To tackle this problem, this chapter

employs event stream processing to monitor the users’ behaviour in response to the peak energy

reduction requests and predicts potential non-compliance in real time. Based thereon, a second

DR program is scheduled with higher incentives to compensate for the deficit in energy reduction.

This chapter is organised as follows: Section 6.1 explains the foundations of DR management

in smart grid systems and illustrates the limitations of the state-of-the-art DR management

approaches. Section 6.2 discusses how ESP for pattern detection enables adaptive DR manage-

ment to achieve best-effort peak energy reduction. Evaluations are conducted in Section 6.3 to

illustrate the effectiveness and efficiency of the proposed approach.

6.1 Problem Illustration

A smart electrical grid (smart grid) strives to improve efficiency, flexibility, and stability of the

electric energy generation and distribution system. It offers energy-related services to the power

grid operator and consumers. This is achieved by augmenting a traditional power grid with a

99

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

Demand
forecast

Production
forecast

Price
forecast

Power grid

DR request event

DR respons event

En
er

gy
-s

av
in

g
ev

en
t 1

Ene
rg

y-s
av

ing
 ev

en
t 2

Gateway

Energy saving

Incentives for
energy reduction

Building 1

Sm
ar

t m
et

er

Sm
ar

t m
et

er

Sm
ar

t m
et

er

Building 2

Building 3

Power plant

Solar power plant

Wind power plant

Energy-saving event 3

Supply side Demand side
Supply capacity < Demand

Household applianceUtility side

Figure 6.1: Demand response management in smart grid.

layer of information and communication technologies (ICT) to automatically collect, analyse, and

act on meter data. Such an ICT layer is usually materialised by routers, gateways, and smart

meters installed at users’ premises that enable two-way communication between the power utility

and users.

Figure 6.1 illustrates a typical framework of a smart grid that consists of three major

(conceptual) components, supply side, utility side, and demand side, connected by a power grid.

The supply side produces electricity from different sources including fossil-fuel-based power

plants and renewable energy, such as solar farms and wind farms. The demand side, in turn,

consumes electricity through the smart grid. It consists of households with smart meters installed.

A smart meter monitors the energy consumption of household appliances, such as televisions,

air conditioning, washing machines, and refrigerators. Furthermore, smart meters are able to

switch on and off appliances if permission is granted by users. Lastly, the utility side matches

the supply and the demand sides. Specifically, it analyses collected meter data from the smart

grid and, based thereon, forecasts the capacities of both demand and supply side as well as the

electricity price. The ideal scenario is that demand capacity and supply capacity are roughly the

same at any point in time.

However, in practice, the demand side may require more energy than is available at the

supply side during peak time. For instance, during 6 PM-8 PM, people return home from work

and switch on a range of household appliances, resulting in spikes of energy demand beyond the

capacity of the supply side. This mismatch could be solved by increasing the capacity of the supply

side, e.g., by running more generators at power plants. Alternatively, a more energy-efficient and

economical approach is to shift the energy demand spikes to off-peak times, so that the reduced

peak demand is below the supply side’s capacity, as illustrated in Figure 6.2. Such load shift is

achieved by demand response (DR) management that offers households financial incentives to

100

6.1. PROBLEM ILLUSTRATION

Time of day

Lo
ad

Peak load
reduction

Load shiftLoad shift

Shifting peak load

Supply side capacity

Figure 6.2: Peak load shift.

postpone or bring forward the use of appliances.

Figure 6.1 illustrates how DR management is supported by the ICT layer of a smart grid.

Here, energy reduction requests and incentives are incorporated in DR request events (coloured

in orange) sent by the utility side. These DR request events are transmitted to gateways of

residential neighbourhoods and then forwarded to smart meters installed at households. Some

smart meters may have permit (granted by users) to directly control the energy consumption of

certain appliances. Others send notifications to users who may be willing to postpone unnecessary

appliance usage such as washing machines, or switch on an air conditioner in advance to cool

down a room before returning home. As long as users make responses, smart meters monitor

energy savings and send them as energy-saving events (coloured in blue) to gateways which

further aggregate energy saving measurements into DR response events (coloured in green) and

send them back to the utility side for billing and further scheduling analysis. Such a two-way DR

request-response process is called a DR program. A DR program lasts for the (estimated) peak

time duration and consists of the following steps.

Step 1: The utility generates a DR program for a set of participants and sends DR request events

with the volume of energy reduction, and the corresponding time frame [tstart, tend]).

Step 2: Consumers respond by either accepting, or declining the DR request [99]. The consumers’

responses are collected by the utility to estimate the available system flexibility.

Step 3: During the DR program period, the consumers who accept the request change their

appliance usage patterns to meet the specified energy reduction.

Step 4: After the DR program ends, the utility evaluates the participants’ contributions, and

compensates them accordingly.

The problem of traditional demand response management approaches is that they are static,

and do not involve feedback to users during the DR program. Specifically, as shown in Figure 6.3,

101

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

DR
Request

DR
Response Billing Payment

Utility

ParticipantParticipant

time

DR Program
Preparation

DR Program
Period

DR Program
Evaluation

Figure 6.3: Traditional approach for DR management.

the utility informs the DR participants of an upcoming DR program while specifying the timing,

required energy reduction, and incentive for compliance. During the DR program, the utility does

not monitor the performance of DR participants while some users may decline to respond because

the financial incentives are insufficient. Therefore, the overall energy saving during the DR

program may not meet the reduction goal. However, traditional DR management approaches only

recognise this non-compliance after the DR program ends and collect meter data for post-analysis

to predict proper incentives for the next DR program at a different day. This is not economically

optimal due to the under-utilization of the residential demand flexibility.

Utility

Participant

Consumption

...
2nd Req. 2nd Res.

...

Consumption

Participant

time

DR Program 1
Preparation

DR Program
Evaluation

DR Program 2
Preparation

DR Progam
2 Period

DR Porgam 1 Period

Figure 6.4: Adaptive DR management via event stream processing.

To address this challenge, it was recently suggested to leverage real-time feedback to adap-

tively modify the participants’ incentives [158]. This chapter takes up this idea and proposes

a distributed ESP framework to detect users’ responses in real-time and predict potential non-

compliance before the initial DR program ends, so that multiple DR request events may be

scheduled with modified incentives, as demonstrated in Figure 6.4.

6.2 Adaptive DR Management with Event Stream Processing

This section shows how to realise the adaptive DR management through event stream processing

thereby, enabling the predication of DR non-compliance with low latency. To this end, we formally

define the problem of DR compliance assessment in Section 6.2.1, including an approach to

predict user-level DR non-compliance before the DR program ends. Section 6.2.2 employs scalable

distributed event stream processing to predict DR non-compliance at utility level with low latency.

Section 6.2.3 explains how the utility decides the energy reduction, the incentive, and participants

to schedule the second DR request, if a non-compliance is predicted.

102

6.2. ADAPTIVE DR MANAGEMENT WITH EVENT STREAM PROCESSING

6.2.1 DR Compliance Assessment and Prediction

We first define the problem of demand response compliance. A smart grid is fully compliant with a

DR program if its users’ accumulated energy saving is greater or equal than the energy reduction

specified by the DR request event. It is formally defined as follows.

Definition 6.1 (DR compliance at utility level). Let K be the number of smart grid users, tstart be

the starting time of a DR program, tend be the ending time, Pt be the users’ actual power demand

at time point t with the DR program, Bt be the users’ power demand at time point t without the

DR program, and λ be the specified energy reduction. Then, the smart grid is compliant with the

DR program at utility level if the following condition is satisfied:

(6.1)
tend∑

t=tstart

(Bt −Pt) ≥ λ.

Note that Bt is actually the hypothetical power demand of all users had there been no DR program.

It can be estimated from users’ historical load profiles (see [88] for an overview).

Problem 6.1. The problem of adaptive DR management is to (1) predicate the earliest time point t,

tbegin < t < tend, when Equation 6.1 cannot hold and (2) modify incentives and schedule follow-up

DR requests such that Equation 6.1 will be satisfied at time tend.

To address the problems of traditional DR management (Section 6.1) and realise the idea

of adaptive DR management (Figure 6.4), we first consider the compliance assessment of each

individual user with low latency. Based thereon, we propose a bottom-up approach to predict

non-compliance at utility level before the DR program ends.

Similar to Definition 6.1, we define the DR compliance for a user (household k as follows.

Definition 6.2 (DR compliance at user level). Let tstart be the starting time of a DR program,

tend be the ending time, Pk,t be the user’s actual power demand at time point t with the DR

program, Bk,t be the users’ power demand at time point t without the DR program, and λk be

the specified energy reduction. user k is compliant with DR program if the following condition is

satisfied:

(6.2)
tend∑

t=tstart

(Bk,t −Pk,t) ≥ λk.

To illustrate the intuition behind the prediction of non-compliance at low latency, we consider

the average load profile of a typical user shown in Figure 6.5(a), which is obtained based on

the probabilistic generation techniques validated in [53, 157]. Here, a DR program is scheduled

from 6:30 PM to 8:30 PM. The black curve corresponds to the case when no DR event exists. The

green curve, in turn, represents the user’s typical response for a given incentive. However, given

the same DR program, for some reason (e.g., hot weather) on a different day, the user does not

103

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

Re
al

 p
ow

er
 (

kW
)

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

-0.5

0

0.5

1

kW
 re

du
ct

io
n

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

R
e
a
l

p
o
w

e
r

(
k
W

)

Baseline profile
Profile with DR (ft=0.3)
Profile with DR (ft=0.7)

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

-0.5

0

0.5

k
W

r
e
d
u
c
t
i
o
n

No DR
Inadequate response
Complete response

Re
al

 p
ow

er
 (k

W
)

Hour of day

(a) Residential load profiles.
0 2 4 6 8 10 12 14 16 18 20 22 24

0

1

2

3

4

5
Re

al
 p

ow
er

 (
kW

)

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

-0.5

0

0.5

1

kW
 re

du
ct

io
n

DR event period

kW
 re

du
ct

io
n

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

R
e
a
l

p
o
w

e
r

(
k
W

)

Baseline profile
Profile with DR (ft=0.3)
Profile with DR (ft=0.7)

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

-0.5

0

0.5

k
W

r
e
d
u
c
t
i
o
n

Inadequate response
Complete response

Hour of day

(b) Power reduction during DR program.

Figure 6.5: Inadequate and complete demand responses of a residential consumer.

respond adequately, resulting in the load profile depicted in brown. The difference between the

load reduction with complete and inadequate DR compliance is demonstrated in Figure 6.5(b). It

indicates that unless the behaviour of the user changes partly through the DR program period,

the utility can predict whether this user is able to fully meet the energy reduction goal by

comparing the (estimated) complete (green) and measured (brown) profiles from the start of the

DR program. Based on this observation, we now derive a non-compliance prediction procedure.

We examine energy reduction profiles (Figure 6.5(b)) at a finer granularity in Figure 6.6. The

complete (green) and inadequate (brown) response curves indicate that if the actual response

(in terms of kWh reduction achieved) is lower than the estimated complete response for some

time span from the beginning of the DR program, it is very likely that the energy reduction at

the end of the DR program would also be insufficient. This leads to the proposed non-compliance

prediction procedure for user k, which is also based on the ‘Baseline Type-I’ M&V technique

proposed by the North American Energy Standards Board (NAESB) [88]:

Step 1: Wait for a fixed time duration dwait after the DR program begins for the pre-DR rebound

to disappear (see Figure 6.6).

Step 2: Monitor the energy reduction at a constant interval δ at times ttest = t1, t2, · · · , tend to

104

6.2. ADAPTIVE DR MANAGEMENT WITH EVENT STREAM PROCESSING

18.5 19 19.5 20 20.5
Hour of day

0

0.5

1

kW
h

re
du

ct
io

n
0 2 4 6 8 10 12 14 16 18 20 22 24

0

1

2

3

4

5

R
e
a
l
p
o
w

e
r

(
k
W

)

Baseline profile
Profile with DR (ft=0.3)
Profile with DR (ft=0.7)

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

-0.5

0

0.5

k
W

r
e
d
u
c
t
io

n

Inadequate response
Complete response

twait

t1 t2 t3

δ

Figure 6.6: Profile of the cumulative energy reduction from the baseline during a DR event.

verify if the Equation 6.3 is satisfied for user k:

(6.3)
ttest∑

t=tstart

(Bk,t −Pk,t) <
ttest∑

t=tstart

(Bk,t − P̂k,t).

Note that [tstart, tend] is the DR program period, Bk,t the baseline demand without DR,

Pk,t the measured demand during the DR program, and P̂k,t the load profile for the esti-

mated complete response. Bk,t and P̂k,t are estimated using standard DR measurement

and verification techniques based on historical performance data and randomised control

trials [88]. Furthermore, Equation 6.3 can be simplified into the following Equation 6.4:

(6.4)
ttest∑

t=tstart

Pk,t >
ttest∑

t=tstart

P̂k,t .

Step 3: Predict non-compliance if Equation 6.4 is satisfied for m consecutive testing times.

The above procedure is applied for at least m consecutive testing intervals before issuing a

prediction (see step 3 above). The reason for step 3, testing at least m consecutive intervals, is

because in reality, the measured and estimated load profiles would suffer from high variability as

opposed to the average profiles presented in Figure 6.5. Therefore, repeated testing is performed

to avoid false predictions of non-compliance. Values for the parameters, i.e., twait, the testing

interval δ, and m need to be tuned for a given system before accurate predictions can be obtained.

6.2.2 Scalable Monitoring through Event Stream Processing

To realise the adaptive DR management based on low-latency compliance assessment in a

scalable manner, we employ a distributed event stream processing infrastructure as illustrated

in Figure 6.7. That is, following the topology of a smart grid communication network (ICT layer),

all users are divided into groups to enable decentralised prediction of their compliance during

105

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

a DR program. The compliance predictions for individual users are used to predict group-level

compliance which is in turn used for compliance prediction at the global level for the utility.

Based thereon, decisions on additional DR requests are taken.

Utility

Participants:

...

... ...

Groups:

Smart meter
reading event

Group‐level
compliance
prediction

Utility‐level
Compliance
predictionDR requests and

responses

User‐level
compliance
prediction

User non‐
compliance
event

Group non‐
compliance
event

Group leader Group leader

Figure 6.7: Infrastructure for dynamic DR based on distributed event stream processing.

The proposed group-based approach to monitoring means that the approach is inherently

distributed. Conceptually, non-compliance predictions are performed at user level, group level

and utility level. As detailed below, the accumulation of energy measurements and the compliance

prediction is further grounded in queries over event streams to meet the requirement of traceable

and online processing.

User-level non-compliance prediction. A Smart meter monitors and accumulates energy

consumption of household appliances and digitalise such information through smart meter

reading events of type smartMeterEvent. Table 6.1 shows the schema of the smartMeterEvent type.

Note that we only list the relevant attributes to DR compliance assessment. Based thereon, a

smart meter performs the three-step-procedure of user-level DR compliance prediction explained

in Section 6.2.1. This is achieved by evaluating the query defined in Listing 6.1. It detects a

sequential pattern with a Kleene closure operator that selects smart meter reading events for

users whose accumulated load satisfies Equation 6.4 for at least muser consecutive time intervals

per sliding window. Note that a[i] refers to each selected event of the Kleene closure sequence.

Also, λ[a[i].housID,a[i].time] represents the estimated complete response load for a given user at

a given time point (P̂k,t in Equation 6.4). The query’s output event is a user-level non-compliance

event of type userNonComplianceEvent, which contains the timestamp when non-compliance is

predicted, as well as the household ID, the group ID, and the accumulated load.

Group-level non-compliance prediction. A group leader is assigned to each group and group

members’ smart meters continuously send events of type userNonComplianceEvent to the group

leader. A group leader may be realised by a gateway device as illustrated in Figure 6.1, or

by a selected smart meter that analyses other smart meters’ reading events within the group.

Similar to the prediction procedure at user level (Section 6.2.1), a group is not compliant to DR

management if more than ratio γuser of its residents are predicted to be non-compliant for at

106

6.2. ADAPTIVE DR MANAGEMENT WITH EVENT STREAM PROCESSING

Table 6.1: Schema of smart meter reading event smartMeterEvent.

Attribute: id time houseID groupID accLoad (kW)
Domain: N N text text R

11 24234982 ‘H1’ ‘G1’ 12.20
12 24235323 ‘H2’ ‘G2’ 14.78
23 24236728 ‘H1’ ‘G1’ 24.41

SEQ (smartMeterEvent a+[])
WHERE SAME[houseID] AND a[i].time >tstart AND a[i].time <tend
AND a[i].accLoad >λ[a[i].housID,a[i].time] //test Equation 6.4
AND a[i]time +1=a[i+1]. time //test consecutive time points
AND LENGTH(a+[])>muser //test more than m consecutive time points
WITHIN 2h
RETURN userNonComplianceEvent(a[muser].time , a[muser].houseID ,

a[muser].groupID , a[muser]. accLoad)

Listing 6.1: Query for individual level compliance assessment.

least mgroup consecutive time intervals. This is achieved by evaluating queries in Listing 6.2 at

group leaders. Here, the top query selects groups whose ratio γuser of users fail to comply DR

request event’s energy reduction and generate an alert event of type groupAlertEvent, grouped by

time stamps. An array, GroupSize, stores the number of residents for each group which is indexed

by group ID. The bottom query, in turn, takes alert events of type groupAlertEvent as the input

stream and detects the pattern that alert events happen consecutively for at least mgroup time

intervals. It then generates group non-compliant events of type groupNonComplianceEvent as an

output stream.

SELECT COUNT(DISTINCT houseID) AS alertNum , SUM(accLoad) AS sumAccLoad
FROM userNonComplianceEvent STREAM
WHERE SAME[groupID] AND alertNum > γuser×GroupSize[groupID]
GROUP BY time
RETURN groupAlertEvent(time , groupID ,sumAccLoad)

SEQ (groupAlertEvent a+[])
FROM groupAlertEvent STREAM
WHERE SAME[groupID] AND a[i].time >tstart AND a[i].time <tend
AND a[i]time +1=a[i+1]. time //test consecutive time points
AND LENGTH(a+[])>mgroup //test more than M consecutive time points
WITHIN 2h
RETURN groupNonComplianceEvent(a[mgroup].time , a[mgroup].groupID ,

a[mgroup]. sumAccLoad)

Listing 6.2: Queries for group level compliance assessment.

Utility-level non-compliance prediction. The utility keeps receiving event streams of type

groupNonComplianceEvent from group leaders. Non-compliant prediction at utility level is based on

107

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

group-level non-compliance. Specifically, if more than ratio γgroup of groups fail to comply DR

request energy reduction for more than at least mutility consecutive time intervals, the utility is

predicted to be non-compliant at the end of DR program. This is realised by evaluating queries in

Listing 6.3. Similar to group-level prediction, the top query in Listing 6.3 selects accumulated load

and time intervals when more than γgroup groups fail to comply DR request and generate an alert

event of type utilityAlertEvent, grouped by time stamp. The bottom query, in turn, takes events of

type utilityAlertEvent as the input stream and detects the pattern that the alter events appears

consecutively for at least mutility times. Finally, it generates non-compliance event at utility level

of type utilityNonComplianceEvent, which triggers the schedule of a second DR program.

SELECT COUNT(DISTINCT groupID) AS alertNum , SUM(sumAccLoad) AS load
FROM groupNonComplianceEvent STREAM
WHERE alertNum > γgroup×GROUPNUM
GROUP BY time
RETURN utilityAlertEvent(time , load)

SEQ (utilityAlertEvent a+[])
FROM utilityAlertEvent STREAM
WHERE a[i].time >tstart AND a[i].time <tend
AND a[i]time +1=a[i+1]. time //test consecutive time points
AND LENGTH(a+[])>mutility //test more than M consecutive time points
WITHIN 2h
RETURN utilityNonComplianceEvent(a[mutility].time , a[mutility].load)

Listing 6.3: Query for utility level compliance assessment.

In the proposed adaptive DR implementation, the monitoring rate at the various levels of

the system is reduced once the compliance assessment is complete. For instance, consider the

case where a group of DR participants is predicted to be non-compliant at time tnc during the DR

program. For this group, further compliance testing is not performed during the DR program

period, and the monitoring rates for smart meters in this group are lowered to the rate required

for settlement purposes. Therefore, even if the smart meter reading event streams were initially

monitored at a higher rate, e.g., at 1 min intervals, the rate can be reduced to 15 min intervals

after non-compliance prediction. Meanwhile, the monitoring in other groups remains unaffected,

and the utility-level monitoring queries continue to predict the smart grid system compliance

status. Once the overall smart grid system is detected to be non-compliant, the monitoring rate

for all the smart meters is reduced. This approach significantly reduces the monitoring cost and

enables a scalable implementation for large systems, as will be demonstrated in Section 6.3.3.

6.2.3 Utility Intervention during an Unsuccessful DR Event

When the utility predicts a non-compliant response to an incentive λo, it offers a higher incentive

λnew for users to offset the deficit in the peak energy reduction. λnew is incorporated in another

108

6.2. ADAPTIVE DR MANAGEMENT WITH EVENT STREAM PROCESSING

Participant’s strategy

DR Program-1
Compliant

[λo]
Non-compliant

Compliant

[-Cnc + E(λ) = -Cnc + pinc λnew]

Non-compliant

[-Cnc]

Strategy-1

Strategy-2 Strategy-3

DR Program-2

Figure 6.8: DR participants’ expected payoffs (in square braces) under three possible strategies.

DR request event for the follow-up DR program (see Figure 6.4). However, a large number of DR

programs in single day may result in the risk of participation fatigue [24], which deters users

from participating in future DR programs. Such a number shall be tuned for different smart grids

and here we focus on at most two DR requests.

6.2.3.1 Incentive for the Second DR Program

Determining the new incentive λnew requires the utility to have some knowledge about the

behavior of the consumers in the system, which is a reasonable expectation [142]. Without loss of

generality, we assume two constraints to prevent over-compensation and potential gaming of the

DR management by the participating users.

First, while the second DR request is offered to all participants, we use a fixed probability

pinc to randomly select a subset of the participants that are compliant in the second event, who

are actually paid the additional incentive. Indeed, such a lottery-based reward scheme has been

found to elicit more response than a fixed reward [99], while also reducing the overall cost of

the second event to the utility. The value of pinc, or equivalently, the number of participants

κ= (pinc × total participants) actually offered the higher incentive is determined as follows:

(6.5) Monitoring cost+κ (λnew −λo) ≤ Csaved.

Equation 6.5 compares the cost and benefit of the proposed scheme, with Csaved referring to the

cost savings achieved by reducing the peak load through the second DR program. Csaved may also

refer to the cost saving of using alternates such as direct load control to compensate the deficit in

the first DR program.

Second, to encourage participants to provide compliant responses for the first DR program

instead of waiting for higher incentives during the second one (i.e., to game the DR program), a

penalty Cnc is imposed on participants who are non-compliant in the first DR program. Figure 6.8

shows the expected payoffs under different possible scenarios. By setting:

(6.6) Cnc > pinc λnew −λo ,

109

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

DR follow-through rate

In
ce

nt
iv

e
λ

0 1θoθred

Shifted mapping resulting
in reduced response

|Δθ|

θnew

Original incentive λo

Uneconomical
to incentivise

Feasible to
incentivise

Limited
flexibility
remaining

Expected mappingNew incentive λnew

Figure 6.9: Mapping the incentive offered by the utility to the consumer response.

the utility achieves that the dominant strategy for each participant is to fully participate in the

initial DR program (Strategy-1) and thereby maximise their expected payoffs.

6.2.3.2 Correlations between Additional Incentive and Consumer Response

The responses of the various participants to the second DR program are not uniform. On the

one hand, users who respond to the first DR request event with high enthusiasm may not have

additional flexibility left to provide, and therefore, any additional incentives may not result in

meaningful returns. On the other hand, users who do not respond at all to the first DR program

may be reluctant to respond during the second one as well, even for an increased incentive. These

aspects are represented by the lower and upper bounds of the hatched region in Figure 6.9,

considering a mapping between the incentive offered and the response to it (similar models

have been widely adopted, e.g., see [142, 177]). Here, the DR follow-through rate represents the

probability of a user’s response to a DR request. i.e., a value of one means deferring the use of

appliances (e.g., dishwashers), while a value of zero indicates that the user takes no action to

change the energy usage pattern. The second DR request event targets those users in the middle

of the above spectrum, i.e., those whose characteristic lies within the hatched region.

For instance, we may assume a linear correlation between incentives and follow-through rates.

For a user, the first DR program offers incentive λo and the expected median follow-through

rate is θexp. However, in practice, during the DR program, we monitor a shifted mapping which

results in a reduced follow-through rate θred. If a utility-level non-compliance is predicted, the

utility computes the new incentive λnew based on the estimated follow-through rate θnew, see

Equation 6.5 and Equation 6.6. Note that the mappings are modelled based on a survey [156]

and metrics reported from previous DR field trials [99].

110

6.3. EVALUATIONS

6.3 Evaluations

To illustrate the effectiveness and efficiency of the adaptive DR management with event stream

processing, we conduct a comprehensive case study of a (micro) smart grid with home appliances

and electric vehicles (EV) participating in the DR program. Section 6.3.1 demonstrates the energy

load profiles and case description. We show the effectiveness of the adaptive DR management in

Section 6.3.2, followed by its efficiency in Section 6.3.3.

6.3.1 Experimental Setup and Case Description

Home appliance load profiles. The load profile of each residence’s home appliances is simu-

lated in a bottom-up fashion, using the model and specifications introduced and validated in

[53, 157]. In brief, this approach generates load profiles based on the probabilities of starting an

appliance at a given time of the day. If a DR program is scheduled by the utility, the appliance-use

probabilities are modified to reflect users’ actions in deferring their energy usage.

Residential EV charging load profiles. We simulate the EV profiles based on the approach

presented in [154] when no DR event is requested by the utility. The behaviour of each EV user is

modelled by the probability distribution of the number of charging procedures per day, probability

that each charging begins at a given time of the day, and the probability distributions of the

initial and final state-of-charge values for the EV battery. When an EV user participates in a DR

program, the user defers the EV charging and this behaviour is modelled as a reduction of the

probabilities mentioned above.

Figure 6.10 illustrates the resulting average load profiles of appliances in one residence and

an EV while considering a DR event between 6:30-8:30 PM, with θft = 0.3 as an example.

Use case description. To illustrate the effectiveness of the adaptive DR management, we

consider a (micro) smart grid system of 100,000 users divided in five groups. All the users have

enrolled in the utility’s incentive-based DR program. Each user is uniformly assigned from 20 to

25 different common house appliances including microwave oven, refrigerator, TV, coffee machine,

dish washer, washing machine, among others. Besides, residents are randomly assigned EVs

depending on the EV penetration level, 22.48%, which is the 2030 forecast for EV adoption in

the UK. Users’ EV response actions (follow-through rates) are modelled based a survey [156],

where the average value is θft = 0.45. The follow-through rate of each household is assigned to a

randomly-chosen survey response. A DR program is scheduled from 6:30 PM to 8:30 PM and the

expected energy reduction is 83.28 MWh.

The load profiles are simulated in Matlab and the event stream processing infrastructure is

implemented based on Esper [69]. The simulation parameters are listed in Table 6.2. Here, the

parameters twait, δ, m, γgroup and muser, mgroup and mutility were selected empirically in order to

accurately detect non-compliance for a 20% reduction in follow-through rates of consumers. Note

111

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

(a)

(b)

Home appliances’ demand

EV charging demand

Figure 6.10: Average load profile for: (a) home appliances in one residence, and (b) charging one
residential EV.

Table 6.2: Smart grid DR management simulation parameters.

Parameter Value

D
R

pr
og

ra
m No. of DR participants 100,000

Start time tstart 6:30 PM
End time tend 8:30 PM
Energy reduction goal 83.28 MWh

M
on

it
or

in
g

No. of groups 5
Waiting time twait 20 minutes
Monitoring interval δ 5 minutes
No. of consecutive user-level alert times muser 3
No. of consecutive group-level alert times mgroup 3
No. of consecutive utility-level alert times mutility 3
Utility-group non-compliance threshold ratio γgroup 0.4

G
ro

up
in

g

Group G1 consumer No.1-No.10,000
Group G2 consumer No.10,001-No.30,000
Group G3 consumer No.30,001-No.35,000
Group G4 consumer No.35,001-No.60,000
Group G5 consumer No.60,001-No.100,000

that, in practice, the participants’ incentive-response correlation varies based on the location,

demographics, and other factors. To capture such difference, we leverage four different linear

mapping schemes (Section 6.2.3.2).

Measurement. We investigate effectiveness and efficiency of the proposed adaptive DR program.

To this end, we measure the energy reduction during peak time of our approach and compare it to

112

6.3. EVALUATIONS

the baseline (without DR), the expected reduction, and traditional single DR program approaches.

Specifically, both baseline and expected reduction are estimated. In contrast, both traditional

and proposed DR approaches are actually evaluated separately. Furthermore, we measure the

energy reduction under different speeds of non-compliance detection. For efficiency, we measure

the communication and computation cost of the proposed adaptive DR approach for different

numbers of users, reaching up to 1.6 million.

6.3.2 Effectiveness of Adaptive Demand Response Approach

Peak energy reduction. The energy load profile of the baseline demand, of the expected (com-

plete) response, of the traditional DR, and of the proposed adaptive DR are depicted in Figure 6.11.

Recall that the expected peak energy reduction of the initial DR program is 83.28 MWh. However,

in practice, participants mean follow-through rate, θred is reduced by 40% compared the expected

mean rate θo. Therefore, with no changes to the original incentive λo, the actual energy reduction

by the traditional single DR program is only 47.89 MWh, see Figure 6.11. Note that, without loss

of generality, λo is assigned an abstract unit for illustrative purposes.

In the adaptive DR approach, in turn, the utility analyses the real-time demand, and predicts

that only two of the five groups are expected to be compliant at 7:11 PM. Given the threshold

γgroup = 0.4, it then predicts that the overall system would be non-compliant, and schedules a

second DR request event beginning ten minutes later with a new increased incentive λnew for

each user. λnew is computed based on Equation 6.7, given constrains presented in Section 6.2.3.1.

(6.7) λnew =λo + (u−1)λo

1−θo
(β θo −θred).

The users then respond to λnew with the improved follow-through rate θnew that is computed

based on Equation 6.8.

(6.8) θnew = θred +
(

1−θo

1−θo

)
(β θo −θred).

Here, the factor u is set as 1.05, 1.10, 1.15 and 1.20 for the four different linear mappings (see

Section 6.3.1). The factor β, in turn, is to overcompensate the drop in the follow-through rates

during the second DR program to mitigate the overall energy reduction deficit. We empirically

tuned it to 1.8.

Finally, we observe that the energy reduction achieved by the proposed technique is 82.61 MWh,

which is within 1% of the expected value of 83.28 MWh, thereby demonstrating the effectiveness

of the proposed DR design.

Speed of non-compliance detection. The effectiveness of the proposed adaptive DR design

depends on the speed of non-compliance detection. This is illustrated in Figure 6.12. While

assuming the same DR program parameters as in Figure 6.11. we manually delay the non-

compliance detection time at ten-minute intervals starting from the earliest time 7:11 PM and

113

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

0 2 4 6 8 10 12 14 16 18 20 22 24

0

1

2

3

4

5

G
ro

up
s

no
n-

co
m

pl
ia

nt

0

1

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

0

100

200

300

400

500
R

ea
l p

ow
er

 (M
W

)

18 19 20 21 22 23

350

400

450

0 2 4 6 8 10 12 14 16 18 20 22 24

0

1

2

3

4

5
G

ro
up

s
no

n-
co

m
pl

ia
nt

0

1

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

0

100

200

300

400

500

R
ea

l p
ow

er
 (M

W
)

Baseline demand Expected response Traditional DR Proposed DR

0 2 4 6 8 10 12 14 16 18 20 22 24

0

1

2

3

4

5

G
ro

up
s

no
n-

co
m

pl
ia

nt

0

1

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

0

100

200

300

400

500

R
ea

l p
ow

er
 (M

W
)

Baseline demand Expected response Traditional DR Proposed DR0 2 4 6 8 10 12 14 16 18 20 22 24

0

1

2

3

4

5
G

ro
up

s
no

n-
co

m
pl

ia
nt

0

1

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

0

100

200

300

400

500

R
ea

l p
ow

er
 (M

W
)

Baseline demand Expected response Traditional DR Proposed DR

Figure 6.11: System demand for different baseline and DR approaches.

compare the final energy reduction achieved. Notably, the faster the detection of non-compliance,

the larger the window to mitigate the deficit in response. Therefore, more peak energy reduction

is achieved.

��11P0 ��21P0 ��31P0 ���1P0 ���1P0
7ime of non-compliance detection

�0

�0

�0

�0

�0

En
er

gy
 re

du
ct

io
n

(0
:

h)

Figure 6.12: Impact of the speed of non-compliance detection to the DR performance.

6.3.3 Efficiency of Distributed Event Stream Processing

To illustrate the scalability of the proposed DR scheme, we explore the communication and

computation costs involved in the monitoring process. Specifically, the communication cost is

defined as the number of event transmissions (e.g., events of type smartMeterEvent in Section 6.2.2),

while the computation cost is defined as the number of events and partial matches processed

by the ESP engine. We simulate a smart grid system where the number of DR participants

increases from 100,000 to 1.6 million. The results are presented in Figure 6.13, assuming that

every 10,000 consumers form one group. Evidently, the monitoring costs remain nearly constant

as the system size increases. This is because in the proposed distributed monitoring system

depicted in Figure 6.7, the monitoring of the participants is local within the group, allowing

for parallel compliance assessments within the various groups. Global communication is only

required between the group leaders and the utility. Therefore, scaling out the system actually

114

6.3. EVALUATIONS

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

100k
200k

400k
800k

1.6m

Number of participants

(a) Local communication cost.

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

5.0×10
3

6.0×10
3

7.0×10
3

100k
200k

400k
800k

1.6m

Number of participants

(b) Global communication cost.

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

100k
200k

400k
800k

1.6m

Number of participants

(c) Total communication cost.

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

100k
200k

400k
800k

1.6m

Number of participants

(d) Computation cost.

Figure 6.13: Communication and computation costs as the number of DR participants increases.

only adds groups, which increases the number of global communication massages by the number

of newly-added groups. Furthermore, the resolution at which the smart meter event streams

are monitored is reduced from one-minute intervals to 15-minute intervals after non-compliance

detection, which further reduces the communication costs.

6.3.4 Hybrid Load Shedding and Remote Data Integration in DR
Management

DR management serves as a supportive enhancement for smart grid scheduling rather than

exact analysis (e.g., billing purpose): The DR management delivers best-effort energy reduction

during peak time. Yet, it does not guarantee to meet the required energy reduction goal, which is

also not required by the utility. Therefore, lossy optimisation such as the hybrid load shedding

proposed in Chapter 4 is particularly useful here. By discarding input events and partial matches

to reduce the query processing latency on edge devices (e.g., smart meters and gateways), hybrid

load shedding enables the utility operator to maintain a similar DR management service quality

with less powerful edge devices (e.g., 100,000 smart meters with less computing power in this

evaluation). Alternatively, the utility is also able to save computing power for other services while

keeping the quality of DR management (e.g., performing more complex data analysis for incentive

prediction and billing purposes). We set latency bounds as 50% of the average latencies of the

115

CHAPTER 6. CASE STUDY: DEMAND RESPONSE MANAGEMENT IN SMART GRIDS

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

OP BL

DR Approach

(a) Communication cost.

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

OP BL

DR Approach

(b) Computation cost.

0
10
20
30
40
50
60
70
80
90

7:11PM 7:15PM

E
n

e
rg

y
 R

e
d

u
c

ti
o

n
 (

M
W

h
)

Time

BL OP

(c) Energy reduction.

Figure 6.14: Comparison of DR management approaches with (denoted by OP) and without
(denoted by BL) hybrid load shedding and EIRES framework.

original (without load shedding) execution of queries in Listing 6.1, 6.2, and 6.3, and investigate

the performance of event stream processing and DR management.

To improve the quality of the baseline load profile estimation (Bk,t in Equation 6.2), we

incorporate the estimation as remote data sources maintained at the utility. The baseline load

profiles are continuously updated based on the latest feedback from DR response monitoring

according to [88], whereas smart meters and gateways fetch the corresponding load profiles when

evaluating pattern detection queries in Listing 6.1, 6.2, and 6.3. The rationale behind this setting

is that the utility has global monitoring information about the DR response performance of the

whole smart grid, so that continuously updating the baseline load profiles improves the quality of

the estimation. Here, the EIRES framework proposed in Chapter 5 is beneficial to reduce the

data transmission latency.

In this evaluation, we simulated the execution of DR management on a single server. We

applied both hybrid load shedding and the EIRES framework to the introduced approach for adap-

tive DR management, denoted as the optimised approach (OP). Using the relative measurements

of performance, we compare the communication and computation costs as defined in Section 6.3.3

against the DR monitoring without hybrid load shedding and the EIRES framework, denoted as

the baseline approach (BL). In addition, we also compare the effectiveness of DR management —

the time of non-compliance prediction and the actual volume of energy reduction, using the same

incentive scheme. We assume that similar relative performance improvement will be achieved on

real-world edge devices deployed in smart grids. The results are illustrated in Figure 6.14.

From Figure 6.14(a) and Figure 6.14(b), we obverse that the optimised approach reduces 30%

communication and computation cost compared to the baseline approach. The reason is that

the hybrid load shedding discards input events and partial matches to reduce computation cost

116

6.4. SUMMARY

thereby, generating less communication messages in the smart grid, which improves the efficiency.

Meanwhile, Figure 6.14(c) illustrates that both approaches achieve similar DR performance. The

baseline approach predicted the non-compliance at 7:11 PM and scheduled the second DR request

accordingly, whereas, the optimised approach made the non-compliant predication and scheduled

its second DR request only four minutes later, at 7:15 PM. At the end of the DR program, the

baseline approach achieved the energy reduction of 82.61 MWh and the optimised approach

reduced 80.30 MWh energy. This is because the hybrid load shedding discards unimportant input

events and partial matches to maximise the results quality, achieving similar energy reduction

with the baseline approach. In addition, the EIRES framework efficiently integrated baseline

load profiles from the utility to smart meters and gateways, so that the optimised approach

predicted the non-compliance and scheduled the second DR request only four minutes slower

than the baseline approach, despite of side effects of the hybrid load shedding. In summary, the

optimised approach is able to achieve similar DR performance using 70% of the computing power

compared to the baseline approach.

6.4 Summary

This chapter shows how adaptive DR management can be realised using event stream processing.

In the case of potential non-compliance to the energy reduction goal of the DR program, it

adaptively creates an additional DR request with higher incentives for participation. This is

implemented using a distributed event stream processing framework, which enables the scalable

realisation with low computation and communication overheads. It does not require new hardware

and can be integrated easily into existing DR management systems, and can be modified by

utilities to suit their respective customer bases. The merits of the adaptive DR management were

demonstrated for a system of 100,000 residential consumers, using bottom-up simulations of

home appliances and electric vehicles, and realistic consumer behaviour models. We also illustrate

that the hybrid load shedding and the EIRES framework enable the adaptive DR management to

scale to 1.6 million users.

117

C
H

A
P

T
E

R

7
CONCLUSION

This chapter concludes this dissertation. Section 7.1 provides a summary of the main

results and contributions of this PhD work and discusses the implications for research

and practice. Section 7.2 presents an outlook on directions for future research.

7.1 Summary and Impact

In this dissertation, we focused on the optimisation of state management for efficient pattern

detection in event stream processing. As a basis for developing these optimisation techniques,

we discussed why state management plays a pivotal role in efficient event pattern detection

and general data stream processing, especially in the light of requirements for low-latency

processing. We analysed that the query processing latency consists of the pattern evaluation

latency and the remote data transmission latency. This dissertation’s main contributions include

a lossy optimisation technique to reduce the pattern evaluation latency, a holistic optimisation

framework, EIRES, to reduce remote data transmission latency during query execution, and

a comprehensive case study that employs the above techniques in event stream processing for

smart grid management. We summarise the main results as follows:

• We proposed a hybrid load shedding approach to reduce pattern matching latency when

detecting patterns over event streams. It enables best-effort query evaluation, striving for

maximal query results quality while staying within a latency bound. Since the utility of

an input event in a stream may be highly dynamic in the presence of different states, we

complemented traditional input-based load shedding with a novel perspective: shedding

of states—partial matches. We presented a cost model based on states to balance various

shedding strategies and decide on what and how much data to shed.

119

CHAPTER 7. CONCLUSION

• We proposed the EIRES framework for efficient integration of remote data in the evaluation

of queries over event streams. Our core idea is to decouple the fetching of remote data and

its use in query evaluation. Remote data elements may be fetched before the need for them

materialises and the evaluation of corresponding query predicates may be postponed until

after the remote data elements are available. The EIRES framework facilitates these ideas

through a cost model to evaluate remote data utility based on states; strategies for fetching

remote data, either through prefetching or lazy evaluation; and policies for cache management.

• We showed how to achieve adaptive DR management using event stream processing. The

scheme creates an additional energy reduction request with higher incentives in potential

non-compliance to achieve the original energy reduction goal. We explained how the non-

compliance prediction can be realised by pattern detection over event streams of smarter

meter readings. Using the hybrid load shedding technique and the EIRES framework, we

applied the proposed approach at utility scale, with low computation and communication

overheads.

The work presented in this dissertation has several implications for the research in event

stream processing.

First, it stresses the importance of state management for efficient event stream processing.

Previous strategies for lossy optimisation work on the streaming data used as input. However, we

are the first to argue that the state dominates the effectiveness of lossy optimisations in pattern

detection queries. In addition, we argue that the irregular remote data access patterns in event

stream processing are determined by the dynamic state rather than static or dynamic program

analysis. Optimisations for hiding remote data transmission latency should therefore be based

on state management.

Second, our optimisation techniques are independent of any specific query language and

execution model. As long as the query evaluation is based on the state and state transitions, our

proposed approaches can be applied.

Third, we provide efficient prototype implementations as open-source projects and illus-

trate that estimation and approximation techniques (e.g., sketching) can be employed to reduce

computational overhead for online processing.

7.2 Future Work

The research reported in this dissertation opens up several directions for future research. First of

all, techniques to control of the trade-offs between query results quality and processing latency

could be added to the hybrid load shedding technique. Given a certain bound of query results

quality (e.g., 60% recall or 70% accuracy), the hybrid load shedding technique could be adapted

to choose what and how much to discard in order to achieve minimum latency. This could be

120

7.2. FUTURE WORK

further extended towards a pay-as-you-go computing mode. This means that based on the budget

of compute resources, the requirement of the query results’ quality, and the latency bound, the

hybrid load shedding shall select the most valuable state and events to process first.

Second, the interactions of hybrid load shedding and optimisation techniques in the EIRES

framework could be further investigated. When the hybrid load shedding discards partial matches

that need remote data elements, the remote data access patterns are affected, which directly

relates to the effectiveness of prefetching, lazy evaluation, and caching of within EIRES. In turn,

the selection of remote data to fetch also affects the growth of partial matches. Since partial

matches for which required remote data has been returned to the ESP engine will be processed

first, which in turn affects the hybrid load shedding. Therefore, a comprehensive cost model

combining both, the hybrid load shedding and the EIRES framework, is a valuable direction for

future research.

Last, the core concept of state management, especially the cost models based on states, may

be applied beyond the efficiency of event stream processing. For instance, state management

could also guide the fairness of processing multiple, distributed data streams. That is, one

could sue them to optimise how much compute resources should be allocated to each stream

to avoid unfairness according to quality of service (QoS) requirements of specific applications

(e.g., avoiding starvation of any input stream). In another example of machine learning systems,

one performance bottleneck is the efficiency linked to input pipelines for training data [133],

According to [133], “30% of the total compute time is spent ingesting data” and “20% of jobs spend

more than a third of their compute time in the input pipeline”. However, the selection of which

input data stream to consider in training also affects the quality of the final trained model (e.g.,

there is a bias towards the stream from which most training has been obtained). We believe that

state management of data streams will shed light on optimisation opportunities in this field.

121

BIBLIOGRAPHY

[1] D. J. ABADI, D. CARNEY, U. ÇETINTEMEL, M. CHERNIACK, C. CONVEY, S. LEE,

M. STONEBRAKER, N. TATBUL, AND S. B. ZDONIK, Aurora: a new model and ar-

chitecture for data stream management, VLDB J., 12 (2003), pp. 120–139.

[2] A. S. ABDELHAMID, A. R. MAHMOOD, A. DAGHISTANI, AND W. G. AREF, Prompt: Dynamic

data-partitioning for distributed micro-batch stream processing systems, in Proceedings

of the 2020 International Conference on Management of Data, SIGMOD Conference

2020, online conference [Portland, OR, USA], June 14-19, 2020, D. Maier, R. Pottinger,

A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, eds., ACM, 2020, pp. 2455–2469.

[3] A. ADI AND O. ETZION, Amit - the situation manager, VLDB J., 13 (2004), pp. 177–203.

[4] S. AGARWAL, B. MOZAFARI, A. PANDA, H. MILNER, S. MADDEN, AND I. STOICA, Blinkdb:

queries with bounded errors and bounded response times on very large data, in Eighth

Eurosys Conference 2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013,

Z. Hanzálek, H. Härtig, M. Castro, and M. F. Kaashoek, eds., ACM, 2013, pp. 29–42.

[5] J. AGRAWAL, Y. DIAO, D. GYLLSTROM, AND N. IMMERMAN, Efficient pattern matching

over event streams, in Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, J. T.

Wang, ed., ACM, 2008, pp. 147–160.

[6] T. AKIDAU, A. BALIKOV, K. BEKIROGLU, S. CHERNYAK, J. HABERMAN, R. LAX,

S. MCVEETY, D. MILLS, P. NORDSTROM, AND S. WHITTLE, Millwheel: Fault-tolerant

stream processing at internet scale, Proc. VLDB Endow., 6 (2013), pp. 1033–1044.

[7] M. ALTINEL AND M. J. FRANKLIN, Efficient filtering of XML documents for selective

dissemination of information, in VLDB 2000, Proceedings of 26th International Con-

ference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, A. E. Abbadi,

M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K. Whang, eds.,

Morgan Kaufmann, 2000, pp. 53–64.

[8] AMAZON KINESE, Amazon Kinese Data Streaming FAQs.

https://aws.amazon.com/kinesis/data-streams/faqs/, 2019.

123

https://aws.amazon.com/kinesis/data-streams/faqs/

BIBLIOGRAPHY

Last access: 05/08/21.

[9] K. AMIRI, S. PARK, R. TEWARI, AND S. PADMANABHAN, Dbproxy: A dynamic data cache

for web applications, in Proceedings of the 19th International Conference on Data

Engineering, March 5-8, 2003, Bangalore, India, U. Dayal, K. Ramamritham, and T. M.

Vijayaraman, eds., IEEE Computer Society, 2003, pp. 821–831.

[10] R. ANANTHANARAYANAN, V. BASKER, S. DAS, A. GUPTA, H. JIANG, T. QIU,

A. REZNICHENKO, D. RYABKOV, M. SINGH, AND S. VENKATARAMAN, Photon: fault-

tolerant and scalable joining of continuous data streams, in Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIGMOD 2013, New York,

NY, USA, June 22-27, 2013, K. A. Ross, D. Srivastava, and D. Papadias, eds., ACM,

2013, pp. 577–588.

[11] APACHE PULSAR, Pulsar Load Distribution.

https://pulsar.apache.org/docs/v2.0.1-incubating/admin/LoadDistribution/,

2019.

Last access: 05/08/21.

[12] A. ARASU, B. BABCOCK, S. BABU, M. DATAR, K. ITO, I. NISHIZAWA, J. ROSENSTEIN,

AND J. WIDOM, STREAM: the stanford stream data manager, in Proceedings of the

2003 ACM SIGMOD International Conference on Management of Data, San Diego,

California, USA, June 9-12, 2003, A. Y. Halevy, Z. G. Ives, and A. Doan, eds., ACM,

2003, p. 665.

[13] A. ARASU, S. BABU, AND J. WIDOM, The CQL continuous query language: semantic

foundations and query execution, VLDB J., 15 (2006), pp. 121–142.

[14] A. ARASU AND J. WIDOM, Resource sharing in continuous sliding-window aggregates, in

(e)Proceedings of the Thirtieth International Conference on Very Large Data Bases,

VLDB 2004, Toronto, Canada, August 31 - September 3 2004, M. A. Nascimento, M. T.

Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, eds., Morgan

Kaufmann, 2004, pp. 336–347.

[15] A. ARTIKIS, A. MARGARA, M. UGARTE, S. VANSUMMEREN, AND M. WEIDLICH, Complex

event recognition languages: Tutorial, in Proceedings of the 11th ACM International

Conference on Distributed and Event-based Systems, DEBS 2017, Barcelona, Spain,

June 19-23, 2017, ACM, 2017, pp. 7–10.

[16] A. ARTIKIS, M. WEIDLICH, F. SCHNITZLER, I. BOUTSIS, T. LIEBIG, N. PIATKOWSKI,

C. BOCKERMANN, K. MORIK, V. KALOGERAKI, J. MARECEK, A. GAL, S. MANNOR,

D. GUNOPULOS, AND D. KINANE, Heterogeneous stream processing and crowdsourcing

124

https://pulsar.apache.org/docs/v2.0.1-incubating/admin/LoadDistribution/

BIBLIOGRAPHY

for urban traffic management, in Proceedings of the 17th International Conference

on Extending Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014.,

2014, pp. 712–723.

[17] M. BALAZINSKA, H. BALAKRISHNAN, S. MADDEN, AND M. STONEBRAKER, Fault-tolerance

in the borealis distributed stream processing system, in Proceedings of the ACM SIG-

MOD International Conference on Management of Data, Baltimore, Maryland, USA,

June 14-16, 2005, F. Özcan, ed., ACM, 2005, pp. 13–24.

[18] C. BALKESEN, N. DINDAR, M. WETTER, AND N. TATBUL, RIP: run-based intra-query

parallelism for scalable complex event processing, in The 7th ACM International Con-

ference on Distributed Event-Based Systems, DEBS ’13, Arlington, TX, USA - June 29 -

July 03, 2013, 2013, pp. 3–14.

[19] C. BALKESEN AND N. TATBUL, Scalable data partitioning techniques for parallel sliding

window processing over data streams, 2011.

[20] C. BALKESEN, N. TATBUL, AND M. T. ÖZSU, Adaptive input admission and manage-

ment for parallel stream processing, in The 7th ACM International Conference on

Distributed Event-Based Systems, DEBS ’13, Arlington, TX, USA - June 29 - July 03,

2013, S. Chakravarthy, S. D. Urban, P. R. Pietzuch, and E. A. Rundensteiner, eds., ACM,

2013, pp. 15–26.

[21] J. BANG, S. SON, H. KIM, Y. MOON, AND M. CHOI, Design and implementation of a load

shedding engine for solving starvation problems in apache kafka, in 2018 IEEE/IFIP

Network Operations and Management Symposium, NOMS 2018, Taipei, Taiwan, April

23-27, 2018, IEEE, 2018, pp. 1–4.

[22] C. BARTON, P. CHARLES, D. GOYAL, M. RAGHAVACHARI, M. FONTOURA, AND V. JOSI-

FOVSKI, Streaming xpath processing with forward and backward axes, in Proceedings

of the 19th International Conference on Data Engineering, March 5-8, 2003, Banga-

lore, India, U. Dayal, K. Ramamritham, and T. M. Vijayaraman, eds., IEEE Computer

Society, 2003, pp. 455–466.

[23] L. BATTLE, R. CHANG, AND M. STONEBRAKER, Dynamic prefetching of data tiles for

interactive visualization, in Proceedings of the 2016 International Conference on Man-

agement of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July

01, 2016, F. Özcan, G. Koutrika, and S. Madden, eds., ACM, 2016, pp. 1363–1375.

[24] P. BEN-NUN, Respondent fatigue, Encyclopedia of survey research methods, 2 (2008),

pp. 742–743.

125

BIBLIOGRAPHY

[25] M. B. BLAKE, D. J. CUMMINGS, A. BANSAL, AND S. K. BANSAL, Workflow composition of

service level agreements for web services, Decision Support Systems, 53 (2012), pp. 234–

244.

[26] R. BLANCO, E. BORTNIKOV, F. JUNQUEIRA, R. LEMPEL, L. TELLOLI, AND H. ZARAGOZA,

Caching search engine results over incremental indices, in Proceeding of the 33rd

International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR 2010, Geneva, Switzerland, July 19-23, 2010, F. Crestani, S. Marchand-

Maillet, H. Chen, E. N. Efthimiadis, and J. Savoy, eds., ACM, 2010, pp. 82–89.

[27] S. BOAG, D. CHAMBERLIN, M. F. FERNANDEZ, D. FLORESCU, J. ROBIE, AND J. SIMÉON,

Xquery 1.0: An xml query languages, in World Wide Web Consortium, November, 2003.

[28] C. BORNHÖVD, M. ALTINEL, C. MOHAN, H. PIRAHESH, AND B. REINWALD, Adaptive

database caching with dbcache, IEEE Data Eng. Bull., 27 (2004), pp. 11–18.

[29] S. BÖRZSÖNYI, D. KOSSMANN, AND K. STOCKER, The skyline operator, in Proceedings of

the 17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg,

Germany, D. Georgakopoulos and A. Buchmann, eds., IEEE Computer Society, 2001,

pp. 421–430.

[30] I. BOTAN, R. DERAKHSHAN, N. DINDAR, L. M. HAAS, R. J. MILLER, AND N. TATBUL,

SECRET: A model for analysis of the execution semantics of stream processing systems,

Proc. VLDB Endow., 3 (2010), pp. 232–243.

[31] I. T. BOWMAN AND K. SALEM, Optimization of query streams using semantic prefetching,

in Proceedings of the ACM SIGMOD International Conference on Management of Data,

Paris, France, June 13-18, 2004, G. Weikum, A. C. König, and S. Deßloch, eds., ACM,

2004, pp. 179–190.

[32] L. BRENNA, A. J. DEMERS, J. GEHRKE, M. HONG, J. OSSHER, B. PANDA, M. RIEDEWALD,

M. THATTE, AND W. M. WHITE, Cayuga: a high-performance event processing engine,

in Proceedings of the ACM SIGMOD International Conference on Management of Data,

Beijing, China, June 12-14, 2007, C. Y. Chan, B. C. Ooi, and A. Zhou, eds., ACM, 2007,

pp. 1100–1102.

[33] A. BROWN AND W. LAVALLE, Hailing a change: comparing taxi and ridehail service quality

in los angeles, Transportation, 48 (2021), p. 1007–1031.

[34] J. CALBIMONTE, J. MORA, AND Ó. CORCHO, Query rewriting in RDF stream processing, in

The Semantic Web. Latest Advances and New Domains - 13th International Conference,

ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Proceedings, H. Sack,

126

BIBLIOGRAPHY

E. Blomqvist, M. d’Aquin, C. Ghidini, S. P. Ponzetto, and C. Lange, eds., vol. 9678 of

Lecture Notes in Computer Science, Springer, 2016, pp. 486–502.

[35] K. S. CANDAN, W. LI, Q. LUO, W. HSIUNG, AND D. AGRAWAL, Enabling dynamic content

caching for database-driven web sites, in Proceedings of the 2001 ACM SIGMOD

international conference on Management of data, Santa Barbara, CA, USA, May 21-24,

2001, S. Mehrotra and T. K. Sellis, eds., ACM, 2001, pp. 532–543.

[36] L. CAO, J. WANG, AND E. A. RUNDENSTEINER, Sharing-aware outlier analytics over

high-volume data streams, in Proceedings of the 2016 International Conference on

Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -

July 01, 2016, F. Özcan, G. Koutrika, and S. Madden, eds., ACM, 2016, pp. 527–540.

[37] P. CARBONE, S. EWEN, G. FÓRA, S. HARIDI, S. RICHTER, AND K. TZOUMAS, State

management in apache flink®: Consistent stateful distributed stream processing, Proc.

VLDB Endow., 10 (2017), pp. 1718–1729.

[38] P. CARBONE, A. KATSIFODIMOS, S. EWEN, V. MARKL, S. HARIDI, AND K. TZOUMAS,

Apache flink™: Stream and batch processing in a single engine, IEEE Data Eng. Bull.,

38 (2015), pp. 28–38.

[39] U. ÇETINTEMEL, D. J. ABADI, Y. AHMAD, H. BALAKRISHNAN, M. BALAZINSKA, M. CHER-

NIACK, J. HWANG, S. MADDEN, A. MASKEY, A. RASIN, E. RYVKINA, M. STONE-

BRAKER, N. TATBUL, Y. XING, AND S. ZDONIK, The aurora and borealis stream pro-

cessing engines, in Data Stream Management - Processing High-Speed Data Streams,

M. N. Garofalakis, J. Gehrke, and R. Rastogi, eds., Data-Centric Systems and Applica-

tions, Springer, 2016, pp. 337–359.

[40] S. CHAKRAVARTHY AND D. MISHRA, Snoop: An expressive event specification language for

active databases, Data Knowl. Eng., 14 (1994), pp. 1–26.

[41] C. Y. CHAN, W. FAN, P. FELBER, M. N. GAROFALAKIS, AND R. RASTOGI, Tree pattern

aggregation for scalable XML data dissemination, in Proceedings of 28th International

Conference on Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002,

Morgan Kaufmann, 2002, pp. 826–837.

[42] C. Y. CHAN, P. FELBER, M. N. GAROFALAKIS, AND R. RASTOGI, Efficient filtering of XML

documents with xpath expressions, VLDB J., 11 (2002), pp. 354–379.

[43] B. CHANDRAMOULI, J. GOLDSTEIN, M. BARNETT, R. DELINE, J. C. PLATT, J. F. TER-

WILLIGER, AND J. WERNSING, Trill: A high-performance incremental query processor

for diverse analytics, Proc. VLDB Endow., 8 (2014), pp. 401–412.

127

BIBLIOGRAPHY

[44] S. CHANDRASEKARAN, O. COOPER, A. DESHPANDE, M. J. FRANKLIN, J. M. HELLER-

STEIN, W. HONG, S. KRISHNAMURTHY, S. MADDEN, F. REISS, AND M. A. SHAH,

Telegraphcq: Continuous dataflow processing, in Proceedings of the 2003 ACM SIG-

MOD International Conference on Management of Data, San Diego, California, USA,

June 9-12, 2003, A. Y. Halevy, Z. G. Ives, and A. Doan, eds., ACM, 2003, p. 668.

[45] S. CHAUDHURI, B. DING, AND S. KANDULA, Approximate query processing: No silver bullet,

in Proceedings of the 2017 ACM International Conference on Management of Data,

SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, 2017, pp. 511–519.

[46] C. CHEKURI AND S. KHANNA, A polynomial time approximation scheme for the multiple

knapsack problem, SIAM J. Comput., 35 (2005), pp. 713–728.

[47] J. CHEN, D. J. DEWITT, F. TIAN, AND Y. WANG, Niagaracq: A scalable continuous query

system for internet databases, in Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, W. Chen,

J. F. Naughton, and P. A. Bernstein, eds., ACM, 2000, pp. 379–390.

[48] S. CHEN, A. AILAMAKI, P. B. GIBBONS, AND T. C. MOWRY, Improving hash join per-

formance through prefetching, in Proceedings of the 20th International Conference

on Data Engineering, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA, Z. M.

Özsoyoglu and S. B. Zdonik, eds., IEEE Computer Society, 2004, pp. 116–127.

[49] S. CHEN, P. B. GIBBONS, AND T. C. MOWRY, Improving index performance through

prefetching, in Proceedings of the 2001 ACM SIGMOD international conference on

Management of data, Santa Barbara, CA, USA, May 21-24, 2001, S. Mehrotra and T. K.

Sellis, eds., ACM, 2001, pp. 235–246.

[50] S. CHEN, P. B. GIBBONS, T. C. MOWRY, AND G. VALENTIN, Fractal prefetching b±trees:

optimizing both cache and disk performance, in Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, Madison, Wisconsin, USA, June 3-6,

2002, M. J. Franklin, B. Moon, and A. Ailamaki, eds., ACM, 2002, pp. 157–168.

[51] Y. CHEN, S. B. DAVIDSON, AND Y. ZHENG, An efficient xpath query processor for XML

streams, in Proceedings of the 22nd International Conference on Data Engineering,

ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, L. Liu, A. Reuter, K. Whang, and

J. Zhang, eds., IEEE Computer Society, 2006, p. 79.

[52] Z. CHENG, Q. HUANG, AND P. P. C. LEE, On the performance and convergence of distributed

stream processing via approximate fault tolerance, VLDB J., 28 (2019), pp. 821–846.

[53] L. CHUAN AND A. UKIL, Modeling and validation of electrical load profiling in residential

buildings in singapore, IEEE Trans. Power Syst., 30 (2015), pp. 2800–2809.

128

BIBLIOGRAPHY

[54] CITI BIKE, System Data.

http://www.citibikenyc.com/system-data, 2019.

Last access: 05/08/21.

[55] J. CLARK AND S. DEROSE, Xml path language (xpath) version 1.0, in World Wide Web

Consortium, November, 1999.

[56] G. CORMODE, M. N. GAROFALAKIS, P. J. HAAS, AND C. JERMAINE, Synopses for massive

data: Samples, histograms, wavelets, sketches, Foundations and Trends in Databases, 4

(2012), pp. 1–294.

[57] G. CORMODE AND S. MUTHUKRISHNAN, An improved data stream summary: the count-min

sketch and its applications, J. Algorithms, 55 (2005), pp. 58–75.

[58] G. CORMODE AND S. M. MUTHUKRISHNAN, Approximating data with the count-min sketch,

IEEE Software, 29 (2012), pp. 64–69.

[59] C. D. CRANOR, T. JOHNSON, O. SPATSCHECK, AND V. SHKAPENYUK, Gigascope: A stream

database for network applications, in Proceedings of the 2003 ACM SIGMOD Inter-

national Conference on Management of Data, San Diego, California, USA, June 9-12,

2003, A. Y. Halevy, Z. G. Ives, and A. Doan, eds., ACM, 2003, pp. 647–651.

[60] G. CUGOLA AND A. MARGARA, Complex event processing with T-REX, J. Syst. Softw., 85

(2012), pp. 1709–1728.

[61] G. CUGOLA AND A. MARGARA, Processing flows of information: From data stream to

complex event processing, ACM Comput. Surv., 44 (2012), pp. 15:1–15:62.

[62] A. DAS, J. GEHRKE, AND M. RIEDEWALD, Approximate join processing over data streams,

in Proceedings of the 2003 ACM SIGMOD International Conference on Management

of Data, San Diego, California, USA, June 9-12, 2003, A. Y. Halevy, Z. G. Ives, and

A. Doan, eds., ACM, 2003, pp. 40–51.

[63] T. DAS, Y. ZHONG, I. STOICA, AND S. SHENKER, Adaptive stream processing using dynamic

batch sizing, in Proceedings of the ACM Symposium on Cloud Computing, Seattle, WA,

USA, November 3-5, 2014, E. Lazowska, D. Terry, R. H. Arpaci-Dusseau, and J. Gehrke,

eds., ACM, 2014, pp. 16:1–16:13.

[64] M. DAYARATHNA AND S. PERERA, Recent advancements in event processing, ACM Comput.

Surv., 51 (2018), pp. 33:1–33:36.

[65] J. DEAN AND S. GHEMAWAT, Mapreduce: Simplified data processing on large clusters,

in 6th Symposium on Operating System Design and Implementation (OSDI 2004),

129

http://www.citibikenyc.com/system-data

BIBLIOGRAPHY

San Francisco, California, USA, December 6-8, 2004, E. A. Brewer and P. Chen, eds.,

USENIX Association, 2004, pp. 137–150.

[66] Y. DIAO, S. RIZVI, AND M. J. FRANKLIN, Towards an internet-scale XML dissemination

service, in (e)Proceedings of the Thirtieth International Conference on Very Large Data

Bases, VLDB 2004, Toronto, Canada, August 31 - September 3 2004, M. A. Nascimento,

M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, eds., Morgan

Kaufmann, 2004, pp. 612–623.

[67] L. DING, S. CHEN, E. A. RUNDENSTEINER, J. TATEMURA, W. HSIUNG, AND K. S. CAN-

DAN, Runtime semantic query optimization for event stream processing, in Proceedings

of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008,

Cancún, Mexico, G. Alonso, J. A. Blakeley, and A. L. P. Chen, eds., IEEE Computer

Society, 2008, pp. 676–685.

[68] L. DING, K. WORKS, AND E. A. RUNDENSTEINER, Semantic stream query optimization

exploiting dynamic metadata, in Proceedings of the 27th International Conference on

Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, 2011, pp. 111–

122.

[69] ESPER, Complex Event Processing, Streaming Analytics.

https://www.espertech.com/, 2021.

Last access: 05/08/21.

[70] O. ETZION AND P. NIBLETT, Event Processing in Action, Manning Publications Company,

2010.

[71] FEEDZAI.COM, Modern Payment Fraud Prevention at Big Data Scale.

https://www.pymnts.com/assets/Uploads/Feedzai-Whitepaper-Modern-Payment-

Fraud-Prevention-at-Big-Data-Scale-v2.pdf, 2013.

Last access: 05/08/21.

[72] R. C. FERNANDEZ, M. MIGLIAVACCA, E. KALYVIANAKI, AND P. R. PIETZUCH, Integrating

scale out and fault tolerance in stream processing using operator state management, in

Proceedings of the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2013, New York, NY, USA, June 22-27, 2013, K. A. Ross, D. Srivastava, and

D. Papadias, eds., ACM, 2013, pp. 725–736.

[73] R. C. FERNANDEZ, M. MIGLIAVACCA, E. KALYVIANAKI, AND P. R. PIETZUCH, Making

state explicit for imperative big data processing, in 2014 USENIX Annual Technical

Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014, G. Gibson and

N. Zeldovich, eds., USENIX Association, 2014, pp. 49–60.

130

https://www.espertech.com/
https://www.pymnts.com/assets/Uploads/Feedzai-Whitepaper-Modern-Payment-Fraud-Prevention-at-Big-Data-Scale-v2.pdf
https://www.pymnts.com/assets/Uploads/Feedzai-Whitepaper-Modern-Payment-Fraud-Prevention-at-Big-Data-Scale-v2.pdf

BIBLIOGRAPHY

[74] A. FLORATOU, A. AGRAWAL, B. GRAHAM, S. RAO, AND K. RAMASAMY, Dhalion: Self-

regulating stream processing in heron, PVLDB, 10 (2017), pp. 1825–1836.

[75] D. FLORESCU, C. HILLERY, D. KOSSMANN, P. LUCAS, F. RICCARDI, T. WESTMANN, M. J.

CAREY, AND A. SUNDARARAJAN, The BEA streaming xquery processor, VLDB J., 13

(2004), pp. 294–315.

[76] S. FOSSO WAMBA AND H. BOECK, Enhancing information flow in a retail supply chain

using rfid and the epc network: a proof-of-concept approach, (2008).

[77] M. FRAGKOULIS, P. CARBONE, V. KALAVRI, AND A. KATSIFODIMOS, A survey on the

evolution of stream processing systems, CoRR, abs/2008.00842 (2020).

[78] FRAUGSTER.

https://fraugster.com/, 2019.

[79] M. FU, S. MITTAL, V. KEDIGEHALLI, K. RAMASAMY, M. BARRY, A. JORGENSEN, C. KEL-

LOGG, N. LU, B. GRAHAM, AND J. WU, Streaming@twitter, IEEE Data Eng. Bull., 38

(2015), pp. 15–27.

[80] C. GARROD, A. MANJHI, A. AILAMAKI, B. M. MAGGS, T. C. MOWRY, C. OLSTON, AND

A. TOMASIC, Scalable query result caching for web applications, Proc. VLDB Endow., 1

(2008), pp. 550–561.

[81] B. GEDIK, Partitioning functions for stateful data parallelism in stream processing, VLDB

J., 23 (2014), pp. 517–539.

[82] B. GEDIK, H. ANDRADE, K. WU, P. S. YU, AND M. DOO, SPADE: the system s declarative

stream processing engine, in Proceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,

J. T. Wang, ed., ACM, 2008, pp. 1123–1134.

[83] B. GEDIK, K. WU, AND P. S. YU, Efficient construction of compact shedding filters for

data stream processing, in Proceedings of the 24th International Conference on Data

Engineering, ICDE 2008, April 7-12, 2008, Cancún, México, G. Alonso, J. A. Blakeley,

and A. L. P. Chen, eds., IEEE Computer Society, 2008, pp. 396–405.

[84] B. GEDIK, K. WU, P. S. YU, AND L. LIU, Adaptive load shedding for windowed stream joins,

in Proceedings of the 2005 ACM CIKM International Conference on Information and

Knowledge Management, Bremen, Germany, October 31 - November 5, 2005, O. Herzog,

H. Schek, N. Fuhr, A. Chowdhury, and W. Teiken, eds., ACM, 2005, pp. 171–178.

[85] B. GEDIK, K. WU, P. S. YU, AND L. LIU, A load shedding framework and optimizations

for m-way windowed stream joins, in Proceedings of the 23rd International Conference

131

https://fraugster.com/

BIBLIOGRAPHY

on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20,

2007, R. Chirkova, A. Dogac, M. T. Özsu, and T. K. Sellis, eds., IEEE Computer Society,

2007, pp. 536–545.

[86] F. GESSERT, F. BUCKLERS, AND N. RITTER, Orestes: A scalable database-as-a-service

architecture for low latency, in Workshops Proceedings of the 30th International Confer-

ence on Data Engineering Workshops, ICDE 2014, Chicago, IL, USA, March 31 - April

4, 2014, IEEE Computer Society, 2014, pp. 215–222.

[87] F. GESSERT, M. SCHAARSCHMIDT, W. WINGERATH, E. WITT, E. YONEKI, AND N. RITTER,

Quaestor: Query web caching for database-as-a-service providers, Proc. VLDB Endow.,

10 (2017), pp. 1670–1681.

[88] M. L. GOLDBERG AND G. K. AGNEW, Measurement and verification for demand response,

US Department of Energy: Washington, DC, USA, (2013).

[89] A. K. GUPTA AND D. SUCIU, Stream processing of xpath queries with predicates, in

Proceedings of the 2003 ACM SIGMOD International Conference on Management of

Data, San Diego, California, USA, June 9-12, 2003, A. Y. Halevy, Z. G. Ives, and A. Doan,

eds., ACM, 2003, pp. 419–430.

[90] D. GYLLSTROM, J. AGRAWAL, Y. DIAO, AND N. IMMERMAN, On supporting kleene closure

over event streams, in Proceedings of the 24th International Conference on Data Engi-

neering, ICDE 2008, April 7-12, 2008, Cancún, Mexico, G. Alonso, J. A. Blakeley, and

A. L. P. Chen, eds., IEEE Computer Society, 2008, pp. 1391–1393.

[91] D. GYLLSTROM, E. WU, H. CHAE, Y. DIAO, P. STAHLBERG, AND G. ANDERSON, SASE:

complex event processing over streams (demo), in Third Biennial Conference on Inno-

vative Data Systems Research, CIDR 2007, Asilomar, CA, USA, January 7-10, 2007,

Online Proceedings, www.cidrdb.org, 2007, pp. 407–411.

[92] HADOOP, .

https://hadoop.apache.org/, 2021.

Last access: 05/08/21.

[93] A. HAGIESCU, W. WONG, D. F. BACON, AND R. M. RABBAH, A computing origami: folding

streams in fpgas, in Proceedings of the 46th Design Automation Conference, DAC 2009,

San Francisco, CA, USA, July 26-31, 2009, ACM, 2009, pp. 282–287.

[94] Y. HE, S. BARMAN, AND J. F. NAUGHTON, On load shedding in complex event processing,

in Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece,

March 24-28, 2014., 2014, pp. 213–224.

132

https://hadoop.apache.org/

BIBLIOGRAPHY

[95] M. HIRZEL, Partition and compose: parallel complex event processing, in Proceedings of

the Sixth ACM International Conference on Distributed Event-Based Systems, DEBS

2012, Berlin, Germany, July 16-20, 2012, 2012, pp. 191–200.

[96] M. HIRZEL, G. BAUDART, A. BONIFATI, E. D. VALLE, S. SAKR, AND A. VLACHOU, Stream

processing languages in the big data era, SIGMOD Rec., 47 (2018), pp. 29–40.

[97] Q. HUANG AND P. P. C. LEE, Toward high-performance distributed stream processing via

approximate fault tolerance, Proc. VLDB Endow., 10 (2016), pp. 73–84.

[98] J. HWANG, M. BALAZINSKA, A. RASIN, U. ÇETINTEMEL, M. STONEBRAKER, AND S. B.

ZDONIK, High-availability algorithms for distributed stream processing, in Proceedings

of the 21st International Conference on Data Engineering, ICDE 2005, 5-8 April 2005,

Tokyo, Japan, K. Aberer, M. J. Franklin, and S. Nishio, eds., IEEE Computer Society,

2005, pp. 779–790.

[99] M. JAIN ET AL., Methodologies for effective demand response messaging, in IEEE Int. Conf.

Smart Grid Commun., 2015, pp. 453–458.

[100] Y. JI, H. ZHOU, Z. JERZAK, A. NICA, G. HACKENBROICH, AND C. FETZER, Quality-driven

continuous query execution over out-of-order data streams, in Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria,

Australia, May 31 - June 4, 2015, T. K. Sellis, S. B. Davidson, and Z. G. Ives, eds., ACM,

2015, pp. 889–894.

[101] J. KANG, J. F. NAUGHTON, AND S. VIGLAS, Evaluating window joins over unbounded

streams, in Proceedings of the 19th International Conference on Data Engineering,

March 5-8, 2003, Bangalore, India, U. Dayal, K. Ramamritham, and T. M. Vijayaraman,

eds., IEEE Computer Society, 2003, pp. 341–352.

[102] N. R. KATSIPOULAKIS, A. LABRINIDIS, AND P. K. CHRYSANTHIS, Concept-driven load

shedding: Reducing size and error of voluminous and variable data streams, in IEEE

International Conference on Big Data, Big Data 2018, Seattle, WA, USA, December

10-13, 2018, N. Abe, H. Liu, C. Pu, X. Hu, N. Ahmed, M. Qiao, Y. Song, D. Kossmann,

B. Liu, K. Lee, J. Tang, J. He, and J. Saltz, eds., IEEE, 2018, pp. 418–427.

[103] O. KAYA, Research Briefing: High-frequency trading.

https://www.dbresearch.com/PROD/RPS_EN-PROD/PROD0000000000454703/

Research_Briefing%3A_High-frequency_trading.PDF, 2016.

Last access: 05/08/21.

[104] H. KELLERER, U. PFERSCHY, AND D. PISINGER, Knapsack problems, Springer, 2004.

133

https://www.dbresearch.com/PROD/RPS_EN-PROD/PROD0000000000454703/Research_Briefing%3A_High-frequency_trading.PDF
https://www.dbresearch.com/PROD/RPS_EN-PROD/PROD0000000000454703/Research_Briefing%3A_High-frequency_trading.PDF

BIBLIOGRAPHY

[105] J. KINGMAN, Poisson Processes, Oxford Studies in Probability, Clarendon Press, 1992.

[106] Y. O. KOÇBERBER, B. FALSAFI, AND B. GROT, Asynchronous memory access chaining,

Proc. VLDB Endow., 9 (2015), pp. 252–263.

[107] C. KOCH, XML stream processing, in Encyclopedia of Database Systems, Second Edition,

L. Liu and M. T. Özsu, eds., Springer, 2018.

[108] C. KOCH, S. SCHERZINGER, AND M. SCHMIDT, The GCX system: Dynamic buffer min-

imization in streaming xquery evaluation, in Proceedings of the 33rd International

Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27,

2007, C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande,

D. Florescu, C. Y. Chan, V. Ganti, C. Kanne, W. Klas, and E. J. Neuhold, eds., ACM,

2007, pp. 1378–1381.

[109] C. KOCH, S. SCHERZINGER, N. SCHWEIKARDT, AND B. STEGMAIER, Fluxquery: An

optimizing xquery processor for streaming XML data, in (e)Proceedings of the Thirtieth

International Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada,

August 31 - September 3 2004, M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller,

J. A. Blakeley, and K. B. Schiefer, eds., Morgan Kaufmann, 2004, pp. 1309–1312.

[110] A. KOLIOUSIS, M. WEIDLICH, R. C. FERNANDEZ, A. L. WOLF, P. COSTA, AND P. R.

PIETZUCH, SABER: window-based hybrid stream processing for heterogeneous architec-

tures, in Proceedings of the 2016 International Conference on Management of Data,

SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, F. Özcan,

G. Koutrika, and S. Madden, eds., ACM, 2016, pp. 555–569.

[111] D. KOSSMANN, The state of the art in distributed query processing, ACM Comput. Surv., 32

(2000), pp. 422–469.

[112] A. KUNDU, S. PANIGRAHI, S. SURAL, AND A. K. MAJUMDAR, Blast-ssaha hybridization for

credit card fraud detection, IEEE transactions on dependable and Secure Computing, 6

(2009), pp. 309–315.

[113] Y. KWON, M. BALAZINSKA, AND A. G. GREENBERG, Fault-tolerant stream processing

using a distributed, replicated file system, Proc. VLDB Endow., 1 (2008), pp. 574–585.

[114] P. LARSON, J. GOLDSTEIN, AND J. ZHOU, Mtcache: Transparent mid-tier database caching

in SQL server, in Proceedings of the 20th International Conference on Data Engineering,

ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA, Z. M. Özsoyoglu and S. B. Zdonik,

eds., IEEE Computer Society, 2004, pp. 177–188.

134

BIBLIOGRAPHY

[115] C. LEI, E. A. RUNDENSTEINER, AND J. D. GUTTMAN, Robust distributed stream processing,

in 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,

Australia, April 8-12, 2013, C. S. Jensen, C. M. Jermaine, and X. Zhou, eds., IEEE

Computer Society, 2013, pp. 817–828.

[116] J. LI, D. MAIER, K. TUFTE, V. PAPADIMOS, AND P. A. TUCKER, No pane, no gain: efficient

evaluation of sliding-window aggregates over data streams, SIGMOD Rec., 34 (2005),

pp. 39–44.

[117] J. LI, D. MAIER, K. TUFTE, V. PAPADIMOS, AND P. A. TUCKER, Semantics and evaluation

techniques for window aggregates in data streams, in Proceedings of the ACM SIGMOD

International Conference on Management of Data, Baltimore, Maryland, USA, June

14-16, 2005, F. Özcan, ed., ACM, 2005, pp. 311–322.

[118] J. LI, K. TUFTE, V. SHKAPENYUK, V. PAPADIMOS, T. JOHNSON, AND D. MAIER, Out-of-

order processing: a new architecture for high-performance stream systems, Proc. VLDB

Endow., 1 (2008), pp. 274–288.

[119] M. LI, M. MANI, E. A. RUNDENSTEINER, AND T. LIN, Constraint-aware complex event

pattern detection over streams, in Database Systems for Advanced Applications, 15th

International Conference, DASFAA 2010, Tsukuba, Japan, April 1-4, 2010, Proceedings,

Part II, H. Kitagawa, Y. Ishikawa, Q. Li, and C. Watanabe, eds., vol. 5982 of Lecture

Notes in Computer Science, Springer, 2010, pp. 199–215.

[120] Z. LI AND T. GE, History is a mirror to the future: Best-effort approximate complex event

matching with insufficient resources, PVLDB, 10 (2016), pp. 397–408.

[121] W. LIN, H. FAN, Z. QIAN, J. XU, S. YANG, J. ZHOU, AND L. ZHOU, Streamscope: Continuous

reliable distributed processing of big data streams, in 13th USENIX Symposium on

Networked Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA,

March 16-18, 2016, K. J. Argyraki and R. Isaacs, eds., USENIX Association, 2016,

pp. 439–453.

[122] B. LIU, Y. ZHU, AND E. A. RUNDENSTEINER, Run-time operator state spilling for memory

intensive long-running queries, in Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006, S. Chaudhuri,

V. Hristidis, and N. Polyzotis, eds., ACM, 2006, pp. 347–358.

[123] M. LIU, E. A. RUNDENSTEINER, K. GREENFIELD, C. GUPTA, S. WANG, I. ARI, AND

A. MEHTA, E-cube: multi-dimensional event sequence analysis using hierarchical pat-

tern query sharing, in Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, T. K. Sellis,

R. J. Miller, A. Kementsietsidis, and Y. Velegrakis, eds., ACM, 2011, pp. 889–900.

135

BIBLIOGRAPHY

[124] X. LIU AND R. BUYYA, Resource management and scheduling in distributed stream pro-

cessing systems: A taxonomy, review, and future directions, ACM Comput. Surv., 53

(2020), pp. 50:1–50:41.

[125] R. MAYER, C. MAYER, M. A. TARIQ, AND K. ROTHERMEL, Graphcep: real-time data

analytics using parallel complex event and graph processing, in Proceedings of the

10th ACM International Conference on Distributed and Event-based Systems, DEBS

’16, Irvine, CA, USA, June 20 - 24, 2016, A. Gal, M. Weidlich, V. Kalogeraki, and

N. Venkasubramanian, eds., ACM, 2016, pp. 309–316.

[126] R. MAYER, M. A. TARIQ, AND K. ROTHERMEL, Minimizing communication overhead in

window-based parallel complex event processing, in Proceedings of the 11th ACM Inter-

national Conference on Distributed and Event-based Systems, DEBS 2017, Barcelona,

Spain, June 19-23, 2017, 2017, pp. 54–65.

[127] Y. MEI AND S. MADDEN, Zstream: a cost-based query processor for adaptively detecting

composite events, in Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July

2, 2009, U. Çetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, eds., ACM, 2009,

pp. 193–206.

[128] P. MENON, A. PAVLO, AND T. C. MOWRY, Relaxed operator fusion for in-memory databases:

Making compilation, vectorization, and prefetching work together at last, Proc. VLDB

Endow., 11 (2017), pp. 1–13.

[129] H. MIAO, M. JEON, G. PEKHIMENKO, K. S. MCKINLEY, AND F. X. LIN, Streambox-hbm:

Stream analytics on high bandwidth hybrid memory, in Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, I. Bahar,

M. Herlihy, E. Witchel, and A. R. Lebeck, eds., ACM, 2019, pp. 167–181.

[130] H. MIAO, H. PARK, M. JEON, G. PEKHIMENKO, K. S. MCKINLEY, AND F. X. LIN, Stream-

box: Modern stream processing on a multicore machine, in 2017 USENIX Annual

Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017,

D. D. Silva and B. Ford, eds., USENIX Association, 2017, pp. 617–629.

[131] S. MITTAL, A survey of recent prefetching techniques for processor caches, ACM Comput.

Surv., 49 (2016), pp. 35:1–35:35.

[132] B. MOZAFARI, K. ZENG, AND C. ZANIOLO, High-performance complex event processing

over XML streams, in Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, K. S.

136

BIBLIOGRAPHY

Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and A. Fuxman, eds., ACM, 2012,

pp. 253–264.

[133] D. MURRAY, J. SIMSA, A. KLIMOVIC, AND I. INDYK, tf.data: A machine learning data

processing framework, ArXiv, abs/2101.12127 (2021).

[134] H. NAJDATAEI, Y. NIKOLAKOPOULOS, M. PAPATRIANTAFILOU, P. TSIGAS, AND

V. GULISANO, STRETCH: scalable and elastic deterministic streaming analysis with

virtual shared-nothing parallelism, in Proceedings of the 13th ACM International Con-

ference on Distributed and Event-based Systems, DEBS 2019, Darmstadt, Germany,

June 24-28, 2019, ACM, 2019, pp. 7–18.

[135] B. NICOLAE AND F. CAPPELLO, Ai-ckpt: leveraging memory access patterns for adaptive

asynchronous incremental checkpointing, in The 22nd International Symposium on

High-Performance Parallel and Distributed Computing, HPDC’13, New York, NY, USA -

June 17 - 21, 2013, M. Parashar, J. B. Weissman, D. H. J. Epema, and R. J. O. Figueiredo,

eds., ACM, 2013, pp. 155–166.

[136] NOAA, GOES-16: A GAME-CHANGER FOR FIGHTING DEADLY WILDFIRES.

https://www.goes-r.gov/featureStories/goes16Wildfires.html, 2018.

Last access: 05/08/21.

[137] NOAA, GOES-R Fire Detection and Characterization.

https://www.goes-r.gov/education/docs/fs_fire.pdf, 2019.

Last access: 05/08/21.

[138] S. A. NOGHABI, K. PARAMASIVAM, Y. PAN, N. RAMESH, J. BRINGHURST, I. GUPTA, AND

R. H. CAMPBELL, Stateful scalable stream processing at linkedin, Proc. VLDB Endow.,

10 (2017), pp. 1634–1645.

[139] D. OLTEANU, T. KIESLING, AND F. BRY, An evaluation of regular path expressions with

qualifiers against XML streams, in Proceedings of the 19th International Conference

on Data Engineering, March 5-8, 2003, Bangalore, India, U. Dayal, K. Ramamritham,

and T. M. Vijayaraman, eds., IEEE Computer Society, 2003, pp. 702–704.

[140] ORACLE, Overview of Oracle CEP.

https://docs.oracle.com/cd/E17904_01/doc.1111/e14476/overview.htm#CEPGS106,

2021.

Last access: 05/08/21.

[141] F. ÖZCAN, G. KOUTRIKA, AND S. MADDEN, eds., Proceedings of the 2016 International

Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,

USA, June 26 - July 01, 2016, ACM, 2016.

137

https://www.goes-r.gov/featureStories/goes16Wildfires.html
https://www.goes-r.gov/education/docs/fs_fire.pdf
https://docs.oracle.com/cd/E17904_01/doc.1111/e14476/overview.htm#CEPGS106

BIBLIOGRAPHY

[142] PACIFIC NORTHWEST NATIONAL LABORATORY, Transactive system.

https://tinyurl.com/y3d5xxcf, Dec. 2017.

[143] N. PANSARE, V. R. BORKAR, C. JERMAINE, AND T. CONDIE, Online aggregation for large

mapreduce jobs, PVLDB, 4 (2011), pp. 1135–1145.

[144] Y. PARK, B. MOZAFARI, J. SORENSON, AND J. WANG, Verdictdb: Universalizing ap-

proximate query processing, in Proceedings of the 2018 International Conference on

Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,

G. Das, C. M. Jermaine, and P. A. Bernstein, eds., ACM, 2018, pp. 1461–1476.

[145] F. PENG AND S. S. CHAWATHE, Xpath queries on streaming data, in Proceedings of the

2003 ACM SIGMOD International Conference on Management of Data, San Diego,

California, USA, June 9-12, 2003, A. Y. Halevy, Z. G. Ives, and A. Doan, eds., ACM,

2003, pp. 431–442.

[146] T. B. G. PEREZ, X. ZHOU, AND D. CHENG, Reference-distance eviction and prefetching for

cache management in spark, in Proceedings of the 47th International Conference on

Parallel Processing, ICPP 2018, Eugene, OR, USA, August 13-16, 2018, ACM, 2018,

pp. 88:1–88:10.

[147] U. PFERSCHY, Dynamic programming revisited: Improving knapsack algorithms, Comput-

ing, 63 (1999), pp. 419–430.

[148] T. N. PHAM, P. K. CHRYSANTHIS, AND A. LABRINIDIS, Avoiding class warfare: Managing

continuous queries with differentiated classes of service, The VLDB Journal, 25 (2016),

pp. 197–221.

[149] O. POPPE, C. LEI, S. AHMED, AND E. A. RUNDENSTEINER, Complete event trend detection

in high-rate event streams, in Proceedings of the 2017 ACM International Conference on

Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,

S. Salihoglu, W. Zhou, R. Chirkova, J. Yang, and D. Suciu, eds., ACM, 2017, pp. 109–124.

[150] O. POPPE, C. LEI, E. A. RUNDENSTEINER, AND D. MAIER, GRETA: graph-based real-time

event trend aggregation, Proc. VLDB Endow., 11 (2017), pp. 80–92.

[151] O. POPPE, C. LEI, E. A. RUNDENSTEINER, AND D. MAIER, Event trend aggregation under

rich event matching semantics, in Proceedings of the 2019 International Conference on

Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June

30 - July 5, 2019, P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska,

eds., ACM, 2019, pp. 555–572.

138

https://tinyurl.com/y3d5xxcf

BIBLIOGRAPHY

[152] O. POPPE, A. ROZET, C. LEI, E. A. RUNDENSTEINER, AND D. MAIER, Sharon: Shared

online event sequence aggregation, in 34th IEEE International Conference on Data

Engineering, ICDE 2018, Paris, France, April 16-19, 2018, IEEE Computer Society,

2018, pp. 737–748.

[153] Z. QIAN, Y. HE, C. SU, Z. WU, H. ZHU, T. ZHANG, L. ZHOU, Y. YU, AND Z. ZHANG,

Timestream: reliable stream computation in the cloud, in Eighth Eurosys Conference

2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013, Z. Hanzálek, H. Härtig,

M. Castro, and M. F. Kaashoek, eds., ACM, 2013, pp. 1–14.

[154] J. QUIRÓS-TORTÓS, L. OCHOA, AND T. BUTLER, How electric vehicles and the grid work

together: Lessons learned from one of the largest EV trials in the world, IEEE Power

Energy Mag., 16 (2018), pp. 64–76.

[155] K. RAMACHANDRA AND S. SUDARSHAN, Holistic optimization by prefetching query results,

in Proceedings of the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, K. S. Candan, Y. Chen, R. T.

Snodgrass, L. Gravano, and A. Fuxman, eds., ACM, 2012, pp. 133–144.

[156] G. RAMAN, B. ALSHEBLI, M. WANIEK, T. RAHWAN, AND J. C.-H. PENG, How weaponizing

disinformation can bring down a city’s power grid, PLOS ONE, 15 (2020), p. e0236517.

[157] G. RAMAN, J. C.-H. PENG, AND T. RAHWAN, Manipulating residents’ behavior to attack the

urban power distribution system, IEEE Trans. Ind. Informat., 15 (2019), pp. 5575–5587.

[158] G. RAMAN, J. C.-H. PENG, B. ZHAO, AND M. WEIDLICH, Dynamic decision making for

demand response through adaptive event stream monitoring, in 2019 IEEE Power and

Energy Society General Meeting (PESGM), IEEE, 2019, pp. 1–5.

[159] M. RAY, C. LEI, AND E. A. RUNDENSTEINER, Scalable pattern sharing on event streams,

in Özcan et al. [141], pp. 495–510.

[160] C. REISS, J. WILKES, AND J. L. HELLERSTEIN, Google cluster-usage traces: format +

schema, technical report, Google Inc., Mountain View, CA, USA, Nov. 2011.

Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/cluster-

data.

[161] K. REN, T. DIAMOND, D. J. ABADI, AND A. THOMSON, Low-overhead asynchronous check-

pointing in main-memory database systems, in Proceedings of the 2016 International

Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,

USA, June 26 - July 01, 2016, F. Özcan, G. Koutrika, and S. Madden, eds., ACM, 2016,

pp. 1539–1551.

139

https://github.com/google/cluster-data
https://github.com/google/cluster-data

BIBLIOGRAPHY

[162] H. A. RINGSBERG AND V. MIRZABEIKI, Effects on logistic operations from rfid-and epcis-

enabled traceability, British Food Journal, (2014).

[163] N. RIVETTI, Y. BUSNEL, AND L. QUERZONI, Load-aware shedding in stream processing

systems, in Proceedings of the 10th ACM International Conference on Distributed

and Event-based Systems, DEBS ’16, Irvine, CA, USA, June 20 - 24, 2016, A. Gal,

M. Weidlich, V. Kalogeraki, and N. Venkasubramanian, eds., ACM, 2016, pp. 61–68.

[164] ROCKSDB, .

http://rocksdb.org/, 2021.

Last access: 05/08/21.

[165] H. RÖGER AND R. MAYER, A comprehensive survey on parallelization and elasticity in

stream processing, ACM Comput. Surv., 52 (2019), pp. 36:1–36:37.

[166] P. V. ROY AND S. HARIDI, Concepts, Techniques, and Models of Computer Programming,

MIT Press, 2004.

[167] E. A. RUNDENSTEINER, L. DING, T. M. SUTHERLAND, Y. ZHU, B. PIELECH, AND N. K.

MEHTA, CAPE: continuous query engine with heterogeneous-grained adaptivity, in

(e)Proceedings of the Thirtieth International Conference on Very Large Data Bases,

VLDB 2004, Toronto, Canada, August 31 - September 3 2004, M. A. Nascimento, M. T.

Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, eds., Morgan

Kaufmann, 2004, pp. 1353–1356.

[168] M. J. SAX, Apache kafka, in Encyclopedia of Big Data Technologies, S. Sakr and A. Y.

Zomaya, eds., Springer, 2019.

[169] S. SCHNEIDER, M. HIRZEL, B. GEDIK, AND K. WU, Auto-parallelizing stateful distributed

streaming applications, in International Conference on Parallel Architectures and

Compilation Techniques, PACT ’12, Minneapolis, MN, USA - September 19 - 23, 2012,

P. Yew, S. Cho, L. DeRose, and D. J. Lilja, eds., ACM, 2012, pp. 53–64.

[170] N. P. SCHULTZ-MØLLER, M. MIGLIAVACCA, AND P. R. PIETZUCH, Distributed complex

event processing with query rewriting, in Proceedings of the Third ACM International

Conference on Distributed Event-Based Systems, DEBS 2009, Nashville, Tennessee,

USA, July 6-9, 2009, A. S. Gokhale and D. C. Schmidt, eds., ACM, 2009.

[171] M. A. SHAH, J. M. HELLERSTEIN, AND E. A. BREWER, Highly-available, fault-tolerant,

parallel dataflows, in Proceedings of the ACM SIGMOD International Conference on

Management of Data, Paris, France, June 13-18, 2004, G. Weikum, A. C. König, and

S. Deßloch, eds., ACM, 2004, pp. 827–838.

140

http://rocksdb.org/

BIBLIOGRAPHY

[172] D. SIDLER, Z. ISTVÁN, M. OWAIDA, AND G. ALONSO, Accelerating pattern matching

queries in hybrid CPU-FPGA architectures, in Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,

USA, May 14-19, 2017, S. Salihoglu, W. Zhou, R. Chirkova, J. Yang, and D. Suciu, eds.,

ACM, 2017, pp. 403–415.

[173] A. SLO, S. BHOWMIK, A. FLAIG, AND K. ROTHERMEL, pspice: Partial match shedding for

complex event processing, in 2019 IEEE International Conference on Big Data (IEEE

BigData), Los Angeles, CA, USA, December 9-12, 2019, C. Baru, J. Huan, L. Khan,

X. Hu, R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee, and Y. F. Ye, eds., IEEE, 2019,

pp. 372–382.

[174] A. SLO, S. BHOWMIK, AND K. ROTHERMEL, espice: Probabilistic load shedding from input

event streams in complex event processing, in Proceedings of the 20th International

Middleware Conference, Middleware 2019, Davis, CA, USA, December 9-13, 2019, ACM,

2019, pp. 215–227.

[175] A. SLO, S. BHOWMIK, AND K. ROTHERMEL, hspice: state-aware event shedding in complex

event processing, in DEBS ’20: The 14th ACM International Conference on Distributed

and Event-based Systems, Montreal, Quebec, Canada, July 13-17, 2020, J. Gascon-

Samson, K. Zhang, K. Daudjee, and B. Kemme, eds., ACM, 2020, pp. 109–120.

[176] A. J. SMITH, Sequentiality and prefetching in database systems, ACM Trans. Database

Syst., 3 (1978), pp. 223–247.

[177] K. SUBBARAO ET AL., Transactive control and coordination of distributed assets for ancil-

lary services, tech. rep., Pacific Northwest National Laboratory, 2013.

[178] N. TATBUL, U. ÇETINTEMEL, S. B. ZDONIK, M. CHERNIACK, AND M. STONEBRAKER,

Load shedding in a data stream manager, in VLDB 2003, Proceedings of 29th Interna-

tional Conference on Very Large Data Bases, September 9-12, 2003, Berlin, Germany,

J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer,

eds., Morgan Kaufmann, 2003, pp. 309–320.

[179] D. B. TERRY, D. GOLDBERG, D. A. NICHOLS, AND B. M. OKI, Continuous queries over

append-only databases, in Proceedings of the 1992 ACM SIGMOD International Con-

ference on Management of Data, San Diego, California, USA, June 2-5, 1992, M. Stone-

braker, ed., ACM Press, 1992, pp. 321–330.

[180] G. THEODORAKIS, A. KOLIOUSIS, P. R. PIETZUCH, AND H. PIRK, Lightsaber: Efficient

window aggregation on multi-core processors, in Proceedings of the 2020 International

141

BIBLIOGRAPHY

Conference on Management of Data, SIGMOD Conference 2020, online conference [Port-

land, OR, USA], June 14-19, 2020, D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini,

and H. Q. Ngo, eds., ACM, 2020, pp. 2505–2521.

[181] R. TIBSHIRANI, G. WALTHER, AND T. HASTIE, Estimating the number of clusters in a

dataset via the gap statistic, J. R. Statist. Soc. B, 63 (2001), pp. 411–423.

[182] Q. TO, J. SOTO, AND V. MARKL, A survey of state management in big data processing

systems, VLDB J., 27 (2018), pp. 847–872.

[183] A. TOSHNIWAL, S. TANEJA, A. SHUKLA, K. RAMASAMY, J. M. PATEL, S. KULKARNI,

J. JACKSON, K. GADE, M. FU, J. DONHAM, N. BHAGAT, S. MITTAL, AND D. V. RYABOY,

Storm@twitter, in International Conference on Management of Data, SIGMOD 2014,

Snowbird, UT, USA, June 22-27, 2014, C. E. Dyreson, F. Li, and M. T. Özsu, eds., ACM,

2014, pp. 147–156.

[184] S. P. VANDERWIEL AND D. J. LILJA, Data prefetch mechanisms, ACM Comput. Surv., 32

(2000), pp. 174–199.

[185] H. WEDEKIND AND G. ZÖRNTLEIN, Prefetching in realtime database applications, in

Proceedings of the 1986 ACM SIGMOD International Conference on Management

of Data, Washington, DC, USA, May 28-30, 1986, C. Zaniolo, ed., ACM Press, 1986,

pp. 215–226.

[186] M. WEI, E. A. RUNDENSTEINER, AND M. MANI, Achieving high output quality under

limited resources through structure-based spilling in XML streams, PVLDB, 3 (2010),

pp. 1267–1278.

[187] M. WEIDLICH, H. ZIEKOW, A. GAL, J. MENDLING, AND M. WESKE, Optimizing event

pattern matching using business process models, IEEE Trans. Knowl. Data Eng., 26

(2014), pp. 2759–2773.

[188] L. WONG, N. S. ARORA, L. GAO, T. HOANG, AND J. WU, Oracle streams: A high perfor-

mance implementation for near real time asynchronous replication, in Proceedings of

the 25th International Conference on Data Engineering, ICDE 2009, March 29 2009

- April 2 2009, Shanghai, China, Y. E. Ioannidis, D. L. Lee, and R. T. Ng, eds., IEEE

Computer Society, 2009, pp. 1363–1374.

[189] E. WU, Y. DIAO, AND S. RIZVI, High-performance complex event processing over streams,

in Proceedings of the ACM SIGMOD International Conference on Management of Data,

Chicago, Illinois, USA, June 27-29, 2006, S. Chaudhuri, V. Hristidis, and N. Polyzotis,

eds., ACM, 2006, pp. 407–418.

142

BIBLIOGRAPHY

[190] S. WU, B. C. OOI, AND K. TAN, Continuous sampling for online aggregation over multiple

queries, in Proceedings of the ACM SIGMOD International Conference on Management

of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, A. K. Elmagarmid

and D. Agrawal, eds., ACM, 2010, pp. 651–662.

[191] Y. WU AND K. TAN, Chronostream: Elastic stateful stream computation in the cloud, in

31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South

Korea, April 13-17, 2015, J. Gehrke, W. Lehner, K. Shim, S. K. Cha, and G. M. Lohman,

eds., IEEE Computer Society, 2015, pp. 723–734.

[192] Y. YU, W. WANG, J. ZHANG, AND K. B. LETAIEF, LRC: dependency-aware cache manage-

ment for data analytics clusters, in 2017 IEEE Conference on Computer Communica-

tions, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017, IEEE, 2017, pp. 1–9.

[193] M. ZAHARIA, M. CHOWDHURY, T. DAS, A. DAVE, J. MA, M. MCCAULY, M. J. FRANKLIN,

S. SHENKER, AND I. STOICA, Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing, in Proceedings of the 9th USENIX Symposium on

Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April

25-27, 2012, S. D. Gribble and D. Katabi, eds., USENIX Association, 2012, pp. 15–28.

[194] H. ZHANG, G. CHEN, B. C. OOI, K. TAN, AND M. ZHANG, In-memory big data management

and processing: A survey, IEEE Trans. Knowl. Data Eng., 27 (2015), pp. 1920–1948.

[195] H. ZHANG, Y. DIAO, AND N. IMMERMAN, Recognizing patterns in streams with imprecise

timestamps, Proc. VLDB Endow., 3 (2010), pp. 244–255.

[196] H. ZHANG, Y. DIAO, AND N. IMMERMAN, On complexity and optimization of expensive

queries in complex event processing, in International Conference on Management of

Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, C. E. Dyreson, F. Li, and

M. T. Özsu, eds., ACM, 2014, pp. 217–228.

[197] S. ZHANG, J. HE, A. C. ZHOU, AND B. HE, Briskstream: Scaling data stream processing

on shared-memory multicore architectures, in Proceedings of the 2019 International

Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The

Netherlands, June 30 - July 5, 2019, P. A. Boncz, S. Manegold, A. Ailamaki, A. Desh-

pande, and T. Kraska, eds., ACM, 2019, pp. 705–722.

[198] S. ZHANG, H. T. VO, D. DAHLMEIER, AND B. HE, Multi-query optimization for complex

event processing in SAP ESP, in 33rd IEEE International Conference on Data Engi-

neering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, IEEE Computer Society,

2017, pp. 1213–1224.

143

BIBLIOGRAPHY

[199] S. ZHANG, Y. WU, F. ZHANG, AND B. HE, Towards concurrent stateful stream processing

on multicore processors, in 36th IEEE International Conference on Data Engineering,

ICDE 2020, Dallas, TX, USA, April 20-24, 2020, IEEE, 2020, pp. 1537–1548.

[200] Y. ZHANG AND F. MUELLER, Gstream: A general-purpose data streaming framework on

GPU clusters, in International Conference on Parallel Processing, ICPP 2011, Taipei,

Taiwan, September 13-16, 2011, G. R. Gao and Y. Tseng, eds., IEEE Computer Society,

2011, pp. 245–254.

[201] B. ZHAO, Complex event processing under constrained resources by state-based load shed-

ding, in 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris,

France, April 16-19, 2018, IEEE Computer Society, 2018, pp. 1699–1703.

[202] B. ZHAO, Q. V. H. NGUYEN, AND M. WEIDLICH, Load shedding for complex event process-

ing: Input-based and state-based techniques, in 36th IEEE International Conference

on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, IEEE, 2020,

pp. 1093–1104.

[203] B. ZHAO, H. VAN DER AA, T. T. NGUYEN, Q. V. H. NGUYEN, AND M. WEIDLICH, EIRES:

efficient integration of remote data in event stream processing, in SIGMOD ’21: Inter-

national Conference on Management of Data, Virtual Event, China, June 20-25, 2021,

G. Li, Z. Li, S. Idreos, and D. Srivastava, eds., ACM, 2021, pp. 2128–2141.

[204] H. ZIEKOW, B. FABIAN, AND C. MÜLLER, High-speed access to RFID data: Meeting

real-time requirements in distributed value chains, in Proceedings On the Move to

Meaningful Internet Systems: OTM 2009 Workshops, Vilamoura, Portugal, November

1-6, 2009., R. Meersman, P. Herrero, and T. S. Dillon, eds., vol. 5872 of Lecture Notes in

Computer Science, Springer, 2009, pp. 142–151.

144

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Research Problem
	1.3 Overview of the research contributions
	1.4 Publications
	1.5 Dissertation Outline

	2 Foundations
	2.1 Data Model
	2.1.1 Event and Event Stream
	2.1.2 External Data Enrichment

	2.2 Query Model
	2.2.1 Language Model
	2.2.2 Execution Model

	2.3 Performance Model

	3 Literature Review
	3.1 General Data Stream Processing
	3.1.1 Relational Data Stream Processing
	3.1.2 XML Data Stream Processing

	3.2 State Management
	3.3 Efficient Pattern Detection in Event Stream Processing
	3.3.1 Lossless Optimisations
	3.3.2 Lossy Optimisations

	3.4 Efficient Remote Data Integration in Event Stream Processing

	4 Hybrid Load Shedding
	4.1 Problem Illustration
	4.2 Foundations of Hybrid Load Shedding
	4.2.1 The Load Shedding Problem in Pattern Detection Queries
	4.2.2 Hybrid Shedding Approach
	4.2.3 Cost Model
	4.2.4 Shedding Set Selection
	4.2.5 Shedding Functions

	4.3 Implementations of Hybrid Load Shedding
	4.3.1 Granularity of the Cost Model
	4.3.2 Estimating the Cost Model
	4.3.3 Approximated Shedding Sets
	4.3.4 Managing Partial Matches Efficiently

	4.4 Evaluations
	4.4.1 Experimental Setup
	4.4.2 Overall Effectiveness and Efficiency
	4.4.3 Sensitivity Analysis
	4.4.4 Case Studies

	4.5 Summary

	5 Efficient Remote Data Integration
	5.1 Problem Illustration
	5.2 Foundations of Remote Data Integration
	5.2.1 A Closer Look at Remote Data
	5.2.2 Problem Statement
	5.2.3 The EIRES Framework

	5.3 Utility Modelling
	5.3.1 Utility Definition
	5.3.2 Utility Estimation

	5.4 Remote Data Fetching
	5.4.1 Prefetching
	5.4.2 Lazy Evaluation

	5.5 Cache Management
	5.6 Evaluations
	5.6.1 Experimental Setup
	5.6.2 Overall Effectiveness and Efficiency
	5.6.3 Sensitivity Analysis
	5.6.4 Case Studies

	5.7 Summary

	6 Case Study: Demand Response Management in Smart Grids
	6.1 Problem Illustration
	6.2 Adaptive DR Management with Event Stream Processing
	6.2.1 DR Compliance Assessment and Prediction
	6.2.2 Scalable Monitoring through Event Stream Processing
	6.2.3 Utility Intervention during an Unsuccessful DR Event

	6.3 Evaluations
	6.3.1 Experimental Setup and Case Description
	6.3.2 Effectiveness of Adaptive Demand Response Approach
	6.3.3 Efficiency of Distributed Event Stream Processing
	6.3.4 Hybrid Load Shedding and Remote Data Integration in DR Management

	6.4 Summary

	7 Conclusion
	7.1 Summary and Impact
	7.2 Future Work

	Bibliography

