523 research outputs found

    Indigenous governance bibliography

    Get PDF
    AIATSIS has compiled this bibliography on Indigenous governance as part of its Indigenous Governance Building: Mapping current and future research and practical resource needs project. It is to be read in conjunction with an AIATSIS bibliography on free, prior and informed consent, engagement and consultation, and other bibliographies relating to various aspects of Indigenous governance which have been included in the following pages and are also available via the project webpage linked above. The term ‘governance’ is wide reaching and it has not been possible to cover all Indigenous governance related topics comprehensively. Within the context of this project governance is broadly defined as a cultural construct where the principles and standards of what constitutes ‘good’, ‘good enough’, ‘strong’, ‘legitimate’, ‘ineffective’, ‘corrupt’ or ‘bad’ governance are informed by culturally-based values, traditions and ideologies; and vary significantly between different societies. There is no end-point goal of ‘perfect’ governance that will eventually be achieved in the future. Rather, governance is adaptive according to context and circumstances. This means it may swing between effectiveness and dysfunction. It is to be found as much in people’s daily self-determined practices, processes and relationships, as it is in visible structures and formal institutions

    Resources and benchmark corpora for hate speech detection: a systematic review

    Get PDF
    Hate Speech in social media is a complex phenomenon, whose detection has recently gained significant traction in the Natural Language Processing community, as attested by several recent review works. Annotated corpora and benchmarks are key resources, considering the vast number of supervised approaches that have been proposed. Lexica play an important role as well for the development of hate speech detection systems. In this review, we systematically analyze the resources made available by the community at large, including their development methodology, topical focus, language coverage, and other factors. The results of our analysis highlight a heterogeneous, growing landscape, marked by several issues and venues for improvement

    Scalable Data Integration for Linked Data

    Get PDF
    Linked Data describes an extensive set of structured but heterogeneous datasources where entities are connected by formal semantic descriptions. In thevision of the Semantic Web, these semantic links are extended towards theWorld Wide Web to provide as much machine-readable data as possible forsearch queries. The resulting connections allow an automatic evaluation to findnew insights into the data. Identifying these semantic connections betweentwo data sources with automatic approaches is called link discovery. We derivecommon requirements and a generic link discovery workflow based on similaritiesbetween entity properties and associated properties of ontology concepts. Mostof the existing link discovery approaches disregard the fact that in times ofBig Data, an increasing volume of data sources poses new demands on linkdiscovery. In particular, the problem of complex and time-consuming linkdetermination escalates with an increasing number of intersecting data sources.To overcome the restriction of pairwise linking of entities, holistic clusteringapproaches are needed to link equivalent entities of multiple data sources toconstruct integrated knowledge bases. In this context, the focus on efficiencyand scalability is essential. For example, reusing existing links or backgroundinformation can help to avoid redundant calculations. However, when dealingwith multiple data sources, additional data quality problems must also be dealtwith. This dissertation addresses these comprehensive challenges by designingholistic linking and clustering approaches that enable reuse of existing links.Unlike previous systems, we execute the complete data integration workflowvia a distributed processing system. At first, the LinkLion portal will beintroduced to provide existing links for new applications. These links act asa basis for a physical data integration process to create a unified representationfor equivalent entities from many data sources. We then propose a holisticclustering approach to form consolidated clusters for same real-world entitiesfrom many different sources. At the same time, we exploit the semantic typeof entities to improve the quality of the result. The process identifies errorsin existing links and can find numerous additional links. Additionally, theentity clustering has to react to the high dynamics of the data. In particular,this requires scalable approaches for continuously growing data sources withmany entities as well as additional new sources. Previous entity clusteringapproaches are mostly static, focusing on the one-time linking and clustering ofentities from few sources. Therefore, we propose and evaluate new approaches for incremental entity clustering that supports the continuous addition of newentities and data sources. To cope with the ever-increasing number of LinkedData sources, efficient and scalable methods based on distributed processingsystems are required. Thus we propose distributed holistic approaches to linkmany data sources based on a clustering of entities that represent the samereal-world object. The implementation is realized on Apache Flink. In contrastto previous approaches, we utilize efficiency-enhancing optimizations for bothdistributed static and dynamic clustering. An extensive comparative evaluationof the proposed approaches with various distributed clustering strategies showshigh effectiveness for datasets from multiple domains as well as scalability on amulti-machine Apache Flink cluster

    Entities with quantities : extraction, search, and ranking

    Get PDF
    Quantities are more than numeric values. They denote measures of the world’s entities such as heights of buildings, running times of athletes, energy efficiency of car models or energy production of power plants, all expressed in numbers with associated units. Entity-centric search and question answering (QA) are well supported by modern search engines. However, they do not work well when the queries involve quantity filters, such as searching for athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. State-of-the-art systems fail to understand the quantities, including the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.). QA systems based on structured knowledge bases (KBs) also fail as quantities are poorly covered by state-of-the-art KBs. In this dissertation, we developed new methods to advance the state-of-the-art on quantity knowledge extraction and search.Zahlen sind mehr als nur numerische Werte. Sie beschreiben Maße von EntitĂ€ten wie die Höhe von GebĂ€uden, die Laufzeit von Sportlern, die Energieeffizienz von Automodellen oder die Energieerzeugung von Kraftwerken - jeweils ausgedrĂŒckt durch Zahlen mit zugehörigen Einheiten. EntitĂ€tszentriete Anfragen und direktes Question-Answering werden von Suchmaschinen hĂ€ufig gut unterstĂŒtzt. Sie funktionieren jedoch nicht gut, wenn die Fragen Zahlenfilter beinhalten, wie z. B. die Suche nach Sportlern, die 200m unter 20 Sekunden gelaufen sind, oder nach Unternehmen mit einem Quartalsumsatz von ĂŒber 2 Milliarden US-Dollar. Selbst moderne Systeme schaffen es nicht, QuantitĂ€ten, einschließlich der genannten Bedingungen (weniger als, ĂŒber, etc.), der Maßeinheiten (Sekunden, Dollar, etc.) und des Kontexts (200-Meter-Rennen, Quartalsumsatz usw.), zu verstehen. Auch QA-Systeme, die auf strukturierten Wissensbanken (“Knowledge Bases”, KBs) aufgebaut sind, versagen, da quantitative Eigenschaften von modernen KBs kaum erfasst werden. In dieser Dissertation werden neue Methoden entwickelt, um den Stand der Technik zur Wissensextraktion und -suche von QuantitĂ€ten voranzutreiben. Unsere HauptbeitrĂ€ge sind die folgenden: ‱ ZunĂ€chst prĂ€sentieren wir Qsearch [Ho et al., 2019, Ho et al., 2020] – ein System, das mit erweiterten Fragen mit QuantitĂ€tsfiltern umgehen kann, indem es Hinweise verwendet, die sowohl in der Frage als auch in den Textquellen vorhanden sind. Qsearch umfasst zwei HauptbeitrĂ€ge. Der erste Beitrag ist ein tiefes neuronales Netzwerkmodell, das fĂŒr die Extraktion quantitĂ€tszentrierter Tupel aus Textquellen entwickelt wurde. Der zweite Beitrag ist ein neuartiges Query-Matching-Modell zum Finden und zur Reihung passender Tupel. ‱ Zweitens, um beim Vorgang heterogene Tabellen einzubinden, stellen wir QuTE [Ho et al., 2021a, Ho et al., 2021b] vor – ein System zum Extrahieren von QuantitĂ€tsinformationen aus Webquellen, insbesondere Ad-hoc Webtabellen in HTML-Seiten. Der Beitrag von QuTE umfasst eine Methode zur VerknĂŒpfung von QuantitĂ€ts- und EntitĂ€tsspalten, fĂŒr die externe Textquellen genutzt werden. Zur Beantwortung von Fragen kontextualisieren wir die extrahierten EntitĂ€ts-QuantitĂ€ts-Paare mit informativen Hinweisen aus der Tabelle und stellen eine neue Methode zur Konsolidierung und verbesserteer Reihung von Antwortkandidaten durch Inter-Fakten-Konsistenz vor. ‱ Drittens stellen wir QL [Ho et al., 2022] vor – eine Recall-orientierte Methode zur Anreicherung von Knowledge Bases (KBs) mit quantitativen Fakten. Moderne KBs wie Wikidata oder YAGO decken viele EntitĂ€ten und ihre relevanten Informationen ab, ĂŒbersehen aber oft wichtige quantitative Eigenschaften. QL ist frage-gesteuert und basiert auf iterativem Lernen mit zwei HauptbeitrĂ€gen, um die KB-Abdeckung zu verbessern. Der erste Beitrag ist eine Methode zur Expansion von Fragen, um einen grĂ¶ĂŸeren Pool an Faktenkandidaten zu erfassen. Der zweite Beitrag ist eine Technik zur Selbstkonsistenz durch BerĂŒcksichtigung der Werteverteilungen von QuantitĂ€ten

    Semantic multimedia modelling & interpretation for search & retrieval

    Get PDF
    With the axiomatic revolutionary in the multimedia equip devices, culminated in the proverbial proliferation of the image and video data. Owing to this omnipresence and progression, these data become the part of our daily life. This devastating data production rate accompanies with a predicament of surpassing our potentials for acquiring this data. Perhaps one of the utmost prevailing problems of this digital era is an information plethora. Until now, progressions in image and video retrieval research reached restrained success owed to its interpretation of an image and video in terms of primitive features. Humans generally access multimedia assets in terms of semantic concepts. The retrieval of digital images and videos is impeded by the semantic gap. The semantic gap is the discrepancy between a user’s high-level interpretation of an image and the information that can be extracted from an image’s physical properties. Content- based image and video retrieval systems are explicitly assailable to the semantic gap due to their dependence on low-level visual features for describing image and content. The semantic gap can be narrowed by including high-level features. High-level descriptions of images and videos are more proficient of apprehending the semantic meaning of image and video content. It is generally understood that the problem of image and video retrieval is still far from being solved. This thesis proposes an approach for intelligent multimedia semantic extraction for search and retrieval. This thesis intends to bridge the gap between the visual features and semantics. This thesis proposes a Semantic query Interpreter for the images and the videos. The proposed Semantic Query Interpreter will select the pertinent terms from the user query and analyse it lexically and semantically. The proposed SQI reduces the semantic as well as the vocabulary gap between the users and the machine. This thesis also explored a novel ranking strategy for image search and retrieval. SemRank is the novel system that will incorporate the Semantic Intensity (SI) in exploring the semantic relevancy between the user query and the available data. The novel Semantic Intensity captures the concept dominancy factor of an image. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other. The SemRank will rank the retrieved images on the basis of Semantic Intensity. The investigations are made on the LabelMe image and LabelMe video dataset. Experiments show that the proposed approach is successful in bridging the semantic gap. The experiments reveal that our proposed system outperforms the traditional image retrieval systems

    Modeling Users' Information Needs in a Document Recommender for Meetings

    Get PDF
    People are surrounded by an unprecedented wealth of information. Access to it depends on the availability of suitable search engines, but even when these are available, people often do not initiate a search, because their current activity does not allow them, or they are not aware of the existence of this information. Just-in-time retrieval brings a radical change to the process of query-based retrieval, by proactively retrieving documents relevant to users' current activities, in an easily accessible and non-intrusive manner. This thesis presents a novel set of methods intended to improve the relevance of a just-in-time retrieval system, specifically a document recommender system designed for conversations, in terms of precision and diversity of results. Additionally, we designed an evaluation protocol to compare the proposed methods in the thesis with other ones using crowdsourcing. In contrast to previous systems, which model users' information needs by extracting keywords from clean and well-structured texts, this system models them from the conversation transcripts, which contain noise from automatic speech recognition (ASR) and have a free structure, often switching between several topics. To deal with these issues, we first propose a novel keyword extraction method which preserves both the relevance and the diversity of topics of the conversation, to properly capture possible users' needs with minimum ASR noise. Implicit queries are then built from these keywords. However, the presence of multiple unrelated topics in one query introduces significant noise into the retrieval results. To reduce this effect, we separate users' needs by topically clustering keyword sets into several subsets or implicit queries. We introduce a merging method which combines the results of multiple queries which are prepared from users' conversation to generate a concise, diverse and relevant list of documents. This method ensures that the system does not distract its users from their current conversation by frequently recommending them a large number of documents. Moreover, we address the problem of explicit queries that may be asked by users during a conversation. We introduce a query refinement method which leverages the conversation context to answer the users' information needs without asking for additional clarifications and therefore, again, avoiding to distract users during their conversation. Finally, we implemented the end-to-end document recommender system by integrating the ideas proposed in this thesis and then proposed an evaluation scenario with human users in a brainstorming meeting
    • 

    corecore