
Technische Universität München

Fakultät für Informatik
Lehrstuhl für Datenbanksysteme

Advancing Analytical Database Systems

Andreas Michael Kipf

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Florian Matthes

Prüfer der Dissertation: 1. Prof. Alfons Kemper, Ph.D.

2. Prof. Divyakant Agrawal, Ph.D.
(University of California at Santa Barbara)

3. Prof. Dr. Thomas Neumann

Die Dissertation wurde am 11.12.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 13.01.2020 angenommen.

Abstract

Over the last decade, we have seen a rise in demand for analytical data pro-
cessing. This trend is driven by an increase in volume and velocity of data
that is being created and by companies seeking to unlock its potential. Exam-
ples include vehicle telemetry, health, and industrial data. At the same time,
advances in hardware and machine learning enable system builders to create
ever faster and smarter database systems.

This thesis makes three contributions to the design and implementation of
such systems. First, we compare main-memory databases with modern stream-
ing systems using a telecommunications benchmark, identify performance and
usability gaps, and explore extensions to database systems. These extensions
include user-space networking for faster client-server communication and a
scale-out architecture. Second, we propose an approach to processing geospa-
tial point data in memory. In particular, we contribute a novel polygon index
that allows for efficient point-polygon joins. This index can either provide
precision-bounded approximate results or can be used to identify true and
candidate join pairs. Most notably, it can learn from historical data to become
more effective. Third, we contribute a new deep learning approach to cardi-
nality estimation, which is the core problem in cost-based query optimization.
We propose a new neural network model that can capture correlations between
columns, even across tables. Trained with past queries, our model can predict
the cardinalities of future queries and significantly enhances the quality of car-
dinality estimation.

Zusammenfassung

Während des letzten Jahrzehnts hat sich die Nachfrage nach analytischer Da-
tenverarbeitung stets gesteigert. Daten werden in immer größeren Mengen und
mit zunehmender Geschwindigkeit generiert und Unternehmen streben da-
nach deren Potential auszuschöpfen. Als Beispiele sind Daten von Fahrzeugen,
aus dem Gesundheitswesen sowie aus der Industrie zu nennen. Gleichzeitig er-
möglichen es Fortschritte in den Bereichen Hardware und Maschinelles Lernen
immer schnellere und intelligentere Datenbanksysteme zu entwickeln.

Diese Arbeit trägt zum aktuellen Forschungsstand von analytischen Daten-
banksystemen bei. Wir identifizieren und explorieren Erweiterungen um Ana-
lysen auf Eventströmen besser zu unterstützen. Insbesondere vergleichen wir
Hauptspeicherdatenbanksysteme mit modernen Streamingsystemen anhand
eines Telekommunikationsbenchmarks. Als Erweiterungen untersuchen wir ei-
ne User-Space-Bibliothek zur effizienteren Netzwerkkommunikation und eine
verteilte Datenbankarchitektur. Darüber hinaus stellen wir eine neue Index-
struktur für Polygone vor, die eine effiziente Verarbeitung von Geodaten im
Hauptspeicher ermöglicht. Diese Datenstruktur kann je nach Anwendung ap-
proximative als auch exakte Ergebnisse liefern. Erwähnenswert ist, dass unser
Index von historischen Daten lernen kann, um seine Effektivität zu steigern.
Zudem präsentieren wir einen neuen Ansatz für Kardinalitätsschätzungen mit-
tels maschinellen Lernens. Konkret schlagen wir ein neues neuronales Netz-
werk vor, das Korrelationen zwischen Spalten abbilden kann und dies sogar
über mehrere Tabellen hinweg. Wir trainieren dieses Netzwerk mit vergange-
nen Anfragen, wodurch es lernt die Kardinalitäten zukünftiger Anfragen mit
hoher Genauigkeit vorherzusagen.

A C K N O W L E D G M E N T S

First of all, I would like to thank my advisor, Prof. Alfons Kemper. He
gave me the freedom to pursue a variety of ideas and was always there when
I needed his advice. I would also like to thank Prof. Thomas Neumann for his
continuous feedback and inspiration.

A special thank you goes to Prof. Divyakant Agrawal from UC Santa Barbara
for being part of my thesis committee. I also thank Prof. Florian Matthes for
chairing my doctoral examination.

As a member of the TUM database group, I had the opportunity to work and
make friends with many great people: Alexander van Renen, Varun Pandey
(thank you for being an amazing office mate), Harald Lang, Linnea Passing
(thank you for sharing the Software Campus experience with me), Jan Böttcher
(thank you for teaching me how to swim freestyle), Timo Kersten, Tobias
Mühlbauer, Wolf Rödiger, Manuel Then, Moritz Kaufmann, Jan Finis, Vik-
tor Leis, Dimitri Vorona, Nina Hubig, Bernhard Radke, André Kohn, Michael
Freitag, Christian Winter, Christoph Anneser, Dominik Durner, Maximilian
Schüle, Lukas Vogel, Moritz Sichert, Philipp Fent, Maximilian Bandle, Michael
Haubenschild, Adrian Vogelsgesang, and many more. Thank you, Angelika
Reiser, for your guidance and feedback.

I am also very grateful to have had the opportunity to collaborate with fan-
tastic researchers outside of TUM: Prof. Peter Boncz from CWI Amsterdam
contributed to most of my projects and is a great source of inspiration to me.
Eleni Tzirita Zacharatou from EPFL (now at TU Berlin) worked with me on
geospatial data processing and Lucas Braun from ETH (now at Oracle) was of
great help in our effort on analytics on fast data.

In the summers of 2017 and 2018, I interned at Google in Mountain View
and in Zurich. Thank you to my hosts and co-hosts Jagan Sankaranarayanan,
Kevin Lai, Damian Chromejko, and Alexander Hall for your inspiration and
mentorship. It was a great experience that I would not want to miss.

Finally, I would like to thank my family. To my partner, Vanessa, for taking
on this journey with me. Your support over the last twelve years has been
tremendous. To my brother, Thomas, for the endless inspiration and for al-
ways being there (even as a co-author). To my mother, Marianne, for your
outstanding support. I dedicate this thesis to my father, Harald, who passed
away when I started at TUM. He taught me to pursue my goals with passion
and to never give up.

i

ii ���������������

Funding. This work has been partially supported by the German Federal Min-
istry of Education and Research (BMBF) grant 01IS12057 (FASTDATA). It is
further part of the TUM Living Lab Connected Mobility (TUM LLCM) project
and has been funded by the Bavarian Ministry of Economic Affairs, Energy
and Technology (StMWi) through the Center Digitisation.Bavaria, an initiative
of the Bavarian State Government.

P R E FA C E

Excerpts of this thesis have been published in advance.
Chapter 2 is drawn from the following publications with modifications to

the description and evaluation of “HyPerParallel”:
Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas Neu-
mann, and Alfons Kemper. “Analytics on Fast Data: Main-Memory Data-
base Systems versus Modern Streaming Systems”. In: Proceedings of the
20th International Conference on Extending Database Technology, EDBT 2017,
Venice, Italy, March 21-24, 2017. Pp. 49–60

An extended version appeared in ACM TODS (Best of EDBT 2017):
Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas Neu-
mann, and Alfons Kemper. “Scalable Analytics on Fast Data”. In: ACM
Trans. Database Syst. 44.1 (2019), 1:1–1:35

Chapter 3 is drawn from the following publications with minor modifica-
tions:

Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Pe-
ter A. Boncz, Thomas Neumann, and Alfons Kemper. “Approximate
Geospatial Joins with Precision Guarantees”. In: 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018,
pp. 1360–1363

An extended version appeared in EDBT 2020:
Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Chris-
toph Anneser, Eleni Tzirita Zacharatou, Harish Doraiswamy, Peter A.
Boncz, Thomas Neumann, and Alfons Kemper. “Adaptive Main-Mem-
ory Indexing for High-Performance Point-Polygon Joins”. In: Proceedings
of the 23nd International Conference on Extending Database Technology, EDBT
2020, Copenhagen, Denmark, March 30 - April 02, 2020, pp. 347–358

Chapter 4 is a consolidation of the following publications:

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Bon-
cz, and Alfons Kemper. “Learned Cardinalities: Estimating Correlated
Joins with Deep Learning”. In: CIDR 2019, 9th Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 13-16, 2019,
Online Proceedings

iii

iv �������

Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard
Radke, Viktor Leis, Peter A. Boncz, Thomas Neumann, and Alfons Kem-
per. “Estimating Cardinalities with Deep Sketches”. In: Proceedings of the
2019 International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. Pp. 1937–1940

Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas Neu-
mann, and Alfons Kemper. “Estimating Filtered Group-By Queries is
Hard: Deep Learning to the Rescue”. In: 1st International Workshop on
Applied AI for Database Systems and Applications (2019)

Chapters 1 and 5 also draw from these publications, but also contain novel,
unpublished material. In addition to these publications, the author of this
thesis also co-authored the following related work, which is not part of this
thesis:

Varun Pandey, Andreas Kipf, Dimitri Vorona, Tobias Mühlbauer, Thomas
Neumann, and Alfons Kemper. “High-Performance Geospatial Analytics
in HyPerSpace”. In: Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, pp. 2145–2148

Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
“How Good Are Modern Spatial Analytics Systems?” In: PVLDB 11.11
(2018), pp. 1661–1673

Harald Lang, Andreas Kipf, Linnea Passing, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. “Make the most out of your SIMD invest-
ments: counter control flow divergence in compiled query pipelines”. In:
Proceedings of the 14th International Workshop on Data Management on New
Hardware, Houston, TX, USA, June 11, 2018, 5:1–5:8

Harald Lang, Linnea Passing, Andreas Kipf, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. “Make the most out of your SIMD invest-
ments: counter control flow divergence in compiled query pipelines”. In:
VLDBJ (2019), pp. 1–18

Christian Winter, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
“GeoBlocks: A Query-Driven Storage Layout for Geospatial Data”. In:
CoRR abs/1908.07753 (2019)

Dimitri Vorona, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
“DeepSPACE: Approximate Geospatial Query Processing with Deep Lea-
rning”. In: Proceedings of the 27th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, SIGSPATIAL 2019,
Chicago, IL, USA, November 5-8, 2019, pp. 500–503

������� v

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons
Kemper, Tim Kraska, and Thomas Neumann. “SOSD: A Benchmark for
Learned Indexes”. In: NeurIPS Workshop on Machine Learning for Systems
(2019)

Christoph Anneser, Andreas Kipf, Harald Lang, Thomas Neumann, and
Alfons Kemper. “The Case for Hybrid Succinct Data Structures”. In: Pro-
ceedings of the 23nd International Conference on Extending Database Technol-
ogy, EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020, pp. 391–
394

Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas
Neumann, and Alfons Kemper. “Low-Latency Communication for Fast
DBMS Using RDMA and Shared Memory”. In: 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24,
2020

Philipp Fent, Michael Jungmair, Andreas Kipf, and Thomas Neumann.
“START — Self-Tuning Adaptive Radix Tree”. In: 36th IEEE International
Conference on Data Engineering Workshops, ICDE Workshops 2020, Dallas,
TX, USA, April 20-24, 2020, pp. 147–153

All of the publications listed above are marked with an asterisk (*) in the
bibliography in compliance with § 6 Abs. 6 Satz 3 Promotionsordnung der
Technischen Universität München.

C O N T E N T S

��������������� i
������� iii

� ������������ 1
1.1 Analytical Database Systems . 1

1.1.1 Challenges . 1
1.1.2 Research Opportunities . 4

1.2 The Learned Systems Era . 6
1.3 Contributions . 8

� ��������� �� ���� ���� 11
2.1 Introduction . 11
2.2 Approaches . 14

2.2.1 Main-Memory Database Systems 14
2.2.2 Modern Streaming Systems 15
2.2.3 AIM . 17
2.2.4 Summary . 17

2.3 Workload . 21
2.3.1 Description . 21
2.3.2 Implementations . 23

2.4 Extensions to MMDBs . 27
2.4.1 Mitigating the Network Bottleneck 27
2.4.2 Improving OLTP Capabilities 29
2.4.3 Scaling out Using Horizontal Partitioning 30

2.5 Performance Evaluation . 32
2.5.1 Configuration . 32
2.5.2 Overall Performance . 33
2.5.3 Read Performance . 34
2.5.4 Write Performance . 34
2.5.5 Query Response Times . 36
2.5.6 Impact of Number of Clients 36
2.5.7 Impact of Number of Aggregates 37
2.5.8 Impact of Skew . 38
2.5.9 Impact of User-Space Networking 40
2.5.10 Distributed Setting . 42

2.6 Closing the Gap . 44
2.7 Conclusions . 46

� ���������� ��������� 47
3.1 Introduction . 47
3.2 Background . 49

vii

viii ��������

3.2.1 Location Discretization . 49
3.2.2 Polygon Approximations 50
3.2.3 PIP Test . 51

3.3 Approach . 51
3.3.1 Adaptive Cell Trie (ACT) Indexing 52
3.3.2 Approximate Join with Precision Bound 60
3.3.3 Accurate Join . 61
3.3.4 Implementation Details . 62

3.4 Experimental Evaluation . 63
3.4.1 Infrastructure . 64
3.4.2 Datasets and Queries . 64
3.4.3 Polygon Approximations 65
3.4.4 Approximate Join . 65
3.4.5 Accurate Join . 72
3.4.6 Comparison with GPU Algorithms 76

3.5 Related Work . 77
3.5.1 Spatial Join Techniques . 77
3.5.2 Systems . 78
3.5.3 Modern Hardware . 78

3.6 Conclusions . 78
� ������� ������������� 79

4.1 Introduction . 79
4.2 Approach . 80

4.2.1 Set-Based Query Representation 81
4.2.2 Model . 81
4.2.3 Generating Training Data 84
4.2.4 Enriching the Training Data 85
4.2.5 Training and Inference . 85

4.3 Evaluation . 85
4.3.1 Estimation Quality . 87
4.3.2 0-Tuple Situations . 88
4.3.3 Removing Model Features 88
4.3.4 Generalizing to More Joins 89
4.3.5 JOB-light . 90
4.3.6 Hyperparameter Tuning . 91
4.3.7 Model Costs . 91
4.3.8 Optimization Metrics . 92

4.4 Filtered Group-By Queries . 93
4.4.1 Problem . 93
4.4.2 Applications . 94
4.4.3 Adapting Our Model . 94
4.4.4 Results . 96

4.5 Optimizer Integration . 103

�������� ix

4.5.1 Overview . 103
4.5.2 Training and Query Flow 104
4.5.3 Web Interface . 106
4.5.4 Open Challenges . 107

4.6 Discussion . 107
4.6.1 Generalization . 107
4.6.2 Adaptive Training . 108
4.6.3 Strings . 108
4.6.4 Complex Predicates . 108
4.6.5 More Bitmaps . 108
4.6.6 Filtered Group-By Estimates 109
4.6.7 Uncertainty Estimation . 110
4.6.8 Updates . 110

4.7 Related Work . 111
4.7.1 ML-Based Approaches . 111
4.7.2 Sampling . 111
4.7.3 Group-By Estimates . 112

4.8 Conclusions . 113
� ������ ���� 115

������������ 117

L I S T O F F I G U R E S

Figure 1 HyPerMaps. Interactive exploration of changing point
datasets. 2

Figure 2 Runtimes of TPC-H Query 5 (SF1) with random query
plans. Plot adapted from [152]. Numbers reproduced on
AMD Ryzen Threadripper 1950X. 3

Figure 3 GFLOPS (32-bit) of various GPUs. Data collected by [182]. 7
Figure 4 Analytics on fast data. Streaming events may be pro-

cessed concurrently in different partitions, whereas an-
alytical queries cross partition boundaries and require a
consistent state. 12

Figure 5 The Huawei-AIM workload. 23
Figure 6 Hybrid processing in Flink. A CoFlatMap operator in-

terleaves events with analytical queries. 26
Figure 7 Using mTCP and DPDK on the server side to accelerate

message throughput. 29
Figure 8 HyPerDistributed with multiple horizontal partitions (sh-

ards). Events are dispatched to the corresponding par-
tition. Queries are sent to all partitions and aggregated
on the client side. 31

Figure 9 Analytical query throughput for 10 M subscribers at 10,000
events/s. 33

Figure 10 Analytical query throughput for 10 M subscribers. 34
Figure 11 Event processing throughput with an increasing number

of event processing threads. 35
Figure 12 Event processing throughput with an increasing number

of event processing threads (using optimistic locking in
HyPerParallel). 35

Figure 13 Query response times. 37
Figure 14 Analytical query throughput with an increasing number

of clients. 37
Figure 15 Analytical query throughput for 10 M subscribers and 42

aggregates at 10,000 events/s. 38
Figure 16 Event processing throughput for 42 aggregates with an

increasing number of event processing threads. 39

xi

xii ���� �� �������

Figure 17 Relative event processing performance for 546 aggre-
gates with increasing skew using 10 event processing
threads (Zipf factor = 0 represents a uniform distribu-
tion). 40

Figure 18 Number of round trips in K messages/s for two differ-
ent payload sizes with an increasing number of client
threads (mTCP/mTCP = server and clients use mTCP, mTCP/-
TCP = server uses mTCP and clients TCP, and TCP/TCP =
server and clients use TCP). 41

Figure 19 Number of round trips in K messages/s for two differ-
ent client thread counts with an increasing number of
updated columns. 42

Figure 20 Analytical query throughput for 10 M subscribers with
an increasing number of nodes. 43

Figure 21 Overview of possible extensions to MMDBs and their
benefits. 44

Figure 22 Polygons are indexed in a new trie data structure that
is probed with dynamic points. The join result can be
aggregated or materialized. 48

Figure 23 Quadtree-based cell decomposition and Hilbert curve-
based enumeration. 50

Figure 24 A covering (blue cells) and an interior covering (green
cells) of a polygon. 51

Figure 25 A combined covering may be less selective than two in-
dividual coverings. The arrows indicate that the cells
will be expanded. 53

Figure 26 Precision preserving conflict resolution. c1 is marked in
blue, c2 in green, and the cells in d in purple. Note that
c1 contains c2. 54

Figure 27 A super covering of neighborhoods in NYC’s Jamaica Bay. 56
Figure 28 Adaptive Cell Trie indexing three polygons a, b, and c.

Here, ACT uses two bits per level. In practice, we use up
to eight bits (a fanout of 255) to reduce the tree height.
Note that the figure only shows the cell rasterization for
the part of the map that corresponds to the radix tree. . . 59

Figure 29 Single-threaded throughput of our approximate algo-
rithm with different data structures (4 m precision). . . . 68

Figure 30 Single-threaded throughput of our approximate algo-
rithm with different precisions and data structures (neigh-
borhood polygons). 70

Figure 31 Multi-threaded throughput of our approximate algorithm
with different data structures (neighborhood polygons,
4 m precision). 71

���� �� ������� xiii

Figure 32 Single-threaded throughput of our approximate algo-
rithm (4 m precision) with uniform point data. 72

Figure 33 Single-threaded throughput of our approximate algo-
rithm (Twitter datasets, polygon counts in brackets). . . . 73

Figure 34 Single-threaded throughput of our accurate algorithm
(with different ACT fanouts) compared to S2ShapeIndex
(with 1 and 10 edges per cell) and the R-tree. 74

Figure 35 Throughput of ACT4 (16 threads) compared to the two
GPU algorithms on AWS (GPU = Bounded Raster Join
for 15 m and 4 m and Accurate Raster Join for exact). . . 76

Figure 36 Architecture of our multi-set convolutional network. Ta-
bles, joins, and predicates are represented as separate
modules, comprised of one two-layer neural network per
set element with shared parameters. Module outputs are
averaged, concatenated, and fed into a final output net-
work. 82

Figure 37 Query featurization as sets of feature vectors. 83
Figure 38 Estimation errors on the synthetic workload. The box

boundaries are at the 25th/75th percentiles and the hor-
izontal “whisker” lines mark the 95th percentiles. 87

Figure 39 Estimation errors on the synthetic workload with differ-
ent model variants. 89

Figure 40 Estimation errors on the scale workload showing how
MSCN generalizes to queries with more joins. 90

Figure 41 Convergence of the mean q-error on the validation set
with the number of epochs. 92

Figure 42 Architecture of the adapted MSCN model. Tables, group-
by columns, and predicates are represented as separate
MLP modules that provide input to a final output net-
work that predicts query cardinalities. 96

Figure 43 Estimation errors on the query workload. The box bound-
aries are at the 25th/75th percentiles and the horizontal
“whisker” lines mark the 95th percentiles. 99

Figure 44 Estimation errors on the query workload with an in-
creasing number of training queries. 100

Figure 45 Cardinality estimates (y-axis) of PostgreSQL, HyPer, SC-
BC, and Deep Sketches. Selection on production_year
(x-axis) and group-by on kind_id and/or phonetic_code. 101

Figure 46 Creation and usage of a Deep Sketch. Depending on
the number of training queries, training can be expen-
sive. However, once a sketch is trained, it allows for an
efficient result size estimation of SQL queries. 105

Figure 47 Web interface for Deep Sketches. 106

L I S T O F TA B L E S

Table 1 Comparison of different stream processing approaches. . 18
Table 2 Schema snippet of the Analytics Matrix. 21
Table 3 RTA queries . 22
Table 4 Options to mitigate the network bottleneck depending

on whether we control the clients and whether they run
on the same machine as the database. 27

Table 5 Evaluated systems. 32
Table 6 Metrics of the NYC polygon datasets. 64
Table 7 Metrics of three super coverings with various precisions. 66
Table 8 Metrics of the different data structures (4 m precision). . 66
Table 9 Speedups of lookups in smaller (more coarse-grained)

over larger (more fine-grained) polygon datasets for dif-
ferent data structures (b = boroughs, n = neighborhoods,
c = census). 68

Table 10 Distribution of the tree traversal depth (ACT4 with 4 m
precision). 70

Table 11 Performance counters per point (neighborhoods, 4 m pre-
cision). 71

Table 12 Speedups of single-threaded lookups when training ACT4
with an increasing number of historical data points (over
untrained ACT4). 75

Table 13 Effect of training the index with 1 M historical data points
(STH = solely true hits). 75

Table 14 Distribution of joins. 86
Table 15 Estimation errors on the synthetic workload. 87
Table 16 Estimation errors of 376 base table queries with empty

samples in the synthetic workload. 88
Table 17 Estimation errors on the JOB-light workload. 90
Table 18 Cardinalities (distinct value counts) of columns used in

our workload. Checkmarks indicate whether columns
can appear in filter and/or group-by clauses. 97

Table 19 Estimation errors on the query workload. 99

xv

1 I N T R O D U C T I O N

�.� ���������� �������� �������
Already back in 2006, Clive Humby coined the phrase data is the new oil [85].

Like oil, data also first needs to be processed to provide actual value. However,
in contrast to oil, data is far more complex to turn into profit and requires
sophisticated tools to extract actionable insights [66].

To unlock the potential of their data, companies today rely upon modern
analytical database systems. The trend is moving away from proprietary or
on-premise solutions to cloud offerings such as Amazon Redshift [75], Google
BigQuery [22], and Snowflake [46].

These data warehouse systems offer many benefits for customers, including
automatic maintenance, high reliability, and most notably elasticity. All of these
may result in substantial cost savings. Likewise, the cloud opens up very in-
teresting opportunities for database vendors. With high-level insight into user
workloads, vendors can optimize their systems based on usage patterns.

�.�.� Challenges

Modern analytical database systems are faced with various challenges due
to evolving use cases and growing data volumes. Despite decades of research,
core problems like query optimization and multi-dimensional indexing remain
to a large extent unsolved with a lot of potential for further improvements.

Fresh Data

While these systems achieve state-of-the-art query performance, especially
when considering cost, they by design operate on stale data. The reason is that
they optimize for the read-mostly case and use techniques such as columnar
storage, compression, and even reorganize entire tables to find sort orders
favoring query patterns [14].

Thus, these systems are typically not suited to store the mission-critical trans-
actional data of a company (e.g., customer orders). This data therefore remains
in separate transaction-processing systems and is either continuously or peri-
odically extracted into data warehouses [2, 165].

There are, however, applications where time to insight matters and where ana-
lytical queries need to run on the most recent state to deliver fresh results [30]. In

1

2 ������������

Figure 1: HyPerMaps. Interactive exploration of changing point datasets.

these cases, there is no time for transferring data between transactional (OLTP)
and analytical (OLAP) systems. This need has created an entire new field in
database systems research, and so called hybrid transactional/analytical pro-
cessing (HTAP) systems have emerged. The main-memory database systems
(MMDBs) HyPer [96] and SAP HANA [63] pioneered supporting both OLTP
and OLAP workloads on the same database state. While they can omit the ETL
process altogether, they only offer limited scalability in terms of data size and
transaction throughput.

At the same time, modern streaming systems such as Apache Flink [32] have
been developed to minimize time to insight for the specific use case of analyz-
ing enormous amounts of event data. While they address the data freshness
problem and provide better scalability than MMDBs, they typically do not im-
plement ACID (Atomicity, Consistency, Isolation, Durability) guarantees [78].
Furthermore, event data remains separated from transactional data, prohibit-
ing efficient queries across the two. In Chapter 2, we study how event data
can be processed and simultaneously analyzed in MMDBs using materialized
views and a scale-out architecture.

Geospatial Data

Driven by the shift to mobile a large portion of the data generated today
comes with location information. The specific use cases are endless, and range
from online processing of fresh data to interactive exploration of historical
data. For example, the ride-hailing company Uber needs to join each passenger
request with a set of predefined boundaries (polygons) to display available
products (e.g., Uber X) and to enable dynamic pricing [203] while it processes

�.� ���������� �������� ������� 3

0

1

2

3

0 25 50 75 100
random query plans ordered by runtime

ru
nt

im
e

[s
]

Figure 2: Runtimes of TPC-H Query 5 (SF1) with random query plans. Plot adapted
from [152]. Numbers reproduced on AMD Ryzen Threadripper 1950X.

offline data to analyze usage patterns. Other use cases include location-based
ads targeting and traffic-aware routing. Consequently, analytical databases are
adding indexing and query processing support for geospatial data [13].

In earlier work we have extended the in-memory database HyPer [96] with
geospatial data types and operators [163]. Figure 1 shows the corresponding
web interface (HyPerMaps) with locations from the New York City (NYC) taxi
dataset [196] aggregated by neighborhood. However, we found that to allow
for interactive analytics on datasets like this, an efficient execution engine alone
is not enough. Given the multi-dimensional nature of geospatial data, queries
on such data can be very expensive [18]. It is also not straightforward to
build good indexing support for such queries. There are many variants in
literature, many of which were invented decades ago with different objectives
in mind (e.g., disk I/O being the limiting factor) [87]. Hence, spatial indexing is
still under active research with recent proposals focusing on utilizing modern
hardware, including accelerators such as GPUs [215]. In Chapter 3, we revisit
an approach called true hit filtering [31] and adapt it to modern hardware.

Query Optimization

Another open challenge in analytical databases is query optimization. Fig-
ure 2 shows the runtimes of 100 executions of TPC-H Query 5 (SF1) with ran-
dom join orders [152] in HyPer [96] (the y-axis is cut off at 3 seconds). This
query has five joins and its execution time varies from 10 milliseconds up to
more than 10 minutes depending on the query plan. This demonstrates that
query optimization is crucially important, and that even a fast runtime sys-
tem like HyPer’s JIT-compiling execution engine [151] cannot compensate for
mistakes made by the optimizer.

4 ������������

With growing data volumes, this effect is exaggerated. While queries on
small datasets may still complete with bad query plans (as in the above ex-
ample), they may not finish on large datasets at all due to huge intermediate
results. Particularly, in a distributed setting, choosing a bad plan can lead
to disastrous performance due to the cost of shuffling data over the network.
Techniques such as sideways information passing can mitigate the impact of
bad join orders to some degree. The idea is to build Bloom filters [24, 119]
on the build-side input of joins and pass these filters to the probe-side scan
nodes for early data pruning [136]. Nonetheless, building and passing these
filters along is also not for free and is limited to equi-joins. There is, however,
a recent proposal on succinct range filters [223], which could be used for the
same purpose. Likewise, changing a plan mid-query is difficult and expensive,
particularly in compiling [151] and in distributed query engines [181]. Pro-
cella [36] mitigates this problem by only reoptimizing the parts of the plan
that have not been executed. It collects data statistics in early stages of the
execution, which are used to optimize later stages. But the problem remains,
optimizer mistakes can have a significant performance impact.

Leis et al. showed that the core problem in cost-based query optimization
is bad cardinality estimates and that widely-used optimizers are sometimes
wrong by orders of magnitude [124, 128]. The same work also showed that
correlations found in real-world data are causing this effect. In Chapter 4,
we propose using deep learning to capture the correlations found in data to
improve cardinality estimation.

�.�.� Research Opportunities

Thanks to advances in hardware, high-level insights into user workloads in
the cloud, and breakthroughs in machine learning, there are many interesting
future research directions.

Large Main-Memory Capacities

DRAM capacities have increased substantially in the last decade. Not sur-
prisingly, cloud vendors offer machines with increasing memory capacity. For
example, AWS recently launched instances with up to 24 TiB of main mem-
ory [19] to run in-memory systems such as SAP HANA [63]. This allows
latency-critical applications, such as in finance, to run purely in main memory.
Even if the DRAM capacity of a single machine does not suffice, modern net-
working technologies such as InfiniBand allow to aggregate the main memory
of an entire cluster with manageable latency impact [23].

However, many database algorithms and data structures were designed in
times where main memory was scarce. Thus, a current trend is to revisit estab-
lished techniques, such as buffer managers, and adapt them to modern hard-

�.� ���������� �������� ������� 5

ware [125]. In general, main memory can be leveraged in multiple ways. One
is to avoid unnecessary I/O operations in disk-based systems by maintaining
filters, such as Bloom filters [24], in main memory. This idea has already been
explored in systems [49, 54], but we argue that we are still at the beginning and
that data pruning is a widely open research topic. Another way is to maintain
more fine-grained (i.e., selective) index structures to avoid unnecessary com-
putations in in-memory systems. In other words, one can precompute partial
results and thus trade off memory consumption with performance. In Chap-
ter 3, we explore building a fine-grained in-memory radix index to accelerate
the traditionally compute-intensive operation of geospatial joins.

Given the clear benefits of in-memory computing (i.e., low latency, high
throughput), another interesting research direction is to fully store and in-
dex compressed datasets in main memory that would otherwise exceed main-
memory capacity. Examples include the use of succinct data structures such as
the Fast Succinct Trie (FST) [223] that manage to significantly compress data
while being almost as query-efficient as state-of-the-art index structures such as
the Adaptive Radix Tree (ART) [126]. The drawback of such approaches is their
lack of updatability. Although, there is a proposal to combine read-optimized
with updatable indexes [222], which could also be applied to succinct data
structures.

Besides DRAM, another trend is to leverage byte-addressable non-volatile
memory (NVM) in databases [174, 175, 10]. NVM offers more space than
DRAM at a lower price point. While having higher latencies than DRAM,
NVM is still an order of magnitude faster than flash drives [58]. Once com-
monly available, NVM is expected to fundamentally change the architecture of
database systems and render many components that deal with potential mem-
ory loss as unnecessary, to the point where they will degrade performance [10].

Approximate Query Processing

To deal with growing data volumes, an attractive approach is to relax pre-
cision in query processing. Approximate results can potentially be computed
orders of magnitude faster, allowing for interactive analytics on large datasets.
Specifically, approximate query processing (AQP) allows for identifying data
subsets that need further drill-down, trend discovery, and data visualization
(e.g., heat maps) [38]. Concrete techniques include data summaries such as
quantile sketches [68, 142], approximate top-k algorithms [145], and sampling-
based approaches [70, 37, 208]. Recently, machine learning has been applied
to AQP showing benefits over sampling [115, 202]. However, despite the clear
benefits of AQP, it has still not been widely adopted. Chaudhuri et al. [38] ar-
gue that to make AQP practical, we need to allow users to control the precision
of query results. In a recent study covering sample-based approximations at
Microsoft, Kandula et al. also argue that the lack of accuracy guarantees is an

6 ������������

adoption barrier [92]. Thus, to make AQP a widely-used technology, we need
to think about what controls to expose to users. A good example is the ap-
proximate top-k algorithm Space-Saving [145], which guarantees a user-defined
error.

Likewise, many data are approximate in nature such as log entries that cap-
ture performance events or GPS locations obtained by smartphones [51]. Even
if a query would process all data items, the result remains approximate [92].
In Chapter 3, we apply AQP to the problem of joining geospatial points with
polygons by allowing users to control the maximum distance of false positive
join partners.

Data-Driven Optimizations

Another interesting research direction is to adapt systems to user data and
workloads. The idea is to make a system either periodically or continuously
improve its efficiency over time by specializing it to concrete data and query
patterns. Efficiency in this context can mean improving query performance
but also reducing storage cost. An example is database cracking [86], in which
the physical layout of a database is adapted one user query at a time such that
popular data is faster to access. In Chapter 3, we use a similar approach to
improve the effectiveness of a polygon index. Other examples that also made
it into production systems include automatic clustering and sorting [12, 14].
Pavlo et al. [164] argue that we should take this even further and aim for a
fully autonomous (“self-driving”) database system that predicts future access
patterns and prepares itself accordingly (e.g., adjusts its physical design).

With the recent advances in machine learning and hardware, we can explore
new data-driven optimizations and adapt our systems to more complex pat-
terns. We will cover recent proposals in this area in the following section.

�.� ��� ������� ������� ���
Since Kraska et al. proposed to learn index structures [110], a groundswell

of research has been dedicated to improving database systems with machine
learning. Before diving into concrete examples, we will give some background
on the advent of machine learning.

Machine learning (ML) is a branch of artificial intelligence and has had sev-
eral breakthroughs in the last decade. Particularly deep learning, a family
of ML methods based on neural networks, has led to significant advances in
fields such as computer vision [113] and natural language processing [50]. In
general, ML can be divided into the sub areas supervised, unsupervised (or
self-supervised), and reinforcement learning. In supervised learning a model
is trained with labeled training data, while in self-supervised learning a model

�.� ��� ������� ������� ��� 7

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●
●

●●

●

●

●

●
●

●

●

●
●

●●

●
●

●●
●●●

●

●●
●
●●●

●●●
●●
●
●●●●●

●

●
●●
●●●●●●●●

Titan RTX

Quadro RTX 4000

Quadro RTX 8000

Quadro RTX 6000

Quadro GV100

RTX 2080 Ti FE

RTX 2080 Ti

Quadro RTX 5000

RTX 2080 FE

RTX 2080

TESLA T4

RTX 2070 FE

RTX 2070

Tesla V100

GTX Titan V

Radeon RX Vega 64 Liquid

GTX Titan Xp GTX 1080 Ti

Quadro GP100

Radeon RX Vega 64
Radeon RX Vega 56

GTX 1070 Ti

GT 1030

Tesla P40

GTX Titan X (Pascal)

Tesla P100

GTX 1080

GTX 1070

Tesla P4

GTX 1060

GTX 1050 Ti

GTX 1050

Tegra X2

Tesla M60

Tesla M40

GTX Titan X (Maxwell)

GTX 980 Ti

Tesla M6

GTX 960

Tesla M4

GTX 950

Tegra X1

Tesla K80

GTX Titan Z

GTX Titan Black

GTX 980

GTX 970

GTX 750 Ti

GTX 750

GT 740
GT 730

GT 720

GTX 780 Ti

Tesla K40

GTX Titan GTX 780

GTX 770

GTX 760 Ti

GTX 760

GTX 690

Tesla K10

Tesla K20

GTX 680

GTX 670
GTX 660 Ti

GTX 660

GTX 650 Ti GTX 650
GT 640 GT 630

GT 620 GT 610

GTX 590

GTX 560 Ti

GTX 560

GTX 550 Ti

GT 440

GT 530GT 520

GTX 580

GTX 570

GTX 480

GTX 470

GTX 460

GTS 450

GT 430

GT 340 GT 330

GT 320GT 420

GTX 295

GTX 285

GTS 250

GTS 150

GT 140

GT 220

GT 130

GT 120

210310

205

G 100
0

5000

10000

15000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
year

G
FL

O
PS

 (3
2−

bi
t)

Figure 3: GFLOPS (32-bit) of various GPUs. Data collected by [182].

is trained with unlabeled data and learns structures embedded in the data. In
reinforcement learning, a model learns from interactions with its environment
and tries to maximize a reward.

Many of the recent breakthroughs are enabled by advances in hardware.
Figure 3 shows the (peak) floating point performance of various (including
consumer-class) graphics processing units (GPUs) over the last decade with a
significant increase in recent years [182]. Even more notable is that the perfor-
mance to power ratio (i.e., GFLOPS per watt) has improved dramatically. In
particular, Tensor Processing Units (TPUs) report a >30⇥ improvement over an
NVIDIA K80 GPU in that respect [90]. However, not all deep learning algo-
rithms are compute bound, some are actually bound by memory latencies and
bandwidth [130]. But even there, we have seen tremendous improvements with
recent GPUs such as the NVIDIA Tesla V100S offering 1134 GB/s of memory
bandwidth [158]. Furthermore, the bandwidth between CPUs and dedicated
GPUs is improving with interconnects like NVIDIA NVLink 2.0 promising up
to 300 GB/s of aggregated bandwidth [157].

Thus, using machine learning to improve systems is more attractive than
ever, and will be even more accessible once such compute units become a
commodity. Not surprisingly, we have seen many proposals of using ML to
improve systems. Kraska et al. envision to enhance or even replace tradi-

8 ������������

tional database components with ML counterparts to build a learned database
system [109]. Recent work proposes to use ML for classical [110, 103] and suc-
cinct [209] index structures, view materialization [132], index tuning [11, 52],
data partitioning [83], workload management [88], and query performance pre-
diction [139]. Most notably, and related to this thesis, there have been many
proposals in the query optimization space. Similar to IBM’s learning opti-
mizer LEO [187] which learns from past optimizer mistakes, SkinnerDB [198]
does so during the execution of a single query using reinforcement learning.
Other proposals focus on join enumeration [140, 112], plan rewriting [47], and
even describe an end-to-end learned optimizer [138]. Given the importance
of cardinality estimation for cost-based query optimization [124], it is also not
surprising that many proposals have been made in that respect [161, 206, 211,
57, 205]. This includes our own supervised learning approach, which is a core
contribution of this thesis and is described in Chapter 4.

�.� �������������
This thesis addresses the challenges and opportunities described above and

contributes to the research area of analytical database systems as follows:

��������� �� ���� ���� Michael Stonebreaker, who received the presti-
gious Turing Award, once identified eight rules [188] that real-time stream
processing engines should follow, including the support for SQL as a query
language and the integration of stored and streamed data. However, up to
date, these requirements have not been fully addressed. For example, modern
streaming systems such as Apache Flink [32] do not allow to query globally
consistent state (e.g., aggregates) without transferring data to external systems.
On the other hand, main-memory database systems (MMDBs) such as Hy-
Per [96] achieve an unprecedented SQL query performance and allow for con-
current updates.

In Chapter 2, we study how MMDBs perform in analyzing (aggregated)
event stream data. Based on a benchmark proposed by Braun et al. [30], we
define a new class for streaming workloads called analytics on fast data. These
workloads aggregate event data into materialized views that are concurrently
analyzed with ad-hoc SQL queries. These queries come with data freshness re-
quirements such that it is not feasible to transfer data to external analytical
systems. We compare MMDBs to modern streaming systems in this context
and identify issues in both, including lack of support for streaming SQL in
databases as well as inefficient access to materialized state in streaming sys-
tems. Based on our analysis, we derive and implement extensions to MMDBs
to better support analytics on fast data, and to match the performance and us-
ability of streaming systems. Our extensions include the use of user-space

�.� ������������� 9

networking to mitigate the network bottleneck in these systems, a study on
how MVCC and optimistic locking allows for improved concurrency, and a
scale-out architecture.

���������� ��������� As stated earlier, a large portion of data generated
today is location aware and the spatial join is arguably the most expensive op-
eration in processing such data. Given that many approaches to accelerate this
operation were developed in a different time under different objectives, we ar-
gue that it is time to revisit the seminal work in this area [87, 159, 31, 191] and
adapt it to modern hardware.

In Chapter 3, we propose a novel radix tree-based polygon index to accel-
erate point-polygon joins in main memory. We first propose an approximate
variant that trades off precision with performance and allows users to con-
trol the maximum error. Compared to other AQP approaches in the spatial
domain [190, 215], ours uses a hierarchical grid (an implicit quadtree) to ap-
proximate polygons. To our knowledge, this is the first work to provide a
distance-based precision bound in a hierarchical polygon index. For a join be-
tween NYC’s yellow taxi data and NYC’s neighborhood polygons, it achieves
more than 50 M point lookups/s per CPU core under a <4 m precision bound.
For cases when approximate results are not sufficient or when main memory is
scarce, we also offer an exact variant. This variant makes extensive use of true
hit filtering [31] to identify most join partners during the index lookup, avoid-
ing expensive geometric computations. Most notably, it allows for training the
index with historical query points to become more effective in popular areas.

������� ������������� We lastly shift our focus from query processing to
optimization. As we have motivated earlier, the query optimizer is a critical
component in an analytical database system. Mistakes made by the optimizer
can hardly be compensated by the execution engine. With the recent break-
throughs in ML and advances in hardware, it is now feasible to efficiently
learn parts of the optimizer. Some recent proposals to use ML in this context
focus on join enumeration [140, 112]. However, given that modern join enu-
meration algorithms can find the optimal join order for queries with dozens
of relations [155], we argue that we should rather focus on the core problem
in cost-based query optimization: cardinality estimation. As Guy Lohman once
stated, cardinality estimation is the “Achilles heel” of query optimization [135]
and causes most of its performance issues [124]. Given the highly non-trivial
nature of the cardinality estimation problem and the poor performance of cur-
rent implementations [124], we believe that ML can make a large difference.

In Chapter 4, we propose a new deep learning approach to cardinality esti-
mation. Our contribution is the use of a novel set-based model, which is based
on the insight that the cardinality of a query is independent of the concrete
query plan. Also, and most notably, our approach integrates runtime sampling.

10 ������������

Specifically, we use bitmaps that indicate qualifying base table samples as an
additional input signal to the model. This is in contrast to related work that
uses ML without incorporating any runtime features [161, 206]. Compared to
pure sampling, our approach mitigates the impact of 0-tuple situations (i.e., no
qualifying samples) by still being able to rely on query features in such cases.
We apply our model to two important cardinality estimation problems: (i) join
size estimation and (ii) estimating the result sizes of group-by queries in the
presence of selections. In both cases, our model achieves state-of-the-art perfor-
mance on a real-world dataset. We also demonstrate the end-to-end training
and inference process and sketch a possible optimizer integration.

2 A N A LY T I C S O N FA S T DATA

Excerpts of this chapter have been published in [104, 105].

�.� ������������
Gartner recently forecasted that there will be more than 20 billion connected

devices in 2020, a 400% increase compared to 2016 [72]. The growing popular-
ity of Internet of Things applications [143], including connected vehicles, cell
phones, and health monitoring devices, enable a variety of new business use
cases and applications. These applications are typically built around stream-
ing systems that are able to ingest and aggregate enormous amounts of events
from different data sources. Given the spike of interest in building such ap-
plications, it is not surprising that dedicated stream processing systems, like
Apache Storm [197], Apache Spark Streaming [217], or Apache Flink [32], are
receiving significant attention not only in the database but also in the data
science and in the open-source community.

To better understand the different types of workloads that these systems
need to handle, we will walk through different ways of processing sensor
readings (events) of connected vehicles that contain information about street
conditions such as icy road segments.

First, a streaming system could warn vehicles about icy road segments based
on the information of single events. In that case, the streaming system does
not need to maintain state. We refer to such workloads as stateless streaming.

Second, a system could process the aggregated information of multiple ev-
ents to decide whether vehicles should be warned. Such an implementation
requires the system to maintain a processing state, which introduces new chal-
lenges such as consistency and durability. We call this kind of workloads state-
ful streaming.

Third, a streaming system allows users to perform analytical queries on the
entire set of aggregates (the conditions of all road segments across the city)
to find the most critical segments. We refer to such workloads as analytics on
fast data. These workloads are particularly challenging for a streaming system
since it needs to perform computations across multiple partitions1 to answer
analytical queries (cf. Figure 4). In other words, the problem here is how to
efficiently aggregate streaming events, store and maintain these aggregates,

1 When referring to partitions, we mean horizontal partitions of the global state.

11

12 ��������� �� ���� ����

Partition A

Partition B

Partition C

Aggregates

Analytical Q
ueries

Streaming
Events

Figure 4: Analytics on fast data. Streaming events may be processed concurrently
in different partitions, whereas analytical queries cross partition boundaries
and require a consistent state.

and query the whole set of aggregates. In fact, without modifications, none of
the streaming systems mentioned above can handle this use case. The reason
for this is that these systems either do not expose global state to analytical
queries at all or only support point lookups (cf. Section 2.3.2). One idea to
mitigate this problem is to make use of the fact that these systems periodically
flush their state to durable storage (e.g., HDFS) to address fault tolerance. This
means that the system state becomes queryable for an analytical engine like
Apache Spark [216]. However, the delay that this design introduces prohibits
analytical queries to run on the most recent state, which is required by use
cases like the one above.

Another example is the Huawei-AIM telecommunication workload [30]. In
this use case, events represent sales and marketing information generated by
phone calls. On the one hand, the application needs to maintain a huge set
of aggregates per customer in order to trigger alerts for a particular customer
(stateful streaming). On the other hand, maintenance specialists might query
the overall system state to localize sources for network failures or business an-
alysts might run analytics to gather insights and propose new offers in real
time (analytics on fast data). Again, using an off-the-shelf stream processor does
not solve this use case since it cannot handle the real-time analytics. There
are, however, state-of-the-art main-memory database systems (MMDBs) ded-
icated to handle mixed OLTP and OLAP workloads, such as HyPer [96] (cf.
Section 2.2.1) and Tell [167] (cf. Section 2.2.1), which seem promising because
stream processing could also be seen as a particular class of OLTP workloads.
These systems feature advanced query optimizers, compile queries to native
code, and can thus achieve extremely low response times for complex analyt-
ical queries. Using efficient snapshotting mechanisms, such as copy-on-write,
MVCC, or differential updates [96, 154, 114], these systems are able to sustain
high transaction throughput rates in parallel to analytical query processing
making them well-suited for workloads where analytical queries need to con-
sider recently ingested data.

�.� ������������ 13

Despite all these advantages, it seems that data engineers are still reluctant
to use MMDBs for stream processing. They either build their own solutions
on top of modern streaming systems (e.g., Apache Flink) or hand-craft sys-
tems from scratch that are specifically tuned for particular workloads (e.g.,
AIM [30]). One reason that MMDBs are not widely used for streaming work-
loads is that they lack out-of-the-box streaming functionality, such as window
functions, and adding this functionality (e.g., through stored procedures or
user-defined functions) results in additional engineering. If MMDBs would of-
fer better support for streaming workloads (e.g., streaming extensions for SQL
as proposed in StreamSQL [188]), they would be preferable over hand-crafted
systems, which are also costly to maintain.

In this work, we thoroughly evaluate the usability and performance of data-
base systems, modern streaming systems, and AIM, a hand-crafted system,
using the Huawei-AIM workload [30]. Based on the evaluation results, we
answer the question how off-the-shelf MMDBs can be extended to sufficiently
satisfy the requirements of analytics on fast data. We identify a set of modifica-
tions that, if properly applied to the off-the-shelf MMDBs, allow these systems
to address the needs of analytics on fast data. In this extended version of our
previous work [104], we have started to close the gap between MMDBs and
modern streaming systems:

• We discuss how to address the network bottleneck, which is a significant
issue in update-heavy workloads (cf. Section 2.4.1).

• We outline how event processing throughput can be scaled within a ma-
chine and discuss parallel transactions, lightweight synchronization us-
ing optimistic locking, and skew handling strategies (cf. Section 2.4.2).

• We demonstrate how MMDBs can be scaled to multiple machines (cf.
Section 2.4.3).

• We show how optimistic locking allows for parallelizing (single-row)
transactions in MMDBs (cf. Section 2.5.4).

• We have introduced skew into the Huawei-AIM workload and discuss
the consequences in Section 2.5.8.

• We have designed a microbenchmark that evaluates the impact of user-
space networking (cf. Section 2.5.9).

• And finally, we have evaluated the systems in a distributed setting (cf.
Section 2.5.10).

In summary, our contributions include:

• A rich survey of various MMDBs, modern streaming systems, and a
hand-crafted system specifically designed to address the Huawei-AIM
workload

14 ��������� �� ���� ����

• A thorough usability and performance evaluation including at least one
representative of each of these classes of systems

• A discussion of how MMDBs can be extended to match the performance
and usability of modern streaming systems

• A discussion and evaluation of concrete extensions to MMDBs that in-
crease their streaming capabilities

The remainder of this chapter is structured as follows: Section 2.2 summa-
rizes a broad variety of existing systems and Section 2.3 revisits the Huawei-
AIM workload and describes how it can be implemented with these systems.
Section 2.4 discusses concrete extensions to MMDBs that increase their stream-
ing capabilities. Section 2.5 evaluates the performance of representatives of
each kind of system with respect to this workload. Section 2.6 enumerates
ideas regarding how to further close the performance and usability gap be-
tween MMDBs and modern streaming systems and is followed by the conclu-
sions to our evaluation presented in Section 2.7.

�.� ����������
There are numerous systems that can be used to build stream processing

pipelines, including near real-time data warehousing solutions like Mesa [76]
and in-memory incremental analytical engines like Trill [34]. S-Store [144] is
an approach to integrating stream processing into an OLTP engine. Since ad-
dressing all of these systems is beyond the scope of this work, we will focus
on representative MMDBs, popular streaming systems from the open-source
domain, and AIM [30], a hand-crafted, highly-optimized solution.

�.�.� Main-Memory Database Systems

There are multiple MMDBs that can handle analytics on fast data or more
generally hybrid transactional/analytical processing (HTAP) workloads. In
HTAP, transactions are usually more complex (e.g., TPC-C transactions) than
the single-row transactions studied in this work.

HyPer

HyPer2 is a MMDB that achieves an outstanding performance for both OLTP
and OLAP workloads, even when they operate simultaneously on the same

2 When saying HyPer, we are referring to the research version of HyPer developed at the Tech-
nical University of Munich.

�.� ���������� 15

database [96]. HyPer versions individual attributes using multi version concur-
rency control (MVCC) to isolate concurrent transactions [154]. However, HyPer
currently avoids the cost of synchronizing the data access. Instead, write trans-
actions and analytical queries are interleaved and do not run simultaneously.
HyPer further features data-centric LLVM code generation with just-in-time
compilation. Finally, HyPer has an advanced dynamic programming-based
optimizer including the ability to unnest arbitrary queries [153].

Tell

Tell [167] is a distributed shared-data MMDB that supports OLTP and OLAP
in parallel and is developed at the Systems Group at ETH Zurich. The imple-
mentation of Tell is fundamentally different from that of other systems pre-
sented in this work as it separates the computation from the storage layer in
such a way that both layers can scale out individually [134].

The storage layer, TellStore, is a versioned key-value store with additional
support for fast scans and different storage layout options, such as RowStore
and ColumnMap. ColumnMap, the preferred layout for HTAP workloads, was
created as part of Analytics in Motion (AIM) [30] (cf. Section 2.2.3) and is a
modified Partition Attributes Across (PAX) [3] approach that optimizes cache
locality by storing data column-wise in blocks of cache size. This optimiza-
tion allows ColumnMap to support fast scans and, at the same time, reasonably
fast record lookups and updates. TellStore employs the shared scan technique,
which allows incoming scan requests to be batched and processed all at once
by a single thread. The shared scan can be parallelized efficiently by partition-
ing the data and using a dedicated scan thread for each of these partitions in
parallel [200]. Isolation is guaranteed using a combination of differential up-
dates [114] and MVCC. Updates are put into a delta data structure, which gets
periodically merged with the main data structure that serves analytical queries.
This approach is also used in SAP HANA [63].

Tell’s compute layer offers two processing APIs: TellDB (C++) for general-
purpose transactions and TellJava (Java) for read-only analytics. TellJava can be
further integrated into distributed processing frameworks, including Apache
Spark and Presto.

�.�.� Modern Streaming Systems

In addition to MMDBs, there are dedicated streaming systems allowing for
the implementation of streaming pipelines. These systems provide out-of-the-
box functionality, including a rich set of operators to help data engineers to
address the specific demands of streaming use cases.

16 ��������� �� ���� ����

Apache Samza

Apache Samza [156] is a distributed framework for continuous real-time data
processing that is lightweight, elastic, and fault-tolerant. Samza uses Apache
Kafka [111] (a durable publish-subscribe-based message passing system that
allows replaying messages) for real-time feeds and produces output feeds for
Kafka to consume. For distributed scheduling, fault tolerance, and resource
allocation, Samza depends on Apache YARN and on Kafka. Samza employs a
checkpointing mechanism to provide at-least-once guarantees. It creates check-
points at predefined time intervals and in case of a job failure, it replays mes-
sages from the last checkpoint. A drawback of Samza is that it does not support
exactly-once semantics. A message might be processed twice after a job failure,
which can lead to non-exact results. That effect can be minimized by using
shorter checkpoint time intervals.

Apache Flink

Apache Flink [32] is a combined batch and streaming processing system
that supports exactly-once semantics. Flink follows a tuple-at-a-time approach,
providing low latency. Using asynchronous checkpointing, Flink is able to de-
couple its fault-tolerance mechanism from the tuple processing. The process-
ing continues while Flink periodically creates snapshots of the operator states
and the in-flight tuples. Flink can achieve superior throughput compared to
Apache Storm (cf. Section 2.2.2). In contrast to the other streaming systems,
Flink allows for event time semantics. Flink allows the extraction of the actual
event timestamp (i.e., the time when the event was originally captured) when
an event arrives at the streaming engine to assign it to its appropriate window.
Starting with version 1.2.0, Flink supports a global queryable state. The idea is
to maintain an operator-independent state within Flink and expose it to exter-
nal queries. Internally, the state is partitioned and guarantees fault tolerance
(i.e., exactly-once semantics). A restriction of this solution is that it is only a key-
value state supporting only point lookups. More complex queries, including
full table scans, are not possible.

As a workaround, we could implement a custom operator that holds both
the state and the logic for the corresponding analytical queries. The draw-
back of this approach is that the whole state and query logic has to be imple-
mented manually. Further, this approach does not support concurrent stream
and query processing since analytical queries can only be ingested through the
stream processing pipeline itself resulting in an interleaved execution.

Apache Spark Streaming

Apache Spark Streaming [217] is the streaming extension to the cluster com-
puting platform Apache Spark. Spark Streaming organizes incoming stream-

�.� ���������� 17

ing tuples into micro-batches that are being processed atomically. Processing
batches of tuples increases the throughput on the cost of higher latencies.
Batching tasks also eases load balancing and recovery from failures. Tasks can
be distributed dynamically on the cluster and failed tasks can be relaunched
on any machine. Another advantage of this approach is that it allows the
use of the same programming model for batch and stream processing. Spark
Streaming supports exactly-once semantics.

Apache Storm

Apache Storm [197] is a widely used stream processing system that does not
guarantee state consistency and follows a tuple-at-a-time approach, thus favor-
ing low latency over throughput. Storm implements at-least-once semantics by
keeping upstream backups of data that are being replayed if no acknowledge-
ments have been received from downstream nodes. Trident [9] extends Storm
with exactly-once semantics and allows running queries on consistent state.

�.�.� AIM

In collaboration with Huawei, researchers of the Systems Group at ETH
Zurich designed the AIM system to address the specific characteristics of a
telecommunications workload. AIM is a research prototype that allows effi-
cient aggregation of high-throughput data streams. It was specifically designed
to address the Huawei-AIM workload that we use for evaluation purposes in
this work (cf. Section 2.3). Due to its hand-optimized nature, AIM achieves an
outstanding performance on that workload and therefore serves as a baseline
for our experiments. AIM has a three-tier architecture consisting of storage,
event stream processing (ESP), and real-time analytics (RTA) nodes (or threads
if deployed in a standalone setting). RTA nodes push analytical queries down
to the storage nodes, merge the partial results, and finally deliver the results
to the client. ESP nodes process the incoming event stream and update corre-
sponding records by sending Get and Put requests to the storage nodes. The
storage nodes store horizontally-partitioned data in a ColumnMap layout and
employ shared scans as described in Section 2.2.1. AIM can also be deployed
standalone, which eliminates network costs and therefore tests the pure read,
write, and scan performance of the server.

�.�.� Summary

A comparison of different aspects of stream processing approaches is pre-
sented in Table 1. These aspects include:

��������� Streaming engines make different guarantees regarding how mes-
sages (i.e., events) are being processed. A streaming engine only ensures

18 ��������� �� ���� ����

Table 1: Comparison of different stream processing approaches.

MMDBs Modern Streaming Systems

Aspect HyPer Tell Samza Flink Spark

Streaming

Storm AIM

Semantics Exactly-
once

Exactly-
once

At-least-
once

Exactly-
once

Exactly-
once

Exactly-
once

Exactly-
once

Durability Yes No With
durable
data
source

With
durable
data
source

With
durable
data
source

With
durable
data
source

No

Latency Low Low High
(writes
messages
to disk)

Low Medium
(depends
on batch
size)

Low Low

Computation
model

Tuple-at-a-
time

Tuple-at-a-
time

Tuple-at-a-
time

Tuple-at-a-
time

Micro-
batch

Micro-
batch

Tuple-at-a-
time

Throughput High High High High Medium
(depends
on batch
size)

Low High

State man-
agement

Yes Yes Yes
(durable
K/V store)

Yes Yes (writes
into stor-
age)

Yes Yes

Parallel
read/write
access to
state

MVCC Differential
updates,
MVCC

No No No No Differential
updates

Implemen-
tation
languages

C++,
LLVM

C++,
LLVM

Java, Scala Java Java, Scala Java, Clo-
jure

C++

User-
facing
languages

SQL C++, Java,
Scala
(through
Spark
shell), SQL
(through
Presto
shell)

Java, Scala Java,
Scala, SQL
(through
Apache
Calcite)

Java, Scala,
Python,
SparkSQL

Any
(through
Apache
Thrift)

C++

Own
memory
manage-
ment

Yes Yes (w/
GC)

No Yes Yes No Yes

Window
support

Using
stored pro-
cedures

Only man-
ually

Very basic Very pow-
erful

Basic Basic Using tem-
plate code

completely correct results when providing exactly-once guarantees. Some
engines optimize for low latency and thus often cannot provide exactly-
once guarantees as this would require them to implement transactions,
which are expensive in a distributed setting. Therefore, streaming en-
gines often fall back to at-least-once semantics (i.e., a message will be re-
sent until it is processed at least once), which are good enough for many
applications. Many stream processing engines require a durable data
source for exactly-once guarantees because they only persist their process-

�.� ���������� 19

ing state at certain points of time (often called checkpoints). In case of a
failure, messages need to be replayed from the last checkpoint. In con-
trast, database systems achieve durability through the use of redo logs
and thus only need to replay messages sent during the time the database
system was down. The third processing guarantee is at-most-once. In
an at-most-once setting, messages might get lost but are never processed
twice or more often. Few systems implement this approach since loosing
data is an undesirable property for most applications.

���������� Durability is closely related to the semantics offered by stream
processing systems. While some systems require a durable data source
to achieve durability, others provide durability out-of-the-box.

������� Especially in real-time scenarios, low latencies are crucial to deliver
valuable results. As stated above, latency often depends on the process-
ing guarantee offered by a system. MMDBs that often run on a single
machine or are optimized for low-latency networks can yield low laten-
cies while providing exactly-once processing guarantees.

����������� ����� There are two computation models: tuple-at-a-time and
micro-batch. The natural approach is to process streams continuously.
However, streams can also be batched and processed as small chunks
of data. Spark Streaming follows this approach allowing it to achieve
high throughput rates. However, following a tuple-at-a-time-based ap-
proach does not necessarily lead to lower throughput since the compu-
tation model can be independent from the checkpointing interval. For
instance, Flink follows a tuple-at-a-time-based approach combined with a
batch-based checkpointing mechanism thus optimizing for both latency
and throughput. MMDBs usually treat stream events as transactions,
which might also be batched for better performance (e.g., Tell processes
100 events within a single transaction).

���������� Another important aspect in stream processing is throughput.
Particularly when costs matter, higher throughput helps to reduce the
number of required resources. Due to the low costs to process single-row
transactions (updating aggregates of single entities), throughput mainly
depends on the employed fault-tolerance mechanism and whether a sys-
tem batches transactions. Throughput increases with longer checkpoint-
ing intervals.

����� ���������� For mixed OLTP and OLAP workloads, the state up-
dated by the OLTP subsystem needs to be exposed to the OLAP subsys-
tem. Traditional streaming engines, such as Apache Storm, do not allow
maintaining state. They are only designed to process and transform an

20 ��������� �� ���� ����

input into an output data stream preventing writing stateful stream pro-
cessing applications (e.g., aggregations over windows). Trident extends
Storm with state management capabilities. Flink only maintains states on
an operator basis and currently does not support global states that can
be accessed by analytical queries. Database systems, on the other hand,
can persist streaming results in temporary tables allowing OLAP queries
to access them as if they were regular database tables.

�������� ����/����� ������ �� ����� As mentioned earlier, Trident ext-
ends Storm with state management functionalities; however, it does not
allow analytical queries and updates to access state in parallel. Instead,
they have to be interleaved to ensure a consistent view of the state. In
contrast, modern MMDBs can efficiently expose their current state to
analytical queries through the use of snapshotting mechanisms, such as
copy-on-write, MVCC, or differential updates.

�������������� ��������� Most of the streaming systems are written in a
JVM-based language, whereas MMDBs are usually implemented in C or
C++. The trend is to compile queries to native code. HyPer and Tell use
LLVM as a compiler backend.

����-������ ��������� The Apache systems primarily support JVM-based
languages while the MMDBs both support SQL and, in the case of Tell,
additional languages through its Spark and Presto integration.

��� ������ ���������� Whether a system employs its own memory man-
agement or fully relies on the memory management of the JVM. Spark
Streaming and Flink are based on the JVM but still employ their own
memory management to have a better control over garbage collection cy-
cles.

������ ������� In streaming applications, aggregations are usually com-
puted on a window basis. Two basic window types are sliding and tum-
bling. Sliding windows are contiguous time or count-based intervals,
such as last 24 hours or last 10,000 events. Tumbling windows are non-
overlapping time or count-based intervals, such as today or every 10,000
events. All of the analyzed streaming engines support these two kinds of
windows. In particular, Flink offers extensive functionality to specify win-
dows, supporting custom window assigners, triggers, and evictors. AIM
supports tumbling windows for specific time intervals and the standard
aggregation functions through templated code. The window definitions
are loaded at startup and cannot be changed afterwards. The analyzed
MMDBs have no natural window support. Some MMDBs allow to imple-
ment windows using stored procedures.

�.� �������� 21

�.� ��������
AIM was motivated by a telecommunication workload, which we will refer

to as Huawei-AIM use case [30]. We choose this workload as it is well-defined
and represents the workload class of analytics on fast data.

�.�.� Description

The Huawei-AIM use case requires events, more specifically call records, to be
aggregated and to be made available to analytical queries. The system’s state,
which AIM calls the Analytics Matrix, is a materialized view on a large number
of aggregates for each individual subscriber (customer). There is an aggregate
for each combination of aggregation function (min, max, sum), aggregation
window (this day, this week, ...), and several event attributes as shown in Ta-
ble 2, which shows a small part of the conceptual schema of an Analytics Matrix.
For instance, there is an aggregate for the shortest duration of an international
phone call today (attribute min in Table 2). The number of such aggregates
(which defines the number of columns of the Analytics Matrix) is a workload
parameter with default value 546. The Analytics Matrix also contains foreign
keys to dimension tables. Since these dimension tables are very small, we omit
them in our experiments.

Table 2: Schema snippet of the Analytics Matrix.

international calls ...

subscriber ID today

count duration
sum min max

The use case requires two things to be done in real time: (a) update Analytics
Matrix and (b) run analytical queries on the current state of the Analytics Ma-
trix. (a) is referred to as Event Stream Processing (ESP) and (b) as Real-Time
Analytics (RTA). When an event arrives in ESP, the corresponding record in
the Analytics Matrix has to be atomically updated. RTA, on the other hand, is
used to answer business intelligence questions. RTA queries are continuously
being issued by one or multiple clients and are evaluated on a consistent state
of the Analytics Matrix. This consistent state (or snapshot) is not allowed to be
older than a certain bound tfresh, which is a service level objective (SLO) of
the Huawei-AIM benchmark and defaults to one second. Table 3 shows the
seven queries from the original benchmark [30]. Additionally, users may issue
ad-hoc queries. Since ad-hoc queries are not available upfront and can involve
any number of attributes, it is impractical for a stream processing system to
create specialized index structures.

22 ��������� �� ���� ����

Table 3: RTA queries 1 to 7, ↵ 2 [0,2], � 2 [2,5], � 2 [2,10], � 2 [20,150], t 2 Subscrip-
tionTypes, cat 2 Categories, cty 2 Countries, v 2 CellValueTypes

Query 1:
SELECT AVG (total_duration_this_week)
FROM AnalyticsMatrix
WHERE number_of_local_calls_this_week > ↵;
Query 2:
SELECT MAX (most_expensive_call_this_week)
FROM AnalyticsMatrix
WHERE total_number_of_calls_this_week > �;
Query 3:
SELECT (SUM (total_cost_this_week)) /

(SUM (total_duration_this_week)) as cost ratio
FROM AnalyticsMatrix
GROUP BY number_of_calls_this_week
LIMIT 100;
Query 4:
SELECT city, AVG(number_of_local_calls_this_week),

SUM(total_duration_of_local_calls_this_week)
FROM AnalyticsMatrix, RegionInfo
WHERE number_of_local_calls_this_week > �

AND total_duration_of_local_calls_this_week > �

AND AnalyticsMatrix.zip = RegionInfo.zip
GROUP BY city;
Query 5:
SELECT region,

SUM (total_cost_of_local_calls_this_week) as local,
SUM (total_cost_of_long_distance_calls_this_week)
as long_distance

FROM AnalyticsMatrix a, SubscriptionType t,
Category c, RegionInfo r
WHERE t.type = t AND c.category = cat,
AND a.subscription type = t.id AND a.category = c.id,
AND a.zip = r.zip

GROUP BY region;
Query 6:
report the entity-ids of the records with the longest call this day and
this week for local and long distance calls for a specific country cty
Query 7:
SELECT (SUM (total_cost_this_week)) /

(SUM (total_duration_this_week))
FROM AnalyticsMatrix
WHERE CellValueType = v;

�.� �������� 23

Analytics Matrix

10M rows

546 columns

10,000 events/s

Event Stream Analytical Queries

Query 1

Query 4

Query 3

Query 2

Query 7

Query 5

Query 6

subscriber ID, no of calls, total duration, ...

1, 17, 42, ...

2, 815, 4771, ...

...Each event contains:
subscriber ID, duration, ...

Figure 5: The Huawei-AIM workload.

Figure 5 summarizes the workload components. Events are ingested at a
specific rate fESP, which will usually be 10,000 events per second in our experi-
ments. Each event consists of a subscriber ID and call-dependent details, such
as the call’s duration, cost, and type (i.e., local or international). The Analyt-
ics Matrix is the aggregated state on the call records as described earlier and
consists of 546 columns and 10 M rows, each representing the state of one sub-
scriber. Depending on the event details, the corresponding subset of columns
in the Analytics Matrix is updated for the particular subscriber. These updates
are made available to analytical queries within tfresh.

We use the Huawei-AIM-Simple-Standalone variant [29], which does not in-
clude the telecommunication industry specific advertisement campaigns from
the original use case [30]. When we evaluate the systems in a distributed
setting (cf. Section 2.5.10), we use the Huawei-AIM-Simple variant, which ad-
ditionally involves network communication between clients and servers.

�.�.� Implementations

We implement the workload in at least one representative of each of the
three categories: MMDBs, modern streaming systems, and hand-crafted sys-
tems. We choose Flink as a representative modern streaming system since it
features a continuous processing model combined with a fault-tolerance mech-
anism allowing for low latency under high throughput conditions. Flink’s tuple-
at-a-time approach gives more flexibility than the micro-batch model used by
competitors such as Spark Streaming. For a performance comparison of Flink
and Spark Streaming we refer the reader to related work [95, 42].

Since the Tell project (cf. Section 2.2.1) is no longer actively maintained, we
had difficulties running new experiments on it and therefore do not further
evaluate it in this extended version. We refer the reader to the initial publica-
tion of this work for a performance evaluation of Tell [104].

24 ��������� �� ���� ����

HyPer

Our workload implementation in HyPer is based on the work of [30]. ESP
is performed using a pre-compiled stored procedure (written in SQL) that up-
dates aggregates stored in the Analytics Matrix, which is implemented as a reg-
ular database table. RTA query processing is implemented using SQL queries
on that table.

When HyPer was first evaluated using the Huawei-AIM benchmark in [30],
HyPer was configured to use a copy-on-write-based snapshotting technique that
forked a child from the main OLTP process at a specific time interval. This
enables RTA queries to be executed on a consistent snapshot of the Analytics
Matrix. Since the table representing the Analytics Matrix can be as large as
50 GiBs, forking a child of the OLTP process (essentially a copy of its page table)
may take up to a hundred milliseconds. Additionally, our workload updates
the records of randomly selected subscribers at a rate of 10,000 events/s, which
may impact performance as the copy-on-write mechanism copies updated pages
to maintain consistent snapshots for RTA queries.

In this work, we evaluate multiple versions of HyPer, a stable version (which
we refer to as HyPer) that does not implement physical MVCC3 as well as
an experimental version HyPerParallel that parallelizes transactions (cf. Sec-
tion 2.4.2) and a distributed variant of the stable version HyPerDistributed
(cf. Section 2.4.3). All evaluated versions interleave the execution of multiple
analytical queries to hide memory latencies and single-threaded phases (e.g.,
result materialization). Writes, however, are never executed at the same time
than analytical queries.

HyPer implements the PostgreSQL wire protocol allowing one to use any
PostgreSQL client. In our experiments, we use PostgreSQL’s C++ library (pqxx)
to communicate between clients and HyPer (using TCP over UNIX domain
sockets). Since HyPer currently does not implement batched transactions, Hy-
Per’s event processing throughput would be purely limited by network round
trips between subsequent write requests, context switches on the server to re-
ceive incoming requests, and deserialization costs. To simulate batch process-
ing, we decided to additionally generate the events within HyPer and only
process these. In other words, instead of actually transferring the batch of
events from the client to the server, we send a request to generate and process
a specified number of events.

AIM

Since the AIM system was specifically designed to address the Huawei-AIM
workload, we assume that it would achieve the best performance on the full
workload and thus we use it as a baseline for our experiments. We use the same

3 [154] explains how versioned positions allow for fast scans.

�.� �������� 25

version used in [30] but in standalone mode where client and server commu-
nicate through shared memory. For the overall and the read-only experiments,
we increase the number of RTA threads (and used one ESP thread), whereas
for the write-only experiments, we increase the number of ESP threads.

Flink

A global state can be managed in Flink using a queryable state. A queryable
state is a partitioned key-value store that allows users to perform queries from
outside of the Flink job. However, this queryable state only supports point
lookups and thus cannot be used to implement the AIM workload. We also
could not use continuous queries since the idea of the Huawei-AIM workload
is to query the state ad hoc. Continuous queries in Flink can be regarded as a
stateful way of transforming one stream into another.

We have implemented a custom operator that supports table scans to meet
the requirements of the AIM workload. We have experimented with a row and
a column store layout for storing the state. Since the AIM workload is mostly
analytical, we opt for the column store layout.

Similar to HyPer, we generate the events internally in Flink. We have also
implemented a version that uses Kafka for event ingestion, which will not be
included in the results, as we found no significant difference in performance
compared to the version that generates the events internally. In production,
Kafka, or any other durable data source, is preferable to ensure full fault toler-
ance.

Since we want to make the most recent state available to analytical queries,
windows need to be computed on an event basis. As Flink’s built-in opera-
tors are not optimized for these continuous window computations, we have
manually implemented the window logic, which yields better results. We do
not enable Flink’s checkpointing mechanism since the processing state of the
Huawei-AIM workload can be as large as 50 GiB. Persisting a state of this size
would lead to a significant performance penalty.

Flink provides many built-in functionalities that seem suitable for our work-
load including windowed streams supporting various aggregation functions
(e.g., min, max, and sum). We have tried to make use of the provided function-
alities. However, in the studied version of Flink, combining multiple aggrega-
tion functions that produce only one single output stream is not yet supported.
For this reason, we have implemented a custom aggregation operator.

All aggregations in the AIM workload are windowed. We could express
this behavior using Flink’s built-in window operators. For only one window
type, this works well. However, with two or more different window types, the
different windows would need to be merged into one consistent state across all
windows. As this is not a straightforward operation in Flink, we have decided
to implement windows ourselves.

26 ��������� �� ���� ����

CoFlatMap
State

Event Stream Analytical Queries

RTA Client

event query id

update query
query id

query result

Figure 6: Hybrid processing in Flink. A CoFlatMap operator interleaves events with
analytical queries.

Another challenge is to run the analytical queries on the state maintained by
the event processing pipeline. Flink does not provide a globally accessible state
that can be used in such cases. States are only maintained at an operator level
and cannot be accessed from outside. We solve this problem by processing
both the event stream and the analytical queries in the same CoFlatMap oper-
ator as shown in Figure 6. Both streams are processed interleaved using two
individual FlatMap functions that both work on the same shared state. This
works as both functions are part of the same operator. Our implementation
interleaves the two different streams on a partition basis. Since Flink follows
the embarrassingly parallel paradigm, it is not designed to synchronize access
across partitions. As described in [30], the Huawei-AIM workload does not re-
quire such a global synchronization since events are only ordered on an entity
basis.

A powerful feature of Flink is its partitioning. Flink automatically parti-
tions elements of a stream by their key and assigns the partitions to a parallel
instance of each operator. Each instance of our CoFlatMap operator only re-
ceives the events for its partition and thereby maintains a part of the total state.
The analytical queries, however, should run on the whole state. Therefore, we
broadcast the queries to each CoFlatMap operator instance and run them on
the individual partitions. The resulting partial results are merged in a subse-
quent operator.

In our experiments, we use Kafka to send queries since it integrates well
with Flink and ensures that no queries are lost. It would also be possible to
ingest the queries using a TCP client or other more sophisticated handwritten
clients.

�.� ���������� �� ����� 27

Table 4: Options to mitigate the network bottleneck depending on whether we control
the clients and whether they run on the same machine as the database.

local remote

control 1 redesign client protocols 2 redesign client protocols
no control 3 override system calls 4 employ user-space networking

�.� ���������� �� �����

In this section, we explore how MMDBs can be extended to increase their
streaming capabilities.

First, events need to be ingested into the system with maximum speed. To
improve the ingest performance of MMDBs, we discuss the use of user-space
networking in Section 2.4.1. Second, to scale with the number of events, a
MMDB needs to be able to process events in parallel. In Section 2.4.2, we
study the parallel processing of single-row transactions in MMDBs, using Hy-
Per as an example. And finally, if a centralized MMDB cannot handle the
event stream or concurrent analytical queries become too expensive, we need
to be able to scale the system to multiple machines. We therefore discuss
a distributed MMDB architecture, again using HyPer as an example, in Sec-
tion 2.4.3.

�.�.� Mitigating the Network Bottleneck

The throughput of MMDBs is often limited by the overhead introduced by
their networking components. The costs for (de)serialization, the networking
stack, and hardware become a bottleneck. Even on a single machine, the over-
head of Linux’s default TCP networking stack limits the number of message
round trips between two processes to about 50,000 per second.

One example for network bound workloads are analytical queries with large
result sets where the time for transferring data between the database and the
client dominates query execution time. This bottleneck can be mitigated by
using more efficient client protocols [173]. Another example are update heavy
workloads where the database system could process many more transactions
per second than its networking components can deliver.

The problem of inefficient networking can be addressed on different levels.
When we have full control over clients, we could rewrite the entire commu-
nication logic, in particular the protocols. If that is not the case, we can still
optimize the server by using more efficient networking stacks. And, orthogo-
nal to that, if the clients run on the same machine as the server, we can apply
even deeper optimizations.

28 ��������� �� ���� ����

Table 4 shows approaches for these four cases. When we control the clients
(1 and 2), we can modify them to use more efficient protocols. For instance,
instead of sending events using PostgreSQL compliant update statements, we
could send a raw stream of events. Streaming systems such as Flink have
dedicated input consuming operators for each job that implement specialized
deserialization schemes. However, in a MMDB we generally cannot control the
clients and do not want to break the compatibility with SQL protocol standards.
Assuming we do not have control over clients running on the same machine
as the database server (3), we can override their system calls (e.g., read() and
write()) to communicate using shared memory instead of using domain or
TCP sockets [199]. This is achieved by dynamically linking a shared library
using LD_PRELOAD. OpenOnload [186], a high-performance network stack by
Solarflare, uses this technique to transparently accelerate socket-based appli-
cations. With shared memory communication, we avoid expensive context
switches between kernel and user space. When the clients now run on remote
machines (4), we can only modify the database server. To also avoid context
switches here, we can employ user-space networking and retrieve incoming
packets directly from within user space instead of retrieving them from within
the kernel and delivering them to the respective applications.

mTCP is a high-performance TCP stack that implements common I/O sys-
tem calls, such as epoll() and read() [89]. mTCP bypasses the kernel by uti-
lizing user-space I/O frameworks, including Intel’s Data Plane Development
Kit (DPDK) [48]. DPDK uses huge pages to avoid TLB overheads, maps the
device’s memory into user space using the user-space I/O (UIO) subsystem,
and uses polling instead of interrupts. A downside of DPDK is that it re-
quires exclusive access to the network interface, which prevents non-DPDK
applications from receiving or sending packets. In practice, however, we can
use a second network interface for non-database traffic. Cloud providers, in-
cluding Amazon Web Services (AWS) and Microsoft Azure, recently added
next-generation DPDK-compatible network interfaces making user-space net-
working commonly available [20, 185].

Figure 7 shows the intended architecture. Clients do not need to be altered
and can still communicate using the regular TCP stack, while the database
server employs mTCP. We show the performance impact of mTCP in Sec-
tion 2.5.9. Another approach is to increase message throughput is to use
Remote Direct Memory Access (RDMA) over InfiniBand. In contrast to the
mTCP approach, RDMA over InfiniBand does not involve the CPU and allows
the network interfaces to write directly to main memory. However, the down-
side is that it requires expensive networking hardware on both the client and
the server side.

�.� ���������� �� ����� 29

XVHU�VSDFH

NHUQHO�VSDFH

GDWDEDVH P7&3

'3'.

VWDQGDUG�7&3�FOLHQW��

VWDQGDUG�7&3�FOLHQW��

VWDQGDUG�7&3�FOLHQW�Q

(WKHUQHW

Figure 7: Using mTCP and DPDK on the server side to accelerate message throughput.

�.�.� Improving OLTP Capabilities

In the past, MMDBs have either been dedicated to OLTP or OLAP [91, 25].
HTAP systems like SAP HANA [62] and HyPer [96] are positioned between
these two extremes but prefer OLAP over OLTP. HyPer, for example, inter-
leaves the execution of concurrent transactions but does not synchronize its
data structures to avoid a performance penalty for analytical queries. Effec-
tively, HyPer processes transactions using a single thread. HANA, on the other
hand, stages updates in a delta store, which is periodically merged with the
database. While these are valid strategies for read-mostly workloads, they are
not optimal in a streaming setting with many concurrent OLTP events and
OLAP queries that need to run on the current database state.

One approach that we have explored in [105] is HyPerParallel, an extension
to the HyPer system that synchronizes concurrent transactions using optimistic
locking [129]. HyPerParallel builds on HyPer’s MVCC implementation [154].
To accelerate reads, this implementation organizes tuples in blocks (typically
1,024 tuples) and maintains a range of potentially versioned tuples per block.
In addition to this range, HyPerParallel stores a version lock that encodes the
block’s version as well as its lock state. A reader reads the version before and
after processing the block and repeats this process if the two versions differ
(i.e., if the block has been altered by a concurrent writer). When the block is
already locked (or has been locked in the meantime), the reader waits for its
release before it (re-)starts scanning the block.

Note that this use of optimistic locking and MVCC is not specific to HyPer
and can in fact be applied to any MMDB that uses MVCC. For more details on
this technique, including synchronization of index structures and transaction
management in MVCC, we refer the reader to [105]. Further, for state-of-the-
art garbage collection in MVCC systems, we refer to recent work by Böttcher
et al. [28].

30 ��������� �� ���� ����

Like HyPer, HyPerParallel uses a non-partitioned storage and processing
model [123]. In other words, any processing thread can process a transaction
which may alter any part of the data. This is in contrast to AIM and Flink,
which partition both the data and the processing threads. HyPerParallel thus
supports cross-partition transactions while AIM and Flink do not. There is,
however, a challenge with HyPerParallel’s processing model. Recall that in the
Huawei-AIM workload an event corresponds to a single subscriber (a tuple in
the database). As long as there is no skew in the accessed subscribers (i.e., ac-
cesses are uniformly distributed), there is no issue as concurrent threads likely
access different subscribers. However, when introducing skew into the work-
load, write-write conflicts are more likely which may lead to aborts. We will
show the performance degradation caused by these aborts in the evaluation (cf.
Section 2.5.8). In addition, we will analyze HyPerParallel with a second execu-
tion model that partitions the workers according to the subscriber ID and thus
effectively avoids any aborts due to serialization errors.

�.�.� Scaling out Using Horizontal Partitioning

Most MMDBs are designed as standalone systems that do not support scal-
ing out to multiple machines. The idea is to accept the inherent memory lim-
itations of a single machine to avoid the introduction of any communication
overhead. Once a system needs to communicate across machine boundaries,
its performance is limited by networking hardware which usually has much
higher latency and lower throughput than modern main memory. State-of-
the-art networking technologies such as InfiniBand narrow this gap, however,
they remain reserved to a small user group due to its significantly higher costs
than commodity hardware (e.g., 1 Gbit Ethernet). We therefore do not fur-
ther consider such next-gen hardware in this discussion and assume that cross-
machine communication is expensive. Since distributed transactions4 in such
a setting are a costly operation (without sacrificing availability and/or consis-
tency guarantees), we focus our discussion on the commonly used approach
of horizontal partitioning with partition-local transactions. For a discussion
of distributed transactions with next-gen networking technology, we refer the
reader to related work by Zamanian et al. [220]. For better illustration, we
discuss a reference implementation in HyPer, even though this approach is in-
dependent of HyPer’s architecture and can be applied to every MMDB that
has a server/client communication layer in place.

There have been multiple approaches to scaling HyPer to multiple machines.
ScyPer [148] is a distributed version of HyPer that can scale with the number
of analytical queries while sustaining a state-of-the-art transaction processing
performance (>100,000 TX/s on TPC-C). ScyPer circumvents distributed trans-

4 Transactions that cross machine boundaries.

�.� ���������� �� ����� 31

+\3HU��

HYHQWV

TXHULHV

TXHU\�UHVXOW�
DJJUHJDWRU

SDUWLWLRQHG�GDWDEDVH

SDUWLWLRQ�E\�
VXEVFULEHU�LG

+\3HU��

+\3HU�Q

Figure 8: HyPerDistributed with multiple horizontal partitions (shards). Events are
dispatched to the corresponding partition. Queries are sent to all partitions
and aggregated on the client side.

actions by processing all transactions on a primary node and multicasting redo
logs to secondary nodes. These secondary nodes are dedicated to analytical
query processing. Roediger et al. introduce a distributed analytical query en-
gine based on HyPer that replicates tables and achieves state-of-the-art results
on the TPC-H benchmark [176]. While both systems achieve best-of-class re-
sults for their use cases, they do not consider partitioning the database and
thus do not scale with the volume of the data or do not support transactions
at all.

In this section, we introduce HyPerDistributed, a system based on HyPer
that horizontally partitions the database similar to the distributed version of
AIM (the hand-crafted C++ implementation of the Huawei-AIM workload).

Figure 8 shows HyPerDistributed’s architecture. Due to the single-row up-
dates of the Huawei-AIM workload, each event only affects a single partition.
Queries, in contrast, are broadcasted to all partitions and are aggregated on
the client side. We rewrote the queries to be able to execute them in a dis-
tributed setting (e.g., we replaced AVG with SUM and COUNT). Note that the
queries are only aggregating data and thus their result sets are small. Hence,
the client-side merging of the partial results does not cause a significant over-
head. The communication between the client and the multiple HyPer nodes
is implemented using PostgreSQL’s C++ library (pqxx). Note that the pqxx
protocol is verbose and thus inefficient when it comes to the serialization of
query results. However, since the query results of this workload are small in
size, we do not expect significant benefits from more efficient protocols. We re-
fer the reader to [173] for an exhaustive study of the impact of communication
protocols under analytical workloads with large query result sizes.

In Section 2.5.10, we study HyPerDistributed’s performance on the Huawei-
AIM workload and it compare against distributed versions of AIM and Flink.
In future work, we could additionally employ redo log replay as suggested by

32 ��������� �� ���� ����

ScyPer to separate readers from writes. We also plan to centrally issue MVCC
timestamps (for both transactions and queries) to allow for cross-partition con-
sistency.

�.� ����������� ����������

We begin with a performance evaluation using the complete Huawei-AIM
workload as described in Section 2.3. We drill down into the different aspects of
the workload, including updates and real-time analytics. We then investigate
the performance impact of the number of clients, the number of maintained
aggregates, and skew. We finally study the impact of user-space networking
and evaluate the systems in a distributed setting.

�.�.� Configuration

We evaluate the different systems (cf. Table 5) on an Ubuntu 17.04 machine
with an Intel Xeon E5-2660 v2 CPU (2.20 GHz, 3.00 GHz maximum turbo boost)
and 256 GiB DDR3 RAM. The machine has two NUMA sockets with 10 phys-
ical cores (20 hyperthreads) each, resulting in a total of 20 physical cores (40
hyperthreads). The sockets communicate using a high-speed QPI interconnect
(16 GB/s).

Table 5: Evaluated systems.

System Version

HyPer Jul 16, 2017
AIM Same version as used in [30]
Flink 1.3.2

We place the clients on the same machine as the server and generate events
and queries by one client thread each. Setting the total number of threads5

was enough to run HyPer and Flink out-of-the-box. Conversely, AIM requires
more tedious fine-tuning and server threads are allocated as explained in Sec-
tion 2.3.2. As one can see from this allocation scheme, some workloads require
more than one thread even in the most basic setting, which is why the mea-
surements for AIM do not typically start at one thread.

�.� ����������� ���������� 33

●

●

●

●

●
●

●

●

●

0

50

100

150

1 2 3 4 5 6 7 8 9 10
number of threads

th
ro

ug
hp

ut
 in

 q
ue

rie
s/

s

● AIM Flink HyPer

Figure 9: Analytical query throughput for 10 M subscribers at 10,000 events/s.

�.�.� Overall Performance

Figure 9 illustrates the query throughput when running the full workload,
which consists of 10 M subscribers, 10,000 events per second, and the seven
analytical queries (cf. Table 3) where each of them is executed with equal prob-
ability. Further, daily and hourly windows are maintained leading to a total
of 546 aggregates. AIM achieves the best performance. With two threads, it
has a throughput of 14.8 queries/s and its best throughput, with eight threads,
is 145 queries/s. The reason why AIM achieves its best performance at eight
(and not at ten) threads is a NUMA effect: Since AIM statically pins threads
to cores and allocates memory locally whenever possible, the total number of
client and threads (2+ 8 = 10) precisely fits on NUMA node 0. Hence, there
is no communication to a remote memory region as it is the case for nine and
ten threads. The spike at four threads probably relates to non-uniform com-
munication paths between the cores on NUMA node 0. The spikes observed
here are reproducable, and are, as we will see, also present in other work-
loads. Flink matches the performance of AIM for two threads and scales up
to 90.5 queries/s using ten threads. HyPer achieves a throughput of 14.3 and
70.0 queries/s with two and nine threads, respectively. HyPer’s throughput is
lower than AIM’s since it interleaves analytical queries with writes (i.e., writes
block reads) while AIM processes them in parallel.

34 ��������� �� ���� ����

●

● ●

●

●
●

●

●

●

●

0

50

100

150

1 2 3 4 5 6 7 8 9 10
number of threads

th
ro

ug
hp

ut
 in

 q
ue

rie
s/

s

● AIM Flink HyPer

Figure 10: Analytical query throughput for 10 M subscribers.

�.�.� Read Performance

Figure 10 shows the analytical query throughput for the different systems
with an increasing number of threads without concurrent events. With one
thread, HyPer processes 19.4 queries/s while AIM sustains a throughput of
33.3 queries/s. As we increase the number of threads, HyPer sometimes out-
performs AIM and its throughput increases linearly while AIM shows the
same spikes as before6. HyPer’s maximum throughput is 136 queries/s with
ten threads compared to 164 queries/s for AIM with seven threads. Flink’s
throughput is 13.1 queries/s using one thread and gradually increases to 106
queries/s with ten threads.

�.�.� Write Performance

Figure 11 shows the event processing throughput of the different systems
with an increasing number of event processing threads. This time, we evaluate
the systems purely on the basis of their write throughput without running any
analytical queries in parallel. Flink achieves the best write performance by far.
Using one thread, it has a throughput of 14,400 events/s and the throughput
scales to 222,000 events/s using ten threads. There are two reasons for this:
(1) Flink partitions the state depending on the number of available process-
ing threads. With this strategy, it scales well since there is no cross-partition
synchronization involved. (2) Flink does not have any overhead introduced

5 Unless otherwise noted, we are always referring to the server-side threads.
6 AIM cannot be configured with zero ESP threads, which is why there is an additional idle ESP

thread that we do not account for, but which nevertheless occupies its CPU. This is why the
spike is at seven threads this time.

�.� ����������� ���������� 35

●
●

●

●

●

●

●

●

●
●

0

100

200

300

1 2 3 4 5 6 7 8 9 10
number of threads

th
ro

ug
hp

ut
 in

 K
 e

ve
nt

s/
s

● AIM Flink HyPer

Figure 11: Event processing throughput with an increasing number of event process-
ing threads.

● ●
●

●
●

●
●

●
● ● ●

● ● ● ●

●
●

●
●

● ●

0

200

400

600

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
number of threads

th
ro

ug
hp

ut
 in

 K
 e

ve
nt

s/
s

● AIM Flink HyPerParallel

Figure 12: Event processing throughput with an increasing number of event process-
ing threads (using optimistic locking in HyPerParallel).

by snapshotting mechanisms or durability guarantees. AIM processes 31,800
events/s using one thread and achieves a maximum throughput of 180,000
events/s using eight threads. Again, we see the NUMA effect described earlier.
AIM also partitions the state to scale its write throughput, but since its differen-
tial update mechanism introduces an overhead, AIM does not perform as well
as Flink. HyPer sustains a throughput of 20,000 events/s in all cases since it
only uses a single thread to process transactions.

Next, we study the prototypical modifications to HyPer that we introduced
in Section 2.4.2. These modifications allow HyPerParallel to parallelize trans-

36 ��������� �� ���� ����

actions by combining MVCC with optimistic locking. In this experiment, we
vary the number of threads from one to 40 to also show the effect of oversub-
scription (using more threads than physical cores). Figure 12 shows that all
three systems scale reasonable well with the number of physical cores. Flink’s
and HyPerParallel’s write throughput even improves marginally with oversub-
scription while AIM’s performance stabilizes at around 180,000 events/s.

The results show that HyPerParallel’s optimistic locking approach achieves
the same scalability as Flink and AIM which do not need to perform any syn-
chronization due their to static partitioning. At the same time, HyPerParallel
guarantees global consistency using MVCC while the other systems can only
guarantee a consistent state per partition.

�.�.� Query Response Times

In this experiment, we measure the response time for each of the seven ana-
lytical queries with and without concurrent writes (10,000 events/s) using four
threads. Figure 13 shows the individual query response times. HyPer’s per-
formance degrades the most when writes are added to the query processing
workload. The reason is that HyPer interleaves analytical queries with writes.
As shown in the previous section, HyPer’s write throughput is limited to 20,000
events/s and does not scale for multiple threads. Thus, an event throughput of
10,000 events/s blocks the query processing for about 500 ms every second. The
query processing can only happen in the remaining 500 ms. AIM does not ex-
perience the same performance degradation since it performs writes and reads
in parallel using the differential updates approach. Flink’s performance does not
drop much when adding 10,000 events/s as its (parallel) write throughput is so
high that the analytical queries remain almost unaffected. However, we expect
a higher performance degradation in Flink’s analytical performance when in-
creasing the number of events per second as Flink lacks efficient snapshotting
mechanisms.

�.�.� Impact of Number of Clients

Figure 14 shows the analytical query throughput with an increasing number
of clients using ten server-side threads. HyPer performs the best of all systems
and achieves a maximum throughput of 276 queries/s with ten client threads.
HyPer’s performance improves with multiple clients since it interleaves the ex-
ecution of analytical queries (cf. Section 2.3.2). AIM’s peak throughput is 218
queries/s with eight client threads. The gradual increase in the throughput
shows the effect of the shared scan technique as AIM can now batch queries
from multiple clients and process them all at once. The fact that the perfor-
mance drops after eight threads shows that batching is only beneficial up to

�.� ����������� ���������� 37

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Query 7

O
verall (w

/
concurrent

events)
R

ead (in
isolation)

0
20
40
60
80

0
20
40
60
80

ru
nt

im
e

in
 m

s

AIM

Flink

HyPer

Figure 13: Query response times.

● ●

●
●

●
● ●

●

● ●

0

100

200

1 2 3 4 5 6 7 8 9 10
number of clients

th
ro

ug
hp

ut
 in

 q
ue

rie
s/

s

● AIM Flink HyPer

Figure 14: Analytical query throughput with an increasing number of clients.

a certain point. Flink executes analytical queries as follows: Once a worker
completed its part of the query, i.e., processed the query on its partition of the
state, the worker can continue with the next query. The worker does not have
to wait until the other partitions have been processed and the partial query
results have been merged. For this reason, the idle time of threads decreases
for more clients and the query throughput increases to 131 queries/s.

�.�.� Impact of Number of Aggregates

In this experiment, we studied the impact of the number of aggregates being
maintained. We measure the overall as well as the write performance of AIM,
HyPer, and Flink while maintaining 42 instead of the original 546 aggregates.

38 ��������� �� ���� ����

●

●

●

●

●

●

●

●

●

0

50

100

150

1 2 3 4 5 6 7 8 9 10
number of threads

th
ro

ug
hp

ut
 in

 q
ue

rie
s/

s

● AIM Flink HyPer

Figure 15: Analytical query throughput for 10 M subscribers and 42 aggregates at
10,000 events/s.

Figure 15 shows the analytical query throughput for 10 M subscribers and
42 aggregates at 10,000 events/s. Again, AIM achieves its best performance
at eight threads (cf. Section 2.5.2) whereas Flink and HyPer do not experience
such spikes. In contrast to the overall workload with 546 aggregates, HyPer
achieves a higher performance than Flink throughout this experiment. The
gain in HyPer’s performance is expected since writes are now less expensive
and thus singlethreaded phases are reduced. With ten threads, HyPer achieves
a throughput of 125 queries/s (2.14⇥ speedup over 546 aggregates) while Flink
sustains 97.4 queries/s (1.08⇥).

Figure 16 shows the event processing throughput for 42 aggregates with an
increasing number of event processing threads. Note that we have reduced
the number of aggregates by a factor of 13. As expected, the throughputs
improve significantly with less aggregates (cf. Section 2.5.4). With one thread,
AIM and HyPer achieve a throughput of 227,000 (11.4⇥) and 228,000 events/s
(9.62⇥), respectively, whereas Flink sustains 766,000 events/s (25.5⇥). With ten
threads, AIM and Flink reach a throughput of 1,000,000 (7.69⇥) and 2,730,000
events/s (9.51⇥), respectively. HyPer’s performance does not increase with
more threads since it does not parallelize transactions.

�.�.� Impact of Skew

In this experiment, we study the effect of skew on the event processing per-
formance of the different systems. In the original Huawei-AIM workload, the
subscriber IDs (keys) of events follow a uniform distribution. However, we
presume that in reality entity IDs are skewed (i.e., there will be subscribers

�.� ����������� ���������� 39

●

●
● ●

●
●

● ● ● ●

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10
number of threads

th
ro

ug
hp

ut
 in

 K
 e

ve
nt

s/
s

● AIM Flink HyPer

Figure 16: Event processing throughput for 42 aggregates with an increasing number
of event processing threads.

that make significantly more calls than others). Therefore, we introduce a new
flavor to the Huawei-AIM workload that generates events following a Zipfian
distribution.

We analyze two different execution models in HyPerParallel, its default one
that assigns events to processing threads in a round-robin fashion (HyPerP-
RoundRobin), and a second one that partitions the workers according to the
subscriber ID of the event (HyPerP-NoConflicts). In the latter model, there can-
not be any write-write conflict between two threads that may lead to an abort.
However, there can still be contention on indexes and locks (as subscribers may
reside in the same MVCC block).

In Figure 17, we compare the two execution models of HyPerParallel to AIM
and Flink. We normalize the chart using the throughput achieved without any
skew.

Up to a Zipf factor of 0.75, the throughput of all systems stays rather stable.
Starting from a Zipf factor of 1.0, AIM benefits most from the skew while Flink
and HyPerP-NoConflicts are not affected until a Zipf factor of 1.25. HyPerP-
RoundRobin, in contrast, starts to suffer from many aborts and its throughput
is almost halved. At a Zipf factor of 1.25, AIM’s and Flink’s throughput starts
to drop, while HyPerP-NoConflicts benefits from the increased skew.

When the amount of skew increases, two opposing effects can be noticed.
Some subscribers are updated more frequently and thus their records are more
likely to be cached. Thus, the performance of all systems slightly increases. Un-
der high contention, the performance of the systems diverges. To understand
the differences in the results, we have to revisit the design of the systems.

HyPerP-NoConflicts operates on a shared state (database) and only parti-
tions the processing threads. In contrast, both AIM and Flink also partition

40 ��������� �� ���� ����

●
●

●
●

●

●

0

50

100

150

0 0.25 0.5 0.75 1 1.25
Zipf factor

re
la

tiv
e

th
ro

ug
hp

ut
 in

 %

● AIM Flink HyPerP−NoConflicts HyPerP−RoundRobin

Figure 17: Relative event processing performance for 546 aggregates with increasing
skew using 10 event processing threads (Zipf factor = 0 represents a uni-
form distribution).

the state. At a certain point, the amount of work per thread (i.e., per partition)
becomes imbalanced. In the worst case, all updated subscribers reside in the
same partition and thus all updates are executed serially by a single thread.

AIM’s approach is slightly different from Flink’s as it maintains an addi-
tional delta hash map per partition. Updates are first written to the delta
before being periodically merged into the partition. With high skew, it is likely
that the same subscribers are updated multiple times. Thus, when a customer
is updated that already exists in the hash map, its entry can be reused and it
is likely that the subscriber still resides in the cache. Further, the total size of
the delta is smaller when fewer subscribers are updated, which reduces merge
costs.

Flink does not maintain such a delta and instead updates data in place. The
benefits of skew are not as high as for AIM and are already outweighed at a
Zipf factor of 1.0 by the imbalance of work across partitions.

HyPerP-NoConflicts is similarly skew resistant as AIM. However, an advan-
tage of HyPerP-NoConflicts is that it does not physically partition the database:
the entire state is shared. This enables it to execute cross-partition transactions.

�.�.� Impact of User-Space Networking

The goal of this experiment is to highlight the impact of user-space network-
ing (cf. Section 2.4.1) and to motivate its adoption in MMDBs. We conduct
the experiments on two identically configured Xeon machines that both run
Ubuntu 16.04 and are equipped with a Intel Xeon E5-2680 v4 CPU (2.40 GHz,
3.30 GHz turbo) and 256 GiB DDR4 RAM. Both machines have a DPDK-comp-

�.� ����������� ���������� 41

● ●
●

●

●

● ●
● ●

0

250

500

750

1000

1250

1 2 4 8 16 32 64 128 256
number of clientsth

ro
ug

hp
ut

 in
 K

 m
es

sa
ge

s/
s ● TCP/TCP mTCP/TCP mTCP/mTCP

(a) 64 B payloads

● ● ●
●

●

●
●

● ●

0

250

500

750

1000

1250

1 2 4 8 16 32 64 128 256
number of clientsth

ro
ug

hp
ut

 in
 K

 m
es

sa
ge

s/
s ● TCP/TCP mTCP/TCP mTCP/mTCP

(b) 1 KiB payloads

Figure 18: Number of round trips in K messages/s for two different payload sizes
with an increasing number of client threads (mTCP/mTCP = server and clients
use mTCP, mTCP/TCP = server uses mTCP and clients TCP, and TCP/TCP =
server and clients use TCP).

atible Intel X520 DP 10Gb DA/SFP+ network interface card (NIC) and are
directly connected using a SFP+ cable. The average round trip latency reduces
from 0.08 ms to 0.03 ms by using mTCP on the server side.

We have integrated mTCP (with its DPDK backend) into AIM’s distributed
version. However, as it turns out, AIM’s event processing is actually not net-
work bound. Meaning even a simple TCP communication (using Linux’s ker-
nel driver) can saturate AIM. The reason for this is the potentially large num-
ber of aggregates that is updated for each incoming event. We therefore have
designed our own microbenchmark to show the impact of networking on a
MMDB’s performance. We have implemented standalone mTCP server and
client programs that exchange 64 B and 1 KiB payloads. On the server side, a
single thread listens for incoming messages. In a first experiment, the server
immediately returns incoming messages back to the client without doing any
further processing. On the client side, we increase the number of threads to
eventually saturate the server. Thereby, we simulate a typical database scenario
with multiple clients and one server.

Figure 18 shows the throughput for two different payload sizes. For both
payload sizes, mTCP has a significant effect on message throughput. With
64 B payloads and 128 clients, mTCP/TCP achieves a peak throughput of 1.12 M
messages/s (0.53 Gbit/s) while TCP/TCP can only sustain 0.58 M messages/s
(0.28 Gbit/s). Note that we can achieve this 2.05⇥ performance improvement
by only modifying the server and leaving the clients untouched. When we
also use mTCP on the client side, we can achieve even higher numbers. Note
that mTCP does not support more than 16 cores due to NIC hardware queue
restrictions. With 1 KiB payloads and 256 clients, there is a difference of 1.74⇥
between mTCP/TCP and TCP/TCP. The lower impact of mTCP for larger payloads
is expected since both the server and the clients have to do more work (e.g.,
copying more data from device to main memory). Note that the maximum

42 ��������� �� ���� ����

●

●

●
●

0

100

200

300

400

1 10 50 100
number of updated columnsth

ro
ug

hp
ut

 in
 K

 m
es

sa
ge

s/
s ● TCP/TCP mTCP/TCP mTCP/mTCP

(a) 1 client

●

●

●

●

0

10

20

30

40

1 10 50 100
number of updated columnsth

ro
ug

hp
ut

 in
 K

 m
es

sa
ge

s/
s ● TCP/TCP mTCP/TCP mTCP/mTCP

(b) 16 clients

Figure 19: Number of round trips in K messages/s for two different client thread
counts with an increasing number of updated columns.

throughput of mTCP/TCP of 0.84 M messages/s (6.39 Gbit/s only considering
payloads) is close to the physical limit of our 10 Gbit link.

In a second experiment, we fix the payload size to 64 B and add lightweight
server-side processing (as opposed to the heavyweight updates of the Huawei-
AIM workload) to simulate a more realistic database scenario. For each incom-
ing event, we perform an update operation in a column store with an increas-
ing number of columns (1, 10, 50, and 100) with each column containing 1M
rows. We uniformly choose one row to be updated.

Figure 19 shows the throughput for 1 and 16 client threads. For both client
thread counts, mTCP has a positive impact on message throughput for up to
50 updated columns. By adding more columns, the server-side processing
becomes increasingly expensive and at some point it dominates the (network)
throughput. Up to this point (in this case 10 columns), the results clearly
show a positive impact of user-space networking. Our experiments suggest
that MMDBs should employ user-space networking for workloads with fast
transactions or with low-latency queries (e.g., point lookups).

�.�.�� Distributed Setting

In this experiment, we study how the systems scale to multiple nodes. We
use four identically configured machines (cf. Section 2.5.1) and commodity
1 Gbit Ethernet hardware. To compare the centralized MMDB HyPer with AIM
and Flink, we implemented a distributed version (HyPerDistributed) that can
execute the Huawei-AIM workload (cf. Section 2.4.3). All systems partition
the state horizontally. Events are partitioned by subscriber ID and are sent
to the corresponding node. We configure the systems to use all available 40
hyperthreads on each node. The client is placed on one of the four nodes.

Figure 20 shows the analytical query throughput with and without event
processing. Due to its specialized and efficient networking protocol, AIM al-
most scales linearly from 110 to 397 queries/s. Up to three nodes, Flink shows

�.� ����������� ���������� 43

●

●

●

●

0

100

200

300

400

1 2 3 4
number of nodes

th
ro

ug
hp

ut
 in

 q
ue

rie
s/

s
● AIM Flink HyPerDistributed

(a) Without event processing

●

●

●

●

0

100

200

300

400

1 2 3 4
number of nodes

th
ro

ug
hp

ut
 in

 q
ue

rie
s/

s

● AIM Flink HyPerDistributed

(b) With 10,000 events/s

Figure 20: Analytical query throughput for 10 M subscribers with an increasing num-
ber of nodes.

a similar scalability before its performance decreases. This indicates that the
communication between the nodes becomes a bottleneck. Flink’s networking
performance might be improved by implementing more specialized serializa-
tion schemes. At this point, we use its default serialization functions that might
not be optimal for complex data types. We want to point out that Flink’s in-
frastructure eases the development and the deployment of applications. An
application can be deployed to a cluster without making any code changes.
This allows local development and eases debugging. When deploying an ap-
plication, Flink automatically compiles, optimizes, and distributes it across the
cluster.

HyPerDistributed does not scale as well as AIM and Flink. We have inves-
tigated this further in a standalone benchmark and found that HyPer’s an-
alytical query throughput does not proportionally increase with less data. In
other words, halving the data size does not lead to twice the throughput. Thus,
even with perfect networking, distributing the workload over x machines can-
not increase the performance by a factor of x. We account this to HyPer’s
single-node parallelization overhead. Its morsel-driven parallelism seems to
be inferior to the static partitioning applied by the other systems. Note that
the client of the Huawei-AIM workload blocks when sending queries (i.e., the
result of the previous query has to arrive before sending the next query). Due
to this request-reply pattern, a processing delay of a single node may have a
significant impact on a system’s overall performance. Therefore it is crucial to
ensure deterministic query runtimes (e.g., by running the system in a perfor-
mance isolated environment). Further, network latencies have a high impact
on the scalability of a system. In Section 2.4.1, we outlined how this network
bottleneck can be addressed.

We do not show the write-only numbers here as writes do involve any post-
processing and therefore are embarrassingly parallel. Thus, the challenge for
optimal write performance is more a question of a fast, scalable client and
efficient networking (cf. Sections 2.4.1 and 2.5.9). For instance, for Flink it

44 ��������� �� ���� ����

2SWLPLVWLF�
FRQFXUUHQF\�

FRQWURO

+RUL]RQWDO�
VFDOH�RXW

8VHU�VSDFH�
QHWZRUNLQJ 00'%

Ɣ)DVWHU�GDWD�LQJHVWLRQ
Ɣ /RZHU�ODWHQF\
Ɣ +LJKHU�WKURXJKSXW

Ɣ ,QFUHDVHG�VWRUDJH
Ɣ +LJKHU�WKURXJKSXW

/LPLWDWLRQ��1R�FURVV�
SDUWLWLRQ�ZULWHV�

Ɣ)XOO�64/�VXSSRUW
Ɣ $&,'�JXDUDQWHHV
Ɣ (DVH�RI�DSSOLFDWLRQ�

GHYHORSPHQW
Ɣ 5HFRYHUDELOLW\

Ɣ &RQFXUUHQW�UHDGV�ZULWHV
Ɣ /LJKWZHLJKW�V\QFKURQL]DWLRQ
Ɣ +LJK�VFDODELOLW\

/LPLWHG�WKURXJKSXW

1R�VFDOLQJ1HWZRUN�
ERWWOHQHFN

Figure 21: Overview of possible extensions to MMDBs and their benefits.

is important to add additional Kafka partitions for each parallel worker that
should fetch events. If there is only one Kafka partition, only one thread can
receive events.

�.� ������� ��� ���

We have shown that general-purpose MMDBs perform fairly well on stream-
ing workloads. Nevertheless, our experiments indicate that there is still a gap
between the performance and usability of MMDBs and modern streaming sys-
tems, such as Flink. In this extended version, we have started to close this gap
and have identified and evaluated extensions to MMDBs that increase their
streaming capabilities (cf. Section 2.4).

As shown in Figure 21, we propose a threefold approach to improve the
overall performance of MMDBs: (a) improve networking, (b) use all cores on
a single machine, and (c) distribute load across multiple machines. In the
following, we will describe each of these aspects in more detail.

In Section 2.4.1 we have highlighted a few options to mitigate the network
bottleneck in MMDBs depending on whether we have control over clients and
whether communication is local or remote. One such option is to employ user-
space networking such as mTCP to increase message throughput by avoiding
expensive context switches between kernel and user space (numbers can be
found in Section 2.5.9). With the support of DPDK-compatible network inter-
faces by cloud providers such as AWS and Microsoft Azure, this seems to be
a promising direction going forward. Another option to increase networking

�.� ������� ��� ��� 45

performance is to employ more efficient client protocols, which is an area of
open research [173].

AIM, Flink, and Tell are capable of processing events in parallel, whereas Hy-
Per processes transactions in a single thread. To match their scalability, HyPer
would need to be extended with parallel single-row transactions, which are less
complicated to parallelize than full transactions. We have experimentally im-
plemented a version of HyPer that can parallelize transactions (cf. Section 2.4.2)
and have demonstrated its competitiveness.

MMDBs also need to be able to distribute writes across multiple machines.
HyPer, for instance, could employ a similar strategy as Flink, which parti-
tions the event input stream and distributes it across nodes. Towards this
end, we have implemented a distributed version of HyPer that can handle the
Huawei-AIM workload (cf. Section 2.4.3). This architecture could be further
extended by employing ideas from the ScyPer architecture [148], where trans-
actions are processed by the primary ScyPer node, which multicasts redo logs
to secondary nodes.

From a usability perspective, modern streaming systems offer many features
that help users to set up streaming applications, such as their out-of-the-box
support for sliding and tumbling windows. On the one hand, MMDBs sup-
port arbitrary SQL allowing users to customize the analytical parts of their
workloads and to issue ad-hoc queries. On the other hand, adding windowed
aggregation functions using stored procedures is a cumbersome task. Pipeline-
DB [168], which is built on top of PostgreSQL, solves this usability issue by
extending SQL with streaming features but still cannot match the performance
of dedicated streaming systems as we found in early experiments. In addition
to out-of-the-box streaming features, modern streaming systems allow users to
add custom code. There has been work to allow for the same in MMDBs, such
as the integration of high-level programming languages (using user-defined
functions). These additions, however, still do not allow for the same flexibil-
ity as writing plain old Java code. These limitations are mainly caused by
the multi-tenant nature of database systems and the security level that these
systems need to fulfill. MMDBs would need to allow for optionally disabling
security arrangements (e.g., enforcing access rights) in favor of better exten-
sibility. Another mitigation path that MMDBs could follow is to simply add
more streaming features to its SQL processing logic, namely, window-based se-
mantics as proposed by PipelineDB and StreamSQL [188]. This is also a topic
we plan to address in future research.

Besides extending MMDBs to better support streaming use cases, the gap be-
tween MMDBs and streaming systems could be closed from the other direction,
which would mean extending streaming systems with additional storage man-
agement features and query mechanisms. There is ongoing work to make use
of Apache Calcite [8] (a SQL parser and optimizer framework) to extend Flink
with streaming SQL and query optimization capabilities. Cache and register lo-

46 ��������� �� ���� ����

cality are crucial for high query performance and they can both be addressed
very efficiently by compiling query plans into native code [151]. While this
was possible to achieve in systems like HyPer or Tell, which are written in
C++ and LLVM, it is more difficult to implement using JVM-based systems
such as the streaming systems evaluated in this work. Moreover, implement-
ing efficient storage management capabilities is a tedious task in JVM-based
languages because to ensure data locality, custom memory management has to
be implemented outside the JVM heap.

�.� �����������
In this work, we have evaluated a broad set of architectures to address an-

alytics on fast data. We have performed an experimental evaluation including
at least one representative of each architecture. Our experiences as well as
the performance results indicate that there still exists a gap between MMDBs
and dedicated streaming systems. We have started to close this gap and have
identified and evaluated extensions to MMDBs. These extensions include net-
working optimizations, parallel transaction processing, skew handling, and a
distributed architecture. We believe that these extensions can enable MMDBs
to address a broad set of workloads.

3 G E O S PAT I A L A N A LY T I C S

Excerpts of this chapter have been published in [102, 101].

�.� ������������

Connected mobility companies need to process vast amounts of location data
in near real-time to run their businesses. For example, Uber needs to map lo-
cations of cars and passenger requests (points) to predefined zones (polygonal
regions) for allocation and dynamic pricing purposes [203]. These polygonal re-
gions are typically largely disjoint (non-overlapping) and mostly static. Points,
on the other hand, are often not known a priori. Thus, the problem is how to
efficiently find the polygons that contain an incoming point.

Traditionally, such point-polygon joins [87] follow the filter and refine ap-
proach. In this two-phase evaluation strategy, the filtering phase typically uses
an index (e.g., an R-tree) on the minimum bounding rectangles (MBRs) of poly-
gons and probes the index for each point to obtain a list of candidate join pairs.
Then, in the refinement phase, expensive point-in-polygon (PIP) tests are per-
formed to discard false matches.

We argue that the time has come to rethink this strategy: First, main memory
is not a scarce resource anymore and modern machines offer multiple terabytes
of memory. Combined with the city-centric model of geospatial applications
(e.g., Uber), we show that it is possible to maintain highly fine-grained indexes
for entire cities (e.g., Uber’s operating zones) in main memory, dramatically
reducing the number of CPU-intensive PIP tests. Second, geospatial positions,
nowadays typically obtained by smartphones or wearables, are inherently im-
precise [51]. Thus, we argue that it is in many cases admissible to trade off
accuracy for performance. Based on these two insights, we transform the tradi-
tionally CPU-intensive problem of point-polygon joins into one that is bound
by memory access latencies.

In contrast to the classical filter and refine approach, true hit filtering [31] iden-
tifies actual join pairs already in the filtering phase, and thus partially avoids
expensive refinements. This is achieved by using additional approximations
(such as inner rectangles [93]) to approximate the interior of polygons, so that
when a point falls into an interior approximation, it can be safely deducted
that the point is contained in the polygon.

47

48 ���������� ���������

䏜������

�

Figure 22: Polygons are indexed in a new trie data structure that is probed with dy-
namic points. The join result can be aggregated or materialized.

Building on this seminal idea, we present an improved algorithm that com-
bines true hit filtering with quadtrees [108] to holistically index an entire set of
polygons. This is in contrast to existing implementations of true hit filtering
that approximate polygons individually [94, 61] or use non-hierarchical (single-
resolution) grids [225, 16, 215]. In our approach, polygons are translated into
a single set of multi-resolution grid cells that approximates their boundary and
interior areas. To support efficient queries, we store one-dimensional identi-
fiers of the cells in a new in-memory radix tree (trie) named Adaptive Cell Trie
(ACT). We show that ACT is more query-efficient than previous approaches
for indexing cell identifiers (e.g., B-trees, like in [94]).

Figure 22 shows a high-level query plan. The left input (polygons) is read
first to create an ACT index, before the right input (points) is probed against
that data structure to identify matches. The join result is either aggregated
(e.g., by counting the number of points per polygon) or materialized for further
processing. We focus on the case of static polygons and thus can pre-build the
index.

Another distinguishing feature of our approach is that it can entirely avoid
the expensive refinement phase by refining cells in the boundary areas until a
user-defined precision is guaranteed. Naturally, this comes at the cost of higher
memory consumption than traditional filter and refine approaches. However,
as stated above, we argue that we can nowadays actually afford this higher
memory consumption in exchange for higher performance.

Our approach can also provide accurate results by performing expensive PIP
tests for points that are potential hits. To reduce their number, we adapt (train)
our index based on historical data points to provide higher precision where it
is actually needed. As we show in our experiments, our accurate algorithm
performs very few PIP tests. Compared to a filter based on the polygons’
MBRs, our index (trained with 1 M historical points) reduces the number of
required PIP tests by >97% for a join between NYC taxi pick-up locations and

�.� ���������� 49

neighborhood polygons. This algorithm can also be used when ACT cannot
guarantee the desired precision given a certain memory budget.

In summary, our contributions include:

• An algorithm that computes quadtree-based grid approximations for sets
of polygons with precision guarantees

• A radix tree data structure (ACT) that is optimized for indexing cell iden-
tifiers: for a join of NYC’s yellow taxi data with NYC’s neighborhoods,
we achieve a throughput of >50 M points/s per CPU core under a <4 m
precision bound

• An evaluation of ACT in contrast to more traditional data structures, such
as B-trees

• An accurate algorithm that trains the index structure based on historical
data points

• An experimental comparison against state-of-the-art GPU-based point-
polygon joins

The remainder of this chapter is structured as follows: Section 3.2 gives
some background about the building blocks of our approach. Section 3.3 de-
scribes our approach and Section 3.4 presents the evaluation with real-world
and synthetic data. Finally, we summarize related work in Section 3.5 before
concluding in Section 3.6.

�.� ����������

�.�.� Location Discretization

Our approach relies on a quadtree-based (hierarchical) decomposition of
space (the surface of the Earth in this case). This decomposition is static and
thus data independent. We enumerate the quadtree cells using a space-filling
curve (e.g., the Hilbert or the Z curve) to index them in a one-dimensional data
structure. Our approach does not depend on a concrete space-filling curve. For
our indexing strategy to work, the cell enumeration must only fulfill the prop-
erty that child cells share a common prefix with their parent cell.

Figure 23 shows the hierarchical decomposition of two cells at levels i and i+
1 and the corresponding bitwise representations that encode the cells’ positions
along the Hilbert curve. Each cell consists of four sub cells, which it completely
covers. Child cells share a common prefix with their parent cell, allowing us to
compute contains relationships using efficient bitwise operations.

50 ���������� ���������

�� ��

�� ��

���� ���� ���� ����

OHYHO�L

OHYHO�L��

Figure 23: Quadtree-based cell decomposition and Hilbert curve-based enumeration.

In our implementation, we use the Google S2 library [178] for mapping lat-
itude/longitude coordinates to 64-bit cell identifiers, which we call cell ids in
the following. A cell id encodes up to 30 levels with two bits per level.

�.�.� Polygon Approximations

To obtain fine-grained polygonal approximations, we need a method that
maps polygons to sets of quadtree cells (possibly at different levels). In partic-
ular, our algorithms take as input approximations of the boundary and interior
areas of single polygons.

In our implementation, we use the S2 library to obtain these individual poly-
gon approximations.

Figure 24 illustrates a covering (in blue) and an interior covering (in green)
of a polygon. A point contained in a covering cell is either within or outside
of the polygon while points that match interior cells are known to be within
the polygon (true hits). The cell marked with 1 is one of the largest covering
cells and only minimally intersects the polygon. Any point contained in this
cell has at most a distance of

p
2 ⇤ ✏ (with ✏ being the side length of the cell) to

the polygon.
To allow for an efficient search, S2 stores the cell ids of a covering in a

sorted vector. Besides sorting the cell id vector, it allows for the covering to be
normalized. A normalized covering contains neither conflicting nor duplicate
cells. Two cells are conflicting when one cell contains the other. Only when the
covering is normalized can cell containment checks be efficiently implemented
using a binary search on the sorted vector (O(logn)). While binary search
on a sorted vector is a good strategy for querying small collections of cells
(e.g., the covering cells of a single polygon), it is not the most efficient way to
search larger collections (e.g., coverings of multiple polygons). In this work,
we store large cell collections in ACT, a query-efficient radix tree, and evaluate
its performance compared to alternative physical representations (including a
sorted vector and a B-tree).

�.� �������� 51

¼

Figure 24: A covering (blue cells) and an interior covering (green cells) of a polygon.

�.�.� PIP Test

A point-in-polygon (PIP) test determines whether a point lies within a poly-
gon. Typically such a test is performed using complex geometric operations,
such as the ray-tracing algorithm [77], which involves drawing a line from the
query point to a point that is known to be outside of the polygon and counting
the number of edges that the line crosses. If the line crosses an odd number of
edges, the query point lies within the polygon. The runtime complexity of this
algorithm is O(n), n being the number of edges. While there are many con-
ceptual optimizations to the PIP test, this operation remains computationally
expensive since it processes real numbers (e.g., latitude/longitude coordinates)
and thus involves floating point arithmetics.

�.� ��������

In this work, we target the problem of mapping points to static, largely
disjoint polygons. We show how to accelerate such joins by computing fine-
grained cell-based approximations of sets of polygons and maintaining them
in a query-efficient in-memory radix tree, which enables efficient cell lookups
and significantly reduces (or even eliminates) expensive geometric tests.

In contrast to techniques that first reduce the number of candidate polygons
using an index, e.g., an R-tree on the polygons’ MBRs, and then refine candi-
dates using geometric operations, our approach leverages true hit filtering [31]
and identifies most or even all join pairs in the filter phase. On a high level, our
approach first computes cell-based approximations of all polygons, called cov-
erings and interior coverings, and merges them to form a super covering. Then,
it stores these approximations in a specialized in-memory radix tree (named
ACT) which allows for efficient lookups. Finally, ACT is probed for every point
to obtain a list of true and candidate point-polygon pairs. The candidate pairs

52 ���������� ���������

are either refined by performing geometric computations to obtain an accurate
result, or deemed to be part of the join result when small approximation errors
can be tolerated.

The following provides more information about our indexing technique and
the two geospatial join algorithms that are based on it: the approximate one
that completely avoids expensive PIP tests while still guaranteeing a user-
defined precision, and the exact one that reduces expensive computations by
adapting to the expected point distribution. These algorithms allow us to
trade memory consumption with precision (approximate approach) and per-
formance (exact approach). Thus, they both favor modern hardware with
large main memory capacities and high memory bandwidths. In summary,
the key contribution of our indexing strategy is the novel combination of the
super covering that approximates the polygons precisely, and the radix tree
data structure that allows these approximations to be queried efficiently. With
this design, we revisit the concept of true hit filtering in the context of modern
hardware.

�.�.� Adaptive Cell Trie (ACT) Indexing

Super Covering Computation

The super covering consists of a set of multi-resolution grid cells. All grid
cells are disjoint in the sense that each geographical point is covered by at most
one cell, even if two (or more) polygons overlap. A single cell of the super cov-
ering can therefore be associated with multiple polygons. The super covering
maintains a list of polygon references for each individual cell. A polygon refer-
ence has two attributes:

������� �� The identifier of the polygon that this cell references.

�������� ���� Whether the cell is an interior or a boundary cell of the poly-
gon.

The precision of the super covering determines the selectivity of the index.
When combining the approximations of the individual polygons, we need to
take special care of conflicting cells1 to not lose precision. However, this is
challenging for two reasons. First, conflicts may occur between the cells of a
covering of a given polygon and the cells of its interior covering. The interior
cells always overlap some (if not all) covering cells. Second, when different
polygons overlap or are close to each other, conflicts may occur between the
cells of their coverings.

1 Recall that a conflict between two cells exists if one cell contains the other. We do not consider
duplicate cells as conflicting.

�.� �������� 53

(a) Covering (b) Covering (c) Combined cov.

Figure 25: A combined covering may be less selective than two individual coverings.
The arrows indicate that the cells will be expanded.

One approach for retaining the precision would be to not resolve such con-
flicts at all and maintain all conflicting cells. However, this would have the
consequence that a query point could match with more than one cell, which
would affect lookup performance. In a radix tree, this would mean that we
would need to keep searching lower levels once we found a match at a higher
level.

Ensuring that cells are non-overlapping results not only in higher lookup
performance, but also in a more compact radix tree. The reason is that for a
given entry in a tree node, we only need to differentiate between a pointer (to
a child node) and a value. With overlapping cells, we would have to store a
pointer and a value.

There are two obvious solutions for resolving a conflict between two cells c1

and c2, where c1 is an ancestor of c2 in the quadtree (c1 contains c2). One is to
replace c2 with c1, which leads to a precision loss as shown in Figure 25. Fig-
ures 25a and 25b show the coverings of two individual polygons. The red cells
have conflicts with cells of the other covering. Figure 25c shows a combined
covering, where the originally smaller cells are subsumed by larger cells, caus-
ing a precision loss. The other solution is to replace c1 with a set of smaller cells
at the same level (i.e., of the same size) as c2. While this retains the precision,
it can significantly increase the number of cells in the combined covering.

Without compromising on precision, we would like to reduce the number
of cells introduced. To solve this problem, instead of storing both conflicting
cells c1 and c2, we compute their difference d and store c2 and d. This has the
advantage that there will not be any overlap between the indexed cells, and
thus an index lookup will return at most a single cell. The side effect is that
the total number of cells will increase since d consists of at least three cells.
Figure 26 illustrates this precision preserving conflict resolution. Assume that
c1 (blue) and c2 (green) are cells of two different coverings and that c1 contains
c2. First, we compute d, which consists of six cells. We then copy all polygon

54 ���������� ���������

(a) c1 and c2 (b) Difference d (c) d and c2

Figure 26: Precision preserving conflict resolution. c1 is marked in blue, c2 in green,
and the cells in d in purple. Note that c1 contains c2.

references of c1 to d and c2 and omit c1. Note that the cell count is increased
by five. Overall, our approach retains the precision and the type (boundary or
interior) of the individual cells as well as the mappings of cells to polygons.

Listing 1 outlines this algorithm. We iterate over all input cells and try to
insert them into the super covering. When a cell already exists, this means that
it is also part of another covering that has already been processed. When two
cells conflict, this means that either the current cell covers the other cell or vice
versa. These two cases may happen when polygons overlap or are close to each
other, or when we first insert the cells of the covering of a given polygon and
then the cells of its interior covering. To address these cases, we apply the pre-
cision preserving conflict resolution strategy described above. As mentioned
earlier, this strategy increases the total number of cells. However, a more pre-
cise index reduces the number of expensive PIP tests and thus increases overall
performance.

Figure 27 shows a super covering of neighborhoods in NYC’s Jamaica Bay.
Boundary (former covering) and interior cells are again marked in blue and
green, respectively. Most of the area shown is covered by either interior cells
or by no cells at all. Only in the unlikely event that a query point hits a blue
(boundary) cell, we may experience false positives (approximate approach) or
we will need to enter the refinement phase (exact approach).

Data Structures

To store the super covering and enable efficient queries over it, we use two
data structures: (i) a specialized radix tree (ACT) that indexes the cells of the
super covering, and (ii) a lookup table that maintains the (variable-length) poly-
gon references. Both data structures are designed for in-memory processing
and are optimized for lookup performance.

ACT is a specialization of a textbook radix tree that indexes 64 bit cell ids.
We call it adaptive for two reasons: (i) it indexes cells of adaptive sizes (to

�.� �������� 55

input:
a list of coverings coverings // one per polygon
a list of interior coverings interiors // one per polygon

output:
// a list of (cell, polygon references)
the super covering superCovering

procedure:
for (covering in coverings) {

for (cell in covering) {
if (superCovering already contains cell) {

add references of cell to existing cell
continue

}
if (cell conflicts with existing cell in superCovering) {

// cell is covered by existing cell or vice versa
// resolve conflict
c1 = ascendant cell // may be cell or existing cell
c2 = descendant cell // may be cell or existing cell
d = difference of c1 and c2

add references of c1 to d and c2

remove c1 from superCovering // only required if the existing cell is the ascendant
cell

add c2 and d to superCovering
continue

}
add {cell, {covering.polygonId, interior flag=false}} to superCovering

}
}
// ... same code for interior coverings (with interior flag=true)

Listing 1: Build precision preserving super covering.

56 ���������� ���������

Figure 27: A super covering of neighborhoods in NYC’s Jamaica Bay.

guarantee user-defined precision), and (ii) it can adapt to the expected point
distribution. All adaptation is performed at build time. Once ACT is built, it
is a static (immutable) data structure. We leave updates such as adding new
polygons to an existing ACT for future work. However, we would like to point
out that supporting updates is straightforward: In the build phase, cells of indi-
vidual polygons are inserted one-by-one into ACT. The same procedure could
be used to add new polygons at runtime, with appropriate synchronization
between readers and writers. Code for removing polygons would follow the
same logic, with the only difference being that we may want to (periodically)
reorganize (i.e., compact) the lookup table.

We refer to the cell ids stored in the radix tree as keys. Each key denotes the
path of a cell in the hierarchical grid. In the following, we first outline why a
radix tree, in general, is a good choice for indexing quadtree cells, and we then
explain how ACT differs from a general-purpose radix tree.

The main reasons why we choose a radix tree to index a super covering
are (i) space efficiency and (ii) support for efficient prefix lookups. Compared
to storing cell ids in a list, a radix tree avoids redundantly storing common
prefixes, which reduces memory consumption. Prefix lookups, on the other
hand, are required to find matching cells: The query point, which is a cell
id at the most fine-grained grid level, is used to search for cell ids within the
radix tree that share a common prefix (i.e., cover the query point). The runtime
complexity of these lookups is in O(k) with k being the key length, as opposed
to the O(logn) of binary search that could be used on a sorted list. In other
words, the number of node accesses in a radix tree is bounded by the maximum
key length kmax, which is 60 when 30 quadtree levels are used (which is the
case in our implementation). In practice, a lower kmax is often sufficient. For
example, kmax = 44 allows for indexing cells up to level 22, which corresponds
to a precision of less than 4 m (i.e., the distance between a point and a polygon
in a false match is at most 4 m). A further advantage of the radix tree is that
most queries can be answered using the upper levels of the tree: larger cells

�.� �������� 57

use fewer bits and are thus indexed closer to the root node. In the likely event
that a query point hits a larger cell, we can complete the tree probe sooner.

We now discuss the design choices of ACT. The fanout f of the radix tree
controls space consumption and lookup performance. A fanout of four means
that we consume two bits at every tree level. With that configuration, our
data structure matches the quadtree scheme (each node has four children, cf.
Figure 28 for an example). While this would ease the implementation, it would
require up to 30 nodes to be accessed per lookup. With a higher fanout, we
can reduce this number. To maximize lookup performance, ACT uses a default
fanout of 256 (= 8 bits). Thus, each level in ACT corresponds to four levels
in the quadtree (each quadtree level is encoded with two bits). Let g be the
cell level granularity of ACT (with f = 256, g = 4). While a fanout of 256
may result in sparsely occupied trie nodes, it allows for efficient lookups as it
reduces the height of the trie to kmax/g. With f = 256, the maximum number
of node accesses is d60/ log

2
(256)e = 8 for 30 quadtree levels.

Now we exploit a property of the hierarchical cells that we index: We extend
their cell ids (keys) such that the key length matches the granularity of ACT.
This process involves replacing a cell that we want to index with all its descen-
dant cells at the next supported granularity level, and replicating the payload
of the original cell to the smaller cells. In other words, if a cell does not match
the tree granularity, we recursively split it into smaller cells that cover the same
area. The following holds for indexed keys (cells):

level(cell) mod g = 0

Each cell c for which this equation does not hold is decomposed into a set of
smaller cells C, with |C| = 4

g-(level(c)modg). This is possible since points are
represented by cells at the most fine-grained grid level and use the maximum
key length. Therefore, for a query point, it does not make a difference whether
it matches with the originally inserted cell or with one of its descendant cells.
This insight greatly simplifies the memory layout of a tree node and saves
many CPU instructions: (i) we do not need to store the level with a cell, since
all cells indexed in a tree node will have the same level, and (ii) a lookup in
a node (an array) becomes a single offset access. Without this artificial key
extension, we would need to perform multiple accesses per node to traverse
all cell levels indexed in that node.

Figure 28 illustrates ACT indexing three polygons. While the example shows
ACT with a fanout of four, by default we actually use a fanout of 256 to reduce
the tree height. Every node thus consists of a fixed-sized array of 256 entries of
8 byte pointers. Entries that neither contain a child pointer nor a value point
to a sentinel node indicating a false hit (no hit).

Values (i.e., polygon references) can be found in any level of the tree. This
is because the indexed keys (64 bit cell ids in our case) typically use only a
small fraction of the 64 bits with the remaining bits all set to zero. Larger cells

58 ���������� ���������

that use fewer bits are indexed higher up in the tree, possibly even in the root
node. In our example, polygon a is indexed by a cell in the upper level, while
polygons b and c are indexed by cells in the lower level. Instead of storing
values in separate nodes (e.g., adjacent to the tree nodes), we use combined
pointer/value slots like in [126]. This design consumes less space and avoids
an unnecessary indirection. Here, we exploit another property of the cell ids
that we index: Cells in the super covering are disjoint, therefore a tree lookup
will return at most one result. Due to this property, we never need to store a
pointer and a value in an array entry at the same time. Using pointer tagging, we
differentiate between pointers and values. We therefore refer to both pointers
and values as tagged entries.

As stated before, each cell is associated with a set of polygon references.
Thus, each value stored in the tree has to identify such a set. The canonical
design would be to make each cell point to an entry in a lookup table that stores
the references. However, at least in the case of largely disjoint polygons, cells
mostly reference only one or two polygons. Therefore, to eliminate additional
indirections, when there are no more than two polygon references, we store
these references directly in the tree. A tagged entry can thus be:

• An 8 byte pointer to a child or the sentinel node (recall that a pointer to
the sentinel node indicates a false hit)

• An inlined polygon reference (a 31 bit value)

• Two inlined polygon references (two 31 bit values)

• An offset (a 31 bit value) into a lookup table indicating that there are at
least three polygon references

We use the two least significant bits of the 8 byte pointer to differentiate
between these four possibilities. For an inlined polygon reference, we differ-
entiate between a true hit and a candidate hit using the least significant bit of
the 31 bit value. Thus, we can effectively only store 30 bit polygon ids (i.e., can
index up to 2

30 polygons).
We have experimented with path compression, but have found that storing

common prefixes with inner and leaf nodes only barely reduces the number
of nodes. Thus, the additional cache miss to access the prefix does not pay off.
We therefore only use a common prefix at the root level.

We have also considered introducing adaptive node sizes, as proposed by
the adaptive radix tree (ART) [126]. However, experiments have shown that
introducing a second (compressed) node type with four children (Node4 in
ART) (i) saves only a negligible amount of space for our workload and (ii)
has a significant performance impact (due to the additional instructions and
branch misses for dispatching between node types [126]). Also, lookups in
compressed node types are more expensive.

�.� �������� 59

Figure 28: Adaptive Cell Trie indexing three polygons a, b, and c. Here, ACT uses two
bits per level. In practice, we use up to eight bits (a fanout of 255) to reduce
the tree height. Note that the figure only shows the cell rasterization for
the part of the map that corresponds to the radix tree.

When a cell references more than two polygons, the tree contains an offset
into a lookup table. Since cells often reference the same set of polygons, we
only store unique polygon reference lists. The reference lists are split into two
parts, a list with true hits and a list with candidate hits. Both lists contain
polygon ids. The lookup table is encoded as a single 32 bit unsigned integer
array. The offsets stored in the tree are simply offsets into that array. Each
encoded entry contains the number of true hits followed by the true hits, the
number of candidate hits, and the candidate hits.

Index Probing

An ACT lookup returns, at most, one cell mapping to a set of polygon ref-
erences. Listing 2 shows the probe algorithm. While traversing the radix tree
does not involve any key comparison, a comparison is performed to check
whether the returned tagged entry contains a payload. For that, we need to
differentiate between (i) one polygon reference, (ii) two polygon references,
and (iii) an offset. In the first case, we check whether the polygon reference
is invalid, which indicates a false hit. Otherwise, we extract the interior flag
(the least significant bit of the 31 bit payload) and the polygon id and return
the reference. In the second case, we extract and return both references. Only
in the third case, we need to access the lookup table to retrieve the polygon
references.

60 ���������� ���������

input:
root node of ACT rootNode
the cell id of the query point cellId

output:
tagged entry taggedEntry

procedure:
if (common prefix of rootNode does not match)

return invalid entry
level = 0
currNode = rootNode
bits = getBits(cellId, level++) // extract relevant bits
// traverse the tree until we either hit the sentinel node or found a value
while (taggedEntry = currNode.getEntry(bits) is a pointer) {

if (taggedEntry points to the sentinel node)
return false hit

currNode = taggedEntry
bits = getBits(cellId, level++)

}

Listing 2: Probe Adaptive Cell Trie.

�.�.� Approximate Join with Precision Bound

The complete point-polygon join algorithm is shown in Listing 3. It is es-
sentially an index nested loop join, using our novel ACT index that makes
the point-cell containment tests very efficient. For a given point, we retrieve
the cell that contains it (if such a cell exists) and go over all references of this
cell. When approximate results are sufficient, we omit the expensive refine-
ment phase, simply treat all points contained in boundary cells as (approxi-
mate) hits, and immediately output the join pairs. In doing so, we introduce
false positives. However, the distance of false positives from the polygon is
bounded by the diagonal of the largest boundary cell: Any point contained in
that cell has at most a distance of

p
2 ⇤✏ (with ✏ being the side length of the cell)

to the polygon. In order to control this distance, our approximate algorithm
exposes a precision bound as a parameter to the user. Based on this bound, we
compute the minimum cell level for boundary cells. For example, to guarantee
a 4 m precision, the largest boundary cell can at most have a diagonal of 4 m,
which corresponds to a minimum cell level of 22 in our implementation (i.e.,
cell level 21 would be too coarse-grained). We replace all boundary cells in
the super covering with their descendant cells at the required level. For each
of these descendant cells, we determine whether they intersect, are fully con-
tained in, or do not intersect polygons at all, and update ACT accordingly: We
remove the original cell co from ACT and insert only those descendant cells
that intersect or are fully contained in polygons. The new cells may reuse the

�.� �������� 61

input:
points points // lat/lng coordinates and cell ids
polygons polygons // lat/lng coordinates of vertices
root node rootNode
lookup table lookupTable

output:
list of join pairs pairs // point/polygon pairs

procedure:
for (point in points) {

taggedEntry = probeAdaptiveCellTrie(rootNode, point.cellId) // cf. Listing 2
if (taggedEntry is invalid)

continue
references = getPolygonReferences(lookupTable, taggedEntry) //
returns a list of polygon references

for (reference in references) {
polygonId = reference.polygonId
polygon = polygons[polygonId]
if (reference is true hit) {

add {point, polygon} to pairs
} else { // candidate hit

#ifdef __APPROX
// treat candidate hit as true hit
add {point, polygon} to pairs

#else
// EXACT: enter refinement phase
if (polygonCoversPoint(polygon, point)) // PIP test

add {point, polygon} to pairs
#endif

} } }

Listing 3: The join algorithm.

lookup table entry of co or create their own in the event that they only map to
a subset of co’s polygons.

Note that [215] makes use of a similar distance-based precision bound, how-
ever, uses a single-resolution grid. When it is not possible to maintain a suf-
ficiently fine-grained index within a certain memory budget, the user can fall
back on our accurate approach, in which we train the index with historical data
points.

�.�.� Accurate Join

When applications require accurate results, or when we cannot build an
index that satisfies a user-defined precision without exceeding a memory bud-
get, we use an approach that may enter the expensive refinement phase (cf.

62 ���������� ���������

Listing 2). To minimize the number of (expensive) PIP tests, we increase the
precision of the index by adapting it to the expected point distribution. Since
we make use of true hit filtering, a finer-grained index allows us to identify
more join partners during the filter phase.

Index Training

To minimize the likelihood of PIP tests, we train the index to adapt to the
expected distribution of query points. We train ACT with historical data points
(e.g., from a previous year) which has the effect that popular areas that expect
more hits are approximated using a more fine-grained grid than less popular
areas. This training process replaces expensive cells with up to four of their
child cells. We define expensive cells as cells that map to polygon reference
sets with at least one candidate hit. When we hit such a cell during the join,
we need to perform expensive PIP tests.

Specifically, the training works as follows: When a training point hits an
expensive cell, for each of its four child cells we check whether they intersect,
are fully contained in, or do not intersect the referenced polygons at all, and
update ACT accordingly. The cell replacement procedure is the same as for
the approximate algorithm (i.e., remove original cell, insert descendant cells,
and update lookup table, cf. Section 3.3.2) with the only difference being that
we always replace an expensive cell with its direct children one level below.
We do not replace a cell with even smaller cells to be more robust against
outliers. In practice, we would stop refining the index once a user-defined
memory budget is exhausted. In this work, we focus on training the index
in a dedicated training phase. Training the index at runtime would introduce
additional concurrency and buffer management issues that we leave for future
work. We show the effect of training the index in Section 3.4.5.

�.�.� Implementation Details

Join Predicate

Our current implementation follows the semantics of the ST_Covers join
predicate (cf. PostGIS [170]). ST_Covers evaluates whether one geospatial ob-
ject (e.g., a polygon) covers another (e.g., a point).

Individual Polygon Coverings

We compute the individual polygon coverings using the S2 library. Note
that our approach does not depend on S2 and, in fact, works with any other
quadtree-based hierarchical grid in which each (implicit) quadtree node [71]
corresponds to a geographical area (space partitioning). For our approach to
work, each quadtree node needs to be uniquely identifiable with a bit sequence

�.� ������������ ���������� 63

that represents the path to the given node starting from the root. Thereby,
any (consistent) enumeration scheme (e.g., the Hilbert space-filling curve used
by S2 or the Z curve used by Roth [177]) of the four quadrants is valid. To
store these encoded node identifiers in a trie, we require the identifiers of child
nodes to share a common prefix with their parent node.

Face Nodes

Since our implementation uses S2, which projects points on Earth onto a
surrounding cube, we need to maintain up to six radix trees (one for each face).
Using the first three bits of the query cell id, we select the appropriate radix
tree.

Index Probing

The probe (filter) phase is the performance-critical part of our approach. We
therefore parallelize this phase to accelerate lookups in the radix tree. Indi-
vidual processing threads fetch batches of 16 tuples at a time and synchronize
using an atomic counter.

PIP Test

In the refinement phase, we use S2’s PIP test, which implements the ray
tracing algorithm (cf. [163] for performance numbers).

�.� ������������ ����������
In this section, we present a thorough experimental analysis of our point-

polygon join algorithms. We use taxi data from NYC, which we join with dif-
ferent polygonal regions of NYC, such as neighborhoods. We also experiment
with geo-tagged Twitter data from different cities. Besides these (skewed) real-
world point datasets, we experiment with (uniform) synthetic point data. We
focus our experiments on the probe phase of the join (probing points against a
pre-built polygon index). For completeness, we also report build times.

Our evaluation is structured into three parts: First, we evaluate the perfor-
mance and space consumption of our approximate algorithm with different
data structures, including ACT, a B-tree, and a sorted vector. We demonstrate
that for a city like NYC (with its 289 neighborhoods), an approximate index
with very high precision (<4 m precision bound) easily fits into the main mem-
ory of a single machine and, in the case of ACT, allows for very high probe
performance (>50 M points/s per CPU core). We think that this is a good fit
with the city-centric model of mobility companies (e.g., Uber, DriveNow [56]).

64 ���������� ���������

Table 6: Metrics of the NYC polygon datasets.

no. of polygons avg. no. of vertices

boroughs 5 662
neighborhoods 289 29.6
census 39184 12.5

We show that ACT outperforms other physical representations by a large mar-
gin, while being more space-efficient in many cases. Second, we evaluate our
accurate algorithm and show that it benefits greatly from true hit filtering. We
compare it against other filter and refine approaches, including an R-tree on
the polygons’ MBRs, a geospatial index by Google, and PostgreSQL (PostGIS).
We demonstrate that the high precision of our index can be further improved
by training it with historical data points. Third, we show that both our algo-
rithms are competitive with state-of-the-art GPU approaches.

�.�.� Infrastructure

We use a server-class machine that is equipped with two 14-core Intel Xeon
E5-2680 v4 CPUs and 256 GiB DDR4 RAM. All CPU-based approaches are im-
plemented in C++ and compiled with GCC version 5.4.0 with O3 and march=co-
re-avx2 flags. We conduct the experiments on a single socket to eliminate
NUMA effects. For the comparison against the GPU join algorithms, we use
these Amazon Web Services (AWS) instances [15]:

�� .������� 16 vCPUs, USD 0.68/hour

��� .������ NVIDIA Tesla M60 GPU, USD 0.75/hour

�.�.� Datasets and Queries

We use 1.23 B points (pick-up locations) from the NYC yellow taxi dataset
(years 2009 to 2016), which is publicly available in CSV format [196]. For each
point, we load its lat/lng coordinate and convert it to an S2Point [179] (which
represents a point on the unit sphere as a 3D vector of doubles) and to an
S2CellId (an 8 byte value, cf. Section 3.2) prior to performing any experi-
ments. We maintain one std::vector of S2Points and another one storing
the corresponding cell ids. We join these points against NYC’s boroughs (5
polygons) [27], neighborhoods (289 polygons) [150], and census blocks (39,184
polygons) [33]. All three polygon datasets cover approximately the same area.
While there are only five boroughs, their polygons are significantly more com-
plex. Table 6 summarizes the metrics of the polygon datasets.

�.� ������������ ���������� 65

In addition, we use geo-tagged tweets collected from Twitter’s live public
feed over a period of five years. From these, originally over 2.29 B tweets spread
across the entire US, we extract four point datasets based on the MBRs of NYC,
Boston (BOS), Los Angeles (LA), and San Francisco (SF), consisting of 83.1 M,
13.6 M, 60.6 M, and 9.57 M points, respectively. We join these points against the
corresponding neighborhood polygons: NYC (289), BOS (42), LA (160), and SF
(117). Since we extract the points using the MBR of the entire polygon dataset
and not the individual neighborhood polygons, there are points that do not
join with any polygon.

We also generate synthetic point datasets, uniformly distributed within the
MBR of the respective polygon dataset.

We focus our experimental evaluation on the probe phase and simply count
the number of points per polygon instead of materializing the join result. To
avoid any contention in the multi-threaded experiments, we maintain thread-
local counters that we aggregate in the last step. Since we are focusing on
the case of static polygons, the reported throughput times reflect the time to
compute the counts using an existing (pre-built) polygon index. We report the
time it takes to build the polygon index separately. However, we would like to
point out that we did not optimize the build phase.

�.�.� Polygon Approximations

Our default configuration for computing the individual polygon coverings
is as follows: max covering cells = 128, max covering level = 30, max interior
cells = 256, and max interior level = 20.

�.�.� Approximate Join

We first analyze the performance and space consumption of our approximate
algorithm. In all of the following experiments, we first build super coverings
(sets of cell/value pairs, cf. Section 3.3) and then index them with different
data structures.

Super Covering Construction

Table 7 shows different metrics of the super coverings for the three polygon
datasets with 60 m, 15 m, and 4 m precision. With each cell occupying 64 bits,
the largest super covering (census 4 m, 39.8 M cells) amounts to 304 MiB of
raw key data and another 304 MiB for the values (64 bit tagged entries, cf.
Section 3.3). Given that most cells reference fewer than three polygons, most
polygon references are inlined, which keeps the lookup table small. While
the computation of the individual coverings is parallelized over the number of
polygons, the construction of the super covering is performed serially.

66 ���������� ���������

Table
7:M

etrics
ofthree

super
coverings

w
ith

various
precisions.

precision
[m

]
60

15
4

60
15

4
60

15
4

#
cells

[M
]

0.09
1.32

20.9
0.16

0.98
14.0

8.50
8.97

39.8
lookup

table
[M

iB]
0.00

0.00
0.00

0.01
0.01

0.01
1.33

1.33
1.41

build
individ.coverings

[s]
0.11

0.98
16.0

0.07
0.19

1.54
0.96

1.01
3.08

build
super

covering
[s]

0.10
0.94

15.2
0.17

0.81
10.5

11.6
11.8

37.7

Table
8:M

etrics
ofthe

differentdata
structures

(4
m

precision).

super
cov.

boroughs
(20.9

M
cells)

neighborhoods
(14.0

M
cells)

census
(39.8

M
cells)

index
A

C
T1

A
C

T2
A

C
T4

G
BT

LB
A

C
T1

A
C

T2
A

C
T4

G
BT

LB
A

C
T1

A
C

T2
A

C
T4

G
BT

LB

size
[M

iB]
328

198
173

359
319

224
138

143
240

214
624

421
1234

684
608

build
[s]

2.11
1.46

1.06
1.39

-
1.36

0.98
0.69

0.85
-

4.00
3.11

2.80
2.85

-

�.� ������������ ���������� 67

Data Structures

We essentially need to map cell ids (64 bit integers) to tagged entries (64
bit values). A tagged entry either contains up to two polygon references or
an offset into a lookup table. The lookup table is the same among all data
structures that we evaluate. The data structure needs to support prefix lookups:
given a 64 bit lookup key (the cell id of a query point), find the cell in the
super covering (recall that it only contains non-overlapping cells) that shares a
common prefix with the lookup key (if such a cell exists). We analyze ACT with
three different fanouts: 2, 4, and 8 bits per radix level, which corresponds to 1,
2, and 4 quadtree levels, respectively. Recall that one quadtree level is encoded
with two bits. We therefore refer to these three variants as ACT1, ACT2, and
ACT4. As competitors we use a B-tree implementation by Google [44] (GBT)
and a binary search on a sorted vector implemented with std::lower_bound
(LB). For GBT, we use a (target) node size of 256 bytes, which turned out to be
the most query-efficient configuration. The vector stores pairs of cell ids and
tagged entries. We have also experimented with the STX B+-tree [189] but do
not include it in this section as its lookup performance is very similar to that
of GBT.

The performance of our approximate algorithm is dominated by the costs of
the ACT node accesses and the aggregation (count). To better understand the
results, we therefore first analyze the space consumption of ACT and compare
it with GBT and the sorted vector. Table 8 shows size and build time (single
threaded) of the different data structures on the super coverings introduced
above (4 m precision only). In many cases, ACT consumes less space than
the sorted vector (LB). Due to the high density of the cell ids, ACT is more
space-efficient with higher fanouts, except for census where ACT4 consumes
the most space: Like for all datasets, ACT4 has fewer (but larger) nodes than
ACT1 and ACT2. However, in this case, its nodes are very sparsely populated
compared to those of ACT1 and ACT2. The reason is that ACT4’s nodes cover
too much space for the relatively small census cells. All 4 m indexes exceed the
35 MiB L3 cache of our evaluation machine. Note that there is no additional
build time for LB, since the super covering contains cell id/tagged entry pairs
already sorted by cell id.

Single-Threaded Throughput

For this experiment, we compute a super covering with a 4 m precision
bound on the three NYC polygon datasets and store it in the different data
structures introduced above. We then join the full taxi dataset (all 1.23 B points)
against each of these indexes and report the throughput in M points/s (cf. Fig-
ure 29).

ACT clearly dominates the B-tree and the binary search on the sorted vector,
especially in its highest fanout configuration (ACT4). A higher fanout means

68 ���������� ���������

0

50

100

boroughs neighborhoods census

th
ro

ug
hp

ut
 in

 M
 p

oi
nt

s/
s

ACT1 ACT2 ACT4 GBT LB

Figure 29: Single-threaded throughput of our approximate algorithm with different
data structures (4 m precision).

Table 9: Speedups of lookups in smaller (more coarse-grained) over larger (more fine-
grained) polygon datasets for different data structures (b = boroughs, n =
neighborhoods, c = census).

b over n b over c n over c

ACT1 2.63⇥ 8.63⇥ 3.28⇥
ACT2 2.00⇥ 5.33⇥ 2.66⇥
ACT4 2.36⇥ 7.29⇥ 3.08⇥
GBT 2.05⇥ 3.51⇥ 1.71⇥
LB 1.83⇥ 2.63⇥ 1.44⇥

that we consume more bits of the lookup key per tree level and thus require
fewer node accesses (i.e., need to traverse fewer levels) to find a key (an indexed
cell). With ACT4 for example, we consume 8 bits per tree level and thus need
at most 64/8 = 8 node accesses. Since we reduce the tree height further by
storing a common prefix at the root level (cf. Section 3.3), ACT requires even
fewer node accesses (e.g., at most five with 4 m precision).

Another insight is that ACT benefits the most from the larger (coarser-grain-
ed) cells in the smaller polygon datasets as shown in Table 9. Going from the
most fine-grained census dataset (39,184 polygons) to the most coarse-grained
boroughs dataset (5 polygons), GBT’s lookup performance improves by 3.51⇥,
while ACT1’s increases by 8.63⇥. The reason for ACT’s large gain is that larger
cells are indexed higher up in the radix tree and are thus found sooner. GBT,
in contrast, does not benefit from these larger cells, which might as well be
stored in the leaf nodes of the B-tree. GBT’s performance gain comes from the
smaller number of cells used for indexing the boroughs dataset and the result-

�.� ������������ ���������� 69

ing smaller B-tree (i.e., fewer branch and cache misses per point). Likewise, the
binary search on the sorted vector (LB) is only affected by the number of cells
and not their granularity.

Different Precisions

Next, we vary the precision of the indexed super covering. We perform this
experiment using the medium size neighborhoods dataset. Figure 30 shows
the throughput numbers for the different data structures. While GBT’s and
LB’s performance decreases by 33.4% and 39.4%, respectively from 60 m to
4 m, ACT4’s performance is hardly affected (-5.73%) by the larger number of
cells of the more precise super covering. Compared to the 60 m covering, the
more precise coverings contain a larger number of small cells (in the boundary
areas of the polygons). Query points are unlikely to hit these cells in contrast to
the large (more coarse-grained) cells, which are indexed in the upper (cached)
ACT nodes (due to their shorter cell ids). ACT1 and ACT2 are more affected by
the precision increase (-27.8% and -17.9%, respectively). The reason is that the
added small cells have a stronger effect on the depths of these trees. While the
average node depth for ACT4 only increases from 2.83 to 2.97 (+4.95%) from
60 m to 4 m respectively, the same metric increases from 10.8 to 14.6 (+35.2%)
for ACT1. Although—as already stated above—the new small cells are unlikely
to be hit, they still cause a performance hit for lower fanouts.

ACT4’s throughput is similar for 15 m and 4 m (-4.15%) because its structure
is identical for both precisions. In both cases, it has 70,786 nodes occupying
143 MiB. The only difference is the nodes’ structure: Due to the more fine-
grained cell approximation, the average node occupancy (measured in terms
of occupied slots) of ACT4 at tree level 3 decreases from 88.2% (60 m) to 85.2%
(4 m). The occupancies of all other levels are the same. This lower occupancy
for 4 m saves some aggregations (for updating the polygon hit counts), causing
a slightly higher performance.

In summary, the impact of precision on query performance is less significant
for ACT than for the other data structures.

Multi-Threaded Throughput

In this experiment, we study the lookup performance of the different data
structures with an increasing number of threads on the neighborhoods dataset
with a 4 m precision bound. We use up to 28 threads, which matches the
number of hyperthreads of a single NUMA node of our evaluation machine.
Figure 31 shows the speedups over single-threaded execution. Up to 8 threads,
all index structures scale almost linearly (speedup of around 7⇥ in all cases).
This is what we would expect for immutable data structures.

70 ���������� ���������

0

50

100

ACT1 ACT2 ACT4 GBT LB

th
ro

ug
hp

ut
 in

 M
 p

oi
nt

s/
s

60m 15m 4m

Figure 30: Single-threaded throughput of our approximate algorithm with different
precisions and data structures (neighborhood polygons).

Table 10: Distribution of the tree traversal depth (ACT4 with 4 m precision).

points boroughs neighborhoods census

uniform 0 1 2 3 4
0

1

tree level
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level

taxi 0 1 2 3 4
0

1

tree level
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level

The fact that an oversubscription of cores (hyperthreading) has a positive
performance impact suggests that the lookup is bound by memory access la-
tencies (having more threads than physical cores can hide these latencies).

Synthetic Points

To show the general applicability of our approach, we also experiment with
synthetic point data. We generate 100 M points uniformly distributed within
the MBR of the respective (NYC) polygon dataset. Table 10 shows the probabil-
ity distribution of the number of search steps during the tree traversal for the
synthetic and the taxi point dataset. As expected, the distribution for the uni-
form data is skewed towards the root. That is because the larger cells (which
are more likely to be hit) are indexed closer to the root. The distribution for
the taxi data depends on the polygon dataset. For boroughs, most traversals

�.� ������������ ���������� 71

●
●

●

●

●

●

5

10

15

20

1 2 4 8 16 28

sp
ee
du
p

● ACT1 ACT2 ACT4 GBT LB

Figure 31: Multi-threaded throughput of our approximate algorithm with different
data structures (neighborhood polygons, 4 m precision).

Table 11: Performance counters per point (neighborhoods, 4 m precision).

points uniform taxi
index ACT1 ACT2 ACT4 GBT LB ACT1 ACT2 ACT4 GBT LB

cycles 154 99.8 71.3 415 569 172 93.8 56.4 416 817
instruct. 214 121 82.4 486 927 202 121 81.3 393 564
br. miss. 1.06 1.04 0.88 5.32 8.38 0.96 0.83 0.48 7.06 10.8
LLC miss. 0.29 0.23 0.18 0.70 1.89 0.22 0.17 0.15 0.29 0.37

end at tree level 1, while for census, points mostly hit small cells indexed in
tree level 3.

Figure 32 shows the single-threaded throughput for the different data struc-
tures with the uniform point data. ACT achieves the highest throughput, with
ACT4 again being the most query-efficient configuration. The absolute num-
bers, however, are lower than for the (real-world) taxi data: ACT4’s throughput
decreases by 65.2%, 26.8%, and 3.11% for boroughs, neighborhoods, and cen-
sus, respectively.

The reason for this slowdown is simple: The synthetic point data is uni-
formly distributed, which leads to more branch and cache misses (cf. Table 11
for performance counters on neighborhoods). In contrast, the real-world taxi
data is highly clustered with the majority of points located in Manhattan
(>90%) and around the airports. For boroughs (not shown in Table 11), ACT4
endures 0.79 and 0.01 branch misses per point for the synthetic and the taxi
points, respectively. This is the main cause of the 65.2% performance drop
mentioned above.

72 ���������� ���������

0

50

100

boroughs neighborhoods census

th
ro

ug
hp

ut
 in

 M
 p

oi
nt

s/
s

ACT1 ACT2 ACT4 GBT LB

Figure 32: Single-threaded throughput of our approximate algorithm (4 m precision)
with uniform point data.

Twitter Data

Next, we analyze the performance of our approach on the four Twitter
datasets and the corresponding neighborhood polygons (cf. Figure 33). The
numbers are similar across the different cities, with the highest throughput
achieved for BOS with its only 42 neighborhood polygons. Next comes SF
followed by LA and NYC, for which the throughput is very close to what we
obtained with the taxi data (cf. Figure 29. In fact, with a 4 m precision, ACT4
achieves a single-threaded throughput of 52.1 M points/s, which is almost the
same as the 53.6 M points/s on the taxi data. Similarly to the taxi points, the
tweets are clustered, with certain areas having more tweeting activity than oth-
ers. In contrast, with uniform point data, ACT4 only achieved 39.3 M points/s.
This confirms that our approach benefits from the skewed distribution of real-
world data. For all four cities, the numbers are (again) hardly affected by the
precision.

�.�.� Accurate Join

We now evaluate our accurate algorithm, which eliminates false positives
in an additional refinement phase. We demonstrate that our index benefits
significantly from true hit filtering and that index training with historical data
can further improve its effect.

�.� ������������ ���������� 73

NYC (289) SF (117)

BOS (42) LA (160)

60 15 4 60 15 4

0

20

40

60

0

20

40

60

th
ro

ug
hp

ut
 in

 M
 p

oi
nt

s/
s

ACT1 ACT2 ACT4 GBT LB

Figure 33: Single-threaded throughput of our approximate algorithm (Twitter
datasets, polygon counts in brackets).

Competitors

We compare against the boost R-tree (1.6.0) [26] on the polygons’ MBRs (RT),
Google’s S2ShapeIndex [180] (SI), and PostgreSQL 9.6.1 (PostGIS 2.3.1) [170]
with a GiST index on polygons (PG). Our algorithm and the R-tree both use
the same PIP test implementation (cf. Section 3.3.4). SI also uses that implemen-
tation, however, restricts the test to a subset of edges of the polygon in question.
This is achieved by using a hierarchical grid approximation of polygons, and
internally mapping grid cells (64 bit S2CellIds) to polygon edges using a B-tree.
This hierarchical grid approximation is much more coarse-grained than our su-
per covering, given its higher focus on build time than on query performance
(compared to our approach). SI allows the maximum number of edges per cell
to be configured, essentially controlling the granularity of the employed grid
approximation. We evaluate SI with its default configuration of 10 edges (SI10)
and 1 edge per cell (SI1). Note that SI1 is the most fine-grained configuration
possible. SI also employs true hit filtering (cf. Section 3.3) to avoid PIP tests,
but in a much less effective way than ours (due to its coarser-grained grid).
Furthermore, SI does not offer an approximate version. For the R-tree, we use
the splitting strategy rstar with at most 8 elements per node which performs
best in all workloads.

74 ���������� ���������

0

50

100

boroughs neighborhoods census

th
ro

ug
hp

ut
 in

 M
 p

oi
nt

s/
s

ACT1
ACT2

ACT4
SI1

SI10
RT

Figure 34: Single-threaded throughput of our accurate algorithm (with different ACT
fanouts) compared to S2ShapeIndex (with 1 and 10 edges per cell) and the
R-tree.

Taxi Data

For this experiment, we compute coarse-grained super coverings that do not
guarantee a certain precision, and instead fall back on a refinement phase for
candidate hits. Here, the resolution of a super covering is determined by our
default configuration for computing individual polygon coverings introduced
earlier (cf. Section 3.4). Thus, these super coverings consist of much fewer cells
than those guaranteeing a certain precision. For example, the approximation
for the neighborhoods dataset now only consists of 98,687 cells (ACT4 size:
25.9 MiB) compared to the 13.2 M cells (ACT4 size: 143 MiB) needed to guar-
antee a 4 m precision. For this dataset, SI1, SI10, and RT consume 1.20 MiB,
0.23 MiB, and 27.9 KiB, respectively.

Figure 34 shows the single-threaded throughputs for the accurate join. ACT4
achieves the highest performance for all three datasets. For the medium size
neighborhoods dataset, it outperforms SI1 by 6.96⇥, followed by SI10, which
is only 7.41% slower than SI1. For census, ACT4 still outperforms SI1 by 5.79⇥.
RT has the lowest numbers with 0.21, 1.77, and 0.79 M points/s for boroughs,
neighborhoods, and census, respectively. The reason for its slow performance
for boroughs is as follows: The complexity of each PIP test (ray-tracing al-
gorithm) is linear with the size (number of edges) of the polygon. Since the
boroughs are complex polygons with many edges, the PIP tests in the refine-
ment phase are very expensive. Here, our algorithm shines since it can identify
most join partners in the filter phase and only enters the refinement phase for
0.1% of the points. As a point of reference, PG achieves 0.39, 1.09, and 0.69 M
points/s for boroughs, neighborhoods, and census, respectively (because we

�.� ������������ ���������� 75

Table 12: Speedups of single-threaded lookups when training ACT4 with an increas-
ing number of historical data points (over untrained ACT4).

no. of train. points boroughs neighborhoods census

100 K 1.25⇥ 1.56⇥ 1.16⇥
500 K 1.40⇥ 2.00⇥ 1.40⇥
1 M 1.44⇥ 2.18⇥ 1.53⇥

Table 13: Effect of training the index with 1 M historical data points (STH = solely true
hits).

metric boroughs neighborhoods census

STH (%) 99.9 ! 99.9 87.2 ! 97.7 72.2 ! 88.7

use all hyperthreads on our evaluation machine, PG’s numbers are not directly
comparable and are excluded from the plot). Similar to RT, PG is affected by
the complex boroughs polygons.

Index Training

As readers may have noticed, there is a large performance gap between our
approximate and our accurate algorithm. For example, ACT4 (accurate) is
75.3% slower than its approximate counterpart (with 4 m precision) on the taxi
data/neighborhoods join. The reason is the expensive PIP tests needed to
compute an accurate result.

We now show how to narrow this performance gap. The idea is to reduce
the likelihood for PIP tests by training the index with historical data points (cf.
Section 3.3.3). In other words, we increase the precision of the index by making
it more fine-grained in areas where we expect more points. One effect this has
is that the size of the area covered by (expensive) boundary cells will decrease.
We train the index with taxi points sampled from the year of 2009 and only
use the points from 2010 to 2016 for the join. Table 12 shows the performance
impact. With 100 K training points, ACT4’s performance improves by 1.56⇥ for
neighborhoods and increases further to 2.18⇥ with 1 M points (due to a 84.0%
reduction in the number of PIP tests). The size of ACT4 only increases from
25.9 MiB (untrained) to 28.0, 34.8, and 44.3 MiB when trained with 100 K, 500 K,
and 1 M historical data points, respectively. In absolute terms, ACT4 trained
with 1 M points achieves a throughput of 29.1 M points/s for neighborhoods
and thus narrows the performance gap to its approximate counterpart (with
4 m precision) from 75.3% to 45.7% while consuming 68.9% less space. This
shows that a trained accurate index is a good alternative to our approximate
indexes when main memory is sparse. Table 13 shows the effect of true hit
filtering when training the index with 1 M training points. The metric solely

76 ���������� ���������

boroughs neighborhoods census

15 4 exact 15 4 exact 15 4 exact
0

500

1000

1500

th
ro

ug
hp

ut
 in

 M
 p

oi
nt

s/
s

ACT4 GPU

Figure 35: Throughput of ACT4 (16 threads) compared to the two GPU algorithms on
AWS (GPU = Bounded Raster Join for 15 m and 4 m and Accurate Raster
Join for exact).

true hits (STH) indicates the percentage of points that skipped the expensive
refinement phase, which is clearly above 70% in all cases (even without train-
ing). Training the index significantly improves STH for neighborhoods and
census.

�.�.� Comparison with GPU Algorithms

Finally, we compare our approximate and accurate (untrained ACT) algo-
rithms against state-of-the-art GPU counterparts [215]. The GPU approaches
leverage the graphics rendering pipeline, and in particular the rasterization
operation, which converts a polygon into a collection of (equi-sized) pixels.
Similar to our approach, the GPU join also comes in two variants: Bounded
Raster Join (BRJ), which guarantees a user-defined precision by appropriately
scaling the rendering resolution, and Accurate Raster Join (ARJ), which per-
forms PIP tests for points falling on the pixels forming the boundaries of the
polygons. To enable a fair comparison, we do not consider any preprocessing
times on the polygons (such as triangulation time). Note that the preprocess-
ing time for the GPU join is minimal. In fact, it is designed for computing the
join on-the-fly without a priori knowledge of the polygonal regions.

We now compare the throughput of both approaches on two similarly priced
AWS machines (cf. Infrastructure in Section 3.4). Figure 35 shows the results
of joining 612 M taxi rides with the NYC polygon datasets. While our approx-
imate algorithm is again hardly affected by the precision (15 m vs. 4 m), BRJ
takes a significant performance drop. The reason for BRJ’s slowdown is simple:
Once the required resolution is higher than what is natively supported by the

�.� ������� ���� 77

GPU, it needs to split the scene and perform more rendering passes. This is
essentially related to the fact that BRJ relies on a uniform grid. On the con-
trary, BRJ is barely affected by the polygon datasets, while our approximate
algorithm is. The reason is again related to the granularity of the grid: With
the more fine-grained census dataset, we need to traverse more tree nodes (as
the cells that approximate the polygons are smaller), while the rendering res-
olution in BRJ depends only on the size of the bounding box of the polygon
dataset and the precision. With exact results, our approach outperforms ARJ
for boroughs, while ARJ takes the crown for neighborhoods and census.

�.� ������� ����

�.�.� Spatial Join Techniques

The point-polygon join is one of the core operations in spatial databases,
and, a large body of related work on algorithmic techniques [87] is available
accordingly.

Naturally, we are not the first to index polygons using raster approximations.
Early on, Orenstein [159] proposed decomposing single polygons into multiple
cells. Later, Brinkhoff et al. [31] proposed true hit filtering in the form of
maximum enclosed rectangles and circles, allowing the refinement phase to be
skipped in many cases. Zimbrao et al. [225] followed up on this approach by
using raster approximations in the form of uniform grids, thereby improving
selectivity. Kothuri et al. [93] recursively divide the MBR of a polygon into
four cells until a certain granularity is reached, identify interior cells, and index
them in an R-tree to skip refinement checks. The primary goal was to minimize
I/O, an important performance factor for disk-based systems. In contrast to
these early works on true hit filtering and also to the recent proposal by Tzirita
Zacharatou et al. [215], we use a quadtree-based (multi-resolution) grid that
can be very coarse-grained in interior and very fine-grained in boundary areas.

Research has, however, also been performed on true hit filtering with quad-
tree-based rasterizations, including work in Oracle Spatial [94] and Microsoft
SQL Server [61]. In both of these works, individual polygons are approximated
using a set of multi-resolution grid cells. These grid cells are enumerated
using one-dimensional cell identifiers and stored in a B-tree. In contrast, we
holistically approximate and index an entire set of polygons and store these
(in our case duplicate-free) cell identifiers in a novel radix tree (ACT), which
is more query-efficient than a B-tree. Additionally, these existing approaches
neither offer an approximate mode nor allow the accurate index to be trained
with historical data points to improve query performance.

To decrease the probability of false matches, [184] improves the precision of
MBRs by clipping away empty space that is concentrated around the MBR cor-

78 ���������� ���������

ners. In contrast to our work, [184] uses the classical filter and refine evaluation
strategy.

Related to our approximate algorithm is work by Azevedo et al. [17] that
provides precision estimates for approximate polygon-polygon joins using a
less space-efficient single-resolution grid. Tzirita Zacharatou et al. [215] pro-
pose a similar precision bound to ours but also use a single-resolution grid (cf.
Section 3.4.6 for a comparison).

The PH-tree [221] is another example of a trie data structure that indexes
multi-dimensional data. In contrast to ACT, it only indexes points, not higher-
level grid cells.

�.�.� Systems

Several database systems support geospatial joins. PostGIS [170], a geospa-
tial extension to PostgreSQL [171], uses an R-tree implemented on top of
GiST [82] for indexing geospatial objects. In recent years, various spatial data
management systems based on Hadoop [4, 59] and Spark [213, 210, 194] have
emerged. In contrast to our work, most of these systems rely on offline parti-
tioning of the data points.

�.�.� Modern Hardware

Most work on using modern hardware for geospatial joins focuses on GPU
offloading [224, 212, 1, 215, 55] while [39] proposes a GPU-accelerated end-to-
end spatial system.

In [118, 120], we describe a novel approach to reduce control flow divergence
on AVX-512 platforms to further increase ACT’s lookup performance.

�.� �����������
We have presented two point-polygon join algorithms that use a multi-resolu-

tion grid indexed in a query-efficient radix tree. We have transformed a tradi-
tionally compute-intensive problem into a memory-intensive one. We have
shown that it is possible to refine the index up to a user-defined precision
and identify all join partners in the filter phase. We have demonstrated that
the accurate version of our algorithm can adapt to the expected point distribu-
tion. We have also shown that our approach outperforms existing CPU-based
joins by up to two orders of magnitude and can compete with dedicated GPU
implementations.

4 L E A R N E D C A R D I N A L I T I E S

Excerpts of this chapter have been published in [100, 106, 99].

�.� ������������
Query optimization is fundamentally based on cardinality estimation. To be

able to choose between different plan alternatives, the query optimizer must
have reasonably good estimates for intermediate result sizes. It is well known,
however, that the estimates produced by all widely-used database systems are
routinely wrong by orders of magnitude—causing slow queries and unpre-
dictable performance. The biggest challenge in cardinality estimation are join-
crossing correlations [124, 128]. For example, in the Internet Movie Database
(IMDb), French actors are more likely to participate in romantic movies than
actors of other nationalities.

The question of how to better deal with this is an open area of research. One
state-of-the-art proposal in this area is Index-Based Join Sampling (IBJS) [127]
that addresses this problem by probing qualifying base table samples against
existing index structures. However, like other sampling-based techniques, IBJS
fails when there are no qualifying samples to start with (i.e., under selective
base table predicates) or when no suitable indexes are available. In such cases,
these techniques usually fall back to an “educated” guess—causing large esti-
mation errors.

The past decade has seen the widespread adoption of machine learning (ML),
and specifically neural networks (deep learning), in many different applica-
tions and systems. The database community also has started to explore how
machine learning can be leveraged within data management systems. Recent
research therefore investigates ML for classical database problems like param-
eter tuning [6], query optimization [140, 161, 112], and even indexing [110].

We argue that machine learning is a highly promising technique for solving
the cardinality estimation problem. Estimation can be formulated as a super-
vised learning problem, with the input being query features and the output
being the estimated cardinality. In contrast to other problems where machine
learning has been proposed like index structures [110] and join ordering [140],
the current techniques based on basic per-table statistics are not very good.
In other words, an estimator based on machine learning does not have to be
perfect, it just needs to be better than the current, inaccurate baseline. Fur-

79

80 ������� �������������

thermore, the estimates produced by a machine learning model can directly be
leveraged by existing, sophisticated enumeration algorithms and cost models
without requiring any other changes to the database system.

In this work, we propose a deep learning-based approach that learns to pre-
dict (join-crossing) correlations in the data and addresses the aforementioned
weak spot of sampling-based techniques. Our approach is based on a spe-
cialized deep learning model called multi-set convolutional network (MSCN)
allowing us to express query features using sets (e.g., both (A on B) on C and
A on (B on C) are represented as {A,B,C}). Thus, our model does not waste any
capacity for memorizing different permutations (all having the same cardinal-
ity but different costs) of a query’s features, which results in smaller models
and better predictions. The join enumeration and cost model are purposely left
to the query optimizer. We evaluate our approach using the real-world IMDb
dataset [124] and show that our technique is more robust than sampling-based
techniques and even is competitive in the sweet spot of these techniques (i.e.,
when there are many qualifying samples). This is achieved using a (config-
urable) low footprint size of about 3 MiB (whereas the sampling-based tech-
niques have access to indexes covering the entire database). These results
are highly promising and indicate that ML might indeed be the right ham-
mer for the decades-old cardinality estimation job. Our code and the work-
loads used for evaluation are released on GitHub [122]. Further, we discuss
another application of our model, which is predicting the number of unique
values in a (combination of) columns (cf. Section 4.4). We experimentally show
the poor performance of state-of-the-art approaches for estimating group-by
queries, adapt our learning-based approach to this problem, and show that it
provides higher accuracy. Finally, we describe a prototype that demonstrates
the end-to-end training and cardinality estimation process and thereby sketch
a possible integration into the query optimizer (cf. Section 4.5).

The remainder of this chapter is structured as follows: Section 4.2 describes
our approach and Section 4.3 presents the evaluation with real-world data.
Section 4.4 outlines how our approach can be applied to group-by queries.
Section 4.5 demonstrates the end-to-end training and estimation process. Sec-
tion 4.6 discusses the limitations of our approach and possible ways forward.
Section 4.7 describes related work and is followed by conclusions in Section 4.8.

�.� ��������
From a high-level perspective, applying machine learning to the cardinality

estimation problem is straightforward: after training a supervised learning
algorithm with query/output cardinality pairs, the model can be used as an
estimator for other, unseen queries. There are, however, a number of challenges

�.� �������� 81

that determine whether the application of machine learning will be successful:
the most important question is how to represent queries (“featurization”) and
which supervised learning algorithm should be used. Another issue is how to
obtain the initial training dataset (“cold start problem”). In the remainder of
this section, we first address these questions before discussing a key idea of
our approach, which is to featurize information about materialized samples.

�.�.� Set-Based Query Representation

We represent a query q 2 Q as a collection (Tq, Jq,Pq) of a set of tables
Tq ⇢ T , a set of joins Jq ⇢ J and a set of predicates Pq ⇢ P participating in the
specific query q. T , J, and P describe the sets of all available tables, joins, and
predicates, respectively.

Each table t 2 T is represented by a unique one-hot vector vt (a binary vector
of length |T | with a single non-zero entry, uniquely identifying a specific table)
and optionally the number of qualifying base table samples or a bitmap indi-
cating their positions (sample bitmap). Similarly, we featurize joins j 2 J with
a unique one-hot encoding. For predicates of the form (col,op, val), we fea-
turize columns col and operators op using a categorical representation with
respective unique one-hot vectors, and represent val as a normalized value
2 [0, 1], normalized using the minimum and maximum values of the respec-
tive column.

Applied to the query representation (Tq, Jq,Pq), our MSCN model (cf. Fig-
ure 36) takes the following form:

Table module: wT =
1

|Tq|

P
t2Tq MLPT (vt)

Join module: wJ =
1

|Jq|

P
j2Jq MLPJ(vj)

Predicate module: wP =
1

|Pq|

P
p2Pq MLPP(vp)

Merge & predict: wout = MLPout([wT ,wJ,wP])

Figure 37 shows an example of a featurized query.

�.�.� Model

Standard deep neural network architectures such as convolutional neural
networks (CNNs), recurrent neural networks (RNNs), or simple multi-layer
perceptrons (MLPs) are not directly applicable to this type of data structure,
and would require serialization, i.e., conversion of the data structure to an or-
dered sequence of elements. This poses a fundamental limitation, as the model
would have to spend capacity to learn to discover the symmetries and structure

82 ������� �������������

Linear

Linear

ReLU

ReLU

Linear

Linear

ReLU

ReLU

Linear

Linear

ReLU

ReLU

Avg. pool

Concat

Linear

Linear

ReLU

Sigmoid

Avg. pool Avg. pool

Table set Tq Join set Jq Predicate set Pq

Cardinality prediction wout

Average
over set

Concatenate
output of each

set module

Figure 36: Architecture of our multi-set convolutional network. Tables, joins, and
predicates are represented as separate modules, comprised of one two-layer
neural network per set element with shared parameters. Module outputs
are averaged, concatenated, and fed into a final output network.

of the original representation. For example, it would have to learn to discover
boundaries between different sets in a data structure consisting of multiple sets
of different size, and that the order of elements in the serialization of a set is
arbitrary.

Given that we know the underlying structure of the data a priori, we can
bake this information into the architecture of our deep learning model and
effectively provide it with an inductive bias that facilitates generalization to un-
seen instances of the same structure, e.g., combinations of sets with a different
number of elements not seen during training.

Here, we introduce the multi-set convolutional network (MSCN) model. Our
model architecture is inspired by recent work on Deep Sets [218], a neural net-
work module for operating on sets. A Deep Sets module (sometimes referred
to as set convolution) rests on the observation that any function f(S) on a set S
that is permutation invariant to the elements in S can be decomposed into the
form ⇢[

P
x2S�(x)] with appropriately chosen functions ⇢ and �. For a more

�.� �������� 83

SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id = 5

{ [0 1 0 1 … 0], [0 0 1 0 … 1] } { [0 0 1 0] } { [1 0 0 0 0 1 0 0 0.72], [0 0 0 1 0 0 1 0 0.14] }Table set Join set Predicate set
table id samples join id operator idcolumn id value

Figure 37: Query featurization as sets of feature vectors.

formal discussion and proof of this property, we refer to Zaheer et al. [218].
We choose simple fully-connected multi-layer neural networks (MLPs) to pa-
rameterize the functions ⇢ and � and rely on their function approximation
properties [45] to learn flexible mappings f(S) for arbitrary sets S. Since we
apply a learnable mapping for each set element individually (with shared pa-
rameters), which is similar to the concept of a 1⇥ 1 convolution, often used in
CNNs for image classification [193], we call our model convolutional.

Our query representation consists of a collection of multiple sets, which mo-
tivates the following choice for our MSCN model architecture: for every set
S, we learn a set-specific, per-element neural network MLPS(vs), i.e., applied
on every feature vector vs for every element s 2 S individually1. The final
representation wS for this set is then given by the average2 over the individual
transformed representations of its elements, i.e., wS = 1/|S|

P
s2S MLPS(vs). We

choose an average (instead of, e.g., a simple sum) to ease generalization to dif-
ferent numbers of elements in the set S, as otherwise the overall magnitude of
the signal would vary depending on the number of elements in S. In practice,
we implement a vectorized version of our model that operates on mini-batches
of data. As the number of set elements in each data sample in a mini-batch can
vary, we pad all samples with zero-valued feature vectors that act as dummy
set elements so that all samples within a mini-batch have the same number of
set elements. We mask out dummy set elements in the averaging operation, so
that only the original set elements contribute to the average.

Finally, we merge the individual set representations by concatenation and
subsequently pass them through a final output MLP:
wout = MLPout([wS1

,wS2
, . . . ,wSN

]), where N is the total number of sets and
[·, ·] denotes vector concatenation. Note that this representation includes the
special case where each set representation wS is transformed by a subsequent
individual output function (as required by the original theorem in [218]). One
could alternatively process each wS individually first and only later merge
and pass through another MLP. We decided to merge both steps into a single
computation for computational efficiency.

1 An alternative approach here would be to combine the feature vectors before feeding them into
the MLP. For example, if there are multiple tables, each of them represented by a unique one-
hot vector, we could compute the logical disjunction of these one-hot vectors and feed that into
the model. Note that this approach does not work if we want to associate individual one-hot
vectors with additional information such as the number of qualifying base table samples.

2 Note that an average of one-hot vectors uniquely identifies the combination of one-hot vectors,
e.g., which individual tables are present in the query.

84 ������� �������������

Unless otherwise noted, all MLP modules are two-layer fully-connected neu-
ral networks with ReLU(x) = max(0, x) activation functions. For the output
MLP, we use a sigmoid(x) = 1/(1+ exp(-x)) activation function for the last
layer instead and only output a scalar, so that wout 2 [0, 1]. We use ReLU acti-
vation functions for hidden layers as they show strong empirical performance
and are fast to evaluate. All other representation vectors wT , wJ, wP, and hid-
den layer activations of the MLPs are chosen to be vectors of dimension d,
where d is a hyperparameter, optimized on a separate validation set via grid
search.

We normalize the target cardinalities ctarget as follows: we first take the log-
arithm to more evenly distribute target values, and then normalize to the in-
terval [0, 1] using the minimum and maximum value after logarithmization
obtained from the training set.3 The normalization is invertible, so we can
recover the unnormalized cardinality from the prediction wout 2 [0, 1] of our
model.

We train our model to minimize the mean q-error [147] q (q > 1). The q-
error is the factor between an estimate and the true cardinality (or vice versa).
We further explored using mean-squared error and geometric mean q-error
as objectives (cf. Section 4.3.8). We make use of the Adam [98] optimizer for
training.

�.�.� Generating Training Data

One key challenge of all learning-based algorithms is the “cold start prob-
lem”, i.e., how to train the model before having concrete information about
the query workload. Our approach is to obtain an initial training corpus by
generating random queries based on schema information and drawing literals
from actual values in the database.

A training sample consists of table identifiers, join predicates, base table
predicates, and the true cardinality of the query result. To avoid a combina-
torial explosion, we only generate queries with up to two joins and let the
model generalize to more joins. Our query generator first uniformly draws
the number of joins |Jq| (0 6 |Jq| 6 2) and then uniformly selects a table that
is referenced by at least one table. For |Jq| > 0, it then uniformly selects a
new table that can join with the current set of tables (initially only one), adds
the corresponding join edge to the query and (overall) repeats this process |Jq|

times. For each base table t in the query, it then uniformly draws the number
of predicates |Pt

q| (0 6 |Pt
q| 6 num non-key columns). For each predicate, it

uniformly draws the predicate type (=, <, or >) and selects a literal (an actual
value) from the corresponding column. We configured our query generator

3 Note that this approach requires complete re-training when data changes (iff the minimum and
maximum values have changed). Alternatively, one could set a high limit for the maximum
value.

�.� ���������� 85

to only generate unique queries. We then execute these queries to obtain their
true result cardinalities, while skipping queries with empty results. Using this
process, we obtain the initial training set for our model.

�.�.� Enriching the Training Data

A key idea of our approach is to enrich the training data with information
about materialized base table samples. For each table in a query, we evaluate
the corresponding predicates on a materialized sample and annotate the query
with the number of qualifying samples s (0 6 s 6 1000 for 1000 materialized
samples) for this table. We perform the same steps for an (unseen) test query
at estimation time allowing the ML model to utilize this knowledge.

We even take this idea one step further and annotate each table in a query
with the positions of the qualifying samples represented as bitmaps (referred
to as sample bitmaps). As we show in Section 4.3, adding this feature has a
positive impact on our join estimates since the ML model can now learn what
it means if a certain sample qualifies (e.g., there might be some samples that
usually have many join partners). In other words, the model can learn to use
the patterns in the bitmaps to predict output cardinalities.

�.�.� Training and Inference

Building our model involves three steps: (i) generate random (uniformly dis-
tributed) queries using schema and data information, (ii) execute these queries
to annotate them with their true cardinalities and information about qualify-
ing materialized base table samples, and (iii) feed this training data into an
ML model. All of these steps are performed on an immutable snapshot of the
database.

To predict the cardinality of a query, the query first needs to be transformed
into its feature representation (cf. Section 4.2.1). Inference itself involves a cer-
tain number of matrix multiplications, and (optionally) querying materialized
base table samples (cf. Section 4.2.4). Training the model with more query sam-
ples does not increase the prediction time. In that respect, the inference speed
is largely independent from the quality of the predictions. This is in contrast to
purely sampling-based approaches that can only increase the quality of their
predictions by querying more samples.

�.� ����������
We evaluate our approach using the IMDb dataset which contains many

correlations and therefore proves to be very challenging for cardinality estima-

86 ������� �������������

Table 14: Distribution of joins.

number of joins 0 1 2 3 4 overall

synthetic 1636 1407 1957 0 0 5000
scale 100 100 100 100 100 500
JOB-light 0 3 32 23 12 70

tors [124]. The dataset captures more than 2.5 M movie titles produced over
133 years by 234,997 different companies with over 4 M actors.

We use three different query workloads [122]: (i) a synthetic workload gen-
erated by the same query generator as our training data (using a different ran-
dom seed) with 5,000 unique queries containing both (conjunctive) equality and
range predicates on non-key columns with zero to two joins, (ii) another syn-
thetic workload scale with 500 queries designed to show how the model gener-
alizes to more joins, and (iii) JOB-light, a workload derived from the Join Order
Benchmark (JOB) [124] containing 70 of the original 113 queries. In contrast to
JOB, JOB-light does not contain any predicates on strings nor disjunctions and
only contains queries with one to four joins. Most queries in JOB-light have
equality predicates on dimension table attributes. The only range predicate is
on production_year. Table 14 shows the distribution of queries with respect
to the number of joins in the three query workloads. The non-uniform dis-
tribution in the synthetic workload is caused by our elimination of duplicate
queries.

As competitors we use PostgreSQL version 10.3, Random Sampling (RS), and
Index-Based Join Sampling (IBJS) [127]. RS executes base table predicates on
materialized samples to estimate base table cardinalities and assumes indepen-
dence for estimating joins. If there are no qualifying samples for a conjunctive
predicate, it tries to evaluate the conjuncts individually and eventually falls
back to using the number of distinct values (of the column with the most se-
lective conjunct) to estimate the selectivity. IBJS represents the state-of-the-art
for estimating joins and probes qualifying base table samples against existing
index structures. Our IBJS implementation uses the same fallback mechanism
as RS.

We train and test our model on an Amazon Web Services (AWS) ml.p2.xlarge
instance using the PyTorch framework [172] and use CUDA. We use 100,000
random queries with zero to two joins and 1,000 materialized samples as train-
ing data (cf. Section 4.2.3). We split the training data into 90% training and
10% validation samples. To obtain true cardinalities for our training data, we
use HyPer [96].

�.� ���������� 87

PostgreSQL Random Samp. IB Join Samp. MSCN (ours)

0 1 2 0 1 2 0 1 2 0 1 2

1e4

1e2

1

1e2

1e4

number of joins

�
un
de
re
.
[lo
g
sc
al
e]

ov
er
e.
�

Figure 38: Estimation errors on the synthetic workload. The box boundaries are at
the 25th/75th percentiles and the horizontal “whisker” lines mark the 95th
percentiles.

Table 15: Estimation errors on the synthetic workload.

median 90th 95th 99th max mean

PostgreSQL 1.69 9.57 23.9 465 373901 154
Random Samp. 1.89 19.2 53.4 587 272501 125
IB Join Samp. 1.09 9.93 33.2 295 272514 118
MSCN (ours) 1.18 3.32 6.84 30.51 1322 2.89

�.�.� Estimation Quality

Figure 38 shows the q-error of MSCN compared to our competitors. While
PostgreSQL’s errors are more skewed towards the positive spectrum, RS tends
to underestimate joins, which stems from the fact that it assumes indepen-
dence. IBJS performs extremely well in the median and 75th percentile but
(like RS) suffers from empty base table samples. MSCN is competitive with
IBJS in the median while being significantly more robust. Considering that
IBJS is using much more data—in the form of large primary and foreign key
indexes—in contrast to the very small state MSCN is using (less than 3 MiB),
MSCN captures (join-crossing) correlations reasonably well and does not suf-
fer as much from 0-tuple situations (cf. Section 4.3.2). To provide more details,
we also show the median, percentiles, maximum, and mean q-errors in Ta-
ble 15. While IBJS provides the best median estimates, MSCN outperforms the
competitors by up to two orders of magnitude at the end of the distribution.

88 ������� �������������

Table 16: Estimation errors of 376 base table queries with empty samples in the syn-
thetic workload.

median 90th 95th 99th max mean

PostgreSQL 4.78 62.8 107 1141 21522 133
Random Samp. 9.13 80.1 173 993 19009 147
MSCN 2.94 13.6 28.4 56.9 119 6.89

�.�.� 0-Tuple Situations

Purely sampling-based approaches suffer from empty base table samples (0-
tuple situations) which can occur under selective predicates. While this situa-
tion can be mitigated using, e.g., more samples or employing more sophisticat-
ed—yet still sampling-based—techniques (e.g., [149]), it remains inherently dif-
ficult to address by these techniques. In this experiment, we show that deep
learning, and MSCN in particular, can handle such situations fairly well.

In fact, 376 (22%) of the 1636 base table queries in the synthetic workload
have empty samples (using MSCN’s random seed). We will use this subset
of queries to illustrate how MSCN deals with situations where it cannot build
upon (runtime) sampling information (i.e., all sample bitmaps only contain ze-
ros). We also include Random Sampling (which uses the same random seed—
i.e., the same set of materialized samples as MSCN) and PostgreSQL in this
experiment.

The results, shown in Table 16, demonstrate that MSCN addresses the weak
spot of purely sampling-based techniques and therefore would complement
them well.

Recall that Random Sampling extrapolates the output cardinality based on
the number of qualifying samples (zero in this case). Thus, it cannot simply
extrapolate from this number and has to fall back to an educated guess—in
our RS implementation either using the product of selectivities of individual
conjuncts or using the number of distinct values of the column with the most
selective predicate. Independent of the concrete implementation of this fall-
back, it remains an educated guess. MSCN, in contrast, can use the signal of
individual query features (in this case the specific table and predicate features)
to provide a more precise estimate.

�.�.� Removing Model Features

Next, we highlight the contributions of individual model features to the pre-
diction quality (cf. Figure 39). MSCN (no samples) is the model without any
(runtime) sampling features, MSCN (#samples) represents the model with one

�.� ���������� 89

MSCN (no samples) MSCN (#samples) MSCN (bitmaps)

0 1 2 0 1 2 0 1 2

1e4

1e2

1

1e2

1e4

number of joins

�
un
de
re
.
[lo
g
sc
al
e]

ov
er
e.
�

Figure 39: Estimation errors on the synthetic workload with different model variants.

cardinality (i.e., the number of qualifying samples) per base table, and MSCN
(bitmaps) denotes the full model with one bitmap per base table.

MSCN (no samples) produces reasonable estimates with an overall 95th per-
centile q-error of 25.3, purely relying on (inexpensive to obtain) query features.
Adding sample cardinality information to the model improves both base table
and join estimates. The 95th percentile q-errors of base table, one join, and two
join estimates reduce by 1.72⇥, 3.60⇥, and 3.61⇥, respectively. Replacing car-
dinalities with bitmaps further improves these numbers by 1.47⇥, 1.35⇥, and
1.04⇥. This shows that the model can use the information embedded in the
sample bitmaps to provide better estimates.

�.�.� Generalizing to More Joins

To estimate a larger query, one can of course break the query down into
smaller sub queries, estimate them individually using the model, and combine
their selectivities. However, this means that we would need to assume inde-
pendence between two sub queries which is known to deliver poor estimates
with real-world datasets such as IMDb (cf. join estimates of Random Sampling
in Section 4.3).

The question that we want to answer in this experiment is how MSCN can
generalize to queries with more joins than it was trained on. For this purpose,
we use the scale workload with 500 queries with zero to four joins (100 queries
each). Recall that we trained the model only with queries that have between
zero and two joins. Thus, this experiment shows how the model can estimate
queries with three and four joins without having seen such queries during train-
ing (cf. Figure 40). From two to three joins, the 95th percentile q-error increases

90 ������� �������������

PostgreSQL MSCN

0 1 2 3 4 0 1 2 3 4

1e4

1e2

1

1e2

1e4

number of joins

�
un
de
re
.
[lo
g
sc
al
e]

ov
er
e.
�

Figure 40: Estimation errors on the scale workload showing how MSCN generalizes
to queries with more joins.

Table 17: Estimation errors on the JOB-light workload.

median 90th 95th 99th max mean

PostgreSQL 7.93 164 1104 2912 3477 174
Random Samp. 11.5 198 4073 22748 23992 1046
IB Join Samp. 1.59 150 3198 14309 15775 590
MSCN 3.82 78.4 362 927 1110 57.9

from 7.66 to 38.6. To give a point of reference, PostgreSQL has a 95th percentile
q-error of 78.0 for the same queries. And finally, with four joins, MSCN’s 95th
percentile q-error increases further to 2,397 (PostgreSQL: 4,077).

Note that 58 out of the 500 queries in this workload exceed the maximum
cardinality seen during training. 12 of these queries have three joins and an-
other 46 have four joins. When excluding these outliers, the 95th percentile
q-errors for three and four joins decrease to 23.8 and 175, respectively.

�.�.� JOB-light

To show how MSCN generalizes to a workload that was not generated by
our query generator, we use JOB-light.

Table 17 shows the estimation errors. Recall that most queries in JOB-light
have equality predicates on dimension table attributes. Considering that MSCN
was trained with a uniform distribution between =, <, and > predicates, it per-
forms reasonably well. Also, JOB-light contains many queries with a closed
range predicate on production_year, while the training data only contains

�.� ���������� 91

open range predicates. Note that JOB-light also includes five queries that
exceed the maximum cardinality that MSCN was trained on. Without these
queries, the 95th percentile q-error is 115.

In summary, this experiment shows that MSCN can generalize to workloads
with distributions different from the training data.

�.�.� Hyperparameter Tuning

We tuned the hyperparameters of our model, including the number of epochs
(the number of passes over the training set), the batch size (the size of a mini-
batch), the number of hidden units, and the learning rate. More hidden units
means larger model sizes and increased training and prediction costs with the
upside of allowing the model to capture more data, while learning rate and
batch size both influence convergence behavior during training.

We varied the number of epochs (100, 200), the batch size (64, 128, 256,
512, 1024, 2048), the number of hidden units (64, 128, 256, 512, 1024, 2048),
and fixed the learning rate to 0.001, resulting in 72 different configurations.
For each configuration, we trained three models4 using 90,000 samples and
evaluated their performance on the validation set consisting of 10,000 samples.
On average over the three runs, the configuration with 100 epochs, a batch size
of 1024 samples, and 256 hidden units performed best on the validation data.
Across many settings, we observed that 100 epochs perform better than 200
epochs. This is an effect of overfitting: the model captures the noise in the
training data such that it negatively impacts its prediction quality. Overall, we
found that our model performs well across a wide variety of settings. In fact,
the mean q-error only varied by 1% within the best 10 configurations and by
21% between the best and the worst configuration. We also experimented with
different learning rates (0.001, 0.005, 0.0001) and found 0.001 to perform best.
We thus use 100 epochs, a batch size of 1024, 256 hidden units, and a learning
rate of 0.001 as our default configuration.

�.�.� Model Costs

Next, we analyze the training, inference, and space costs of MSCN with our
default hyperparameters. Figure 41 shows how the validation set error (the
mean q-error of all queries in the validation set) decreases with more epochs.
The model requires fewer than 75 passes (over the 90,000 training queries) to
converge to a mean q-error of around 3 on the 10,000 validation queries. An

4 Note that the weights of the neural network are initialized using a different random seed in
each training run. To provide reasonably stable numbers, we tested each configuration three
times.

92 ������� �������������

●

●

●
● ●

●
● ● ●

● ●
● ●

●

●
●

● ●
● ●

●
●

● ●3

6

9

0 25 50 75 100
number of epochs

m
ea

n
q−

er
ro

r

Figure 41: Convergence of the mean q-error on the validation set with the number of
epochs.

average training run with 100 epochs (measured across three runs) takes almost
39 minutes.

The prediction time of our model is in the order of a few microseconds per
query when batching hundreds of queries. Querying the model with a single
query may take much longer due to the overhead introduced by the PyTorch
framework. In theory (neglecting the PyTorch overhead), a prediction using a
deep learning model (as stated earlier) is dominated by matrix multiplications
which can be accelerated using modern GPUs. We thus expect performance-
tuned implementations of our model to achieve very low prediction latencies.
Since we incorporate sampling information, the end-to-end prediction time
will be in the same order of magnitude as that of (per-table) sampling tech-
niques.

The size of our model (when serialized to disk) is 1.6 MiB, 1.6 MiB, and
2.6 MiB for MSCN (no samples), MSCN (#samples), and MSCN (bitmaps), re-
spectively.

�.�.� Optimization Metrics

Besides optimizing the mean q-error, we also explored using mean-squared
error and geometric mean q-error as optimization goals. Mean-squared error
would optimize the squared differences between the predicted and true cardi-
nalities. Since we are more interested in minimizing the factor between the
predicted and the true cardinalities (q-error) and use this metric for our eval-
uation, optimizing the q-error directly yielded better results. Optimizing the
geometric mean of the q-error makes the model put less emphasis on heavy
outliers (that would lead to large errors). While this approach looked promis-
ing at first, it turned out to be not as reliable as optimizing the mean q-error.

�.� �������� �����-�� ������� 93

�.� �������� �����-�� �������
In this section, we discuss another application of ML-based cardinality esti-

mation model, which is predicting the number of unique values in a column
or in a combination of columns (i.e., estimating the result size of a group-by
operator). This is another hard problem where current approaches achieve
undesirable results and where machine learning seems promising.

�.�.� Problem

The problem is to estimate the number of groups in the output of a group-
by query on a base table, such as the following query on the Internet Movie
Database (IMDb):

SELECT kind_id, phonetic_code, COUNT(*)
FROM title
GROUP BY kind_id, phonetic_code

Even for read-only OLAP workloads, this can be a difficult task. While it
is trivial to store the number of distinct values of individual columns, it is
challenging for multiple columns: That is, because the distinct value counts
of individual columns or combinations of columns cannot easily be combined,
and consequently, a system would have to maintain an exponential number of
such counts to support arbitrary group-by expressions [67].

To work around multi-column statistics, systems like PostgreSQL use sam-
pling to estimate the cardinality of such queries: They take a uniform sample
from the relation, and extrapolate statistics obtained on this sample to the
whole relation. However, as Charikar et al. proved in their seminal paper [35],
it is fundamentally impossible to obtain good estimates from reasonably-sized
samples, mainly due to possibly skewed data distributions. In other words,
we would have to sample most of the relation in order to reliably achieve high
estimation accuracy. As this is clearly not feasible, systems that employ sam-
pling often have no choice but to use wildly inaccurate estimates for query
optimization [128].

Freitag et al. thus proposed a hybrid approach [67] that combines single-
column statistics with a sampling-based estimator to produce highly accurate
multi-column estimates. However, while this approach achieves state-of-the-
art estimates and can even deal with updates, we will show in this work that
it breaks down when there are selection predicates (filters) on the base table:

SELECT kind_id, phonetic_code, COUNT(*)
FROM title
WHERE production_year=2010
GROUP BY kind_id, phonetic_code

94 ������� �������������

We will call queries like this filtered group-by queries in the following. To ac-
curately predict such queries, the hybrid approach depends on precise esti-
mates of the single-column cardinalities (i.e., kind_id and phonetic_code) after
the selection predicate has been applied. Since statistics such as histograms
cannot account for selections on dimensions that are not part of the statistic
(production_year in this example), we must estimate these cardinalities purely
based on information obtained from the sample. As outlined above, this will
produce provably poor single-column estimates [35], which in turn severely
deteriorate the overall accuracy of the estimator. In addition, as all sampling-
based estimators, the hybrid approach suffers from 0-tuple situations where no
samples remain after the predicate has been applied, leaving it with nothing
but an “educated” guess about the number of groups.

Also, even if we would know the total number of groups (without a selec-
tion), selectivity estimation alone would not help. We need to estimate the
number of groups in the result, whereas selectivity estimation can only ac-
curately predict the number of tuples [124]. The presence of a selection has
an non-trivial effect on the number of groups. For example, constraining
production_year to 2010 as in the above query results in more than one third
of the total number of groups, while setting it to 1900 only yields about 1% of
the groups.

Long story short, despite a large volume of previous research activity on the
subject [35, 79], traditional approaches continue to struggle with producing
accurate cardinality estimates on queries such as filtered group-by queries.

�.�.� Applications

While our approach only supports the class of filtered group-by queries, its
predictions can of course also be used to estimate (sub trees of) larger queries.
Another important application is hash table sizing for hash-based aggregations.
Also, in distributed query processing, where it is expensive to reoptimize at
query runtime (as advocated by [166]), accurately estimating such queries up-
front is of high value. For example, it allows the optimizer to decide between a
local and a shuffle-based aggregation depending on whether there are few or
many unique values, respectively.

�.�.� Adapting Our Model

In the following, we describe how we adapt our model to estimate filtered
group-by queries. From now on, we refer to a trained MSCN model (cf. Sec-
tion 4.2) and the corresponding base table samples as a Deep Sketch. Put differ-
ently, a Deep Sketch is a wrapper for a (serialized) neural network and a set of
materialized samples.

�.� �������� �����-�� ������� 95

While MSCN was primarily developed to estimate join queries [100], it can
also be applied to the filtered group-by estimation task: The output cardinality
of a join query is independent of the concrete query plan—e.g., both (A on
B) on C and A on (B on C) can be represented as a set {A,B,C}. Similarly, the
cardinality of a group-by query does not depend on the concrete permutation
of the group-by columns in the SQL string. Thus, we can apply the same
set-based model here.

Our original MSCN model represents three sets (tables, joins, and predi-
cates). Here, we use the original join module as a group-by module to estimate
filtered group-by queries on base tables. Essentially, instead of encoding iden-
tifiers of join predicates, we now encode identifiers of group-by columns.

Similar to the original query featurization (cf. Section 4.2.1), we represent
a query q 2 Q as a collection (Tq,Gq,Pq) of a set of tables Tq ⇢ T , a set
of group-by columns Gq ⇢ G and a set of (conjunctive) predicates Pq ⇢ P

participating in the specific query q. The only difference here is that we have
replaced the original join set with a group-by set, since now we focus on filtered
group-by queries on base tables and do not consider joins. We later outline
in Section 4.6.6 how to also address joins. T , G, and P describe the entire
query space in terms of available tables, group-by columns, and predicates,
respectively. Note that here Tq always only consists of a single table.

Figure 42 illustrates the (new) model that operates on the query representa-
tion (Tq,Gq,Pq) as follows:

Table module: wT =
1

|Tq|

P
t2Tq MLPT (vt)

Group-by module: wG =
1

|Gq|

P
g2Gq

MLPG(vg)

Predicate module: wP =
1

|Pq|

P
p2Pq MLPP(vp)

Merge & predict: wout = MLPout([wT ,wG,wP])

We again use the mean q-error [147] q (q > 1) as optimization metric. Similar
to our initial approach, we train the model with uniformly distributed queries,
but this time only on a single table. The query generator is parametrized with
a set of available group-by and selection columns as well as predicate types
(=, <, and >). In addition, we specify limits on the number of group-by and
selection columns. All decisions are again performed uniformly at random
(e.g., how many and which group-by columns a specific query contains). We
again execute all training queries against a set of materialized sample tuples to
obtain sample bitmaps (cf. Section 4.2.4) and against the full database table to
obtain their true cardinalities.

96 ������� �������������

Linear

Linear

ReLU

ReLU

Linear

Linear

ReLU

ReLU

Linear

Linear

ReLU

ReLU

Avg. pool

Concat

Linear

Linear

ReLU

Sigmoid

Avg. pool Avg. pool

Table set Tq Group-by set Gq Predicate set Pq

Cardinality prediction wout

Average
over set

Concatenate
output of each

set module

Figure 42: Architecture of the adapted MSCN model. Tables, group-by columns, and
predicates are represented as separate MLP modules that provide input to
a final output network that predicts query cardinalities.

�.�.� Results

We now show that our approach can effectively capture correlations between
group-by and selection columns. Also, we demonstrate that it significantly
outperforms the estimators of PostgreSQL and HyPer [96] as well as the state-
of-the-art multi-column estimator (hybrid approach) introduced earlier. Like
the state size of the hybrid approach, the size of our ML model only grows
linearly with the number of columns while it can accurately predict the effect
of selections.

Dataset and Query Workload

We again use the real-world IMDb dataset, which is challenging for cardinal-
ity estimators [124] due to data skew and correlations. This time, we focus our
evaluation on the title table.

�.� �������� �����-�� ������� 97

Table 18: Cardinalities (distinct value counts) of columns used in our workload.
Checkmarks indicate whether columns can appear in filter and/or group-
by clauses.

column cardinality filter group by

kind_id 6 X
phonetic_code 23259 X
episode_nr 14907 X X
production_year 133 X X

In the following, we describe our query workload including the search space
(space of possible queries) that it is drawn from.

We generate a workload that operates on four columns (cf. Table 18). The
construction of a query works as follows (all decisions are performed uni-
formly at random): We generate either one or two filter predicates (selec-
tions) on the filter columns, i.e., either one filter (on episode_nr or on prod-
uction_year) or two filters (on episode_nr and on production_year). Each
filter can be an equality (=), a less than (<), or a greater than (>) predicate. Fil-
ter literals are drawn from the respective columns in the database (e.g., 2010 for
a filter on production_year). In fact, we pick values from random (uniformly
distributed) row offsets. Next, we generate the group-by clause. We generate
either one or two group-by columns, chosen among all four columns (without
replacement).

Thus, given the distinct value counts shown in Table 18, there are 5,993,013
possible selections and 10 possible group-by clauses, resulting in 59,930,130
possible unique queries. For our query workload, we use 500 queries from
within that search space.

Deep Sketch

We use a Deep Sketch (DS) that is trained with uniformly distributed queries
within the above query space. The training set is disjoint from the query work-
load. By default, we use 10,000 training queries and 1,000 materialized samples
(i.e., each query is annotated with 1,000 bits).

We use the MSCN model with the following hyperparameters: 100 epochs,
batch size of 1024, 256 hidden units, and a learning rate of 0.001. Training
the model with 10,000 queries takes around two minutes on a GeForce GTX
1050 Ti GPU using the PyTorch framework [172] with CUDA. Querying the
model with 500 annotated queries takes around two microseconds per query
when running the model on the GPU. Note that this does not include the time
for executing the query against the table sample. When serialized to disk, the
model itself consumes 2.5 MiB (and another 16 KiB are occupied by the table
sample). Note that its size increases linearly with the number of columns: Since

98 ������� �������������

columns are encoded as unique one-hot vectors, we require one additional 256-
dimensional vector (# of hidden units) for each extra column.

Competitors

We compare against PostgreSQL version 10.3 and HyPer as well as the state-
of-the-art multi-column estimator SCBC (hybrid approach) [67]. At its core,
SCBC employs an improved sampling-based estimator derived from the esti-
mators proposed by Charikar et al. [35]. For our experiments, this part of
SCBC uses the same sample than the Deep Sketch. As outlined previously,
a sampling-only approach will have provably poor accuracy in some cases.
For this reason, SCBC additionally maintains the distinct value counts in the
individual columns. In order to obtain a multi-column estimate, SCBC com-
putes lower and upper bounds on the number of groups based on these single-
column counts, which are then used to constrain the output of the sampling-
based estimator.

Without any selections, this approach gives excellent estimates due to the ac-
curate single-column estimates. In order to extend SCBC to filtered group-by
queries, we can simply execute the query on the sample, and run the sampling-
based part of SCBC afterwards. However, we cannot predict the impact of se-
lections on the number of distinct values in the individual columns accurately.
This prevents SCBC from computing a reliable lower bound on the number of
groups after selections. For the purposes of this work, we only compute an up-
per bound on the number of groups based on the single-column cardinalities
before any selections. Note that for very selective queries, this bound will be
much too loose, severely limiting the performance of SCBC.

During our preliminary evaluation, we have tried to compute single-column
estimates after selections. However, without any additional information, this
boils down to a sample-based distinct value count estimation, which gives
poor results [35]. As SCBC heavily relies on accurate single-column estimates,
such an approach cannot improve the accuracy of SCBC on filtered group-by
queries.

Estimation Quality

Figure 43 and Table 19 show the q-errors of the different approaches. While
PostgreSQL and HyPer achieve reasonable median q-errors, they both have
heavy outliers. SCBC has a lower median q-error than PostgreSQL and HyPer,
but also suffers from large mispredictions. These mispredictions arise mainly
due to the presence of selections in the workload. As outlined above, selec-
tions prevent SCBC from computing tight bounds on the result cardinality, and
there are many cases in which it has to rely purely on the potentially inaccu-
rate sampling-based estimator. DS achieves the best median estimation quality
and is significantly more robust than its competitors. In fact, the estimates

�.� �������� �����-�� ������� 99

1e4

1e2

1

1e2

1e4

PostgreSQL HyPer SCBC Deep Sketch

 u
nd

er
e.

 [
lo

g
sc

al
e]

 o
ve

re
.

Figure 43: Estimation errors on the query workload. The box boundaries are at the
25th/75th percentiles and the horizontal “whisker” lines mark the 95th
percentiles.

Table 19: Estimation errors on the query workload.

median 90th 95th 99th max mean

PostgreSQL 4.35 318 1236 7431 21934 351
HyPer 6.00 111 131 2275 3144 74.1
SCBC 3.21 14.0 21.0 86.8 2528 16.6
Deep Sketch 1.31 3.00 5.12 30.0 169 2.58

produced by DS are within a factor of 3 of the true cardinalities on average.
Note that DS only observed 10,000 of the almost 60 M possible queries during
training.

Effect of Number of Training Queries

We now analyze the performance of DS with fewer training queries. Fig-
ure 44 shows the q-errors of DS with a varying number of training queries.
With only 100 queries, DS already achieves a median q-error of 4.33 which is
competitive with the other approaches. However, as one would expect with
such a small training dataset, it produces large outliers. Starting with 1,000
training queries, DS surpasses HyPer in the 95th percentile. With 5,000 queries,
it eventually outperforms SCBC in all metrics.

Effect of Selections

We now use another (manually constructed) query workload to highlight
the effect of selections. Like in our opening example, we have an equality

100 ������� �������������

1e4

1e2

1

1e2

1e4

DS 100 DS 1k DS 5k DS 10k

 u
nd

er
e.

 [
lo

g
sc

al
e]

 o
ve

re
.

Figure 44: Estimation errors on the query workload with an increasing number of
training queries.

predicate on production_year (and vary the literal from 1880 to 2020) and use
the kind_id and phonetic_code columns in the group-by clause.

The Deep Sketch is again trained using the same 10,000 queries as above.
Here, we also include a simple combinatorial estimation approach (which

we call baseline) that has access to the total number of groups G and the true
number of qualifying tuples t. Note that in reality we do not know the ex-
act values of these variables. This approach assumes a uniform distribution
of values among groups and works as follows: Assume a relation contains G

groups and N = G⇥n tuples with n being the number of tuples per group. A
query selects t tuples randomly without replacement, i.e., we disregard a pos-
sible correlation between selection and group-by columns. Then the expected
number of groups in the result set is:

G⇥

1-

�
N-n

t

�
�
N

t

�

!

Figure 45 shows the results with the four approaches in different columns.
The x-axis denotes the production year while we plot the cardinalities on the
y-axis. The green line shows the true cardinalities, while the red line denotes
the estimated cardinalities. In addition, the dotted red line shows the estimates
of the baseline approach.

We first only group by the low cardinality column kind_id (first row in
Figure 45). As it turns out (green line), the number of different movie kinds
increases over time. For example, in 1931 the first tv series came out. Before that
year, all titles were of kind movie, tv movie, or episode. Our baseline (dotted red
line) overestimates the number of distinct movie kinds early on. It essentially
assumes that the number of distinct movie kinds directly correlates with the
number of movie titles per year.

�.� �������� �����-�� ������� 101

B
a
se

lin
e

D
e
e
p
 S

ke
tc

h

Fi
gu

re
45

:C
ar

di
na

lit
y

es
tim

at
es

(y
-a

xi
s)

of
Po

st
gr

eS
Q

L,
H

yP
er

,S
C

BC
,a

nd
D

ee
p

Sk
et

ch
es

.
Se

le
ct

io
n

on
pr

od
uc

ti
on

_ y
ea

r
(x

-a
xi

s)
an

d
gr

ou
p-

by
on

ki
nd

_ i
d

an
d/

or
ph

on
et

ic
_ c

od
e.

102 ������� �������������

In fact, once the number of yearly movie titles increases (which it actually
does), the baseline estimates more distinct movie kinds. The reason for its
overestimation is that it assumes that the qualifying movie titles t are uni-
formly distributed among movie kinds. In reality, however, this distribution
is non-uniform and highly correlated with the year. Independent of the year,
PostgreSQL and HyPer always estimate 6 distinct movie kinds, which is the
total number of distinct values (cf. Table 18). SCBC’s estimates fluctuate be-
tween 1 and 5. This result further illustrates the importance of tight bounds
on the output cardinality for SCBC. The predicates in this workload are gener-
ally quite selective, i.e., the number of groups in the output is small. However,
SCBC only has access to the single-column cardinalities before these selections,
which provide no useful upper bound on the number of groups in the output.
Thus, SCBC almost exclusively relies on its sampling-based estimator, which
leads to the observed severe overestimations.

Moreover, SCBC also suffers heavily from 0-tuple situations, which explains
the observed frequent underestimations. Our query workload contains 132
different equality predicates on production_year, whereas the sample used by
SCBC only contains 100 distinct values of production_year. Thus, there are 32
queries in which the sample will contain no tuples after applying the selection,
and SCBC can only guess the output cardinality. Since no lower bound on
the number of groups in the output is available, SCBC can also not correct
this guess reasonably. As Figure 45 illustrates, DS does not suffer from this
problem.

In order to confirm these considerations, we ran the same workload but gave
SCBC access to the true column cardinalities after selections. As expected, this
enabled SCBC to predict the result cardinalities with high accuracy.

DS captures the increase in movie kinds but still underestimates it. The
reason is that certain kinds are rare and are thus less likely to be captured
during training.

Next, we use the high cardinality column phonetic_code in the group-by
clause (second row in Figure 45). Again, the number of distinct values essen-
tially increases over time (green line), with a sharp rise after 1980. Our baseline
(dotted red line) produces reasonable estimates up to the year 1940 before start-
ing to overestimate the cardinality in recent years. The reason is again that it
assumes a direct correlation between the number of yearly movie titles and
the number of distinct phonetic codes. PostgreSQL’s and HyPer’s estimates
are again hardly unaffected by the selection. While PostgreSQL catches the
increase in distinct values in recent years, HyPer heavily underestimates all of
these queries. SCBC’s estimates again fluctuate due to the same reasons out-
lined above. DS estimates closely approximate the true cardinalities with a few
exceptions.

Finally, we group by both kind_id and phonetic_code (third row in Fig-
ure 45). The trend (green line) is similar than for the queries that only group by

�.� ��������� ����������� 103

phonetic_code (second row), but interestingly the estimations of PostgreSQL,
HyPer, and SCBC differ: PostgreSQL estimates the spike in recent years to be
larger this time, while HyPer’s estimates are now influenced by the selection.
SCBC’s estimates still fluctuate but are now much closer to the true cardinali-
ties, except in recent years where its sampling-based estimator underestimates
the number of groups. DS again produces highly accurate estimates with min-
imal outliers.

In summary, all of the traditional approaches have issues with this work-
load. DS, in contrast, captures the correlations between the selection on prod-
uction_year and the group-by columns, leading to more accurate estimates.

�.� ��������� �����������

In this section, we outline how learned cardinalities could be leveraged by
existing query optimizers. Particularly, we describe a prototype that demon-
strates the end-to-end training and cardinality estimation process. Here, we
focus on the original MSCN model (cf. Section 4.2), without the filtered group-
by adaptation (cf. Section 4.4).

�.�.� Overview

As stated earlier, a Deep Sketch is essentially a wrapper for a trained MSCN
model and a set of materialized samples. Our prototype allows to define such
sketches, monitor the training process, and run ad-hoc queries against trained
sketches. While the focus here is not to show the effect of better cardinality es-
timates on the quality of resulting query plans—which is orthogonal to having
better estimates in the first place, we demonstrate that the estimates produced
by Deep Sketches are superior to estimates of traditional optimizers (including
the cardinality estimators of HyPer [96] and PostgreSQL [171]) and often close
to the ground truth. The estimates produced by Deep Sketches can directly be
leveraged by existing, sophisticated join enumeration algorithms and cost mod-
els. This is a more gradual approach than the one taken by machine learning
(ML)-based end-to-end query optimizers [140, 141].

Our demonstration allows users to define Deep Sketches on the TPC-H and
Internet Movie Database (IMDb) datasets. To create a Deep Sketch, users select
a subset of tables and define a few parameters such as the number of training
queries. Users can then monitor the training progress, including the execu-
tion of training queries and the training of the deep learning model. Once the
model has been trained, users can issue ad-hoc queries against the resulting
Deep Sketch. Our user interface makes it easy to create such queries graphi-
cally. Users can optionally specify a placeholder for a certain column to define

104 ������� �������������

a query template. For example, a movie producer might be interested in the
popularity of a certain keyword over time:

SELECT COUNT(*)
FROM title t, movie_keyword mk, keyword k
WHERE mk.movie_id=t.id AND mk.keyword_id=k.id
AND k.keyword=’artificial-intelligence’
AND t.production_year=?

Another example—from the domain of sports performance analysis—is the oc-
currences of certain actions (e.g., number of passes in soccer) over the duration
of a game. A placeholder has a similar effect as a group-by operation, except
that it does not operate on all distinct values of the group-by column but in-
stead only on the values present in the column sample that comes with the
sketch. In other words, we instantiate the query template with values (literals)
from the column sample. Besides this being an interesting feature for data
analysts, it serves the purpose of visualizing the robustness of our deep learn-
ing approach to cardinality estimation.5 The result of a query template can be
displayed as a bar or as a line plot with one data point per template instance.
Using overlays, we show the difference to the cardinality estimates produced
by HyPer and PostgreSQL as well as to the true cardinalities—obtained by
executing the queries with HyPer.

�.�.� Training and Query Flow

In our demonstration, users can experience the end-to-end process of defin-
ing, training, and using trained Deep Sketches to estimate the result sizes of
ad-hoc SQL queries. We support the TPC-H and IMDb datasets.

Figure 46a shows the four steps involved to create a new sketch. First (1),
users need to select a subset of tables from either schema and define a few pa-
rameters, including the number of materialized base table samples, the number
of training queries, and the number of training epochs. Next (2), we generate
uniformly distributed training queries on the specified tables in our backend,
and (3) execute them with HyPer to obtain true cardinalities and to extract
bitmaps indicating qualifying samples. To accelerate this process during our
demonstration, we plan to execute the training queries (in parallel) on multiple
HyPer instances. Finally (4), we featurize the training queries and train the
MSCN model for the specified number of epochs.

To give a point of reference on the training costs, training the model with
90,000 queries over 100 epochs takes almost 39 minutes on an Amazon Web
Services (AWS) ml.p2.xlarge instance using the PyTorch framework [172] with

5 Note that the deep learning model is not necessarily trained with literals present in the column
sample. In fact, it can happen (and is even likely for columns with many distinct values) that
a literal from the column sample has never been seen by the model.

�.� ��������� ����������� 105

�@ADI@��@@K��F@O>C�

Ɣ N@O�JA�O<=G@N
Ɣ IPH=@M�JA�H<O@MD<GDU@?�N<HKG@N
Ɣ IPH=@M�JA�OM<DIDIB�LP@MD@N
Ɣ IPH=@M�JA�OM<DIDIB�@KJ>CN

¼

@I@M<O@�OM<DI��LP@MD@N�

Ɣ PIDAJMHGT�>CJJN@�O<=G@N��>JGPHIN��
<I?�KM@?D><O@�OTK@N

Ɣ ?M<R�GDO@M<GN�AMJH�?<O<=<N@

½ �S@>PO@�OM<DI��LP@MD@N�

Ɣ <B<DINO�?<O<=<N@�OJ�J=O<DI�OMP@�
><M?DI<GDOD@N�AJM�@IODM@�LP@MD@N

Ɣ <B<DINO�H<O@MD<GDU@?�N<HKG@N

¾

�M<DI��@@K��F@O>C�

Ɣ A@<OPMDU@�NO<OD>�LP@MT�A@<OPM@N�
<I?�=DOH<KN

Ɣ OM<DI�I@PM<G�I@ORJMF�AJM�
NK@>DAD@?�IPH=@M�JA�@KJ>CN

¿

(a) Creation of a sketch.

�@@K��F@O>C�£����¤

����
�<�I@PM<G�I@ORJMF

����LP@MT
><M?DI<GDOT�
@NODH<O@

N<HKG@
O<=G@��

OPKG@�¼

OPKG@�½

OPKG@�I

N<HKG@
O<=G@��

OPKG@�¼

OPKG@�½

OPKG@�I

(b) Result size estimation with a sketch.

Figure 46: Creation and usage of a Deep Sketch. Depending on the number of training
queries, training can be expensive. However, once a sketch is trained, it
allows for an efficient result size estimation of SQL queries.

CUDA. Since this number is too high for an interactive user experience, we
address this problem in three ways.

First, we allow users to control the number of training queries and epochs.
For a small number of tables, 10,000 queries will already be sufficient to achieve
good results. Note that the training time decreases linearly with fewer epochs.
From our experience, 25 epochs are usually enough to achieve a reasonable
mean q-error on a separate validation set. Second, we offer pre-built (high
quality) models that can be queried right away. Third, we allow users to train
new models while querying existing ones.

Figure 46b illustrates a Deep Sketch on two tables A and B. The interface
of a sketch is very simple, it consumes a SQL query and returns a cardinality
estimate. First, the query’s selection predicates are evaluated on the respec-

106 ������� �������������

Figure 47: Web interface for Deep Sketches.

tive table sample to obtain bitmaps indicating qualifying samples, before the
query and its bitmaps are featurized and passed through MSCN to produce an
estimate.

�.�.� Web Interface

Figure 47 shows our web interface for Deep Sketches. On the left, we allow
users to specify SQL queries, and on the right, we display query results (es-
timated and true cardinalities). On the top (SHOW SKETCHES), users can select
existing and create new sketches as described above. To query a sketch, users
do not need enter SQL directly (the SQL string shown in the web interface
is only displayed for information purposes). Instead, we provide them with a
simple graphical query interface. By clicking on a table, it is added to the query.
When a user selects multiple tables, we automatically add the corresponding
join predicates to the query (based on the single PK/FK relationships that exist
between tables).

Users can also define selections on base tables by clicking the respective
columns in the schema. We support both equality and range predicates. In
addition, we allow users to specify a placeholder for a certain column. Since
our Deep Sketch implementation can only estimate single queries, we automat-
ically instantiate such query templates and—in the background—execute each
instance separately against the sketch. To create such an instance, we draw
a value from the column sample that is part of the sketch. Optionally, users
can select a function to be applied to these values. For example, for columns
with many distinct values—such as Date columns, users may want to “group”
the results by year (e.g., EXTRACT(YEAR FROM date)). To serve such queries, we

�.� ���������� 107

generate multiple range queries (one for each year found in the sample) to be
issued against the sketch. We also support grouping the output into equally
sized buckets based on the minimum and maximum values from the sample.

When a user hits the EXECUTE button, we issue the query against HyPer to
compute its true cardinality as well as against the Deep Sketch and the car-
dinality estimators of HyPer and PostgreSQL to obtain estimates. The query
results are displayed with different overlays as they arrive. On the x-axis we
denote values from the placeholder column and on the y-axis we plot the es-
timated and true cardinalities. We support both bar and line charts and allow
users to hide the results of individual systems.

�.�.� Open Challenges

Our demonstration allows users to experience the end-to-end training and
querying process of a learned cardinality model. However, to automate these
processes in a query optimizer, clearly more research is needed. Decision
points—that we currently outsource to our users—include for which schema
parts we should build such sketches and when to refresh them.

�.� ����������

We have shown that our model can beat state-of-the-art approaches for car-
dinality estimation. It does a good job in addressing 0-tuple situations and in
capturing join-crossing correlations, especially when combined with runtime
sampling. To make it suitable for general-purpose cardinality estimation, it
can be extended into multiple dimensions, including complex predicates, un-
certainty estimation, and updatability. In the following, we will discuss these
and sketch possible solutions.

�.�.� Generalization

MSCN can to some extent generalize to queries with more joins than seen
during training (cf. Section 4.3.4). Nevertheless, generalizing to queries that
are not in the vicinity of the training data remains challenging.

Of course, our model can be trained with queries from an actual workload or
their structures. In practice, we could replace any literals in user queries with
placeholders to be filled with actual values from the database. This would
allow us to focus on the relevant joins and predicates.

108 ������� �������������

�.�.� Adaptive Training

To improve training quality, we could adaptively generate training samples:
based on the error distribution of queries in the validation set, we would gener-
ate new training samples that shine more light on difficult parts of the schema.

�.�.� Strings

A simple addition to our current implementation are equality predicates on
strings. To support these, we could hash the string literals to a (small) integer
domain. Then an equality predicate on a string is essentially the same as an
equality predicate on an ID column where the model also needs to process a
non-linear input signal.

�.�.� Complex Predicates

Currently, our model can only estimate queries with predicate types that it
has seen during training. Complex predicates, such as LIKE or disjunctions,
are not yet supported since we currently do not represent them in the model.
An idea to allow for any complex predicate would be to purely rely on the sam-
ple bitmaps in such cases. Note that this would make our model vulnerable
to 0-tuple situations. To mitigate that problem, we could featurize information
from histograms. Also, the distribution of bitmap patterns might vary signifi-
cantly from simple predicates observed at training time, to more complicated
predicates at test time, which can make generalization challenging.

�.�.� More Bitmaps

At the moment, we use a single bitmap indicating the qualifying samples
per base table. To increase the likelihood for qualifying samples, we could
additionally use one bitmap per predicate. For example, for a query with
two conjunctive base table predicates, we would have one bitmap for each
predicate, and another bitmap representing the conjunction. In a column store
that evaluates one column at a time, we can obtain this information almost for
free. We have already shown that MSCN can use the information embedded in
the bitmaps to make better predictions. We expect that it would benefit from
the patterns in these additional bitmaps.

This approach should also help MSCN with estimating queries with arbi-
trary (complex) predicates where it needs to rely on information from the
(many) bitmaps. Of course, this approach does not work in 0-tuple situations,
or more specifically in situations where none of the (predicate) bitmaps indi-
cates any qualifying samples.

�.� ���������� 109

�.�.� Filtered Group-By Estimates

Next, we discuss ways to improve the results of our model for estimating
filtered group-by queries (cf. Section 4.4).

More Runtime Features

Currently, we only featurize bitmaps indicating table samples that have sur-
vived the selection. Since we need to consult the sample anyways, we could
also derive and encode further statistics, such as the number of distinct values
of individual group-by columns in the sample before and after selection, nor-
malized based on the number of distinct values in the entire table. Similarly,
we could compute and encode the number of groups in the sample before and
after selection (again normalized based on table statistics).

Combining DS and SCBC

While we have shown that DS only needs to observe 0.02% of the query
space to produce highly accurate estimates for our query workload, this might
not always be the case. To prune the search space and thus reduce the num-
ber of required training queries, we could combine DS with SCBC. We have
previously shown that SCBC produces accurate group-by estimates without se-
lections when it has access to precise estimates of the number of distinct values
of individual columns [67]. Under selections, SCBC does not have such esti-
mates and as Charikar et al. proved [35], also cannot compute precise estimates
based on a sample. To provide SCBC with precise estimates of single-column
distinct value counts after selection, we could train a DS specifically for this
task. By focusing on single group-by columns, we would effectively prune the
search space and would need fewer training queries. The downside is that a
combined DS/SCBC approach would still suffer from 0-tuple situations, i.e.,
when the sampling-based estimator of SCBC has no qualifying tuples to start
with. DS on its own does not have this problem and can still rely on static
query features (i.e., group-by columns and predicates) in such cases [100].

Supporting Joins

In the current filtered group-by model, we have replaced the original join
module with a group-by module. Instead, we could add a forth set module to
capture group-by and join queries. While this is a rather straightforward ex-
tension, this would increase the query space and thus require a larger training
dataset.

110 ������� �������������

�.�.� Uncertainty Estimation

An open question is when to actually trust the model and rely on its pre-
dictions. One approach is to use strict constraints for generating the training
data and enforce them at runtime, i.e., only use the model when all constraints
hold (i.e., only PK/FK joins, only equality predicates on certain columns). A
more appealing approach would be to implement uncertainty estimation into
the model. However, for a model like ours, this is a non-trivial task and still
an area of active research. There are some recent methods [74, 97, 117] that we
plan to investigate in future work.

�.�.� Updates

Throughout this work, we have assumed an immutable (read-only) database.
To handle data and schema changes, we can either completely re-train the
model or we can apply some modifications to our model that allow for incre-
mental training.

Complete re-training comes with considerable compute costs (for re-execut-
ing queries to obtain up-to-date cardinalities and for re-training the model)
but would allow us to use a different data encoding. For example, we could
use larger one-hot vectors to accommodate for new tables and we could re-
normalize values in case of new minimum or maximum values. Queries (train-
ing samples) of which we know to still have the same cardinality (e.g., since
there has not been any update to the respective data range) would of course
not need to re-executed.

In contrast, incremental training (as implied by its name) would not require
us to re-train with the original set of samples. Instead, we could re-use the
model state and only apply new samples. One challenge with incremental
training is to accommodate changes in the data encoding, including one-hot
encodings and the normalization of values. To recall, there are two types of
values that we normalize: literals in predicates (actual column values) and out-
put cardinalities (labels). For both types, setting a high limit on the maximum
value seems most appropriate. The main challenge, however, is to address
catastrophic forgetting, which is an effect that can be observed with neural net-
works when data distribution shifts over time. The network would overfit to
the most recent data and forget what it has learned in the past. Addressing
this problem is an area of active research with some recent proposals [107].

�.� ������� ���� 111

�.� ������� ����

Deep learning has been applied to query optimization by three recent pa-
pers [140, 161, 112] that formulate join ordering as a reinforcement learning prob-
lem and use ML to find query plans. This work, in contrast, applies supervised
learning to solve cardinality estimation in isolation. This focus is motivated by
the fact that modern join enumeration algorithms can find the optimal join or-
der for queries with dozens of relations [155]. Cardinality estimation, on the
other hand, has been called the “Achilles heel” of query optimization [135] and
causes most of its performance issues [124].

�.�.� ML-Based Approaches

Twenty years ago the first approaches to use neural networks for cardinality
estimation where published for UDF predicates [116]. Also, regression-based
models have been used before for cardinality estimation [5]. A semi-automatic
alternative for explicit machine learning was presented in [137], where the
feature space is partitioned using decision trees and for each split a different
regression model was learned. These early approaches did not use deep learn-
ing nor included features derived from statistics, such as our sample-based
bitmaps, which encode exactly which sample tuples were selected (and we
therefore believe to be good starting points for learning correlations). The same
holds for approaches that used machine learning to predict overall resource
consumption: running time, memory footprint, I/O, network traffic [131, 69],
although these models did include course-grained features (the estimated car-
dinality) based on statistics into the features. Liu et al. [133] used modern
ML for cardinality estimation, but did not focus on joins, which are the key
estimation challenge [124].

�.�.� Sampling

Our approach builds on sampling-based estimation by including cardinali-
ties or bitmaps derived from samples into the training signal. Most sampling
proposals create per-table samples/sketches and try to combine them intelli-
gently in joins [60, 207, 201, 41]. While these approaches work well for single-
table queries, they do not capture join-crossing correlations and are vulnerable
to the 0-tuple problem (cf. Section 4.3.2). Recent work by Müller et al. [149]
aims to reduce the 0-tuple problem for conjunctive predicates (albeit at high
computational cost), but still cannot capture the basic case of a single predi-
cate giving zero results. Our reasonably good estimates in 0-tuple situations
make MSCN improve over sampling, including even the idea of estimation on

112 ������� �������������

materialized join samples (join synopses [169]), which still would not handle
0-tuple situations.

�.�.� Group-By Estimates

Given its importance for query optimization [124], there is also a plethora
of approaches for estimating the number of distinct values in a column. Tra-
ditionally, systems maintain some sort of statistics on base tables, and attempt
to derive cardinality estimates from these statistics [124, 146]. For this pur-
pose, sampling is one of the most versatile approaches, as it offers attractive
performance and naturally deals with selections and multi-column estimates.
However, as Charikar et al. proved, any exclusively sampling-based approach
must have poor accuracy on some input data [35]. A large body of work thus
attempts to improve sampling-based estimation with auxiliary information [73,
53, 127, 121, 219]. This includes a state-of-the-art hybrid estimator [67], which,
as opposed to previous approaches, can produce accurate multi-column esti-
mates with minimal overhead but struggles in the presence of selections.

Current systems frequently assume that the individual attributes are inde-
pendent for multi-column estimation, and use ad-hoc heuristics to estimate the
impact of selections [124]. However, such heuristics frequently do not reflect
real-world data accurately, resulting in large estimation errors [214]. Multi-
column statistics, for example multi-dimensional histograms [183], or wave-
lets [43], promise more accurate cardinality estimates, but as opposed to Deep
Sketches, their space consumption is non-linear in the number of attributes.

While our approach uses supervised ML, there is also work on using unsu-
pervised ML for cardinality estimation. However, none of these approaches
have been adapted to group-by queries. The closest work is [80] in which the
authors propose to use an autoregressive model to learn a conditional proba-
bility distribution. However, their approach only supports equality predicates
and does not address group-by queries. Another recent proposal is to use
deep generative models to capture the joint data distributions of multiple at-
tributes and to generate new sample tuples following that distribution [195].
The idea then is to run actual queries on these representative samples. Besides
its application in approximate query processing, one could use that approach
to estimate cardinalities of filtered group-by queries. However, since the sam-
ple tuples are generated from the joint distribution over all columns, selective
queries may require a high number of samples to achieve good approximation
performance.

�.� ����������� 113

�.� �����������
We have introduced a new approach to cardinality estimation based on

MSCN, a new deep learning model. We have trained MSCN with generated
queries, uniformly distributed within a constrained search space. We have
shown that it can learn (join-crossing) correlations and that it addresses the
weak spot of sampling-based techniques, which is when no samples qualify.
We have extended our approach to filtered group-by queries and have demon-
strated its high accuracy. We have presented a prototype that showcases the
query optimizer integration. Our model is a first step towards reliable ML-
based cardinality estimation and can be extended into multiple dimensions,
including complex predicates, uncertainty estimation, and updatability.

5 F U T U R E W O R K

In this thesis, we have made multiple contributions to the research area of
analytical database systems. In Chapter 2, we have studied how main-memory
database systems (MMDBs) can be extended to match the performance and
usability of streaming systems. While we have addressed performance issues
regarding networking and scalability, we have not considered the usability as-
pects. SQL is arguably the standard for data analysis today and in the fore-
seeable future. However, streaming support in SQL is still limited and not
available in many database systems. While Apache Flink and other streaming
systems allow for event time semantics (e.g., for windowed aggregations), SQL
simply does not. In a recent proposal [21], Begoli et al. describe a set of ex-
tensions to SQL to better support streaming use cases. Once part of the SQL
standard, such a consolidation between traditional SQL (on tables) and stream-
ing SQL (on streams) can be a powerful tool to close the gap between MMDBs
and stream data processing even further.

In Chapter 3, we have introduced a novel radix tree-based polygon index
that accelerates point-polygon joins in main memory. We have demonstrated
the high performance of this approach, which is even competitive with state-of-
the-art GPU implementations. However, we currently use a sparse tree node
representation that is not very space efficient and can lead to multiple GiBs
of memory consumption when indexing many polygons. Recent work on suc-
cinct trie data structures [223] suggests that a space-efficient tree representation
can still achieve comparable lookup performance to pointer-based data struc-
tures like ours. Along these lines, hybrid data structures [222, 7] that combine
the benefits of succinct and pointer-based data structures seem to be a promis-
ing way forward. Likewise, learned indexes [110] promise both space efficiency
and high lookup performance. The idea is to approximate the cumulative dis-
tribution function (CDF) of the data with a model to predict the estimated
position of the lookup key in a sorted array. Given that our cell identifiers are
one-dimensional, learned indexes would be directly applicable to this problem.
However, whether such a model can be competitive with an optimized radix
tree for prefix lookups remains to be seen. To save on valuable main memory, the
use of non-volatile memory (NVM) for storing lower levels of the tree could be
a good strategy as well.

In Chapter 4, we have proposed a new deep learning approach to cardinal-
ity estimation that captures correlations between columns, even across tables.
Our model incorporates both query and runtime features (sample bitmaps).
While we have shown that our approach achieves state-of-the-art results on

115

116 ������ ����

some cardinality estimation tasks, its applicability to real-world systems is lim-
ited. At the time of writing this thesis, there have been a number of follow-ups
(most notably [211, 205, 160, 84, 81, 57, 192]) to our initial proposal addressing
some of its weaknesses. Despite our integration of runtime features, predict-
ing queries that are not in the vicinity of the training data remains challenging.
Similarly, low selectivity queries with no or only a few qualifying samples
pose severe problems to our model, especially when considering that similar
queries have likely not been encountered during training. In that regard, the
unsupervised learning method Naru [211] has recently re-defined the state of
the art, outperforming supervised approaches and sampling by a large mar-
gin. While Naru is limited to equality and range predicates, it could well be
combined with supervised (query-driven) methods or sampling to extend its
scope. Hilprecht et al. [84] also propose to learn from data, not from queries,
to avoid expensive training data collection. Furthermore, they also cover joins
and allow for incremental model updates to reflect data changes. Woltmann et
al. suggest to pre-compute joins between tables of interest and build local deep
learning models on each of these subsets. Along the same lines, Wu et al. [206]
propose to focus the training on specific query templates to reduce the search
space. Sun et al. [192] improve on our model by supporting complex (string)
predicates using a preprocessing phase. To better support larger joins, Hayek
et al. [81] build on query containment rate prediction with a query pool and
show promising improvements over our method. Finally, all of the approaches
above use deep network architectures. Despite advances in hardware, these
models remain compute intense, both during training and inference. To make
ML-based cardinality estimation practical, Dutt et al. argue to use lightweight
models such as gradient boosted trees [40] and show competitive results. A
recent survey on learning-based cardinality estimation by Ortiz et al. [160] con-
firms that simple models are sufficient in many cases. But more importantly,
this study also finds that improved estimates from these models lead to signif-
icantly better query plans. The question that remains is whether we should
learn cardinalities, cost models [192], or even entire query optimizers [138]. In
our experience, starting “simple” (with cardinalities) is difficult enough. Thus,
we believe that we should first “solve” the cardinality estimation in isolation
before increasing complexity. A path forward would be to focus on learning
cardinalities that make a difference to plans produced by the optimizer.

B I B L I O G R A P H Y

In compliance with § 6 Abs. 6 Satz 3 Promotionsordnung der Technischen
Universität München, publications by the author of this thesis are marked with
an asterisk (*).

[1] Danial Aghajarian and Sushil K. Prasad. “A Spatial Join Algorithm
Based on a Non-uniform Grid Technique over GPGPU”. In: Proceedings
of the 25th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, GIS 2017, Redondo Beach, CA, USA, November
7-10, 2017, 56:1–56:4.

[2] Divyakant Agrawal, Amr El Abbadi, Ambuj K. Singh, and Tolga Yurek.
“Efficient View Maintenance at Data Warehouses”. In: SIGMOD 1997,
Proceedings ACM SIGMOD International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA. Ed. by Joan Peckham. ACM
Press, pp. 417–427.

[3] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Sk-
ounakis. “Weaving Relations for Cache Performance”. In: VLDB 2001,
Proceedings of 27th International Conference on Very Large Data Bases, Septem-
ber 11-14, 2001, Roma, Italy, pp. 169–180.

[4] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xi-
aodong Zhang, and Joel H. Saltz. “Hadoop-GIS: A High Performance
Spatial Data Warehousing System over MapReduce”. In: PVLDB 6.11
(2013), pp. 1009–1020.

[5] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stan-
ley B. Zdonik. “Learning-based Query Performance Modeling and Pre-
diction”. In: IEEE 28th International Conference on Data Engineering (ICDE
2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, pp. 390–
401.

[6] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.
“Automatic Database Management System Tuning Through Large-scale
Machine Learning”. In: Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, pp. 1009–1024.

117

118 ������������

[7] * Christoph Anneser, Andreas Kipf, Harald Lang, Thomas Neumann, and
Alfons Kemper. “The Case for Hybrid Succinct Data Structures”. In: Pro-
ceedings of the 23nd International Conference on Extending Database Technol-
ogy, EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020, pp. 391–
394.

[8] Apache Calcite. https://calcite.apache.org/.

[9] Apache Storm Trident State. http://storm.apache.org/releases/curre
nt/Trident-state.html.

[10] Joy Arulraj, Andrew Pavlo, and Subramanya Dulloor. “Let’s Talk About
Storage & Recovery Methods for Non-Volatile Memory Database Sys-
tems”. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pp. 707–722.

[11] Joy Arulraj, Ran Xian, Lin Ma, and Andrew Pavlo. “Predictive Index-
ing”. In: CoRR abs/1901.07064 (2019).

[12] Artin Avanes. Automatic Clustering, Materialized Views & Automatic Main-
tenance in Snowflake. 2018. url: https://www.snowflake.com/blog/aut
omatic-clustering-materialized-views-automatic-maintenance-in
-snowflake/ (visited on 12/03/2019).

[13] AWS. Amazon Redshift announces support for spatial data. 2019. url: http
s://aws.amazon.com/about-aws/whats-new/2019/11/amazon-redshif
t-announces-support-spatial-data/ (visited on 11/30/2019).

[14] AWS. Amazon Redshift introduces Automatic Table Sort, an automated alter-
native to Vacuum Sort. 2019. url: https://aws.amazon.com/about-aws
/whats-new/2019/11/amazon-redshift-introduces-automatic-table-
sort-alternative-vacuum-sort/ (visited on 11/30/2019).

[15] AWS Instance Types. https://aws.amazon.com/ec2/instance-types/.

[16] Leonardo Guerreiro Azevedo, Ralf Hartmut Güting, Rafael Brand Ro-
drigues, Geraldo Zimbrão, and Jano Moreira de Souza. “Filtering with
raster signatures”. In: 14th ACM International Symposium on Geographic
Information Systems, ACM-GIS 2006, November 10-11, 2006, Arlington, Vir-
ginia, USA, Proceedings, pp. 187–194.

[17] Leonardo Guerreiro Azevedo, Geraldo Zimbrão, and Jano Moreira de
Souza. “Approximate Query Processing in Spatial Databases Using Ras-
ter Signatures”. In: VIII Brazilian Symposium on Geoinformatics, 19-22 Nov-
ember, Campos do Jordão, São Paulo, Brazil, pp. 53–72.

������������ 119

[18] Nagender Bandi, Chengyu Sun, Amr El Abbadi, and Divyakant Agra-
wal. “Hardware Acceleration in Commercial Databases: A Case Study
of Spatial Operations”. In: (e)Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases, VLDB 2004, Toronto, Canada, August 31 -
September 3 2004, pp. 1021–1032.

[19] Jeff Barr. EC2 High Memory Update – New 18 TB and 24 TB Instances. 2019.
url: https://aws.amazon.com/blogs/aws/ec2-high-memory-update-n
ew-18-tb-and-24-tb-instances/ (visited on 12/01/2019).

[20] Jeff Barr. Elastic Network Adapter - High Performance Network Interface for
Amazon EC2. 2016. url: https://aws.amazon.com/blogs/aws/elastic-
network-adapter-high-performance-network-interface-for-amazon
-ec2/ (visited on 10/22/2019).

[21] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn
Knight, and Kenneth Knowles. “One SQL to Rule Them All - an Effi-
cient and Syntactically Idiomatic Approach to Management of Streams
and Tables”. In: Proceedings of the 2019 International Conference on Manage-
ment of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019. Ed. by Peter A. Boncz, Stefan Manegold, Anastasia
Ailamaki, Amol Deshpande, and Tim Kraska. ACM, pp. 1757–1772.

[22] BigQuery. https://cloud.google.com/bigquery/.

[23] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan
Zamanian. “The End of Slow Networks: It’s Time for a Redesign”. In:
PVLDB 9.7 (2016), pp. 528–539.

[24] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allow-
able Errors”. In: Commun. ACM 13.7 (1970), pp. 422–426.

[25] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. “Breaking the
memory wall in MonetDB”. In: Commun. ACM 51.12 (2008), pp. 77–85.

[26] boost::geometry::index::rtree - 1.60.0. https://www.boost.org/doc/libs/1
_60_0/libs/geometry/doc/html/geometry/reference/spatial_indexe
s/boost__geometry__index__rtree.html.

[27] NYC Boroughs. https://data.cityofnewyork.us/City-Government/Bo
rough-Boundaries/tqmj-j8zm.

[28] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. “Scal-
able Garbage Collection for In-Memory MVCC Systems”. In: PVLDB
13.2 (2019), pp. 128–141.

[29] Lucas Braun. “Confidentiality and Performance for Cloud Databases”.
PhD thesis. ETH Zurich, 2017.

120 ������������

[30] Lucas Braun, Thomas Etter, Georgios Gasparis, Martin Kaufmann, Don-
ald Kossmann, Daniel Widmer, Aharon Avitzur, Anthony Iliopoulos,
Eliezer Levy, and Ning Liang. “Analytics in Motion: High Performance
Event-Processing AND Real-Time Analytics in the Same Database”. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pp. 251–
264.

[31] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. “Multi-Step Processing of Spatial Joins”. In: Proceedings of the
1994 ACM SIGMOD International Conference on Management of Data, Min-
neapolis, Minnesota, USA, May 24-27, 1994. Pp. 197–208.

[32] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. “Apache FlinkTM: Stream and Batch Pro-
cessing in a Single Engine”. In: IEEE Data Eng. Bull. 38.4 (2015), pp. 28–
38.

[33] NYC Census Blocks. https://data.cityofnewyork.us/City-Governmen
t/2010-Census-Blocks/v2h8-6mxf.

[34] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert De-
Line, John C. Platt, James F. Terwilliger, and John Wernsing. “Trill: A
High-Performance Incremental Query Processor for Diverse Analytics”.
In: PVLDB 8.4 (2014), pp. 401–412.

[35] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Nara-
sayya. “Towards Estimation Error Guarantees for Distinct Values”. In:
Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, May 15-17, 2000, Dallas, Texas, USA,
pp. 268–279.

[36] Biswapesh Chattopadhyay et al. “Procella: Unifying serving and analyt-
ical data at YouTube”. In: PVLDB 12.12 (2019), pp. 2022–2034.

[37] Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. “A Robust,
Optimization-Based Approach for Approximate Answering of Aggre-
gate Queries”. In: Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, Santa Barbara, CA, USA, May 21-24,
2001. Ed. by Sharad Mehrotra and Timos K. Sellis. ACM, pp. 295–306.

[38] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. “Approximate
Query Processing: No Silver Bullet”. In: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pp. 511–519.

[39] Harshada Chavan, Rami Alghamdi, and Mohamed F. Mokbel. “Towards
a GPU accelerated spatial computing framework”. In: 32nd IEEE Inter-
national Conference on Data Engineering Workshops, ICDE Workshops 2016,
Helsinki, Finland, May 16-20, 2016, pp. 135–142.

������������ 121

[40] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System”. In: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016. Ed. by Balaji Krishnapuram, Mohak Shah, Alexan-
der J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi. ACM,
pp. 785–794.

[41] Yu Chen and Ke Yi. “Two-Level Sampling for Join Size Estimation”.
In: Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pp. 759–774.

[42] Sanket Chintapalli et al. “Benchmarking Streaming Computation En-
gines: Storm, Flink and Spark Streaming”. In: 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops, IPDPS Work-
shops 2016, Chicago, IL, USA, May 23-27, 2016, pp. 1789–1792.

[43] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jer-
maine. “Synopses for Massive Data: Samples, Histograms, Wavelets, Sk-
etches”. In: Foundations and Trends in Databases 4.1-3 (2012), pp. 1–294.

[44] Google C++ B-Tree. https://code.google.com/archive/p/cpp-btree/.

[45] George Cybenko. “Approximation by superpositions of a sigmoidal
function”. In: MCSS 2.4 (1989), pp. 303–314.

[46] Benoît Dageville et al. “The Snowflake Elastic Data Warehouse”. In: Pro-
ceedings of the 2016 International Conference on Management of Data, SIG-
MOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pp. 215–226.

[47] Guilherme Damasio, Vincent Corvinelli, Parke Godfrey, Piotr Mierze-
jewski, Alexandar Mihaylov, Jaroslaw Szlichta, and Calisto Zuzarte. “Gui-
ded automated learning for query workload re-optimization”. In: PVLDB
12.12 (2019), pp. 2010–2021.

[48] Data Plane Development Kit. https://www.dpdk.org/.

[49] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. “Monkey: Op-
timal Navigable Key-Value Store”. In: Proceedings of the 2017 ACM In-
ternational Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pp. 79–94.

[50] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pp. 4171–4186.

122 ������������

[51] F van Diggelen and P Enge. “The world’s first GPS MOOC and world-
wide laboratory using smartphones”. In: Proc. of ION GNSS+, 361–369.

[52] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri,
and Vivek R. Narasayya. “AI Meets AI: Leveraging Query Executions
to Improve Index Recommendations”. In: Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD Conference 2019, Ams-
terdam, The Netherlands, June 30 - July 5, 2019, pp. 1241–1258.

[53] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and
Chi Wang. “Sample + Seek: Approximating Aggregates with Distribu-
tion Precision Guarantee”. In: Proceedings of the 2016 International Confer-
ence on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pp. 679–694.

[54] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur,
Tony Savor, and Michael Strum. “Optimizing Space Amplification in
RocksDB”. In: CIDR 2017, 8th Biennial Conference on Innovative Data Sys-
tems Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceed-
ings.

[55] Harish Doraiswamy, Eleni Tzirita Zacharatou, Fábio Miranda, Marcos
Lage, Anastasia Ailamaki, Cláudio T. Silva, and Juliana Freire. “Interac-
tive Visual Exploration of Spatio-Temporal Urban Data Sets using Ur-
bane”. In: Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
pp. 1693–1696.

[56] DriveNow. https://www.drive-now.com/de/en.

[57] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R.
Narasayya, and Surajit Chaudhuri. “Selectivity Estimation for Range
Predicates using Lightweight Models”. In: PVLDB 12.9 (2019), pp. 1044–
1057.

[58] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siy-
ing Dong, Kim M. Hazelwood, Chris Petersen, Asaf Cidon, and Sachin
Katti. “Reducing DRAM footprint with NVM in facebook”. In: Proceed-
ings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal,
April 23-26, 2018, 42:1–42:13.

[59] Ahmed Eldawy. “SpatialHadoop: towards flexible and scalable spatial
processing using mapreduce”. In: International Conference on Management
of Data, SIGMOD 2014, Snowbird, Utah, USA, June 22, 2014, PhD Sympo-
sium, pp. 46–50.

[60] Cristian Estan and Jeffrey F. Naughton. “End-biased Samples for Join
Cardinality Estimation”. In: Proceedings of the 22nd International Confer-
ence on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA,
p. 20.

������������ 123

[61] Yi Fang, Marc Friedman, Giri Nair, Michael Rys, and Ana-Elisa Schmid.
“Spatial indexing in microsoft SQL server 2008”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008, pp. 1207–1216.

[62] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Ste-
fan Sigg, and Wolfgang Lehner. “SAP HANA database: data manage-
ment for modern business applications”. In: SIGMOD Record 40.4 (2011),
pp. 45–51.

[63] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müll-
er, Hannes Rauhe, and Jonathan Dees. “The SAP HANA Database – An
Architecture Overview”. In: IEEE Data Eng. Bull. 35.1 (2012), pp. 28–33.

[64] * Philipp Fent, Michael Jungmair, Andreas Kipf, and Thomas Neumann.
“START — Self-Tuning Adaptive Radix Tree”. In: 36th IEEE International
Conference on Data Engineering Workshops, ICDE Workshops 2020, Dallas,
TX, USA, April 20-24, 2020, pp. 147–153.

[65] * Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas
Neumann, and Alfons Kemper. “Low-Latency Communication for Fast
DBMS Using RDMA and Shared Memory”. In: 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24,
2020.

[66] Samuel Flender. Data is not the new oil. 2019. url: https://towardsda
tascience.com/data-is-not-the-new-oil-bdb31f61bc2d (visited on
11/27/2019).

[67] Michael J. Freitag and Thomas Neumann. “Every Row Counts: Com-
bining Sketches and Sampling for Accurate Group-By Result Estimates”.
In: CIDR 2019, 9th Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.

[68] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis.
“Moment-Based Quantile Sketches for Efficient High Cardinality Aggre-
gation Queries”. In: PVLDB 11.11 (2018), pp. 1647–1660.

[69] Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener,
Armando Fox, Michael I. Jordan, and David A. Patterson. “Predict-
ing Multiple Metrics for Queries: Better Decisions Enabled by Machine
Learning”. In: Proceedings of the 25th International Conference on Data Engi-
neering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, pp. 592–
603.

124 ������������

[70] Venkatesh Ganti, Mong-Li Lee, and Raghu Ramakrishnan. “ICICLES:
Self-Tuning Samples for Approximate Query Answering”. In: VLDB
2000, Proceedings of 26th International Conference on Very Large Data Bases,
September 10-14, 2000, Cairo, Egypt. Ed. by Amr El Abbadi, Michael L.
Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter
Schlageter, and Kyu-Young Whang. Morgan Kaufmann, pp. 176–187.

[71] Irene Gargantini. “An Effective Way to Represent Quadtrees”. In: Com-
mun. ACM 25.12 (1982), pp. 905–910.

[72] Gartner. Gartner Says 6.4 Billion Connected "Things" Will Be in Use in 2016,
Up 30 Percent From 2015. 2015. url: https://www.gartner.com/en/ne
wsroom/press-releases/2015-11-10-gartner-says-6-billion-conn
ected-things-will-be-in-use-in-2016-up-30-percent-from-2015
(visited on 10/22/2019).

[73] Phillip B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to
Distinct Values Queries and Event Reports”. In: VLDB 2001, Proceedings
of 27th International Conference on Very Large Data Bases, September 11-14,
2001, Roma, Italy, pp. 541–550.

[74] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. “On Cali-
bration of Modern Neural Networks”. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, pp. 1321–1330.

[75] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pat-
hak, Stefano Stefani, and Vidhya Srinivasan. “Amazon Redshift and the
Case for Simpler Data Warehouses”. In: Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pp. 1917–1923.

[76] Ashish Gupta et al. “Mesa: Geo-Replicated, Near Real-Time, Scalable
Data Warehousing”. In: PVLDB 7.12 (2014), pp. 1259–1270.

[77] Eric Haines. “Point in polygon strategies”. In: Graphics gems IV 994
(1994), pp. 24–26.

[78] Theo Härder and Andreas Reuter. “Principles of Transaction-Oriented
Database Recovery”. In: ACM Comput. Surv. 15.4 (1983), pp. 287–317.

[79] Hazar Harmouch and Felix Naumann. “Cardinality Estimation: An Ex-
perimental Survey”. In: PVLDB 11.4 (2017), pp. 499–512.

[80] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick
Koudas, and Gautam Das. “Multi-Attribute Selectivity Estimation Us-
ing Deep Learning”. In: CoRR abs/1903.09999 (2019).

[81] Rojeh Hayek and Oded Shmueli. “Improved Cardinality Estimation by
Learning Queries Containment Rates”. In: CoRR abs/1908.07723 (2019).

������������ 125

[82] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. “General-
ized Search Trees for Database Systems”. In: VLDB’95, Proceedings of
21th International Conference on Very Large Data Bases, September 11-15,
1995, Zurich, Switzerland. Pp. 562–573.

[83] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. “Towards learning
a partitioning advisor with deep reinforcement learning”. In: Proceed-
ings of the Second International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, aiDM@SIGMOD 2019, Amsterdam, The
Netherlands, July 5, 2019, 6:1–6:4.

[84] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Mo-
lina, Kristian Kersting, and Carsten Binnig. “DeepDB: Learn from Data,
not from Queries!” In: CoRR abs/1909.00607 (2019).

[85] Clive Humby. Data is the New Oil. 2006. url: https://ana.blogs.com/m
aestros/2006/11/data_is_the_new.html (visited on 11/27/2019).

[86] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. “Database Cr-
acking”. In: CIDR 2007, Third Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 7-10, 2007, Online Proceedings,
pp. 68–78.

[87] Edwin H. Jacox and Hanan Samet. “Spatial join techniques”. In: ACM
Trans. Database Syst. 32.1 (2007), p. 7.

[88] Shrainik Jain, Jiaqi Yan, Thierry Cruanes, and Bill Howe. “Database-
Agnostic Workload Management”. In: CIDR 2019, 9th Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings.

[89] Eunyoung Jeong, Shinae Woo, Muhammad Asim Jamshed, Haewon
Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. “mTCP: a
Highly Scalable User-level TCP Stack for Multicore Systems”. In: Pro-
ceedings of the 11th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014, pp. 489–
502.

[90] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Ten-
sor Processing Unit”. In: Proceedings of the 44th Annual International Sym-
posium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June
24-28, 2017, pp. 1–12.

[91] Robert Kallman et al. “H-store: a high-performance, distributed main
memory transaction processing system”. In: PVLDB 1.2 (2008), pp. 1496–
1499.

[92] Srikanth Kandula, Kukjin Lee, Surajit Chaudhuri, and Marc Friedman.
“Experiences with Approximating Queries in Microsoft’s Production
Big-Data Clusters”. In: PVLDB 12.12 (2019), pp. 2131–2142.

126 ������������

[93] Kothuri Venkata Ravi Kanth and Siva Ravada. “Efficient Processing of
Large Spatial Queries Using Interior Approximations”. In: Advances in
Spatial and Temporal Databases, 7th International Symposium, SSTD 2001,
Redondo Beach, CA, USA, July 12-15, 2001, Proceedings, pp. 404–424.

[94] Kothuri Venkata Ravi Kanth, Siva Ravada, and Daniel Abugov. “Quad-
tree and R-tree indexes in oracle spatial: a comparison using GIS data”.
In: Proceedings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data, Madison, Wisconsin, USA, June 3-6, 2002, pp. 546–557.

[95] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev,
Henri Heiskanen, and Volker Markl. “Benchmarking Distributed Stream
Processing Engines”. In: CoRR abs/1802.08496 (2018).

[96] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots”. In:
Proceedings of the 27th International Conference on Data Engineering, ICDE
2011, April 11-16, 2011, Hannover, Germany, pp. 195–206.

[97] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Baye-
sian Deep Learning for Computer Vision?” In: Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 5574–
5584.

[98] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

[99] * Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas
Neumann, and Alfons Kemper. “Estimating Filtered Group-By Queries
is Hard: Deep Learning to the Rescue”. In: 1st International Workshop on
Applied AI for Database Systems and Applications (2019).

[100] * Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Bon-
cz, and Alfons Kemper. “Learned Cardinalities: Estimating Correlated
Joins with Deep Learning”. In: CIDR 2019, 9th Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 13-16, 2019,
Online Proceedings.

[101] * Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Chris-
toph Anneser, Eleni Tzirita Zacharatou, Harish Doraiswamy, Peter A.
Boncz, Thomas Neumann, and Alfons Kemper. “Adaptive Main-Mem-
ory Indexing for High-Performance Point-Polygon Joins”. In: Proceed-
ings of the 23nd International Conference on Extending Database Technology,
EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020, pp. 347–358.

������������ 127

[102] * Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Pe-
ter A. Boncz, Thomas Neumann, and Alfons Kemper. “Approximate
Geospatial Joins with Precision Guarantees”. In: 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018,
pp. 1360–1363.

[103] * Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Al-
fons Kemper, Tim Kraska, and Thomas Neumann. “SOSD: A Bench-
mark for Learned Indexes”. In: NeurIPS Workshop on Machine Learning
for Systems (2019).

[104] * Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas Neu-
mann, and Alfons Kemper. “Analytics on Fast Data: Main-Memory Data-
base Systems versus Modern Streaming Systems”. In: Proceedings of the
20th International Conference on Extending Database Technology, EDBT 2017,
Venice, Italy, March 21-24, 2017. Pp. 49–60.

[105] * Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas Neu-
mann, and Alfons Kemper. “Scalable Analytics on Fast Data”. In: ACM
Trans. Database Syst. 44.1 (2019), 1:1–1:35.

[106] * Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard
Radke, Viktor Leis, Peter A. Boncz, Thomas Neumann, and Alfons Kem-
per. “Estimating Cardinalities with Deep Sketches”. In: Proceedings of the
2019 International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. Pp. 1937–1940.

[107] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural
networks”. In: CoRR abs/1612.00796 (2016).

[108] Allen Klinger. “Patterns and search statistics”. In: Optimizing methods in
statistics. Elsevier, 1971, pp. 303–337.

[109] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan.
“SageDB: A Learned Database System”. In: CIDR 2019, 9th Biennial Con-
ference on Innovative Data Systems Research, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings.

[110] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzo-
tis. “The Case for Learned Index Structures”. In: Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pp. 489–504.

[111] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed mes-
saging system for log processing”. In: Proceedings of the NetDB, pp. 1–
7.

128 ������������

[112] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein,
and Ion Stoica. “Learning to Optimize Join Queries With Deep Rein-
forcement Learning”. In: CoRR abs/1808.03196 (2018).

[113] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States, pp. 1106–1114.

[114] Jens Krüger, Changkyu Kim, Martin Grund, Nadathur Satish, David
Schwalb, Jatin Chhugani, Hasso Plattner, Pradeep Dubey, and Alexan-
der Zeier. “Fast Updates on Read-Optimized Databases Using Multi-
Core CPUs”. In: PVLDB 5.1 (2011), pp. 61–72.

[115] Moritz Kulessa, Alejandro Molina, Carsten Binnig, Benjamin Hilprecht,
and Kristian Kersting. “Model-based Approximate Query Processing”.
In: CoRR abs/1811.06224 (2018).

[116] M. Seetha Lakshmi and Shaoyu Zhou. “Selectivity Estimation in Exten-
sible Databases - A Neural Network Approach”. In: VLDB’98, Proceed-
ings of 24rd International Conference on Very Large Data Bases, August 24-27,
1998, New York City, New York, USA, pp. 623–627.

[117] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Sim-
ple and Scalable Predictive Uncertainty Estimation using Deep Ensem-
bles”. In: Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pp. 6402–6413.

[118] * Harald Lang, Andreas Kipf, Linnea Passing, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. “Make the most out of your SIMD in-
vestments: counter control flow divergence in compiled query pipelines”.
In: Proceedings of the 14th International Workshop on Data Management on
New Hardware, Houston, TX, USA, June 11, 2018, 5:1–5:8.

[119] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter A. Boncz.
“Performance-Optimal Filtering: Bloom overtakes Cuckoo at High-Th-
roughput”. In: PVLDB 12.5 (2019), pp. 502–515.

[120] * Harald Lang, Linnea Passing, Andreas Kipf, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. “Make the most out of your SIMD in-
vestments: counter control flow divergence in compiled query pipelines”.
In: VLDBJ (2019), pp. 1–18.

[121] Per-Åke Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback.
“Cardinality estimation using sample views with quality assurance”. In:
Proceedings of the ACM SIGMOD International Conference on Management
of Data, Beijing, China, June 12-14, 2007, pp. 175–186.

������������ 129

[122] Learned Cardinalities in PyTorch. https://github.com/andreaskipf/lea
rnedcardinalities.

[123] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.
“Morsel-driven parallelism: a NUMA-aware query evaluation frame-
work for the many-core age”. In: International Conference on Management
of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pp. 743–754.

[124] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons
Kemper, and Thomas Neumann. “How Good Are Query Optimizers,
Really?” In: PVLDB 9.3 (2015), pp. 204–215.

[125] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neu-
mann. “LeanStore: In-Memory Data Management beyond Main Mem-
ory”. In: 34th IEEE International Conference on Data Engineering, ICDE
2018, Paris, France, April 16-19, 2018, pp. 185–196.

[126] Viktor Leis, Alfons Kemper, and Thomas Neumann. “The adaptive radix
tree: ARTful indexing for main-memory databases”. In: 29th IEEE Inter-
national Conference on Data Engineering, ICDE 2013, Brisbane, Australia,
April 8-12, 2013, pp. 38–49.

[127] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and
Thomas Neumann. “Cardinality Estimation Done Right: Index-Based
Join Sampling”. In: CIDR 2017, 8th Biennial Conference on Innovative Data
Systems Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceed-
ings.

[128] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter
A. Boncz, Alfons Kemper, and Thomas Neumann. “Query optimization
through the looking glass, and what we found running the Join Order
Benchmark”. In: VLDB J. 27.5 (2018), pp. 643–668.

[129] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
“The ART of practical synchronization”. In: Proceedings of the 12th Inter-
national Workshop on Data Management on New Hardware, DaMoN 2016,
San Francisco, CA, USA, June 27, 2016, 3:1–3:8.

[130] Chao Li, Yi Yang, Min Feng, Srimat T. Chakradhar, and Huiyang Zhou.
“Optimizing memory efficiency for deep convolutional neural networks
on GPUs”. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake
City, UT, USA, November 13-18, 2016, pp. 633–644.

[131] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaud-
huri. “Robust Estimation of Resource Consumption for SQL Queries
using Statistical Techniques”. In: PVLDB 5.11 (2012), pp. 1555–1566.

130 ������������

[132] Xi Liang, Aaron J. Elmore, and Sanjay Krishnan. “Opportunistic View
Materialization with Deep Reinforcement Learning”. In: CoRR abs/1903-
.01363 (2019).

[133] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zu-
zarte. “Cardinality estimation using neural networks”. In: Proceedings of
25th Annual International Conference on Computer Science and Software En-
gineering, CASCON 2015, Markham, Ontario, Canada, 2-4 November, 2015,
pp. 53–59.

[134] Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann.
“On the Design and Scalability of Distributed Shared-Data Databases”.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pp. 663–676.

[135] Guy Lohman. Is Query Optimization a Solved Problem? 2014. url: http:
//wp.sigmod.org/?p=1075 (visited on 11/14/2019).

[136] Lothar F. Mackert and Guy M. Lohman. “R* Optimizer Validation and
Performance Evaluation for Distributed Queries”. In: VLDB’86 Twelfth
International Conference on Very Large Data Bases, August 25-28, 1986, Ky-
oto, Japan, Proceedings, pp. 149–159.

[137] Tanu Malik, Randal C. Burns, and Nitesh V. Chawla. “A Black-Box Ap-
proach to Query Cardinality Estimation”. In: CIDR 2007, Third Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, Jan-
uary 7-10, 2007, Online Proceedings, pp. 56–67.

[138] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Moham-
mad Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul.
“Neo: A Learned Query Optimizer”. In: PVLDB 12.11 (2019), pp. 1705–
1718.

[139] Ryan C. Marcus and Olga Papaemmanouil. “Plan-Structured Deep Neu-
ral Network Models for Query Performance Prediction”. In: PVLDB
12.11 (2019), pp. 1733–1746.

[140] Ryan Marcus and Olga Papaemmanouil. “Deep Reinforcement Learn-
ing for Join Order Enumeration”. In: Proceedings of the First International
Workshop on Exploiting Artificial Intelligence Techniques for Data Manage-
ment, aiDM@SIGMOD 2018, Houston, TX, USA, June 10, 2018, 3:1–3:4.

[141] Ryan Marcus and Olga Papaemmanouil. “Towards a Hands-Free Query
Optimizer through Deep Learning”. In: CIDR 2019, 9th Biennial Con-
ference on Innovative Data Systems Research, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings.

������������ 131

[142] Charles Masson, Jee E. Rim, and Homin K. Lee. “DDSketch: A Fast and
Fully-Mergeable Quantile Sketch with Relative-Error Guarantees”. In:
PVLDB 12.12 (2019), pp. 2195–2205.

[143] Friedemann Mattern and Christian Floerkemeier. “From the Internet of
Computers to the Internet of Things”. In: From Active Data Management
to Event-Based Systems and More - Papers in Honor of Alejandro Buchmann
on the Occasion of His 60th Birthday, pp. 242–259.

[144] John Meehan et al. “S-Store: Streaming Meets Transaction Processing”.
In: PVLDB 8.13 (2015), pp. 2134–2145.

[145] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. “Efficient
Computation of Frequent and Top-k Elements in Data Streams”. In:
Database Theory - ICDT 2005, 10th International Conference, Edinburgh, UK,
January 5-7, 2005, Proceedings, pp. 398–412.

[146] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. “Why go
logarithmic if we can go linear?: Towards effective distinct counting of
search traffic”. In: EDBT 2008, 11th International Conference on Extend-
ing Database Technology, Nantes, France, March 25-29, 2008, Proceedings,
pp. 618–629.

[147] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. “Preventing
Bad Plans by Bounding the Impact of Cardinality Estimation Errors”.
In: PVLDB 2.1 (2009), pp. 982–993.

[148] Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kemper, and
Thomas Neumann. “ScyPer: A Hybrid OLTP&OLAP Distributed Main
Memory Database System for Scalable Real-Time Analytics”. In: Daten-
banksysteme für Business, Technologie und Web (BTW), 15. Fachtagung des
GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 11.-15.3.-
2013 in Magdeburg, Germany. Proceedings, pp. 499–502.

[149] Magnus Müller, Guido Moerkotte, and Oliver Kolb. “Improved Selectiv-
ity Estimation by Combining Knowledge from Sampling and Synopses”.
In: PVLDB 11.9 (2018), pp. 1016–1028.

[150] NYC Neighborhoods. https://data.cityofnewyork.us/City-Governmen
t/Neighborhood-Tabulation-Areas/cpf4-rkhq.

[151] Thomas Neumann. “Efficiently Compiling Efficient Query Plans for
Modern Hardware”. In: PVLDB 4.9 (2011), pp. 539–550.

[152] Thomas Neumann. Random Execution Plans. 2014. url: http://databas
earchitects.blogspot.com/2014/06/random-execution-plans.html
(visited on 11/28/2019).

132 ������������

[153] Thomas Neumann and Alfons Kemper. “Unnesting Arbitrary Queries”.
In: Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fach-
tagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS),
4.-6.3.2015 in Hamburg, Germany. Proceedings, pp. 383–402.

[154] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. “Fast Serial-
izable Multi-Version Concurrency Control for Main-Memory Database
Systems”. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015, pp. 677–689.

[155] Thomas Neumann and Bernhard Radke. “Adaptive Optimization of
Very Large Join Queries”. In: Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, pp. 677–692.

[156] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon
Bringhurst, Indranil Gupta, and Roy H Campbell. “Samza: stateful scal-
able stream processing at LinkedIn”. In: Proceedings of the VLDB Endow-
ment 10.12 (2017), pp. 1634–1645.

[157] NVIDIA NVLink. https://www.nvidia.com/en-us/data-center/nvlin
k/.

[158] NVIDIA Tesla V100. https://images.nvidia.com/content/technologi
es/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf.

[159] Jack A. Orenstein. “Redundancy in Spatial Databases”. In: Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data,
Portland, Oregon, USA, May 31 - June 2, 1989. Pp. 295–305.

[160] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya
Keerthi. “An Empirical Analysis of Deep Learning for Cardinality Esti-
mation”. In: CoRR abs/1905.06425 (2019).

[161] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya
Keerthi. “Learning State Representations for Query Optimization with
Deep Reinforcement Learning”. In: Proceedings of the Second Workshop
on Data Management for End-To-End Machine Learning, DEEM@SIGMOD
2018, Houston, TX, USA, June 15, 2018, 4:1–4:4.

[162] * Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
“How Good Are Modern Spatial Analytics Systems?” In: PVLDB 11.11
(2018), pp. 1661–1673.

[163] * Varun Pandey, Andreas Kipf, Dimitri Vorona, Tobias Mühlbauer, Tho-
mas Neumann, and Alfons Kemper. “High-Performance Geospatial An-
alytics in HyPerSpace”. In: Proceedings of the 2016 International Confer-
ence on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pp. 2145–2148.

������������ 133

[164] Andrew Pavlo et al. “Self-Driving Database Management Systems”. In:
CIDR 2017, 8th Biennial Conference on Innovative Data Systems Research,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.

[165] Ross Perez. How Snowpipe Streamlines Your Continuous Data Loading and
Your Business. 2017. url: https://www.snowflake.com/blog/snowpipe-
serverless-loading-for-streaming-data/ (visited on 11/30/2019).

[166] Matthew Perron, Zeyuan Shang, Tim Kraska, and Michael Stonebraker.
“How I Learned to Stop Worrying and Love Re-optimization”. In: 35th
IEEE International Conference on Data Engineering, ICDE 2019, Macao, Chi-
na, April 8-11, 2019, pp. 1758–1761.

[167] Markus Pilman, Kevin Bocksrocker, Lucas Braun, Renato Marroquin,
and Donald Kossmann. “Fast Scans on Key-Value Stores”. In: PVLDB
10.11 (2017), pp. 1526–1537.

[168] PipelineDB. https://www.pipelinedb.com/.

[169] Viswanath Poosala and Yannis E. Ioannidis. “Selectivity Estimation Wi-
thout the Attribute Value Independence Assumption”. In: VLDB’97, Pro-
ceedings of 23rd International Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece, pp. 486–495.

[170] PostGIS: Spatial and Geographic objects for PostgreSQL. http://postgis.n
et/.

[171] PostgreSQL. http://www.postgresql.org/.

[172] PyTorch. https://pytorch.org/.

[173] Mark Raasveldt and Hannes Mühleisen. “Don’t Hold My Data Hostage -
A Case For Client Protocol Redesign”. In: PVLDB 10.10 (2017), pp. 1022–
1033.

[174] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann,
Takushi Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mit-
suru Sato. “Managing Non-Volatile Memory in Database Systems”. In:
Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, 1541–
1555.

[175] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and
Alfons Kemper. “Persistent Memory I/O Primitives”. In: Proceedings of
the 15th International Workshop on Data Management on New Hardware,
DaMoN 2019, Amsterdam, The Netherlands, 1 July 2019, 12:1–12:7.

[176] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neu-
mann. “High-Speed Query Processing over High-Speed Networks”. In:
PVLDB 9.4 (2015), pp. 228–239.

134 ������������

[177] Jörg Roth. “The extended split index to efficiently store and retrieve
spatial data with standard databases”. In: Proceedings of the IADIS Inter-
national Conference Applied Computing 2009, 19-21 November, Rome, Italy,
2 Volumes, pp. 85–92.

[178] Google S2 Library. http://s2geometry.io/.

[179] S2Geometry Basic Types. http://s2geometry.io/devguide/basic_types
.html.

[180] Google S2ShapeIndex. https://s2geometry.io/devguide/s2shapeindex.

[181] Bart Samwel et al. “F1 Query: Declarative Querying at Scale”. In: PVLDB
11.12 (2018), pp. 1835–1848.

[182] Grigory Sapunov. Hardware for Deep Learning. Part 3: GPU. 2018. url:
https://blog.inten.to/hardware-for-deep-learning-part-3-gpu-8
906c1644664 (visited on 12/03/2019).

[183] Michael Shekelyan, Anton Dignös, and Johann Gamper. “DigitHist: a
Histogram-Based Data Summary with Tight Error Bounds”. In: PVLDB
10.11 (2017), pp. 1514–1525.

[184] Darius Sidlauskas, Sean Chester, Eleni Tzirita Zacharatou, and Anas-
tasia Ailamaki. “Improving Spatial Data Processing by Clipping Min-
imum Bounding Boxes”. In: 34th IEEE International Conference on Data
Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pp. 425–436.

[185] Gabriel Silva. Maximize your VM’s Performance with Accelerated Network-
ing. 2018. url: https://azure.microsoft.com/en-us/blog/maximize-y
our-vm-s-performance-with-accelerated-networking-now-generall
y-available-for-both-windows-and-linux/ (visited on 10/22/2019).

[186] Solarflare OpenOnload. https://www.openonload.org/.

[187] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil.
“LEO - DB2’s LEarning Optimizer”. In: VLDB 2001, Proceedings of 27th
International Conference on Very Large Data Bases, September 11-14, 2001,
Roma, Italy, pp. 19–28.

[188] Michael Stonebraker, Ugur Çetintemel, and Stanley B. Zdonik. “The 8
requirements of real-time stream processing”. In: SIGMOD Record 34.4
(2005), pp. 42–47.

[189] STX B+-tree. http://panthema.net/2007/stx-btree/.

[190] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. “Exploring Spa-
tial Datasets with Histograms”. In: Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA, USA, February 26 - March 1,
2002, pp. 93–102.

������������ 135

[191] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. “Hardware Ac-
celeration for Spatial Selections and Joins”. In: Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, pp. 455–466.

[192] Ji Sun and Guoliang Li. “An End-to-End Learning-based Cost Estima-
tor”. In: PVLDB 13.3 (2019), pp. 307–319.

[193] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. “Rethinking the Inception Architecture for Com-
puter Vision”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, 2818–2826.

[194] MingJie Tang, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani,
and Walid G. Aref. “LocationSpark: A Distributed In-Memory Data
Management System for Big Spatial Data”. In: PVLDB 9.13 (2016), 1565–
1568.

[195] Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, and
Gautam Das. “Approximate Query Processing using Deep Generative
Models”. In: CoRR abs/1903.10000 (2019).

[196] TLC Trip Record Data. http://www.nyc.gov/html/tlc/html/about/trip
_record_data.shtml.

[197] Ankit Toshniwal et al. “Storm@twitter”. In: International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,
pp. 147–156.

[198] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Mose-
ley, Saehan Jo, and Joseph Antonakakis. “SkinnerDB: Regret-Bounded
Query Evaluation via Reinforcement Learning”. In: Proceedings of the
2019 International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pp. 1153–1170.

[199] TSSX Library. https://github.com/goldsborough/tssx.

[200] Philipp Unterbrunner, Georgios Giannikis, Gustavo Alonso, Dietmar
Fauser, and Donald Kossmann. “Predictable Performance for Unpre-
dictable Workloads”. In: PVLDB 2.1 (2009), pp. 706–717.

[201] David Vengerov, Andre Cavalheiro Menck, Mohamed Zaït, and Sunil
Chakkappen. “Join Size Estimation Subject to Filter Conditions”. In: P-
VLDB 8.12 (2015), pp. 1530–1541.

[202] * Dimitri Vorona, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
“DeepSPACE: Approximate Geospatial Query Processing with Deep Lea-
rning”. In: Proceedings of the 27th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, SIGSPATIAL 2019,
Chicago, IL, USA, November 5-8, 2019, pp. 500–503.

136 ������������

[203] Kai Wei. How We Built Uber Engineering’s Highest Query per Second Service
Using Go. 2016. url: https://eng.uber.com/go-geofence/ (visited on
11/12/2019).

[204] * Christian Winter, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
“GeoBlocks: A Query-Driven Storage Layout for Geospatial Data”. In:
CoRR abs/1908.07753 (2019).

[205] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and
Wolfgang Lehner. “Cardinality estimation with local deep learning mod-
els”. In: Proceedings of the Second International Workshop on Exploiting Ar-
tificial Intelligence Techniques for Data Management, aiDM@SIGMOD 2019,
Amsterdam, The Netherlands, July 5, 2019, 5:1–5:8.

[206] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao
Le, Shi Qiao, and Sriram Rao. “Towards a Learning Optimizer for Shared
Clouds”. In: PVLDB 12.3 (2018), pp. 210–222.

[207] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. “Sampling-Based
Query Re-Optimization”. In: Proceedings of the 2016 International Confer-
ence on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pp. 1721–1736.

[208] Yi-Leh Wu, Divyakant Agrawal, and Amr El Abbadi. “Applying the
Golden Rule of Sampling for Query Estimation”. In: Proceedings of the
2001 ACM SIGMOD international conference on Management of data, Santa
Barbara, CA, USA, May 21-24, 2001, pp. 449–460.

[209] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber.
“Designing Succinct Secondary Indexing Mechanism by Exploiting Col-
umn Correlations”. In: Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Nether-
lands, June 30 - July 5, 2019, pp. 1223–1240.

[210] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo.
“Simba: Efficient In-Memory Spatial Analytics”. In: Proceedings of the
2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 1071–1085.

[211] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan,
Peter Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and
Ion Stoica. “Deep Unsupervised Cardinality Estimation”. In: PVLDB
13.3 (2019), pp. 279–292.

[212] Simin You, Jianting Zhang, and Le Gruenwald. “Parallel spatial query
processing on GPUs using R-trees”. In: Proceedings of the 2nd ACM SIG-
SPATIAL International Workshop on Analytics for Big Geospatial Data, Big-
Spatial@SIGSPATIAL 2013, Nov 4th, 2013, Orlando, FL, USA, pp. 23–31.

������������ 137

[213] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. “GeoSpark: a cluster comput-
ing framework for processing large-scale spatial data”. In: Proceedings of
the 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Bellevue, WA, USA, November 3-6, 2015, 70:1–70:4.

[214] Xiaohui Yu, Calisto Zuzarte, and Kenneth C. Sevcik. “Towards estimat-
ing the number of distinct value combinations for a set of attributes”.
In: Proceedings of the 2005 ACM CIKM International Conference on Informa-
tion and Knowledge Management, Bremen, Germany, October 31 - November
5, 2005, pp. 656–663.

[215] Eleni Tzirita Zacharatou, Harish Doraiswamy, Anastasia Ailamaki, Cláu-
dio T. Silva, and Juliana Freire. “GPU Rasterization for Real-Time Spa-
tial Aggregation over Arbitrary Polygons”. In: PVLDB 11.3 (2017), 352–
365.

[216] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. “Spark: Cluster Computing with Working Sets”. In: 2nd
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston,
MA, USA, June 22, 2010.

[217] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shen-
ker, and Ion Stoica. “Discretized streams: fault-tolerant streaming com-
putation at scale”. In: ACM SIGOPS 24th Symposium on Operating Sys-
tems Principles, Farmington, PA, USA, November 3-6, 2013, pp. 423–438.

[218] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos,
Ruslan Salakhutdinov, and Alexander J. Smola. “Deep Sets”. In: Ad-
vances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pp. 3391–3401.

[219] Mohamed Zaït, Sunil Chakkappen, Suratna Budalakoti, Satyanarayana
R. Valluri, Ramarajan Krishnamachari, and Alan Wood. “Adaptive Statis-
tics in Oracle 12c”. In: PVLDB 10.12 (2017), pp. 1813–1824.

[220] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. “The End
of a Myth: Distributed Transactions Can Scale”. In: CoRR abs/1607.00655
(2016).

[221] Tilmann Zäschke, Christoph Zimmerli, and Moira C. Norrie. “The PH-
tree: a space-efficient storage structure and multi-dimensional index”.
In: International Conference on Management of Data, SIGMOD 2014, Snow-
bird, UT, USA, June 22-27, 2014, pp. 397–408.

[222] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kamin-
sky, Lin Ma, and Rui Shen. “Reducing the Storage Overhead of Main-
Memory OLTP Databases with Hybrid Indexes”. In: Proceedings of the
2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 1567–1581.

138 ������������

[223] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Mi-
chael Kaminsky, Kimberly Keeton, and Andrew Pavlo. “SuRF: Practical
Range Query Filtering with Fast Succinct Tries”. In: Proceedings of the
2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pp. 323–336.

[224] Jianting Zhang and Simin You. “Speeding up large-scale point-in-poly-
gon test based spatial join on GPUs”. In: Proceedings of the 1st ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data,
BigSpatial@SIGSPATIAL 2012, Redondo Beach, CA, USA, November 6, 2012,
pp. 23–32.

[225] Geraldo Zimbrao and Jano Moreira de Souza. “A Raster Approximation
For Processing of Spatial Joins”. In: VLDB’98, Proceedings of 24rd Interna-
tional Conference on Very Large Data Bases, August 24-27, 1998, New York
City, New York, USA, pp. 558–569.

