
Faculty of Computer Science
Systems Engineering Group

Handling Tradeoffs between
Performance and Query-Result

Quality in Data Stream Processing

Dissertation
zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technische Universität Dresden

Fakultät Informatik

eingereicht von
M.Sc. Yuanzhen Ji

geboren am 27.08.1985 in Longkou, China

Gutachter: Prof. Dr. (PhD) Christof Fetzer
Technische Universität Dresden
Fakultät Informatik, Institut für Systemarchitektur
Lehrstuhl für Systems Engineering
01062 Dresden, Deutschland

Prof. Dr. (PhD) Pascal Felber
Université de Neuchâtel
Institut d’informatique
Complex Systems Group
CH-2000 Neuchâtel, Schweiz

Tag der Verteidigung: 28. November 2017

Dresden, im April, 2018

Abstract

Data streams in the form of potentially unbounded sequences of tuples arise nat-
urally in a large variety of domains including finance markets, sensor networks,
social media, and network traffic management. The increasing number of applica-
tions that require processing data streams with high throughput and low latency
have promoted the development of data stream processing systems (DSPS). A DSPS
processes data streams with continuous queries, which are issued once and return
query results to users continuously as new tuples arrive.

For stream-based applications, both the query-execution performance (in terms
of, e.g., throughput and end-to-end latency) and the quality of produced query re-
sults (in terms of, e.g., accuracy and completeness) are important. However, a DSPS
often needs to make tradeoffs between these two requirements, either because of the
data imperfection within the streams, or because of the limited computation capacity
of the DSPS itself. Performance versus result-quality tradeoffs caused by data imper-
fection are inevitable, because the quality of the incoming data is beyond the control
of a DSPS, whereas tradeoffs caused by system limitations can be alleviated—even
erased—by enhancing the DSPS itself.

This dissertation seeks to advance the state of the art on handling the perfor-
mance versus result-quality tradeoffs in data stream processing caused by the above
two aspects of reasons. For tradeoffs caused by data imperfection, this dissertation
focuses on the typical data-imperfection problem of stream disorder and proposes
the concept of quality-driven disorder handling (QDDH). QDDH enables a DSPS to
make flexible and user-configurable tradeoffs between the end-to-end latency and
the query-result quality when dealing with stream disorder. Moreover, compared to
existing disorder handling approaches, QDDH can significantly reduce the end-to-
end latency, and at the same time provide users with desired query-result quality. In
this dissertation, a generic buffer-based QDDH framework and three instantiations
of the generic framework for distinct query types are presented. For tradeoffs caused
by system limitations, this dissertation proposes a system-enhancement approach
that combines the row-oriented and the column-oriented data layout and processing
techniques in data stream processing to improve the throughput. To fully exploit the
potential of such hybrid execution of continuous queries, a static, cost-based query
optimizer is introduced. The optimizer works at the operator level and takes the
unique property of execution plans of continuous queries—feasibility—into account.

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my advisor, Prof.
Christof Fetzer, for providing me the opportunity to write my PhD dissertation in
the Systems Engineering Group, and for supporting me whenever I needed during
the last years. Second, I would like to thank Prof. Pascal Felber for his commitment
to serve as a secondary reviewer. Thirdly, I am also grateful to my former manager
at SAP Dresden, Gregor Hackenbroich, for giving me the opportunity to join the
industrial PhD program at SAP Dresden, for guaranteeing the time that I needed for
my PhD work, and for all the review and feedback on my publications.

My special thanks go to Zbigniew Jerzak and Anisoara Nica. Zbigniew took
the responsibility of being my advisor on the company side. He taught me all the
essential skills to accomplish such a difficult project, protected me from being too
much disturbed by the company work that is irreverent to my PhD project, gave me
uncountable suggestions on my research, and introduced me to Ani, another great
motivator and driver of my PhD project. Ani supported me throughout the project
not only with her expertise, her constructive suggestions and feedback, but also with
her passion on research and her consistently positive and optimistic attitude.

I also thank my coauthors Hongjin Zhou and Jun Sun, who worked with me
on the topics of quality-driven disorder handling for individual sliding-window ag-
gregate queries and quality-driven disorder handling for individual sliding-window
join queries, respectively. They contributed a lot to the initial implementation of the
prototype system.

Furthermore, I would like to thank my former or present colleagues at SAP,
especially Thomas Heinze, Uwe Jugel, and Elena Vasilyeva, and other PhD students
in the Systems Engineering Group for all the inspirations and discussions.

Last but not least, I am very thankful to my husband and my parents for their
continuous motivation and support.

Without any of you, it would not be possible to accomplish this PhD project.
Thank you!

Publications

The content of this dissertation is based on the following peer-reviewed publications:

[Ji+16a] Yuanzhen Ji, Anisoara Nica, Zbigniew Jerzak, Gregor Hackenbroich,
and Christof Fetzer. “Quality-driven disorder handling for concurrent
queries with shared operators”. In: Proceedings of the 10th ACM Inter-
national Conference on Distributed Event-Based Systems. DEBS ’16. ACM,
2016, pp. 68–79

[Ji+16b] Yuanzhen Ji, Jun Sun, Anisoara Nica, Zbigniew Jerzak, Gregor Hack-
enbroich, and Christof Fetzer. “Quality-driven disorder handling for
m-way sliding window stream joins”. In: Proceedings of the 32th IEEE
International Conference on Data Engineering. ICDE ’16. IEEE, 2016, pp.
493–504

[Ji+15a] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor
Hackenbroich, and Christof Fetzer. “Quality-driven processing of slid-
ing window aggregates over out-of-order data streams”. In: Proceedings
of the 9th ACM International Conference on Distributed Event-Based Systems.
DEBS ’15. ACM, 2015, pp. 25–36

[Ji+15b] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor
Hackenbroich, and Christof Fetzer. “Quality-driven continuous query
execution over out-of-order data streams”. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. SIGMOD
’15. ACM, 2015, pp. 889–894

[Ji+15c] Yuanzhen Ji, Zbigniew Jerzak, Anisoara Nica, Gregor Hackenbroich,
and Christof Fetzer. “Optimization of continuous queries in federated
database and stream processing systems”. In: Proceedings of the 16th
Conference on Datenbanksysteme für Business, Technologie und Web (BTW).
2015, pp. 403–422

[Ji13] Yuanzhen Ji. “Database support for processing complex aggregate
queries over data streams”. In: Proceedings of the Joint EDBT/ICDT 2013
Workshops. EDBT ’13. ACM, 2013, pp. 31–37

v

Contents

Publications v

List of Figures xi

List of Tables xv

List of Algorithms xvi

1 Introduction 1
1.1 Tradeoffs between Performance and Query-Result Quality 1
1.2 Research Questions and Contributions 2
1.3 Dissertation Outline . 4

2 Background 7
2.1 Data Stream Processing . 7

2.1.1 Data Model . 9
2.1.2 Query Model . 10
2.1.3 Query Execution Model . 15

2.2 Handling Data Imperfection in Data Streams 15
2.2.1 Common Types of Data Imperfection 16
2.2.2 Approaches for Handling Data Imperfection 18

2.3 Handling System Limitations of DSPSs 20
2.3.1 Approaches for Enhancing a DSPS 20
2.3.2 Approaches of Trading Result-Quality for Performance 22

2.4 Summary . 23

3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling 25
3.1 Motivation . 25
3.2 Buffer-Based Disorder Handling . 28

3.2.1 Handling Intra-Stream Disorder 28
3.2.2 Handling Inter-Stream Disorder 29

3.3 Buffer-Based Quality-Driven Disorder Handling (QDDH) Framework 30
3.4 Quality-Driven Buffer-Size Adaptation 32

3.4.1 Analytical-Model-Based Buffer-Size Adaptation 32
3.4.2 Control-based Buffer-Size Adaptation 36

3.5 Related Work . 38
3.5.1 Disorder Handling Approaches 38

vii

CONTENTS

3.5.2 Load Shedding . 40
3.6 Summary . 41

4 Quality-Driven Disorder Handling for Individual Queries 43
4.1 QDDH for Sliding-Window Aggregate Queries 43

4.1.1 Result-Quality Metric . 43
4.1.2 QDDH-Framework Instantiation Overview 43
4.1.3 Calculating Window-Coverage Threshold 44
4.1.4 Measuring Window Coverages at Runtime 48
4.1.5 Analytical-Model-Based Buffer-Size Adaptation 50
4.1.6 Control-Based Buffer-Size Adaptation 52

4.2 QDDH for M-way Sliding-Window Join Queries 52
4.2.1 Result-Quality Metric . 52
4.2.2 QDDH-Framework Instantiation Overview 53
4.2.3 The Same-K Policy . 55
4.2.4 Analytical-Model-Based Buffer-Size Adaptation 58
4.2.5 Control-Based Buffer-Size Adaptation 62
4.2.6 Applicability in Distributed Join Processing 63

4.3 Evaluation . 64
4.3.1 Implementation and Setup . 65
4.3.2 Baseline Disorder Handling Approaches and Results 69
4.3.3 Effectiveness of QDDH . 72
4.3.4 Effect of Important System Parameters 78
4.3.5 Overhead of Buffer-Size Adaptation 81
4.3.6 Summary of Experimental Results 83

4.4 Summary . 84

5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators 87
5.1 Introduction . 87
5.2 QDDH-Framework Instantiation Overview 91
5.3 Shared Disorder Handling Using K-Slack Chain 92
5.4 Memory-Optimal QDDH . 93

5.4.1 Solution for Individual Branch Operators 93
5.4.2 Solution for a Subplan . 97

5.5 Runtime Adaptation . 103
5.5.1 Strategies for Triggering Adaptations 103
5.5.2 Semantics-Preserving Adaptations 104

5.6 Evaluation . 107
5.6.1 Setup . 107
5.6.2 Performance of Alternative Algorithms for Computing K-slack

Configurations . 109
5.6.3 Overhead of Runtime Adaptation 112

5.7 Related Work . 115
5.8 Summary . 116

viii

CONTENTS

6 Reducing the Tradeoff via Hybrid Query Execution 117
6.1 Introduction . 117
6.2 Hybrid Execution of a Continuous Query 120
6.3 Query Optimization . 122

6.3.1 The Optimization Objective . 122
6.3.2 The Cost Model . 123
6.3.3 Two-Phase Optimization . 126
6.3.4 Search-Space Pruning in Phase-Two of the Query Optimization 128

6.4 Evaluation . 132
6.4.1 Optimization Time . 134
6.4.2 Effectiveness of the Proposed Optimizer 134
6.4.3 Influence of the Plan-Feasibility Check 139

6.5 Related Work . 139
6.6 Summary . 141

7 Conclusion 143
7.1 Summary . 143
7.2 Outlook . 144

Symbols 147

Index 153

Bibliography 156

ix

List of Figures

2.1 Abstract architecture of a DSPS . 7
2.2 History of DSPSs [Hei+14a] . 8
2.3 Query-operator classes and their relationships [ABW06] 11
2.4 Example of time-based sliding window. (W = 3 time units, β = 1 time

unit) . 12
2.5 Example of count-based sliding window. (W = 3 tuples, β = 1 tuple) . 12
2.6 Example of logical query plan. 14
2.7 Parallelizing query-operators for improving processing performance. 20

3.1 Effect of stream disorder on the result quality of sliding-window ag-
gregate queries. 25

3.2 Effect of stream disorder on the result quality of sliding-window join
queries. The size of the window on each stream is 3 time units. 26

3.3 Example of using K-slack to handle the intra-stream disorder. 28
3.4 Intra-stream disorder handling performed implicitly by a synchroniza-

tion buffer. 30
3.5 The generic buffer-based quality-driven disorder handling framework. 31
3.6 The expected percentage of so-far-received tuples belonging to a cer-

tain time unit in a stream among all tuples belonging to the time unit
in the stream under a certain distribution of tuple delays in the stream. 35

3.7 Control-based K-slack buffer-size adaptation using a PD controller. . . 38
3.8 Influence of the K-slack buffer size and the disorder characteristics on

the coverages of instantaneous windows. 41

4.1 Instantiation of the buffer-based QDDH framework for individual SWA
queries. 44

4.2 Schematic illustration of the distribution of a produced SUM result Â
by the central limit theorem. (Assume that the corresponding exact
result A > 0.) . 46

4.3 (a) The most recent instantaneous window constructed over an input
stream under disorder handling; (b) The time-varying behavior of the
measured coverage of the instantaneous window in the sub-figure (a). 49

4.4 Instantiation of the buffer-based QDDH framework for individual MSWJ
queries. 53

4.5 Illustrative proof of the Same-K policy for 2-way sliding-window joins. 56

xi

LIST OF FIGURES

4.6 Effect of out-of-order tuples arriving at the join operator on the join
selectivity and the recall of join results. 61

4.7 Disorder characteristics of the real-world soccer-game data streams
used in the evaluation of QDDH for individual SWA queries. 66

4.8 Disorder characteristics of the real-world soccer-game data streams
used in the evaluation of QDDH for individual MSWJ queries. 67

4.9 Cumulative distribution functions (CDF) of the relative errors of the
aggregate results produced by the No-K-slack baseline approach for
AggrDataset1 and AggrDataset2. 70

4.10 Recall of the join results produced by the No-K-slack baseline approach
for (JoinDataset×x, Q×i), i ∈ {2, 3, 4}. 71

4.11 Effectiveness of QDDH for individual SWA queries under varying
result relative-error thresholds εthr, using both the analytical-model-
based and the PD-controller-based buffer-size adaptation methods.
The input dataset is AggrDataset1. 73

4.12 Effectiveness of QDDH for individual SWA queries under varying
result relative-error thresholds εthr, using both the analytical-model-
based and the PD-controller-based buffer-size adaptation methods.
The input dataset is AggrDataset2. 74

4.13 Effectiveness of QDDH for individual MSWJ queries under varying
recall requirements Γ, using both the analytical-model-based and the
PD-controller-based buffer-size adaptation methods. 76

4.14 Effectiveness of QDDH for individual MSWJ queries under varying
result-quality measurement periods Pmeas, using the analytical-model-
based buffer-size adaptation method with the NonEqSel modeling strat-
egy. 77

4.15 Effect of the K-search granularity g on the performance of the analyti-
cal-model-based buffer-size adaptation method in QDDH for individ-
ual SWA queries. A sliding-window SUM query with a window size
of W = 5 seconds and a window slide of β = 0.1 second was used. . . 78

4.16 Effect of the K-search granularity g on the performance of the ana-
lytical-model-based buffer-size adaptation method (with NonEqSel) in
QDDH for individual MSWJ queries. 79

4.17 Effect of the retrospect parameter q on the performance of the PD-con-
troller-based buffer-size adaptation method in QDDH for individual
SWA queries. A sliding-window SUM query with a window size of
W = 1 second and a window slide of β = 0.1 second was used. 80

4.18 Effect of the adaptation interval L on the performance of the analytical-
model-based buffer-size adaptation method (with NonEqSel) in QDDH
for individual MSWJ queries. 82

4.19 Time needed by the analytical-model-based buffer-size adaptation
method to derive a new K-slack buffer size in an individual adapta-
tion iteration in QDDH for individual SWA queries. A sliding-window
SUM query with a window size of W = 1 second and a window slide
of β = 0.1 second was used. 83

xii

LIST OF FIGURES

4.20 Time needed by the analytical-model-based buffer-size adaptation
method to derive a new K-slack buffer size in an individual adap-
tation iteration in QDDH for individual MSWJ queries. 84

5.1 A global query plan constructed after fully exploiting the sharing
opportunities among the selection predicates of five concurrent queries. 88

5.2 Instantiation of the buffer-based QDDH framework for concurrent SWA
and MSWJ queries with shared source and filter operators. 91

5.3 Shared disorder handling within a subplan Gi that does not contain
filter operators: single K-slack buffer versus K-slack chain. (Assume
that κ3 < κ1 < κ2.) . 92

5.4 All possible memory-optimal local K-slack configurations for a branch
operator. Assume that the optimal QDDH buffer sizes of the queries
satisfy 0 < κ3 < κ1 < κ2. 94

5.5 All candidate K-slack configurations for the subplan G3 of the global
query plan in Figure 5.1. Assume that the optimal QDDH buffer sizes
of the queries in G3 satisfy 0 < κ5 < κ3 < κ4. 98

5.6 Adaptation of the local K-slack configuration for a branch operator. . 105
5.7 Global query plans used to evaluate the instantiation of the QDDH

framework for concurrent queries with shared source and filter opera-
tors. 108

5.8 The runtime of alternative algorithms for determining the global K-
slack configuration for the global query plans in Figure 5.7, and the
memory costs of the produced global K-slack configurations. 110

5.9 QDDH performance of the global K-slack configurations produced by
alternative configuration-computation algorithms for the global query
plans in Figure 5.7. 111

5.10 Total time consumed by updating to newly-computed global K-slack
configurations during the query processing under different combina-
tions of adaptation-triggering strategies and buffer-reuse strategies. . 112

5.11 Performance of the instantiation of the QDDH framework for concur-
rent queries with shared operators, under different combinations of
adaptation-triggering strategies and buffer-reuse strategies. 114

6.1 Comparison of the computation time of correlated aggregation in state-
of-the-art column-oriented in-memory database and row-oriented DSPS119

6.2 Execution of continuous queries in a hybrid system that consists of a
row-oriented DSPS and a column-oriented in-memory database (CIMDB).121

6.3 Illustrative execution plan which extends the subplan joining a set of
streams S = {S1, S2, . . . , Sm} to join with another stream Sm+1. 127

6.4 Pruning opportunities when enumerating partial execution plans rooted
at a DSPS-op. 129

6.5 Logical plans of the queries used to evaluate the hybrid system in
Figure 6.2. 133

6.6 Performance of the devised optimal execution plans for the queries
Q1–Q6 in Figure 6.5 at increasing tuple arrival rates. 136

6.7 Performance of the devised optimal execution plans for the queries
Q1–Q6 in Figure 6.5 at increasing tuple arrival rates. (Cont.) 137

xiii

LIST OF FIGURES

6.8 Throughput of the optimal execution plans devised with and without
the plan-feasibility check. 138

xiv

List of Tables

4.1 General statistics of the real-world soccer-game data streams used in
the evaluation of QDDH for individual SWA queries. 65

4.2 Default parameter setting applied in the evaluation of the instantia-
tions of the QDDH framework. 69

4.3 Accuracy of aggregate results produced by the Max-K-slack baseline
approach for AggrDataset1 and AggrDataset2. There are in total 9800
and 14000 results for AggrDataset1 and AggrDataset2, respectively. . 70

4.4 Experimental results of the Max-K-slack baseline approach for (JoinDataset×x,
Q×i), i ∈ {2, 3, 4}. 72

5.1 Results of the No-K-slack and the Max-K-slack baseline disorder han-
dling approaches for the global query plans in Figure 5.7. 109

5.2 Average time (µs) needed to update an existing global K-slack config-
uration to a newly-computed global K-slack configuration during the
query processing under different combinations of adaptation-trigger-
ing strategies and buffer-reuse strategies. 113

6.1 Optimization times of queries with different numbers of operators. . . 134
6.2 Optimization times of Q1–Q6 in Figure 6.5 134

xv

List of Algorithms

3.1 Buffer-based inter-stream disorder handling for m streams 29
4.1 The behavior of the Buffer Manager in the QDDH-framework instantia-

tion for individual SWA queries (cf. Figure 4.1) 45
4.2 Calculate the window-coverage threshold for a sliding-window SUM

query . 47
4.3 Measure the coverages of instantaneous windows constructed over a

disorder-handled input stream Si at the query runtime 50
4.4 Analytical-model-based adaptation of the K-slack buffer size to sup-

port QDDH for individual SWA queries 51
4.5 The behavior of the Buffer Manager in the QDDH-framework instantia-

tion for individual MSWJ queries (cf. Figure 4.4) 55
4.6 Execution of MSWJ over disorder-handled input streams 55
4.7 Analytical-model-based adaptation of the K-slack buffer sizes to sup-

port QDDH for individual MSWJ queries 58
5.1 Determine the optimal local K-slack configuration for a branch opera-

tor v that does not have any child that is again a branch operator. . . . 96
5.2 GREEDY: a greedy algorithm for determining the K-slack configuration

for a subplan Gi that roots at a source operator Si. 100
5.3 OPT: algorithm for determining the optimal K-slack configuration for

a subplan Gi that roots at a source operator Si. 102

xvii

1
Introduction

Driven by the expanding coverage of interconnected devices such as sensors, mo-
biles, and computers, as well as the growing popularity of the World Wide Web, the
past two decades have witnessed an increasing number of applications that require
processing information appearing in the form of potentially unbounded sequences
of continuously arriving data items—termed data streams—in (soft) real time. Exam-
ples of such stream-based applications can be found in a large variety of domains
including finance [ZS02; CDN11; CR13], sensor networks [Jer+12; MZJ13; JZ14], so-
cial media [Sha11; Alv+12; Tos+14], and network traffic management [BW01; Cra+02;
QMF13]. For instance, people may wish to analyze the financial data coming from
stock markets and news feeds to conduct electronic trading; a power station may
wish to analyze the energy consumption data reported by smart meters to dynami-
cally adjust the power generation rate; a social-networking service like Twitter may
wish to detect the trend of users’ conversations; and an internet service provider may
wish to monitor the network traffic to detect critical situations such as congestion
and denial of service.

The “continuous” nature of data streams determines that, in order to reflect the
information carried by newly arrived data items in the results of an analysis per-
formed over the data streams in real time, the analysis itself needs to be continuous
as well. Conventional data management techniques used by database management
systems (DBMS) cannot provide adequate support for this class of stream-based appli-
cations. Hence, new data management techniques have been developed, under the
banner of Data Stream Processing (DSP). Systems designed for processing data streams
are, in general, referred to as data stream processing systems (DSPS). A DSPS performs
analyses over data streams in the form of continuous queries [Ter+92; LPT99], which
are issued once and return query results incrementally as new data items arrive.

1.1 Tradeoffs between Performance and Query-Result Qual-
ity

For stream-based applications, both the performance of the query execution and the
quality of produced query results are important. The query-execution performance
refers to, for instance, the throughput and the end-to-end latency; and the query-

1

Chapter 1 Introduction

result quality refers to, for instance, the accuracy, the completeness, and the order
of the produced results. Stonebraker et al. [Sto+05] have argued that a DSPS must
“have a highly-optimized, minimal-overhead execution engine to deliver real-time response
for high-volume applications”, and “guarantee predictable and repeatable outcomes”.

It would be ideal if a DSPS could provide both high query-evaluation performance
and high query-result quality. However, in practice, a DSPS often needs to make
tradeoffs between these two requirements, either because the data being processed
is imperfect, or because the system itself has limited computation capability. For
example, in the data aspect, a typical case of data imperfection faced by a DSPS is
the disorder of data items within streams [GÖ03a; Sto+05]. Namely, the order in
which data items arrive at the system may be different from the order in which
they were generated at external data sources (e.g., sensors). To guarantee a high
result quality of queries that involve order-sensitive operators, additional effort, thus
computation resources, need to be taken to handle the stream disorder. Moreover, the
release of query results may need to be delayed to wait for the data items that arrive
late, which increases the end-to-end latency of the query processing. In the system
aspect, a DSPS may have insufficient computation resources or an inefficient system
implementation. If the capacity of a system cannot match the workload posed by
queries submitted to the system, the system needs to apply techniques such as load
shedding to prevent system overload and severe performance degradation. However,
load shedding would impair the query-result quality.

The performance versus result-quality tradeoffs caused by data imperfection
are inevitable, because a DSPS has no control over the quality (in terms of, e.g.,
the arriving order or the completeness) of the data items arriving at the system.
In contrast, it is possible to reduce—even erase—the tradeoffs caused by system
limitations, by improving the system itself.

1.2 Research Questions and Contributions

This dissertation studies how to deal with tradeoffs between the performance and the
query-result quality in data stream processing. Specifically, for tradeoffs caused by data
imperfection, because these tradeoffs are inevitable and different applications often
prefer different points in the spectrum of a tradeoff, this dissertation studies how to
provide flexible and user-configurable tradeoffs. In particular, the ubiquitous stream-dis-
order problem is taken as a representative case of data imperfection in the study of
this research question. For tradeoffs caused by system limitations, this dissertation
studies how to enhance a DSPS to reduce such tradeoffs. Although a DSPS can be en-
hanced in many different ways and a great deal of proposals have been made since
the emergence of the first generation of DSPSs, this dissertation seeks solutions in the
direction of leveraging different data management techniques for hybrid execution
of continuous queries, which has been explored only to a lesser degree.

Corresponding to the research questions defined above, this dissertation makes
the following contributions:

• To provide a flexible and user-configurable performance versus result-qual-
ity tradeoff when dealing with stream disorder, this dissertation proposes the
concept of quality-driven disorder handling (QDDH), along with a generic frame-
work that implements this concept. The key performance metric influenced

2

1.2 Research Questions and Contributions

by disorder handling is the end-to-end latency. The proposed QDDH concept
complements state-of-the-art disorder handling techniques and allows mini-
mizing the end-to-end latency while honoring the user-specified requirements
on the query-result quality. Because the specific metric for measuring the result
quality of a continuous query depends on the type of the query, this disser-
tation studies instantiations of the generic QDDH framework for two types of
continuous queries—sliding-window aggregate (SWA) queries and m-way slid-
ing-window join (MSWJ) queries, which are at the heart of many stream-based
applications. For each query type, components of the generic QDDH frame-
work are instantiated in specific ways to address the particular semantics of
the query type.

• The concept of QDDH can be applied on top of different existing disorder han-
dling techniques such as the buffer-based technique [Aba+03; BSW04] and the
punctuation-based technique [SW04a; Li+08]. To support data streams in the
most generic form, the buffer-based technique is chosen in this dissertation. As
a result, the objective of QDDH boils down to dynamically adjust the sizes of
the buffers used for disorder handling, so that the end-to-end latency is min-
imized and at the same time the user-specified result-quality requirement is
satisfied. To this end, an analytical model is proposed, which captures the rela-
tion between the applied buffer sizes and the consequent query-result quality
directly. Compared with modeling methods that treat this relation as a black
box, the proposed analytical model allows searching for the optimal buffer
sizes to meet the user-specified result-quality requirement in each iteration of
the buffer-size adaptation.

• Based on the instantiations of the QDDH concept for individual queries, this
dissertation continues to study how to apply QDDH for concurrent queries that
share query operators. When an operator is shared across multiple queries,
the disorder handling of the output stream of this operator can be shared
as well, which, potentially, can reduce the memory cost incurred by disorder
handling. This dissertation proposes the notion of chained disorder-handing
buffers, which allows sharing the disorder-handling effort at query operators
that are shared by multiple queries with different result-quality requirements,
to achieve the objective of QDDH for each query. Moreover, two algorithms are
proposed to determine the configuration of disorder-handling buffers within
an entire query-operator network of concurrent queries. Both algorithms have
a linear time complexity. One of them can achieve the objective of QDDH with a
minimum memory consumption, and the other trades the memory optimality
for low computational cost.

• To improve the performance of a DSPS, following the philosophy that “no one
size fits all” [LHB13], this dissertation explores the potential of leveraging both
the row-oriented data-processing technique and the column-oriented data-pro-
cessing technique to process data streams. As a proof of concept, a prototype
system that consists of a row-oriented DSPS and a column-oriented in-memory
database is built for hybrid execution of continuous queries. To achieve the
best query-execution performance, a static, cost-based optimizer is proposed to

3

Chapter 1 Introduction

optimize select-project-join-aggregate (SPJA) continuous queries. Given a con-
tinuous query, the proposed optimizer uses characteristics of the query and the
input data streams to determine the optimal placement of each operator of the
query within the hybrid system. This fine level of optimization, combined with
the estimation of the feasibility of query execution plans, allows the optimizer
to devise hybrid query execution plans that achieve a throughput that cannot
be matched by either component system alone.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows:
Chapter 2 provides more insight into data stream processing, introduces the

semantics of continuous-query execution that is adopted in this dissertation, and
presents related work in both the area of handling data imperfection within data
streams and the area of enhancing DSPSs for higher system performance.

Chapter 3, 4, and 5 present contributions of this dissertation in the area of han-
dling the tradeoff caused by a representative case of data imperfection—stream
disorder. Specifically, Chapter 3 motivates the idea of QDDH, introduces the buffer-
based disorder handling approach that this dissertation has chosen as the basis for
applying QDDH on top, and describes the generic buffer-based QDDH framework
as well as the theoretical foundation of the analytical-model-based buffer-size adap-
tation method that this dissertation proposes to perform quality-driven buffer-size
adaptation at the query runtime. The core of this analytical-model-based buffer-
size adaptation method is to directly model the relation between the sizes of the
applied disorder handling buffers and the consequent query-result quality. For the
purpose of comparison, it is also described in this chapter a buffer-size adaptation
method that is based on the usage of a proportional-derivative (PD) controller [Lev11].
This PD-controller-based buffer-size adaptation method essentially treats the relation
between the applied buffer sizes and the query-result quality as a black box.

Chapter 4 describes two instantiations of the generic QDDH framework for two
representative types of continuous queries in stream-based applications: SWA queries
and MSWJ queries. For each query type, it is described in detail the adopted result-
quality metric and the analytical-model-based and the PD-controller-based buffer-
size adaptation methods tailored for the particular query type.

Based on the results presented in Chapter 4, Chapter 5 takes one step further to
study how to apply QDDH for concurrent SWA and MSWJ queries that have shared
source and filter operators.

Chapter 6 presents the contribution of this dissertation in the area of enhancing a
DSPS to reduce the performance versus result-quality tradeoffs caused by system lim-
itations. It describes a prototype system, which consists of a row-oriented DSPS and a
column-oriented in-memory database, for exploiting the potential of combining the
row-oriented and the column-oriented data layout and processing techniques in pro-
cessing data streams. It also introduces a cost-based query optimizer for optimizing
relational SPJA continuous queries in such a hybrid system.

Finally, Chapter 7 concludes this dissertation and discusses possible areas for
future work.

4

1.3 Dissertation Outline

All notations used in this dissertation are summarized in a table at the end of the
dissertation (cf. Symbols).

5

2
Background

This chapter first introduces basic concepts related to data stream processing, which
form the foundation of this dissertation. It then provides an overview of existing
techniques for dealing with the two major factors, i.e., data imperfection and system
limitation, that cause tradeoffs between the performance and the query-result quality
in data stream processing. This chapter reviews related work only at a high level;
related work for the specific techniques proposed in this dissertation is covered in
respective chapters.

2.1 Data Stream Processing

The abstract architecture of a DSPS is described in Figure 2.1. Stream-based applica-
tions describe stream-analyzing tasks using continuous queries, which are deployed
and executed in a DSPS. A continuous query, or a query for short, takes one or several
data streams originating from external data sources as input, and produces query
results in the form of data streams as well. Examples of data sources of streams in-
clude sensors, web applications, and stock exchanges. Result streams of continuous
queries are returned back to the applications; and in addition, they can be persisted
in storage systems such as database systems for future on-demand analysis.

Data Stream Processing
System (DSPS)

continuous queries

input streams result streams

users or applications

store (e.g.,
database)

financial
markets

web appli-
cations

sensor
devices

Figure 2.1: Abstract architecture of a DSPS

The history of continuous queries dates back to the early 1990s, when they were
introduced for the first time in the Tapestry system [Ter+92]. Tapestry was built on
top of an append-only relational database. It converts a continuous query into an in-

7

Chapter 2 Background

��������	��
���	 ����
���	��
���	����	
���	��
���	

���������		�

��
������		�

�����������		�

����������� ��		�

��������� ��		�

���������		�

� ���!�����
�"���	��

� ���!��#��$���	��

%����&�����	�	

���"�������	��

�'� �� � ��!���	��
 ���
�# ���	��

� ���!����
��	�	

���� �" � ���!����
 ��	��

�(�)���		*

���� �" +���� ����		,

-#.������� � ���!���	�	

/012���		�

$����"��� ��		�

����3�� ���!�#����	�	

)4� ���!���	��

��5��� ��		6

�������		*

7� ���! ��		,

��(����		�

)4��(����		�

�$���
 ��		*

(-(�����		�
 859��� ��		:

� ���!-#���� ��	�	

��!�� ���! ��	��

��)����		�

���(���	��

����� ��		:

���;��� ��		:

� ���!���� ��		�

�����*���		�

����� ��		:

�59��� ��(���	�	

+��"�����0���		:
 +��"�����(���		,

��(���(���	��

)�<�=� ��		,

�5� �!����		�

0�����	��

� ���!- ��		�

/��> ���!��		6

���� �" �5� �!����	��

���"��(��!����	��

�����#��5?�����		*

'�9�� ��
� ����#�����;�# ���	��

�-��+�� ���!���� ��	��

�-��+�����#����;�# ���		*

�-0����		�

�-0�4()����		�

�0)���	��

����@������	��

A��3� ��		6

Figure 1: History of data stream processing systems

relaxed latency constraints (up to a few seconds), (3) the
use cases require the correlation among historical and live
data, (4) they require systems to elastically scale and to
support diverse workloads and (5) they need low overhead
fault tolerance supporting out of order events and exactly
once semantic. In the following, we illustrate some of these
use cases in detail.

Google Zeitgeist [3], which tracks web queries trend evolu-
tion at runtime, is an example of a data stream processing ap-
plication characterized by the aforementioned requirements.
Zeitgeist is designed to analyze queries from Google search
(hence the very high data rates) to build a historical model
for each query and then identify anomalies, like spiking or
dipping searches as quickly as possible. Zeitgeist collects in-
coming search queries in 1-second buckets; buckets are then
compared to historical data represented by known search
query models. Zeitgeist is an application running on top of
MillWheel [3], Google’s data stream processing system.

Whenever a relevant event happens in the world, people use
Twitter to discover what is happening by issuing queries. In
such cases, significant spikes occur in the queries submitted to
Twitter, and it is very likely that these queries have not been
seen before, making it really challenging to correctly relate
them to the events people are actually looking for. Twitter

has to manage 2.1 billion queries per day1, and needs to cope
with such occasional spikes by correlating queries with tweets
in real-time in order to provide results as accurate as possible.
Furthermore, the interest of people for these relevant events
is temporary and the corresponding query spikes fade away
within a limited time window, so it is mandatory to sharpen
this correlation as quickly as possible. At this aim, Twitter
employs Storm [27] to spot popular queries so as to analyze
them in details and achieve an improved accuracy in result
generation [38].

Yahoo! personalizes search advertising on the basis of
users’ queries. In order to improve the accuracy of the models
employed to predict advertisement relevance, this kind of
analysis requires the evaluation in real-time of thousands of
queries per second submitted by millions of distinct users.
Yahoo! used S4 [30] to cope with this requirement.

Dublin City Council had the need to enhance the moni-
toring of its 1000 buses with the aim of delivering the best
possible public transportation services to its 1.2 million cit-
izens. They employ System S [17] to track the position of
buses through GPS signals and to display real-time traffic in-
formation through dashboards. By continuously monitoring
bus movements across the city, it is possible to accurately

1http://www.statisticbrain.com/twitter-statistics/

239

Figure 2.2: History of DSPSs [Hei+14a]

cremental query, which is executed periodically as a one-time SQL query, to find new
matches to the original query as new data records are added to the database. How-
ever, such a “periodic re-execution” model for continuous queries cannot meet the
high throughput and low latency requirements of modern stream-based applications.
Hence, subsequently, specialized DSPSs were proposed. Figure 2.2, which is taken
from the work by Heinze et al., summarizes the history of DSPSs. The first generation
of DSPSs emerged in the early 2000s. Representatives include NiagaraCQ [Che+00],
STREAM [BW01], Gigascope [Cra+02], Aurora [Aba+03], and TelegraphCQ [Cha+03].
Since then, a lot more endeavors were taken, aiming to provide higher system per-
formance, richer operator set, and advanced features such as fault tolerance. These
endeavors have led to the second generation of DSPSs including CEDR [Bar+07], Bo-
realis [Ryv+06], SPADE [Ged+08], and Esper [Esp]. In recent years, the trend towards
cloud computing has driven the development of large-scale, cloud-based DSPSs. Ex-
amples include StreamCloud [Gul+12], Apache S4 [Neu+10], Twitter Storm [Sto;
Tos+14] and its recent descendent Twitter Heron [Kul+15], Spark Streaming [Zah+13],
MillWheel [Aki+13], TimeStream [Qia+13], Stratosphere/Apache Flink [Ale+14; Fli],
and Trill [Cha+14]. More details about this third generation of DSPSs can be found
in [Hei+14a].

Despite the fact that a large number of DSPSs have been built and special endeav-
ors [ABW06; KS09; Bot+10b] have been taken to clarify the semantics of executing
continuous queries over data streams, to date, there are no established standards
for data stream processing. This dissertation assumes a relational model [Cod70]
for continuous queries, and adopts the semantic models introduced in the STREAM

8

2.1 Data Stream Processing

project [ABW06]. The remainder of this section describes these semantic models.
They are based on two data types—streams and time-varying relations—and three
classes of query operators that operate over these two data types.

2.1.1 Data Model

Tuples

Under a relational model, a data item in a stream is referred to as a tuple. Formally,
a tuple is a finite function that maps attribute names to values. The set of attributes,
along with their associated domain, is called the schema of the tuple [Cod70].

Time

Time plays an important role in data stream processing. There are two notions of time:
application time and system time [SW04a; Bot+10b; Aki+15]. Application time (also
known as event time [Aki+15]) refers to the time at which a tuple is generated at a
data source. It takes the clock time of the data source and conveys certain information
about the application event that is represented by the tuple. For instance, a stock
exchange may generate a tuple when a stock is traded; then the application time
of this tuple conveys the time at which the corresponding stock-trading event has
occurred. In contrast, system time refers to the time at which an event occurs in
a DSPS and takes the clock time of the DSPS. For instance, the arrival of the above
stock-trading tuple at a DSPS is a system event for the DSPS, and the arrival time of
that tuple is a system time.

As in most prior work (e.g., [ABW06; Bot+10b; KS04; Jai+08]), this dissertation
assumes a discrete, countably infinite time domain T with a total order. Each value
from T is called a time instant. T can be represented, for instance, as non-negative
integers {0, 1, . . . }, where 0 stands for the earliest time instant. Note that although
both the application time and the system time can take values from this domain,
they have different semantics.

Streams

Given a time domain T as defined above, a stream S is defined as a possibly infinite
bag of tuples that conform to the schema of S. For a DSPS, a stream Si that is received
from an external data source is referred to as an input stream or a base stream [ABW06],
where the subscript i is used to uniquely index an input stream in a DSPS. Let ri
denote the tuple arrival rate of the stream Si; ri may vary over time. Streams produced
by query operators are referred to as derived streams. Particularly, a derived stream
that contains the final results of a query is called a result stream. Let ei,j represent the
j-th arrived tuple in the stream Si. Let ei.j.ts ∈ T represent the application timestamp
of the tuple ei,j; ei.j.ts indicates the generation time of ei,j. Multiple tuples—either
from the same stream or from different streams—could have the same application
timestamp. Note that the application timestamps of stream tuples naturally define a
temporal order among all tuples received by a DSPS.

In the remainder of this dissertation, the term timestamp is used exclusively to
represent an application timestamp. In addition, the subscript of a tuple is omitted
completely, or only the part that indicates the index of the input stream is kept,

9

Chapter 2 Background

wherever the omitted part of the subscript is not important in the context of the
discussion.

Time-varying Relations

A time-varying relation R is a mapping from a time domain T to a finite but un-
bounded bag of tuples belonging to the schema of R. Compared with a relation in
the standard relational model, a time-varying relation has the notion of time. Par-
ticularly, R(τ) represents the unordered bag of tuples contained in R at any time
instant τ ∈ T, and is termed as an instantaneous relation.

In the remainder of this dissertation, the term relation is used to denote a time-
varying relation and the term static relation is used to denote a relation in the standard
relational model. Analogous to the classification for streams, relations that are input
to a DSPS are called input relations or base relations, and relations that are produced
by query operators are called derived relations.

Physical Representations of Streams and Time-varying Relations

Despite the semantic difference between streams and relations, both data types can
share a common physical representation. For instance, in STREAM [ABW06] and
Nile [Ham+04], both data types are represented as a sequence of tagged tuples. Specif-
ically, a stream is represented as a sequence of timestamped insertion tuples, whereas
a relation is represented as a sequence of timestamped insertion and deletion tuples
to capture the evolving state of the relation. Instead of using deletion tuples, some
other DSPSs (e.g., [Tuc+03; Li+05b; Kri+10]) use artificial tuples like punctuations to
mark boundaries between instantaneous relations of a time-varying relation.

2.1.2 Query Model

Continuous queries are composed of query operators, whose semantics are defined
in the query model. The query model adopted in this dissertation consists of three
classes of query operators [ABW06]:

• stream-to-relation (S2R) operators, which produce one or more relations from
one stream;

• relation-to-relation (R2R) operators, which produce one relation from one or
more relations; and

• relation-to-stream (R2S) operators, which produce one stream from one relation.

Figure 2.3 depicts the relationships between these three classes of query opera-
tors. Note that the query model does not include stream-to-stream (S2S) operators. As
claimed in [ABW06], the rationale for this decision is to “exploit well-understood rela-
tional semantics (and by extension relational rewrites and execution strategies) to the extent
possible”. Indeed, a stream-to-stream operator can be considered as a composition of
a S2R operator, a R2R operator, and a R2S operator.

10

2.1 Data Stream Processing

streams relations

stream-to-relation

relation-to-stream

relation-to-relation

Figure 2.3: Query-operator classes and their relationships [ABW06]

Stream-to-Relation (S2R) Operators

A typical S2R operator is the window operator, which is also one of the most essential
query operators in data stream processing [GÖ03a]. A window operator does not
process the content of stream tuples, but is rather used to set bounds on an infinite
stream to extract a finite set of tuples for further processing. Window operators are
introduced into data stream processing mainly for the following reasons: (1) it is
an approximation technique for solving the problem that computing over the entire
history of a data stream would require unbounded amount of storage [Ara+02]; (2)
In many real-world scenarios, the recent data is more important and relevant than
the old data [AW04; GÖ03b]. Hence, rather than being viewed as an approximation
technique, window operators, indeed, enable expressing the desired query semantics
in those scenarios.

Depending on how a window operator sets the bounds over a stream and how the
bounds move forward as the stream evolves, many different types of windows can
be constructed [GÖ03a; PS06; ABW06]. A commonly-used window type in stream-
based applications is the so-called sliding window [GÖ03b; AM04; Li+05a; Jin+10;
Bha+14]. The two bounds of a sliding window, which are referred to as the lower
endpoint EPl and the upper endpoint EPu, move simultaneously and at the same pace,
so that the “distance” between the two bounds is fixed with respect to a certain
pre-specified measuring unit. The distance between the two bounds of a window is
called the window size, denoted by W. The measuring unit for specifying the window
size can be the number of time units or the number of tuples falling into the window;
and the resulting windows are referred to as the time-based sliding window and the
count-based sliding window, respectively. The number of measuring units by which
each time the window advances is called the window slide, denoted by β. The window
slide can be specified in the number of time units or the number of tuples as well.
A window with equal window slide and window size is called a tumbling window
or a jumping window. In this dissertation, both the time-based window size and the
time-based window slide use the notion of application time.

Example 2.1.1. Figure 2.4 shows an example of a time-based sliding window applied
over a stream Si. The window size W is three time units and the window slide β is
one time unit. Each wi,j in the figure represents an instantaneous relation constructed
by the window operator, capturing the state (i.e., the content) of the window at the
moment that instantaneous relation is constructed. As new tuples of the stream
Si arrive, old tuples in the window are expired, and the expiration is determined
based on the timestamps of tuples. For instance, at the arrival of the tuple ei,5, the
tuple ei,1 is expired because ei,1.ts <= ei,5.ts −W; and the instantaneous relation
wi,2 is constructed. When the tuple ei,6 arrives, all tuples with the timestamp 2 are

11

Chapter 2 Background

tuple arrival
order

stream Si ei,1 ei,2 ei,3 ei,4 ei,5 ei,6
ei,j.ts 1 2 2 2 4 5

wi,1 ei,1 ei,2 ei,3 ei,4

wi,2 ei,2 ei,3 ei,4 ei,5

wi,3 ei,5 ei,6

Figure 2.4: Example of time-based sliding window. (W = 3 time units, β = 1 time
unit)

tuple arrival
order

stream Si ei,1 ei,2 ei,3 ei,4 ei,5 ei,6
ei,j.ts 1 2 2 2 4 5

wi,1 ei,1 ei,2 ei,3

wi,2 ei,2 ei,3 ei,4

wi,3 ei,3 ei,4 ei,5

wi,4 ei,4 ei,5 ei,6

Figure 2.5: Example of count-based sliding window. (W = 3 tuples, β = 1 tuple)

expired and the instantaneous relation wi,3 is constructed. It can be observed that,
because the tuple arrival rate of the input stream may vary over time, instantaneous
relations constructed by a time-based sliding window may contain different numbers
of tuples.

Example 2.1.2. Figure 2.5 shows an example of a count-based sliding window for
the same stream in Figure 2.4. The expiration of tuples is determined based on the
number of tuples that are currently within the window. All instantaneous relations
constructed by the window operator contain the same number of tuples.

Another representative window type is the landmark window [PS06]. A landmark
window is defined by a start predicate and an optional end predicate. The window
begins once an input tuple satisfying the start predicate is received. This tuple and
all the following input tuples are added to the window until a tuple satisfying the
end predicate—if specified—is received.

In the remainder of this dissertation, an instantaneous relation produced by a
window operator is also referred to as an instantaneous window, or simply a window
for short if there is no ambiguity.

Relation-to-Relation (R2R) Operators

Basically, each relational operator in a conventional DBMS has a R2R counterpart in
the streaming context. This includes projection, selection (or filter), aggregate, join,
and union. All these operators are widely used in stream-based applications [GÖ03a].
In addition to the above traditional operators, special operators such as map1, pattern

1A map operator maps one input tuple into one or more different output tuples by applying a
certain function on the input tuple. Example functions include format conversion, currency conversion,
encryption, and any other scalar functions that can be found in a conventional DBMS.

12

2.1 Data Stream Processing

matching, similarity searching, and frequent item mining are used very often in the
streaming context as well, to serve the needs of applications that require advanced
analysis of data streams. Generally, for a R2R operator with m (m ≥ 1) input relations,
each instantaneous relation produced in its output relation is the result of applying
the operator logic over m instantaneous relations, one from each of the m input
relations of the operator.

Relation-to-Stream (R2S) Operators

R2S operators are often used to convert the output of a R2R operator back to a stream.
Three R2S operators were introduced in the STREAM system [ABW06]:

• Istream, which outputs only the newly inserted tuples in each instantaneous
relation of the input relation.

Istream(R) =
⋃

τ≥0

(R(τ)− R(τ − 1)) , where R(−1) = ∅

• Rstream, which outputs all tuples in each instantaneous relation of the input
relation.

Rstream(R) =
⋃

τ≥0

R(τ)

• Dstream, which outputs only the newly deleted tuples in each instantaneous
relation of the input relation.

Dstream(R) =
⋃

τ>0

(R(τ − 1)− R(τ))

These R2S operators are sufficient in most application scenarios. Particularly, the
Istream operator is used most often because its output stream reflects all new result
tuples that are generated by a R2R operator over time. In the remainder of this
dissertation, it is assumed that the Istream operator is used in all queries taken as
examples and queries used in the evaluations.

System Operators

In addition to the three classes of logical operators described above, many DSPSs (e.g.,
Apache Storm [Sto], DataCell [LGI09], FUGU [Hei+14b], and MillWheel [Aki+13])
also have two special types of operators: source operators (e.g., spouts in Apache
Storm, receptors in DataCell, and injectors in MillWheel) and sink operators (e.g., emit-
ter in DataCell). Source and sink operators do not perform data-analysis tasks, but
rather act as adapters for interacting with the external world of a DSPS. Specifically, a
source operator brings external data into a DSPS, and a sink operator sends produced
query results out of a DSPS.

In addition to the source and sink operators, a DSPS may also have operators
for performing special tasks such as disorder handling (cf. Section 2.2) and load
shedding (cf. Section 2.3.2). All these operators are referred to as system operators.

13

Chapter 2 Background

A1 SINK1IS1J1

SRC1 WIN1 F1Stream S1

result stream

SRC2 WIN2 F2Stream S2

SRC: source operator IS: Istream

WIN: window operator

F: filter (selection) J: join

A: aggregate SINK: sink operator

Figure 2.6: Example of logical query plan.

Continuous Queries

The processing logic of a continuous query can be expressed by a logical query plan,
in the form of a directed acyclic graph (DAG) G = (V , ED). Each vertex vi ∈ V in a
logical query plan G represents a logical query operator. Each edge edij ∈ ED repre-
sents the data flow from the operator vi to the operator vj. Using the terminology of
DAG, the operator vi is called a parent of vj, and the operator vj is called a child of vi.

Normally, a continuous query first uses window operators to extract data that is
most interesting to the application from the input streams of the query. Following
the window operators, a graph of R2R operators are used to perform the actual data-
analysis task. R2R operators that follow window operators are also called window-
based operators. Then, a R2S operator is used to transform the relation produced by
the graph of R2R operators back to a stream, which can either be sent back to the
application as a result stream, or be consumed by another graph of window and R2R
operators for further processing. An example of a logical query plan is shown in
Figure 2.6. Like a conventional SQL query, a continuous query may have multiple
semantically-equivalent logical plans.

As Arasu et al. [ABW06] have discussed, one major drawback of not having S2S
operators in the query model is that even a simple data-filtering task performed
over a stream would require a count-based tumbling window of one-tuple size, one
relational selection operator, and one Istream operator. However, logical operators are
used only to express the processing logic of a continuous query, and the actual data
processing in a DSPS is performed by physical operators over physically represented
streams and relations. A DSPS can map a chain of logical operators following a certain
pattern to a more efficient physical implementation. For instance, for an operator
chain in a logical query plan that has a similar pattern as the filtering task described
above, a DSPS can map it to a single, composite physical operator. Basically, for any
R2R operator in a logical query plan, if all its parent operators are window operators
and its child operator is a R2S operator, then the parent window operators, the R2R
operator itself, and its child R2S operator can all be mapped to a single, composite
physical operator. The DAG formed after translating all operators in a logical query
plan to physical operators is called a query execution plan.

Operator Implementation

A logical query operator can be implemented in many different ways. A basic re-
quirement is to guarantee that the semantics of a physical operator is consistent

14

2.2 Handling Data Imperfection in Data Streams

with the semantics of its corresponding logical operator. Modern stream-based ap-
plications require processing data streams with high throughput and low latency.
Hence, an operator implementation must also be efficient to meet the performance
requirements of applications.

A commonly-used operator-implementation technique to support efficient data
stream processing is the so-called incremental computation [RR93; Gha+07]. Specifi-
cally, a query operator is said to be incrementally computable if changes in the output of
the operator can be determined based on only changes in the operator’s input(s) and
certain internally-maintained operator states; otherwise, the query operator is not
incrementally computable. The specific operator states that need to be maintained
depend on the operator logic.

Many window-based operators are incrementally computable, including win-
dow-based select, window-based join, and window-based aggregate that computes
functions like COUNT, SUM, and AVG. Take a COUNT aggregate as an example.
Assume that initially the input relation of the operator contains three tuples, then
the initial COUNT result is three. To support incremental computation, the operator
maintains the current COUNT result as an internal state. Now assume that two more
tuples are added to the input relation of the operator. To get the new COUNT result,
the operator can simply increase the internally-maintained result by two and output
the updated result, which is five. In contrast to a COUNT aggregate, to compute exact
results, a MEDIAN or a QUANTILE aggregate needs to re-scan the current content of
the input relation if the input relation has changed; hence, they are not incrementally
computable.

2.1.3 Query Execution Model

To adapt to the “push” characteristic of data streams, existing DSPSs often adopt
the pipelined query execution model [Gra93]. With pipelined execution, physical query
operators are connected via a buffering mechanism like queues. Any two neigh-
boring operators can be seen as a producer-consumer pair, and can run in parallel,
embodying the so-called pipelined parallelism [HM94]. Pipelined query execution al-
lows a DSPS to exploit the power of modern multiprocessor machines, as well as
the increasingly-prevalent distributed processing environment, to achieve a higher
processing performance.

2.2 Handling Data Imperfection in Data Streams

In real-world scenarios, the streams input to a DSPS are often imperfect [GÖ03a;
Sto+05; KL09]. There are different types of data imperfection. Certain types of data
imperfection can be remedied by a DSPS, whereas others cannot because of the lack of
the “ground truth”. For the remediable data imperfection, on the one hand, executing
continuous queries over streams without handling the data imperfection may lead
to unexpected query results, and therefore degrade the quality of the produced
query results; on the other hand, handling the data imperfection often introduces
additional overhead and therefore degrades the processing performance. Hence,
handling remediable data imperfection in data streams involves a tradeoff between
the performance and the query-result quality. Moreover, this tradeoff is inevitable,

15

Chapter 2 Background

because a DSPS can control neither how data is generated by external data sources,
nor how the generated data is transferred to the system. This section discusses
common types of data imperfection in streams, their relevance to the performance
versus result-quality tradeoff (Section 2.2.1), and existing work on handling these
types of data imperfection (Section 2.2.2).

2.2.1 Common Types of Data Imperfection

Data Uncertainty

One typical type of data imperfection in data streams is the data uncertainty. Uncer-
tain data is very common in streams that are generated by sensors, RFID readers, or
GPS devices; because these data sources are sensitive to the orientation of reading and
environmental factors such as interference. Certain conversion actions performed
at a data source often introduces data uncertainty as well, e.g., the conversion of
voltage measurements into Celsius at temperature sensors, or the analog-to-digital
conversions [KBS06; JGF06; KD08]. Data uncertainty can be interpreted and mea-
sured in different aspects. Aspects that are considered widely in literature include
confidence and completeness [CG07; KL09; Tra+12; GL12].

Confidence describes the belief, or likelihood, of a given data item. It is often
quantified in the form of statistical probabilities. Confidence can be assigned either
at the tuple level, describing the likelihood that a given tuple appears, or at the
attribute level, describing the likelihood that a tuple attribute takes a certain value.
The former is called the tuple-level uncertainty, and the latter is called the attribute-level
uncertainty [Sar+09]. Under the probability theory, the overall uncertainty of a tuple
or an attribute can be represented by a random variable, which is associated with a
probability distribution over the possible values of the variable. The domain of the
variable could be discrete or continuous. The probabilities of all possible values sum
up to one, meaning that the variable will take one of those values with certainty.

Continuous queries executed over streams with tuple-level or attribute-level un-
certainty produce uncertain query results. Namely, each result tuple is associated
with probabilities as well, describing the tuple-level or the attribute-level uncertain-
ties of the result tuple. Streams with this kind of data uncertainty is not remediable,
and one cannot infer what the exact query results are. As a result, there is no ref-
erence for measuring the quality of the produced query results. For this reason,
tuple-level and attribute-level uncertainties do not really cause a performance versus
result-quality tradeoff.

Completeness addresses the issue of missing tuples in a data stream, which often
results from unreliable transmission protocols, failures in data sources, or failures
in the transmission infrastructure. Without a-priori knowledge about how the data
of an input stream is generated (e.g., the measurement frequency of the sensor that
generates the data), a DSPS often even cannot recognize the fact that there are missing
tuples in the input streams. Even if such a-priori knowledge is present, the DSPS
only can estimate the values of the missing tuples [Gru+10b; Gru+10a; Gao+16], but
cannot infer the exact values. As a result, the DSPS cannot infer the exact results of a
query executed over streams with missing tuples either. Hence, similar to the case
of tuple-level and attribute-level uncertainties, the incompleteness within the input
streams of a DSPS does not really cause a performance versus result-quality tradeoff.

16

2.2 Handling Data Imperfection in Data Streams

The loss of tuples could happen within a DSPS as well, especially in distributed
DSPSs. This type of tuple loss is remediable by the DSPS, by using certain fault-tol-
erance mechanisms. Many existing DSPSs, e.g., Storm Trident [Tri], Spark Stream-
ing [Zah+13], MillWheel [Aki+13], and Apache Flink [Fli], provide an at-least-once,
or even an exactly-once, data-processing guarantee so that eventually no tuple is lost
in any derived relation or stream within the DSPS. The basic idea for achieving such
data-processing guarantees is to use an acknowledgment mechanism to detect tu-
ples that are lost during the processing, and re-deliver those lost tuples. However,
re-delivering tuples often introduces disorder into data streams, which is another
typical type of data imperfection.

Stream Disorder

Recall that stream tuples are often tagged with timestamps when they are generated
at data sources, and the timestamps naturally define a temporal order among all
tuples (cf. Section 2.1.1). In general terms, stream disorder refers to the situation that
the order in which stream tuples arrive, at either source operators of a DSPS or any
data-analysis operators, is different from the order in which they were generated at
external data sources or the parent operators of the operator that receives the tuples.
Stream disorder enters in two forms: First, an individual stream could be out of order;
namely, tuples within the stream do not arrive in non-decreasing timestamp order.
This form of stream disorder is called the intra-stream disorder. Second, for operators
with multiple input streams, even if each individual input stream is timestamp-
ordered, the tuples from different input streams could arrive out of order. This form
of disorder is called the inter-stream disorder.

Stream disorder is ubiquitous in real-world streams transmitted across a network
because of the inherent network asynchrony. For instance, in a sensor network, tuples
sent from different sensors to the gateway node may experience different delays, and
arrive at the gateway node in an arbitrary order. Even tuples from the same sensor
may arrive at the gateway node out of order, if an unreliable transmission protocol
(e.g., UDP) is used. Another typical cause of stream disorder is the MapReduce-style
data-parallel processing, where data is partitioned and processed by several parallel
instances of a query operator [DG08]. Results from the parallel operator instances
may arrive out of order at the result merger because of the various processing speeds
of the instances [Hir+14]. In addition, certain implementations of query operators
like join and union may produce out-of-order results as well [TM11].

Formally, let iT represent the local current time of a stream Si, which is defined as
the maximum timestamp among the so-far-observed tuples in Si, i.e., iT = max{ei,j.ts
| ei,j ∈ Si}. The stream Si is considered to have intra-stream disorder if it contains
tuples ei,j and ei,k such that j < k and ei,j.ts > ei,k.ts. The tuple ei,k in this case is
called an out-of-order tuple, or a late arrival, in Si. Moreover, for a tuple ei in any
stream Si, the delay of the tuple, denoted by delay(ei), is defined as the difference
between the value of iT updated at the arrival of ei and the timestamp of ei itself, i.e.,
delay(ei) =

iT − ei.ts.
In this dissertation, it is assumed that for any continuous query deployed in a

DSPS, the clocks of the external data sources involved in the query are synchronized.
Existing clock synchronization techniques such as VHT [SDS10], FTSP [Mar+04], as
well as the work proposed in [FC97] can provide high-resolution and high-accu-

17

Chapter 2 Background

racy synchronization. Based on this assumption, the inter-stream disorder can be
described by the time skew between a pair of streams Si and Sj (i 6= j), denoted by
skew(Si, Sj). Specifically, skew(Si, Sj) is defined as the absolute difference between the
local current time of Si and the local current time of Sj, i.e., skew(Si, Sj) = |iT− jT|. As
iT and jT are updated by newly-arrived tuples in Si and Sj respectively, skew(Si, Sj)
often varies during the lifetime of Si and Sj. Given m streams, the stream with the
smallest current local time T is referred to as the slowest stream in terms of the
timestamp progress.

Stream disorder influences the results of queries containing operators that are
sensitive to the timestamp order of the input tuples. Many window-based operators
(cf. Section 2.1.1) are order-sensitive operators. The reason is that stream disorder
makes it difficult for a window operator to decide when to produce instantaneous
windows to be processed further by the R2R operator that follows the window op-
erator. If an instantaneous window is produced before all tuples that fall into the
scope of this instantaneous window have arrived, then the produced instantaneous
window is indeed incomplete, and applying the R2R operator on it may produce un-
expected results. The exact results of a query executed over disordered streams can
be inferred: they are the query results that would be produced if the input streams
do not have disorder. Stream disorder is remediable within a DSPS, at the cost of de-
graded processing performance. Hence, stream disorder causes an inevitable tradeoff
between the performance and the query-result quality.

Because data uncertainty does not really cause a performance versus result-qual-
ity tradeoff, and the tuple-loss problem within a DSPS eventually transforms to the
stream-disorder problem if the DSPS provides data-processing guarantees via fault-
tolerance mechanisms, this dissertation takes stream disorder as an representative
case of data imperfection, and studies the performance versus result-quality tradeoff
caused by stream disorder.

2.2.2 Approaches for Handling Data Imperfection

This section briefly discusses the state-of-the-art approaches for handling the two
common types of data imperfection described in the previous section.

Data Uncertainty

Handling data uncertainty within streams have attracted a lot of research interest
in the past years. A recent survey can be found in [AY09]. The majority of the
existing work (e.g., [Jay+07; CG07; Hua+08; ZLY08; Jin+10]) focuses on tuple-level
and attribute-level uncertainties, and adopts the possible worlds semantics, which was
first introduced for probabilistic databases [DS07]. In brief, an uncertain stream with
tuple-level or attribute-level uncertainties has many, normally exponentially-large,
possible instances. Each instance is constructed from a valid combination of tuples in
the stream, and is termed a possible world. Hence, the uncertain stream can be viewed
as defining a probability distribution over all the possible worlds.

Example 2.2.1. Consider a simple stream S = (〈a, 1
2 〉, 〈a, 1

3 〉, 〈b, 1
4 〉) with tuple-level

uncertainty. Take the first tuple 〈a, 1
2 〉 as an example; a is the value of the only

18

2.2 Handling Data Imperfection in Data Streams

attribute of the tuple, and 1
2 is the tuple-level confidence. The timestamps of the

tuples are omitted for simplicity. This uncertain stream has eight possible worlds as
shown in the table below.

Possible World (a) (a) (b) (a, a) (a, b) (a, b) (a, a, b) ∅

Probability 1
2

1
8

1
12

1
8

1
12

1
24

1
24

1
4

A query executed over an uncertain stream under the possible world semantics
essentially defines a probability distribution over the space of query results for all
possible worlds. Different types of queries have been studied in prior work. Just to
name a few, Jayram et al. [Jay+07] studied commonly-used basic aggregate queries
including SUM, COUNT, AVERAGE, and MEDIAN. Cormode and Garofalakis [CG07]
studied more complex aggregate queries, including the number of distinct values and
join sizes. Zhang et al. [ZLY08] studied frequent-item queries. The work of [Hua+08]
and [Jin+10] studied top-k queries; particularly, the latter studied top-k queries with
sliding windows. Because the probability distribution defined by a query has a po-
tentially-enormous size and complexity, some work, e.g., [CG07], focused on charac-
terizing such a distribution through its key moments such as expectation and variance.

The possible world semantics is not applicable for uncertain data that is natu-
rally modeled using continuous random variables, because the possible values of
a continuous random variable are infinite and cannot be enumerated. To address
this problem, Tran et al. [Tra+12] proposed the CLARO probabilistic DSPS, which
supports executing relational queries. The foundation of CLARO is a mixed-type data
model, which captures the tuple-existence uncertainty and uses Gaussian mixture
distributions to characterize continuously-valued uncertain attributes.

Stream Disorder

A variety of disorder handling approaches have been proposed, especially for han-
dling the intra-stream disorder. Based on the underlying mechanism, these ap-
proaches can be grouped into four categories: buffer-based approaches [Aba+03;
BSW04; MP13a], punctuation-based approaches [Li+05b; Li+08; Liu+09; SW04a],
speculation-based approaches [Bar+07; Bri+08], and hybrid approaches [Kri+10;
MP13b]. Buffer-based approaches use buffers to reorder tuples within an individual
stream to handle the intra-stream disorder, and also use buffers to synchronize dif-
ferent streams to handle the inter-stream disorder. Punctuation-based approaches
rely on special tuples embedded in streams to communicate the stream progress.
Speculation-based approaches produce query results speculatively, and apply a com-
pensation technique to correct early-emitted results when out-of-order tuples are
observed. Hybrid approaches combine two of the former three approaches. A more
detailed discussion of these disorder handling approaches will be provided in Sec-
tion 3.5.

19

Chapter 2 Background

result stream
SRC1 WIN1 F1

Stream S1
MAP1

IS1 SINK1J1

result streamSRC1
Stream S1

SINK1

F1
1

F1
2

J1
1

MAP2

MAP1
1

MAP1
2

MAP2
1

J1
2 IS1

2

IS1
1

logical query plan

parallel execution plan

MAP: map operator

WIN1
1

WIN1
2

Figure 2.7: Parallelizing query-operators for improving processing performance.

2.3 Handling System Limitations of DSPSs

Tradeoffs between the performance and the query-result quality in data stream
processing can also be caused by resource or implementation limitations of a DSPS
itself. In contrast to the tradeoffs caused by data imperfection, tradeoffs caused by
system limitations can be reduced, even eliminated, by enhancing the DSPS itself.
In the following, Section 2.3.1 presents different categories of system-enhancement
approaches; Section 2.3.2 discusses typical techniques for trading query-result quality
for performance when those system-enhancement approaches failed to eliminate the
tradeoff for certain reasons (e.g., there may be limited budget for adding enough
resources to the system).

2.3.1 Approaches for Enhancing a DSPS

A DSPS can be enhanced in many different ways. This section presents five major
categories of system-enhancement approaches. They are adding more computation
resources, using smarter operator implementations, employing columnar processing,
exploiting hardware acceleration, and combining different technologies.

Adding more computation resources is a natural solution for enhancing a DSPS.
It is also one of the key design principles of modern cloud-based DSPSs such as
Twitter Heron [Kul+15] (the descendant of Twitter Storm [Tos+14]), Spark Stream-
ing [Zah+13], Apache Flink [Fli], and MillWheel [Aki+13]. The performance improve-
ment comes mainly from distributed processing and operator parallelization. More
specifically, as shown in Figure 2.7, an operator in a logical query plan could have
several parallel physical operator instances. Each parallel physical instance of a log-
ical operator processes a partition of the logical operator’s original input. For the
example in Figure 2.7, each of the operators WIN1, F1, MAP1, J1, and IS1 has two par-
allel physical instances, and each of the other logical operators has only one physical
instance.

In principle, each physical operator instance can run exclusively on a processing
node. When the workload of a DSPS increases and cannot be handled by the currently-
running processing nodes, more processing nodes can be added to the system. The

20

2.3 Handling System Limitations of DSPSs

operator instances running on a processing node that gets overloaded can then be
migrated to and distributed over those newly-added nodes. Moreover, an operator
instance that caused the overload can be parallelized further, by further partitioning
the input of the operator to be processed by more parallel physical instances. When
applying such a parallel and distributed execution for a query, it is important to
guarantee that the semantics of the query is not changed.

One major challenge for distributed and parallel DSPSs is to determine when
and how to scale the system to deal with overload situations automatically, and at
the same time to utilize system resources efficiently with respect to the monetary
cost [Hei+14a]. This behavior is also known as elasticity, which was first introduced
in System S [Sch+09]. Cost-efficiency is especially important for could-based DSPSs,
because they adopt a “pay per use” model. Users of a cloud-based DSPS desire a
high ratio between the monetary cost spent and the quality of service (QoS) provided
by the system. A lot of research has been done in this area, including the recent work
of Elseidy et al. [Els+14], which focuses on join queries, and the work of Gedik et
al. [Ged+14] for general-purpose stream-based applications.

The second natural solution for enhancing a DSPS is to use better operator im-
plementations. A great deal of work has been done along this line. For example, the
just-in-time method proposed in [YP08] allows a consumer operator to send its feed-
back on the demand for input to its producer operator; and the producer operator
can then selectively generate results based on this feedback. This method allows sav-
ing both the CPU time and the memory consumption. Slider [Bha+14] and Reactive
Aggregator [Tan+15] are two systems focusing on executing sliding-window opera-
tions efficiently by using incremental computation. Particularly, Reactive Aggregator
is general and can handle non-invertible and non-commutative aggregates, as well
as non-FIFO windows. BiStream [Lin+15] is another example in this area. It is a
scalable distributed stream join system, which employs a join-biclique model instead
of a join-matrix [SY93] model. With the join-biclique model, processing nodes of the
system are organized as a complete bipartite graph. This model is more memory-ef-
ficient and communication-efficient than the join-matrix model, because each input
partition needs to be stored by only one processing node.

In recent years, it was shown that column-oriented processing has higher per-
formance than row-oriented processing for analytical queries [AMH08]. Therefore,
employing column-oriented processing is another way to enhance a DSPS. A repre-
sentative work along this line is Trill [Cha+14]. Like Spark Streaming [Zah+13], Trill
exploits batching for high throughput. However, different from Spark Steaming, Trill
uses a columnar data layout within batches, and generates operator source codes on
the fly to compute over the columnar batches.

Despite software-based approaches, exploiting hardware acceleration is another
option for system enhancement. The idea is to design stream-processing algorithms
that can fully exploit the high degree of parallelism within modern hardware like
multi-core processors, GPU, and FPGA. Representative work in this area includes the
handshake-join algorithm [RTG14; TM11] designed for multi-core processors. With
the handshake-join, the two streams being joined flow by each other in opposite
directions, generating join results as the streams pass by. This algorithm can be par-
allelized easily over all available cores, with each core processing one segment of the
window over which the join operation is applied. The HELLS-join algorithm [Kar+13]

21

Chapter 2 Background

utilizes the high memory-bandwidth of GPU for parallel tuple comparison. FPGA
is another type of hardware which has high parallelism inherently. Existing work
has studied how to use FPGA to accelerate join queries [RTG14], frequent-item
queries [TMA10], and even general select-project-join (SPJ) queries [NSJ13].

In addition to the four categories of system-enhancement approaches described
above, there is one category of system-enhancement approaches that follow the phi-
losophy of “no one size fits all”, and leverage advantages of different technologies.
For instance, the Cyclops platform [LHB13; LB13] federates Esper [Esp], Storm [Sto],
and Hadoop [Apa] for executing window-based aggregate queries. It picks the most
suitable system for a query based on properties such as the size and the slide of the
window operator in the query, and the applied aggregate function. To support feder-
ating different DSPSs, Duller et al. [Dul+11] proposed a middleware platform called
ExoP. ExoP virtualizes components of a DSPS and provides well-defined, extensible
interfaces for exchanging data between different DSPSs.

One major challenge for such hybrid systems is to determine the optimal execu-
tion plan for a given query, which is known as the query optimization problem [Sel+79].
The optimization could be done at the query level by choosing the most suitable
DSPS for the entire query, or at the operator level by determining the most suitable
DSPS for each operator in the query. Compared with the query-level optimization,
the operator-level optimization often can produce execution plans with higher per-
formance. However, the search space of possible execution plans in operator-level
optimization is also much larger than that in query-level optimization. In addition,
different from executions plans of traditional SQL queries, execution plans of con-
tinuous queries have a unique property called feasibility, which defines the ability
of an execution plan to keep up with the tuple arrival rates [AN04]. The feasibility
property should be taken into account when optimizing continuous queries.

2.3.2 Approaches of Trading Result-Quality for Performance

In real-world scenarios, it may happen that the system-enhancement approaches
described in the previous section still cannot support a DSPS to produce exact query
results under a given workload. For instance, a DSPS may be unable to get enough
computation resources because of a limited monetary budget. In this case, to avoid
system overload, the DSPS can trade the quality of query results for performance
for applications that do not require perfect query results. For example, network-
monitoring and weather-monitoring applications normally can tolerate imperfect
query results.

There are two commonly-used techniques for trading query-result quality for
performance. The first technique is load shedding [Tat+03], which is used to deal
with sudden spikes in the tuple arrival rate. The basic idea is to drop a fraction of
input tuples and produce approximate query results based on the remaining tuples.
Here, the concerned system resource is mainly the CPU. The major challenge con-
cerning the performance versus result-quality tradeoff is to determine how to shed
the load to provide certain user-desired performance guarantees, e.g., a guarantee on
the end-to-end latency, and at the same time to maximize the quality of the produced
query results. Prior work has addressed this challenge for different types of queries.
For instance, Gedik et al. [Ged+07] studied how to maximize the output rate of MSWJ

22

2.4 Summary

queries under load shedding; Mozafari et al. [MZ10] studied how to minimize the
error in the results of window-based aggregate and mining queries.

The second typical technique for trading query-result quality for performance is
approximate query processing (AQP) based on the usage of data synopses such as
samples, sketches, and histograms [AY07; Cor+12]. AQP is often applied when, in
general, every query result has to be computed based on a large amount of tuples.
In this case, it is neither time-efficient nor space-efficient to produce exact query
results based on the original input. AQP is normally applied to answer aggregate
queries, and can provide certain (probabilistic) accuracy guarantees for the produced
query results. The accuracy guarantees are related to certain parameters of the used
synopsis, e.g., the size of the data sample or the number of buckets in a histogram.
Indeed, these parameters determine the degree of the tradeoffs between the space
consumption, the processing time, and result accuracy. A survey of AQP can be found
in [Cor+12].

2.4 Summary

This chapter first discussed basic concepts in data stream processing and described
the query-processing semantics adopted in this dissertation, which set up the con-
ceptual context of this dissertation. Afterwards, focusing on the topic of the tradeoffs
between the performance and query-result quality, it looked into the two root causes
of the tradeoffs—data imperfection and system limitation. For the aspect of data
imperfection, two common types of data imperfection—data uncertainty and stream
disorder—along with the state-of-the-art approaches for handling them were dis-
cussed. For the aspect of system limitation, five categories of system-enhancement
approaches were identified, and approaches for trading query-result quality for per-
formance in case those system-enhancement approaches failed were discussed.

23

3
Providing Flexible Tradeoff via
Quality-Driven Disorder Handling

Section 2.2 discussed common types of data imperfection and their relevance to
the tradeoffs between the performance and the query-result quality. Based on that
discussion, this and the next two chapters focus on the data imperfection—stream
disorder—to study the research question “how to provide flexible and user-configurable
tradeoffs”. Particularly, in this chapter, Section 3.1 elaborates the performance versus
result-quality tradeoff caused by stream disorder, and motivates the idea of buffer-
based, quality-driven disorder handling (QDDH); Section 3.2 introduces the background
knowledge of buffer-based disorder handling; Section 3.3 provides an overview of
the generic buffer-based QDDH framework proposed in this dissertation; Section 3.4
drills down to the methods for performing quality-driven buffer-size adaptation;
and finally Section 3.5 discusses existing disorder handling approaches in detail, as
well as other work that is related to disorder handling.

3.1 Motivation

It was mentioned in Section 2.2.1 that stream disorder may impair the result quality
of queries that involve order-sensitive operators such as window-based operators.
This claim is now illustrated with the following two examples.

ei,1
1

ei,2
2

ei,3
3

ei,4
5

ei,5
6

ei,6
7

ei,7
9

ei,8
10

ei,9
11

ei,10
4

ei,11
12

ei,12
13

ei,13
8

ei,14
14

result of COUNT(*) for window (0, 10]: 8 9 10

ei,j.ts
Stream Si

Figure 3.1: Effect of stream disorder on the result quality of sliding-window aggre-
gate queries.

Example 3.1.1. Figure 3.1 demonstrates the effect of disorder handling on the results
of sliding-window aggregate (SWA) queries. Recall from Section 2.1.1 that ei,j repre-
sents the j-th arrived tuple in the stream Si. In the stream Si in Figure 3.1, the two

25

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

tuples ei,10 and ei,13, whose timestamps are 4 and 8 respectively, are two out-of-order
tuples; because for each of them, tuples with larger timestamps have arrived earlier.
Assume that a sliding-window COUNT(*) query is executed over this stream and the
window size is 10 time units. Logically, the instantaneous window with scope (0, 10]
should be constructed at the arrival of the tuple ei,8, whose timestamp is 10. The
result of COUNT(*) for this instantaneous window computed at this moment would
be 8. However, this result is inaccurate; because the two out-of-order tuples, ei,10 and
ei,13, fall into the scope (0, 10] as well, but are not counted. If the COUNT(*) result for
this instantaneous window is not computed until the arrival of the tuple ei,10, then a
more accurate result, 9, can be produced. To obtain the exact query result, which is
10, the computation of this result must be delayed until the arrival of the tuple ei,13.

Stream S1

Stream S2
arrival order

A1

b2
B3

c3 d6a4
E5 B6

(B3, b2)3 (C2, c3)3 (E5, e5)5

C2 B7 D8

e5 e7

(E5, e7)7(D8, d6)8Result stream:

missed join result out-of-order join result

Figure 3.2: Effect of stream disorder on the result quality of sliding-window join
queries. The size of the window on each stream is 3 time units.

Example 3.1.2. Figure 3.2 demonstrates the effect of stream disorder on the result
quality of m-way sliding-window join (MSWJ) queries. For simplicity, a 2-way equi-
join S1 on S2 is considered. A sliding window of 3 time units is applied on each input
stream of the join. In general, an MSWJ query works as follows [GÖ03b; VNB03;
WR09]: for each tuple e arrived from any input stream, the expired tuples in the
windows on all the other input streams are detected and invalidated based on the
timestamp of e. The tuple e is then joined with all tuples remaining in those windows,
and the result tuples, which satisfy the predefined join condition pon, are produced.
The timestamp assigned to a result tuple is the maximum timestamp among its
deriving input tuples.

In Figure 3.2, an input tuple is represented by xts, where x is the value of the
tuple’s join attribute, and ts is the tuple’s timestamp. To differentiate tuples of the
stream S1 from tuples of the stream S2, capital letters are used to represent attribute
values of S1 tuples. The timestamp of a result tuple is denoted by superscript as
well. In this example, the tuple C2 is an out-of-order tuple in the stream S1. Without
handling the stream disorder, the result tuple (C2, c3)3, which can be derived from
the tuple C2 of S1 and the tuple c3 of S2, would be missed. The reason is that, given
the window size on each input stream being 3 time units, by the time the tuple C2

arrives, the matching tuple of C2 in the stream S2, which is c3, has expired from
the current window on S2 because of the arrival of the tuple B6. The stream S2
is timestamp-ordered; however, the tuple e7 of S2 arrives after the tuple D8 of S1,
and hence is out of order from the perspective of the join operator. In this case,

26

3.1 Motivation

although the result tuple (E5, e7)7 can still be produced1, it is out of order in the
result stream. Out-of-order result stream is unacceptable in many scenarios, e.g.,
when the output is consumed for feedback control. Sorting the produced result
tuples can avoid out-of-order result tuples [HAE05; RTG14]; and sorting the input
tuples to process them in a timestamp order can avoid both missed and out-of-order
result tuples [SW04a; HAE05]. However, in either case, the end-to-end latency would
be increased. Performing incomplete sorting can reduce the latency incurred by
disorder handling, but a fraction of the true join results would get lost2.

Example 3.1.1 and Example 3.1.2 show that the main performance metric influ-
enced by disorder handling is the end-to-end latency, and there is an inevitable tradeoff
between the end-to-end latency and the produced query-result quality when doing
disorder handling. Specifically, the query-result quality refers to the accuracy of each
produced aggregate result for SWA queries, and refers to the completeness of the
produced result set for MSWJ queries.

Many stream-based applications, e.g., network-traffic monitoring and environ-
ment monitoring, do not demand perfect query results. To support timely data anal-
ysis, these applications accept trading query-result quality for low latency. However,
query results with significantly-low quality may cause severe consequences if further
actions are taken based on these results. Hence, it is still desired that the query-re-
sult quality is controlled at an acceptable level. Moreover, different applications often
prefer different points in the spectrum of the tradeoff between the latency and the
query-result quality.

Based on the above observations, in this dissertation, it is argued that a disorder
handling approach should support a user-configurable tradeoff between the latency
and the query-result quality. Existing disorder handling approaches either do not
provide this configurability (e.g., [BSW04; SW04a; Liu+09; CGM10; MP13a]), or sup-
port disorder handling only under user-specified latency constraints (e.g., [Aba+03;
Li+08]). As a complement to the state of the art, this dissertation proposes the con-
cept of quality-driven disorder handling (QDDH). The objective is to minimize the time
spent on waiting for out-of-order tuples, thus the end-to-end latency incurred by disorder
handling, while honoring user-specified requirements on the query-result quality. From Ex-
ample 3.1.1 and Example 3.1.2, it can be observed that the result-quality metric for a
continuous query depends on the type of the query. Because aggregate queries and
join queries with time-based sliding-windows are at the heart of many stream-based
applications, this dissertation focuses on studying how to apply QDDH for these two
types of queries.

Recall from Section 2.2.2 that there are three categories of basic disorder han-
dling approaches, namely, buffer-based approaches, punctuation-based approaches,
and speculation-based approaches. In this dissertation, the concept of QDDH is im-
plemented on top of buffer-based disorder handling approaches, which will be de-
scribed in the next section in detail. However, the QDDH concept can be implemented

1Note that some join algorithms (e.g., [KNV03; SW04b]) would miss the result tuple (E5, e7)7;
because upon receiving a new tuple, these algorithms invalidate expired tuples in the windows on all
input streams. Hence, at the arrival of the tuple D8, the tuple E5 would expire from the window on S1.

2Incomplete sorting of result tuples leads to the loss of join results as well, because result tuples
that are still out of order after sorting are discarded to fulfill the “in-order output” requirement.

27

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

iT

ei,j.ts 7

ei,5

7

1

ei,1

1

1

ei,2

4

4

5

ei,4

5

3

8

ei,6

8

5 67

3

ei,3

4

6

ei,7

8

9

ei,8

9

input to K-slack

output of K-slack

(K=1)
buffer content ei,1 ei,2 ei,2

ei,3
ei,4 ei,5 ei,6 ei,7

ei,6
ei,8

ei,1 ei,3 ei,2 ei,4 ei,7ei,5
ei,j.ts

ei,6
8

Figure 3.3: Example of using K-slack to handle the intra-stream disorder.

in combination with punctuation-based and speculation-based disorder handling ap-
proaches as well, which will be discussed in Section 3.5.

3.2 Buffer-Based Disorder Handling

3.2.1 Handling Intra-Stream Disorder

A well-known buffer-based approach for handling the intra-stream disorder is the
K-slack algorithm [BSW04; Li+07; MP13a], where the configurable parameter K rep-
resents the buffer size. The basic idea of K-slack is as follows: To handle the disorder
within a stream Si, tuples from the stream are first inserted into a buffer of Ki time
units. Within the buffer, tuples are sorted based on their timestamps. The local cur-
rent time iT of the stream Si (cf. Section 2.2.1) is used to help determining when to
release tuples from the K-slack buffer. Recall that iT tracks the maximum timestamp
among all Si tuples that have arrived so far. Each time iT is updated by a new tuple
from Si, each tuple ei,j in the K-slack buffer, whose timestamp satisfies the condi-
tion in Eq. (3.1), is released from the buffer. All tuples satisfying the condition are
released in the timestamp order.

ei,j.ts + Ki ≤ iT (3.1)

Example 3.2.1. Figure 3.3 gives an example of the intra-stream disorder handling
using a K-slack buffer, where the buffer size K is 1 time unit. When the tuple ei,1
arrives, the local current time iT of the stream is updated to 1 (i.e., iT = ei,1.ts = 1),
and ei,1 is inserted into the buffer. The tuple ei,1 cannot be released at this moment
because it does not satisfy the release condition defined in Eq. (3.1). When the tuple
ei,2 arrives, iT is updated to 4. Now, the tuple ei,1 satisfies the release condition and
is emitted from the buffer. The tuple ei,3 is an out-of-order tuple. According to the
definition of the delay of a tuple (cf. Section 2.2.1), the delay of ei,3 is delay(ei,3) =

i

T − ei,3.ts = 4− 3 = 1. The tuple ei,3 is inserted into the buffer; however, because iT
is not updated, the releasing of tuples is not performed. When the tuple ei,4 arrives,
iT is updated to 5 and both the tuple ei,3 and the tuple ei,2 are released from the
buffer. The arrival of the tuple ei,5 and the arrival of the tuple ei,6 trigger the release
of the tuple ei,4 and the release of the tuple ei,5, respectively. The tuple ei,7 is again an
out-of-order tuple, and its delay is delay(ei,7) = 8− 6 = 2. Because delay(ei,7) is larger
than the buffer size K, which is 1 time unit, and the tuple whose timestamp is 7, i.e.,
the tuple ei,5, has already been released, the tuple ei,7 cannot be reordered correctly.
As a result, ei,7 is still an out-of-order tuple in the output stream of the K-slack buffer.

28

3.2 Buffer-Based Disorder Handling

Algorithm 3.1 Buffer-based inter-stream disorder handling for m streams

1: Tsync ← 0
2: SyncBuf ← ∅
3: for each tuple e from any stream Si (i ∈ [1, m]) do
4: if e.ts > Tsync then
5: SyncBuf .insert(e)
6: while SyncBuf has at least one tuple of each stream Si (i ∈ [1, m]) do
7: Tsync ← min{e′.ts | e′ ∈ SyncBuf}
8: Emit every e′ that satisfies e′.ts = Tsync from SyncBuf
9: else

10: Emit e immediately

However, the delay of ei,7 in the output stream of the buffer is reduced from 2 time
units to 1 time unit.

Example 3.2.1 implies that to successfully reorder a tuple with a delay of k time
units in a stream, a K-slack buffer of at least k time units is needed for the stream.
Existing work that applies the K-slack algorithm to handle the intra-stream disorder
either sets the buffer size K to a fixed value [Aba+03; Li+07], or increases K dynam-
ically to be equal to the maximum delay among the so-far-observed out-of-order
tuples [MP13a].

3.2.2 Handling Inter-Stream Disorder

The general idea of the typical buffer-based approach for handling the inter-stream
disorder within m streams is to temporarily buffer tuples from each stream that is not
the slowest one in terms of the timestamp progress (cf. Section 2.2.1), and release tu-
ples from the buffer as the slowest stream progresses. Merging m timestamp-ordered
streams into a single timestamp-ordered stream has been discussed in existing work
such as [Gul+12]. However, as shown in Example 3.1.2, the inter-stream disorder
could co-exist with the intra-stream disorder. Namely, each of the m input streams
could also contain out-of-order tuples, if the intra-stream disorder within the stream
is not handled completely.

In this dissertation, Algorithm 3.1 is used to handle the inter-stream disorder
within multiple streams. This algorithm extends the existing buffer-based inter-
stream disorder handling approach to consider the co-existence of the intra-stream
disorder. Specifically, Algorithm 3.1 maintains a buffer to sort input tuples, and a
variable Tsync to track the maximum timestamp among the tuples that have left
the buffer. To be distinguished from a K-slack buffer, this buffer is referred to as
a synchronization buffer. With Algorithm 3.1, an input tuple e can be processed in
two different ways. If the tuple e satisfies e.ts > Tsync, then it is inserted into the
synchronization buffer. Moreover, every tuple in the buffer that has the smallest
timestamp is emitted from the buffer, as long as the buffer contains at least one tuple
from each of the input streams (lines 4–8). If the tuple e does not satisfy e.ts > Tsync,
it is then emitted immediately (lines 9–10). It can be observed that the size of the
synchronization buffer is determined by the time skew (cf. Section 2.2.1) between

29

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

the fastest stream and the slowest stream—in terms of the timestamp progress—that
are input to the buffer.

Stream S1

Stream S2
timestamp
progress

1T

Kisync: synchronization buffer size that contributes to
the intra-stream disorder handling of the stream Si

2T
Stream S3

3T

Figure 3.4: Intra-stream disorder handling performed implicitly by a synchronization
buffer.

Note that a synchronization buffer can contribute to handling the intra-stream
disorder within all input streams of the buffer but the slowest input stream. To
illustrate this, let us consider the three streams in Figure 3.4. The stream S1 is the
fastest stream in terms of the timestamp progress; the stream S3 is the second fastest;
and the stream S2 is the slowest. Using Algorithm 3.1 to handle the inter-stream
disorder between these three streams, the value of the variable Tsync in the algorithm
would be equal to the local current time 2T of stream S2. All so-far-arrived S1 tuples
whose timestamps are within the scope (Tsync, 1T], and all so-far-arrived S3 tuples
whose timestamps are within the scope (Tsync, 3T] are kept in and sorted by the
synchronization buffer. Hence, the intra-stream disorder within the streams S1 and
S3 is handled implicitly by a buffer of 1T − Tsync = 1T − 2T time units and a buffer
of 3T − Tsync = 3T − 2T time units, respectively. Hereafter, this implicit buffer size
within a synchronization buffer that contributes to handling the intra-stream disorder
of a stream Si is denoted by Ksync

i .

3.3 Buffer-Based Quality-Driven Disorder Handling (QDDH)
Framework

Figure 3.5 describes the generic buffer-based QDDH framework proposed in this
dissertation for processing continuous queries. Each query submitted to the DSPS is
associated with a user-specified result-quality requirement, whose format depends
on the type of the query. K-slack buffers, which are used for handling the intra-stream
disorder, and synchronization buffers, which are used for handling the inter-stream
disorder, are inserted as system operators (cf. Section 2.1.2) in the execution plan of
a submitted query.

The framework adopts a prior-to-operation disorder handling strategy. Namely,
for any query, the disorder within the input streams of the query is handled before
the order-sensitive operators of the query are executed. For queries executed over
a single input stream, only the intra-stream disorder handling is needed; whereas
for queries executed over multiple input streams, both the intra-stream disorder
handling and the inter-stream disorder handling are needed. A two-step disorder
handling strategy is applied for queries with multiple input streams, and the intra-
stream disorder is handled before the inter-stream disorder. When using query
optimization techniques to optimize the execution of several concurrent queries, an

30

3.3 Buffer-Based Quality-Driven Disorder Handling (QDDH) Framework

query
plan

query
plan

query
plan

synchronization buffers

K-slack buffers

Statistics
Manager

Buffer
Manager

...

...

statistics from input streams

statistics from result streams

statistics from
query operators

sizes (and placements)
of K-slack buffers

input streams

result streams

DSPS

continuous queries, each is associated with a
user-specified result-quality requirement

Figure 3.5: The generic buffer-based quality-driven disorder handling framework.

execution plan produced by the optimization process is indeed a composite plan
that consists of multiple queries. The placement of K-slack buffers within such a
composite query execution plan needs to be changed at the query runtime, if it is
desired to perform QDDH at a minimum memory cost. Nevertheless, in the proposed
QDDH framework, in any query execution plan, K-slack buffers are always applied
earlier than synchronization buffers.

Note that when the disorder within an input stream Si of a query is not handled
completely, then the corresponding, derived stream of Si that arrives at the order-
sensitive operator of the query, denoted by S′i , would still contain out-of-order tuples.
The QDDH framework applies the following policy to deal with these out-of-order
tuples: if these tuples cannot contribute to computing any future results of the query,
then they are discarded; otherwise, they are still forwarded to the order-sensitive
query operator.

The concept of QDDH is implemented by two generic components in the frame-
work: the Buffer Manager and the Statistics Manager. At the query runtime, the Buffer
Manager determines dynamically the placement of K-slack buffers within the exe-
cution plan of query, as well as the size of each placed K-slack buffer. Its goal is to
minimize the latency caused by disorder handling while honoring the user-speci-
fied result-quality requirement for the query. The new placements of buffers and
the sizes of the placed K-slack buffers are determined based on statistics collected
continuously by the Statistics Manager. Different statistics may be collected, including
those collected from the input streams, those collected from the result streams, and
those collected from the query operators.

Depending on the specific type of a query, or whether a query execution plan
consists of multiple queries, the detailed behavior of the Buffer Manager and the
statistics that need to be collected may be different. In this dissertation, three instan-
tiations of the generic QDDH framework in Figure 3.5 will be discussed. They are

31

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

QDDH for individual SWA queries, QDDH for individual MSWJ queries, and QDDH
for concurrent queries with shared operators. The first two instantiations will be
presented in Chapter 4, and the third instantiation will be presented in Chapter 5.

3.4 Quality-Driven Buffer-Size Adaptation

A key task of the Buffer Manager in Figure 3.5 is to adapt the sizes of the K-slack
buffers applied for a query at the query runtime in a quality-driven manner. This dis-
sertation proposes an analytical-model-based buffer-size adaptation method to fulfill
this task for queries with time-based windows. The core of this method is a modeling
approach that directly captures the relation between the K-slack buffer sizes applied
for a query and the consequent query-result quality. In the following, Section 3.4.1
introduces the theoretical foundation of this method. For the purpose of comparison,
Section 3.4.2 presents the basic idea of a buffer-size adaptation method that is based
on the usage of a proportional-derivative (PD) controller [Lev11]. Essentially, this con-
trol-based adaptation method treats the relation between the applied K-slack buffer
sizes and the consequent query-result quality as a black box. Compared with such
a control-based adaptation method, the analytical-model-based adaptation method
proposed in this dissertation allows searching for the optimal K-slack buffer sizes to
meet the result-quality requirement for a query in each iteration of the buffer-size
adaptation.

3.4.1 Analytical-Model-Based Buffer-Size Adaptation

From Example 3.1.1 and Example 3.1.2, it can be observed that one key factor that
determines the result quality of window-based operators is the coverage, i.e., the
degree of completeness, of each instantaneous window over which the corresponding
query results are produced. Formally, the coverage of an instantaneous window w
at any moment in time is denoted by Cvrg(w), and is defined as

Cvrg(w) =
tuples that are included in w

tuples that would be included in w if no stream disorder existed
(3.2)

Denoting the numerator and the denominator of Eq. (3.2) by |w| and |w|true, respec-
tively, Eq. (3.2) can be shortened as

Cvrg(w) =
|w|
|w|true

(3.3)

Consider the sliding-window COUNT query in Example 3.1.1. If the stream dis-
order is not handled, then when the tuple ei,8 (ei,8.ts = 10) arrives, the coverage
of the instantaneous window with scope (0, 10] is 0.8, and the COUNT result for
this instantaneous window produced at this moment is inaccurate. The two out-of-
order tuples in this example, ei,10 (ei,10.ts = 4) and ei,13 (ei,13.ts = 8), fall into the
scope of this instantaneous window as well. They are referred to as two missing
tuples of this instantaneous window. Similarly, for the sliding-window join query in
Example 3.1.2, at the arrival of the tuple c3 from the stream S2, the most recent in-
stantaneous window over the stream S1 contains the tuples A1 and B3. The coverage

32

3.4 Quality-Driven Buffer-Size Adaptation

of this instantaneous window is 2
3 ≈ 0.67, because it has a missing tuple C2. C2 falls

into the scope of this instantaneous window but has not arrived. As a result, the
result tuple (C2, c3)3 cannot be produced.

The definition of the coverage of an instantaneous window implies that a non-full
coverage of an instantaneous window w (i.e., Cvrg(w) < 1) is caused by out-of-order
tuples that have not arrived by the time the instantaneous window is constructed. If
there is no stream disorder, then any instantaneous window constructed over any
input stream should have a full coverage (i.e., Cvrg(w) = 1) at the moment it is
constructed.

Handling the disorder within streams before forwarding them to a window-based
query operator can increase the coverages of the instantaneous windows constructed
over the streams. In general, the higher the coverages of the instantaneous windows,
the higher the quality—in terms of, e.g., accuracy or completeness—of the query
results produced over these instantaneous windows. For instance, when using a
K-slack buffer of 5 time units to sort the stream in Example 3.1.1, the out-of-order
tuple ei,13 (ei,13.ts = 8) will become an in-order tuple in the output stream of the
buffer3. As a result, the coverage of the instantaneous window with scope (0, 10]
will increase from 0.8 to 0.9, and the produced COUNT result over this window
is more accurate than the result that will be produced if the stream disorder is
not handled. Moreover, when using a K-slack buffer of 7 time units, the disorder
within the stream in Example 3.1.1 can be handled completely. The coverage of the
instantaneous window with scope (0, 10] will increase to 1 and the correct COUNT
result for this window can be produced.

In general, it can be observed that, for a query with a window-based operator, (1)
the coverages of the instantaneous windows constructed over each input stream of
the query determines the result quality of the query, (2) the size of the K-slack buffer
applied over an input streams directly influences the coverages of the instantaneous
windows constructed over the stream, and (3) the buffer size K influences only the
number of tuples that are actually included in an instantaneous window (i.e., |w|),
but not the true number of tuples that belong to the window (i.e., |w|true). Based
on these observations, this dissertation proposes to analytically model the relation
between the size of the K-slack buffer applied to an input stream and the number
of tuples |w| that would be included in an instantaneous window constructed over
the stream, and then estimate the query-result quality based on |w|. In this way,
the relation between the sizes of the K-slack buffers applied for a query and the
consequent query-result quality can be captured by an analytical model. Based on
this analytical model, one can directly determine the optimal K-slack buffer sizes
needed to meet the user-specified result-quality requirement for the query.

The remainder of this subsection describes the method proposed in this disser-
tation for modeling the relation between the size of the K-slack buffer applied to an
input stream and the number of tuples that would be included in an instantaneous
window constructed over the stream. Descriptions on how to further model the rela-
tion between the applied K-slack buffer size and the consequent query-result quality
is deferred to Chapter 4, in the respective sections that describe the instantiations of
the generic QDDH framework for specific query types.

3Recall from Section 3.2 that a K-slack buffer of k time units can successfully handle out-of-order
tuples whose delays are not larger than k time units.

33

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

For an input stream Si, let Di denote a discrete random variable that represents
the coarse-grained delay of a tuple ei in Si. Specifically, let Di take the value 0 if
delay(ei) = 0, take the value 1 if delay(ei) ∈ (0, g], take the value 2 if delay(ei) ∈ (g, 2g],
and so forth; g is a configurable parameter in the proposed QDDH framework and
is referred to as the K-search granularity. Furthermore, let fDi denote the probability
density function (PDF) of Di, i.e., fDi(d) = Pr[Di = d], where d ∈ {0, 1, 2, . . . }. Based
on the assumption that the near future resembles the recent past, for each input
stream Si, the Statistics Manager in Figure 3.5 monitors the delays of the input tuples
that are within a window Rstat

i over the stream Si’s recent history, and approximates
fDi using a histogram Hi, which maintains the statistics of the monitored tuple-
delays in Si. Without a priori knowledge of the disorder pattern within the stream,
it is difficult to find a fixed size for the window Rstat

i . Moreover, such a fix-sized Rstat
i

is sensitive to varying disorder patterns. Hence, in this dissertation, the approach
proposed in [BG07] is used to dynamically adapt the size of the window Rstat

i , based
on the rate of changes detected from the delays of tuples in the window Rstat

i itself.
The sizes of the Rstat windows for different input streams are adapted separately.

Note that fDi captures the tuple-delay characteristics within an input stream
Si. After the intra-stream disorder handling by a K-slack buffer, and potentially the
inter-stream disorder handling by a synchronization buffer, the tuple-delay character-
istics in the corresponding, derived stream S′i that is received by the window-based
query operator is often different from fDi . Let DK

i denote a discrete random vari-
able representing the coarse-grained delay of a tuple in S′i under a certain value
of the buffer size K. Let fDK

i
represent the PDF of DK

i . The change from fDi to fDK
i

can be captured based on the following observation: For any tuple ei in an input
stream Si, the delay of the tuple ei within the corresponding, derived stream re-
ceived by the window-based operator changes from delay(ei) to delayK(ei), where
delayK(ei) = max{0, delay(ei)− K− Ksync

i }, and Ksync
i is the implicit buffer size within

a synchronization buffer that contributes to the intra-stream disorder handling of Si
(cf. Section 3.2). Hence, fDK

i
can be derived from fDi using Eq. (3.4).

fDK
i
(d) =

∑
(K+Ksync

i)/g
d′=0 fDi(d

′), d = 0

fDi(d +
K+Ksync

i
g), d ∈ {1, 2, 3, . . . }

(3.4)

Again, based on the assumption that the near future resembles the recent past, in
the proposed QDDH framework, Ksync

i is estimated as Ksync
i −min{Ksync

j |j ∈ [1, m]},
where Ksync

i represents the average of all measurements of Ksync
i that are collected

by the Statistics Manager within the window Rstat
i

4. With the estimated Ksync
i , the

histogram Hi that is used to approximate fDi can then be used to approximate fDK
i

as well.
Now the relation between the K-slack buffer size Ki and the number of tuples that

would be included in an instantaneous window constructed over the corresponding,
disorder-handled, derived stream S′i , i.e., |wi| in Eq. (3.3), can be modeled by esti-
mating |wi| based on fDK

i
. This estimation exploits the following observation: If an

4According to Algorithm 3.1, Ksync
i is determined by the local current times of the output streams

of the K-slack buffers. However, it will be shown in Section 4.2.3 that under the two-step disorder
handling strategy described in Section 3.3, one can determine Ksync

i based on the local current times of
the original input streams.

34

3.4 Quality-Driven Buffer-Size Adaptation

10%

t+1 t+2 t+3 t+4

100%

60%

80%

40%

10%

20%
60%

(b) Expected percentage of received tuples
whose timestamps fall into (t, t+1]

time

(a) Monitored fD at iT' = t
i

fDi
K

K

Figure 3.6: The expected percentage of so-far-received tuples belonging to a certain
time unit in a stream among all tuples belonging to the time unit in the stream under
a certain distribution of tuple delays in the stream.

instantaneous window is divided into small segments, then a recent segment of the
window (i.e., a segment closer to the upper endpoint of the instantaneous window)
often has more missing tuples than an old segment of the window. The reason is
that, by the time the instantaneous window is constructed, out-of-order tuples whose
timestamps fall into the scope of an old segment of the window might have arrived
already, and have been inserted into the window; whereas out-of-order tuples whose
timestamps fall into the scope of a recent segment of the window can be observed
only at later points in time.

The above observation can be illustrated by Figure 3.6. Let iT′ denote the local
current time of the derived stream S′i , i.e., the maximum timestamp among the so-
far-observed tuples in the stream S′i . Assume that at the moment of iT′ = t (t ∈ T),
the monitored fDK

i
of S′i is as shown in Figure 3.6a. If the value of the K-slack buffer

size K is not adjusted during the following time unit (t, t + 1], then based on the
current fDK

i
, one can estimate that, among tuples whose timestamps fall into the time

unit (t, t + 1], 60% of them will arrive in order, 20% of them will be delayed by 1
time unit, 10% of them will be delayed by 2 time units, and another 10% of them
will be delayed by 3 time units. From another perspective, this means that one can
expect to receive only 60% of the tuples whose timestamps are within the time unit
(t, t + 1] by the time of t + 1 (cf. Figure 3.6b). By the time of t + 2, one can expect to
receive 80% of the tuples belonging to the time unit (t, t + 1]; because by that time,
the 20% of the tuples that are delayed by 1 time unit should have arrived. Finally,
by the time of t + 4, one can expect to receive all tuples belonging to the time unit
(t, t + 1]. Figure 3.6b shows that, for a specific time unit, the older it becomes, the
more likely that all out-of-order tuples falling into the scope of this time unit have
been observed by the current time. This also means that at any specific point in time,
an old time unit is more likely to have observed all out-of-order tuples falling into
its scope than a recent time unit.

To capture the difference in the coverages of different segments of an instanta-
neous window wi constructed over a stream Si, this dissertation adopts the notion of
basic window, which was introduced by Gedik et al [Ged+07]. Specifically, an instan-
taneous window is divided into basic windows, each of which has a size of b time

35

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

units. The instantaneous window consists of ni = dWi/be basic windows, where Wi
is the size of the sliding window over the stream Si (cf. Section 2.1.2). Let wl

i denote
the l-th, l ∈ [1, ni], basic window of wi; w1

i represents the most recent basic window
of wi.

Let wi,> denote the most recent instantaneous window constructed over the
stream S′i . The upper endpoint of wi,> is iT′. The scope of each basic window wl

i,> of
wi,> can be determined as (iT′− l · b, iT′− (l− 1) · b] for l ∈ [1, ni − 1], and (iT′−Wi,
iT′ − (ni − 1) · b] for l = ni. For the basic window w1

i,>, among all S′i tuples ei whose
timestamps fall into the scope of w1

i,>, tuples that have no delays, i.e., delayK(ei) = 0,
should have arrived. Hence, the expected number of tuples that are included in w1

i,>,
denoted by |w1

i,>|, can be estimated as |w1
i,>| = ri · b · fDK

i
(0). Recall from Section 2.1.1

that ri represents the tuple arrival rate of the stream Si. For the basic window w2
i,>,

all tuples whose delays satisfy delayK(ei) ∈ [0, b
g] should have arrived, and |w2

i,>| can

be estimated as ri · b ·∑
b
g
d=0 fDK

i
(d). In general, for any basic window wl

i,>, l ∈ [1, ni],

|wl
i,>| can be estimated using Eq. (3.5).

|wl
i,>| =

ri · b ·∑
(l−1)b

g
d=0 fDK

i
(d), l ∈ [1, ni − 1]

ri · (Wi − (ni − 1) · b) ·∑
(ni−1)b

g
d=0 fDK

i
(d), l = ni

(3.5)

Finally, the number of tuples included in the entire instantaneous window, |wi,>|,
can be estimated as

|wi,>| =
ni

∑
l=1
|wl

i,>|

= ri ·

b ·
ni−1

∑
l=1

(l−1)b
g

∑
d=0

fDK
i
(d) + (Wi − (ni − 1) · b) ·

(ni−1)b
g

∑
d=0

fDK
i
(d)

 (3.6)

Note that a bigger basic-window size b implies a more conservative estimation
of |wi,>| than a smaller b. When the value of b is chosen such that ni = 1 for all
i ∈ [1, m], it means that the estimation of |wi,>| considers only in-order tuples.

3.4.2 Control-based Buffer-Size Adaptation

Other than the analytical method described in Section 3.4.1, the relation between
the K-slack buffer sizes applied for a query and the consequent query-result quality
can also be treated as a black box. The input to this black box is the K-slack buffer
sizes and the output is the query-result quality. The problem of adjusting the K-slack
buffer sizes to meet the user-specified result-quality requirement can be well mapped
to a control problem. The key idea is using a feedback loop to control the behavior
of a system or a process by comparing the output of the system or process, which
is called the process variable (PV), to a desired value, which is called the setpoint (SP),
and applying the difference between the measured process variable and the setpoint
as an error signal to dynamically change the system or process to make the measured
process variable get closer to the setpoint [Lev11].

36

3.4 Quality-Driven Buffer-Size Adaptation

As a comparison to the proposed analytical-model-based buffer-size adaptation
method, this dissertation also studies how to perform buffer-size adaptation using
a proportional-derivative (PD) controller—a variant of the well-known proportional-in-
tegral-derivative (PID) controller. This subsection describes the general idea of this
control-based buffer-size adaptation method. Instantiations of this method for spe-
cific query types, especially the choices of the setpoint, will be discussed in the
respective sections in Chapter 4.

In general, for a chosen setpoint, the control action of a PID controller is generated
as a weighted sum of three terms: a proportional term (P) that accounts for the
present control error, an integral term (I) that accounts for a summary of past errors,
and a derivative term (D) that accounts for a prediction of future errors. The weights
of the three terms are denoted by Up, Ui, and Ud, respectively. A PD controller does
not have the integral term. The PD controller is chosen in this dissertation because
the integral term can cause the so-called integral windup, if the measured process
variable keeps above the setpoint for an extended period. In the context of quality-
driven buffer-size adaptation, the problem of integral windup can occur easily during
periods when the input streams have no, or little, disorder. During these periods, the
produced query-result quality may stay well above the user-specified result-quality
requirement, even though the K-slack buffer sizes are reduced to zero.

Formally, let u(j) denote the control action of the j-th iteration of the buffer-
size adaptation for a query, and let err(j) denote the present control error. The PD
controller determines u(j) as

u(j) = Up · err(j) + Ud ·
derr(j)

dj
. (3.7)

Recall from Section 3.2.1 that to remove the intra-stream disorder within a stream
Si completely, the required K-slack buffer size is determined by the maximum tuple
delay within the stream. Let MaxDi denote this maximum tuple delay. Namely, the
buffer size that can be applied over the stream Si is within the range [0, MaxDi]

5.
Due to the unbounded and dynamic nature of data streams, there is often no a priori
knowledge of the true value of MaxDi. Hence, in practice, MaxDi is estimated by the
maximum delay among so-far-arrived tuples in Si. As a result, the range [0, MaxDi]
may extend over time, as out-of-order tuples with larger delays are observed.

To bound the buffer size produced in each control-based adaptation iteration
within the range [0, MaxDi], and to account for the potential extension of this range
at the query runtime, this dissertation proposes to apply control actions produced by
Eq. (3.7) not directly on the parameter Ki. Instead, a parameter α (α ∈ [0, 1]) is intro-
duced and the buffer size Ki is rewritten as α ·MaxDi. At the query runtime, MaxDi
can be updated dynamically, and the control actions are applied to the parameter α.

Figure 3.7 shows the generic PD-controller-based buffer-size adaptation method
applied in this dissertation. The output of the controller is the adjustment, i.e., the
increase or the decrease, of the parameter α, denoted by ∆α; The final value of α
produced in the j-th adaptation iteration is α(j) = max{0, min{α(j− 1) + ∆α(j), 1}}.

5A buffer size that is larger than MaxDi is possible but is unnecessary.

37

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

P UP · err(j)

D Ud ·
derr(j)
di

Σ Σ
err(j) Δα(j)SP

PV(j)

+
- +

+

PD Controller

Figure 3.7: Control-based K-slack buffer-size adaptation using a PD controller.

3.5 Related Work

This section discusses in detail the four categories of disorder handling approaches
mentioned in Section 2.2.2, as well as the related work on load shedding, which
shares certain similarity with disorder handling.

3.5.1 Disorder Handling Approaches

Buffer-based Disorder handling

The basic mechanism of buffer-based disorder handling has been described in Sec-
tion 3.2. For handling the intra-stream disorder, Aurora [Aba+03], Cayuga [Dem+07],
and the work of [Li+07] fixed the K-slack buffer size applied for a query during the
query runtime. In contrast, Babu et al. [BSW04] and Mutschler et al. [MP13a] pro-
posed methods to automatically adapt the applied buffer sizes at runtime to react to
the changing disorder characteristics in the streams, so that the intra-stream disorder
can be handled as completely as possible.

For handling the inter-stream disorder, the approach of using buffers to synchro-
nize input streams before executing an order-sensitive operator has been applied in
many existing systems such as StreamCloud [Gul+12] and BiStream [Lin+15]. Fo-
cusing on time-based sliding-window join queries, the work of [HAE05] compared
the approach that enforces an ordered processing of input tuples with the approach
that allows out-of-order processing of input tuples but enforces an ordered release
of result tuples, and studied the memory consumption and the response time of the
two approaches for 2-way joins.

Wu et al. [WTZ07] considered the presence of both the intra-stream disorder
and the inter-stream disorder for join queries without windows. They followed the
two-step disorder handling strategy as this dissertation does (cf. Section 3.3).

In contrast to this dissertation, none of the existing buffer-based disorder han-
dling approaches have considered minimizing the latency caused by buffering in a
quality-driven manner.

Punctuation-based Disorder Handling

Punctuation-based disorder handling approaches [Kri+10; Li+05b; Li+08; Liu+09;
SW04a; Tuc+03; Aki+13] rely on special tuples within data streams, called punctua-
tions, to indicate that no future tuples with timestamps smaller than the timestamp
of a punctuation are expected. When a punctuation is received, a window operator
can determine the instantaneous windows for which no future out-of-order tuples

38

3.5 Related Work

are expected, and produce query results for those instantaneous windows. Heartbeats
used in [SW04a; KS09] and partial order guarantees used in [Liu+09] are special types
of punctuations.

Punctuations explicitly inform query operators when to return results for instan-
taneous windows; as a result, the query operators can process out-of-order input
streams directly. However, the quality of the produced query results is fundamentally
limited by the quality of the punctuations [Kri+10]. Most existing work in this area
focused more on the usage, rather than the generation, of punctuations. It is assumed
that punctuations are either provided by external data sources, or can be generated
easily by a DSPS based on a priori knowledge about the application semantics or
the disorder characteristics within the input streams. However, this assumption does
not hold in many real-world scenarios. In those scenarios, the method proposed
in [SW04a] for generating heartbeats can be used to generate punctuations. This
method is based on runtime-estimated parameters that capture the skews between
streams, the disorder within streams, and the latency in streams reaching a DSPS.

An out-of-order tuple that is missing from an instantaneous window can be
detected only after the window has been constructed; otherwise, the tuple is not
a missing tuple of the instantaneous window (cf. Section 3.4.1). This fact implies
that the punctuation indicating the receipt of all out-of-order tuples falling into
the scope of an instantaneous window cannot be generated before all these tuples
have been observed. Therefore, punctuation-based disorder handling approaches
share the same latency issue as buffer-based disorder handling approaches; and
the tradeoff between the end-to-end latency and the quality of query results still
exists. The QDDH concept proposed in this dissertation can be applied to do quality-
driven punctuation generation. Specifically, instead of producing a punctuation for
an instantaneous window until all out-of-order tuples belonging to the window have
been received, the punctuation can be produced earlier, as soon as the quality of the
produced query results can meet the user-specified requirements.

Speculation-based Disorder Handling

Buffer-based and punctuation-based disorder handling approaches can be further cat-
egorized as conservative disorder handling approaches, because they both, to a certain
extent, wait for out-of-order tuples to avoid degrading the quality of produced query
results. In contrast, speculation-based disorder handling approaches [Bar+07; Bri+08;
Liu+09; Ryv+06; MC08] are aggressive disorder handling approaches. They assume an
in-order arrival of stream tuples, and produce the result of an instantaneous window
immediately when the window is constructed. To deal with the result-quality issue
caused by out-of-order tuples, they use the technique of revisions (a.k.a., retractions).
Specifically, when an out-of-order tuple e is detected, previously-produced query
results that are affected by the tuple e are invalidated, and new revisions of those
results are produced by taking e into account of the re-computation.

Speculative disorder handling does not delay the result computation of instanta-
neous windows. However, computing result revisions requires maintaining a certain
history of the input streams or the result stream. Moreover, retracting and re-comput-
ing query results complicate the logic of query operators, and often lead to expensive
operator implementations regarding the CPU consumption. For highly out-of-or-
dered data streams, one query result may be revised multiple times before the final

39

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

exact revision is produced. This may exhaust the CPU and may cause a high latency
as well. In addition, speculative computation of query-results also requires the ap-
plication that consumes the query results to be able to interpret and deal with result
revisions.

The QDDH concept proposed in this dissertation can be applied in combination
with speculation as well. Specifically, the QDDH concept can help reducing the over-
head of producing result revisions by stopping producing more revisions of a result
when the quality of the latest revision already meets the user-specified requirement.

Hybrid Disorder Handling

Krishnamurthy et al. [Kri+10] applied speculation in combination with punctuations,
to deal with query-result quality issues caused by inaccurate punctuations. Specifi-
cally, they proposed to treat out-of-order tuples that appear after the corresponding
punctuations as separate data partitions, and process those partitions independently.
Partial results of those partitions can be merged with previously produced, inaccu-
rate or incomplete query results on demand, so as to preserve the integrity of stream
histories. This approach assumes that the entire history of the input streams and the
query results are persisted in, for example, a database.

Mutschler et al. [MP13b] proposed to combine speculation and buffering for
processing pattern-detection queries. To reduce the latency of the pattern detection,
input tuples are speculatively released from the K-slack buffer (cf. Section 3.2.1)
applied for the input stream of a query. The speculation degree is controlled by a
parameter α, which is adjusted at the query runtime based on the CPU load on the
system. Note that the control-based buffer-size adaptation method introduced in
Section 3.4.2 also uses a parameter α to control the premature release of tuples from
a K-slack buffer; however, different from the work of Mutschler et al., the parameter
α in this dissertation is adjusted based on the quality of produced query results.

3.5.2 Load Shedding

Load shedding in the context of data stream processing describes the technique of
processing a selected portion of input tuples when the available system resources
(e.g., CPU and memory) cannot match the resource demand imposed by the query.
Load shedding has been studied extensively in the literature [Tat+03; BDM04; Ged+07;
LZ08; MZ10]. Three key questions that need to be answered are when to shed
load, where to shed load, and how much load to shed, so that a certain QoS target
(e.g., end-to-end latency, utility[Tat+03], result accuracy [BDM04; LZ08], or output
rate [Ged+07]) can be met.

Handling disorder within data streams shares similarity with load shedding, be-
cause the effect of a tuple dropped during load shedding on the query-result quality
is the same as the effect of an unsuccessfully-handled out-of-order tuple during dis-
order handling on the query-result quality. However, in load shedding, a DSPS can
control the amount of tuples to be excluded from instantaneous windows directly by,
for instance, defining a certain sampling rate. In contrast, in disorder handling, the
amount of missing tuples in an instantaneous window is not directly controllable,
but is determined by both the applied K-slack buffer size and the disorder situation
within the window.

40

3.6 Summary

ei,j.ts 5

ei,5

1

ei,1

2

ei,2

3

ei,4

4

ei,3

buffer output
if buffer size Ki = 0

6

ei,6

51 2 34 6

51 2 43
buffer output

if buffer size Ki = 1

stream Si

wi,1 (0, 4]

wi,2 (1, 5]

wi,1 (0, 4]

wi,2 (1, 5]

Cvrg(wi,1) = 0.75
Cvrg(wi,2) = 1ei,j.ts

ei,j.ts

ei,5ei,1 ei,2 ei,4ei,3 ei,6

ei,5

tuple arrival order

ei,1 ei,2 ei,4ei,3 Cvrg(wi,1) = 1
Cvrg(wi,2) = 1

Figure 3.8: Influence of the K-slack buffer size and the disorder characteristics on the
coverages of instantaneous windows.

Example 3.5.1. Consider the example in Figure 3.8. Assume that a sliding window of
4 time units is applied over the input stream Si. For the first instantaneous window
wi,1, whose scope is (0, 4], the coverage is Cvrg(wi,1) = 0.75 if the size of the K-slack
buffer used to sort Si is Ki = 0. If the buffer size is Ki = 1, then the coverage of wi,1 is
Cvrg(wi,1) = 1. In contrast, for the instantaneous window wi,2, whose scope is (1, 5],
the coverage is Cvrg(wi,2) = 1 for both Ki = 0 and Ki = 1.

Moreover, in load shedding, to determine which tuples to drop, a DSPS needs to
consider only the contribution of a tuple to the query-result quality based on the
value of the tuple. In contrast, in QDDH, to determine which out-of-order tuple can
be handled unsuccessfully to trade high query-result quality for low latency, a DSPS
needs to consider not only the value but also the delay of a tuple. Namely, one more
dimension needs to be considered in QDDH than in load shedding.

3.6 Summary

This chapter started to address the research question of how to provide a user-config-
urable tradeoff between the performance and the query-result quality when facing
data imperfection within data streams, particularly, the stream disorder problem.
Disorder handling involves an inevitable tradeoff between the end-to-end latency
and the quality of produced query results. This chapter gave an overview of the
buffer-based, quality-driven disorder handling framework proposed in this disser-
tation. The framework aims to minimize the latency incurred by disorder handling
while honoring user-specified result-quality requirements.

Focusing on aggregate queries and join queries with time-based sliding win-
dows, this chapter also described the essence of an analytical-model-based method,
and a control-based method, which are used to perform quality-driven buffer-size
adaptation in the proposed QDDH framework. Compared with the control-based
adaptation method, the analytical-model-based method can capture the relation be-
tween the buffer sizes applied for disorder handling and the consequent query-result
quality directly, thereby allowing the method to search for the optimal buffer sizes to

41

Chapter 3 Providing Flexible Tradeoff via Quality-Driven Disorder Handling

meet the user-specified result-quality requirements at each iteration of the buffer-size
adaptation.

The generic QDDH framework as well as the two buffer-size adaptation methods
described in this chapter will be instantiated for specific query types in Chapter 4
and Chapter 5.

42

4
Quality-Driven Disorder Handling
for Individual Queries

This chapter describes two instantiations of the generic buffer-based QDDH frame-
work introduced in Chapter 3. One instantiation is for sliding-window aggregate
(SWA) queries (Section 4.1), and the other one is for m-way sliding-window join
(MSWJ) queries (Section 4.2). Both instantiations focus on time-based sliding win-
dows. For each instantiation, the respective section describes the metric applied for
measuring the quality of produced query results, as well as the instantiations of
the components in the generic QDDH framework (cf. Figure 3.5). The experimental
evaluation of the two instantiations is presented in Section 4.3.

4.1 QDDH for Sliding-Window Aggregate Queries

4.1.1 Result-Quality Metric

Accuracy in terms of the relative error is a widely-adopted result-quality metric for
aggregate queries [BDM04; TXB06; CKT08; MZ10; Aga+13]. Specifically, let Â denote
a produced aggregate result, and A the corresponding exact aggregate result that
would be produced if the input streams did not contain disorder, the relative error
ε of the produced aggregate result is defined as ε = |A−Â|

|A| . A user specifies the
result-quality requirement for a SWA query by specifying a threshold for the relative
errors in produced aggregate results. The error threshold is in the form of (εthr, δ),
δ ∈ (0, 1), which states that the relative error in a query result exceeds εthr with
probability at most δ. The parameter δ is referred to as the confidence level.

4.1.2 QDDH-Framework Instantiation Overview

Figure 4.1 gives an overview of the proposed instantiation of the buffer-based QDDH
framework for individual SWA queries. A SWA query has only one input stream,
and hence only the intra-stream disorder handling, using a K-slack buffer, is needed.
Without loss of generality, let us consider a DSPS implementation that maps the
logical window operator and the aggregate operator to one physical SWA operator
(cf. Section 2.1.2).

43

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

K-slack buffer

Statistics Manager

statistics of input, e.g.,
tuple dalay, data rate

input stream

result stream

QDDH for SWA

user-specified threshold (εthr, δ) on the relative-errors of results

SWA operator

Buffer Manager

Window-Coverage
Threshold Calculator

Buffer-Size
Adaptation Unit

Window-Coverage
Runtime Calculator

updates of K

"new instantaneous
window" signal

statistics

Cvrg(w)

Cvrgthr

statistics of disorder
handling

Figure 4.1: Instantiation of the buffer-based QDDH framework for individual SWA
queries.

The quality-driven buffer-size adaptation is performed by the Buffer Manager,
which consists of three sub-components: a Window-Coverage Threshold Calculator, a
Window-Coverage Runtime Calculator, and a Buffer-Size Adaptation Unit. The Statistics
Manager collects and maintains statistics that are needed by all three sub-components
of the Buffer Manager.

The runtime behavior of the Buffer Manager is sketched in Algorithm 4.1. Each
time the Buffer Manager receives a signal indicating that a new instantaneous window
has been constructed, it first checks whether a predefined warm-up period Lwarmup
has passed. The warm-up period is used to allow the Statistics Manager to collect
enough statistics for making buffer-size adaptation decisions. If the warm-up period
has passed, the Buffer Manager then invokes the Window-Coverage Threshold Calculator
to translate the user-specified result relative-error threshold (εthr, δ) to a window-cov-
erage threshold Cvrgthr (cf. Section 4.1.3), and invokes the Window-Coverage Runtime
Calculator to measure the actual coverages of previously-constructed instantaneous
windows (cf. Section 4.1.4). The obtained window-coverage threshold Cvrgthr and
window-coverage measurements Cvrg are fed into the Buffer-Size Adaptation Unit,
which determines a new value of the buffer size K using a certain buffer-size adap-
tation method (cf. Section 4.1.5 and Section 4.1.6).

4.1.3 Calculating Window-Coverage Threshold

Example 3.1.1 and the discussions at the beginning of Section 3.4.1 imply that the
coverages of instantaneous windows can be used as an intermediate metric for mea-
suring the quality of the results of aggregate queries. Computing aggregates over
incomplete instantaneous windows constructed under incomplete intra-stream dis-
order handling is essentially approximate query processing (AQP) over a sample of
the original input tuples. Existing work in the area of sampling-based AQP [Aga+13;

44

4.1 QDDH for Sliding-Window Aggregate Queries

Algorithm 4.1 The behavior of the Buffer Manager in the QDDH-framework instantia-
tion for individual SWA queries (cf. Figure 4.1)

Input: specification of a SWA query
(εthr, δ) - user-specified result relative-error threshold
Lwarmup - length of the warm-up period
“new instantaneous window” signals
statistics from the Statistics Manager

Output: new settings of the K-slack buffer size
1: for each “new instantaneous window” signal do
2: if warmupPeriodHasPassed(Lwarmup) then
3: Invoke the Window-Coverage Threshold Calculator to calculate a window-

coverage threshold Cvrgthr.
4: Invoke the Window-Coverage Runtime Calculator to measure the coverages

Cvrg of previously-constructed instantaneous windows.
5: Taking Cvrgthr and Cvrg obtained above as input, invoke the Buffer-Size

Adaptation Unit to determine the new buffer size K to be applied before
the next adaptation iteration.

LZ08; MZ10] has shown that one can use statistical inequalities and the central limit
theorem to build an error model for the results of an aggregate query produced under
sampling. Such an error model relates the sampling rate p to the relative error ε in
a produced aggregate result. Hence, given a relative-error threshold, one can derive
the minimum sampling rate required to meet the threshold. For each instantaneous
window constructed over the input stream of a SWA query, the sampling rate p de-
termines the proportion of tuples within the window to be retained for processing;
thus, there is a direct semantic mapping between the sampling rate and the window
coverage. This observation inspires us to build the error model for the aggregate
results produced under disorder handling in a similar way as for the aggregate re-
sults produced under sampling, and then to derive a window-coverage threshold,
i.e., the minimum coverage that an instantaneous window must reach to not violate
the user-specified result relative-error threshold.

The Window-Coverage Threshold Calculator in Figure 4.1 is responsible for calculat-
ing the window-coverage threshold for a given user-specified error threshold for a
SWA query. The specific calculation depends on the aggregate function. Let us take
the SUM function as an example. Denote the set of tuples belonging to an instan-
taneous window in the absence of stream disorder as Z, the number of tuples in
Z (i.e., |Z|) as N, the values of the tuples to be summed up as z1, z2, . . . , zN , and
the exact SUM result over Z as A = ∑N

i=1 zi. Now assume that the stream disorder
is present. Let us denote the set of tuples that are actually included in the instan-
taneous window after disorder handling by the time the window is constructed as
Z′. One can observe that Z′ is a subset of Z. Without knowing which tuples in Z
are absent in Z′, let us assume that the probability that a tuple in Z gets included
in Z′ is P. Based on this assumption, one can estimate that the expected number
of tuples in Z′ is |Z′| = N · P. Hence, the coverage of the instantaneous window is
Cvrg = |Z′|

|Z| =
N·P
N = P. Namely, the value of P equals the value of Cvrg.

45

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

A~N(Cvrg• A, σe2)

A
Cvrg•ACvrg•A-cδ•σe

(1-Cvrg)• A+cδ• σe

Cvrg•A+cδ•σe

Figure 4.2: Schematic illustration of the distribution of a produced SUM result Â by
the central limit theorem. (Assume that the corresponding exact result A > 0.)

Based on the above value-equivalence between P and Cvrg, N random variables
X1, X2, . . . , XN are defined, such that Xi = zi (i ∈ [1, N]) with probability Cvrg and
Xi = 0 with probability 1−Cvrg. The sum of these random variables is Â = ∑N

i=1 Xi,
which is indeed the SUM result over Z′. Assume that the mean and the variance of
the tuples in Z are µ = ∑N

i=1 zi/N and σ2 = ∑N
i=1(zi − µ)2/N, respectively. The mean

and the variance of the random variable Â can be derived as follows:

E[Â] =
N

∑
i=1

E[Xi] =
N

∑
i=1

(zi · Cvrg + 0 · (1− Cvrg)) = Cvrg · A,

Var[Â] = E[Â2]− E[Â]2 = E[Â2]− (Cvrg · A)2

=
N

∑
i=1

E[X2
i] + ∑

1≤i 6=j≤N
E[Xi]E[Xj]− (Cvrg · A)2

=
N

∑
i=1

(Cvrg · z2
i) + ∑

1≤i 6=j≤N
(Cvrg2 · zi · zj)− (Cvrg ·

N

∑
i=1

zi)
2

= (Cvrg− Cvrg2)
N

∑
i=1

z2
i

= (Cvrg− Cvrg2)
σ2 + µ2

N · µ2 A2.

By the central limit theorem, one can assume that Â is normally distributed with

mean Cvrg · A and standard deviation σe =
√
(Cvrg− Cvrg2) σ2+µ2

N·µ2 · |A|, where |A|
represents the absolute value of A. Based on the statistical properties of the normal
distribution, one can find the associated critical value cδ for a given confidence level
δ (0 < δ < 1). The critical value cδ for a given δ means that the probability that Â
lies outside the range [Cvrg · A− cδ · σe, Cvrg · A + cδ · σe] is at most δ (cf. Figure 4.2).
Therefore, to guarantee that the relative error of Â exceeds εthr with probability at
most δ, the value of Cvrg must satisfy the condition in Eq. (4.1).

(1− Cvrg) · |A|+ cδ · σe

|A|

=(1− Cvrg) + cδ ·

√
(Cvrg− Cvrg2) · σ2 + µ2

N · µ2 ≤ εthr, (4.1)

46

4.1 QDDH for Sliding-Window Aggregate Queries

Algorithm 4.2 Calculate the window-coverage threshold for a sliding-window SUM
query

Input: W - window size
(εthr, δ) - user-specified result relative-error threshold
Irecalc - interval for re-calculating Cvrgthr

Output: Cvrgthr - window-coverage threshold
1: if isFirstCalculation() ∨ needRecalculation(Irecalc) then
2: Calculate N in Eq. (4.1) based on W and the tuple arrival rate r of the

input stream monitored by the Statistics Manager.
3: Obtain estimations for the mean µ and the variance σ2 of the values of

the tuples in the most recent instantaneous window from the Statistics
Manager. These estimations are based on tuples that have been received
so far.

4: Cvrgthr ← the minimum Cvrg that satisfies

(1− Cvrg) + cδ ·
√
(Cvrg− Cvrg2) · σ2+µ2

N·µ2 ≤ εthr, i.e., Eq. (4.1),
where cδ is the critical value associated with the given confidence level δ
according to the error function of a normal distribution.

5: return Cvrgthr

The minimum value of Cvrg that satisfies Eq. (4.1) is then the window coverage threshold
Cvrgthr for the given error threshold (εthr, δ). The value of N in Eq. (4.1) can be
calculated from the window size and the tuple arrival rate monitored by the Statistics
Manager in Figure 4.1. The values of µ and σ can be estimated by the Statistics Manager
as well.

The overall calculation of the window-coverage threshold Cvrgthr by the Window-
Coverage Threshold Calculator for the SUM aggregate function is summarized in Algo-
rithm 4.2. Leveraging results from the work of Law and Zaniolo [LZ08], Cvrgthr can
be derived for many other aggregate functions including COUNT, AVG, QUANTILE,
and complex aggregate functions that take these basic aggregates as building blocks.

The first calculation of Cvrgthr is at the end of the predefined warm-up period.
To adapt to changes in the tuple arrival rate and the data characteristics within
an input stream, in this dissertation, Cvrgthr is re-calculated periodically during the
lifetime of a query (line 1 of Algorithm 4.2). However, more sophisticated strategies
for re-calculating Cvrgthr can be applied as well; for example, the re-calculation can
be triggered by changes detected in the stream statistics [KBG04; BG07].

Note that the calculation of Cvrgthr described above is based on the assumption
that the random variables Xi are statistically independent. In sampling-based AQP,
this assumption holds naturally because tuples are included into a sample in a ran-
dom manner. In contrast, out-of-order tuples in a stream often present correlations.
An out-of-order tuple ei,j is considered as a correlated out-of-order tuple if the tuple
ei,j−1 is an out-of-order tuple as well. The reason for such correlations between out-of-
order tuples is that the out-of-order tuples are often caused by a faulty or overloaded
data source, an unstable communication link, etc., which, once occurred, often would
produce a sequence of out-of-order tuples. Indeed, strong correlations between out-
of-order tuples have been observed in the real-world data streams that are used in
the experimental evaluation of this dissertation (cf. Section 4.3.1). However, the exper-

47

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

imental results in Section 4.3.3 show that the above-described calculation of Cvrgthr
works well for data streams with different disorder characteristics. The reasons are
mainly twofold: (1) whether a tuple is an out-of-order tuple does not depend on the
value of the tuple; (2) the aggregate result over Z does not depend on the order of
the tuples within Z. Therefore, even if a sequence of timestamp-ordered tuples are
delayed together and are absent in Z′, conceptually, one could reorder the tuples
in Z to randomize the positions of those missing tuples, and then define random
variables Xi for the reordered Z. This reordering of Z does not influence the SUM
result over Z.

In sampling-based AQP [LZ08; MZ10], each random variable Xi is defined to
take the value zi

p with probability p and the value zero otherwise. As a result, the
produced SUM result is the sum of the tuples in Z′, scaled by the inverse of the
sampling rate p. The goal is to compensate for the values of the sample-excluded
tuples. In contrast, the Window-Coverage Threshold Calculator does not scale up the
SUM result computed over Z′ by the inverse of Cvrg to compensate for the values of
out-of-order tuples. The reason for this decision will be provided in Section 4.1.4.

4.1.4 Measuring Window Coverages at Runtime

The Window-Coverage Runtime Calculator in Figure 4.1 is responsible for measuring
window coverages of instantaneous windows constructed after disorder handling.
These window-coverage measurements are consumed by the Buffer-Size Adaptation
Unit for different purposes when different buffer-size adaptation methods are ap-
plied. When the analytical-model-based adaptation method is applied, the measured
window coverages are used to compute errors in the window coverages estimated by
the analytical model. Based on these errors, the model-estimated window coverages
are calibrated. When the PD-controller-based adaptation method is applied, the mea-
sured window coverages are indeed values of the process variable (cf. Section 3.4.2),
which are input to the PD controller.

Denoting the total number of received tuples in an instantaneous window w as
Nrcv(w), and the number of unsuccessfully-handled out-of-order tuples for w, i.e.,
the number of missing tuples of w (cf. Section 3.4.1), as Nmiss(w), one can compute
the window coverage of w as Cvrg(w) = Nrcv(w)

Nrcv(w)+Nmiss(w)
. The values of Nmiss and Nrcv

for each instantaneous window are maintained by the Statistics Manager in Figure 4.1.
Specifically, the Statistics Manager uses a mapMw to maintain counters of missing
tuples Nmiss and counters of received tuple Nrcv for instantaneous windows that have
been constructed. For each out-of-order tuple e that is handled unsuccessfully by
the K-slack buffer in Figure 4.1, previously-constructed instantaneous windows, to
which the tuple e belongs, are identified based on the timestamp of e and the window
specification (W, β) (cf. Section 2.1.2). The Nmiss counters of these instantaneous
windows are then increased by one. For each in-order tuple and each successfully-
handled out-of-order tuple, the instantaneous windows to which the tuple belongs
are identified in the same way, and the corresponding Nrcv counters are increased by
one.

Note that at the moment an instantaneous window is constructed at the SWA
operator, e.g., the instantaneous window w in Figure 4.3a, the coverage of the instan-
taneous window measured in the above-described way is always 1. The reason is that

48

4.1 QDDH for Sliding-Window Aggregate Queries

w

(a) (b)

measured Cvrg(w)
1

EPl(w)

EPu(w)=iT-Ki

iT

timestamp
progress

timestamp
progress

iT iT+x
Stream Si

0

Figure 4.3: (a) The most recent instantaneous window constructed over an input
stream under disorder handling; (b) The time-varying behavior of the measured
coverage of the instantaneous window in the sub-figure (a).

at the moment an instantaneous window w is constructed, every previously-arrived
out-of-order tuple either does not fall into the scope of w, and hence is irrelevant to
the coverage of w; or falls into the scope of w, and has been sorted correctly by the
K-slack buffer and included in w. Although in the input stream there might still exist
out-of-order tuples that fall into the scope of w, these tuples can be detected only at
later points in time. Only then, one can learn that the actual coverage of the instan-
taneous window w is smaller than 1. This time-varying behavior of the measured
window coverage of an instantaneous window is depicted in Figure 4.3b. Starting
from the moment an instantaneous window is constructed, its measured window
coverage decreases gradually from 1 as more and more out-of-order tuples falling
into the scope of the instantaneous window have been observed, and finally becomes
stable when all out-of-order tuples falling into the scope of the instantaneous win-
dow have been received. Because the measured window coverage of the most recent
instantaneous window is always 1, it is meaningless to scale up a SUM result by the
inverse of the measured window coverage at the moment an instantaneous window
is constructed.

Figure 4.3b suggests that the measured coverage of an instantaneous window gets
more and more accurate over time. In other words, the measured window coverages
of old instantaneous windows are more accurate than those of recent instantaneous
windows. Obtaining accurate window-coverage measurements is especially impor-
tant for the PD-controller-based buffer-size adaptation method; because otherwise
it would make wrong adaptation decisions. In theory, without knowing the exact
upper bound MaxDi of the tuple delays within an input stream Si, one can never be
certain about the point in time at which the coverage of an instantaneous window
constructed over the stream becomes stable. Recall from Section 3.4.2 that, in this
dissertation, MaxDi is estimated by the maximum delay among the so-far-arrived
tuples in the streamSi. Based on this estimation of MaxDi, the coverage of an instan-
taneous window w can be assumed to be stable when the upper endpoint EPu(w)
of w satisfies EPu(w) < iT−MaxDi. In other words, the coverages of instantaneous
windows constructed before iT −MaxDi are assumed to be stable.

However, the disorder situation of a stream reflected in the measured window
coverages of old instantaneous windows of the stream could be stale. On the one
hand, it is desired to use accurate measurements of window coverages; on the other
hand, it is also desired to make buffer-size adaptation decisions based on the fresh
information of the stream disorder. Note that MaxDi represents the worst-case tuple
delay, which normally occurs rarely. To reduce the effect of uncommon delay spikes

49

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

Algorithm 4.3 Measure the coverages of instantaneous windows constructed over a
disorder-handled input stream Si at the query runtime

Input: iT - the local current time at which a new instantaneous window is con-
structed

q - the retrospect parameter, 0 < q < 1
Output: the window coverage Cvrg of a chosen instantaneous window

1: M← q-quantile of the delays of out-of-order tuples observed so far
2: Among all instantaneous windows that were constructed before iT −M, choose

the instantaneous window w whose upper endpoint is closest to iT −M.
3: Find the entry of w in the map Mw maintained by the Statistics Manager, and

obtain the number of missing tuples Nmiss and the number of received tuples
Nrcv in w that have been observed by the time of iT.

4: Cvrg(w)← Nrcv
Nrcv+Nmiss

5: return Cvrg(w)

on the freshness of the information used by the buffer-size adaptation method, and
to take skews in the distribution of out-of-order tuples within the input stream into
account, this dissertation proposes to measure the coverage of the instantaneous
window that was constructed M time units earlier than iT, where M is equal to
the q-quantile (0 < q < 1) [Wan+13] of the delays of the so-far-arrived out-of-order
tuples. The parameter q is referred to as the retrospect parameter, because it essen-
tially determines how far to look back into the history of constructed instantaneous
windows. q is a system parameter. It can be adjusted to trade off the accuracy of
the window-coverage measurements against the freshness of the stream disorder
situation reflected in the measurements.

Algorithm 4.3 summarizes the procedure of measuring the coverages of instan-
taneous windows constructed after disorder handling at the query runtime. To min-
imize the space consumption of the mapMw maintained by the Statistics Manager,
Mw is purged periodically to remove entries of instantaneous windows that are very
old, e.g., instantaneous windows that were constructed before iT −MaxDi.

4.1.5 Analytical-Model-Based Buffer-Size Adaptation

The Buffer-Size Adaptation Unit in Figure 4.1 is responsible for determining the up-
dates of the K-slack buffer size, based on the information provided by the other
components. This subsection describes the instantiation of the Buffer-Size Adapta-
tion Unit using the analytical-model-based buffer-size adaptation method that was
proposed in Section 3.4.1.

When using the analytical-model-based adaptation method, the coverage of the
instantaneous window that will be constructed next is modeled as a function of the
buffer size K, denoted by Cvrg(w, K). In Section 3.4.1, it has been shown that the
number of tuples included in the most recent instantaneous window constructed
after disorder handling can be modeled as a function of K using Eq. (3.6). Based on
the assumption that the near future resembles the recent past, the adaptation method
estimates the number of tuples that would be included in the next instantaneous

50

4.1 QDDH for Sliding-Window Aggregate Queries

Algorithm 4.4 Analytical-model-based adaptation of the K-slack buffer size to sup-
port QDDH for individual SWA queries

Input: Wi - window size on the input stream Si
b - size of a basic window (cf. Section 3.4.1)
g - K-search granularity (cf. Section 3.4.1)
Cvrgthr - calculated window-coverage threshold (cf. Section 4.1.3)
Tuple-delay statistics from the Statistics Manager (cf. Section 3.4.1)

Output: κ - the K-slack buffer size to be applied before the next adaptation
1: MaxDR

i ←maximum tuple delay within the statistics window Rstat
i over the input

stream Si (cf. Section 3.4.1)
2: κ ← 0
3: while (κ ≤ MaxDR

i ∧ Cvrg(w, κ) < Cvrgthr) do
4: κ ← κ + g
5: return κ

window in the same way, and further estimates the coverage of that instantaneous
window as

Cvrg(w, K) =
|w|

r ·W (4.2)

where |w| is estimated by Eq. (3.6), r is the tuple arrival rate of the input stream, and
W is the window size applied over the input stream. Note that the tuple arrival rate
r appears in both the numerator (i.e., Eq. (3.6)) and the denominator of Eq. (4.2), and
therefore can be canceled off.

With the relation between the window coverage and the buffer size K modeled
by Eq. (4.2), the adaptation method then searches for the minimum possible value of
K such that the condition Cvrg(w, K) ≥ Cvrgthr is satisfied. This minimum possible
value of K is referred to as the optimal QDDH buffer size of the SWA query, and is
denoted by κ.

Algorithm 4.4 depicts the process of searching for the optimal QDDH buffer size κ
in one iteration of the buffer-size adaptation. In this dissertation, κ is searched using
a trial and error method. Specifically, let MaxDR

i denote the maximum tuple delay
observed within the statistics window Rstat

i over the input stream (cf. Section 3.4.1).
Algorithm 4.4 examines the κ values κ = 0, κ = g, κ = 2g, κ = 3g, etc. (g > 0), until
either the examined κ value is greater than MaxDR

i or the condition Cvrg(w, κ) ≥
Cvrgthr is satisfied. The last examined κ value is then returned as the optimal QDDH
buffer size. Recall from Section 3.4.1 that the parameter g is called the K-search
granularity, which defines the granularity in which the value domain of the delay of
tuples is discretized to allow the tuple delay to be modeled by a discrete random
variable.

To increase the accuracy of the window coverage estimated by Eq. (4.2), each es-
timated Cvrg(w, κ) in Algorithm 4.4 can be calibrated based on the estimation errors
in the past. The estimation error of an instantaneous window w can be obtained by
comparing the last Cvrg(w, κ) estimated for w with the Cvrg value measured by the
Window-Coverage Runtime Calculator for the same w.

51

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

4.1.6 Control-Based Buffer-Size Adaptation

When instantiating the Buffer-Size Adaptation Unit in Figure 4.1 using the PD-con-
troller-based adaptation method introduced in Section 3.4.2, each time the Buffer-Size
Adaptation Unit is invoked, the PD controller (cf. Figure 3.7) takes the window-cover-
age threshold Cvrgthr from the Window-Coverage Threshold Calculator as the setpoint,
and the window-coverage measurement Cvrg from the Window-Coverage Runtime
Calculator as the value of the process variable. Recall from Section 3.4.2 that the
PD controller adjusts the parameter α, which is applied on top of MaxDi. The opti-
mal QDDH buffer size returned by the Buffer-Size Adaptation Unit at the end of an
adaptation iteration is κ = α ·MaxDi.

4.2 QDDH for M-way Sliding-Window Join Queries

MSWJ queries are used in many stream-based applications for discovering correla-
tions across different streams, e.g., finding similar news items from different news
sources [Ged+07]. This section describes the instantiation of the generic QDDH frame-
work introduced in Chapter 3 for individual MSWJ queries.

Formally, an MSWJ query has m (m ≥ 2) input streams S1, S2, . . . , Sm, and an
optional join condition pon, which may consist of one or more join predicates. Each
input stream Si is associated with a time-based sliding window, whose size Wi is
specified by the user. Different input streams could have different window sizes.
Semantically, an input tuple ei from any input stream Si joins with the subset of
tuples {ej|ei.ts−Wj ≤ ej.ts ≤ ei.ts + Wi} in every other stream Sj (j 6= i). A result
tuple 〈e1, e2, . . . , em〉 is produced if the join condition pon is met. The timestamp
assigned to the result tuple is max{ei.ts|i ∈ [1, m]}. Finding the optimal join order is
orthogonal to disorder handling, and any existing work in this area (e.g., [VNB03;
Bab+04]) can be applied.

If the disorder within the input streams is handled completely, then the join
output, in terms of both the set of the result tuples and the order between the result
tuples with respect to their timestamps1, would be the same as the join output
produced when the input streams do not have disorder at all. The number of result
tuples produced at the arrival of a tuple e in the case that the stream disorder is
absent is referred to as the productivity of the tuple e.

4.2.1 Result-Quality Metric

It has been shown in Example 3.1.2 that, when the disorder handling is incomplete,
only a fraction of the true join results (i.e., results that would be produced if the input
streams did not contain disorder) will be produced. The fraction of the actually-
produced join results is defined as the recall [SW04b] of the join results, and is used
as the result-quality metric for MSWJ queries.

In this dissertation, each time the recall of the join results needs to be measured,
the join results whose timestamps are within the last Pmeas time units, rather than all
join results produced so far, are considered. The parameter Pmeas is called the result-
quality measurement period, and is a user-specified requirement. The parameter Pmeas

1In this dissertation, the order of the result tuples that have the same timestamp is not restricted.

52

4.2 QDDH for M-way Sliding-Window Join Queries

K-slack
buffer

Statistics Manager

statistics of input, e.g.,
tuple dalay, data rate)

input streams

result stream

QDDH for MSWJ

MSWJ operator

Buffer Manager

Buffer-Size
Adaptation Unit

Recall-Requirement
Calibrator

updates of Kstatistics

S1 S2 Sm

synchronization buffer

...

...

...

Tuple-Productivity
Profiler

Result-Size
Monitor K-slack

buffer
K-slack
buffer

result-size statistics

user-specified result-quality measurement
period P and recall requirement Γ

Γ'

tu
p
le-

p
rod
u
ctivity

statistics

Figure 4.4: Instantiation of the buffer-based QDDH framework for individual MSWJ
queries.

is introduced for two reasons: (1) it allows a user to specify the quality measurement
period that is of his own interest; (2) with a full-history-based recall definition, it
could happen that the fraction of the produced results is very high within a long
period I1, and is very low within the following long period I2, but the overall frac-
tion of the produced results within the period I1 + I2 still looks good. This may be
undesirable for applications that would like to have continuously-high query-result
quality. With a period-based recall definition, the situation described above is de-
tectable if the length of the period is set small. In this regard, a period-based recall is
indeed a stricter result-quality metric compared to a full-history-based recall. Using
the period-based recall definition, the disorder handling procedure can be guided to
provide a continuously-high query-result quality.

Formally, given a user-specified result-quality measurement period Pmeas, the
recall of the results of an MSWJ query measured at any time with respect to Pmeas is
denoted by γ(Pmeas), and is defined as

γ(Pmeas) =
join results whose timestamps are within the last Pmeas time units

true join results whose timestamps are within the last Pmeas time units
.

(4.3)
A user specifies the result-quality requirement for an MSWJ query by defining the
minimum required γ(Pmeas), which is denoted by Γ.

4.2.2 QDDH-Framework Instantiation Overview

Figure 4.4 depicts the instantiation of the generic QDDH framework for individual
MSWJ queries. For the moment, let us assume an MJoin-style [VNB03] join implemen-
tation, where the join operation is conducted by a single join operator which takes m
input streams directly, rather than by a tree of binary join operators [GÖ03b]. Same
as for SWA queries, let us consider a physical MSWJ operator implementation that

53

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

implements both the logical window operators and the logical join operator. Dealing
with the binary-tree-style join implementation will be discussed in Section 4.2.6.

Following the two-step disorder handling strategy described in Section 3.3, for
each input stream of an MSWJ query, a K-slack buffer is used to handle the intra-
stream disorder within the stream. The output streams of all K-slack buffers are then
forwarded to a synchronization buffer, which handles the inter-stream disorder (cf.
Algorithm 3.1).

To achieve the objective of QDDH, the Buffer Manager in Figure 4.4 adapts the
K-slack buffer sizes every Ladt time units. Ladt is a system parameter and is referred
to as the adaptation interval. The value of Ladt is set in such a way that it does not
exceed the user-specified result-quality measurement period Pmeas, i.e., Ladt ≤ Pmeas.
At the end of each adaptation interval, the buffer size K of each K-slack buffer is
determined for the next Ladt time units, based on the information provided by the
Statistics Manager.

In addition to the statistics of the input streams, e.g., tuple delays and tuple
arrival rates, the Statistics Manager has two sub-components: the Tuple-Productivity
Profiler and the Result-Size Monitor. The Tuple-Productivity Profiler interacts with the
join operator to monitor the productivity of an input tuple. The objective is to learn
the potential correlation between the delay and the productivity of input tuples,
which plays an important role in the analytical-model-based buffer-size adaptation
method (cf. Section 4.2.4). The Result-Size Monitor maintains a sliding window of
Pmeas − Ladt time units on the result stream. Based on the produced result size, the
Recall-Requirement Calibrator—a sub-component of the Buffer-Manager—calibrates the
user-specified recall requirement Γ to obtain a recall requirement to be used in a
single adaptation iteration. This calibrated recall requirement is referred to as the
instant recall requirement, denoted by Γ′. The calibration is based on the following
intuition: If the recall of the join results produced within the last Pmeas − Ladt time
units is much higher than the user-specified recall requirement Γ, then a lower recall
requirement can be set for the join results produced within the next adaptation
interval, which implies that smaller K-slack buffers can be used in the next adaptation
interval; and vice versa. Same as in the instantiation of the QDDH-framework for
individual SWA queries, new K-slack buffer sizes are determined by the Buffer-Size
Adaptation Unit of the Buffer Manager, using a certain buffer-size adaptation method
(cf. Section 4.2.4 and Section 4.2.5). The overall behavior of the Buffer Manager is
summarized by Algorithm 4.5.

The output streams of the synchronization buffer are processed by the MSWJ
operator, whose basic idea is described in Algorithm 4.6. Because of the lines 9–10 in
Algorithm 3.1, the streams arriving at the join operator may still contain out-of-order
tuples. The join operator can detect these out-of-order tuples by using a variable onT
to track the maximum timestamp among the so-far-received tuples. A received tuple
ei (i ∈ [1, m]) is out of order if ei.ts < onT. For each received tuple ei, if ei is an in-order
tuple, then onT is updated if ei.ts > onT, and ei is processed following a three-step
procedure: (1) Invalidate expired tuples in windows on all other streams (lines 5–6).
(2) Join the tuple ei with the remaining tuples in all other windows, and produce
result tuples based on the given join condition (line 7). The timestamp assigned to
each result tuple is ei.ts. (3) Insert the tuple ei into the window on the stream Si
(line 8). If the received tuple ei is an out-of-order tuple, then step (1) and step (2)

54

4.2 QDDH for M-way Sliding-Window Join Queries

Algorithm 4.5 The behavior of the Buffer Manager in the QDDH-framework instantia-
tion for individual MSWJ queries (cf. Figure 4.4)

Input: specification of an MSWJ query
Pmeas - user-specified result-quality measurement period
Γ - user-specified recall requirement on produced join results
Ladt - interval of adapting the K-slack buffer sizes for an MSWJ query
statistics from the Statistics Manager

Output: new settings of the K-slack buffer sizes
1: for each adaptation interval Ladt, at the end of the interval do
2: Invoke the Recall-Requirement Calibrator to compute a calibrated recall

requirement Γ′.
from the user-specified recall requirement Γ

3: Invoke the Buffer-Size Adaptation Unit with Γ′ to determine the new K-slack
buffer sizes to be applied during the next adaptation interval.

Algorithm 4.6 Execution of MSWJ over disorder-handled input streams

1: onT ← 0
2: for each tuple ei (i ∈ [1, m]) arrived at the join operator do
3: if ei.ts ≥ onT then
4: onT ← ei.ts
5: for the window on each stream Sj (j 6= i) do
6: Remove tuples ej satisfying ej.ts < ei.ts−Wj from the window

7: Probe the window on each stream Sj (j 6= i) and produce result tuples
based on the join condition pon

8: Insert ei into the window on Si
9: else if ei.ts > onT −Wi then

10: Insert ei into the window on Si

11: Invoke the Tuple-Productivity Profiler to record the (estimated) productivity
of ei

are skipped; hence, (a fraction of) result tuples that can be derived from the tuple
out-of-order ei are lost. However, if the tuple ei still falls into the current scope of the
window on Si (i.e., ei.ts ≥ onT −Wi), then ei could still contribute to deriving future
result tuples. Hence, in this case, ei is still inserted into the window on Si (lines 9–10).
Finally, the join operator invokes the Tuple-Productivity Profiler in Figure 4.4 to record
the productivity of ei. The productivity of an out-of-order tuple is estimated based
on the join results produced in the past, which will be described in Section 4.2.4.

4.2.3 The Same-K Policy

Before describing the buffer-size adaptation performed by the Buffer-Manager in
Figure 4.4 in detail, this subsection introduces one general policy that the Buffer-
Manager follows in each iteration of the buffer-size adaptation. That is, all K-slack
buffers applied for an MSWJ query use the same setting of K. This policy is termed
as the Same-K policy, which is asserted by Theorem 4.1.

55

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

Stream S2

timestamp
progress

1T

(a) K1 = K2 = 0

Ksync

2T

Stream S1

1T- k1

(b) Case 1: S1 is leading after the disorder
 handling by K-slack buffers. K1=k1, K2=k2

2T- k2

1T

2T

Stream S2

Stream S1
1T

2T

1T- k1

2T- k2

Stream S2

Stream S1

(c) Case 2: S2 is leading after the disorder
 handling by K-slack buffers. K1=k1, K2=k2

Figure 4.5: Illustrative proof of the Same-K policy for 2-way sliding-window joins.

Theorem 4.1. For a query with multiple input streams S1, S2, . . . , Sm, when using a two-
step, buffer-based, prior-to-operation disorder handling strategy (cf. Section 3.3), then for
any buffer-size configuration of the intra-stream disorder handling components (i.e., the
K-slack buffers), where K1 = k1, K2 = k2, . . . , Km = km (ki is a constant and ki ≥ 0),
the effect of the disorder handling under this configuration, and thus the produced join
output, is the same as that under the configuration K1 = K2 = · · · = Km = k, where
k = min{iT|i ∈ [1, m]} −min{iT − ki|i ∈ [1, m]}.

Basically, Theorem 4.1 says that, independent of the intra-stream disorder char-
acteristics within the input streams of an MSWJ query, one could always find a
configuration C where all K-slack buffers in Figure 4.4 apply the same setting of K,
to replace another configuration C′ where the K-slack buffers apply different settings
of K, such that the join output produced under the configuration C is the same as
the join output produced under the configuration C′. Hence, it suffices to use the
same setting of K for all K-slack buffers.

Example 4.2.1. Consider a 2-way join with input streams S1 and S2, whose progress
in terms of the tuple timestamp is as shown in Figure 4.5a: The stream S1 is leading
whereas the stream S2 is lagging. When using a synchronization buffer to handle the
inter-stream disorder within the two streams directly, the size of the synchronization
buffer would be 1T − 2T. Recall from Section 3.2.2 that, even if the intra-stream
disorder within each input stream is not handled by a K-slack buffer, i.e., K1 = K2 = 0,
the synchronization buffer would handle it, at least partially, for the leading stream.
Hence, for the case in Figure 4.5a, the buffer sizes for handling the inter-stream
disorder in streams S1 and S2 are 1T − 2T and 0, respectively.

Assume that the K-slack buffers applied for the streams S1 and S2 are configured
as K1 = k1 and K2 = k2, and at least one of k1 and k2 is greater than zero. Then there
are two possible cases2:

• Case 1: The stream S1 remains leading after the disorder handling by K-slack buffers
(Figure 4.5b). For the stream S2, the total buffer size for handling its intra-
stream disorder is k2. For the stream S1, in addition to the K-slack buffer, the

2The case in which both streams have the same timestamp progress after the disorder handling by
K-slack buffers can be viewed as a special instance of either Case 1 or Case 2.

56

4.2 QDDH for M-way Sliding-Window Join Queries

synchronization buffer can further handle its intra-stream disorder. Th synchro-
nization buffer size that contributes to handling the intra-stream disorder in S1
is Ksync

1 = (1T− k1)− (2T− k2). Hence, the total buffer size for handling the in-
tra-stream disorder in S1 is k1 + Ksync

1 = 1T − 2T + k2. Compared to the case in
Figure 4.5a, for both streams, the total buffer size for handling the intra-stream
disorder is increased by k2, which is equivalent to having a K-slack buffer-size
configuration where K1 = K2 = k2.

• Case 2: The stream S2 becomes leading after the disorder handling by K-slack buffers
(Figure 4.5c). In this case, the synchronization buffer keeps and sorts tuples
from the stream S2, and Ksync

1 = 0, Ksync
2 = (2T − k2) − (1T − k1). The total

buffer size for handling the intra-stream disorder is k1 for the stream S1, and
is k2 + Ksync

2 = 2T− 1T + k1 for the stream S2. Let k = 2T− 1T + k1. Compared
to the case in Figure 4.5a, the total buffer size for handling the intra-stream
disorder is increased by k for both streams, which is equivalent to having a
K-slack buffer-size configuration where K1 = K2 = k.

The formal proof of Theorem 4.1 is as follows.

Proof. The nature of Algorithm 3.1 determines that, for each synchronization buffer,
the value of the variable Tsync is always determined by the maximum timestamp
among the tuples of the slowest stream—in terms of the timestamp progress—that
is input to the synchronization buffer. If the K-slack buffer applied over each input
stream of the synchronization buffer is configured with a size of zero, then Tsync

can be determined as Tsync = min{iT|i ∈ [1, m]}, and Ksync
i for each input stream

Si can be determined as Ksync
i = iT − Tsync = iT −min{iT|i ∈ [1, m]}. Ksync

i is also
the total buffer size for handling the intra-stream disorder of the stream Si under
this buffer-size configuration. If the configuration for the K-slack buffer sizes is
K1 = k1, K2 = k2, . . . , Km = km (ki ≥ 0), then Tsync = min{iT − ki|i ∈ [1, m]}, and
Ksync

i = (iT− ki)− Tsync = iT− ki −min{iT− ki|i ∈ [1, m]}. Now the total buffer size
for handling the intra-stream disorder of the stream Si is ki + Ksync

i = iT−min{iT−
ki|i ∈ [1, m]}. Compared to the case where Ki = 0 for each i ∈ [1, m], for each input
stream Si, the total buffer size for handling its intra-stream disorder is increased
by (iT − min{iT − ki|i ∈ [1, m]}) − (iT − min{iT|i ∈ [1, m]}) = min{iT|i ∈ [1, m]}
− min{iT − ki|i ∈ [1, m]}. Hence, it is equivalent to having a K-slack buffer-size
configuration where K1 = K2 = · · · = Km = min{iT|i ∈ [1, m]} −min{iT − ki|i ∈
[1, m]}.

The Same-K policy has another important benefit:

Proposition 4.1. With the Same-K policy, for any two input streams Si and Sj of an MSWJ
query, the time skew (cf. Section 2.2.1) between their corresponding K-slack output streams
is the same as the time skew between the streams Si and Sj.

Proof. ∀i, j ∈ [1, m], ∀k, |(iT − k)−(jT − k)|=|iT − jT|.

From the discussion above, it can be observed that Ksync
i for any stream is essen-

tially the time skew between the stream’s corresponding K-slack output stream and
the slowest output stream among all K-slack buffers. Proposition 4.1 suggests that,
with the Same-K policy, all Ksync

i can be determined directly based on the time skews

57

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

Algorithm 4.7 Analytical-model-based adaptation of the K-slack buffer sizes to sup-
port QDDH for individual MSWJ queries

Input: {Wi|i ∈ [1, m]} - window sizes on input streams S1, S2, . . . , Sm
b - size of a basic window (cf. Section 3.4.1)
g - K-search granularity (cf. Section 3.4.1)
Ladt - adaptation interval (cf. Section 4.2.2)
Γ′ - instant recall requirement derived by Recall-Requirement Calibrator
Statistics maintained by the Statistics Manager (e.g., tuple delay, tuple pro-

ductivity, and result size)
Output: κ - the K-slack buffer size to be applied in the next adaptation interval

1: MaxDR ← max{MaxDR
i |i ∈ [1, m]}

2: κ ← 0
3: while (κ ≤ MaxDR ∧ γ(Ladt, κ) < Γ′) do
4: κ ← κ + g
5: return κ

between the raw input streams, regardless of the specific size settings for the K-slack
buffers. The Statistics Manager in Figure 4.4 is responsible for monitoring Ksync

i at the
query runtime.

4.2.4 Analytical-Model-Based Buffer-Size Adaptation

This subsection describes the instantiation of the Buffer-Size Adaptation Unit with the
analytical-model-based adaptation method. Thanks to the Same-K policy introduced
in Section 4.2.3, at each iteration of the buffer-size adaptation, the Buffer-Size Adap-
tation Unit only needs to determine a common K value for all the K-slack buffers
in Figure 4.4. The objective is to find the minimum possible value of K to meet the
user-specified recall requirement.

The analytical-model-based buffer-size adaptation method models the recall of
the join results that would be produced in the next adaptation interval, whose length
is Ladt (cf. Section 4.2.2), as a function of the buffer size K, denoted by γ(Ladt, K).
Algorithm 4.7 depicts the behavior of the method in a single iteration of the buffer-
size adaptation. In each iteration, the method searches for the minimum possible
value of K such that γ(Ladt, K) ≥ Γ′ holds. This minimum possible value of K is then
the optimal QDDH buffer size κ of the MSWJ query. The input Γ′ of Algorithm 4.7 is
an instant recall requirement derived by the Recall-Requirement Calibrator in Figure 4.4.
It is derived for the recall measured over the period Ladt, from the user-specified
requirement Γ for the recall measured over the result-quality measurement period
Pmeas. Details of this calibration procedure will be described later in this subsection.

Modeling γ(Ladt, K)

To estimate the recall of the join results produced within Ladt time units under a
certain buffer-size configuration K, one needs to estimate the join result size that
would be produced within Ladt under K, denoted by Non

prod(Ladt, K), and the true join
result size within Ladt, denoted by Non

true(Ladt), if the input streams did not contain
disorder. Non

true(Ladt) is independent of the configuration of K.

58

4.2 QDDH for M-way Sliding-Window Join Queries

Estimating Non
true(Ladt) For an MSWJ query with an arbitrary join condition pon,

Non
true(Ladt) can be estimated by multiplying the result size of the corresponding cross-

join, denoted by N×true(Ladt), with the selectivity of the join condition, denoted by selon.
The estimation of selon will be discussed later. For the moment, let us assume that
selon is known. N×true(Ladt) is the sum of the number of cross-join result tuples that
would be produced at the arrival of each tuple ei (i ∈ [1, m]) during the interval
Ladt if the input streams did not contain disorder. The number of cross-join result
tuples produced at the arrival of an individual tuple ei from any input stream Si
is a simple product of the number of tuples within the most recent instantaneous
window wj,> on every other input stream Sj (j 6= i). The cardinality of wj,>, |wj,>|,
can be estimated based on the average tuple arrival rate rj of Sj and the window size
Wj, i.e., |wj,>| = rj ·Wj. For each stream Si, the total number of tuples that would
arrive during the interval Ladt can be estimated based on the average tuple arrival
rate ri as well, as ri · Ladt. In summary, Non

true(Ladt) is estimated as

Non
true(Ladt) = selon · N×true(Ladt) = selon ·

m

∑
i=1

(ri · Ladt ·
m

∏
j=1,j 6=i

rj ·Wj)

= selon · (
m

∏
i=1

ri) · Ladt · (
m

∑
i=1

m

∏
j=1,j 6=i

Wj). (4.4)

Estimating Non
prod(Ladt, K) Non

prod(Ladt, K) is estimated again based on the result size
of the corresponding cross-join under K, denoted by N×prod(Ladt, K), and the join se-
lectivity under K, denoted by selon(K). It can be observed that (1) the join operator
produces result tuples, if any, only at the arrival of in-order tuples (cf. Algorithm 4.6);
(2) when an in-order tuple ei arrives at the join operator, the instantaneous window
wj,> (j 6= i) may be incomplete; because some tuples ej that satisfy ej.ts ≥ ei.ts−Wj
may have not arrived because of the incomplete disorder handling by the K-slack
buffers and the synchronization buffer. Hence, to estimate N×prod(Ladt, K), one needs to
estimate, under the given setting of K, the number of in-order tuples that the join op-
erator would receive during Ladt, and the degree of completeness of the most recent
instantaneous windows wj,> (j 6= i) at the arrival of an in-order tuple ei (i ∈ [1, m]).
The number of in-order tuples that the join operator would receive during Ladt from
the stream Si can be estimated as ri · Ladt · fDK

i
(0), where fDK

i
(0) represents the prob-

ability that the delay of a tuple in the corresponding, disorder-handled, derived
stream of Si is 0 (cf. Section 3.4.1). The cardinality of the instantaneous window wj,>
(j 6= i) can be estimated using Eq. (3.6). Overall, Non

prod(Ladt, K) can be estimated as

Non
prod(Ladt, K) = selon(K) ·

m

∑
i=1

(
ri · Ladt · fDK

i
(0) · (

m

∏
j=1,j 6=i

nj

∑
l=1
|wl

j,>|)
)

= selon(K) · (
m

∏
i=1

ri) · Ladt·

m

∑
i=1

 fDK
i
(0)

m

∏
j=1,j 6=i

b ·
nj−1

∑
l=1

(l−1)b
g

∑
d=0

fDK
j
(d) +

(
Wj − (nj − 1)b

) (nj−1)b
g

∑
d=0

fDK
j
(d)


 .

(4.5)

59

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

Calculating γ(Ladt, K) Having estimated Non
true(Ladt) and Non

prod(Ladt, K), the recall
γ(Ladt, K) can be calculated as

γ(Ladt, K) =
selon(K)

selon
·

m
∑

i=1

 fDK
i
(0)

m
∏

j=1,
j 6=i

b ·
nj−1

∑
l=1

(l−1)b
g

∑
d=0

fDK
j
(d) +

(
Wj − (nj − 1) · b

) (nj−1)b
g

∑
d=0

fDK
j
(d)




m
∑

i=1

m
∏

j=1,j 6=i
Wj

, (4.6)

where the common factor (∏m
i=1 ri) · Ladt in Eq. (4.4) and Eq. (4.5) is canceled off.

Learning Delay-Productivity Correlation and Estimating Join Selectivity

Eq. (4.6) requires estimating selon(K)
selon

. A naive strategy for this estimation is to assume
that the join selectivity under K, i.e., selon(K), is equal to the true join selectivity selon.
This is equivalent to estimating the recall γ(Ladt, K) based on the result sizes of the
corresponding cross-join. This strategy is denoted by EqSel hereafter. However, when
stream disorder is present and the disorder handling is incomplete, the streams
received by the join operator are different from the streams in the ideal case, where
all input streams are in order and synchronized with each other. As a result, the
join selectivity when stream disorder is present is often also different from the
join selectivity in the ideal case. As an example, let us consider the 2-way join in
Figure 4.6, where tuples are represented in the same way as in Figure 3.2; namely,
the superscript of a tuple represents the timestamp of the tuple. If the input streams
do not have disorder or if the disorder handling is complete, the join selectivity is
1
3 (Figure 4.6a). If after disorder handling, a tuple in the stream S1 arrives at the
join operator out of order, then the join selectivity is no longer 1

3 (Figure 4.6b and
Figure 4.6c). Hence, it is more reasonable to assume that selon(K) is different from
selon. This strategy is denoted by NonEqSel hereafter.

To estimate selon(K) for different configurations of K, one needs to consider the
correlation between the delay and the productivity of tuples; because, as implied by
Figure 4.6b and Figure 4.6c, tuples with different delays do not necessarily have the
same productivity, and the unsuccessful handling of an out-of-order tuple that has a
high productivity has a bigger influence on the produced recall than the unsuccessful
handling of an out-of-order tuple that has a low productivity.

Extensive work exists, e.g., [SS94; RD08], which uses synopsis of input streams
(e.g., histograms, sketches, and samples) to estimate the join result size or tuple
productivities, and furthermore, the join selectivity. However, such input-based ap-
proaches do not work for joins with complex conditions, e.g., conditions involving
user-defined functions [Cha09]. To support arbitrary join conditions and to be able to
estimate selon(K) for different configurations of K in each iteration of the buffer-size
adaptation, this dissertation adopts an output-based approach; namely, the delay-pro-
ductivity correlation is learned by monitoring the output of the join operator. Such

60

4.2 QDDH for M-way Sliding-Window Join Queries

Stream S1

Stream S2

A1

b1

B2

b2 b3

C3 A1

b1

B2

b2 b3

C3 arrival order
at the join
operator

A1

b1

B2

b2 b3

C3

selectivity: 0+0+1+1+0+1
0+1+1+2+2+3

1
3

= 0+0+0+0+0
0+1+1+2+2

= 0 0+1+1+0+1
0+1+1+2+2

=

recall of results: 1 0 1

1
2

(a) Input presents no disorder (or
the disorder handling is complete)

(b) B2 is out of order
after disorder handling

(c) A1 is out of order
after disorder handling

W1=W2=3 W1=W2=3 W1=W2=3

Figure 4.6: Effect of out-of-order tuples arriving at the join operator on the join
selectivity and the recall of join results.

output-based approaches were also applied in prior work like [Bab+04; Ged+07;
Lar+07] for different purposes.

Specifically, for each input tuple ei (i ∈ [1, m]), the K-slack buffer applied for the
stream Si annotates ei with its delay delay(ei). The tuple ei carries this delay annota-
tion through the synchronization buffer. If ei arrives in order at the join operator, then
during the join processing, the join operator records both the number of cross-join
result tuples that ei would derive, n×(ei), and the number of join result tuples that ei
actually derives, non(ei), given the content of the instantaneous windows wj,> (j 6= i)
over the other streams. The three numbers, delay(ei), n×(ei), and non(ei), are then
provided to the Tuple-Productivity Profiler in Figure 4.4. The Tuple-Productivity Profiler
uses two maps,M× andMon, to maintain the accumulated n× and non, respectively,
for each coarse-grained tuple delay observed within the last adaptation interval. The
applied granularity for non-zero tuple delays is again g, which is consistent with the
K-search granularity in Algorithm 4.7. If the tuple ei arrives out of order at the join
operator, then no join processing is conducted for ei (cf. Algorithm 4.6). In this case,
non(ei) and n×(ei) are estimated by the maximum non(e) and n×(e), respectively, over
all in-order tuples e that have been received in the last adaptation interval.

LetM×[d] represent the value to which the coarse-grained tuple delay d maps
inM×, thenM×[d] = ∑delay(e)=d n×(e). Similarly, letMon[d] represent the value to
which the coarse-grained tuple delay d maps inMon, thenMon[d] = ∑delay(e)=d non(e).
Assuming that the join selectivity in the next adaptation interval is the same as the
join selectivity in the last adaptation interval, for each K-slack buffer-size K examined
in Algorithm 4.7, the join selectivity under K, selon(K), is estimated as

selon(K) = ∑K
d=0Mon[d]

∑K
d=0M×[d]

.

The estimation of selon—the true join selectivity within Ladt if the input streams
contained no disorder—is based on the following observation: For the join operator,
the case where the input streams contain no disorder is equivalent to the case where
the input streams contain disorder but the disorder is handled completely by using
large-enough K-slack buffers. The join selectivity in the former case is the same as the
join selectivity in the latter case. Hence, in this dissertation, the true join result size
within the next adaptation interval is estimated based on the statistics collected in
the last adaptation interval, as ∑MaxDM

d=0 Mon[d], where MaxDM represents the current

61

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

maximum tuple delay in the mapMon. The underlying rationale is that with a buffer
of size MaxDM time units, any tuple e whose delay satisfies delay(e) ≤ MaxDM

can be re-ordered correctly by the buffer (cf. Section 3.2.1). Similarly, the result size
of the corresponding cross join within the next adaptation interval is estimated as

∑MaxDM
d=0 M×[d]. Now, the true join selectivity selon can be estimated as

selon =
∑MaxDM

d=0 Mon[d]

∑MaxDM
d=0 M×[d]

. (4.7)

In summary, the estimation for selon(K)
selon

is

selon(K)
selon

=
∑K

d=0Mon[d]

∑K
d=0M×[d]

· ∑MaxDM
d=0 M×[d]

∑MaxDM
d=0 Mon[d]

. (4.8)

Deriving the Instant Recall Requirement

This part describes how the instant recall requirement Γ′ needed in Algorithm4.7 is
derived. This is done by using the runtime statistics maintained by the Tuple-Produc-
tivity Profiler and the Result-Size Monitor in Figure 4.4.

Given the user-specified result-quality measurement period Pmeas (cf. Section 4.2.1),
the Result-Size Monitor monitors the number of result tuples produced within the last
Pmeas − Ladt time units, denoted by Non

prod(Pmeas − Ladt). Let Non
true(Pmeas − Ladt) denote

the number of true join results that would be produced within the last Pmeas − Ladt
time units if the input streams contained no disorder. In general, to make the recall
measured at the end of the next adaptation interval for the results produced within
the past Pmeas time units meet the user-specified requirement Γ, the recall Γ′ of the
results produced within the next adaptation interval should satisfy Eq. (4.9).

Non
prod(Pmeas − Ladt) + Non

true(Ladt) · Γ′

Non
true(Pmeas − Ladt) + Non

true(Ladt)
≥ Γ (4.9)

Recall that the number of true join results within the next adaptation interval
Non

true(Ladt) can be estimated by ∑MaxDM
d=0 Mon[d], where Mon maintains the accumu-

lated tuple productivities within the last adaptation interval. Furthermore, Non
true(Pmeas−

Ladt) in Eq. (4.9) can be estimated by summing up the Non
true(Ladt) estimations obtained

in the last (Pmeas − Ladt)/Ladt adaptation intervals. Together with Non
prod(Pmeas − Ladt)

that is monitored by the Result-Size Monitor, the instant recall requirement Γ′ can be
derived from Eq. (4.9). The final instant recall requirement applied in Algorithm 4.7
is max{Γ′, 1}.

4.2.5 Control-Based Buffer-Size Adaptation

When using the PD-controller-based buffer-size adaptation method to instantiate the
Buffer-Size Adaptation Unit in the QDDH-framework instantiation for MSWJ queries
(cf. Figure 4.4), the process variable maps to the recall γ(Pmeas) of the join results
produced within the last Pmeas time units; and the setpoint maps to the user-specified
recall requirement Γ. The output of the PD controller is again the adjustment of the

62

4.2 QDDH for M-way Sliding-Window Join Queries

parameter α. However, in contrast to the case for a SWA query (cf. Section 4.1.6),
where the parameter α is applied on top of the so-far-observed maximum tuple
delay MaxDi within the only input stream of the SWA query, for an MSWJ query, the
parameter α is applied on top of the so-far-observed maximum tuple delay across
all input streams of the MSWJ query. Hence, the optimal QDDH buffer size returned
by the Buffer-Size Adaptation Unit is κ = α ·max{MaxDi|i ∈ [1, m]}.

Compared with the case for SWA queries, it is more difficult for the PD controller
to obtain values of the process variable (i.e., the recall of the produced join results) for
MSWJ queries. The reason is that to compute the recall of the produced join results
under a user-specified result-quality measurement period Pmeas, the PD controller
needs to know the true join result size within the last Pmeas time units, which is
determined by the values of tuples from multiple input streams as well as the join
condition. Compared to the actual coverage of an individual instantaneous window,
which is the process variable in the case for SWA queries, the true join result size is
more difficult to obtain.

In this dissertation, the true join result size within the last Pmeas time units is
estimated in a similar way as in the procedure of deriving the instant recall require-
ment Γ′ from Γ. Specifically, it is estimated as the sum of the Non

true(Ladt) estimations
obtained in the last Pmeas/Ladt adaptation intervals. The produced join result size in
the last Pmeas time units can be obtained easily by the Result-Size Monitor, and the
recall of the produced join results in the last Pmeas time units can then be calculated.

4.2.6 Applicability in Distributed Join Processing

MSWJ queries are by nature CPU- and memory-intensive. To support a high volume
of input tuples, large window sizes, and expensive join conditions, scalable and
distributed processing of MSWJ queries has gained a lot of research interest recently
(e.g., [WR09; Lin+15]). An MSWJ query can be implemented as either a single MJoin-
style operator [VNB03] or a tree of binary join operators [GÖ03b]. Both types of
implementation support distributed processing by splitting a macro m-way or binary
join operator into smaller operator instances, exploiting the pipelined parallelism and
the data parallelism.

As long as each operator instance follows the same processing semantics as
depicted by Algorithm 4.6, then regardless of the specific type of the implementation,
the instantiation of the QDDH framework described in this section can be adapted
to be applied in a distributed setup in the following way: Same as in Figure 4.4,
K-slack buffers are used to handle the intra-stream disorder of all input streams,
and the Buffer Manager is responsible for adapting the K-slack buffer sizes at the
query runtime. Each input stream to an operator instance in the distributed setup is
either the output stream of a K-slack buffer, or the output stream of another operator
instance3. To deal with the inter-stream disorder among the streams arriving at an
operator instance, each operator instance is associated with a synchronization buffer.
Indeed, such a prior-to-join stream-synchronization strategy has been applied in
existing distributed join systems such as [WR09] and [Lin+15].

3The output of an operator instance is guaranteed to not contain intra-stream disorder because of
the processing semantics of Algorithm 4.6.

63

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

With the analytical-model-based buffer-size adaptation method (cf. Section 4.2.4),
the key information that is required by the Buffer Manager to make buffer-size adapta-
tion decisions includes fDi , Ksync

i ,M×,Mon, and Non
true(Pmeas− Ladt); all other informa-

tion can be derived from the key information. Among the key information, fD and
Ksync

i can be obtained by monitoring the raw input streams of an MSWJ query, and
Non

true(Pmeas − Ladt) can be obtained by monitoring the result stream that contains the
final result tuples of the join. To build the mapMon, each operator instance needs to
be instrumented so that, when receiving a tuple e from a K-slack buffer, the operator
instance annotates each intermediate result tuple produced at the arrival of e with
the delay of e, delay(e); and when receiving such an annotated, intermediate result
tuple, the operator instance propagates the tuple-delay annotation further to each
produced intermediate result tuple. Then, the mapMon can be built by monitoring
the final join output. To build the mapM× accurately, for each K-slack output tuple
ei (i ∈ [1, m]) that triggers the join processing at an operator instance, the Buffer Man-
ager needs to know the cardinality |wj,>| of the most recent instantaneous window
wj,> for each j ∈ [1, m], j 6= i. However, each wj,> is often split into slices, which are
maintained by different operator instances. Hence, obtaining accurate |wj,>| would
require communicating with all involved operator instances, which can be expensive.
An alternative is to approximate the window cardinality |wj,>| using the average
data rate rj monitored by the Statistics Manager in Figure 4.4 and the window size
Wj.

With the PD-controller-based buffer-size adaptation method (cf. Section 4.2.5), the
Buffer Manager needsM×,Mon, and Non

true(Pmeas). Non
true(Pmeas) can again be obtained

by monitoring the final result stream of an MSWJ query; and the maps M×, Mon

can be built in the same way as in the analytical-model-based buffer-size adaptation
method described above.

4.3 Evaluation

This section presents the experimental evaluation of the two instantiations of the
QDDH framework described in this chapter. For each instantiation, the evaluation
aims to answer the following questions:

• Whether the objective of QDDH, i.e., quality-driven latency minimization, can
be achieved with the proposed analytical-model-based and the control-based
buffer-size adaptation methods, and how are the two adaptation methods com-
pared to each other?

• How is the proposed QDDH approach compared with disorder handling ap-
proaches that make an extreme tradeoff between the end-to-end latency and
the query-result quality?

• How does the configuration of important parameters involved in the two in-
stantiations influence their performance in terms of achieving the objective of
QDDH?

• What is the overhead of the quality-driven buffer-size adaptation in terms of
the runtime?

64

4.3 Evaluation

AggrDataset1 AggrDataset2
Duration (sec.) 980 1400
tuples 544223 559211
out-of-order tuples 313405 279337
Max. tuple delay (sec.) 4.49 16.95
correlated out-of-order tuples 261426 231260

Table 4.1: General statistics of the real-world soccer-game data streams used in the
evaluation of QDDH for individual SWA queries.

4.3.1 Implementation and Setup

All instantiations of the QDDH framework proposed in this dissertation were imple-
mented in a prototypical version of SAP Event Stream Processor (SAP ESP) [SAP].
SAP ESP is a general-purpose DSPS that supports both conventional relational query
operators like select, aggregate, join, etc., as well as pattern detection operators (cf.
Section 2.1). All experiments in this section were conducted on a HP Z620 worksta-
tion, which has 24 cores (2.9GHz per core) and 96GB RAM, running SUSE 11.2.

Datasets and Queries

QDDH for SWA The evaluation of QDDH for individual SWA queries used two
sensor-data streams, denoted by AggrDataset1 and AggrDataset2. The two streams
were produced by a Real-time Locating System (RTLS) installed in the main soccer
stadium in Nuremberg, Germany. The stream data was collected during soccer
training games, tracking positions and velocities of soccer players [MZJ13]. Each
original stream was projected onto the schema (ts, vel), where ts stands for the
timestamp and vel stands for the velocity. Table 4.1 summarizes the general statistics
of the two streams, and Figure 4.7 shows the disorder characteristics of the two
streams. Both streams contain approximately 50% out-of-order tuples. The majority
of the out-of-order tuples are delayed by less than 100 milliseconds. Recall from
Section 4.1.3 that an out-of-order tuple ei,j in a stream Si is considered to be a
correlated out-of-order tuple if the tuple ei,j−1 in the stream Si is an out-of-order
tuple as well. Strong correlations between out-of-order tuples were observed in
both AggrDataset1 and AggrDataset2. Compared to AggrDataset1, AggrDataset2
contains more out-of-order tuples with large delays, and has a higher maximum
tuple delay. In addition, in AggrDataset1, tuples with large delays appear mainly
in the second half of the stream; whereas in AggrDataset2, tuples with large delays
are distributed more or less uniformly within the entire stream.

For each stream, sliding-window SUM queries with varying window sizes were
evaluated. The window slide β in all queries was set to 0.1 second. To compute the
relative error of each produced aggregate result, sorted versions of AggrDataset1
and AggrDataset2 were generated. The exact results of each sliding-window SUM
query used in the evaluation can then be obtained by evaluating the same query over
the sorted versions of the two datasets.

65

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

0 1715131197531

b
tu
p
le
s

Tuple delay (sec.)

10-2

10-1

10

1

0 200 400 600 800 1000 1200 1400

Tu
p
le
d
el
ay
(s
ec
.)

Elapsed time (sec.)

106

105

104

103

102

10

0
1

0 4.54321

Tuple delay (sec.)

0 200 400 600 800 980

Elapsed time (sec.)

b
tu
p
le
s

106

105

104

103

102

10

0
1

Tu
p
le
d
el
ay
(s
ec
.)

(a) Delay of tuples arrived over time
(AggrDataset1)

(c) Delay of tuples arrived over time
(AggrDataset2)

(b) Distribution of tuple delays
(AggrDataset1)

(d) Distribution of tuple delays
(AggrDataset2)

10-2

10-1

10

1

Figure 4.7: Disorder characteristics of the real-world soccer-game data streams used
in the evaluation of QDDH for individual SWA queries.

QDDH for MSWJ To evaluate QDDH for individual MSWJ queries, one real-world
dataset with two input streams and two synthetic datasets with three and four input
streams were used. A different join query was used for each of the three datasets:

• The real-world dataset JoinDataset×2
real contains again soccer-game data, which

was collected by the RTLS mentioned above. The original single stream from a
23-minute soccer game was split into two streams (S1 and S2), each containing
the data of one team in the game. Moreover, the original stream was projected
onto (ts, sID, xCoord, yCoord), where sID identifies players and the pair
of coordinates (xCoord, yCoord) encodes positions in the field. The streams S1
and S2 both contain approximately 450k tuples. The maximum tuple delay is 22
seconds in the stream S1 and is 26.3 seconds in the stream S2. Figure 4.8 plots
the disorder characteristics of the two streams. The join query Q×2 evaluated
on JoinDataset×2

real is to find all occurrences, within a 5-second sliding window,
where the distance between two players, one from each team, is smaller than
5 meters. A custom function dist() was used to calculate the distance and is
the join condition in this scenario.
Q×2: SELECT ∗ FROM S1 [5 SEC], S2 [5 SEC]

WHERE dist(S1.xCoord, S1.yCoord, S2.xCoord, S2.yCoord)< 5

• The first synthetic dataset JoinDataset×3
syn consists of three streams, which have

the same schema (ts, a1). All streams start from a common timestamp tsinit

and cover an interval of 30 minutes. The timestamps are in the granularity

66

4.3 Evaluation

#
 t

u
p
le

s

Tuple delay (sec.)

10-2

10-1

10

1

0 200 400 600 800 1000 1200 1400

Elapsed time (sec.)

106

105

104

103

102

10

0
1

0 23204

Tuple delay (sec.)Elapsed time (sec.)

#
 t

u
p
le

s

106

105

104

103

102

10

0
1

Tu
p
le

 d
e
la

y
 (

se
c.

)

(a) Delay of tuples arrived over time
(S1 of JoinDataset)

(b) Distribution of tuple delays
(S1 of JoinDataset)

10-2

10-1

10

1

0 200 400 600 800 1000 1200 1400 8 12 16

0 27244 8 12 16 16

(c) Delay of tuples arrived over time
(S2 of JoinDataset)

(d) Distribution of tuple delays
(S2 of JoinDataset)

real
x2

real
x2

real
x2 real

x2

Tu
p
le

 d
e
la

y
 (

se
c.

)

Figure 4.8: Disorder characteristics of the real-world soccer-game data streams used
in the evaluation of QDDH for individual MSWJ queries.

of millisecond (ms). For each stream Si (i ∈ {1, 2, 3}) in JoinDataset×3
syn, tu-

ples were generated sequentially as follows. Initially, let iT = tsinit. For each
new tuple e, the variable iT was increased by 10 ms (i.e., iT += 10), and a
random delay delay(e) was chosen between (inclusive) 0.0 second and 20.0 sec-
onds based on a Zipf distribution with skew zsd

i . The timestamp of the new
tuple e, e.ts, was then set to iT if delay(e) = 0, or to iT − delay(e) otherwise.
Increasing iT by 10 ms for each newly-generated tuple simulates a data rate of
100 tuples per second. The applied Zipf skews zsd

i for all three streams were
zsd

1 = 2.0 and zsd
2 = zsd

3 = 3.0. The value of the attribute a1 for a new tuple
e was generated randomly from the integer interval [1, 100], based on a Zipf
distribution as well. To simulate a time-varying join selectivity, for each stream,
the Zipf skew zsa1

i for generating values of the attribute a1 was initialized to 1.0,
and was changed, within the range [0.0, 5.0], during the data generation. The
time interval between two consecutive changes of zsa1

i was chosen randomly
between (inclusive) 1 minute and 10 minutes. The three streams are synchro-
nized with each other. A 3-way sliding-window join query Q×3 was evaluated
on JoinDataset×3

syn:
Q×3: SELECT ∗ FROM S1 [5 SEC], S2 [5 SEC], S3 [5 SEC]

WHERE S1.a1=S2.a1 AND S2.a1=S3.a1

• The second synthetic dataset JoinDataset×4
syn consists of four streams, whose

schemas are S1:(ts, a1, a2, a3), S2:(ts, a1), S3:(ts, a2), and S4:(ts,

67

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

a3). The timestamps and attribute values of the stream tuples were generated
in the same way and from the same domains as for JoinDataset×3

syn. The Zipf
skew used for generating each attribute was also initialized to 1.0. The Zipf
skews used for generating tuple delays were zsd

1 = zsd
2 = zsd

3 = 3.0 and zsd
4 =

4.0. A 4-way sliding-window join query Q×4 was evaluated on JoinDataset×4
syn:

Q×4: SELECT ∗ FROM S1 [3 SEC], S2 [3 SEC], S3 [3 SEC], S4 [3 SEC]
WHERE S1.a1=S2.a1 AND S1.a2=S3.a2 AND S1.a3=S4.a3

For each of the above three datasets, a sorted version where tuples of all streams
in the dataset are ordered globally according to their timestamps was generated. By
evaluating the query Q×x (x ∈ {2, 3, 4}) over the corresponding sorted dataset, the
true join results can be obtained, and the recall of the join results produced for the
unsorted dataset can then be calculated therewith.

Performance Metrics

To evaluate the performance of the two proposed instantiations of the QDDH frame-
work in terms of the achieved tradeoff between the end-to-end latency and the
query-result quality, for each evaluated query, the following two metrics are consid-
ered:

• The average end-to-end latency.

• The overall query-result quality measured in terms of the requirement fulfillment
ratio Φ, which is defined based on the query type as follows:
For a SWA query, Φ is defined with respect to the user-specified result relative-
error threshold εthr as

Φ(εthr) =
number of produced aggregate results that satisfy ε ≤ εthr

total number of true aggregate results
(4.10)

For an MSWJ query, Φ is defined with respect to the user-specified recall re-
quirement Γ as

Φ(Γ) =
number of γ(Pmeas) measurements that satisfy γ(Pmeas) ≥ Γ

total number of γ(Pmeas) measurements
(4.11)

The recall γ(Pmeas) of join results produced under disorder handling was mea-
sured right before each adaptation of the K-slack buffer size K. The recall mea-
surements obtained during the first quality-measurement period Pmeas were
excluded when computing Φ(Γ).

Default Parameter Configuration

Unless otherwise stated, the experiments presented in this section used the parame-
ter configurations as listed in Table 4.2. The parameter tuning for the family of PID
controllers is a broad area in itself. In this dissertation, manual tuning based on the
well-known Ziegler-Nichols method [ZN42] was applied to configure the parameters
Up and Ud of the PD controller used in the proposed control-based buffer-size adap-
tation method (cf. Section 3.4.2), so that they can minimize the consequent K-slack
buffer sizes while respecting the user-specified result-quality requirements.

68

4.3 Evaluation

Parameter Default value
basic window size b (common in both instantiations) 10 milliseconds

K-search granularity g (common in both instantiations) 10 milliseconds
Up of the PD-controller in QDDH for SWA 0.2
Ud of the PD-controller in QDDH for SWA 4
retrospect parameter q in QDDH for SWA 0.99

confidence level δ of error threshold in QDDH for SWA 0.05
Up of the PD-controller in QDDH for MSWJ 0.6
Ud of the PD-controller in QDDH for MSWJ 0.8

result-quality measurement period Pmeas in QDDH for MSWJ 1 minute
buffer-size adaptation interval Ladt in QDDH for MSWJ 1 second

Table 4.2: Default parameter setting applied in the evaluation of the instantiations of
the QDDH framework.

4.3.2 Baseline Disorder Handling Approaches and Results

For each instantiation of the QDDH framework introduced in this chapter, the pro-
posed implementation of the respective Buffer Manager (cf. Figure 4.1 and Figure 4.4)
was compared with two baseline implementations, which manage the sizes of the
applied K-slack buffers in two extreme ways:

1. No-K-slack, which does not handle the intra-stream disorder of each input
stream with a K-slack buffer at all, i.e., Ki = 0 for any input stream Si. This
approach produces the lowest end-to-end latency and the lowest query-result
quality.

2. Max-K-slack, which updates the size K of each K-slack buffer dynamically to
make K equal the maximum delay among the so-far-observed tuples from all
involved input streams [MP13a]. This approach produces the highest end-to-
end latency and the highest query-result quality.

Baseline Results of QDDH for SWA

Figure 4.9 plots the cumulative distribution function (CDF) of the relative error of
the results produced by the No-K-slack baseline approach for five sliding-window
SUM queries, whose window sizes range from 0.1 second to 10 seconds. The CDF
curves do not intersect with the y-axis at 0 because the x-axis starts from 0.01%, not
0%. This figure shows how much the intra-stream disorder can degrade the accuracy
of aggregate results if it is not handled at all. It can be observed that, in general, the
stream disorder impairs the result accuracy more for queries with small window
sizes than for queries with large window sizes. For instance, for the query whose
window size is W = 10 seconds, the relative error of 1% or less was observed in
99% of the results produced from AggrDataset1, and in 97% of the results produced
from AggrDataset2. Such a query-result quality may meet the requirements of most
applications. However, as the window size decreases, the degradation of the result
accuracy becomes more and more significant. For the query whose window size is
W = 0.1 second, the relative error of 10% or more was observed in nearly half of

69

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 100 0.01 0.1 1 10 100

C
D

F
of

 ε

0

0.2

0.4

0.6

0.8

1.0

Result relative error ε [%] Result relative error ε [%]

W=10 sec. W=5 sec. W=1 sec. W=0.5 sec. W=0.1 sec.

C
D

F
of

 ε

(a) AggrDataset1 (b) AggrDataset2

Figure 4.9: Cumulative distribution functions (CDF) of the relative errors of the
aggregate results produced by the No-K-slack baseline approach for AggrDataset1
and AggrDataset2.

Window size W (sec.)
0.1 0.5 1 5 10

wrong query results
AggrDataset1 9 28 40 45 45
AggrDataset2 12 37 57 100 12

Minimum non-zero result
relative error ε [%]

AggrDataset1 2.16 0.31 0.24 0.05 0.05
AggrDataset2 1.54 0.01 0.01 0.01 0.15

Maximum result relative
error ε [%]

AggrDataset1 44.66 14.07 5.54 0.95 0.06
AggrDataset2 28.27 28.27 100 0.53 28.27

Table 4.3: Accuracy of aggregate results produced by the Max-K-slack baseline ap-
proach for AggrDataset1 and AggrDataset2. There are in total 9800 and 14000 results
for AggrDataset1 and AggrDataset2, respectively.

the results produced from both datasets, which suggests the necessity of disorder
handling.

For each dataset, the average end-to-end latencies of all five queries were similar.
For AggrDataset1, the average latency was around 0.22 second and for AggrDataset2,
it was around 0.014 second.

Table 4.3 summarizes the accuracy of the query results produced by the Max-
K-slack baseline approach. The average end-to-end latencies of all five queries were
around 3.05 seconds for AggrDataset1 and 17.3 seconds for AggrDataset2. Note that
Max-K-slack does not guarantee complete disorder handling; because in Max-K-slack,
each increase of the K-slack buffer size is caused by an out-of-order tuple that is
not handled successfully by the buffer. These unsuccessfully-handled out-of-order
tuples lead to wrong aggregate results. However, the total number of wrong results
was very small. Even in the worst case, i.e., the query with W = 5 seconds executed
over AggrDataset2, only about 0.7% (≈ 100

14000) of the produced results were wrong.

70

4.3 Evaluation

0.2

0.4

0.6

0.8

1.0

0 200 600 1000 1400 0 300 600 900 1200 1800

R
e
ca

ll
 γ

(P
m
ea
r=

1
m

in
.)

Elapsed time (sec.)

0 300 600 900 1200 1800

real
x2(a) (JoinDataset

Elapsed time (sec.)

Elapsed time (sec.)

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

 , Qx2) syn
x3(b) (JoinDataset , Qx3)

syn
x4(c) (JoinDataset , Qx4)

R
e
ca

ll
 γ

(P
m
ea
r=

1
m

in
.)

R
e
ca

ll
 γ

(P
m
ea
r=

1
m

in
.)

Figure 4.10: Recall of the join results produced by the No-K-slack baseline approach
for (JoinDataset×x, Q×i), i ∈ {2, 3, 4}.

Baseline Results of QDDH for MSWJ

Figure 4.10 shows the recall γ(Pmeas) of the join results produced by the No-K-slack
baseline approach for each JoinDataset×i (i ∈ {2, 3, 4}). For (JoinDataset×2

real, Q×2),
the measured recall was only around 0.5 for the most of the time. The overall recall
for (JoinDataset×4

syn, Q×4) was the highest, but was only around 0.8, which is still
a low result quality for many stream-based applications. Recall from Figure 4.4
that the synchronization buffer is always applied in the instantiation of the QDDH
framework for MSWJ queries to handle the inter-stream disorder. Figure 4.10 implies
that, to obtain a high result quality for MSWJ queries, handling only the inter-stream
disorder is not sufficient, and the intra-stream disorder handling is necessary. The
average end-to-end latency was 0.31 second for (JoinDataset×2

real, Q×2), 1.4 second
for (JoinDataset×3

syn, Q×3), and 1.18 second for (JoinDataset×4
syn, Q×4).

Table 4.4 lists the average end-to-end latency and the average recall of the join
results (i.e., the average over all γ(Pmeas) measurements of a query) produced by the
Max-K-slack baseline approach. Again, because Max-K-slack does not guarantee a
complete disorder handling, the average γ(Pmeas) was not always 1.

71

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

Avg. latency (sec.) Avg. γ(Pmeas)

(JoinDataset×2
real, Q×2) 20.86 1.0

(JoinDataset×3
syn, Q×3) 21.43 0.999

(JoinDataset×4
syn, Q×4) 15.1 0.999

Table 4.4: Experimental results of the Max-K-slack baseline approach for
(JoinDataset×x, Q×i), i ∈ {2, 3, 4}.

4.3.3 Effectiveness of QDDH

The experiments presented in this subsection aim to study the effectiveness the
two proposed QDDH-framework instantiations in performing quality-driven latency
minimization under varying settings of the respective result-quality requirement.
In addition, the analytical-model-based buffer-size adaptation method is compared
with the PD-controller-based adaptation method for each framework instantiation.
For ease of reference, in the remainder of this evaluation section, the analytical-
model-based adaptation method is denoted by AM-adt, and the PD-controller-based
adaptation method is denoted by PD-adt.

Effectiveness Results of QDDH for SWA

Based on the experimental results of the No-K-slack baseline approach in Figure 4.9,
the four sliding-window SUM queries whose window sizes are 0.1, 0.5, 1, and 5 sec-
onds were chosen to evaluate the effectiveness of QDDH for individual SWA queries;
because the result accuracy of these four queries has larger room for improvement
than that of the query whose window size is W = 10 seconds. Each chosen query
was evaluated over AggrDataset1 and AggrDataset2 using both the AM-adt (cf. Sec-
tion 4.1.5) and the PD-adt (cf. Section 4.1.6) methods, under a series of εthr values
ranging from 0.01% to 10%. The confidence level δ in each relative-error threshold
took the default configuration (cf. Table 4.2).

The experimental results are shown in Figure 4.11 and Figure 4.12. For ease of
comparison, the requirement fulfillment ratio produced by the No-K-slack baseline
approach and the average end-to-end latency produced by the Max-K-slack base-
line approach are included in the figures as well. In general, for both buffer-size
adaptation methods, the average end-to-end latency decreases as εthr increases. This
behavior is as expected: intuitively, a higher εthr value means that a higher number
of missing tuples are allowed in each instantaneous window constructed over the
input stream, and therefore a smaller K-slack buffer can be used. The inverse trend
between the average latency and the applied εthr value also shows that the proposed
QDDH approach can dynamically minimize the K-slack buffer size, thus the end-to-
end latency, to achieve different levels of result accuracy specified for a SWA query.
This inverse trend is more obvious for queries with large window sizes than for
queries with small window sizes.

AM-adt and PD-adt achieved a requirement fulfillment ratio Φ(εthr) of at least 92%
and 95%, respectively. However, in the majority of the test cases, AM-adt produced a
smaller end-to-end latency compared to PD-adt. The reason is that at each iteration
of the buffer-size adaptation, AM-adt attempts to find the optimal buffer size to be

72

4.3 Evaluation

Pa[window size W=0.1 sec.

10-2

10-1

10

1

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

Ps
ec
.[

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

PQ
[

0

20

40

60

80

100

Pb[window size W=0.5 sec.

Pc[window size W=1 sec.

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

PQ
[

0

20

40

60

80

100

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

PQ
[

0

20

40

60

80

100

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

PQ
[

0

20

40

60

80

100

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

Ps
ec
.[

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

Ps
ec
.[

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

Ps
ec
.[

Pd[window size W=5 sec.

analytical-model-based QDDH

PD-controller-based QDDH

No-K-slack
analytical-model-based QDDH

PD-controller-based QDDH

Max-K-slack

10-2

10-1

10

1

10-2

10-1

10

1

10-2

10-1

10

1

0.1 0.5 1 5 10
εthr [Q]

εthr [Q]
0.1 0.5 1 5 10

εthr [Q]
0.1 0.5 1 5 10

0.1 0.5 1 5 10
εthr [Q]

0.1 0.5 1 5 10
εthr [Q]

0.1 0.5 1 5 10
εthr [Q]

εthr [Q]
0.1 0.5 1 5 10

εthr [Q]
0.1 0.5 1 5 10

Figure 4.11: Effectiveness of QDDH for individual SWA queries under varying result
relative-error thresholds εthr, using both the analytical-model-based and the PD-con-
troller-based buffer-size adaptation methods. The input dataset is AggrDataset1.

73

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

Pa[window size W=0.1 sec.

10-1

1

20

10

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

Ps
ec
.[

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

PQ
[

0

20

40

60

80

100

0.1 0.5 1 5 10

Pb[window size W=0.5 sec.

Pc[window size W=1 sec.

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

PQ
[

0

20

40

60

80

100

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

PQ
[

0

20

40

60

80

100

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

PQ
[

0

20

40

60

80

100

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

Ps
ec
.[

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

Ps
ec
.[

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

Ps
ec
.[

Pd[window size W=5 sec.

analytical-model-based QDDH

PD-controller-based QDDH

No-K-slack
analytical-model-based QDDH

PD-controller-based QDDH

Max-K-slack

10-1

1

20

10

10-1

1

20

10

10-1

1

20

10

εthr [Q]

εthr [Q]

εthr [Q]

εthr [Q] εthr [Q]

εthr [Q]

εthr [Q]

εthr [Q]

0.1 0.5 1 5 10

0.1 0.5 1 5 10

0.1 0.5 1 5 10

0.1 0.5 1 5 10

0.1 0.5 1 5 10

0.1 0.5 1 5 10

0.1 0.5 1 5 10

Figure 4.12: Effectiveness of QDDH for individual SWA queries under varying result
relative-error thresholds εthr, using both the analytical-model-based and the PD-con-
troller-based buffer-size adaptation methods. The input dataset is AggrDataset2.

74

4.3 Evaluation

applied before the next adaptation, whereas PD-adt does not. Compared to the Max-
K-slack approach, AM-adt reduced the average end-to-end-latency by at least 48%,
and up to 99.98%. For instance, for the query with a window of W = 10 seconds,
when the result relative-error threshold εthr was 10%, the average end-to-end latency
produced by Max-K-slack was 17.3 seconds, whereas the average end-to-end latency
produced by AM-adt was only 0.22 second, which is a significant reduction. PD-adt
also achieved a latency reduction of at least 32%.

For both AM-adt and PD-adt, the worst-case latency-reduction occurred when
the strictest εthr value was used, i.e., εthr = 0.1%. More significant latency-reductions
were obtained under more moderate εthr values. This phenomenon in turn confirms
the potential and the benefit of QDDH.

Effectiveness Results of QDDH for MSWJ

Varying Recall Requirements Figure 4.13 shows the effectiveness results of the
proposed instantiation of the QDDH framework for individual MSWJ queries under
varying user-specified recall requirements Γ, using both the AM-adt (cf. Section 4.2.4)
and the PD-adt (cf. Section 4.2.5) methods. Recall that AM-adt in the instantiation
of the QDDH framework for MSWJ queries is based on an analytical model of the
recall of the produced join results, γ(Ladt, K), which uses statistics collected from the
past data to make predictions about the future data. Due to the dynamic nature of
data streams, it is impossible to make precise predictions; as a result, the derived
K-slack buffer sizes may not guarantee a requirement fulfillment ratio Φ(Γ) of 100%.
However, a produced recall γ(Pmeas) that violates the user-specified recall require-
ment Γ can be indeed very close to Γ, and is acceptable in most scenarios. Hence, in
this experiment, in addition to Φ(Γ), Φ(.99Γ)—the percentage of γ(Pmeas) measure-
ments that are not lower than Γ by 1%—was measured as well. This experiment also
compared the two modeling strategies—EqSel and NonEqSel—that can be applied in
AM-adt (cf. Section 4.2.4).

From Figure 4.13, it can be seen that, for both the EqSel and the NonEqSel mod-
eling strategies, the average end-to-end latency goes up as the recall requirement Γ
increases, which again reveals the tradeoff between the latency and the query-result
quality. NonEqSel produced a bit higher average latency than EqSel. The requirement
fulfillment ratios Φ(Γ) and Φ(.99Γ) produced by NonEqSel were not much higher
than those produced by EqSel for (JoinDataset×2

real, Q×2) and (JoinDataset×4
syn, Q×4),

but were significantly higher for (JoinDataset×3
syn, Q×3). For each (JoinDataset×i,

Q×i), i ∈ {2, 3, 4}, NonEqSel achieved a Φ(.99Γ) of at least 97% for all the examined
values of Γ. This result shows that NonEqSel is more robust than EqSel towards dif-
ferent datasets and join queries. Hence, the rest experiments on the instantiation of
the QDDH framework for MSWJ queries used only the NonEqSel modeling strategy
for the AM-adt method.

In contrast to in QDDH for SWA, in QDDH for MSWJ, the performance of PD-
adt is noticeably worse than the performance of AM-adt in terms of the achieved
requirement fulfillment ratio. For instance, for Γ = 0.95, Φ(.99Γ) of PD-adt were only
45.4% and 54.3% for (JoinDataset×3

syn, Q×3) and (JoinDataset×4
syn, Q×4), respectively.

The main reason is, as discussed in Section 4.2.5, the performance of the PD controller
relies heavily on the accuracy of the measurements of the process variable, which

75

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

10-1

1

30

10

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

(b
)

0

20

40

60

80

100

0.9 0.95 0.99 0.999

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

(b
)

0

20

40

60

80

100

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

(b
)

0

20

40

60

80

100

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

recall requirement Γ

real
x2(a) (JoinDataset , Qx2)

syn
x3(b) (JoinDataset , Qx3)

syn
x4(c) (JoinDataset , Qx4)

0.9 0.95 0.99 0.999

recall requirement Γ

recall requirement Γ

recall requirement Γ

recall requirement Γ

recall requirement Γ

1

30

10

1

30

10

0.9 0.95 0.99 0.999

0.9 0.95 0.99 0.999

0.9 0.95 0.99 0.999

0.9 0.95 0.99 0.999

Φ(Γ) of AM-adt (EqSel)
Φ(Γ) of No-K-slack

Φ(.99Γ) of AM-adt (EqSel)

Φ(Γ) of AM-adt (NonEqSel)

Φ(.99Γ) of AM-adt (NonEqSel)

Φ(Γ) of PD-adt

Φ(.99Γ) of PD-adt

AM-adt (NoEqSel)

PD-adt

Max-K-slack
AM-adt (EqSel)

0 0 00

0 0 0 0

Figure 4.13: Effectiveness of QDDH for individual MSWJ queries under varying recall
requirements Γ, using both the analytical-model-based and the PD-controller-based
buffer-size adaptation methods.

76

4.3 Evaluation

0.0

0.5

1.5

1.0

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

(,
)

90

92

94

96

98

100

30 60 180 300

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

(,
)

50

60

70

80

90

100

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

real
x2(a) (JoinDataset , Qx2)

syn
x3(b) (JoinDataset , Qx3)

30 60 180 300
Result-quality measururement

period Pmeas (sec.)
Result-quality measururement

period Pmeas (sec.)

40
30 60 180 300 30 60 180 300
Result-quality measururement

period Pmeas (sec.)
Result-quality measururement

period Pmeas (sec.)

2

4

6

8

10

12

Φ(Γ) for Γ=0.95
Φ(Γ) for Γ=0.99 Φ(.99Γ) for Γ=0.99

Avg. latency for Γ=0.95
Avg. latency for Γ=0.99

Φ(.99Γ) for Γ=0.95

Figure 4.14: Effectiveness of QDDH for individual MSWJ queries under varying re-
sult-quality measurement periods Pmeas, using the analytical-model-based buffer-size
adaptation method with the NonEqSel modeling strategy.

is the recall γ(Pmeas) of join results in QDDH for MSWJ and the window coverage
Cvrg in QDDH for SWA. It is more difficult to obtain accurate γ(Pmeas) measurements
than to obtain accurate Cvrg measurements; because Cvrg is determined by only the
numbers of tuples in a single instantaneous window, whereas γ(Pmeas) is determined
by values of tuples from m (m ≥ 2) input streams as well as the join condition of
the MSWJ query. Although for (JoinDataset×2

real, Q×2), PD-adt and AM-adt achieved
comparable requirement fulfillment ratios, PD-adt produced a higher average end-
to-end latency for each examined recall requirement. This result shows that AM-adt
is more robust than PD-adt when dealing with MSWJ queries. Hence, in the rest
experiments on the instantiation of theQDDH framework for MSWJ queries, only the
AM-adt method was used.

Compared to the Max-K-slack baseline approach, AM-adt with the NonEqSel mod-
eling strategy can significantly reduce the average K-slack buffer sizes, thus the
end-to-end latency, while still honoring the user-specified recall requirement. For in-
stance, even for a high recall requirement Γ = 0.99, the average latency was reduced
by more than 94% (from 20.8 seconds to 1.08 seconds) for (JoinDataset×2

real, Q×2). For
an even higher recall requirement Γ = 0.999, AM-adt still achieved a 36.5% reduction

77

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

0.01

0.1

3

1

A
vg
.
en
d
-t
o-
en
d

la
te
n
cy
(s
ec
.)

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t

ra
ti
o
(%
)

80

85

90

95

100

1 10 100 1000

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t

ra
ti
o
(%
)

A
vg
.
en
d
-t
o-
en
d

la
te
n
cy
(s
ec
.)

(a) AggrDataset1
K-search granularity g (ms)

1 10 100 1000

K-search granularity g (ms)

(b) AggrDataset2

80

85

90

95

100

1 10 100 1000

K-search granularity g (ms)

0.1

5

1

1 10 100 1000

K-search granularity g (ms)

Φ(εthr) for εthr=0.5%
Φ(εthr) for εthr=1%

Avg. latency for εthr=0.5%
Avg. latency for εthr=1%

Figure 4.15: Effect of the K-search granularity g on the performance of the analytical-
model-based buffer-size adaptation method in QDDH for individual SWA queries. A
sliding-window SUM query with a window size of W = 5 seconds and a window
slide of β = 0.1 second was used.

in the average latency for (JoinDataset×2
real, Q×2), and degenerated to the Max-K-slack

approach for (JoinDataset×3
syn, Q×3) and (JoinDataset×4

syn, Q×4).

Varying Result-Quality Measurement Periods The next experiment for examining
the effectiveness of QDDH for MSWJ focused on studying the effectiveness under
varying user-specified result-quality measurement periods Pmeas. Figure 4.14 shows
the results for (JoinDataset×2

real, Q×2) and (JoinDataset×3
syn, Q×3) under Γ = 0.95 and

Γ = 0.99. The other parameters took default values (cf. Table 4.2).
As expected, it is more difficult to obtain high requirement fulfillment ratios

Φ(Γ) and Φ(.99Γ) for small values of Pmeas than for big values of Pmeas; because the
smaller the value of Pmeas, the slimmer the chance that a low recall of the join results
produced within one adaptation interval gets compensated by the recalls produced
in the other adaptation intervals that are within the same result-quality measurement
period. Nevertheless, the AM-adt method with the NonEqSel modeling strategy still
achieved a Φ(.99Γ) of more than 90% for all examined values of Pmeas. Similar results
were observed for (JoinDataset×4

syn, Q×4) and other values of Γ.

4.3.4 Effect of Important System Parameters

This section studies the effect of three important parameters in the two QDDH-
framework instantiations, including the K-search granularity g that is applied in the

78

4.3 Evaluation

2.0

0.5

1.5

1.0

90

92

94

96

98

100

20

40

60

80

100

real
x2(a) (JoinDataset , Qx2)

syn
x3(b) (JoinDataset , Qx3)

0 4

6

8

10

12

Φ(Γ) for Γ=0.95
Φ(Γ) for Γ=0.99 Φ(.99Γ) for Γ=0.99

Avg. latency for Γ=0.95
Avg. latency for Γ=0.99

K-search granularity g (ms)

A
vg
.
en
d
-t
o-
en
d

la
te
n
cy
(s
ec
.)

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t

ra
ti
o
(q
)

1 10 100 1000

K-search granularity g (ms)

1 10 100 1000

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t

ra
ti
o
(q
)

1 10 100 1000
K-search granularity g (ms) K-search granularity g (ms)

1 10 100 1000
A
vg
.
en
d
-t
o-
en
d

la
te
n
cy
(s
ec
.)

Φ(.99Γ) for Γ=0.95

Figure 4.16: Effect of the K-search granularity g on the performance of the analytical-
model-based buffer-size adaptation method (with NonEqSel) in QDDH for individual
MSWJ queries.

AM-adt method in both instantiations, the retrospect parameter q that is specific to
QDDH for SWA, and the adaptation interval L that is specific to QDDH for MSWJ.

Effect of the K-Search granularity g

Recall that in each iteration of the K-slack buffer-size adaptation, AM-adt searches for
the optimal setting of the buffer size by examining possible K values incrementally,
starting from the value 0 (cf. Algorithm 4.4 and Algorithm 4.7). The increment
granularity is g. Figure 4.15 and Figure 4.16 study the effect of the setting of g on the
performance of AM-adt. The value of g was varied from 1 ms to 1000 ms. The query
used in Figure 4.15 is a sling-window SUM query with a window size of W = 5
seconds and a window slide of β = 0.1 second. The other parameters took default
values (cf. Table 4.2).

From Figure 4.15 and Figure 4.16, one can observe that as the K-search granularity
g increases, the average end-to-end latency increases noticeably in all test cases
except for (JoinDataset×3

syn, Q×3). The K-slack buffer size required to satisfy the user-
specified result-quality requirement for (JoinDataset×3

syn, Q×3) is larger than that
required in the test cases of the other three datasets. This result implies that the
value of g has stronger effect in scenarios where satisfying the user-specified result-
quality requirement requires a small buffer size than in scenarios where satisfying
the result-quality requirement requires a big buffer size.

79

Chapter 4 Quality-Driven Disorder Handling for Individual Queries
A
vg
.
er
ro
r
of
m
ea
su
re
d

C
vr
g
Px
1
0
-3
)

1.4

1.6

1.8

2.0

2.2

2.4

0.99 0.9 0.8 0.7
Retrospect parameter q

94

95

96

97

0.6

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t

ra
ti
o
Φ
(ε
th
r)
PE
)

Retrospect parameter q

AggrDataset1 AggrDataset2

0.99 0.9 0.8 0.7 0.6

Pa) Error of window-coverage measurements Pb) Produced requirement fulfillment ratio

Figure 4.17: Effect of the retrospect parameter q on the performance of the PD-con-
troller-based buffer-size adaptation method in QDDH for individual SWA queries. A
sliding-window SUM query with a window size of W = 1 second and a window
slide of β = 0.1 second was used.

Based on the experimental results, g = 10 ms was chosen empirically as the
default setting in the proposed instantiations of the QDDH framework.

Effect of the Retrospect Parameter q in QDDH for SWA

Recall from Section 4.1.4 that the retrospect parameter q is used by the Window-
Coverage Runtime Calculator in the instantiations of the QDDH framework for SWA
queries to measure the coverages of constructed instantaneous windows. The ac-
curacy of these measurements is more critical for the PD-adt method than for the
AM-adt method; because PD-adt takes these measurements as values of the process
variable, which influence the adaptation decisions produced by the PD controller
directly. In contrast, AM-adt uses these measurements only to optionally calibrate
the window coverages estimated by the analytical model. Hence, this experiment
focused on studying the effect of q on the performance of PD-adt in QDDH for SWA.

In this experiment, a sling-window SUM query with a window size of W = 1
second and a window slide of β = 0.1 second was used and the result relative-
error threshold was εthr = 0.1%. The value of the retrospect parameter q was varied
from 0.99 to 0.6. During each test run, all measured window coverages Cvrg were
recorded. The map Mw, which maintains the number of missing tuples in each
constructed instantaneous window (cf. Section 4.1.6), was not purged, so that true
window coverages (denoted by Cvrgtrue) can be computed at the end of each test
run. The error Cvrgerr of a window-coverage measurement Cvrg is computed as the
difference between Cvrg and its corresponding true window coverage Cvrgtrue, i.e.,
Cvrgerr = Cvrg− Cvrgtrue.

Figure 4.17 shows the resulting average Cvrgerr over the whole test run as well
as the produced requirement fulfillment ratio Φ(εthr) under the examined q values.
The experimental results for AggrDataset2 suggest that a smaller value of q does not
always lead to a higher average Cvrgerr or a lower Φ(εthr). This non-monotonic behav-
ior is caused by the complex interaction between the measured window coverages
and the applied K-slack buffer size in the PD-adt method. When a small value of q is

80

4.3 Evaluation

applied, the measured coverage of an instantaneous window is often smaller than its
true value, because the Window-Coverage Runtime Calculator may have not observed
all of the out-of-order tuples that are missing from the instantaneous window (cf.
Section 4.1.4). With PD-adt, this would lead to a more aggressive decrease of the
parameter α, thus the applied K-slack buffer size, compared to the case where a big
value of q is applied. However, such an aggressively-decreased buffer size under a
small value of q may in turn lead to an earlier buffer-size increase; because more
out-of-order tuples would not be sorted correctly by the small buffer, resulting in
instantaneous windows with lower coverages. Depending on the disorder charac-
teristics of the input stream, an early buffer increase may be beneficial for dealing
with the disorder among upcoming tuples, thereby improving the coverages of the
following few instantaneous windows.

Nevertheless, for both AggrDataset1 and AggrDataset2, a higher average win-
dow-coverage error Cvrgerr leads to a lower requirement fulfillment ratio Φ(εthr).
The result accuracy under q = 0.99 is the best for both datasets; hence, q = 0.99 was
chosen as the default setting in the proposed instantiation of the QDDH framework
for SWA queries.

Effect of the Adaptation Interval L in QDDH for MSWJ

Figure 4.18 studies the effect of the adaptation interval L on the performance of
the AM-adt method in the instantiation of the QDDH framework for MSWJ queries,
where L was varied from 0.1 second to 10 seconds. The figure reports results for
(JoinDataset×2

real, Q×2) and (JoinDataset×3
syn, Q×3) under Γ = 0.95 and Γ = 0.99. The

other parameters took default values (cf. Table 4.2).
It can be observed that the average end-to-end latency grows noticeably as L

increases. This can be explained by the selectivity estimation done in Eq. (4.8). Recall
from Section 4.2.4 that the productivity of an out-of-order tuple arrived at the join
operator is estimated conservatively as the maximum tuple productivity observed
within the last adaptation interval. The maximum tuple productivity observed within
a long adaptation interval is often higher than that observed in a short adaptation
interval; hence, the estimated selectivity is smaller, which often leads to a smaller
outcome of Eq. (4.8). Moreover, with a long adaptation interval, a large value of
the buffer size K determined in one iteration of the adaptation is also applied for a
longer period of time than with a short adaptation interval.

As L increases, the resulting increase of the applied buffer size K leads to a great
increase of Φ(Γ) for (JoinDataset×3

syn, Q×3) under Γ = 0.99, but has little effect on the
achieved requirement fulfillment ratio for the other three examined cases. In general,
L = 1 second produced a good tradeoff between the average end-to-end latency and
the achieved query-result quality compared with the other four values of L.

4.3.5 Overhead of Buffer-Size Adaptation

The last part of the evaluation studied the overhead of the quality-driven buffer-size
adaptation with respect to the runtime, i.e., the time needed to determine the new
K-slack buffer size in an individual iteration of the adaptation.

The adaptation time of the PD-adt method is nearly constant, at around 25 µs,
in all scenarios, regardless of the query type or the result-quality specification. In

81

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

0.0

3.5

2.5

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

(b
)

90

92

94

96

98

100

0.1 0.5 1 10

R
eq
u
ir
em
n
t
fu
lf
ill
m
en
t
ra
ti
o

(b
)

20

40

60

80

100
A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

real
x2(a) (JoinDataset , Qx2)

syn
x3(b) (JoinDataset , Qx3)

Adaptation interval L (sec.)

0 2

4

6

8

10

12

Φ(Γ) for Γ=0.95
Φ(Γ) for Γ=0.99 Φ(.99Γ) for Γ=0.99

Avg. latency for Γ=0.95
Avg. latency for Γ=0.99

Φ(.99Γ) for Γ=0.95

5

3.0

2.0

1.0

0.5

0.1 0.5 1 105

Adaptation interval L (sec.)

0.1 0.5 1 105

Adaptation interval L (sec.)

14

16

1.5

0.1 0.5 1 10

Adaptation interval L (sec.)

5

Figure 4.18: Effect of the adaptation interval L on the performance of the analytical-
model-based buffer-size adaptation method (with NonEqSel) in QDDH for individual
MSWJ queries.

contrast, the adaptation time of the AM-adt method is influenced by the number of
input streams m, the user-specified result-quality requirement, i.e., εthr or Γ, and the
K-search granularity g. The more number of input streams that a query involves,
the higher complexity of the corresponding analytical model; and the smaller the
K-search granularity, the more number of iterations AM-adt needs to run to reach a
specific optimal QDDH buffer size κ (cf. Algorithm 4.4 and Algorithm 4.7).

Figure 4.19 shows the experimental results of the instantiation of the QDDH
framework for SWA queries, where a sliding-window SUM query with a window
size of W = 1 second and a window slide of β = 0.1 second was executed, under
different combinations of εthr and g values. The other parameters took default values
(cf. Table 4.2). The query was executed three times over each AggrDataset. For each
combination of εthr and g, the average time consumed by an individual adaptation
of the K-slack buffer size over all three runs of the query under that combination
was recorded and reported in the figure. Figure 4.20 shows the experimental re-
sults of the QDDH-framework instantiation for MSWJ queries. Analogously, different
combinations of Γ and g values were evaluated, over each JoinDataset.

As expected, the adaptation time goes down as the K-search granularity g in-
creases and as the result-quality requirement gets lower (i.e., as the result relative-er-

82

4.3 Evaluation

10-1

1

(a) AggrDataset1

A
vg
.
ad
ap
ta
ti
on

ti
m
e
(m
s)

K-search granularity g (ms)

1 10 100 1000

10-2

10-1

1

A
vg
.
ad
ap
ta
ti
on

ti
m
e
(m
s)

10-2

K-search granularity g (ms)

1 10 100 1000

(b) AggrDataset2

εthr=0.1%εthr=0.5%εthr=1%εthr=5%εthr=10%

Figure 4.19: Time needed by the analytical-model-based buffer-size adaptation
method to derive a new K-slack buffer size in an individual adaptation iteration
in QDDH for individual SWA queries. A sliding-window SUM query with a window
size of W = 1 second and a window slide of β = 0.1 second was used.

ror threshold εthr increases and as the recall requirement Γ decreases). In Figure 4.19,
the average adaptation time was below 1 ms for all examined combinations of εthr
and g for both datasets. In Figure 4.20, when g ≥ 10 ms, the average adaptation
time was below 5 ms for the highest examined value of Γ on all datasets. The av-
erage adaptation time for lower Γ values was even smaller—below 1 ms. In the
implementation of the instantiations of the QDDH framework, the Buffer Manager
and window-based query operators run in separate threads. Hence, the buffer-size
adaptation time indeed overlaps with the processing time of the aggregate or the
join.

4.3.6 Summary of Experimental Results

In summary, the baseline results presented in Section 4.3.2 show that there is an
inevitable tradeoff between the end-to-end latency and the query-result quality in
disorder handling; and naive disorder handling approaches that make extreme trade-
offs between these two requirements can lead to either a high latency, or a consid-
erably-low query-result quality. These baseline results also confirm that the QDDH
concept proposed in this dissertation has a practical application area.

Section 4.3.3 evaluated each of the two QDDH-framework instantiations proposed
in this chapter with different datasets, queries, and settings of respective result-qual-
ity requirements. The experimental results show that the two instantiations with
the proposed analytical-model-based buffer-size adaptation method are effective in
terms of quality-driven latency minimization. Compared to the Max-K-slack base-
line approach, QDDH reduced the applied K-slack buffer sizes, thus the end-to-end
latency, significantly (up to 99.98% across all examined cases), while respecting user-
specified result-quality requirements. It was also shown that the analytical-model-
based adaptation method is more robust than the PD-controller-based adaptation
method, especially for MSWJ queries.

83

Chapter 4 Quality-Driven Disorder Handling for Individual Queries

real
x2(a) (JoinDataset , Qx2)

syn
x4(c) (JoinDataset , Qx4)

10-1

1

A
vg
.
ad
ap
ta
ti
on

ti
m
e
(m
s)

102

K-search granularity g (ms)

1 10 100 1000

10

10-1

1

A
vg
.
ad
ap
ta
ti
on

ti
m
e
(m
s)

102

10

10-1

1

A
vg
.
ad
ap
ta
ti
on

ti
m
e
(m
s)

102

10

K-search granularity g (ms)

1 10 100 1000

K-search granularity g (ms)

1 10 100 1000

syn
x3(b) (JoinDataset , Qx3)

Γ=0.999 Γ=0.99 Γ=0.95 Γ=0.9

Figure 4.20: Time needed by the analytical-model-based buffer-size adaptation
method to derive a new K-slack buffer size in an individual adaptation iteration
in QDDH for individual MSWJ queries.

The overhead results presented in Section 4.3.5 show that the objective of QDDH
can be achieved with a low runtime overhead, which confirms the practicability of
the proposed QDDH approach.

4.4 Summary

This chapter described instantiations of the generic QDDH framework introduced
in Chapter 3 for individual SWA and MSWJ queries. For each instantiation, it was
discussed in detail how to specialize the two quality-driven buffer-size adaptation
methods—the analytical-model-based method and the PD-controller-based method—
that were introduced in Section 3.4 based on the respective query type. Experimental
results showed the effectiveness of the two proposed instantiations with respect to
quality-driven latency minimization. Compared to the state of the art, both instantia-
tions can significantly reduce the K-slack buffer sizes applied for disorder handling,
thus the end-to-end latency, while still providing the user-desired query-result qual-
ity.

Note that for streams having a large amount of out-of-order tuples with large
delays, the end-to-end latency produced under QDDH could still be high under high

84

4.4 Summary

result-quality requirements. To reduce the end-to-end latency for queries executed
over this type of streams, the proposed QDDH approach can be combined with the
speculation-based disorder handling approach (cf. Section 3.5) in a similar way as
is done in the work by Krishnamurthy et al. [Kri+10]. Specifically, an upper bound
Kub for the K-slack buffer size can be set in the Buffer Manager. The Buffer Manager
then deals with out-of-order tuples whose delays are not larger than Kub using the
proposed QDDH approach, and deals with out-of-order tuples whose delays are
larger than Kub using speculation and retraction.

85

5
Quality-Driven Disorder Handling
for Concurrent Queries with
Shared Operators

Chapter 4 discussed instantiations of the generic QDDH framework for individual
SWA and MSWJ queries. However, a natural workload pattern in a DSPS is to execute
multiple queries concurrently over a collection of input streams. Moreover, when exe-
cuting multiple queries concurrently, a commonly-used technique for improving the
system performance is to share computations among the concurrent queries [Che+00;
Hir+14].

Based on the work presented in Chapter 4, this chapter takes one step further
to consider QDDH for concurrent queries with shared operators. As in Chapter 4,
this chapter focuses on SWA and MSWJ queries, which are the predominant query
types used in stream-based applications. In this chapter, in addition to the window-
based aggregate or join operation, each query may filter its input streams using
arbitrary selection predicates (cf. Section 2.1.2). This chapter focuses on the case
of sharing the computation across selection predicates; namely, selection predicates
that are common in different queries will be evaluated by shared filters, i.e., shared
selection operators. After defining the problem of QDDH in the context of concurrent
queries with shared query operators in Section 5.1, Section 5.2 gives an overview
of the instantiation of the generic QDDH framework in this context. Subsequently,
Section 5.3, Section 5.4, and Section 5.5 drill down to the details of this QDDH-
framework instantiation. Section 5.6 presents the evaluation results and Section 5.7
discusses related work that is relevant to the content of this chapter.

5.1 Introduction

Motivation

The logical query plan that represents the query-operator network of concurrent
queries obtained after exploiting the sharing opportunities is called a global logical
query plan, or for short, a global query plan, denoted by Gglob. The work presented
in this chapter focuses on exploiting the sharing opportunities among the selection

87

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

result streams

input streams

Si
source operator
(interface of input
stream Si)

Aj
sliding-window
aggregate

Jj
sliding-window
join

branch operator

filterFx

Q2 Q3 Q4 Q5Q1

S2

J3

A2

J1

S3

J4 A5

S1

F1 F2

F3

F5

F4

F7

F8 F9

F6

Figure 5.1: A global query plan constructed after fully exploiting the sharing oppor-
tunities among the selection predicates of five concurrent queries.

predicates in concurrent queries. Let Qj denote the j-th query contained in a global
query plan. Figure 5.1 shows an example of a global query plan, which consists of two
MSWJ queries and three SWA queries. In this global query plan, window operators
and the final R2S operators, Istream (cf. Section 2.1.2), are omitted for brevity.

Given a global query plan Gglob and the user-specified result-quality requirement
for each query contained in Gglob, the objective of QDDH is to minimize the end-to-end
latency of each query, while subjecting the result quality of each query to its associated user-
specified result-quality requirement. A naive solution to achieve this objective is unshared
QDDH. Namely, for each query Qj contained in Gglob, the intra-stream disorder han-
dling components—K-slack buffers—are placed right before the window-based join
or aggregate operator in Qj (i.e., right above the leaf nodes in Gglob); and the sizes of
these buffers are dynamically adjusted in a quality-driven way, independent of the
size adjustment of the K-slack buffers applied in any other query in Gglob. However,
such an unshared QDDH may result in duplicate storing and sorting of the same
stream tuples, which is a waste of the memory resources of a DSPS. To illustrate this,
let us suppose that the selectivities of the filters F8 and F9 in Figure 5.1 are both
0.9. Then, with unshared QDDH, at least 80% (= 2× 0.9− 1) of the output tuples of
the filter F7 need to be handled by both the K-slack buffer for the query Q4 and the
K-slack buffer for the query Q5.

One natural solution to avoid the duplicate disorder handling described above,
thereby saving the memory resources of a DSPS, is shared QDDH; namely, sharing
K-slack buffers across multiple queries. For the example discussed above, shared
QDDH means placing a K-slack buffer below the filter F7, rather than below the
filters F8 and F9 redundantly. As a result, the output of F7 is sorted only once, and
the sorting effort is shared between the query Q4 and the query Q5.

An operator v in a global query plan Gglob that has more than one child is referred
to as a branch operator. In general, shared disorder handling could happen right below
any branch operator in Gglob, and even happen concurrently right below multiple
branch operators. However, for any branch operator, sharing the disorder handling

88

5.1 Introduction

of the operator’s output does not always lead to a lower memory consumption. For
instance, when the selectivities of the filters F8 and F9 in Figure 5.1 are both 0.1,
then doing shared disorder handling right below the filter F7 has a higher memory
consumption than doing unshared disorder handling right below each of F8 and F9.
Moreover, as will be shown later in this chapter, naive sharing of K-slack buffers may
unnecessarily increase the end-to-end latency of queries that have low result-quality
requirements, whereas smart sharing of K-slack buffers has a higher overhead of
runtime adaptation than naive sharing of K-slack buffers when switching to a new
configuration of the buffers. Hence, when doing QDDH for concurrent queries that
have shared query operators, it is not obvious how to place K-slack buffers within the
global query plan, so that the objective of QDDH is achieved with a minimum memory
consumption. This is especially true when the global query plan contains a large
number of branch operators.

Problem Formulation

Given n SWA and MSWJ queries Q = {Q1, Q2, . . . , Qn}, which involve m input
streams S = {S1, S2, . . . , Sm}, a global query plan Gglob like the one shown in Fig-
ure 5.1 can be constructed. Specifically, selection predicates applied on input streams
are pulled above any join or aggregate operator, and the sharing opportunities among
all selection predicates are fully exploited. Moreover, on the basis of sharing, selection
predicates are fused wherever possible. As a result, window-based join or aggregate
operators only appear as leaves in the global query plan Gglob; and any non-branch
filter in Gglob does not again have a filter as a child. Recall from Section 2.1.2 that
a source operator acts as an interface of an external input stream. In this chapter, a
source operator shares the same notation as the corresponding input stream because
of the one-to-one relationship between them.

Given a global query plan constructed in the above way, the objective of multi-
query QDDH is defined as minimizing both the end-to-end latency incurred by K-slack
buffers for each query, and the overall memory consumption of all K-slack buffers, while
respecting the user-specified result-quality requirement for each query. Recall from Chap-
ter 4 that the minimum K-slack buffer size required to satisfy the user-specified
result-quality requirement of an individual query is referred to as the optimal QDDH
buffer size for that query and is denoted by κ. In this chapter, κj is used to denote the
optimal QDDH buffer size for the query Qj.

This chapter does not consider sharing computations among multiple window-
based join operators or multiple window-based aggregate operators. In the context
of QDDH, sharing computations among window-based operators using existing ap-
proaches (e.g., [Gui+11; KWF06; Wan+06]) may violate the objective of quality-driven
latency minimization. To explain this, suppose that based on the window and the
operator semantics, the window-based operator in a query Qk can be evaluated by
further processing the results of the window-based operator in another query Qj.
If, however, Qk had a much lower user-specified result-quality requirement than Qj,
thus requiring a smaller optimal QDDH buffer size than Qj, then sharing the compu-
tation of Qj to further evaluate Qk would essentially enforce Qk to apply the same
K-slack buffer size as Qj, which increases the end-to-end latency of Qk unnecessarily.
How to adapt the existing approaches for sharing window-based operators in the
context of QDDH requires further investigation.

89

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

To handle the disorder within an input stream Si of any query Qj ∈ Q, one or
more K-slack buffers can be placed along the path from the source operator Si to
the window-based join or aggregate operator in Qj. Let B represent an individual K-
slack buffer. Each buffer B has two important properties: (1) the buffer size K(B), and
(2) the output targetsOtgt(B), which is defined as the set of operators that consume the
output of the buffer B. In the remainder of this chapter, Cglob is used to denote a global
K-slack configuration for a global query plan Gglob. A global K-slack configuration Cglob

is defined as a possible placement of K-slack buffers within the global query plan
Gglob, along with the property settings (i.e, the buffer size K(B) and the output targets
Otgt(B)) of each placed buffer. To achieve the previously-defined objective of multi-
query QDDH, a Cglob that satisfies the two conditions below needs to be found:

1. Latency minimization: For each query Qj in Gglob, the summed size of the K-slack
buffers placed along any path from a source operator involved in Qj to the
window-based aggregate or join operator in Qj does not exceed the optimal
QDDH buffer size κj of Qj.

2. Memory minimization: The memory cost of Cglob, denoted by mem(Cglob), is not
larger than that of any other global K-slack configuration for Gglob. The memory
cost mem(Cglob) at any point in time is measured as the number of tuples kept
in all K-slack buffers in Cglob.

A global K-slack configuration Cglob for a global query plan Gglob that satisfies
both conditions above is called an optimal global QDDH K-slack configuration for Gglob.

Denote the subplan of a global query plan that is rooted at a source operator Si
by Gi. Because the disorder handling of one input stream has no influence on the
disorder handling of the other input streams, the task of finding the optimal Cglob

for a global query plan Gglob can be broken down to sub-tasks of finding the optimal
K-slack configuration for each subplan Gi of Gglob. A K-slack configuration for the
subplan Gi is denoted by Ci, and the memory cost of Ci is denoted by mem(Ci).

Contributions

Specifically, the work presented in this chapter makes the following contributions:

• The notion of K-slack chain is introduced for sharing the disorder handling of
the output of a branch operator in a global query plan. A K-slack chain can be
shared by queries having different result-quality requirements, i.e., different op-
timal QDDH buffer sizes, without enforcing queries that have low result-quality
requirements to use larger-than-necessary K-slack buffer sizes. (Section 5.3)

• Two algorithms—GREEDY and OPT—are proposed for determining the global
K-slack configuration for a global query plan Gglob. The algorithm GREEDY
trades the memory optimality of the determined K-slack configuration for low
computational cost, and does not enumerate all possible K-slack configurations
for Gglob. The algorithm OPT can find the memory-optimal K-slack configura-
tion to achieve the objective of QDDH for Gglob, yet without doing exhaustive
enumeration of all possible K-slack configurations either. (Section 5.4)

90

5.2 QDDH-Framework Instantiation Overview

global query plan

synchronization
buffer

Statistics Manager

Global Buffer Manager

...

...

statistics from input streams

statistics from result streams

statistics from
query operators

updates of
K-slack

configuration

input streams

result streams

QDDH for Concurrent Queries with
Shared Operators

user-specified result-quality requirements for
individual queries

BM for Q1

BM: Buffer Manager

...

Global K-slack Configuration
Calculator

BM for Q2 BM for Qn

K-slack buffer

κ1 κ2 κn

Figure 5.2: Instantiation of the buffer-based QDDH framework for concurrent SWA
and MSWJ queries with shared source and filter operators.

• Different strategies for triggering the adaptation of the applied K-slack config-
uration at the query runtime are introduced. Moreover, the overhead of per-
forming semantics-preserving runtime adaptation is analyzed; and scenarios
where the overhead of runtime adaptation can be reduced by reusing buffers
from the old configuration are discussed. (Section 5.5)

5.2 QDDH-Framework Instantiation Overview

Figure 5.2 gives an overview of the instantiation of the generic QDDH framework for
a global query plan of concurrent SWA and MSWJ queries with shared source and
filter operators. The Buffer Manager in the generic framework (cf. Figure 3.5) becomes
a Global Buffer Manager in Figure 5.2, which consists of a Global K-slack Configuration
Calculator and n Buffer Managers for the n queries contained in the global query plan.

The Buffer Manager for each query Qi in a global query plan is responsible for
deriving the optimal QDDH buffer size κi for the query Qi dynamically, in the way
as described in Chapter 4. In this chapter, it is assumed that each Buffer Manager
uses the analytical-model-based buffer-size adaptation method to derive the optimal
QDDH buffer size for the corresponding query. Recall that for a SWA query, κ is
updated whenever a new instantaneous window has been constructed at the SWA
operator in the query (cf. Section 4.1.2); and for an MSWJ query, κ is updated every
L time units, where the adaptation interval L is a configurable system parameter
(cf. Section 4.2.2). The updates of each κi (i ∈ [1, n]) are forwarded to the Global
K-slack Configuration Calculator, which decides whether a runtime adaptation of the
K-slack configuration applied in the global query plan needs to be triggered, and
computes the new configuration if the decision is positive. Note that a global K-slack
configuration Cglob is a combination of the K-slack configurations Ci for all subplans

91

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

Gi of Gglob. The solution for determining the optimal K-slack configuration for a
subplan Gi is generic to all subplans; hence, in the following sections, the proposed
solution is illustrated only for an individual subplan Gi.

In addition to the statistics required by the Buffer Manager for each individual
query in the global query plan, the Statistics Manager in Figure 5.2 also monitors and
maintains selectivities of the filters in the global query plan. These filter selectivi-
ties are used by the Global K-slack Configuration Calculator to compute new K-slack
configurations.

5.3 Shared Disorder Handling Using K-Slack Chain

Before describing the behavior of the Global K-slack Configuration Calculator in detail,
this section introduces the concept of K-slack chain. A K-slack chain is applied right
below a branch operator in a global query plan Gglob to perform shared disorder
handling for the output of the branch operator, without violating the objective of
latency minimization for each query that shares the branch operator. For ease of
illustration, let us consider a simple subplan G1 as shown in Figure 5.3a. This subplan
contains only one branch operator S1 and does not contain filter operators. Assume
that the optimal QDDH buffer sizes of the queries contained in G1 satisfy κ3 < κ1 < κ2.
Moreover, let Q(v) denote the set of queries in a global query plan that share the
operator v.

B1

A1

S1

A2 A3 A1

S1

A2 A3

B2B3 B1

A1

S1

A2 A3

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

(a) subplan G1 (b) use a single K-slack
buffer: K(B1)=κ2

(c) use a K-slack chain: K(B1)=κ3
K(B2)=κ1-κ3 K(B3)=κ2-κ1

Bj
a K-slack
buffer

Figure 5.3: Shared disorder handling within a subplan Gi that does not contain filter
operators: single K-slack buffer versus K-slack chain. (Assume that κ3 < κ1 < κ2.)

For the subplan G1 in Figure 5.3a, unshared disorder handling of the stream
S1 means placing a separate K-slack buffer above each aggregate operator Ai, i ∈
{1, 2, 3}, in G1. Recall from Section 5.1 that the memory cost of a K-slack configu-
ration is defined as the number of tuples kept in all K-buffers in the configuration.
Based on this definition, the average memory cost of the above K-slack configuration
under unshared disorder handling can be determined as r1 · (κ1 + κ2 + κ3), where
r1 represents the average tuple arrival rate of the stream S1. Doing shared disorder
handling for the stream S1 can lead to lower memory cost. A naive solution of shared
disorder handling is to place a single K-slack buffer below the source operator S1
(Figure 5.3b). To meet the user-specified result-quality requirement of each query
in G1, the size of this buffer, i.e., the size of B1 in Figure 5.3b, must not be smaller
than the greatest value among κ1, κ2, and κ3, which is κ2 in this example. However,
setting the size of B1 to κ2 means that a larger-than-necessary buffer is applied for

92

5.4 Memory-Optimal QDDH

the queries Q1 and Q3, which violates the latency-minimization condition defined in
Section 5.1.

To overcome the above drawback of a single K-slack buffer, this dissertation
proposes to use a chain of K-slack buffers as shown in Figure 5.3c. This proposal is
based on the following property of the K-slack algorithm: the disorder-handling effect
of a single K-slack buffer of size k is equivalent to the disorder-handling effect of a chain of
K-slack buffers whose summed size is k. In Figure 5.3c, the size of the first buffer B1 in
the K-slack chain is set based on the smallest optimal QDDH buffer size among the
queries in Q(Si), i.e., K(B1) = κ3. The output tuples of B1 are forwarded to both
the operator A3 and the second K-slack buffer B2, so that they can be processed by
A3 without being delayed further, and at the same time be handled further by B2
to meet the result-quality requirements of the queries Q1 and Q2. The size of B2
is K(B2) = κ1 − κ3, i.e., the difference between the second smallest κ value and the
smallest κ value among {κi|i = 1, 2, 3}. The output tuples of B2 are forwarded to both
the operator A1 and the last K-slack buffer B3. The size of B3 is K(B3) = κ2 − κ1, i.e.,
the difference between the greatest κ value and the second greatest κ value among
{κi|i = 1, 2, 3}. The output tuples of B3 are forwarded to the operator A2 only.

The total size of the buffers in the K-slack chain in Figure 5.3c is (κ2− κ1) + (κ1−
κ3) + κ3 = κ2. Hence, it has the same, which is also the optimal, memory cost as the
single K-slack buffer in Figure 5.3b. However, the K-slack chain overcomes the draw-
back of the single K-slack buffer and satisfies the condition of latency minimization.

In general, for a branch operator v that has no filter child, a K-slack chain of
length u can be used right below v to perform condition-satisfying shared disorder
handling, where u is the number of distinct κ values among the queries in Q(v). The
K-slack chain can be built as follows: Sort the list of distinct κ values in increasing
order. Let κl represent the l-th κ value in the sorted list. For the l-th (l ∈ [1, u]) buffer
Bl in the K-slack chain, the buffer size K(Bl) is set to κ1 if l = 1, and to κl − κl−1

otherwise. The output target Otgt(Bl) of the buffer Bl includes each child of the
branch operator v, whose containing query Qj has an optimal QDDH buffer size κj

that satisfies κj == κl .

5.4 Memory-Optimal QDDH

This section presents the proposed solution for finding the optimal K-slack configura-
tion for a subplan Gi in the general case (i.e., Gi could have multiple branch operators
which may be source or filter operators), based on the optimal QDDH buffer sizes
derived for each individual query contained in Gi. First, Section 5.4.1 describes how
to find the optimal local K-slack configuration, C(v), for an individual branch operator
v. Section 5.4.2 then presents the solution for an entire subplan Gi.

5.4.1 Solution for Individual Branch Operators

In Section 5.3, it was shown that for a branch operator v that does not have any
filter child, shared disorder handling using a K-slack chain has lower memory cost
than unshared disorder handling. However, this is not always true when the branch
operator v has filter children. Depending on the selectivities of the filter children, it

93

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

F1 F2 F3

v

S1

Q1 Q2 Q3

(a)

F1 F2 F3

B2 B1

B3

v

S1

Q1 Q2 Q3

: K(B1)=κ3
K(B2)=κ1-κ3
(b) C1

(v)

K(B3)=κ2-κ1

B3

B2

Q1 Q2 Q3

v

S1

F1 F2 F3

B1

: K(B1)=κ3
K(B2)=κ1-κ3
(c) C2

(v)

K(B3)=κ2-κ1

F1 F2 F3

B1

B2 B3

Q1 Q2 Q3

v

S1

: K(B1)=κ3
K(B2)=κ1-κ3
(d) C3

(v)

K(B3)=κ2-κ3

v

F1 F2 F3

B1 B2 B3

Q1 Q2 Q3

S1

: K(B1)=κ1
K(B2)=κ2
(e) C4

(v)

K(B3)=κ3

Figure 5.4: All possible memory-optimal local K-slack configurations for a branch
operator. Assume that the optimal QDDH buffer sizes of the queries satisfy 0 < κ3 <
κ1 < κ2.

may be more memory-efficient to push buffers at the tail of the K-slack chain down
below certain filter children of the branch operator v.

To illustrate this, let us consider the branch operator v in Figure 5.4a, which has
three filter children. For the moment, let us assume that each child of v, denoted by vc,
is not again a branch operator. The scenarios where this assumption is relaxed will
be discussed in Section 5.4.2. Without loss of generality, assume that the relationship
between the optimal QDDH buffer sizes of the three queries in Figure 5.4 is 0 <
κ3 < κ1 < κ2. Figure 5.4b–5.4e show all possible optimal local K-slack configurations
for the branch operator v under this assumed relation between κ1, κ2, and κ3. From
the configuration C(v)

1 to the configuration C(v)
4 , the buffers in the K-slack chain in

C(v)
1 are pushed down below the filter children of the branch operator v one by

one, starting from the tail buffer. The configuration C(v)
4 is indeed doing unshared

disorder handling. The specific size of a K-slack buffer in each C(v)
i (i ∈ {1, 2, 3, 4})

depends on the position of the buffer within the subplan. Configurations C(v)
1 to

C(v)
4 all meet the condition of latency minimization defined in Section 5.1, but have

different memory costs. Each of C(v)
i (i ∈ {1, 2, 3, 4}) is referred to as a candidate

94

5.4 Memory-Optimal QDDH

local K-slack configuration for the operator v. Which one of them is the actual optimal
configuration, i.e., the condition of memory minimization is met as well, depends
on the selectivities of the filters F1, F2, and F3 in Figure 5.4a.

In general, the total number of candidate local K-slack configurations for a branch
operator v is between 1 and NF(v) + 1, where NF(v) is the number of filter children
that the branch operator v has. The lower bound, 1, is reached when the branch
operator v has a non-filter child, whose containing query has the greatest optimal
QDDH buffer size κ among all queries in Q(v). The reason is that when such a child
vc of v exists, to meet the condition of latency-minimization, the child vc must be
included in the output targets of the tail buffer in the K-slack chain that is put right
below v. Because vc is not a filter, the tail buffer in the K-slack chain cannot be pushed
down below vc. As a result, although it is possible to push down the other buffers
in the K-slack chain whose output targets are filter children of v, the summed size
of the K-slack chain placed right below v remains the same. Hence, the push-down
of the other buffers in the K-slack chain cannot lead to a lower memory cost.

The upper bound of the number of candidate local K-slack configurations for a
branch operator v, NF(v) + 1, is reached when the containing query of every filter
child of v has such an optimal QDDH buffer size that it is greater than the optimal
QDDH buffer sizes of the containing queries of all non-filter children of v. The reason
is that, in this case, when no buffer in the K-slack chain placed right below v is
pushed down below any filter child of v, then a buffer in the chain, whose output
targets include a filter child of v, must be after any other buffer in the chain, whose
output targets include a non-filter child of v. Namely, the K-slack chain can be viewed
as a concatenation of two parts, where the output targets of each buffer in the first
part include at least one non-filter child of v, and the output targets of each buffer
in the second part include only filter children of v. Buffers in the second part can be
pushed down below their respective output targets one by one, in the way as shown
in Figure 5.4b–5.4e. Since the branch operator v has NF(v) filter children, there are at
most NF(v) buffers in the second part of the K-slack chain. Hence, the total number
of options for pushing buffers in the K-slack chain down, whose resulting memory
costs could be the minimum, is at most NF(v) + 1.

Let fx represent the selectivity of a filter Fx, and r(v) represent the average output
rate of the branch operator v in Figure 5.4. The naive approach to find the memory-
optimal local K-slack configuration for v is to calculate the memory costs of all four
candidate configurations using the equations below, and then compare the calculated
memory costs1. The selectivities of the filters in the query plan can be monitored at
the query runtime.

mem(C(v)
1) = r(v) · κ2

mem(C(v)
2) = r(v) · (κ1 + f2 · (κ2 − κ1))

mem(C(v)
3) = r(v) · (κ3 + f1 · (κ1 − κ3) + f2 · (κ2 − κ3))

mem(C(v)
4) = r(v) · (f1 · κ1 + f2 · κ2 + f3 · κ3)

1Note that, actually, the comparison of the memory costs can be done regardless of the value of r(v).

95

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

Algorithm 5.1 Determine the optimal local K-slack configuration for a branch opera-
tor v that does not have any child that is again a branch operator.

1: K(v)← distinct values in {κj|Qj ∈ Q(v)}
2: localBufSize← 0 . the summed size of K-slack buffers placed right below v
3: sumOfSel← 0
4: while K(v) 6= ∅ do
5: κmax ← max{κ|κ ∈ K(v)}
6: for each child vc of v do
7: if the containing query of vc has κ == κmax then
8: f ← isFilter(vc)? monitored selectivity of vc : 1
9: sumOfSel += f

10: if sumOfSel < 1 then
11: Remove κ satisfying κ == κmax from K(v)
12: else
13: localBufSize← κmax
14: break
15: if localBufSize > 0 then
16: Place a K-slack chain of length |K(v)| right below v, where |K(v)| is the

number of remaining κ values in K(v); and determine the size and the output
targets of each K-slack buffer in the chain

17: for each child vc of v whose containing query Qj has κj > localBufSize do
18: Place a K-slack buffer of size (κj − localBufSize) right below vc

However, looking at the four equations closely, the following relations can be
observed:

mem(C(v)
2) = r(v) · (κ1 + κ2 − κ2 + f2 · (κ2 − κ1))

= r(v) · (κ2 + (f2 − 1) · (κ2 − κ1))

= mem(C(v)
1) + r(v) · (f2 − 1) · (κ2 − κ1)

mem(C(v)
3) = mem(C(v)

2) + r(v) · (f2 + f1 − 1) · (κ1 − κ3)

mem(C(v)
4) = mem(C(v)

3) + r(v) · (f2 + f1 + f3 − 1) · κ3

Because it is assumed that 0 < κ3 < κ1 < κ2, one can further derive that mem(C(v)
2) <

mem(C(v)
1) holds if f2 < 1; mem(C(v)

3) < mem(C(v)
2) < mem(C(v)

1) holds if f2 + f1 < 1;
and mem(C(v)

4) < mem(C(v)
3) < mem(C(v)

2) < mem(C(v)
1) holds if f2 + f1 + f3 < 1.

These observations suggest that a more efficient method can be used to find the
memory-optimal candidate configuration for a branch operator v, which is based
on only the selectivities of the filter children of v. Algorithm 5.1 describes the main
idea of this method, which consists of two parts. In the first part, the algorithm
determines to which extent a full K-slack chain placed right below a branch operator
v can be pushed down below the filter children of v (lines 1–14). The general idea
is as follows: Starting from the candidate local K-slack configuration where a full
K-slack chain is placed right below v (e.g., C(v)

1 in Figure 5.4b), the algorithm first
examines the selectivities of the children of v that are the output targets of the tail

96

5.4 Memory-Optimal QDDH

buffer (i.e., Otgt(B3) in C(v)
1). Any non-filter child of v is assumed to have a selectivity

of one. A variable sumOfSel is used to track the sum of the selectivities of the children
of v that have been examined. If sumOfSel < 1, then it means that pushing the tail
buffer in the K-slack chain below the examined children has a lower memory cost
(e.g., C(v)

2 in Figure 5.4c). The algorithm then continues to check, by examining the
selectivities of the output targets of the last but one buffer in the full K-slack chain,
whether pushing down that buffer as well can further reduce the memory cost. This
procedure continues until sumOfSel > 1 or all children of v have been examined. If
the sum of the selectivities of all children of v is smaller than one, then the candidate
local K-slack configuration where one K-slack buffer is placed right below each filter
child of v is the optimal local K-slack configuration (e.g., C(v)

4 in Figure 5.4e), and
will be chosen by the algorithm. In the second part (lines 15–18), based on the buffer
push-down decisions made in the first part, the algorithm further determines the
size and the output targets of each buffer in the chosen candidate local K-slack
configuration.

5.4.2 Solution for a Subplan

This section moves on to discuss the solution for finding the memory-optimal K-
slack configuration for an entire subplan Gi that may contain hierarchical branch
operators. Namely, the child of a branch operator may be a branch operator as well.
To distinguish, a branch operator v is called a bottom branch operator if none of its
children is again a branch operator; otherwise, v is called a non-bottom branch operator.
The example subplan G3 in Figure 5.1 is used in this section to illustrate the proposed
solution.

Complexity. Recall from Section 5.4.1 that for a branch operator v, there are at
most NF(v) + 1 candidate local K-slack configurations for v, where NF(v) is the num-
ber of filter children of v. For a subplan Gi, the set of candidate K-slack configurations
for Gi includes all possible combinations of the local candidate configurations of the
branch operators in Gi. Hence, there are up to ∏

p
1(NF(vp) + 1) candidate K-slack

configurations for Gi, where p represents the number of branch operators in Gi. For
example, for the subplan G3 in Figure 5.1, the total number of candidate K-slack
configurations is up to (NF(S3) + 1) · (NF(F7) + 1) = 3 · 3 = 9.

Without loss of generality, let us assume that the optimal QDDH buffer sizes of
the queries contained in G3 satisfy 0 < κ5 < κ3 < κ4. Figure 5.5 shows all nine
candidate K-slack configurations for G3 under this assumed relation between κ3, κ4,
and κ5. In each row of Figure 5.5, the local K-slack configuration for the filter F7 is
fixed; and in each column, the local K-slack configuration for the source operator S3
is fixed. The configuration C3

9 is indeed doing unshared disorder handling.
The discussion of the complexity above implies that it is expensive to search for

the optimal K-slack configuration for a subplan Gi by enumerating all candidate
configurations to compare their memory costs, especially when there is a large num-
ber of candidate configurations. To achieve scalability, in the following, a greedy
algorithm, GREEDY, and an optimal algorithm, OPT, are proposed. The algorithm
GREEDY trades the memory-optimality of the chosen configuration for low compu-
tational cost, and does not perform exhaustive enumeration of all candidate config-
urations. By paying a bit more computational cost than the algorithm GREEDY, the

97

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

J3

S3

J4 A5

F6 F7

F9F8

B1 B2B3

Q3 Q4 Q5

: K(B1)=κ3 K(B2)=κ5(c) C3
3

K(B3)=κ4-κ5

: K(B1)=κ3 K(B2)=κ5(i) C9
3

K(B3)=κ4

J3

S3

F6

B1

F7

J4 A5

F9F8

B2 B3

Q3 Q4 Q5

J3

S3

J4 A5

F6 F7

B1

F9F8

B3

B2

Q3 Q4 Q5

: K(B1)=κ3 K(B2)=κ5(f) C6
3

K(B3)=κ4-κ5

J3

S3

J4 A5

F6 F7

F9F8

B1B2

B3B4

Q3 Q4 Q5

J3

S3

F6 F7

B1B2

J4 A5

F9F8

B4

B3

Q3 Q4 Q5

: K(B1)=κ5 K(B2)=κ3-κ5(a) C1
3

K(B3)=0 K(B4)=κ4-κ5

: K(B1)=κ5 K(B2)=κ3-κ5(d) C4
3

K(B3)=0 K(B4)=κ4-κ5

J3

S3

F6

B1B2

F7

J4 A5

F9F8

B3 B4

Q3 Q4 Q5

: K(B1)=κ5 K(B2)=κ3-κ5(g) C7
3

K(B4)=0K(B3)=κ4-κ5

J3

S3

F6 F7

F9F8

B2 B3B4

B1

J4 A5

Q3 Q4 Q5

J3

S3

F6

B2

B1

F7

J4 A5

F9F8

B4

B3

Q3 Q4 Q5

J3

S3

F6

B2

B1

F7

J4 A5

F9F8

B3 B4

Q3 Q4 Q5

: K(B1)=κ5 K(B2)=κ3-κ5(b) C2
3

K(B3)=0 K(B4)=κ4-κ5

: K(B1)=κ5 K(B2)=κ3-κ5(e) C5
3

K(B3)=0 K(B4)=κ4-κ5

: K(B1)=κ5 K(B2)=κ3-κ5(h) C8
3

K(B4)=0K(B3)=κ4-κ5

Figure 5.5: All candidate K-slack configurations for the subplan G3 of the global
query plan in Figure 5.1. Assume that the optimal QDDH buffer sizes of the queries
in G3 satisfy 0 < κ5 < κ3 < κ4.

98

5.4 Memory-Optimal QDDH

algorithm OPT can find the memory-optimal K-slack configuration for a subplan Gi,
yet without enumerating all candidate configurations either.

Both algorithms make use of the notion of the largest sharable K-slack buffer size
for an operator v, denoted by κs(v). Generally speaking, κs(v) represents the largest
K-slack buffer size that can potentially be shared among the queries Q(v) that share
an operator v, without violating the latency-minimization condition defined in Sec-
tion 5.1. Formally, κs(v) is defined as the smallest optimal QDDH buffer size κ among
the queries in Q(v), i.e., κs(v) = min{κj|Qj ∈ Q(v)}.

Algorithm GREEDY

The proposed greedy algorithm—GREEDY—determines the K-slack configuration for
a subplan Gi based on the following observation: For each branch operator v in Gi,
with all other branch operators having their local K-slack configurations fixed, then
relations that are similar to those described in Section 5.4.1 can be found between
the memory costs of the candidate K-slack configurations for Gi that differ only in
the local K-slack configuration for v. For example, considering the configurations in
Figure 5.5 column-wise, one can derive the following relations, where r3 represents
the average tuple arrival rate of the stream S3:

mem(C3
7) = mem(C3

4) + r3 · f7 · (f8 + f9 − 1) · (κ5 − κ5)

mem(C3
4) = mem(C3

1) + r3 · f7 · (f8 − 1) · (κ4 − κ5)

mem(C3
8) = mem(C3

5) + r3 · f7 · (f8 + f9 − 1) · (κ5 − κ5)

mem(C3
5) = mem(C3

2) + r3 · f7 · (f8 − 1) · (κ4 − κ5)

mem(C3
9) = mem(C3

6) + r3 · f7 · (f8 + f9 − 1) · κ5

mem(C3
6) = mem(C3

3) + r3 · f7 · (f8 − 1) · (κ4 − κ5)

In this specific example, mem(C3
7) = mem(C3

4) and mem(C3
8) = mem(C3

5) hold
regardless of the specific values of the selectivities f8 and f9. However, for a different
ordering relation between κ3, κ4, and κ5, e.g., when κ3 is the smallest one, then
the relation between mem(C3

7) and mem(C3
4), and the relation between mem(C3

8) and
mem(C3

5) would still depend on the values of f8 and f9. Hence, in general, if f8 + f9 <
1, then the memory-optimal K-slack configuration is guaranteed to be within the
third row of Figure 5.5; if f8 + f9 ≥ 1 and f8 < 1, then the optimal configuration is
guaranteed to be within the second row of Figure 5.5; if f8 = 1, then the memory costs
of the top two candidate configurations in each column of Figure 5.5 are identical,
and the optimal configuration can be found within either the first or the second row
of Figure 5.5.

Furthermore, one can derive the following relations when considering the con-
figurations in Figure 5.5 row-wise:

mem(C3
2) = mem(C3

1) + r3 · (f6 − 1) · (κ3 − κ5)

mem(C3
3) = mem(C3

2) + r3 · (f6 + f7 − 1) · κ5

mem(C3
5) = mem(C3

4) + r3 · (f6 − 1) · (κ3 − κ5)

mem(C3
6) = mem(C3

5) + r3 · (f6 + f7 − 1) · κ5

mem(C3
8) = mem(C3

7) + r3 · (f6 − 1) · (κ3 − κ5)

99

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

Algorithm 5.2 GREEDY: a greedy algorithm for determining the K-slack configura-
tion for a subplan Gi that roots at a source operator Si.

Procedure GREEDY(Gi):
1: ProcessOp(Si, 0)

Procedure ProcessOp(v, totalBufSizeAboveOp):
2: if isLeaf (v) then
3: return
4: sumOfSel← 0
5: localBufSize← 0 . the summed size of K-slack buffers placed right below v
6: Ks(v)← distinct values in {κs(vc)|vc is a child of v} . recall that

κs(vc) = min{κj|Qj ∈ Q(vc)}
7: while Ks(v) 6= ∅ do
8: κs

max ← max{κs|κs ∈ Ks(v)}
9: for each child vc of v that satisfies κs(vc) == κs

max do
10: f ← isFilter(vc)? monitored selectivity of vc : 1
11: sumOfSel += f
12: if SumOfSel < 1 then
13: Remove κs satisfying κs == κs

max from Ks(v)
14: else
15: localBufSize← κs

max − totalBufSizeAboveOp
16: break
17: if localBufSize > 0 then
18: Place a K-slack chain of length |Ks(v)| below v, whose accumulated size is

localBufSize; determine the size and output targets of each buffer in the chain.
19: for each child vc of v do . depth-first traversal
20: if κs(vc) < (totalBufSizeAboveOp + localBufSize) then
21: ProcessOp (vc, κs(vc))
22: else
23: ProcessOp (vc, (totalBufSizeAboveOp + localBufSize))

mem(C3
9) = mem(C3

8) + r3 · (f6 + f7 · (f8 + f9)− 1) · κ5

These relations imply that no matter which row, i.e., which local K-slack configu-
ration for the operator S3, was chosen, (1) when f6 < 1, then the memory cost of the
second configuration in the chosen row is always lower than the memory cost of the
first configuration in that row; and (2) when f6 + f7 < 1, then the memory cost of
the third configuration in the chosen row is always lower than the memory costs of
the first two configurations in that row. Observation (2) holds for configurations in
the third row of Figure 5.5 as well; because if the third row is chosen, it means that
the selectivities of F8 and F9 satisfy f8 + f9 < 1, and therefore f6 + f7 · (f8 + f9) < 1
holds when f6 + f7 < 1.

Based on the above observations, the algorithm GREEDY treats the bottom and
the non-bottom branch operators in a subplan Gi equally, and determines the K-slack
configuration for Gi by choosing the locally-optimal K-slack configuration for each

100

5.4 Memory-Optimal QDDH

branch operator in isolation using Algorithm 5.1. The pseudo-code of GREEDY is
given in Algorithm 5.2.

Note that with the algorithm GREEDY, the placement decisions of K-slack buffers
within a subplan Gi do not rely on the order in which the branch operators in Gi

are enumerated. However, to determine the size of each K-slack buffer placed along
a path from a source operator Si to a leaf operator in Gi, one needs to consider all
K-slack buffers along this path in a top-down manner. Hence, GREEDY determines
the local K-slack configurations for all branch operators by traversing the subplan
Gi in a depth-first way, so that the placement decisions and the properties (i.e., the
size and the output targets) of each placed K-slack buffer can be determined in
the course of a single traversal of Gi. This depth-first traversal is implemented by
recursively invoking the procedure processOp (lines 19–23). The optimal global K-
slack configuration Cglob for a global query plan Gglob can be obtained by applying
GREEDY to each subplan Gi of Gglob.

Algorithm OPT

The algorithm GREEDY does not guarantee that the produced K-slack configuration
for a subplan Gi is memory-optimal. For example, for the subplan G3 in Figure 5.5,
when f8 + f9 < 1 holds, f6 + f7 · (f8 + f9) < 1 could hold for certain values of f6
and f7 that satisfy f6 < 1 and f6 + f7 ≥ 1. However, GREEDY would still choose the
configuration C3

8 in Figure 5.5h in that case, because it determines the local K-slack
configuration for the branch operator S3 based on only the selectivities of the filters
F6 and F7.

The above example implies that to find the memory-optimal K-slack configura-
tion for a subplan Gi, in certain situations, for a branch operator v, it may be necessary
to consider the selectivities of both the children and the grandchildren of v. Such
a situation occurs when v is a non-bottom branch operator and v has at least one
such child vc that vc is also a branch operator and no K-slack buffers are placed right
below vc. The branch operator S3 in configurations C3

7–C3
9 (Figure 5.5g–5.5i) is such

an example. In this situation, to find the globally-optimal K-slack configuration for
the branch operator v, the selectivities of both the children vc of v and the children
of vc should be considered.

Based on the above observation, the algorithm OPT is proposed. The pseudo-
code of OPT is given in Algorithm 5.3. To find the optimal K-slack configuration
for a subplan Gi, the algorithm OPT determines the local K-slack configuration for
branch operators in Gi in a bottom-up way, so that the situations as described above
can be detected and handled properly. However, the size of each K-slack buffer
placed in Gi needs to be determined in a top-down way. Hence, compared with the
algorithm GREEDY, the algorithm OPT needs to separate the step of determining the
placement of K-slack buffers (lines 1–4) from the step of determining the size of each
placed buffer (line 5). Therefore, the computational cost of OPT is higher than that
of GREEDY.

To determine where to place K-slack buffers in a subplan Gi, the algorithm OPT
uses the notion of coalesced selectivity, fcs, for the filters in Gi, and determines the local
K-slack configuration for a branch operator v based on the coalesced selectivities of
the children of v (lines 6–24). Specifically, the coalesced selectivity fcs of a filter F is
defined based on the type of the filter F as follows:

101

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

Algorithm 5.3 OPT: algorithm for determining the optimal K-slack configuration for
a subplan Gi that roots at a source operator Si.

Procedure OPT(Gi):
1: nonLeafList← list of all non-leaf operators in Gi, which are collected by traversing

Gi in depth-first post-order
2: while nonLeafList 6= ∅ do
3: v← nonLeafList.pop()
4: DetermineBufPlacementAtOp(v)
5: DetermineBufSizeAtOp(Si, 0)

Procedure DetermineBufPlacementAtOp(v):
6: sumOfCoalescedSel← 0
7: Ks(v)← distinct values in {κs(vc)|vc is a child of v} . recall that

κs(vc) = min{κj|Qj ∈ Q(vc)}
8: while Ks 6= ∅ do
9: κs

max ← max{κs|κs ∈ Ks(v)}
10: for each child vc of v that satisfies κs(vc) == κs

max do
11: f ← 1
12: if isFilter(vc) then
13: f ← isBranchOp(vc)? vc. fcs : monitored sel. of vc

14: sumOfCoalescedSel += f
15: if sumOfCoalescedSel < 1 then
16: Remove κs satisfying κs == κs

max from Ks(v)
17: else
18: v.hasBuf ← true
19: Annotate v with the current Ks(v) . the annotation is for calculating the

sizes of placed buffers later on
20: break
21: if isFilter(v) then . determine the coalesced selectivity of v
22: v. fcs ← monitored selectivity of v
23: if isBranchOp(v) and v.hasBuf == false then
24: v. fcs ← v. fcs · sumOfCoalescedSel

Procedure determineBufSizeAtOp(v, totalBufSizeAboveOp):
25: if v.hasBuf == true then . at lease one buffer is placed right below v
26: Ks(v)′ ← Ks(v) annotated with v
27: κs

max ← max{κs|κs ∈ Ks(v)′}
28: localBufSize← κs

max − totalBufSizeAboveOp
29: if localBufSize > 0 then
30: Place a K-slack chain of length |Ks(v)′| below v, whose accumulated size

is localBufSize; determine the size and output targets of each buffer in the
chain.

31: for each child vc of v do
32: if κs(vc) < (totalBufSizeAboveOp + localBufSize) then
33: DetermineBufSizeAtOp (vc, κs(vc))
34: else
35: DetermineBufSizeAtOp(vc, (totalBufSizeAboveOp + localBufSize))

102

5.5 Runtime Adaptation

• F is not a branch operator: the coalesced selectivity fcs of F is equal to the
selectivity f of F, which is monitored at the query runtime.

• F is a branch operator:

– If it is determined that a K-slack chain consisting of at least one K-slack
buffer is placed right below F, then the coalesced selectivity fcs of F is
equal to the monitored selectivity of F.

– If it is determined that no K-slack buffer is placed right below F, then the
coalesced selectivity fcs of F is equal to the product between the monitored
selectivity of F and the sum of the coalesced selectivities of the children
of F. A non-filter child of F is assumed to have a selectivity of one. For
example, the coalesced selectivity fcs of the filter F7 in C3

7 to C3
9 (Figure 5.5g–

5.5i) is f7 · (f8 + f9).

The placement decisions of K-slack buffers are marked in the subplan Gi by
annotating each operator with a Boolean flag hasBuf , whose default value is false.
When setting the hasBuf flag of an operator v to true, it means that a K-slack chain
consisting of at least one K-slack buffer is placed right below the operator v. After
the placement decisions have been made, the algorithm OPT determines the size of
each placed K-slack buffer in the same way as the algorithm GREEDY does (lines
25–35 of Algorithm 5.3). Note that even if the flag hasBuf of an operator v is set to
true, the total K-slack buffer size right below v may turn out to be zero because of the
buffers placed above v. For example, the size of the buffer B4 in the configurations
C3

7 (Figure 5.5g) and C3
8 (Figure 5.5h) is indeed zero.

5.5 Runtime Adaptation

To achieve the objective of QDDH, in the course of the query processing, the Global
K-slack Configuration Calculator in the QDDH-framework instantiation in Figure 5.2
must react to the time-varying data and disorder characteristics within the input
streams, and dynamically adapt the global K-slack configuration for a global query
plan Gglob. In the following, Section 5.5.1 introduces different strategies for triggering
the adaptation of the global K-slack configuration at the query runtime. Section 5.5.2
shows how careless adaptations may cause incorrect processing semantics when
doing shared disorder handling, and presents solutions which can provide semantics-
preserving adaptations.

5.5.1 Strategies for Triggering Adaptations

When doing unshared disorder handling for queries in a global query plan Gglob,
each K-slack buffer B placed in Gglob is used only by one query (cf. C3

9 in Figure 5.5i).
The runtime adaptation can be done at a very low cost in terms of the CPU time,
because it involves changing only the sizes K(B) of the placed buffers. In contrast,
when doing shared disorder handling, the runtime adaptation often involves K-
slack chains and requires changing both the sizes and the output targets of the
buffers in an old K-slack chain. Such an adaptation often requires additional effort to
preserve the correct processing semantics and hence introduces additional overhead.

103

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

Intuitively, when doing shared disorder handling, the more often that the adaptations
are triggered, the more likely that the optimal K-slack configuration is applied at
any point in time, and the higher the overall adaptation cost.

The proposed instantiation of the QDDH framework for concurrent queries im-
plements the following adaptation-triggering strategies for shared disorder handling.
Note that when a new optimal QDDH buffer size κ for a query Q in a global query
plan Gglob is derived, only the K-slack configuration of each subplan Gi, whose root
Si is a source operator involved in the query Q, needs to be adapted.

• Eager adaptation: Trigger an adaptation for each involved subplan Gi when a
new and different optimal QDDH buffer size is derived for a query Q.

• Lazy adaptation: For each subplan Gi in Gglob, trigger an adaptation when each
query contained in Gi has reported a new optimal QDDH buffer size since the
last adaptation for Gi.

• λ-lazy adaptation: For each subplan Gi in Gglob, trigger an adaptation when
a fraction λ, λ ∈ (0, 1), of the queries contained in Gi have reported a new
optimal QDDH buffer size since the last adaptation for Gi; λ is a configurable
parameter.

These strategies will be compared experimentally in Section 5.6. In addition,
because of the adaptation cost, adapting the K-slack configuration may cancel off the
benefit of applying a new configuration. Hence, each adaptation strategy also needs
to avoid such profitless adaptations. This will be discussed in detail in Section 5.5.2.

5.5.2 Semantics-Preserving Adaptations

Adapting the K-slack configuration for a subplan Gi consists of a set of sub-tasks,
each of which is to adapt the local K-slack configuration for a specific operator in Gi.
When doing shared disorder handling, adapting the local K-slack configuration of a
branch operator without caution may lead to incorrect processing semantics. This is
illustrated in Figure 5.6. Let us consider a branch operator v1 that has three children
v2, v3, and v4. Assume that the current local K-slack configuration for the branch
operator v1 is as shown in Figure 5.6a. Assume also that v1 has received four tuples
ets (ts = 1, 2, 3, 4), where ts represents the timestamp of a tuple. Figure 5.6a shows
the content of each K-slack buffer in the current local K-slack configuration, as well
as the tuples that have been sent to each child of v1.

Figure 5.6b–5.6d show three possible new local K-slack configurations for the
branch operator v1. Take the configuration C(v1)

1 in Figure 5.6b as an example. The
length of the K-slack chain and the size of each buffer in the K-slack chain in C(v1)

1
are the same as those in the configuration in Figure 5.6a; but the output targets
of the K-slack buffers in C(v1)

1 are different from the output targets of the K-slack
buffers in the configuration in Figure 5.6a. When changing from the local K-slack
configuration in Figure 5.6a to C(v1)

1 in Figure 5.6b, to avoid incorrect processing
semantics, the system must prevent releasing the tuple e2 to the child v3 once again,
and prevent missing releasing the tuple e2 to the child v4. The former problem is
termed as duplicate release and the latter is termed as missing release.

104

5.5 Runtime Adaptation

(a) current configuration (after
receiving tuples e1, e2, e3, e4)

v2

K=2 K=1

e3, e4 e2

v1

v3 v4

K=2 K=1

v1

e3, e4 e2

v2 v3 v4

K=1 K=2

e4 e2, e3

v2 v3 v4

v1

K=3

e2, e3, e4

v2 v3 v4

v1

(c) new configuration C2
(v1)

v2: require no additional effort
v3: avoid receiving duplicate of e2

v4: avoid missing e2

v2: avoid receiving duplicate of e2

v3: avoid receiving duplicate of e2

v4: require no additional effort

tuples sent to children:
v2: e

1, e2 v3: e
1, e2 v4: e

1

(b) new configuration C1
(v1)

(d) new configuration C3
(v1)

v2: avoid missing e3

v3: avoid receiving duplicate of e2

v4: avoid missing e2, e3

Figure 5.6: Adaptation of the local K-slack configuration for a branch operator.

In general, to support semantics-preserving adaptations of the local K-slack con-
figuration for a branch operator v, the system needs to determine, for each child vc
of v, whether the adaptation is semantically safe for vc, or additional effort is needed
to avoid the duplicate-release problem or the missing-release problem. Let Ka(vc) de-
note the accumulated buffer size between the branch operator v and a child vc of
v, i.e., Ka(vc) = ∑

p
l=1 K(Bl), where Bl represents the l-th buffer in the K-slack chain

placed right below v, and the K-slack chain has vc ∈ Otgt(Bp). The situation in which
each child vc of a branch operator v will be when adapting to a new local K-slack
configuration for v can be determined by comparing the accumulated buffer size
Ka(vc) between v and vc in the current configuration with that in the new configu-
ration, denoted by K′a(vc). Specifically, the adaptation is semantically safe for vc if
K′a(vc) == Ka(vc); the missing-release problem needs to be avoided if K′a(vc) < Ka(vc);
and the duplicate-release problem needs to be avoided if K′a(vc) > Ka(vc).

The Basic Method

The naive way to perform semantics-preserving adaptations for a branch operator
v is to build a new K-slack chain based on the new local K-slack configuration
determined for v, and then migrate tuples from the current K-slack chain to the new
K-slack chain. The tail buffer of the current K-slack chain can always be reused when
building the new K-slack chain, and only the tuples in the other buffers of the current
K-slack chain need to be migrated. This buffer-reuse strategy is referred to as naive
buffer-reuse hereafter. In the course of the tuple migration, the missing-release problem
can be handled naturally. To avoid the duplicate-release problem, the branch operator

105

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

v can remember the maximum timestamp among the tuples that have been released
to each child vc, denoted by T(vc). For example, in Figure 5.6a, T(v2) = T(v3) = 2
and T(v4) = 1. The branch operator can then avoid sending any tuple e that satisfies
e.ts ≤ T(vc) to its child vc again during the tuple migration.

After constructing a new K-slack chain in the way as described above, the du-
plicate-release problem may still occur during the future query processing and must
be prevented. However, this problem cannot be solved by comparing only the time-
stamp of a new output tuple of the branch operator v with T(vc). To show the reason
for this, let us consider again the configuration C(v1)

1 in Figure 5.6b. Assume that a
new tuple e′ is output by the branch operator v1, and the timestamp of e′ is 2. The
tuple e′2 would travel through the new K-slack chain and stop at the tail buffer in
the chain. Note that the tail buffer contains the output tuple e2 as well, which was
output by v1 earlier. Assume that now a tuple with a timestamp larger than 4 is
output by v1, then both the tuple e2 and the tuple e′2 will be emitted from the tail
buffer in the K-slack chain in Figure 5.6b. Although the timestamps of both tuples
are not larger than T(v3) = 2, the tuple e′2 is indeed not a duplicate and should be
forwarded to the child v3.

To be able to detect true duplicates in the future query processing, the branch
operator v1 is instrumented to maintain an adaptation counter, nac, whose value is
incremented each time the local K-slack configuration for v1 is updated. Each output
tuple of v1 is annotated with the present value of nac, and the timestamp-based
duplicate-check is applied only for a new tuple e that satisfies e.nac < v1.nac.

Migrating tuples from an old K-slack chain to a new one introduces additional
latency to query results. Hence, it may cancel off the intended benefit of applying
a new K-slack configuration Ci for a subplan Gi, if Ci is triggered by a reduction in
the optimal QDDH buffer size κ of a query contained in Gi. To avoid such profitless
adaptations of K-slack configurations, a model can be trained to estimate the latency
penalty of updating to a new configuration Ci. Let us denote this latency penalty by
LP(Ci). A simple method to train such a model is to assume a linear relation between
LP(Ci) and the total number of tuples that need to be migrated when adapting to
Ci. The new K-slack configuration Ci is applied only if LP(Ci) is smaller than the
latency reduction (i.e., buffer-size reduction) intended by Ci.

The Optimized Method

The basic method discussed above reuses only the tail buffer of an old K-slack chain
when updating to a new local K-slack configuration for a branch operator. However,
with a closer study, one can find that if the new local K-slack configuration for an
operator v satisfies the condition for smart buffer-reuse that is defined below, then the
full K-slack chain in the current local configuration can be reused, though appending
new buffers to the tail and updating the sizes and the output targets of the buffers
in the chain may be necessary. Reusing the full K-slack chain can help to reduce the
adaptation cost. This buffer-reuse strategy is referred to as smart buffer-reuse hereafter.
For ease of presentation, let idxB(vc) denote the index of the buffer in a K-slack chain,
whose output targets include the child vc of a branch operator v. For example, in
Figure 5.6a, idxB(v2) = idxB(v3) = 1 and idxB(v4) = 2. The prime symbol (′) is used
to indicate a value in the new local K-slack configuration.

106

5.6 Evaluation

Condition for smart buffer-reuse: When updating the current local K-slack configuration
for an operator v to a new configuration, the full K-slack chain in the current local K-
slack configuration can be reused if there exists no child vc of v, such that idx′B(vc) <
idxB(vc) and K′a(vc) > Ka(vc). Recall that Ka(vc) represents the accumulated K-slack
buffer size between the operator v and its child vc.

For the example in Figure 5.6, the configurations C(v1)
1 and C(v1)

2 both satisfy the
condition for smart buffer-reuse, whereas the configuration C(v1)

3 does not.
When using the smart buffer-reuse strategy, before updating the local K-slack

configuration for an operator v to a new one, it is first checked whether the new
configuration satisfies the condition for smart buffer-reuse. If it does, new buffers
are appended to the tail of the current K-slack chain if necessary, and the size and
the output targets of each buffer in the chain is updated according to the new
configuration. In addition, to handle the missing-release problem, for each child vc of
v, a copy of the tuples in the buffers indexed from idx′B(vc) + 1 to idxB(vc) are sent
to the child vc. The duplicate-release problem is handled in the same way as with the
naive buffer-reuse strategy.

5.6 Evaluation

Same as the two instantiations of the QDDH framework described in Chapter 4, the
instantiation for concurrent queries with shared operators proposed in this chapter
was implemented in the prototypical version of SAP ESP (cf. Section 4.3). The evalua-
tion of this proposed instantiation consists of two parts. The first part (Section 5.6.2)
focuses on comparing the performance of the following four algorithms for deter-
mining the K-slack configuration for a global query plan Gglob: (1) UNSHARED, which
does unshared disorder handling for all queries contained in Gglob, (2) GREEDY (cf.
Algorithm 5.2), (3) OPT (cf. Algorithm 5.3), and (4) NAIVE, which searches for the
optimal K-slack configuration for a subplan Gi in Gglob via exhaustive enumeration
of all possible candidate K-slack configurations. The second part (Section 5.6.3) fo-
cuses on studying the runtime overhead of the adaptation-triggering strategies and
the buffer-reuse strategies introduced in Section 5.5. Each experiment was run three
times and the average result is reported in this section.

5.6.1 Setup

The datasets used in this evaluation were created based on a data stream containing
23-minute soccer data collected from the RTLS introduced in Section 4.3.1. The three
global query plans in Figure 5.7 were used in this evaluation, which have increasing
number of candidate global K-slack configurations. To test with GQPlan1, each tuple
in the original stream was extended with one more attribute, whose value was picked
randomly and uniformly from the integer range [1, 100]. To test with GQPlan2 and
GQPlan3, the original stream was split into two streams, one for each team in the
soccer game. Each tuple was extended with two attributes, whose values were taken
randomly and uniformly from the integer range [1, 100] as well. For each designed
global query plan, Figure 5.7 shows the predicates of the filters in the global query
plan as well as the selectivity of each filter (i.e., the number within parentheses) The

107

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

GQPlan2

GQPlan3

3 sec.5 sec. 3 sec. 3 sec.

0.990.99 0.001 0.001

GQPlan1

3 sec. 5 sec. 1 sec.

0.005

window size:

result-quality
requirement (εthr or Γ) 0.01 0.01

v>10
(0.9)

v≤90
(0.9)

v>27
(0.7)

a≤60
(0.6)

a>20
(0.8)

a>80
(0.25)

a≤36
(0.21)

v≤50
(0.5)

a≤25
(0.42)

a>30
(0.5)

v1≤90
(0.9)

v1>50
(0.5)

v2>20
(0.8)

a1≤70
(0.7)

a2≤40
(0.4)

a1>30
(0.7)

a2>70
(0.3)

a2≤20
(0.2)

a1>80
(0.285)

a1>48
(0.32)

a1≤21
(0.3)

3 sec. 1 sec. 3 sec.

0.001 0.05 0.99

3 sec.

0.99

3 sec.

0.99

3 sec.

0.001

v>55
(0.5)

S1

A1 A2 A3

S2S1

F1 F2

F5 F6 F7 F8

A3 A4J1 J2

F3 F4

S1S2

F9 F10 F11F1 F3F2

F4 F5
F6 F7 F8

A1 A2 A3 J4 J5 J6

F2
F1

F3

Q1 Q2 Q3 Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4 Q5 Q6
window size:

result-quality
requirement (εthr or Γ)

Figure 5.7: Global query plans used to evaluate the instantiation of the QDDH frame-
work for concurrent queries with shared source and filter operators.

window size shown below each query in a global query plan is the size of the sliding
window applied over each input stream of the query. For example, for the 2-way join
query Q2 in GQPlan2, a sliding window of 3 seconds is applied to each input stream
of the operator J2.

The window slide for each SWA query was set to 0.1 second. Hence, the opti-
mal QDDH buffer size κ of each SWA query was recalculated every 0.1 second (cf.
Section 4.1.2). The Buffer Managers in Figure 5.2 for individual MSWJ queries were
instantiated with the default parameter configuration listed in Table 4.2. Hence, the
optimal QDDH buffer size κ of each MSWJ query was recalculated every 1 second (cf.
Section 4.2.2).

Figure 5.7 also shows the result-quality requirement for each query in the three
global query plans. The result-quality metrics for SWA queries and MSWJ queries,
i.e., the result relative-error threshold (εthr, δ) and the recall requirement Γ, are as
defined in Section 4.1.1 and Section 4.2.1, respectively. For SWA queries, only the
values of εthr are shown in the figure; the confidence level δ in each relative-error
threshold was set to 0.05. For each global query plan, the result-quality metrics for

108

5.6 Evaluation

Avg. end-to-end latency (sec.) Req. fulfillment ratio Φ (%)
No-K-slack Max-K-slack No-K-slack Max-K-slack

GQPlan1
Q1 0.22 17.26 55.9 99.98
Q2 0.23 17.28 87.75 100
Q3 0.22 17.26 53.5 99.93

GQPlan2

Q1 0.27 20.37 10.52 100
Q2 0.32 17.75 9.99 100
Q3 0.07 8.23 65.12 99.54
Q4 0.08 8.88 71 99.29

GQPlan3

Q1 0.06 16.18 60.46 99.3
Q2 0.06 6.38 61.37 99.61
Q3 0.04 16.16 94.44 99.93
Q4 0.09 18.27 6.42 100
Q5 0.08 20.87 6.95 100
Q6 0.13 18.26 7.31 100

Table 5.1: Results of the No-K-slack and the Max-K-slack baseline disorder handling
approaches for the global query plans in Figure 5.7.

the queries in the plan were chosen in such a way that the queries have different
optimal QDDH buffer sizes.

As described in Section 4.3.1, the performance of QDDH is measured in terms of
the average end-to-end latency and the requirement fulfillment ratio of each query
(i.e., Φ(εthr) for a SWA query and Φ(Γ) for an MSWJ query). Again, No-K-slack and
Max-K-slack (cf. Section 4.3.2) were taken as baseline disorder handling approaches.
The results of these two baseline approaches are shown in Table 5.1. However, differ-
ent from Chapter 4, this chapter focuses more on the task of determining the K-slack
configuration—based on the derived optimal QDDH buffer size κ of each query—to
conduct QDDH for a global query plan with shared source and filter operators effi-
ciently with respect to the time and the memory consumption, rather than on the
task of deriving the optimal QDDH buffer size κ for an individual query itself.

5.6.2 Performance of Alternative Algorithms for Computing K-slack Con-
figurations

In this experiment, the adaptation-triggering strategy was fixed to eager adaptation
and the buffer-reuse strategy was fixed to smart buffer-reuse.

Figure 5.8a shows the average time of computing a global K-slack configuration
for each global query plan in Figure 5.7, taking the runtime-derived optimal QDDH
buffer sizes of the queries contained in the global query plan as input. When doing
unshared QDDH, the placement of K-slack buffers within a global query plan does
not change at the query runtime; hence, Figure 5.8a does not contain the results
for the algorithm UNSHARED. One can see that (1) the additional computational
cost that the algorithm OPT has over the algorithm GREEDY is negligible, and the
computation times of both algorithms are significantly lower than the computation
time of the algorithm NAIVE, especially for global query plans with a large number

109

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

A
vg
.
m
em
or
y
co
st

(#
tu
p
le
s)

(b) Memory cost

0

400

800

1200

600

1400

1000

200

GQPlan1

OPT GREEDY NAIVE UNSHARED

10

1

(a) Configuration computation time

A
vg
.
co
n
fi
g
u
ra
ti
on

co
m
p
u
ta
ti
on
ti
m
e
(μ
s)

102

104

103

GQPlan2 GQPlan3 GQPlan1 GQPlan2 GQPlan3

Figure 5.8: The runtime of alternative algorithms for determining the global K-slack
configuration for the global query plans in Figure 5.7, and the memory costs of the
produced global K-slack configurations.

of candidate global K-slack configurations (e.g., GQPlan3); (2) the computation time
of each algorithm increases as the number of candidate global K-slack configurations
increases.

Figure 5.8b shows for each global query plan the average memory cost of disorder
handling over time, i.e., the time-average number of tuples kept by all K-slack buffers
placed in a global query plan. The three global query plans in Figure 5.7 were
designed in such a way that for GQPlan1 and GQPlan3, shared disorder handling
is memory-optimal, whereas for GQPlan2, unshared disorder handling is memory-
optimal. It can be seen that the algorithm OPT can always find the memory-optimal
global K-slack configuration, whereas the algorithm GREEDY cannot. For example,
for GQPlan3, the average memory cost of the configurations produced by GREEDY is
about 200 tuples higher than the average memory cost of the configurations produced
by OPT. Note that for GQPlan3, where the fan-out degree of a branch operator is at
most three, the memory cost of unshared disorder handling is already about twice as
high as the memory cost of optimal shared disorder handling. Hence, one can expect
that the memory-saving of shared disorder handling would be more significant if
the branch operators in the global query plan had a higher fan-out degree.

The average end-to-end latencies of the queries in each global query plan are
shown in Figure 5.9a. In theory, for a given global query plan, if the four configu-
ration-computation algorithms compute new K-slack configurations at exactly the
same points in the course of the query processing, and no new tuples arrive dur-
ing each configuration computation, then one can expect that, for each query in the
global query plan, all four algorithms produce the same average end-to-end latency.
However, in reality, the four algorithms have different runtime. Moreover, the pro-
totypical DSPS used in this dissertation adopts a multi-thread implementation, and
the configuration computation within one thread does not block the other threads
that run query operators. As a result, the four algorithms are rarely triggered at the
same points with respect to the query-processing progress, even though the applied
adaptation-triggering strategy was the same. Each K-slack configuration applied at
one point in time influences the subsequent behavior of the QDDH. Hence, different
average end-to-end latencies were observed for the same query. However, for each
query, the average latency produced by the algorithm OPT is at most 0.35 second

110

5.6 Evaluation

Q1 Q2 Q3
0.0

0.5

1.0

1.5

2.0

2.5

GQPlan1

(a) Average end-to-end latency produced under QDDH for each query

0

20

40

60

80

100

(b) Result quality in terms of the requirement fufillment ratio Φ produced under QDDH for each query

R
eq
u
ir
em
en
t
fu
lf
ill
m
en
t

ra
ti
o
Φ
(m
)

OPT GREEDY NAIVE UNSHARED

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

0.0

0.5

1.0

1.5

2.0

2.5

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

GQPlan2

0.0

0.5

1.0

1.5

2.0

2.5

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

GQPlan3

0

20

40

60

80

100

R
eq
u
ir
em
en
t
fu
lf
ill
m
en
t

ra
ti
o
Φ
(m
)

GQPlan1 GQPlan2

0

20

40

60

80

100

R
eq
u
ir
em
en
t
fu
lf
ill
m
en
t

ra
ti
o
Φ
(m
)

GQPlan3

Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4 Q5 Q6

Q1 Q2 Q3 Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4 Q5 Q6

Figure 5.9: QDDH performance of the global K-slack configurations produced by
alternative configuration-computation algorithms for the global query plans in Fig-
ure 5.7.

111

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

3000

2500

2000

1500

1000

500

0
unshared lazy 0.5-lazyeager

GQPlan1

S
u
m
m
ed
ad
ap
ta
ti
on

ti
m
e
(m
s)

0

40

80

120

60

140

100

20

GQPlan2

S
u
m
m
ed
ad
ap
ta
ti
on

ti
m
e
(m
s)

unshared lazy 0.5-lazyeager

GQPlan3

unshared lazy 0.5-lazyeager

3000

2500

2000

1500

1000

500

0

S
u
m
m
ed
ad
ap
ta
ti
on

ti
m
e
(m
s)

smart buffer-reuse naive buffer-reuse

Figure 5.10: Total time consumed by updating to newly-computed global K-slack
configurations during the query processing under different combinations of adapta-
tion-triggering strategies and buffer-reuse strategies.

higher than the average latency produced by the algorithm UNSHARED (e.g., for Q6
in GQPlan3).

Figure 5.9b shows the query-result quality in terms of the requirement fulfillment
ratio Φ (cf. Section 4.3.1) achieved for each query. For a specific query, all four con-
figuration-computation algorithms produced similar result qualities. The achieved
requirement fulfillment ratio Φ was at least 80% for SWA queries, and was at least
90% for MSWJ queries. Looking at Figure 5.9 and Table 5.1 together, it can be seen
that the proposed QDDH approach achieved a high requirement fulfillment ratio
Φ compared with the No-K-slack baseline approach, while incurring a much lower
end-to-end latency compared with the Max-K-slack baseline approach, which again
shows the effectiveness of QDDH.

5.6.3 Overhead of Runtime Adaptation

This experiment focused on comparing unshared disorder handling with shared dis-
order handling with respect to the time needed to update an existing global K-slack
configuration to a new one at the query runtime (excluding the configuration-com-
putation time), as well as comparing the three adaptation-triggering strategies—eager
adaptation, lazy adaptation, and λ-lazy adaptation—and the two buffer-reuse strategies—
naive buffer-reuse and smart buffer-reuse—that were introduced in Section 5.5. The
algorithm OPT was used to compute global K-slack configurations for shared disor-

112

5.6 Evaluation

GQPlan1 GQPlan2 GQPlan3
smart
reuse

naive
reuse

smart
reuse

naive
reuse

smart
reuse

naive
reuse

UNSHARED 0.74 0.79 0.73
eager adaptation 60 400 36 37 179 657
lazy adaptation 64 132 39 41 295 992

0.5-lazy adaptation 63 155 33 34 171 473

Table 5.2: Average time (µs) needed to update an existing global K-slack configuration
to a newly-computed global K-slack configuration during the query processing under
different combinations of adaptation-triggering strategies and buffer-reuse strategies.

der handling, and the value of λ in the λ-lazy adaptation-triggering strategy was set
to 0.5.

Figure 5.10 shows the total time consumed by adapting to new K-slack configura-
tions during the processing of a global query plan, and Table 5.2 shows the average
time of a single adaptation. One can see that, for each global query plan, unshared
disorder handling has much lower adaptation overhead than shared disorder han-
dling. Moreover, because the naive buffer-reuse strategy behaves differently from the
smart buffer-reuse strategy only for K-slack chains of length at least two, and with
unshared disorder handling, no such K-slack chains are used, the adaptation times
under both buffer-reuse strategies—both the summed adaptation time and the av-
erage adaptation time—are the same for unshared disorder handling under each
adaptation-triggering strategy. With shared disorder handling, the summed adap-
tation times of the three adaptation-triggering strategies have the relation of lazy
adaptation < 0.5-lazy adaptation < eager adaptation for each buffer-reuse strategy; and
the summed adaptation time of the naive buffer-reuse strategy is higher than that of
smart buffer-reuse strategy for each adaptation-triggering strategy, especially for the
global query plans for which shared disorder handling is preferred by the algorithm
OPT, i.e., GQPlan1 and GQPlan3 (cf. Figure 5.8b). The superiority of smart buffer-reuse
can be observed from the average time of a single adaptation as well. In general,
with the algorithm OPT and the smart buffer-reuse strategy, computing a new global
K-slack configuration (cf. Figure 5.8a) and adapting to the newly-computed config-
uration can be done within 1 millisecond on average for each global query plan in
Figure 5.7.

Figure 5.11a and Figure 5.11b show the average end-to-end latency and the result
quality produced for each query, respectively. From Figure 5.11b, one can see that
naive buffer-reuse in general leads to a higher end-to-end latency than smart buffer-reuse
under any adaptation-triggering strategy. However, there is no strong correlation
between the applied adaptation-triggering strategy and the produced end-to-end
latency; because, as shown previously, the adaptation overhead was very small even
when the eager adaptation strategy was used. All adaptation-triggering strategies and
buffer-reuse strategies produced similar requirement fulfillment ratios for a specific
query.

113

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

UNSHARED

eager adaptation, smart buffer-reuse eager adaptation, naive buffer-reuse
lazy adaptation, smart buffer-reuse lazy adaptation, naive buffer-reuse
0.5-lazy adaptation, smart buffer-reuse 0.5-lazy adaptation, naive buffer-reuse

(b) Result quality in terms of the requirement fufillment ratio Φ produced under QDDH for each query

0.0

0.5

1.0

1.5

2.0

2.5

GQPlan1

(a) Average end-to-end latency produced under QDDH for each query

0

20

40

60

80

100

R
eq
u
ir
em
en
t
fu
lf
ill
m
en
t

ra
ti
o
Φ
(8
)

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

GQPlan2

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

GQPlan3

0

20

40

60

80

100

R
eq
u
ir
em
en
t
fu
lf
ill
m
en
t

ra
ti
o
Φ
(8
)

GQPlan1 GQPlan2

0

20

40

60

80

100

R
eq
u
ir
em
en
t
fu
lf
ill
m
en
t

ra
ti
o
Φ
(8
)

GQPlan3

3.0

0.0

0.5

1.0

1.5

2.0

2.5

A
vg
.
en
d
-t
o-
en
d
la
te
n
cy

(s
ec
.)

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q1 Q2 Q3 Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4 Q5 Q6

Q1 Q2 Q3 Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4 Q5 Q6

Figure 5.11: Performance of the instantiation of the QDDH framework for concurrent
queries with shared operators, under different combinations of adaptation-triggering
strategies and buffer-reuse strategies.

114

5.7 Related Work

Summary of the Experimental Results In summary, the experimental results pre-
sented in this section show that, using the algorithm OPT to compute global K-slack
configurations for a given global query plan Gglob, and the smart buffer-reuse strat-
egy to perform adaptations of the global K-slack configuration at the query runtime,
the proposed instantiation of the QDDH framework for concurrent SWA and MSWJ
queries with shared source and filter operators can conduct QDDH for Gglob efficiently
with respect to both the runtime and the memory consumption, even when the eager
adaptation strategy is used.

5.7 Related Work

In addition to handling the disorder within data streams, which was discussed in
Section 3.5, the work presented in this chapter is also related to multi-query opti-
mization (MQO). Generally speaking, MQO refers to the techniques that optimize the
execution of multiple concurrent queries within a system to reduce the total execu-
tion cost, thereby improving the system performance. MQO has been studied exten-
sively for database systems since the 1980s [Fin82; Sel88; Roy+00; Zho+07; GAK12;
Gia+14], and has been applied in many DSPSs as well, e.g., NiagaraCQ [Che+00]
and CACQ [Mad+02]. Particularly, Krishnamurthy et al. [KWF06] proposed meth-
ods for efficiently sharing aggregates with different window specifications on the
fly. Based on that work, Guirguis et al. [Gui+11] proposed a cost-based optimizer—
weave share, which exploits the weaveability to balance the cost reduced by sharing
partial aggregates and the cost incurred at the final aggregation. Later on, Shein et
al. [SCL15] introduced methods for calculating the weaveability efficiently. Wang
et al. [Wan+06] proposed to share the computation across multiple window-based
join queries by slicing a window-based join into a chain of pipelining sliced joins.
Hong et al. [Hon+09] proposed a rule-based MQO framework for DSPSs—RUMOR,
which can integrate new and existing MQO techniques using transformation rules.
Seshadri et al. [Ses+09] studied MQO for distributed DSPSs. They proposed to con-
sider the query plan and the deployment of query operators simultaneously, and
developed top-down, bottom-up, and hybrid algorithms that exploit operator-level
reuse through hierarchical network partitions.

MQO has been studied for MapReduce systems as well. For example, Wang et
al. proposed the MRShare framework [Nyk+10], which finds the optimal way of
merging MapReduce jobs into groups, and evaluates each group as a single query
to improve the execution efficiency. Lei et al. proposed Helix [Lei+15], a MapRe-
duce-based system for shared execution of recurring workloads under user-specified
service level agreements (SLAs). Helix employs a SLA-driven optimizer to generate
an execution plan for a given set of recurring queries, with the goal of maximizing
the overall SLA satisfaction.

The work presented in this chapter is similar to MQO in the sense that it aims
to exploit the opportunities of work-sharing as well. However, in contrast to MQO,
which focuses on the sharing of query operators, the work in this chapter focuses on
the sharing of disorder handling, and is applied on top of MQO.

115

Chapter 5 Quality-Driven Disorder Handling for Concurrent Queries with Shared
Operators

5.8 Summary

Based on the instantiations of the generic QDDH framework for individual SWA and
MSWJ queries that were described in Chapter 4, this chapter presented the instantia-
tion of the QDDH framework for concurrent queries with shared operators, such as
source and filter operators. The concept of K-slack chain was proposed for sharing the
disorder handling of a stream among multiple consumer operators whose containing
queries have different user-specified result-quality requirements. Based on the usage
of K-slack chains, two algorithms—GREEDY and OPT—were proposed to determine
the configuration of K-slack buffers within a global query plan to achieve the objec-
tive of quality-driven latency minimization. Particularly, the algorithm OPT can find
the memory-optimal K-slack configuration for a given global query plan. To perform
time-efficient and semantics-preserving adaptation of the applied K-slack configura-
tion at the query runtime, a smart buffer-reuse strategy was proposed, which aims
to reuse buffers in an old K-slack configuration as much as possible when updating
the old K-slack configuration to a new one. The experimental results showed the
effectiveness of the proposed instantiation of the QDDH framework.

The work presented in this chapter is a first step towards supporting QDDH for
concurrent queries. Plenty of opportunities remain to be explored. An interesting
direction would be to jointly consider QDDH and the sharing of window-based
aggregate or join operators; because, as discussed in Section 5.1, the sharing decisions
produced by existing solutions like [KWF06] and [Wan+06] may violate the objective
of QDDH.

116

6
Reducing the Tradeoff via Hybrid
Query Execution

Chapter 3–Chapter 5 presented the contribution of this dissertation in the area of
providing flexible and user-configurable tradeoff between the performance and the
query-result quality when dealing with stream disorder—a representative case of
data imperfection in data streams. Recall from Section 1.1 and Section 2.3 that the
tradeoff between the performance and the query-result quality can also be caused
by the limitations of a DSPS itself. Specifically, when a DSPS has limited processing
capacity, it must trade the query-result quality for the performance to avoid sys-
tem overload. Enhancing the DSPS itself can help reducing, and even avoiding, this
tradeoff.

In this chapter, the second research question of this dissertation—“how to enhance
a DSPS to avoid, or reduce to some extent, the performance versus query-result quality
tradeoffs caused by system limitations”—will be studied. The main contributions that
this dissertation made in answering this research question include a prototypical,
hybrid system which exploits the potential of combining the row-oriented and the
column-oriented data layout and processing techniques in data stream processing, as
well as the design and implementation of a static cost-based optimizer for optimizing
continuous queries executed in such a hybrid system.

After motivating the proposal of such a hybrid system for processing data streams
in Section 6.1, Section 6.2 gives an overview of continuous-query execution in the
proposed prototype system. Subsequently, Section 6.3 describes the proposed query
optimizer in detail. Section 6.4 experimentally studies the effectiveness of the pro-
posed optimizer and Section 6.5 discusses related work.

6.1 Introduction

The majority of existing DSPSs are row oriented, and are able to evaluate window-
based operators efficiently when the number of tuples contained in each instanta-
neous window is small, even with naive operator implementations. Naive implemen-
tation means that each result of an operator is computed by scanning the content
of the corresponding instantaneous window as many times as necessary. For in-
stantaneous windows with a huge amount of tuples (e.g., several million tuples),

117

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

low-latency results can still be guaranteed, by using smart operator implementations.
The key ideas behind these smart implementations include calculating query results
in a single-pass and incremental way [GKS01; Dob+02; Gha+07; Bha+14; Tan+15],
using online-maintained synopsis (e.g., histograms and wavelets) [Cor+12], and uti-
lizing a divide-and-conquer approach [Li+05a] (cf. Section 2.3).

However, many stream-based applications also require processing complex ag-
gregate queries [Dob+02], for which these advanced operator-implementation tech-
niques are either not applicable or only able to provide approximate query results.
Examples of complex aggregates include quantile and order-statistic computation,
correlated aggregate, etc. The key characteristic of complex aggregate queries is that,
each query result cannot be computed easily in an incremental way, and usually
a full scan of the corresponding instantaneous window is needed. For correlated
aggregates, an instantaneous window even needs to be scanned multiple times to
compute the exact result for the window. When exact query results are required
by an application (e.g., decision support), usually the only operator-implementation
option is the naive or near-naive implementation, which typically has a high space
and computation cost for large windows. The consequence is a significant increase
of the end-to-end latency.

While existing row-oriented DSPSs show limitations in computing exact answers
for complex aggregates with large windows, recent studies in the database commu-
nity have shown that modern database systems are able to process very large datasets
with second or even sub-second level latency, by leveraging vertical storage architec-
ture, vectorized query execution, in-memory technology and so on [BKM08; Sik+13].
To demonstrate this, a correlated aggregate query was executed in a state-of-the-
art commercial column-oriented in-memory database (CIMDB) and a row-oriented
DSPS, and the per-result computation times of this query in these two systems were
compared, under increasing per-instantaneous-window tuple-sizes. The query is in
the context of stock-market analysis. It calculates the number of companies (comp)
in each business area (bs_area), e.g., retail, banking, insurance, etc., whose market
capitalization (mk_cap) is greater than 50% of the maximum market capitalization in
that area in the past W time units. This scenario can be expressed with relational
algebra as follows:

Comp, bs_area, mk_cap, timestamp: R(c, b, m, ts)
Data within (T-W, T]: S(c, b, m) = πc,b,mσts>T−W∧ts≤T(R)
Max. mk_cap in each bs_area: M(b, mb) = πb,bGmax(m)(S)
Join between S and M: J(c, b, m, mb) = S onS.b=M.b M
Final result: C(b, cb) = πb,bGcount(c)(σm>0.5·mb(J))

T represents the current time.

The results are shown in Figure 6.1. It can be observed that when the per-result
computation time in the DSPS jumped to more than 3.5 seconds for instantaneous
windows with 5 million tuples, the CIMDB was able to finish the same computation
within 600 milliseconds.

The above results show the potential of column-oriented data layout and process-
ing techniques in processing data streams. However, column-oriented processing is
still inferior to row-oriented processing in scenarios where the computation cost of
the operators in a query is rather low whereas the tuple-construction operation is

118

6.1 Introduction

0

0.5

1

1.5

2

2.5

3

3.5

4

10K 50K 100K 500K 1M 5M 10M

pe
r-

re
su

lt
 e

va
lu

at
io

n
ti

m
e

(s
)

window size (# tuples) in logarithmic scale

SPE
Column-oriented DB

Pe
r-

re
su

lt
 c

o
m

p
u
ta

ti
o
n
 t

im
e

(s
e
c.

)

number of tuples per instantaneous window

DSPS
CIMDB

Figure 6.1: Comparison of the computation time of correlated aggregation in state-
of-the-art column-oriented in-memory database and row-oriented DSPS

dominant. Motivated by the above observations and following the philosophy of “no
one size fits all” [LHB13], this dissertation proposes to combine both the row-ori-
ented and the column-oriented data processing techniques to process continuous
queries, aiming to achieve a performance that cannot be matched by either type of
processing technique alone. As a proof of concept, a prototype system was built,
which consists of a row-oriented DSPS and a CIMDB. Certain fragments of a continu-
ous query are outsourced from the DSPS to the CIMDB, if the outsourcing can lead
to higher performance.

One major challenge for such hybrid systems is to find the optimal execution plan
for a given continuous query. Existing systems that combine database systems and
DSPSs either do not have an optimizer for hybrid query execution at all [Bot+10a],
or choose the most suitable system for an entire query [LHB13]. Moreover, none of
them has considered the feasibility property of execution plans of continuous queries,
which describes the capability of an execution plan to keep up with the incoming
tuple arrival rate [AN04]. Finally, the heterogeneity between the underlying row-
oriented processing engine and the column-oriented processing engine causes the
non-additivity of the query execution cost [DH02]. Specifically, in our prototype sys-
tem, the non-additive execution cost means that the cost of executing two consecutive
operators in the CIMDB is not necessarily higher than the cost of executing only the
first operator in the CIMDB and executing the second operator in the DSPS. This
non-additivity of the query-execution cost makes it difficult for a query optimizer
to make pruning decisions when enumerating the possible execution plans. Existing
solutions used in traditional database systems for handling the cost non-additivity
must be extended to consider the feasibility property of execution plans of continu-
ous queries.

To address the above challenge, in this dissertation, a static cost-based optimizer
is proposed for optimizing SPJA (select-project-join-aggregate) continuous queries
in hybrid systems as proposed in this dissertation. The optimizer fully exploits the
potential of hybrid execution of continuous queries across a row-oriented and a col-

119

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

umn-oriented data processing engine. For a given continuous query, the optimizer
takes into account the feasibility of query execution plans and the non-additivity
of the query-execution cost caused by combining two types of data processing en-
gines, and determines the optimal placement for each operator in the query based on
the characteristics of the query and the input streams. To reduce the search space of
possible query execution plans, the proposed optimizer adopts a two-phase optimiza-
tion strategy [HS91], which has been used widely in existing federated or parallel
database systems, as well as systems with heterogeneous multicore architectures
(e.g., [He+09]). In Phase-One of the optimization, an optimal logical query plan is
produced; in Phase-Two, placement decisions for all operators in the chosen logical
query plan are made. In addition, based on the study of the cost characteristics of the
operators placed on the two different data processing engines, the optimizer exploits
the opportunities of pruning plans in Phase-Two, to further reduce the search space.
The proposed optimization approach was implemented by extending the optimizer
of the CIMDB in the prototype system directly.

Note that as pointed by Ayad and Naughton [AN04], static query optimization
is a valid approach when the characteristics of the input streams change slowly or
the pattern of the changes is predictable, which is often observed in data streams
originating from sensors with fixed reporting frequencies. Before moving on to a
dynamic optimization solution, it must first be understood what can be achieved by
doing static optimization for continuous queries in a hybrid system as proposed in
this chapter.

6.2 Hybrid Execution of a Continuous Query

This section gives an overview of the execution of continuous queries in the proposed
hybrid system.

The semantics model of data stream processing adopted in this dissertation (cf.
Section 2.1) allows a natural semantic mapping between continuous queries and
conventional SQL queries, because time-varying relations and R2R operators have
straightforward semantic mappings to conventional relations and query operators
in database systems, respectively. Without loss of generality, in this chapter, it is
assumed that each R2R operator has at most two input relations; and an m-way join
with m ≥ 3 input relations is treated as a sequence of 2-way joins.

Determined by the above semantic mapping between continuous queries and SQL
queries, given a logical plan G of a continuous query, the fragments of G that can
potentially be migrated from the row-oriented DSPS to the CIMDB are subplans of
G that contain only R2R operators (cf. Section 2.1.2). Such a subplan of G is referred
to as a migration candidate. A composition of several R2R operators produces one
relation from one or more relations. Hence, based on the definition of R2R operators
in Section 2.1.2, this composition of R2R operators can be regarded as one R2R
operator as well. Namely, each migration candidate can be regarded as a composite
R2R operator. A migration candidate can be translated into a SQL query and executed
in the CIMDB. Particularly, the base relations involved in this translated SQL query
map to the input relations of the migration candidate; and the result of the SQL
query maps to the output relation of the migration candidate.

120

6.2 Hybrid Execution of a Continuous Query

DSPS CIMDB

MIG

data data accessforward data

coordinate query
execution

SQL query
results

SQL query

in
p
u
t
st
re
am
s

...

Figure 6.2: Execution of continuous queries in a hybrid system that consists of a
row-oriented DSPS and a column-oriented in-memory database (CIMDB).

Figure 6.2 depicts how a continuous query is executed across the DSPS and the
CIMDB in the proposed prototype system. The DSPS has several built-in adapters to
connect with external data sources, and hence is taken as the gateway of external data
streams. The query execution in such a hybrid system involves data transfer between
the DSPS and the CIMDB. Specifically, for each migration candidate executed in the
CIMDB, relevant input data needs to be transferred from the DSPS to the CIMDB; and
results produced by the CIMDB need to be transferred back to the DSPS.

To retain the original query-processing semantics, the SQL query corresponding
to a migration candidate must be re-executed in response to changes in the input
relations of the migration candidate. To coordinate the data transfer between the
two processing engines and the re-execution of the corresponding SQL query, a new
operator MIG was introduced into the DSPS. A MIG operator acts as a wrapper of
a migration candidate executed in the CIMDB. It controls the data transfer between
the two engines and hides the execution details within the CIMDB from the DSPS.
In a parallel processing environment (e.g., a multi-core machine or a distributed
deployment of the DSPS), MIG operators run in parallel with the other query opera-
tors placed in the DSPS. However, from the perspective of the DSPS, each migration
candidate wrapped by a MIG operator is a black box, and the original pipelined
relationships (cf. Section 2.1.3) among the operators within the migration candidate
is no longer visible.

Given a logical query plan G = (V , ED) of a continuous query, let P(G) =
(V ′, ED′,M) denote an execution plan of G. Let vx

i ∈ V ′ represents a physical
operator in the execution plan, where x ∈ {dsps, db}. Specifically, vdsps

i represents a
basic query operator (e.g., selection, join, etc.) placed in the DSPS, and vdb

i represents
a migration candidate placed in the CIMDB. For ease of reference, in the remainder
of this chapter, a basic query operator placed in the DSPS is referred to as a DSPS-op
and a composite R2R operator that is represented by a migration candidate placed
in the CIMDB is referred to as a DB-op. In addition, ed′ij ∈ ED′ represents the data
flow from the operator vx

i to the operator vy
j , x, y ∈ {dsps, db}. Finally,M defines a

mapping from physical query operators V ′ to logical query operators V . For each
physical query operator vx ∈ V ′,M(vx) defines the subset of logical query operators
in V that the physical query operator vx maps to. Specifically,M(vdsps) is a set which
contains only one logical query operator; andM(vdb) is a set which contains one or
more logical query operators.

121

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

6.3 Query Optimization

This section describes the static cost-based query optimizer proposed in this dis-
sertation to determine the query execution plan for a given continuous query for
hybrid query execution as shown in Figure 6.2. Specifically, Section 6.3.1 defines the
query optimization objective in such hybrid systems. Section 6.3.2 drills down to
the cost model adopted by the proposed query optimizer. Section 6.3.3 describes
the two-phase optimization approach applied by the optimizer, and Section 6.3.4
presents the pruning strategy applied in Phase-Two of the optimization approach.

6.3.1 The Optimization Objective

In addition to the end-to-end latency, a common performance metric for a continuous
query executed over data streams is the output rate of the query [GÖ03a]. Therefore,
maximizing the query output rate is a widely adopted objective in continuous-query
optimization [AN04; VN02]. Maximizing the output rate of a query is equivalent to
maximizing the rate of consuming the input data of the query, i.e., the throughput
of the query. Intuitively, a query execution plan reaches its maximum throughput
when it keeps up with the incoming tuple arrival rate. This capability of keeping up
with the tuple arrival rate is defined as the feasibility of the execution plan [AN04].
A continuous query is called a feasible query if it has at least one feasible execution
plan.

The optimization objective on the query throughput suggests that a query op-
timizer should favor feasible execution plans over infeasible execution plans for
feasible queries, and should pick the execution plan that can maximize the query
throughput for infeasible queries. However, what if a query has multiple feasible
execution plans? Ayad and Naughton [AN04] have shown that given enough com-
putation resources, all feasible execution plans of a continuous query have the same
throughput. To further determine the optimality of all the feasible execution plans
of a query, a different optimization objective is applied—that is, minimizing the total
resource utilization of the query. The motivation behind this optimization objective
is the following: intuitively, the fewer resources each query consumes, the more num-
ber of queries that a system can execute concurrently. In summary, the optimization
objective of the optimizer in the proposed hybrid system is defined as follows:

• For a feasible continuous query, find the feasible execution plan that has the
least resource utilization.

• For an infeasible continuous query, find the execution plan that has the maxi-
mum query throughput.

Generally speaking, given two execution plans of a continuous query, the possible
situations that the query optimizer may face, as well as the respective, appropriate
optimization decisions, are the following:

• Situation 1: One execution plan is feasible and the other is infeasible.→ Choose
the feasible execution plan.

• Situation 2: Both execution plans are feasible. → Choose the plan that has a
lower resource utilization.

122

6.3 Query Optimization

• Situation 3: Both execution plans are infeasible.→ Choose the plan that has a
higher query throughput.

Discussion Ayad and Naughton [AN04] adjusted the above optimization objective
to incorporate the influence of load shedding (cf. Section 2.3.2 and Section 3.5).
In their work, load shedding operators were inserted into execution plans of an
infeasible query, thereby transforming all infeasible execution plans into feasible
plans. The work presented in this chapter focuses on discussing the optimization of
continuous queries in a hybrid system and does not consider applying load shedding
for infeasible queries.

6.3.2 The Cost Model

To achieve the optimization objective defined in Section 6.3.1, a cost-based optimizer
is proposed. Without loss of generality, let us consider continuous queries whose
logical plans have window operators immediately follow source operators, and have
sink operators immediately follow R2S operators. A query that has window or R2S
operators appear as internal nodes in the logical query plan can always be split
into a set of sub-queries, with the logical plan of each sub-query satisfying the
above constraint. In addition, it is assumed that the system is deployed in a highly
parallel environment with abundant memory. Hence, the query operators can be
fully pipelined and do not time-share CPU resources.

The tuple arrival rate ri of an input stream Si involved in a query execution plan
P defines how many tuples from the stream Si should be processed by P within a
unit of time. In the following, the tuples arrived from all input streams involved in
an execution plan within a unit of time are referred to as the unit-time source arrivals,
denoted by λin. Furthermore, the amount of tuples that an operator produces as a
result of the unit-time source arrivals is referred to as the source-driven output-size
of the operator, denoted by λout. Note that (1) the source-driven output-size of an
operator is the amount of tuples produced by the operator as a result of the unit-time
source-arrivals, rather than the amount of tuples generated by the operator within a
unit of time, which is also known as the output rate; (2) the source-driven output-size
of an operator vi is equal to the source-driven input-size of its direct downstream
operator vj, and is used to estimate the source-driven output-size of the operator vj.

Given the tuple arrival rates of all input streams involved in a continuous query,
the source-driven output-size λout of each operator in the query can be estimated in a
cascaded way, starting from the source operators. To estimate λout of window-based
selection, projection, and join, the proposed optimizer adapts the method proposed
in [AN04] based on the query semantics model defined in cf. Section 2.1. Specifically,
for a selection or a projection with a selectivity of f 1, the source-driven output-size
is estimated as

λout = f · λin. (6.1)

For a join operator, let |wL| denote the cardinality of the operator’s left input in-
stantaneous window wL (i.e., the number of tuples contained in wL), |wR| denote the
cardinality of the operator’s right input instantaneous window wR, and fL, fR denote
the selectivities relative to wL and wR, respectively. The source-driven output-size of

1The selectivity of a projection operator is 1.

123

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

this join operator can be estimated by Eq. (6.2). The cardinality of an instantaneous
window can be estimated in a cascaded way as described in [AN04].

λout = λin
L · fR · |wR|+ λin

R · fL · |wL| (6.2)

Recall that a window-based aggregate operator produces results at each slide of
the window (cf. Section 2.1). For a time-based sliding window, if the slide size is
β time units, then the average sliding frequency within a unit of time, denoted by
nslide, is 1

β . For a count-based sliding window whose slide size is β tuples, the sliding
frequency depends also on the tuple arrival rate r of the input stream, and can be
estimated as nslide = r

β . The aggregate operator may have an associated grouping
predicate. Suppose that the average number of result groups is ngroup. The source-
driven output-size of an aggregate operator can then be estimated as

λout = nslide · ngroup (6.3)

Cost of an Individual Operator

Based on the above estimation of the source-driven input/output-sizes of operators,
the cost of a physical operator in an execution plan can be estimated. Each tuple
arriving at a physical operator requires a certain amount of processing effort from
the operator. The average time that an operator vx

j requires to process a single tuple
from a direct upstream operator vx

i is referred to as the unit processing cost of vx
j

for vx
i , denoted by cji, or simply cj if the operator vx

j has only one direct upstream
operator. For an operator vx

j with l direct upstream operators, the total cost of vx
j

caused by unit-time source-arrivals is referred to as the source-driven input processing
cost, denoted by ux

j . In general, ux
j is estimated as

ux
j =

l

∑
i=1

λin
i · cji, (6.4)

where l represents the number of direct upstream operators of the operator vx
j .

To keep up with the tuple arrival rates of all input streams, the time needed to
process a single tuple by each physical operator in an operator pipeline must be
shorter than the average tuple arrival interval at the operator. In other words, the
constraint ∑l

i=1 λin
i · cji ≤ 1, namely ux

j ≤ 1, must be satisfied [AN04; VN02]. An
operator that cannot meet this constraint is referred to as a bottleneck of the operator
pipeline.

Cost of a DSPS-op The cost-estimation method described above can be used di-
rectly to estimate the costs of DSPS-ops (cf. Section 6.2) in an execution plan. The
unit processing cost c of a specific DSPS-op depends on the type and the physical
implementation of the operator. In our prototype system, the unit processing cost
c of a selection operator and a projection operator is modeled as a constant. The
reason is that for these two types of operators, processing a tuple only needs to
inspect the tuple itself. For a join operator, the unit processing cost c is modeled
as a function of the cardinality of the instantaneous windows over which the join
operation is performed. Here, the model proposed in [KNV03] is adopted. For an

124

6.3 Query Optimization

aggregate operator, the unit processing cost c is either a constant if the aggregate
can be computed incrementally (e.g., COUNT, SUM, and AVG), or a function of the
cardinality of the input instantaneous window if the aggregate cannot be evaluated
incrementally (e.g. MEDIAN).

Cost of a DB-op In contrast to a DSPS-op, which maps to a single logical query
operator, a DB-op maps to one or more logical query operators and is evaluated as a
single SQL query in the CIMDB (cf. Figure 6.2). Hence, the unit processing cost c of
a DB-op is practically the execution cost of the corresponding SQL query. Moreover,
each time when a DB-op is executed, relevant input data needs to be transferred from
the DSPS to the CIMDB, and the results of the SQL query need to be transferred back
from the CIMDB to the DSPS. The costs of these inter-engine data transfers must be
taken into account as well. In summary, the unit processing cost of a DB-op consists
of three parts: the cost of transferring the relevant input data from the DSPS to the
CIMDB, the cost of evaluating the corresponding SQL query in the CIMDB, and the
cost of transferring the results of the SQL query back to the DSPS. In the prototype
system built in this dissertation, the built-in cost model of the CIMDB was extended
and tuned to estimate the cost of a DB-op.

Note that although the CIMDB may exploit multiple types of parallelization op-
portunities (e.g., pipelined parallelism and partition parallelism [Gra93]) to evaluate
the SQL queries corresponding to the DB-ops, it is assumed that the performance im-
pact caused by parallelization is already considered by the cost model of the CIMDB.
How to build an accurate cost model for a parallel database is beyond the scope of
this dissertation.

Cost of an Execution Plan

The cost of a complete query execution plan can be estimated based on the costs
of individual physical query operators as estimated above. Corresponding to the
optimization objectives defined in Section 6.3.1, the cost of an execution plan P with
|V ′| operators, denoted by C(P), is defined as a two dimensional vector consisting
of two cost metrics: the bottleneck cost Cb(P) and the total utilization cost Cu(P);
namely, C(P) = 〈Cb(P), Cu(P)〉. Cb(P) and Cu(P) are computed using Eq. (6.5)
and Eq. (6.6), respectively.

Cb(P) = max{ux
j : j ∈ [1, |V ′|]}, x ∈ {dspe, db}. (6.5)

Cu(P) =
|V ′|

∑
j=1

ux
j , , x ∈ {dspe, db} (6.6)

Here, “bottleneck” refers to the operator in an execution plan that has the highest
source-driven input processing cost. The bottleneck cost Cb(P) is used to check the
feasibility of an execution plan. Moreover, for infeasible execution plans of a query, a
higher bottleneck cost implies that the execution plan can handle fewer input tuples
per unit of time. Therefore, the bottleneck cost is also used as an indicator of the
throughput of an infeasible execution plan. The total utilization cost Cu(P) estimates
the total amount of resources required by an execution plan to process unit-time
source arrivals.

125

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

Based on the above cost model for a query execution plan, the optimal execution
plan of a given continuous query is defined as follows:

Definition 6.1 (Optimal Query Execution Plan). For a continuous query Q, an execution
plan P is an optimal execution plan of Q, if and only if for any other execution plan P ′ of
the query Q, one of the following conditions is satisfied:

• Condition 1◦: Cb(P) ≤ 1 < Cb(P ′)

• Condition 2◦: Cb(P) ≤ 1, Cb(P ′) ≤ 1, and Cu(P) ≤ Cu(P ′)

• Condition 3◦: 1 < Cb(P) ≤ Cb(P ′)

Each condition in Definition 6.1 is applied in a specific situation described in
Section 6.3.1. Specifically, Condition 1◦ is applied when the plan P is feasible and
the plan P ′ is infeasible; Condition 2◦ is applied when both P and P ′ are feasible;
and Condition 3◦ is applied when both P and P ′ are infeasible.

6.3.3 Two-Phase Optimization

In principle, a R2R operator of a continuous query can be executed either in the DSPS
or in the CIMDB in Figure 6.2. However, the placement decision for the operator does
not influence the pipelined relationships between this operator and its upstream
and downstream operators. Consequently, the choices of the processing engine for a
logical query operator can be treated as physical implementation-alternatives of the
operator [Bla+05], which allows integrating the selection of the processing engine
for logical query operators into the phase of enumerating the execution plans of a
query optimizer.

A continuous query could have a large number of semantically-equivalent logical
plans due to, for instance, different join ordering possibilities. Even for an individual
logical plan G with n R2R operators, there are in total 2n possible execution plans
for G. Because of the large search space of query execution plans, exhaustive search
for the optimal execution plan is prohibitive. Following the idea applied in many
existing federated, distributed, or parallel database systems, the optimizer proposed
in this dissertation adopts a two-phase optimization approach [HS91]. Specifically, the
optimization process is divided into Phase-One and Phase-Two. In Phase-One, the
optimizer assumes that all operators are placed in the DSPS, and then determines
the optimal execution plan for a given continuous query under this assumption,
considering the join ordering and the push-down (or pull-up) of aggregates, etc. In
Phase-Two, the optimizer takes the logical query plan corresponding to the plan
obtained in Phase-One as input, and determines the placement of each operator in
that logical plan over the two underlying processing engines.

The System R style dynamic-programming optimizer [Sel+79] is used widely
in existing database systems. This type of query optimizer relies on the so-called
principle of optimality to prune away expensive query execution plans as early as
possible. Our optimizer adopts the System R style optimization approach to find the
optimal execution plan in Phase-One. However, to guarantee that this adoption is
applicable, it must be shown that the principle of optimality holds in the context
of continuous-query optimization as well; namely, the optimal execution plan for

126

6.3 Query Optimization

...

λL λR

Sm+1

S1 S2 Sm

m+1

m

in in

Figure 6.3: Illustrative execution plan which extends the subplan joining a set of
streams S = {S1, S2, . . . , Sm} to join with another stream Sm+1.

joining a set of m streams S = {S1, S2, . . . , Sm} with another stream Sm+1 can be
obtained by joining the stream Sm+1 with the optimal execution plan that joins all
streams in S.

Let us consider the join query in Figure 6.3. The window operators are omitted
for brevity. Let Popt denote the optimal execution plan for joining the set of streams
S = {S1, S2, . . . , Sm}. Any suboptimal execution plan is denoted as Ps. Suppose
that the next stream to be joined is Sm+1, which incurs λin

R unit-time source-driven
arrivals at the new join operator denoted by ./m+1. Note that the total number of join
results produced by the optimal plan Popt as a result of the unit-time arrivals from
all streams in S is the same as that produced by any sub-optimal plan Ps. Namely,
the source-driven output-size of the join operator ./m is identical in all execution
plans that join streams in S. Hence, according to Eq. (6.4), it can be inferred that the
source-driven input processing cost um+1 of the join operator ./m+1 is identical in
all execution plans that are extended from the execution plans for ./m. Denoting
the execution plan extended from Popt to join with the stream Sm+1 as P ′opt, and
the execution plan extended from Ps to join with Sm+1 as P ′s, in the following, it is
proved that the plan P ′opt is still optimal compared to any P ′s.

Proof Sketch.
Case 1: The plan Popt is feasible. In this case, an execution plan Ps is suboptimal either
because it is infeasible (i.e., Condition 1◦ in Definition 6.1), or because it is feasible
as well but its total utilization cost is higher than that of Popt (i.e., Condition 2◦ in
Definition 6.1).

• Case 1.1: If the plan Ps is infeasible, then the execution plan P ′s extended from
Ps with the join operator ./m+1 is still infeasible. Extending the execution
plan Popt with the operator ./m+1 can either leave the resulting execution plan
P ′opt feasible if the source-driven input processing cost um+1 of ./m+1 satisfies
um+1 ≤ 1, or make P ′opt infeasible if um+1 > 1. In the former case, it is obvious
that the plan P ′opt is better than the plan P ′s. In the latter case, the bottleneck
costs of P ′opt and P ′s need to be compared to determine which one is optimal.
The bottleneck cost Cb(P ′opt) of the plan P ′opt is um+1. The bottleneck cost Cb(P ′s)
of the plan P ′s is Cb(Ps) if um+1 < Cb(Ps), or um+1 if um+1 ≥ Cb(Ps). In either
case, the relationship 1 ≤ Cb(P ′opt) ≤ Cb(P ′s) exists. Therefore, according to
Condition 3◦ in Definition 6.1, the plan P ′opt is still optimal.

127

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

• Case 1.2: If the plan Ps is feasible as well but its total utilization cost is higher
than that of the plan Popt (i.e., Cu(Ps) > Cu(Popt)), then the feasibilities of
the extended plans P ′opt and P ′s are determined by the source-driven input
processing cost um+1 in the same way. Specifically, if um+1 ≤ 1, then both
the plan P ′opt and the plan P ′s are feasible. Moreover, the total utilization cost
Cu(P ′s) of the plan P ′s is higher than the total utilization cost Cu(P ′opt) of the
plan P ′opt, because Cu(P ′s) = Cu(Ps) + um+1, Cu(P ′opt) = Cu(Popt) + um+1, and
Cu(Ps) > Cu(Popt). Therefore, according to Condition 1◦ in Definition 6.1, the
plan P ′opt is optimal compared to the plan P ′s. If um+1 > 1, then both the
plan P ′opt and the plan P ′s are infeasible, and there exists Cb(P ′opt) = Cb(P ′s) =
um+1 > 1. Therefore, the plan P ′opt is still optimal according to Condition 3◦ in
Definition 6.1.

Case 2: The plan Popt is infeasible. In this case, the plan Ps can be suboptimal only when
Ps is infeasible and the bottleneck costs of Popt and Ps satisfy 1 < Cb(Popt) < Cb(Ps)
(i.e., Condition 3◦ in Definition 6.1). An execution plan extended from an infeasible
execution plan is still infeasible. Therefore, both the plan P ′opt and the plan P ′s are
infeasible. Depending on the value of the source-driven input processing cost um+1,
the relationship between the bottleneck costs of both plans, Cb(P ′opt) and Cb(P ′s),
could be one of the following cases:

• If um+1 < Cb(Popt) < Cb(Ps) holds, then Cb(P ′opt) and Cb(P ′s) satisfy Cb(P ′opt)

= Cb(Popt) < Cb(Ps) = Cb(P ′s).

• If Cb(Popt) ≤ um+1 < Cb(Ps) holds, then Cb(P ′opt) and Cb(P ′s) satisfy Cb(P ′opt)

= um+1 < Cb(Ps) = Cb(P ′s).

• If Cb(Popt) < Cb(Ps) ≤ um+1 holds, then Cb(P ′opt) and Cb(P ′s) satisfy Cb(P ′opt)

= Cb(P ′s) = um+1.

It can be observed that the relationship 1 < Cb(P ′opt) ≤ Cb(P ′s) (i.e., Condition 3◦ in
Definition 6.1) exits in all three cases. Hence, the plan P ′opt is still optimal. �

Discussion The above proof shows that the key reasons for the applicability of the
principle of optimality are: (1) the source-driven input processing cost um+1 of the
new join operator ./m+1 is the same in all execution plans that are extended from
a possible execution plan that joins the streams S1, S2, . . . , Sm; (2) the cost um+1 of
the join operator ./m+1 does not change when extending ./m+1 to join with other
streams.

6.3.4 Search-Space Pruning in Phase-Two of the Query Optimization

Taking the logical query plan corresponding to the execution plan produced in Phase-
One of the query optimization, the proposed optimizer determines in Phase-Two
the processing engine for each operator in that logical plan in a bottom-up way.
Note that, different from in Chapter 5, where “bottom” refers to the sliding-window
join and aggregate operators in a global logical query plan, in this chapter, “bottom”
refers to the source operators in a query plan. This section describes the pruning

128

6.3 Query Optimization

partial plan
rooted at
a DSPS-op

partial plan
rooted at a
DB-op

(b) Two DSPS-op-rooted partial execution plans up to vj, which
 are constructed from two partial execution plans up to vi

(c) Two DSPS-op-rooted partial execution plans and two DB-op-rooted partial execution plans
 up to vk, which are constructed based on the two partial execution plans up to vj in (b)

vj

vi

λi

(a) example logical
 plan

vk

λj

two partial execution plans
rooted at vk

dsps

I1

J1

λi

cj
dspsvj

dsps

vi
dsps I2

J2

λi

cj
dspsvj

dsps

vi
db

ck
dspsvk

dsps

λj

vj
dsps

vi
dsps

J1

K1

two partial execution plans
rooted at vk

db

ck
dspsvk

dsps

λj

vj
dsps

vi
db

J2

K2
ck

dbvk
db

λj

vj
dsps

vi
dsps

J1

K3
ck

dbvk
db

λj

vj
dsps

vi
db

J2

K4

two partial execution plans rooted at vj
dsps

Figure 6.4: Pruning opportunities when enumerating partial execution plans rooted
at a DSPS-op.

strategy used by the optimizer in Phase-Two to further reduce the search-space size,
and proves the validity of this pruning strategy.

By studying the characteristics of the cost of individual DSPS-ops and DB-ops,
as well as the influence of their costs on the cost of an entire execution plan, the
following properties of DSPS-ops are observed: (1) the source-driven input processing
cost u of a DSPS-op vdsps is identical in all partial execution plans that are rooted at
the operator vdsps; (2) the source-driven input processing cost of the operator vdsps

in a partial execution plan P rooted at vdsps is not changed when the plan P is
extended further with other query operators. In fact, these two properties are similar
to the properties of the join operators in Figure 6.3, which suggests that a principle
of optimality that is similar to the one discussed in Section 6.3.3 can be applied
for pruning the search space in Phase-Two of the query optimization. Specifically,
to obtain an optimal (partial) execution plan rooted at a DSPS-op vdsps, it suffices
to consider only the optimal partial execution plans rooted at the direct upstream
operators of vdsps.

129

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

Let us consider the logical query plan shown in Figure 6.4a. Suppose that the
logical operator that is being enumerated is vj. Because a bottom-up enumeration
approach is adopted, the enumeration for the operator vi should have completed.
Suppose also that there are in total two partial execution plans up to the operator
vi, which are as shown in Figure 6.4b. Denote these two partial execution plans by
I1 and I2. The plan I1 is rooted at a DSPS-op and the plan I2 is rooted at a DB-op. If
plan-pruning is not applied, then two DSPS-op-rooted partial execution plans up to
the operator vj can be constructed; one of them extends the plan I1, denoted by J1,
and the other one extends the plan I2, denoted by J2. In the following, it is proved
that indeed only one DSPS-op-rooted partial execution plan up to the operator vj
needs to be constructed—the one that is constructed based on the optimal partial
execution plan between I1 and I2.

Proof Sketch.
This proof consists of two parts. The first part shows that the optimality relationship
between the partial execution plans J1 and J2 is the same as that between the partial
execution plans I1 and I2. The second part shows that for any pair of complete
execution plans P1 and P2 of the query in Figure 6.4a, the optimality relationship
between P1 and P2 is the same as that between the partial execution plans I1 and
I2, if the plans P1 and P2 differ from each other only by the partial plans up to the
operator vj, in such a way that the partial plan in the plan P1 is J1 and the partial
plan in the plan P2 is J2.

Part 1: This part first shows that the partial execution plan J1 is better than the partial
execution plan J2 if the plan I1 is better than the plan I2. According to Definition 6.1,
there are three possible situations where the plan I1 is better than the plan I2. For
each situation, the proof to show that the plan J1 is better than the plan J2 is similar
to the proof for a specific case discussed in Section 6.3.3. Hence, here, only the
references to the corresponding cases discussed in the proof in Section 6.3.3 are
provided.

• Situation 1: Cb(I1) ≤ 1 < Cb(I2), i.e., the plan I1 is feasible whereas the plan I2
is infeasible. The proof for this situation is similar to the proof for Case 1.1 in
the proof in Section 6.3.3.

• Situation 2: Cb(I1) ≤ 1, Cb(I2) ≤ 1, and Cu(I1) < Cu(I2), i.e., both the plan I1
and the plan I2 are feasible, but the lower total utilization cost of the plan I1
is lower than that of the plan I2. The proof for this situation is similar to the
proof for Case 1.2 in the proof in Section 6.3.3.

• Situation 3: 1 < Cb(I1) ≤ Cb(I2), i.e., both the plan I1 and the plan I2 are
infeasible, but the bottleneck cost of the plan I1 is lower than that of the plan
I2. The proof for this situation is similar to the proof for Case 2 in the proof in
Section 6.3.3.

The symmetric case that the plan J2 is better than the plan J1 if the plan I2 is better
than the plan I1 can be proved in the same way. Moreover, the proof can be extended
easily to show that for an operator vj with multiple direct upstream operators, the

130

6.3 Query Optimization

optimal DSPS-op-rooted partial execution plan up to vj can be constructed from the
respective optimal partial execution plans up to each direct upstream operator of vj.

Part 2: This part shows that for a pair of complete execution plans which are con-
structed as extensions of the partial execution plan J1 and the partial execution plan
J2 respectively, if the two complete execution plans differ from each other only by the
partial execution plans J1 and J2, then the optimality relationship between them is the
same as the optimality relationship between J1 and J2. Strictly, it needs to be shown
that the optimality is retained along the execution-plan construction procedure up
to the sink operator (cf. Section 2.1.2) in the logical plan. However, if it can be proved
for the direct downstream operator of vj, which is the operator vk in Figure 6.4a,
that no matter in which processing engine the operator vk is placed, the optimality
relationship between the partial execution plans extended from J1 and J2 is the same
as the optimality relationship between J1 and J2, then the same reasoning can be
applied recursively. Therefore, in the following, it is only shown that for the two
pairs of partial execution plans, (K1, K2) and (K3, K4), in Figure 6.4c, the optimality
within each pair is the same as the optimality between the plan J1 and the plan J2,
and thus the same as the optimality between the plan I1 and the plan I2 as well.

For the execution-plan pair (K1, K2) where the operator vk is assigned to the DSPS,
the same proof in Part 1 can be applied. The proof for the execution-plan pair (K3,
K4) is similar. Note that in the plans K3 and K4, the operator vk is placed in the
CIMDB, and the source-driven input processing cost u of vdb

k is λout
j · cdb

k , where cdb
k is

the unit processing cost of vdb
k . If the downstream operator of vk in the plan K3 and

the plan K4 is placed in the CIMDB as well, then each of the two resulting partial
execution plans, say K′3 and K′4, has a composite operator vdb′

k . The source-driven
input processing cost u′ of the composite operator vdb′

k is λout
j · cdb′

k , where cdb′
k is the

unit processing cost of vdb′
k . Although u′ is different from u, u′ is the same in both the

plan K′3 and the plan K′4, and therefore does not influence the optimality relationship
between K′3 and K′4. �

Search-Space Size With the pruning strategy described above, for a logical query
plan with n R2R operators, at the end of the enumeration process, only one DSPS-op-
rooted, complete execution plan will be constructed. All the other executions plans
are rooted at a DB-op. For a logical plan containing only unary operators, the search-
space size can be reduced from 2n to n + 1. For a logical plan containing also binary
operators, the search-space size depends heavily on the number of binary operators
in the logical plan. The reason is, when constructing a DB-op-rooted execution plan
at a binary operator v, all possibilities of combining the partial execution plans up
to the left upstream operator of the operator v with the partial execution plans up
to the right upstream operator of the operator v need to be considered. The worst
case occurs then all n R2R operators in the logical plan are binary operators and the
logical plan is a complete binary tree. Ignoring window operators, the height of the
binary tree is h = dlog2(n + 1)e. Given the height h of a binary tree, the upper bound
of the search-space size can be defined as a function of h in a recursive way:

f (1) = 2

f (h) = 1 + f (h− 1)2

131

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

The complexity of f (h) is O(f (h)) = 22h−1
. By replacing h with dlog2(n+ 1)e, O(f (h))

is approximately 2n/2, which is exponential. To be able to optimize queries with a
large number of binary R2R operators with a reasonable amount of time, one solution
is to decompose the logical plan produced in Phase-One into multiple subplans in
such a way that each subplan has only a moderate number of binary operators. The
optimizer can then optimize these subplans in their post order and construct the
final execution plan by combining the optimal execution plans of the subplans.

Other Pruning Methods In addition to the pruning opportunities described above,
global rules can be applied to prune candidate execution-plans during the enumera-
tion. This approach has been applied in many existing database systems. Specifically,
for instance, if after the enumeration in Phase-One, it is known that the given query
is feasible, then in Phase-Two, the optimizer can stop expanding a partial execution
plan as soon as the plan has been detected to be infeasible. Therefore, in Phase-One
of the optimization, the optimizer can inspect the execution plan where all operators
are assigned to the DSPS and the execution plan where all operators are assigned
to the CIMDB. If either of them is feasible, the optimizer can perform early pruning
whenever a partial execution plan is detected to be infeasible.

6.4 Evaluation

This section evaluates the proposed continuous-query optimizer from three aspects:
the optimization time (Section 6.4.1), the quality of the optimization results (Sec-
tion 6.4.2), and the influence of the plan-feasibility check on the quality of the opti-
mization results (Section 6.4.3).

The DSPS and the CIMDB used in the prototype system are SAP ESP [SAP] and
SAP HANA [Sik+13], respectively. The proposed optimization solution was imple-
mented by extending the SQL optimizer of SAP HANA directly. Specifically, the cost
estimation for DSPS-ops were added to the optimizer, and the proposed two-phase
optimization approach was implemented. The prototype system was deployed on
the same HP Z620 workstation as used in the evaluations of the QDDH-framework
instantiations described in the previous chapters (cf. Section 4.3).

The evaluation used real-world energy-consumption data originating from smart
plugs deployed in households [JZ14]. Each smart plug was uniquely identified by
a combination of a house id, a household id, and a plug id. Each smart plug had two
sensors. One sensor measured the instant power consumption, with Watt as the
measurement unit. The other sensor measured the accumulated power consumption
since the start (or reset) of the sensor, with kWh as the measurement unit. Each
measurement was represented as a relational tuple. The type of the measurement was
indicated by the property attribute of the tuple. Each sensor reported a measurement
every 1 second, and the measurements from all smart plugs were merged into a single
data stream. The original rate of this sensor data stream was approximately 2000
tuples per second. To test with higher data rates, a custom program was developed,
which can replay the original sensor data at a configurable rate, to simulate different
report frequencies of the sensors.

The following six continuous queries (Q1–Q6) were used in the evaluation:

132

6.4 Evaluation

WIN

A

A

J

WIN

P

COUNT

Q1: MAX
Q2: AVG

5 min 5 min

Q1, Q2

WIN

A

WIN

5 min 1 min

Q3: MAX, AVG
Q4: AVGA

J

P

Q3: MAX, AVG
Q4: AVG

WIN

5 min

A

A

P

SUM

MAX

WIN

A

WIN

1 min 5 min

AVGA

J

P

J

WIN

A

3 min

AVGAVG

filterJ joinA aggregate P projection

Q3, Q4 Q5 Q6

F

F F F F F F F F

Figure 6.5: Logical plans of the queries used to evaluate the hybrid system in Fig-
ure 6.2.

• Q1: For each smart plug, count the number of load measurements in the last
5 minutes, whose value is higher than 90% of the maximum load in the last 5
minutes.

• Q2: For each smart plug, count the number of load measurements in the last 5
minutes, whose value is higher than the average load in the last 5 minutes.

• Q3: For each smart plug, compare the maximum and the average loads within
the last 5 minutes with the maximum and the average loads within the last 1
minute.

• Q4: Q4 is similar to Q3 but compares only the average load within the two
different time windows.

• Q5: For each household, find the maximum total load reported by a single
smart plug within the last 5 minutes.

• Q6: For each smart plug, compare the average loads within the last 1, 3, and 5
minutes.

All window operators in the above queries are time-based sliding-window oper-
ators and the slide size was set to 1 second. Note that the query Q2 and the query
Q4 were included in the query set intentionally, although they look similar to the
query Q1 and the query Q3, respectively. The reason is that window-based AVG
aggregate can be computed incrementally whereas window-based MAX aggregate
cannot [Gha+07]. Hence, the cost of an AVG aggregate operator is normally lower
than the cost of a MAX aggregate operator in a DSPS. The queries Q2 and Q4 were
included to study queries with aggregate operators of different costs. Figure 6.5
shows the logical query plans devised by the optimizer described in Section 6.3 for
the six queries.

133

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

2-way join 5-way join 8-way join
Optimization time of Phase-One (ms) 0.9 68.5 100.5
R2R op. in Phase-One produced logical plan 6 15 24
plans examined in Phase-Two w/o pruning 64 327168 16777216
plans examined in Phase-Two with pruning 11 312 8411
Opt. time of Phase-Two with pruning (ms) 12.3 908.6 61335.5
Total optimization time (ms) 13.2 977.1 61436

Table 6.1: Optimization times of queries with different numbers of operators.

Q1 Q2 Q3 Q4 Q5 Q6

Opt. time of Phase-One (ms) 1.3 1.3 0.87 0.86 22.5 5.2
Opt. time of Phase-Two with pruning (ms) 7.7 7.5 11.4 10.8 1.3 58.9
Total optimization time (ms) 9 8.8 12.27 11.66 23.8 64.1

Table 6.2: Optimization times of Q1–Q6 in Figure 6.5

6.4.1 Optimization Time

The first experiment examined the efficiency of the proposed optimizer in terms of
the optimization time. As discussed in Section 6.3.4, the search-space size, thus the
optimization time, is heavily influenced by the number of binary R2R operators in the
query. Therefore, in this experiment, the query Q4 was taken as a template, and three
MSWJ queries were constructed, which compared the average loads of each smart
plug within time windows of different sizes. For instance, a 5-way sliding-window
join query constructed in this way first calculated the average loads of each smart
plug within the last 1, 3, 5, 7, and 9 minutes, and then joined these average loads
for each smart plug. In this experiment, the query-decomposition method discussed
in Section 6.3.4 was not applied in the Phase-Two of the optimization. For each
query, the optimization was conducted 10 times and the median of the measured
optimization times was reported. The results are summarized in Table 6.1.

From Table 6.1, it can be seen that with the pruning approach described in Sec-
tion 6.3.4, the number of execution plans to be examined in the Phase-Two of the
optimization is reduced significantly. The results in Table 6.1 also imply that in
our prototype system, it is reasonable to decompose large logical query plans into
subplans with 15 operators in Phase-Two of the query optimization. With such a
decomposition, the logical plan of the 8-way join query chosen by the optimizer in
Phase-One can be split into two subplans, thereby reducing the optimization time
from 1 minute to around 2 seconds. Table 6.1 does not show the optimization time
of Phase-Two when the pruning is deactivated, because the experiment would have
taken too long and is not meaningful due to the large search space. To be complete,
the optimization times for the queries Q1–Q6 in Figure 6.5 are listed in Table 6.2.

6.4.2 Effectiveness of the Proposed Optimizer

Recall from Section 6.3.2 that the proposed optimizer estimates the cost of a query
execution plan based on the tuple arrival rates of the input streams involved in the

134

6.4 Evaluation

plan, and finds the optimal execution plan of a query based on the costs of execution
plans. The tuple arrival rates of input streams also define the requested throughput
of a query. To study the effectiveness of the proposed optimizer, for each query, the
tuple arrival rate of the sensor data stream was varied from 1000 tuples per second
to 40000 tuples per second, and the optimizer was asked to produce the optimal
execution plan for each examined tuple arrival rate. Each optimal execution plan
produced by the optimizer was then deployed in our prototype system, and the
sensor data was pushed into the system at the corresponding rate. Then, the actual
throughput of the deployed plan was measured. The results of this experiment are
shown in Figure 6.6 and Figure 6.7.

For the queries Q1 and Q2 (cf. Figure 6.6a–6.6d), for all examined tuple arrival
rates, the optimizer picked the execution plan that placed all filters in the DSPS and
the other operators in the CIMDB. The reason for this optimization decision is that
both Q1 and Q2 computed a correlated aggregate, which required scanning the tuples
within each instantaneous window twice to compute a query result. Even for a tuple
arrival rate of 1000 tuples per second, a 5-minute window contains 300 thousand
(in short, 300k) tuples. Frequent full scanning of instantaneous windows pushed the
DSPS to its limit. In contrast, the CIMDB could compute the correlated aggregate
more efficiently, despite the cost of transferring data between the two processing
engines. In each of Q1 and Q2, the filters were placed in the DSPS to reduce the
amount of data to be transferred to the CIMDB.

Let Pdsps denote a pure DSPS plan of a query, namely, all operators of the query
are placed in the DSPS. Similarly, let Pdb denote a pure CIMDB plan of a query, namely,
all operators of the query are placed in the CIMDB. To verify the superiority of the
operator-level optimization approach over the query-level optimization approach,
the maximum throughputs of the optimal hybrid execution plan Popt, the pure DSPS
plan Pdsps, and the pure CIMDB plan Pcimdb were compared for the query Q1 and
the query Q2. One can see from Figure 6.6b and Figure 6.6d that for both Q1 and
Q2, the throughput of the optimal hybrid execution plan is about 8 time as high
as the throughput of the pure DSPS plan. The maximum throughput of the pure
CIMDB plan is also lower than that of the hybrid plan, because the pure CIMDB plan
transfers more data from the DSPS to the CIMDB than the hybrid plan, which leads
to a higher cost.

For the query Q3 (cf. Figure 6.6e and Figure 6.6f), the execution plan that placed
only filters in the DSPS (denoted by Popt1) remained optimal until the tuple arrival
rate reached 20k tuples per second. For tuple arrival rates higher than 20k tuples
per second, the execution plan Popt1 becomes infeasible, and the plan that placed
both the filters and the join operator in the DSPS (denoted by Popt2) became optimal.
Note that when the tuple arrival rate was below 20k tuples per second, the execution
plan Popt2 was feasible as well. It was not picked by the optimizer because it had
a higher total utilization cost compared to the execution plan Popt1. The maximum
throughputs shown in Figure 6.6f confirm that the plan Popt1 became infeasible at
a lower tuple arrival rate compared to the plan Popt2. When the tuple arrival rate
was 20k tuples per second, the actual throughput of the plan Popt1 was indeed lower
than the requested throughput. This result suggests that the plan Popt1 was already
infeasible at this tuple arrival rate, and the plan Popt2 should have been picked. The
throughput of the plan Popt2 at the rate of 20k tuples per second is indicated by the

135

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution
ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
,x
1
0
3
)

,a) Q1: Throughtput of Popt

0 10 20 30 40
requested throughtput ,x103)

all in DSPS all in CIMDB F in DSPS
0

10

15

20

25

30

5

F in DSPS

m
ax
.
th
ro
u
g
h
p
u
t
,x
1
0
3
)

0

10

15

20

25

30

5

,b) Q1: max. throughtput of Pdsps, Pcimdb, Popt

0

10

15

20

25

30

5

ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
,x
1
0
3
)

all in DSPS all in CIMDB F in DSPS0 10 20 30 40

m
ax
.
th
ro
u
g
h
p
u
t
,x
1
0
3
)

0

10

15

20

25

30

5

F in DSPS

requested throughtput ,x103)

,c) Q2: Throughtput of Popt ,d) Q2: max. throughtput of Pdsps, Pcimdb, Popt

0

10

15

20

25

30

5

ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
,x
1
0
3
)

0 10 20 30 40

m
ax
.
th
ro
u
g
h
p
u
t
,x
1
0
3
)

0

10

15

20

25

30

5

all in
DSPS

all in
CIMDB

F in
DSPS

F and J
in DSPS

F in DSPS
F and J in DSPS

requested throughtput ,x103)

,e) Q3: Throughtput of Popt ,f) Q3: max. throughtput of Pdsps, Pcimdb, Popt

0

10

15

20

25

30

5

ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
,x
1
0
3
)

m
ax
.
th
ro
u
g
h
p
u
t
,x
1
0
3
)

0

10

15

20

25

30

5

all in
DSPS

all in
CIMDB

F in
DSPS

F and J
in DSPSrequested throughtput ,x103)

,g) Q4: Throughtput of Popt

0 10 20 30 40

,h) Q4: max. throughtput of Pdsps, Pcimdb, Popt

F in DSPS
F and J in DSPS

Figure 6.6: Performance of the devised optimal execution plans for the queries Q1–Q6
in Figure 6.5 at increasing tuple arrival rates.

136

6.4 Evaluation

ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
bx
1
0
3
5

bi5 Q5: Throughtput of Popt

0 10 20 30 40
requested throughtput bx1035

all in DSPS all in CIMDB F in DSPS
0

10

20

30

40

m
ax
.
th
ro
u
g
h
p
u
t
bx
1
0
3
5

bj5 Q5: max. throughtput of Pdsps, Pcimdb, Popt

0

10

15

20

25

30

5

ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
bx
1
0
3
5

all in
DSPS

all in
CIMDB

F in
DSPS

0 10 20 30 40
m
ax
.
th
ro
u
g
h
p
u
t
bx
1
0
3
5

0

10

15

20

25

30

5

requested throughtput bx1035

bk5 Q6: Throughtput of Popt bl5 Q6: max. throughtput of Pdsps, Pcimdb, Popt

F in DSPS
all op. in DSPS

0

10

20

30

40

F in DSPS
F and last J in DSPS
F and both J in DSPS

F and
last J
in DSPS

F and
both J
in DSPS

Figure 6.7: Performance of the devised optimal execution plans for the queries Q1–Q6
in Figure 6.5 at increasing tuple arrival rates. (Cont.)

hollow square in Figure 6.6e. The result that the true optimal execution plan was
missed is caused by the imperfection of the cost estimation, which is an issue shared
by all cost-based optimizers. However, the difference between the actual throughput
of the plan Popt1 and the actual throughput of the plan Popt2 was small, and the
optimizer picked the correct optimal plan successfully for every other examined
tuple arrival rate. For the query Q3, the hybrid execution plan again resulted in a
higher throughput than the pure DSPS plan and the pure CIMDB plan.

The optimization results for the query Q4 is similar to the results for the query
Q3 (cf. Figure 6.6g). However, the pure DSPS plan of Q4 can support much higher
tuple arrival rate than the pure DSPS plan of Q3 (cf. Figure 6.6h), which confirms that
computing the MAX aggregate is more expensive than computing the AVG aggregate
in the DSPS.

For the query Q5 (cf. Figure 6.7i and Figure 6.7j), the optimizer picked the exe-
cution plan that placed the filter in the DSPS when the tuple arrival rate was below
10k tuples per second. For higher tuple arrival rates, the total utilization cost of this
execution plan became higher than the total utilization cost of the pure DSPS plan,
due to the increasing cost of the data transfer between the two engines. As a result,
the optimal execution plan switched to the pure DSPS plan. Unlike for the queries
Q1–Q4, for the query Q5, the maximum throughput of the pure DSPS plan is higher
than the maximum throughputs of the hybrid plans (cf. Figure 6.7j).

The query Q6 was a 3-way join query. Its optimal execution plan changed twice
as the tuple arrival rate increased (cf. Figure 6.7k). For tuple arrival rates below 10k

137

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution
ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
(x
1
0
3
)

(a) Q3

0 10 20 30 40
requested throughtput (x103)

0

10

15

20

25

30

5

ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
(x
1
0
3
)

0 10 20 30 40
requested throughtput (x103)

0

10

15

20

25

30

5

F in DSPS (w/ feas. check)
F and J in DSPS (w/ feas. check)
F in DSPS (w/o feas. check)

0 10 20 30 40
requested throughtput (x103)

F in DSPS (w/ feas. check)
F and J in DSPS (w/ feas. check)
F in DSPS (w/o feas. check)

(b) Q4

F in DSPS (w/ feas. check)
F and last J in DSPS (w/ feas.check)
F and both J in DSPS (w/ feas. check)
F in DSPS (w/o feas. check)
F and last J in DSPS (w/o feas. check)

(c) Q6

ac
h
ie
ve
d
th
ro
u
g
h
p
u
t
(x
1
0
3
)

0

10

15

20

25

30

5

Figure 6.8: Throughput of the optimal execution plans devised with and without the
plan-feasibility check.

tuples per second, the optimal execution plan placed only filters in the DSPS (denoted
by Popt1). At higher tuple arrival rates up to 20k tuples per second, in addition to
the filters, the optimal execution plan placed the last join operator in the query in
the DSPS as well (denoted by Popt2). For even higher tuple arrival rates, only the
aggregate operators were left in the CIMDB (denoted by Popt3). The switch from the
plan Popt1 to the plan Popt2 was because of the higher total utilization cost of the plan
Popt1 compared with the plan Popt2; and the switch from the plan Popt2 to the plan
Popt3 was because of the infeasibility of the plan Popt2 (cf. Figure 6.7l). Similar to the
case for the queries Q3 and Q4, the optimizer missed the true optimal execution plan
at the tuple arrival rate of 25k tuples per second, as indicated by the hollow triangle
in Figure 6.7k.

In summary, the optimizer proposed in this chapter for hybrid execution of con-
tinuous queries performs well with respect to the quality of the optimization results.
Especially, for each examined query, when the tuple arrival rate of the input stream

138

6.5 Related Work

was so high that the query becomes infeasible, the optimizer was able to pick the
execution plan that can maximize the query throughput.

6.4.3 Influence of the Plan-Feasibility Check

Recall from the definition of the optimal query execution plan (i.e., Definition 6.1)
that, the optimizer checks both the feasibility and the total resource utilization of pos-
sible execution plans to determine the optimal execution plan. This section studies
the influence of the plan-feasibility check on the quality of the produced optimization
results. To this end, the feasibility check for execution plans was turned off in the
optimizer; namely, the optimization decisions were made based on only the utiliza-
tion costs of execution plans. Then, the tests described in Section 6.4.2 were repeated
for all six queries. For each query and each examined tuple arrival rate, the actual
throughput of the optimal execution plan devised with the plan-feasibility check was
compared with the actual throughput of the optimal execution plan devised without
the plan-feasibility check. The experimental results are shown in Figure 6.8.

For the queries Q1, Q2, and Q5, the optimization results obtained without the plan-
feasibility check were identical to the optimization results obtained with the plan-fea-
sibility check. However, for the queries Q3 and Q4 (cf. Figure 6.8a and 6.8b), without
the plan-feasibility check, the optimizer picked the execution plan that placed only
the filters in the DSPS at all examined tuple arrival rates. However, this execution plan
was suboptimal compared with the plan devised with the feasibility check when the
tuple arrival rate was above 20k tuples per second. For the query Q6 (cf. Figure 6.8c),
without the plan-feasibility check, the optimizer did not pick the execution plan that
placed only the aggregate operators in the CIMDB when the tuple arrival rate was
above 20k tuples per second, although that plan indeed had a higher throughput.

The results of this experiment confirm the necessity of the plan-feasibility check in
the optimization of continuous queries. The results also imply that naive approaches
for pruning partial execution-plans without considering the plan feasibility may
result in suboptimal execution plans.

6.5 Related Work

Leveraging DBMSs for data stream processing has been studied in prior work in-
cluding [CH10; Fra+09; LGI09]. Specifically, the Truviso system [Fra+09] integrates
the continuous analytics technology into a fully functional DBMS by executing SQL
queries continuously and incrementally over input data before storing the data in
the database. DataCell [LGI09] is a DSPS built on top of MonetDB, an on-disk col-
umn-oriented DBMS. Chen et al. [CH10] extended the PostgreSQL DBMS to support
data stream processing. This body of work focused on studying how a DBMS can
be modified to support data stream processing. In contrast, the work presented in
this chapter aims to leverage the advantages of both the row-oriented and the col-
umn-oriented data layout and processing techniques to improve the performance
of a DSPS. The experimental results shown in Section 6.4.2 confirm the potential of
such hybrid execution of continuous queries.

Note that the combination of a row-oriented DSPS and an CIMDB in our prototype
system is only taken as a measure of quick system prototyping to avoid the potential

139

Chapter 6 Reducing the Tradeoff via Hybrid Query Execution

issues that may be caused by a custom implementation of the column-oriented data
processing within the DSPS, although extending a DSPS directly with the capability
of column-oriented data processing can eliminate the need of inter-system data
transfer that our prototype system has, thereby yielding a higher system performance.
Nevertheless, the query-optimization approach proposed in Section 6.3 can still be
applied in such a directly-extended DSPS to determine the optimal implementation
alternative of each query operator from all alternatives available in the DSPS.

MaxStream [Bot+10a] is a federated system which integrates multiple DSPSs and
DBMSs. The federator layer is built on top of a relational DBMS. In MaxStream, input
streams first pass through the federator layer, where the streams are persisted into, or
joined with static database tables if needed. Subsequently, the streams are forwarded
to a specific DSPS for query evaluation. However, MaxStream does not have an op-
timizer for continuous queries. ASPEN [Liu+10] is a project focusing on integrating
and processing at distributed data sources including sensor devices, traditional PCs,
and servers. ASPEN has a federated optimizer to assign queries across multiple sub-
systems. However, the optimizer does not consider the feasibility of the execution
plans of a continuous query, and lacks experimental support for its effectiveness. Cy-
clops [LHB13] integrates Esper [Esp] (a centralized DSPS), Storm [Sto] (a distributed
DSPS), and Hadoop [Apa] (a distributed batch system) for executing continuous win-
dow-based aggregate queries. Cyclops uses a black-box modeling method to build
cost models. Its optimizer works at the query level, and selects the most suitable
system for a given continuous query based on the window specification (i.e., the
window size and the window slide) and the tuple arrival rate of the input stream. In
contrast, the optimizer proposed in this chapter works at the operator level, whose
superiority has been confirmed by the experimental results shown in Section 6.4.

Optimizating SQL queries in federated or distributed DBMSs [Bla+05; DH02;
SL90] has been well-studied. However, existing solutions cannot be used directly
to optimize continuous queries for hybrid execution as proposed in this chapter,
because they do not consider the feasibility of execution plans of a continuous query.
Optimization of continuous SPJ queries concerning the plan feasibility was initially
studied by Viglas and Naughton [VN02]. Their work was extended by the work
of [AN04], which considered the optimal placement of load-shedding operators in
infeasible execution plans when the computation resources are insufficient. Cammert
et al. [Cam+08] dealt with a similar resource management problem, and proposed
techniques that are based on the adjustment of window sizes and time granularities.
Moreover, the cost model used in [Cam+08] supports queries containing aggrega-
tion operators. However, the above work did not consider query optimization for
hybrid execution with row-oriented and column-oriented processing techniques as
described in this chapter.

There is a large body of work on operator placement in distributed or heteroge-
neous DSPSs (e.g., [LLS08; Dau+11]). This body of work normally assumes that the
pipelined relationships between query operators are already determined, and con-
siders only the placement of operators in the available processing nodes or systems.
Furthermore, the feasibility-dependent optimization objective was not adopted. Nev-
ertheless, studying how to adapt these optimization approaches in the Phase-Two
optimization of the proposed optimizer is an interesting direction for future work.

140

6.6 Summary

6.6 Summary

Focusing on the question how to enhance a DSPS to reduce the extent of trading the
query-result quality for the performance, this chapter proposed a system-enhance-
ment approach that combines the row-oriented and the column-oriented data layout
and processing techniques for evaluating continuous queries over data streams. This
proposal falls into the fifth category of the system-enhance approaches discussed
in Section 2.3.1—leveraging advantages of different technologies. Moreover, a static
cost-based query optimization approach was introduced for such hybrid query execu-
tion. To fully exploit the potential of such hybrid execution of continuous queries, the
optimizer works at the operator level and determines the optimal execution option
of each operator in a query based on the characteristics of the query and the involved
input streams. The proposed optimizer takes into account the feasibility of execution
plans of a continuous query, as well as the non-additivity of the query-execution cost
caused by the underlying heterogeneous processing techniques. The effectiveness of
the optimizer was demonstrated experimentally in a prototype system composed of
a row-oriented DSPS and a CIMDB. It was shown that even for simple queries, the
proposed optimizer can make non-obvious decisions which resulted in up to 4 and
1.6 times higher throughput compared to the pure DSPS-based execution and the
pure CIMDB-based execution, respectively. This result confirms that the proposed
system-enhancement approach is viable and promising.

141

7
Conclusion

This chapter summarizes the main achievements of this dissertation and outlines
possible directions for future work.

7.1 Summary

Due to the growing prevalence of the Internet of Things (IoT) and the growing num-
ber of applications that need to consume real-time data, data stream processing is
playing an increasingly-important role in the “big data” era today. When evaluat-
ing continuous queries over data stream, a data stream processing system (DSPS)
often needs to make tradeoffs between the performance of the query processing and
the quality of the produced query results. The reasons are mainly twofold: (1) the
streaming data being processed may be imperfect, and handling the data-imperfec-
tion within streams to obtain high-quality query results has a performance penalty;
(2) the DSPS may have limited computation capacity itself, which makes it necessary
to trade the query-result quality for performance when the workload imposed to the
system exceeds the capacity of the system, in order to keep the system from overload-
ing. The quality of the data streams arriving at a DSPS is beyond the control of the
DSPS, and therefore, the tradeoffs between the performance and query-result quality
caused by the data imperfection are inevitable. In contrast, the tradeoffs caused by
system limitations are reducible by enhancing the DSPS itself.

This dissertation studied how to handle the performance versus result-quality
tradeoffs caused by the above two aspects of reasons, focusing first on the tradeoff
caused by the data imperfection and second on the tradeoff caused by system limita-
tions. Particularly, focusing on the problem of stream disorder, which is a representa-
tive type of data imperfection in data streams, this dissertation proposed the concept
of quality-driven disorder handling (QDDH), designed a generic buffer-based QDDH
framework for processing continuous queries, and proposed methods for perform-
ing dynamic, quality-driven adaptation of the sizes of the buffers used for disorder
handling at the query runtime (cf. Chapter 3). By minimizing the latency incurred
by disorder handling while respecting the user-specified result-quality requirements,
the proposed QDDH concept complements the state of the art and enables making
flexible and user-configurable tradeoff between the end-to-end latency and the query-result
quality when dealing with the stream disorder. Three instantiations of the generic QDDH

143

Chapter 7 Conclusion

framework were described in detail. Two of them target individual queries of two
widely-used query types—sliding-window aggregate queries and m-way sliding-win-
dow join queries (cf. Chapter 4). The third instantiation targets concurrent queries
with shared operators such as source and filter operators (cf. Chapter 5). All three
instantiations were implemented in a prototype DSPS which extends SAP ESP [SAP].
Experimental results showed that the proposed instantiations, thus the concept of
QDDH, is effective. Compared to the state-of-the-art disorder handling approaches,
the QDDH approach presented in this dissertation can significantly reduce the end-
to-end latency, while still providing users with desired query-result quality.

To reduce the performance versus result-quality tradeoff caused by system lim-
itations, this dissertation proposed a system-enhancement approach which exploits
the potential of combining both the row-oriented and the column-oriented data layout and
processing techniques in data stream processing, and designed a static, cost-based query
optimizer to devise optimal query execution plans for such hybrid execution of contin-
uous queries (cf. Chapter 6). By working at the query-operator level and taking the
feasibility of query execution plans into account, the proposed optimizer can fully
exploit the potential of such hybrid query execution. Even for simple queries, the
optimizer can make non-obvious optimization decisions which lead to a throughput
that cannot be matched by either type of data processing technique alone.

7.2 Outlook

The concept of QDDH proposed in this dissertation provides a new opportunity
towards flexible handling of the performance versus result-quality tradeoff caused
by stream disorder. Although this dissertation studied the application of the QDDH
concept in three representative scenarios and showed the effectiveness of QDDH in
these scenarios, there are still scenarios worth further investigation. One interesting
scenario is to apply QDDH for complex individual queries that contain, for exam-
ple, both aggregate and join operators, or chained aggregate operators. One major
challenge in this scenario is to formulate the propagation of the result quality of
the query operators along an operator pipeline. Another interesting scenario for
future work is, as mentioned in Chapter 5, applying QDDH for concurrent queries
with shared window-based operators. Sharing window-based operators can further
eliminate the redundant work that a DSPS would otherwise have to perform concur-
rently, and thereby improving the system performance. However, in the meanwhile,
the operator sharing may conflict with the objective of QDDH, making it unable to
minimize the latency penalty caused by disorder handling for each query. Hence, a
reasonable tradeoff between the performance gain obtained by operator sharing and
the performance loss caused by the violation of the objective of QDDH needs to be
found.

There are several possible directions to extend the work that this dissertation
did in the area of enhancing a DSPS through combining the row-oriented and the
column-oriented data processing techniques as well. One path is to relax the as-
sumption of the static environment and consider runtime query re-optimization in
response to changing data characteristics within the input streams. Existing work
on adaptive query processing [Bab05] may be adapted here. Another path is to sup-
port multi-query optimization (MQO). Apart from finding the common fragments

144

7.2 Outlook

across multiple queries as is done by conventional MQO methods, the sharing of the
data-transfer channels between the different engines that apply different processing
techniques is also an important aspect that needs to be considered. Improving the
efficiency of the query optimizer is an interesting path as well. In addition, as the
advance of the hardware and software technologies, there is nearly unlimited poten-
tial for enhancing a DSPS to push further the boundary of the system with respect
to the bearable workload.

145

Symbols

Notation
Definition
(Section)

Description

T 2.1.1 Time domain

Si 2.1.1, 5.1 The i-th input stream or the source operator corre-
sponding to the i-th input stream; i ∈ [1, m]

ri The tuple arrival rate of the stream Si

ei,j 2.1.1 The j-th arrived tuple in a stream Si. The subscript
j, or both subscripts, are skipped when they are not
important for the discussion

ei,j.ts 2.1.1 The timestamp of the tuple ei,j, ei,j.ts ∈ T. The sub-
script j, or both subscripts, are skipped when they are
not important for the discussion

Wi 2.1.2 The size of a sliding window applied over a stream
Si

βi 2.1.2 The slide of a sliding window applied over a stream
Si

wi,j 2.1.2 The j-th instantaneous window constructed over a
stream Si. The subscript j, or both subscripts, are
skipped when they are not important for the discus-
sion

EPl(wi,j) 2.1.2 The lower endpoint of an instantaneous window wi,j

EPu(wi,j) 2.1.2 The upper endpoint of an instantaneous window wi,j

G =
(V , ED) 2.1.2 A logical query plan of a continuous query

vi ∈ V 2.1.2 A logical query operator in G

edij ∈ ED 2.1.2 The data flow from operator vi to operator vj

iT 2.2.1 The local current time of a stream Si; iT = max{ei,j.ts
| ei,j ∈ Si}

continued on the next page

147

SYMBOLS

Notation
Definition
(Section)

Description

skew(Si, Sj) 2.2.1 The time skew between two streams Si and Sj;
skew(Si, Sj) = |iT − jT|

delay(ei,j) 2.2.1 The delay of the tuple ei,j; delay(ei,j) =
iT − ei,j.ts

pon 3.1 The join condition of a join query

Ki 3.2.1 The K-slack buffer size applied over a stream Si

Tsync 3.2.2 The maximum timestamp among the tuples that have
been released from a synchronization buffer

Ksync
i 3.2.2 The buffer size within a synchronization buffer that

implicitly contributes to handling the intra-stream
disorder within a stream Si

S′i 3.3 The corresponding, disorder-handled, derived stream
of an input stream Si

|w| 3.4.1 The number of tuples included in an instantaneous
window w during the query processing

|w|true 3.4.1 The true number of tuples belonging to an instanta-
neous window w if there is no stream disorder

Cvrg(w) 3.4.1 The coverage of an instantaneous window w,
Cvrg(w) = |w|

|w|true
; Cvrg(w) ∈ [0, 1]

Rstat
i 3.4.1 The adaptive window applied over a stream Si for

monitoring the tuple-delay statistics in Si

Di, DK
i 3.4.1 The random variables representing the coarse-

grained tuple delay in an input stream Si and in the
corresponding, disorder-handled, derived stream, re-
spectively

fDi , fDK
i

3.4.1 The probability density functions of Di and DK
i , re-

spectively

b 3.4.1 The size of a basic window used in the analytical-
model-based buffer-size adaptation method (system
parameter)

g 3.4.1 The K-search granularity used in the analytical-
model-based buffer-size adaptation method (system
parameter)

wl
i,j, |wl

i,j| 3.4.1 The l-th (l ∈ [1, dWi/be]) basic window in the in-
stantaneous window wi,j, and the cardinality of wl

i,j,
respectively

wi,> 3.4.1 The most recent instantaneous window constructed
over a stream S′i

continued on the next page

148

SYMBOLS

Notation
Definition
(Section)

Description

Up 3.4.2 The weight of the proportional term in a PD controller
(system parameter)

Ud 3.4.2 The weight of the derivative term in a PD controller
(system parameter)

MaxDi 3.4.2 The maximum tuple delay in a stream Si, i.e.,
MaxDi = max{delay(ei,j)|ei,j ∈ Si}

α 3.4.2 The parameter applied on top of MaxDi to deter-
mine the K-slack buffer size when using the PD-con-
troller-based buffer-size adaptation method. The ac-
tual buffer size is Ki = α ·MaxDi, α ∈ [0, 1]

∆α 3.4.2 The adjustment, i.e., the increase or the decrease, of α

Â 4.1.1 A produced aggregate result

A 4.1.1 The corresponding exact result of Â

ε 4.1.1 The relative error of a produced aggregate result; ε =
|A−Â|
|A|

(εthr, δ) 4.1.1 The result relative-error threshold: user-specified re-
sult-quality requirement for SWA queries. The mean-
ing is that Prob(ε ≥ εthr) ≤ δ. δ, δ ∈ (0, 1), is also
referred to as the confidence level

Lwarmup 4.1.2 The length of the warm-up period before performing
the first buffer-size adaptation

Cvrgthr 4.1.2 The threshold on the coverages of instantaneous
windows; derived from a user-specified (εthr, δ);
Cvrgthr ∈ [0, 1]

q 4.1.4 The retrospect parameter applied in the instantiation
of the QDDH framework for SWA queries; q ∈ (0, 1)
(system parameter)

Cvrg(w, K) 4.1.5 The estimated coverage of an instantaneous window
w under a given value of K-slack buffer size K

κ 4.1.5 The optimal QDDH buffer size for a query, i.e., the
minimum K-slack buffer size needed to meet the user-
specified result-quality requirement associated with
the query

MaxDR
i 4.1.5 The maximum tuple delay observed within the win-

dow Rstat
i

Pmeas 4.2.1 The user-specified result-quality measurement pe-
riod

γ(Pmeas) 4.2.1 The recall of the result tuples of an MSWJ query mea-
sured based on Pmeas

continued on the next page

149

SYMBOLS

Notation
Definition
(Section)

Description

Γ 4.2.1 The user-specified requirement on γ(Pmeas)

Γ′ 4.2.2 The instant recall requirement applied in a single
buffer-size adaptation step; derived from the user-
specified Γ

onT 4.2.2 The current maximum timestamp among the tuples
received by a join operator

Ladt 4.2.4 The adaptation interval applied to adapt the sizes of
the K-slack buffers used for an MSWJ query (system
parameter)

γ(Ladt, K) 4.2.4 The estimated recall of join results produced within
Ladt under a given value of the buffer size K

Non
prod(Ladt, K) 4.2.4 The join result size within Ladt under a given value of

the buffer size K

Non
true(Ladt) 4.2.4 The true join result size within Ladt if the input

streams have no disorder

N×prod(Ladt, K) 4.2.4 The cross-join result size corresponding to
Non

prod(Ladt, K)

N×true(Ladt) 4.2.4 The true cross-join result size corresponding to
Non

true(Ladt)

selon 4.2.4 The selectivity of a join condition

selon(K) 4.2.4 The selectivity of a join condition under a given value
of the buffer size K

Φ(εthr),
Φ(Γ)

4.3.1 The requirement fulfillment ratio of the results of an
individual SWA or MSWJ query; used to measure the
overall query-result quality produced by a disorder
handling approach.

AM-adt 4.3.3 Shorthand for “analytical-model-based buffer-size
adaptation method”

PD-adt 4.3.3 Shorthand for “PD-controller-based buffer-size adap-
tation method”

Gglob 5.1 A global logical query plan that contains n individual,
concurrent queries

Gi 5.1 The subplan in a global query plan that is rooted at
the source operator Si

Qj 5.1 A SWA or an MSWJ query covered in Gglob; j ∈ [1, n]

B 5.1 An individual K-slack buffer

continued on the next page

150

SYMBOLS

Notation
Definition
(Section)

Description

K(B),
Otgt(B) 5.1 The size and output targets, respectively, of a K-slack

buffer B

Cglob 5.1 A global K-slack configuration for a global query plan
Gglob

Ci 5.1 A K-slack configuration for a subplan Gi

mem(Cglob),
mem(Ci)

5.1 Memory costs of Cglob and Ci, respectively

Q(v) 5.3 The set of queries that share an operator v

C(v) 5.4 The optimal local K-slack configuration for handling
the disorder within the output stream of a branch
operator v

vc 5.4.1 An immediate child of v

NF(v) 5.4.1 The number of filter children of an operator v

f 5.4.1 The selectivity of a filter

κs(v) 5.4.2 The largest sharable K-slack buffer size among the
queries in Q(v); κs(v) = min{κj|Qj ∈ Q(v)}

fcs 5.4.2 The coalesced selectivity of a filter

P(G) =
(V ′, ED′,M)

6.2 A query execution plan of a logical query graph G

v′dsps ∈ V ′ 6.2 A basic physical operator running in a DSPS

v′db ∈ V ′ 6.2 A migration candidate, which can be viewed as a
composite R2R operator, migrated from a row-ori-
ented DSPS to a columnar in-memory database

ed′ij ∈ ED
′ 6.2 The data flow from vx

i to vy
j , x, y ∈ {dsps, db}

M(vx) 6.2 The set of logical operators in G that the physical
operator vx maps to, x ∈ {dsps, db}

λin 6.3.2 The unit-time source arrivals of a query execution
plan; defined as the number of tuples arrived from all
input streams involved in the execution plan within
one time unit

λout 6.3.2 The source-driven output-size of an operator in a
query execution plan; defined as the amount of tuples
that an operator produces as a result of the unit-time
source arrivals of the execution plan

continued on the next page

151

SYMBOLS

Notation
Definition
(Section)

Description

cji 6.3.2 The unit processing cost of a physical operator vx
j for

its upstream operator vx
i , x ∈ {dsps, db}; defined as

the average time that vx
j requires to process a single

tuple from vx
i

ux
j 6.3.2 The source-driven input processing cost of a physical

operator vx
j in a query execution plan, x ∈ {dsps, db};

defined as the total processing cost caused by unit-
time source arrivals of the execution plan

Cb(P) 6.3.2 The bottleneck cost of a query execution plan

Cu(P) 6.3.2 The total utilization cost of a query execution plan

C(P) 6.3.2 The cost of an execution plan; C(P) = 〈Cb(P),
Cu(P)〉

152

Index

K-slack, 28, 29, 31–34, 36, 37, 40, 41, 43,
50, 54, 55, 57, 59, 61, 63, 79, 85,
88–90, 92, 97, 101, 103

K-slack chain, 90, 92, 93, 95, 97,
105–107, 113, 116

m-way sliding-window join (MSWJ), 3,
4, 23, 26, 27, 32, 43, 52–59, 62,
63, 66, 71, 75, 79, 81, 82, 84, 87,
89, 91, 108, 115, 144

join condition, 26, 52, 54, 59, 63, 77
tuple productivity, 52, 54, 55, 60,

62, 81
, 109
PID controller, 37, 68

PD controller, 4, 32, 37, 52, 62, 64,
72, 80, 83

control error, 36
process variable (PV), 36, 62, 75
setpoint (SP), 36, 52, 62

approximate query processing (AQP),
23, 44, 47, 48

continuous query (for short, query),
1–4, 7, 10, 14, 16, 17, 19, 22, 25,
27, 30, 31, 33, 36–38, 40, 56, 82,
87–89, 91–93, 95, 104, 106, 108,
110, 113, 116, 119, 120, 122,
123, 125, 126, 132, 134, 135,
137, 139–141, 143

data imperfection, 2, 4, 15, 17, 18, 20,
23, 25, 117, 143

data stream processing (DSP), 1, 2, 4,
7, 8, 11, 15, 20, 23, 40, 117, 120,
139

data stream processing system (DSPS),
1–4, 7–9, 13–16, 18, 20–22, 39,
40, 65, 87, 118, 119, 121, 125,
126, 132, 135, 137, 139–141,
143–145

data uncertainty, 16, 18, 23
completeness, 16
confidence, 16

directed acyclic graph (DAG), 14
child, 14, 88, 89, 93, 95, 97, 103, 104
parent, 14, 17

disorder handling, 3, 4, 13, 19, 25,
27–30, 34, 38–41, 45, 48, 50, 52,
54, 56, 57, 59, 60, 64, 68, 70, 71,
83, 85, 88, 90, 109, 110, 115,
143, 144

shared disorder handling, 88, 92,
93, 103, 104, 112, 113

unshared disorder handling, 89,
92, 94, 97, 103, 107, 112, 113

load shedding, 22, 38, 40, 41, 123
logical query plan, 14, 20, 87, 115, 120,

121, 133
branch operator, 88, 93, 101, 105
global (logical) query plan, 87–92,

101, 103, 107, 109, 110, 113,
115, 116

logical query operator, 14, 43

optimal QDDH buffer size, 51, 52, 58,
63, 82, 89–93, 95, 97, 108

pipelined query execution, 15, 123,
126, 140

probability density function (PDF), 34

153

INDEX

quality of service (QoS), 21, 40
quality-driven disorder handling

(QDDH), 2, 4, 25, 27, 30–34,
39–41, 43, 52, 54, 63–65, 68, 69,
71, 72, 75, 80–83, 85, 87–91, 93,
103, 104, 107, 109, 110, 115,
116, 143, 144

shared QDDH, 88
unshared QDDH, 88, 109

query execution plan, 14, 22, 30, 31,
115, 120, 122–127, 129, 131,
134, 135, 137, 139–141, 144

feasibility, 22, 119, 122, 125, 128,
132, 139–141, 144

physical operator, 14, 20, 43, 121,
124, 125

relation-to-relation (R2R) operator, 10,
12–14, 18, 120, 121, 126, 131,
134

window-based operator, 14, 15, 18,
22, 23, 25, 32, 83, 87–90, 115,
117, 123, 133, 140, 144

relation-to-stream (R2S) operator, 10,
13, 14, 88

Dstream, 13
Istream, 13, 88
Rstream, 13

relative error, 43, 45, 46, 65, 69, 70, 73,
108

sliding-window aggregate (SWA), 3, 4,
25, 27, 32, 43, 45, 48, 51, 53, 54,
63, 65, 69, 72, 77, 79–82, 84, 87,
89, 91, 108, 115, 116, 144

stream, 1–4, 7–13, 15–19, 21, 25, 28–30,
32–35, 37–39, 41, 47, 49, 52, 54,
57, 60, 61, 65–67, 75, 84, 92, 99,
107, 115–118, 120–123, 127,
128, 132, 141, 143

derived stream, 9, 17, 31, 34
input stream (a.k.a. base stream),

9, 31, 33, 37, 39, 41, 43, 45, 49,
51–53, 57, 58, 62, 63, 66, 69, 72,
77, 81, 82, 87, 89, 90, 103, 120,
123, 124, 134, 138, 140, 144

local current time, 17, 28, 30, 34,
35

stream disorder, 2, 4, 17, 18, 23, 25, 26,
32, 41, 45, 60, 69, 117, 143, 144

correlated out-of-order tuple, 47,
65

inter-stream disorder, 17, 19, 29,
30, 34, 38, 54, 63, 71

intra-stream disorder, 17, 19,
28–30, 34, 37, 38, 43, 54, 56, 57,
63, 69, 71, 88

out-of-order tuple (a.k.a. late
arrival), 17, 19, 26–29, 31–33,
35, 38–41, 48, 54, 65, 70, 81, 84

time skew, 18, 57
tuple delay, 17, 28, 29, 33–35, 37,

41, 49, 51, 54, 60, 61, 63–66, 68,
69, 84, 85

stream-to-relation (S2R) operator, 10

time, 9
application time, 9, 11
application timestamp (for short,

timestamp), 9, 11, 17, 26, 28,
29, 35, 36, 38, 48, 52, 54, 57, 65,
66, 68, 104, 106, 118

system time, 9
time instant, 9

time-varying relation (for short,
relation), 10, 14, 15, 120, 121

derived relation, 10, 17
input relation (a.k.a. base

relation), 10, 13, 120
instantaneous relation, 10–13, 124

tuple, 9, 11–13, 15–19, 22, 25–30, 33,
35–41, 44–52, 54, 55, 57, 59,
61–65, 67–69, 77, 81, 88, 93,
104, 106, 107, 110, 123, 124,
132

tuple schema, 9

window coverage, 32, 33, 41, 44, 45,
48–52, 63, 80, 81

window-coverage threshold, 44,
45, 47, 52

window operator, 11, 43, 54
count-based sliding window, 11,

12, 124
count-based tumbling window, 14

154

INDEX

instantaneous window (for short,
window), 12, 18, 26, 32–34, 36,
39, 41, 44, 45, 48–51, 59, 63, 72,
77, 80, 81, 91, 117, 118, 123,
125, 135

landmark window, 12
lower endpoint, 11
sliding window, 11, 19, 21, 26, 36,

41, 54, 65, 66, 108

time-based sliding window, 11, 38,
41, 43, 52, 54, 124

tumbling window (a.k.a. jumping
window), 11, 14

upper endpoint, 11, 35, 36, 49
window size, 11, 22, 26, 36, 47, 51,

52, 59, 64, 65, 69, 108, 140
window slide, 11, 22, 65, 82, 108,

124, 133, 140

155

Bibliography

[Aba+03] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and
Stan Zdonik. “Aurora: a new model and architecture for data stream
management”. In: VLDB Journal 12.2 (2003), pp. 120–139.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. “The CQL contin-
uous query language: semantic foundations and query execution”. In:
The VLDB Journal 15.2 (2006), pp. 121–142.

[Aga+13] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel
Madden, and Ion Stoica. “BlinkDB: queries with bounded errors and
bounded response times on very large data”. In: Proceedings of the 8th
ACM European Conference on Computer Systems. EuroSys ’13. ACM, 2013,
pp. 29–42.

[Aki+13] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haber-
man, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam
Whittle. “MillWheel: fault-tolerant stream processing at internet scale”.
In: Proc. VLDB Endow. 6.11 (2013), pp. 1033–1044.

[Aki+15] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances
Perry, Eric Schmidt, and Sam Whittle. “The Dataflow Model: A Practical
Approach to Balancing Correctness, Latency, and Cost in Massive-scale,
Unbounded, Out-of-order Data Processing”. In: Proc. VLDB Endow. 8.12
(2015), pp. 1792–1803.

[Ale+14] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph
Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser,
Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias
J. Sax, Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel
Warneke. “The Stratosphere platform for big data analytics”. In: The
VLDB Journal 23.6 (2014), pp. 939–964.

[Alv+12] Foteini Alvanaki, Sebastian Michel, Krithi Ramamritham, and Gerhard
Weikum. “See what’s enBlogue: real-time emergent topic identification
in social media”. In: Proceedings of the 15th International Conference on
Extending Database Technology. EDBT ’12. ACM, 2012, pp. 336–347.

157

BIBLIOGRAPHY

[AM04] Arvind Arasu and Gurmeet Singh Manku. “Approximate counts and
quantiles over sliding windows”. In: Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
PODS ’04. ACM, 2004, pp. 286–296.

[AMH08] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. “Column-stores
vs. row-stores: how different are they really?” In: Proceedings of the 2008
ACM SIGMOD international conference on Management of data. SIGMOD
’08. ACM, 2008, pp. 967–980.

[AN04] Ahmed M. Ayad and Jeffrey F. Naughton. “Static optimization of con-
junctive queries with sliding windows over infinite streams”. In: Proceed-
ings of the 2004 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’04. ACM, 2004, pp. 419–430.

[Apa] Apache Hadoop. url: http://hadoop.apache.org/.

[Ara+02] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jen-
nifer Widom. “Characterizing memory requirements for queries over
continuous data streams”. In: Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. PODS ’02.
ACM, 2002, pp. 221–232.

[AW04] Arvind Arasu and Jennifer Widom. “Resource sharing in continuous
sliding-window aggregates”. In: Proceedings of the Thirtieth international
conference on Very large data bases. VLDB ’04. VLDB Endowment, 2004,
pp. 336–347.

[AY07] Charu C. Aggarwal and Philip S. Yu. “A Survey of Synopsis Construc-
tion in Data Streams”. In: Data Streams: Models and Algorithms. Springer
US, 2007, pp. 169–207.

[AY09] C. C. Aggarwal and P. S. Yu. “A survey of uncertain data algorithms
and applications”. In: IEEE Trans. on Knowl. and Data Eng. 21.5 (2009),
pp. 609–623.

[Bab+04] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa,
and Jennifer Widom. “Adaptive ordering of pipelined stream filters”.
In: Proceedings of the 2004 ACM SIGMOD international conference on Man-
agement of data. SIGMOD ’04. ACM, 2004, pp. 407–418.

[Bab05] Shivnath Babu. “Adaptive Query Processing in Data Stream Manage-
ment Systems”. PhD thesis. Stanford, CA, USA, 2005.

[Bar+07] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng
Hong. “Consistent streaming through time: a vision for event stream
processing”. In: Proceedings of the Third Biennial Conference on Innovative
Data Systems Research. CIDR ’07. 2007, pp. 363–374.

[BDM04] B. Babcock, M. Datar, and R. Motwani. “Load shedding for aggregation
queries over data streams”. In: Proceedings of the 20th IEEE International
Conference on Data Engineering. ICDE ’04. IEEE, 2004, pp. 350–361.

[BG07] Albert Bifet and Ricard GavaldÃ. “Learning from time-changing data
with adaptive windowing”. In: In SIAM International Conference on Data
Mining. SDM ’07. 2007, pp. 443–448.

158

http://hadoop.apache.org/

BIBLIOGRAPHY

[Bha+14] Pramod Bhatotia, Umut A. Acar, Flavio P. Junqueira, and Rodrigo Ro-
drigues. “Slider: incremental sliding window analytics”. In: Proceedings
of the 15th International Middleware Conference. Middleware ’14. ACM,
2014, pp. 61–72.

[BKM08] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. “Breaking the
memory wall in MonetDB”. In: Commun. ACM 51.12 (2008), pp. 77–85.

[Bla+05] J.A. Blakeley, C. Cunningham, N. Ellis, B. Rathakrishnan, and M.-C. Wu.
“Distributed/heterogeneous query processing in Microsoft SQL server”.
In: Proceedings of the 21st IEEE International Conference on Data Engineering.
ICDE ’05. IEEE, 2005, pp. 1001–1012.

[Bot+10a] Irina Botan, Younggoo Cho, Roozbeh Derakhshan, Nihal Dindar, Ankush
Gupta, Laura M. Haas, Kihong Kim, Chulwon Lee, Girish Mundada,
Ming-Chien Shan, Nesime Tatbul, Ying Yan, Beomjin Yun, and Jin Zhang.
“A demonstration of the MaxStream federated stream processing sys-
tem.” In: Proceedings of the 26th IEEE International Conference on Data
Engineering. ICDE ’10. IEEE, 2010, pp. 1093–1096.

[Bot+10b] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J.
Miller, and Nesime Tatbul. “SECRET: a model for analysis of the exe-
cution semantics of stream processing systems”. In: Proc. VLDB Endow.
3.1-2 (2010), pp. 232–243.

[Bri+08] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. “Spec-
ulative out-of-order event processing with software transaction mem-
ory”. In: Proceedings of the Second International Conference on Distributed
Event-based Systems. DEBS ’08. ACM, 2008, pp. 265–275.

[BSW04] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. “Exploiting K-
constraints to Reduce Memory Overhead in Continuous Queries over
Data Streams”. In: ACM Trans. Database Syst. 29.3 (2004), pp. 545–580.

[BW01] Shivnath Babu and Jennifer Widom. “Continuous queries over data
streams”. In: SIGMOD Rec. 30.3 (2001), pp. 109–120.

[Cam+08] Michael Cammert, Jurgen Kramer, Bernhard Seeger, and Sonny Vau-
pel. “A cost-based approach to adaptive resource management in data
stream systems”. In: IEEE Trans. on Knowl. and Data Eng. 20.2 (2008),
pp. 230–245.

[CDN11] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. “An overview
of business intelligence technology”. In: ACM Commun. 54.8 (2011),
pp. 88–98.

[CG07] Graham Cormode and Minos Garofalakis. “Sketching probabilistic data
streams”. In: Proceedings of the 2007 ACM SIGMOD International Confer-
ence on Management of Data. SIGMOD ’07. ACM, 2007, pp. 281–292.

[CGM10] Badrish Chandramouli, Jonathan Goldstein, and David Maier. “High-
performance dynamic pattern matching over disordered streams”. In:
Proc. VLDB Endow. 3.1-2 (2010), pp. 220–231.

159

BIBLIOGRAPHY

[CH10] Qiming Chen and Meichun Hsu. “Experience in extending query engine
for continuous analytics”. In: Proceedings of the 12th international confer-
ence on Data warehousing and knowledge discovery. DaWaK’10. Springer-
Verlag, 2010, pp. 190–202.

[Cha+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R.
Madden, Fred Reiss, and Mehul A. Shah. “TelegraphCQ: continuous
dataflow processing”. In: Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data. SIGMOD ’03. ACM, 2003, pp. 668–
668.

[Cha+14] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert De-
Line, Danyel Fisher, John C. Platt, James F. Terwilliger, and John Werns-
ing. “Trill: a high-performance incremental query processor for diverse
analytics”. In: Proc. VLDB Endow. 8.4 (2014), pp. 401–412.

[Cha09] Surajit Chaudhuri. “Query optimizers: time to rethink the contract?” In:
Proceedings of the 2009 ACM SIGMOD International Conference on Manage-
ment of data. SIGMOD ’09. ACM, 2009, pp. 961–968.

[Che+00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. “NiagaraCQ:
a scalable continuous query system for Internet databases”. In: Proceed-
ings of the 2000 ACM SIGMOD international conference on Management of
data. SIGMOD ’00. ACM, 2000, pp. 379–390.

[CKT08] Graham Cormode, Flip Korn, and Srikanta Tirthapura. “Time-decaying
aggregates in out-of-order streams”. In: Proceedings of the Twenty-seventh
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems. PODS ’08. ACM, 2008, pp. 89–98.

[Cod70] E. F. Codd. “A relational model of data for large shared data banks”. In:
Commun. ACM 13.6 (1970), pp. 377–387.

[Cor+12] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine.
“Synopses for massive data: samples, histograms, wavelets, sketches”.
In: Found. Trends databases 4 (2012), pp. 1–294.

[CR13] Lei Cao and Elke A. Rundensteiner. “High performance stream query
processing with correlation-aware partitioning”. In: Proc. VLDB Endow.
7.4 (2013), pp. 265–276.

[Cra+02] Charles D. Cranor, Yuan Gao, Theodore Johnson, Vladislav Shkapenyuk,
and Oliver Spatscheck. “Gigascope: a stream database for network ap-
plications”. In: Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’03. ACM, 2002, pp. 647–651.

[Dau+11] Michael Daum, Frank Lauterwald, Philipp Baumgärtel, Niko Pollner,
and Klaus Meyer-Wegener. “Efficient and cost-aware operator place-
ment in heterogeneous stream-processing environments”. In: Proceed-
ings of the 5th ACM International Conference on Distributed Event-based
System. DEBS ’11. ACM, 2011, pp. 393–394.

160

BIBLIOGRAPHY

[Dem+07] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald,
Varun Sharma, and Walker M. White. “Cayuga: a general ourpose Event
Monitoring System”. In: Online Proceedings of the Third Biennial Conference
on Innovative Data Systems Research. CIDR ’07. www.cidrdb.org, 2007,
pp. 412–422.

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. In: Commun. ACM 51.1 (2008), pp. 107–113.

[DH02] Amol V. Deshpande and Joseph M. Hellerstein. “Decoupled query op-
timization for federated database systems”. In: Proceedings of the 18th
IEEE International Conference on Data Engineering. ICDE ’02. IEEE, 2002,
pp. 716–727.

[Dob+02] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi.
“Processing complex aggregate queries over data streams”. In: Proceed-
ings of the 2002 ACM SIGMOD international conference on Management of
data. SIGMOD ’02. ACM, 2002, pp. 61–72.

[DS07] Nilesh Dalvi and Dan Suciu. “Efficient query evaluation on probabilistic
databases”. In: The VLDB Journal 16.4 (2007), pp. 523–544.

[Dul+11] Michael Duller, Jan S. Rellermeyer, Gustavo Alonso, and Nesime Tat-
bul. “Virtualizing stream processing”. In: Proceedings of the 12th ACM/I-
FIP/USENIX International Conference on Middleware. Middleware ’11. Sprin-
ger-Verlag, 2011, pp. 269–288.

[Els+14] Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, and Chris-
toph Koch. “Scalable and adaptive online joins”. In: Proc. VLDB Endow.

7.6 (2014), pp. 441–452.

[Esp] Esper. url: http://esper.codehaus.org/.

[FC97] Christof Fetzer and Flaviu Cristian. “Integrating External and Inter-
nal Clock Synchronization”. In: Real-Time Syst. 12.2 (1997), pp. 123–171.
issn: 0922-6443.

[Fin82] Sheldon Finkelstein. “Common expression analysis in database applica-
tions”. In: Proceedings of the 1982 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’82. ACM, 1982, pp. 235–245.

[Fli] Apache Flink. url: http://flink.apache.org/.

[Fra+09] Michael J. Franklin, Sailesh Krishnamurthy, Neil Conway, Alan Li, Alex
Russakovsky, and Neil Thombre. “Continuous analytics: rethinking
query processing in a network-effect world”. In: Proceedings of the 4th
Biennial Conference on Innovative Data Systems Research. CIDR ’09. 2009.

[GAK12] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. “SharedDB:
killing one thousand queries with one stone”. In: Proc. VLDB Endow. 5.6
(2012), pp. 526–537.

[Gao+16] Zhipeng Gao, Weijing Cheng, Xuesong Qiu, and Luoming Meng. “A
missing sensor data estimation algorithm based on temporal and spatial
correlation”. In: Int. J. Distrib. Sen. Netw. 2015 (2016), 178:178–178:178.

161

http://esper.codehaus.org/
http://flink.apache.org/

BIBLIOGRAPHY

[Ged+07] B. Gedik, Kim-Lung Wu, P.S. Yu, and Ling Liu. “A load shedding frame-
work and optimizations for m-way windowed stream joins”. In: Proceed-
ings of the 23rd IEEE International Conference on Data Engineering. ICDE
’07. IEEE, 2007, pp. 536–545.

[Ged+08] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myung-
cheol Doo. “SPADE: the system s declarative stream processing engine”.
In: Proceedings of the 2008 ACM SIGMOD international conference on Man-
agement of data. SIGMOD ’08. ACM, 2008, pp. 1123–1134.

[Ged+14] B. Gedik, S. Schneider, M. Hirzel, and Kun-Lung Wu. “Elastic scaling
for data stream processing”. In: IEEE Trans. Parallel Distrib. Syst 25.6
(2014), pp. 1447–1463.

[Gha+07] T.M. Ghanem, M.A. Hammad, M.F. Mokbel, W.G. Aref, and A.K. Elma-
garmid. “Incremental evaluation of sliding-window queries over data
streams”. In: IEEE Trans. on Knowl. and Data Eng. 19.1 (2007), pp. 57–72.

[Gia+14] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald
Kossmann. “Shared workload optimization”. In: Proc. VLDB Endow. 7.6
(2014), pp. 429–440.

[GKS01] Johannes Gehrke, Flip Korn, and Divesh Srivastava. “On computing
correlated aggregates over continual data streams”. In: Proceedings of
the 2001 ACM SIGMOD international conference on Management of data.
SIGMOD ’01. ACM, 2001, pp. 13–24.

[GL12] Tingjian Ge and Fujun Liu. “Accuracy-aware uncertain stream databases”.
In: Proceedings of the 28th IEEE International Conference on Data Engineer-
ing. ICDE ’12. IEEE, 2012, pp. 174–185.

[GÖ03a] Lukasz Golab and M. Tamer Özsu. “Issues in data stream management”.
In: SIGMOD Rec. 32.2 (2003), pp. 5–14.

[GÖ03b] Lukasz Golab and M Tamer Özsu. “Processing sliding window multi-
joins in continuous queries over data streams”. In: Proceedings of the 29th
international conference on Very large data bases - Volume 29. VLDB ’03.
VLDB Endowment, 2003, pp. 500–511.

[Gra93] Goetz Graefe. “Query evaluation techniques for large databases”. In:
ACM Comput. Surv. 25.2 (1993), pp. 73–169.

[Gru+10a] Le Gruenwald, Md. Shiblee Sadik, Rahul Shukla, and Hanqing Yang.
“DEMS: a data mining based technique to handle missing data in mobile
sensor network applications”. In: Proceedings of the Seventh International
Workshop on Data Management for Sensor Networks. DMSN ’10. ACM, 2010,
pp. 26–32.

[Gru+10b] Le Gruenwald, Hanqing Yang, Md. Shiblee Sadik, and Rahul Shukla.
“Using data mining to handle missing data in multi-hop sensor network
applications”. In: Proceedings of the Ninth ACM International Workshop on
Data Engineering for Wireless and Mobile Access. MobiDE ’10. ACM, 2010,
pp. 9–16.

162

BIBLIOGRAPHY

[Gui+11] Shenoda Guirguis, Mohamed A. Sharaf, Panos K. Chrysanthis, and
Alexandros Labrinidis. “Optimized processing of multiple aggregate
continuous queries”. In: Proceedings of the 20th ACM International Con-
ference on Information and Knowledge Management. CIKM ’11. ACM, 2011,
pp. 1515–1524.

[Gul+12] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Clau-
dio Soriente, and Patrick Valduriez. “StreamCloud: an elastic and scal-
able data streaming system”. In: IEEE Trans. Parallel Distrib. Syst. 23.12
(2012), pp. 2351–2365.

[HAE05] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. “Op-
timizing in-order execution of continuous queries over streamed sensor
data”. In: Proceedings of the 17th International Conference on Scientific and
Statistical Database Management. SSDBM’2005. Lawrence Berkeley Labo-
ratory, 2005, pp. 143–146.

[Ham+04] Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H. Ali, Walid
G. Aref, Ann Christine Catlin, Ahmed K. Elmagarmid, Mohamed Y.
Eltabakh, Mohamed G. Elfeky, Thanaa M. Ghanem, Robert Gwadera,
Ihab F. Ilyas, Mirette S. Marzouk, and Xiaopeng Xiong. “Nile: A Query
Processing Engine for Data Streams”. In: Proceedings of the 20th IEEE In-
ternational Conference on Data Engineering. ICDE ’04. IEEE, 2004, pp. 851–.

[He+09] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju,
Qiong Luo, and Pedro V. Sander. “Relational query coprocessing on
graphics processors”. In: ACM Trans. Database Syst. 34.4 (2009), 21:1–
21:39.

[Hei+14a] Thomas Heinze, Leonardo Aniello, Leonardo Querzoni, and Zbigniew
Jerzak. “Cloud-based data stream processing”. In: Proceedings of the 8th
ACM International Conference on Distributed Event-Based Systems. DEBS
’14. ACM, 2014, pp. 238–245.

[Hei+14b] Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof
Fetzer. “Latency-aware elastic scaling for distributed data stream pro-
cessing systems”. In: Proceedings of the 8th ACM International Conference
on Distributed Event-Based Systems. DEBS ’14. ACM, 2014, pp. 13–22.

[Hir+14] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert
Grimm. “A catalog of stream processing optimizations”. In: ACM Com-
put. Surv. 46 (2014), pp. 1–34.

[HM94] Waqar Hasan and Rajeev Motwani. “Optimization algorithms for ex-
ploiting the parallelism-communication tradeoff in pipelined parallelism”.
In: Proceedings of the 20th International Conference on Very Large Data Bases.
VLDB ’94. Morgan Kaufmann Publishers Inc., 1994, pp. 36–47.

[Hon+09] Mingsheng Hong, Mirek Riedewald, Christoph Koch, Johannes Gehrke,
and Alan Demers. “Rule-based multi-query optimization”. In: Proceed-
ings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology. EDBT ’09. ACM, 2009, pp. 120–131.

163

BIBLIOGRAPHY

[HS91] Wei Hong and Michael Stonebraker. “Optimization of parallel query
execution plans in XPRS”. In: Proceedings of the First International Confer-
ence on Parallel and Distributed Information Systems. PDIS ’91. IEEE, 1991,
pp. 218–225.

[Hua+08] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. “Ranking queries
on uncertain data: A probabilistic threshold approach”. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’08. ACM, 2008, pp. 673–686.

[Jai+08] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jen-
nifer Widom, Hari Balakrishnan, Uǧur Çetintemel, Mitch Cherniack,
Richard Tibbetts, and Stan Zdonik. “Towards a streaming SQL stan-
dard”. In: Proc. VLDB Endow. 1.2 (2008), pp. 1379–1390.

[Jay+07] T. S. Jayram, Andrew McGregor, S. Muthukrishnan, and Erik Vee. “Esti-
mating statistical aggregates on probabilistic data streams”. In: Proceed-
ings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. PODS ’07. ACM, 2007, pp. 243–252.

[Jer+12] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber, Raik
Hartung, and Nenad Stojanovic. “The DEBS 2012 grand challenge”. In:
Proceedings of the 6th ACM International Conference on Distributed Event-
Based Systems. DEBS ’12. ACM, 2012, pp. 393–398.

[JGF06] Shawn R. Jeffery, Minos Garofalakis, and Michael J. Franklin. “Adaptive
cleaning for RFID data streams”. In: Proceedings of the 32nd International
Conference on Very Large Data Bases. VLDB ’06. VLDB Endowment, 2006,
pp. 163–174.

[Jin+10] Cheqing Jin, Ke Yi, Lei Chen, Jeffrey Xu Yu, and Xuemin Lin. “Sliding-
window top-k queries on uncertain streams”. In: The VLDB Journal 19.3
(2010), pp. 411–435.

[JZ14] Zbigniew Jerzak and Holger Ziekow. “The DEBS 2014 grand challenge”.
In: Proceedings of the 8th ACM International Conference on Distributed Event-
Based Systems. DEBS ’14. ACM, 2014, pp. 266–269.

[Kar+13] Tomas Karnagel, Dirk Habich, Benjamin Schlegel, and Wolfgang Lehner.
“The HELLS-join: a heterogeneous stream join for extremely large win-
dows”. In: Proceedings of the 9th International Workshop on Data Manage-
ment on New Hardware. DaMoN ’13. ACM, 2013, 2:1–2:7.

[KBG04] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. “Detecting change
in data streams”. In: Proceedings of the Thirtieth international conference
on Very large data bases - Volume 30. VLDB ’04. VLDB Endowment, 2004,
pp. 180–191.

[KBS06] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. “Towards
correcting input data errors probabilistically using integrity constraints”.
In: Proceedings of the 5th ACM International Workshop on Data Engineering
for Wireless and Mobile Access. MobiDE ’06. ACM, 2006, pp. 43–50.

164

BIBLIOGRAPHY

[KD08] Bhargav Kanagal and Amol Deshpande. “Online filtering, smoothing
and probabilistic modeling of streaming data”. In: Proceedings of the 24th
IEEE International Conference on Data Engineering. ICDE ’08. IEEE, 2008,
pp. 1160–1169.

[KL09] A. Klein and W. Lehner. “Representing data quality in sensor data
streaming environments”. In: J. Data and Information Quality 1.2 (2009),
10:1–10:28.

[KNV03] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. “Evaluating win-
dow joins over unbounded streams.” In: Proceedings of the 19th IEEE In-
ternational Conference on Data Engineering. ICDE ’03. IEEE, 2003, pp. 341–
352.

[Kri+10] Sailesh Krishnamurthy, Michael J. Franklin, Jeffrey Davis, Daniel Farina,
Pasha Golovko, Alan Li, and Neil Thombre. “Continuous analytics over
discontinuous streams”. In: Proceedings of the 2010 ACM SIGMOD In-
ternational Conference on Management of data. SIGMOD ’10. ACM, 2010,
pp. 1081–1092.

[KS04] Jürgen Krämer and Bernhard Seeger. “PIPES: a public infrastructure
for processing and exploring streams”. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’04.
ACM, 2004, pp. 925–926.

[KS09] Jürgen Krämer and Bernhard Seeger. “Semantics and implementation of
continuous sliding window queries over data streams”. In: ACM Trans.
Database Syst. 34.1 (2009), 4:1–4:49.

[Kul+15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christo-
pher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and
Siddarth Taneja. “Twitter heron: stream processing at scale”. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’15. ACM, 2015, pp. 239–250.

[KWF06] Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. “On-the-fly
sharing for streamed aggregation”. In: Proceedings of the 2006 ACM SIG-
MOD International Conference on Management of Data. SIGMOD ’06. ACM,
2006, pp. 623–634.

[Lar+07] Per-Ake Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback.
“Cardinality estimation using sample views with quality assurance”. In:
Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’07. ACM, 2007, pp. 175–186.

[LB13] Harold Lim and Shivnath Babu. “Execution and optimization of contin-
uous queries with Cyclops”. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’13. ACM, 2013,
pp. 1069–1072.

[Lei+15] Chuan Lei, Zhongfang Zhuang, Elke A. Rundensteiner, and Mohamed
Eltabakh. “Shared execution of recurring workloads in MapReduce”. In:
Proc. VLDB Endow. 8.7 (2015), pp. 714–725.

165

BIBLIOGRAPHY

[Lev11] William S. Levine. The control handbook, Second Edition. CRC Press New
York, 2011. isbn: 0-8493-8570-9.

[LGI09] Erietta Liarou, Romulo Goncalves, and Stratos Idreos. “Exploiting the
power of relational databases for efficient stream processing”. In: Proceed-
ings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology. EDBT ’09. ACM, 2009, pp. 323–334.

[LHB13] Harold Lim, Yuzhang Han, and Shivnath Babu. “How to fit when no
one size fits”. In: Proceedings of the Sixth Biennial Conference on Innovative
Data Systems Research. CIDR ’13. 2013.

[Li+05a] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.
Tucker. “No pane, no gain: efficient evaluation of sliding-window ag-
gregates over data streams”. In: SIGMOD Rec. 34.1 (2005), pp. 39–44.

[Li+05b] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.
Tucker. “Semantics and evaluation techniques for window aggregates
in data streams”. In: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. SIGMOD ’05. ACM, 2005, pp. 311–322.

[Li+07] Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner, and Murali Mani.
“Event stream processing with out-of-order data arrival”. In: Proceedings
of the 27th International Conference on Distributed Computing Systems Work-
shops. ICDCSW ’07. IEEE, 2007, pp. 67–.

[Li+08] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore
Johnson, and David Maier. “Out-of-order Processing: a new architecture
for high-performance stream systems”. In: Proc. VLDB Endow. 1.1 (2008),
pp. 274–288.

[Lin+15] Qian Lin, Beng Chin Ooi, Zhengkui Wang, and Cui Yu. “Scalable dis-
tributed stream join processing”. In: Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data. SIGMOD ’15. ACM,
2015, pp. 811–825.

[Liu+09] Mo Liu, Ming Li, D. Golovnya, E.A. Rundensteiner, and K. Claypool.
“Sequence pattern query processing over out-of-order event streams”. In:
Proceedings of the 25th IEEE International Conference on Data Engineering.
ICDE ’09. IEEE, 2009, pp. 784–795.

[Liu+10] Mengmeng Liu, Svilen R. Mihaylov, Zhuowei Bao, Marie Jacob, Zachary
G. Ives, Boon Thau Loo, and Sudipto Guha. “SmartCIS: integrating
digital and physical environments.” In: SIGMOD Rec. 39.1 (2010), pp. 48–
53.

[LLS08] Geetika T. Lakshmanan, Ying Li, and Rob Strom. “Placement strategies
for internet-scale data stream systems”. In: IEEE Internet Computing 12.6
(2008), pp. 50–60.

[LPT99] Ling Liu, Calton Pu, and Wei Tang. “Continual queries for internet scale
event-driven information delivery”. In: IEEE Trans. on Knowl. and Data
Eng. 11.4 (1999), pp. 610–628.

166

BIBLIOGRAPHY

[LZ08] Yan-Nei Law and Carlo Zaniolo. “Improving the accuracy of con-
tinuous aggregates and mining queries on data streams under load
shedding”. In: Int. J. Bus. Intell. Data Min. 3.1 (2008), pp. 99–117.

[Mad+02] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar
Raman. “Continuously adaptive continuous queries over streams”. In:
Proceedings of the 2002 ACM SIGMOD international conference on Manage-
ment of data. SIGMOD ’02. ACM, 2002, pp. 49–60.

[Mar+04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. “The
flooding time synchronization protocol”. In: Proceedings of the 2Nd In-
ternational Conference on Embedded Networked Sensor Systems. SenSys ’04.
ACM, 2004, pp. 39–49.

[MC08] Anurag S. Maskey and Mitch Cherniack. “Replay-based approaches
to revision processing in stream query engines”. In: Proceedings of the
2nd International Workshop on Scalable Stream Processing System. SSPS ’08.
ACM, 2008, pp. 3–12.

[MP13a] C. Mutschler and M. Philippsen. “Distributed low-latency out-of-order
event processing for high data rate sensor streams”. In: Proceedings of
the 27th IEEE International Symposium on Parallel Distributed Processing.
IPDPS ’13. IEEE, 2013, pp. 1133–1144.

[MP13b] Christopher Mutschler and Michael Philippsen. “Reliable speculative
processing of out-of-order event streams in generic publish/subscribe
middlewares”. In: Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems. DEBS ’13. ACM, 2013, pp. 147–158.

[MZ10] B. Mozafari and C. Zaniolo. “Optimal load shedding with aggregates
and mining queries”. In: Proceedings of the 26th IEEE International Confer-
ence on Data Engineering. ICDE ’10. IEEE, 2010, pp. 76–88.

[MZJ13] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. “The DEBS
2013 grand challenge”. In: Proceedings of the 7th ACM International Con-
ference on Distributed Event-Based Systems. DEBS ’13. ACM, 2013, pp. 289–
294.

[Neu+10] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. “S4: distributed stream
computing platform”. In: 2010 IEEE International Conference on Data Min-
ing Workshops. ICDMW ’10. IEEE, 2010, pp. 170–177.

[NSJ13] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen.
“Flexible query processor on FPGAs”. In: Proc. VLDB Endow. 6.12 (2013),
pp. 1310–1313.

[Nyk+10] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios,
and Nick Koudas. “MRShare: sharing across multiple queries in MapRe-
duce”. In: Proc. VLDB Endow. 3.1-2 (2010), pp. 494–505.

[PS06] Kostas Patroumpas and Timos Sellis. “Window specification over data
streams”. In: Proceedings of the 2006 international conference on Current
Trends in Database Technology. EDBT’06. Springer-Verlag, 2006, pp. 445–
464.

167

BIBLIOGRAPHY

[Qia+13] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu,
Taizhi Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang. “TimeStream:
reliable stream computation in the cloud”. In: Proceedings of the 8th ACM
European Conference on Computer Systems. EuroSys ’13. ACM, 2013, pp. 1–
14.

[QMF13] D. L. Quoc, A. Martin, and C. Fetzer. “Scalable and real-time deep packet
inspection”. In: Proceedings of the 6th IEEE/ACM International Conference
on Utility and Cloud Computing. UCC ’13. IEEE, 2013, pp. 446–451.

[RD08] Florin Rusu and Alin Dobra. “Sketches for size of join Estimation”. In:
ACM Trans. Database Syst. 33.3 (2008), 15:1–15:46.

[Roy+00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. “Efficient
and extensible algorithms for multi query optimization”. In: Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’00. ACM, 2000, pp. 249–260.

[RR93] G. Ramalingam and Thomas Reps. “A categorized bibliography on
incremental computation”. In: Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’93.
ACM, 1993, pp. 502–510.

[RTG14] Pratanu Roy, Jens Teubner, and Rainer Gemulla. “Low-latency hand-
shake join”. In: Proc. VLDB Endow. 7.9 (2014), pp. 709–720.

[Ryv+06] Esther Ryvkina, Anurag Maskey, Mitch Cherniack, and Stanley B. Zdonik.
“Revision processing in a stream processing engine: a high-level design”.
In: Proceedings of the 22nd IEEE International Conference on Data Engineer-
ing. ICDE ’06. IEEE, 2006, p. 141.

[SAP] SAP Event Stream Processor. url: http://www.sap.com/pc/tech/
database / software / sybase - complex - event - processing / index .
html.

[Sar+09] Anish Das Sarma, Omar Benjelloun, Alon Halevy, Shubha Nabar, and
Jennifer Widom. “Representing uncertain data: models, properties, and
algorithms”. In: The VLDB Journal 18.5 (2009), pp. 989–1019.

[Sch+09] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K. L. Wu. “Elastic
scaling of data parallel operators in stream processing”. In: Proceedings
of the 2009 IEEE International Symposium on Parallel Distributed Processing.
IPDPS ’09. IEEE, 2009, pp. 1–12.

[SCL15] Anatoli U. Shein, Panos K. Chrysanthis, and Alexandros Labrinidis. “F1:
accelerating the optimization of aggregate continuous queries”. In: Pro-
ceedings of the 24th ACM International on Conference on Information and
Knowledge Management. CIKM ’15. ACM, 2015, pp. 1151–1160.

[SDS10] Thomas Schmid, Prabal Dutta, and Mani B. Srivastava. “High-resolution,
low-power time synchronization an oxymoron no more”. In: Proceedings
of the 9th ACM/IEEE International Conference on Information Processing in
Sensor Networks. IPSN ’10. ACM, 2010, pp. 151–161.

168

http://www.sap.com/pc/tech/database/software/sybase-complex-event-processing/index.html
http://www.sap.com/pc/tech/database/software/sybase-complex-event-processing/index.html
http://www.sap.com/pc/tech/database/software/sybase-complex-event-processing/index.html

BIBLIOGRAPHY

[Sel+79] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. “Access path selection in a relational database management
system”. In: Proceedings of the 1979 ACM SIGMOD international conference
on Management of data. SIGMOD ’79. ACM, 1979, pp. 23–34.

[Sel88] Timos K. Sellis. “Multiple-query optimization”. In: ACM Trans. Database
Syst. 13.1 (1988), pp. 23–52.

[Ses+09] S. Seshadri, Vibhore Kumar, B. Cooper, and Ling Liu. “A distributed
stream query optimization framework through integrated planning and
deployment”. In: IEEE Trans. Parallel Distrib. Syst 20.10 (2009), pp. 1439–
1453.

[Sha11] Zheng Shao. “Real-time analytics at Facebook”. In: XLDB5 (2011). url:
http://stanford.io/1HqxPmw.

[Sik+13] Vishal Sikka, Franz Färber, Anil Goel, and Wolfgang Lehner. “SAP
HANA: the evolution from a modern main-memory data platform to
an enterprise application platform”. In: Proc. VLDB Endow. 6.11 (2013),
pp. 1184–1185.

[SL90] Amit P. Sheth and James A. Larson. “Federated database systems for
managing distributed, heterogeneous, and autonomous databases”. In:
ACM Comput. Surv. 22.3 (1990), pp. 183–236.

[SS94] Arun Swami and K. Bernhard Schiefer. “On the estimation of join re-
sult Sizes”. In: Proceedings of the 4th International Conference on Extending
Database Technology: Advances in Database Technology. EDBT ’94. Springer-
Verlag New York, Inc., 1994, pp. 287–300.

[Sto] Storm. url: http://storm.apache.org/.

[Sto+05] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,
Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. “C-
store: a column-oriented DBMS”. In: Proceedings of the 31st International
Conference on Very Large Data Bases. VLDB ’05. VLDB Endowment, 2005,
pp. 553–564.

[SW04a] Utkarsh Srivastava and Jennifer Widom. “Flexible time management in
data stream systems”. In: Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. PODS ’04.
ACM, 2004, pp. 263–274.

[SW04b] Utkarsh Srivastava and Jennifer Widom. “Memory-limited execution of
windowed stream joins”. In: Proceedings of the 30th International Confer-
ence on Very Large Data Bases - Volume 30. VLDB ’04. VLDB Endowment,
2004, pp. 324–335.

[SY93] James W. Stamos and Honesty C. Young. “A symmetric fragment and
replicate algorithm for distributed joins”. In: IEEE Trans. Parallel Distrib.
Syst. 4.12 (1993), pp. 1345–1354.

[Tan+15] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu.
“General incremental sliding-window aggregation”. In: Proc. VLDB En-
dow. 8.7 (2015), pp. 702–713.

169

http://stanford.io/1HqxPmw
http://storm.apache.org/

BIBLIOGRAPHY

[Tat+03] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and
Michael Stonebraker. “Load shedding in a data stream manager”. In:
Proceedings of the 29th international conference on Very large data bases -
Volume 29. VLDB ’03. VLDB Endowment, 2003, pp. 309–320.

[Ter+92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. “Con-
tinuous queries over append-only databases”. In: Proceedings of the 1992
ACM SIGMOD international conference on Management of data. SIGMOD
’92. ACM, 1992, pp. 321–330.

[TM11] Jens Teubner and Rene Mueller. “How soccer players would do stream
joins”. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’11. ACM, 2011, pp. 625–636.

[TMA10] J. Teubner, R. Mueller, and G. Alonso. “FPGA acceleration for the fre-
quent item problem”. In: Proceedings of the 26th IEEE International Confer-
ence on Data Engineering. ICDE ’10. IEEE, 2010, pp. 669–680.

[Tos+14] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jig-
nesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong
Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy.
“Storm@Twitter”. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’14. ACM, 2014, pp. 147–156.

[Tra+12] Thanh T. Tran, Liping Peng, Yanlei Diao, Andrew Mcgregor, and Anna
Liu. “CLARO: modeling and processing uncertain data streams”. In:
The VLDB Journal 21.5 (2012), pp. 651–676.

[Tri] Trident. url: http://storm.apache.org/releases/1.0.0/Trident-
tutorial.html.

[Tuc+03] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. “Ex-
ploiting punctuation semantics in continuous data streams”. In: IEEE
Trans. on Knowl. and Data Eng. 15.3 (2003), pp. 555–568.

[TXB06] Srikanta Tirthapura, Bojian Xu, and Costas Busch. “Sketching asyn-
chronous streams over a sliding window”. In: Proceedings of the Twenty-
fifth Annual ACM Symposium on Principles of Distributed Computing. PODC
’06. ACM, 2006, pp. 82–91.

[VN02] Stratis D. Viglas and Jeffrey F. Naughton. “Rate-based query optimiza-
tion for streaming information sources”. In: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. SIGMOD ’02.
ACM, 2002, pp. 37–48.

[VNB03] Stratis D. Viglas, Jeffrey F. Naughton, and Josef Burger. “Maximizing
the output rate of multi-way join queries over streaming information
sources”. In: Proceedings of the 29th international conference on Very large
data bases - Volume 29. VLDB ’03. VLDB Endowment, 2003, pp. 285–296.

[Wan+06] Song Wang, Elke Rundensteiner, Samrat Ganguly, and Sudeept Bhatna-
gar. “State-slice: new paradigm of multi-query optimization of window-
based stream queries”. In: Proceedings of the 32nd International Conference
on Very Large Data Bases. VLDB ’06. VLDB Endowment, 2006, pp. 619–
630.

170

http://storm.apache.org/releases/1.0.0/Trident-tutorial.html
http://storm.apache.org/releases/1.0.0/Trident-tutorial.html

BIBLIOGRAPHY

[Wan+13] Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. “Quantiles over data
streams: an experimental study”. In: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data. SIGMOD. ACM,
2013, pp. 737–748.

[WR09] Song Wang and Elke Rundensteiner. “Scalable stream join processing
with expensive predicates: workload distribution and adaptation by
time-slicing”. In: Proceedings of the 12th International Conference on Extend-
ing Database Technology: Advances in Database Technology. EDBT ’09. ACM,
2009, pp. 299–310.

[WTZ07] Ji Wu, K.-L. Tan, and Yongluan Zhou. “Window-oblivious join: a data-
driven memory management scheme for stream join”. In: Proceedings
of the 19th International Conference on Scientific and Statistical Database.
SSDBM ’07. IEEE, 2007, pp. 21–30.

[YP08] Yin Yang and D. Papadias. “Just-in-time processing of continuous queries”.
In: Proceedings of the 24th IEEE International Conference on Data Engineer-
ing. ICDE ’08. 2008, pp. 1150–1159.

[Zah+13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. “Discretized streams: fault-tolerant streaming compu-
tation at scale”. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. SOSP ’13. ACM, 2013, pp. 423–438.

[Zho+07] Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, and Wolfgang
Lehner. “Efficient exploitation of similar sub-expressions for query pro-
cessing”. In: Proceedings of the 2007 ACM SIGMOD International Confer-
ence on Management of Data. SIGMOD ’07. ACM, 2007, pp. 533–544.

[ZLY08] Qin Zhang, Feifei Li, and Ke Yi. “Finding frequent items in probabilistic
data”. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’08. ACM, 2008, pp. 819–832.

[ZN42] J. G. Ziegler and N. B. Nichols. “Optimum Settings for Automatic Con-
trollers”. In: Trans. of ASME 64 (1942), pp. 759–768.

[ZS02] Yunyue Zhu and Dennis Shasha. “StatStream: statistical monitoring of
thousands of data streams in real time”. In: Proceedings of the 28th Interna-
tional Conference on Very Large Data Bases. VLDB ’02. VLDB Endowment,
2002, pp. 358–369.

171

	Publications
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Tradeoffs between Performance and Query-Result Quality
	Research Questions and Contributions
	Dissertation Outline

	Background
	Data Stream Processing
	Data Model
	Query Model
	Query Execution Model

	Handling Data Imperfection in Data Streams
	Common Types of Data Imperfection
	Approaches for Handling Data Imperfection

	Handling System Limitations of DSPSs
	Approaches for Enhancing a DSPS
	Approaches of Trading Result-Quality for Performance

	Summary

	Providing Flexible Tradeoff via Quality-Driven Disorder Handling
	Motivation
	Buffer-Based Disorder Handling
	Handling Intra-Stream Disorder
	Handling Inter-Stream Disorder

	Buffer-Based Quality-Driven Disorder Handling (QDDH) Framework
	Quality-Driven Buffer-Size Adaptation
	Analytical-Model-Based Buffer-Size Adaptation
	Control-based Buffer-Size Adaptation

	Related Work
	Disorder Handling Approaches
	Load Shedding

	Summary

	Quality-Driven Disorder Handling for Individual Queries
	QDDH for Sliding-Window Aggregate Queries
	Result-Quality Metric
	QDDH-Framework Instantiation Overview
	Calculating Window-Coverage Threshold
	Measuring Window Coverages at Runtime
	Analytical-Model-Based Buffer-Size Adaptation
	Control-Based Buffer-Size Adaptation

	QDDH for M-way Sliding-Window Join Queries
	Result-Quality Metric
	QDDH-Framework Instantiation Overview
	The Same-K Policy
	Analytical-Model-Based Buffer-Size Adaptation
	Control-Based Buffer-Size Adaptation
	Applicability in Distributed Join Processing

	Evaluation
	Implementation and Setup
	Baseline Disorder Handling Approaches and Results
	Effectiveness of QDDH
	Effect of Important System Parameters
	Overhead of Buffer-Size Adaptation
	Summary of Experimental Results

	Summary

	Quality-Driven Disorder Handling for Concurrent Queries with Shared Operators
	Introduction
	QDDH-Framework Instantiation Overview
	Shared Disorder Handling Using K-Slack Chain
	Memory-Optimal QDDH
	Solution for Individual Branch Operators
	Solution for a Subplan

	Runtime Adaptation
	Strategies for Triggering Adaptations
	Semantics-Preserving Adaptations

	Evaluation
	Setup
	Performance of Alternative Algorithms for Computing K-slack Configurations
	Overhead of Runtime Adaptation

	Related Work
	Summary

	Reducing the Tradeoff via Hybrid Query Execution
	Introduction
	Hybrid Execution of a Continuous Query
	Query Optimization
	The Optimization Objective
	The Cost Model
	Two-Phase Optimization
	Search-Space Pruning in Phase-Two of the Query Optimization

	Evaluation
	Optimization Time
	Effectiveness of the Proposed Optimizer
	Influence of the Plan-Feasibility Check

	Related Work
	Summary

	Conclusion
	Summary
	Outlook

	Symbols
	Index
	Bibliography

