153,951 research outputs found

    Motility at the origin of life: Its characterization and a model

    Full text link
    Due to recent advances in synthetic biology and artificial life, the origin of life is currently a hot topic of research. We review the literature and argue that the two traditionally competing "replicator-first" and "metabolism-first" approaches are merging into one integrated theory of individuation and evolution. We contribute to the maturation of this more inclusive approach by highlighting some problematic assumptions that still lead to an impoverished conception of the phenomenon of life. In particular, we argue that the new consensus has so far failed to consider the relevance of intermediate timescales. We propose that an adequate theory of life must account for the fact that all living beings are situated in at least four distinct timescales, which are typically associated with metabolism, motility, development, and evolution. On this view, self-movement, adaptive behavior and morphological changes could have already been present at the origin of life. In order to illustrate this possibility we analyze a minimal model of life-like phenomena, namely of precarious, individuated, dissipative structures that can be found in simple reaction-diffusion systems. Based on our analysis we suggest that processes in intermediate timescales could have already been operative in prebiotic systems. They may have facilitated and constrained changes occurring in the faster- and slower-paced timescales of chemical self-individuation and evolution by natural selection, respectively.Comment: 29 pages, 5 figures, Artificial Lif

    THE DYNAMICS OF LAND-COVER CHANGE IN WESTERN HONDURAS: SPATIAL AUTOCORRELATION AND TEMPORAL VARIATION

    Get PDF
    This paper presents an econometric analysis of land-cover change in western Honduras. Ground-truthed satellite image analysis indicates that between 1987 and 1996, net reforestation occurred in the 1,015.12 km2 study region. While some reforestation can be attributed to a 1987 ban on logging, the area of reforestation greatly exceeds that of previously clear-cut areas. Further, new area was also deforested between 1987-1996. Thus, the observed land-cover changes most likely represent a complex mosaic of changing land-use patterns across time and space. We estimate a random-effects probit model to capture drivers of land-cover change that are spatial, temporal or both. We employ two techniques to correct for spatial error dependence in econometric analysis suitable to qualitative dependent variables. Lastly, we simulate the impact of anticipated changes in transportation costs on land cover. We find that market accessibility, increase in national coffee prices, and agricultural suitability are the most important determinants of recent land-cover change.Land Economics/Use,

    Biological processes and links to the physics

    Get PDF
    Analysis of the temporal and spatial variability of biological processes and identification of the main variables that drive the dynamic regime of marine ecosystems is complex. Correlation between physical variables and long-term changes in ecosystems has routinely been identified, but the specific mechanisms involved remain often unclear. Reasons for this could be various: the ecosystem can be very sensitive to the seasonal timing of the anomalous physical forcing; the ecosystem can be contemporaneously influenced by many physical variables and the ecosystem can generate intrinsic variability on climate time scales. Marine ecosystems are influenced by a variety of physical factors, e.g., light, temperature, transport, turbulence. Temperature has a fundamental forcing function in biology, with direct influences on rate processes of organisms and on the distribution of mobile species that have preferred temperature ranges. Light and transport also affect the physiology and distribution of marine organisms. Small-scale turbulence determines encounter between larval fish and their prey and additionally influences the probability of successful pursuit and ingestion. The impact of physical forcing variations on biological processes is studied through long-term observations, process studies, laboratory experiments, retrospective analysis of existing data sets and modelling. This manuscript reviews the diversity of physical influences on biological processes, marine organisms and ecosystems and their variety of responses to physical forcing with special emphasis on the dynamics of zooplankton and fish stocks

    Lubricating Bacteria Model for Branching growth of Bacterial Colonies

    Full text link
    Various bacterial strains (e.g. strains belonging to the genera Bacillus, Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns during growth on poor semi-solid substrates. These patterns reflect the bacterial cooperative self-organization. Central part of the cooperation is the collective formation of lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by nonlinear diffusion coefficient branching patterns evolves. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.

    The *subjectivity* of subjective experience - A representationalist analysis of the first-person perspective

    Get PDF
    This is a brief and accessible English summary of the "Self-model Theory of Subjectivity" (SMT), which is only available as German book in this archive. It introduces two new theoretical entities, the "phenomenal self-model" (PSM) and the "phenomenal model of the intentionality-relation" PMIR. A representationalist analysis of the phenomenal first-person persepctive is offered. This is a revised version, including two pictures
    • …
    corecore