487 research outputs found

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    CUSTOMIZING APPLICATION HEADERS FOR IMPROVED WARFIGHTING COMMUNICATIONS

    Get PDF
    Currently, U.S. Navy shipboard communications have a great disadvantage: the data rates of satellite links are limited, typically below 4 Mbps for each link. Improving efficient utilization of these links while out to sea is paramount to maintaining our military advantage. Also, any improvement must be transparent to end user functionality. This thesis first explored implementing a free version of a commercial-off-the-shelf wide area network (WAN) optimizer, Artica, on a simulated shipboard network consisting of three local area networks (LAN). Artica works by performing auto-corrections on some web traffic and changing the transmission control protocol (TCP) window sizes. Results from browsing Alexa's top 1,000 websites on the LANs show that Artica can speed up web traffic by 13–26% at link speeds between 1.544 and 8 Mbps. It then explored compressing Domain Name System (DNS) traffic by filtering out IPv6-related queries and removing unused fields of DNS queries and responses. Experimental results show that DNS compression did not significantly improve web traffic performance, which highlights the importance of selecting traffic-intensive applications to compress and control compression-induced processing overhead. Finally, the thesis explored whether Artica and the custom DNS compression program can be deployed together. In summary, this thesis shows that using WAN optimization techniques and saving bits over a slow data rate link can effectively speed up web traffic.NIWC PACLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF

    Stable Infrastructure-based Routing for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITSs) have been instrumental in reshaping transportation towards safer roads, seamless logistics, and digital business-oriented services under the umbrella of smart city platforms. Undoubtedly, ITS applications will demand stable routing protocols that not only focus on Inter-Vehicle Communications but also on providing a fast, reliable and secure interface to the infrastructure. In this paper, we propose a novel stable infrastructure- based routing protocol for urban VANETs. It enables vehicles proactively to maintain fresh routes towards Road-Side Units (RSUs) while reactively discovering routes to nearby vehicles. It builds routes from highly stable connected intersections using a selection policy which uses a new intersection stability metric. Simulation experiments performed with accurate mobility and propagation models have confirmed the efficiency of the new protocol and its adaptability to continuously changing network status in the urban environment

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Technology Directions for the 21st Century

    Get PDF
    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services

    Active congestion control using ABCD (available bandwidth-based congestion detection).

    Get PDF
    With the growth of the Internet, the problem of congestion has attained the distinction of being a perennial problem. The Internet community has been trying several approaches for improved congestion control techniques. The end-to-end approach is considered to be the most robust one and it has served quite well until recently, when researchers started to explore the information available at the intermediate node level. This approach triggered a new field called Active Networks where intermediate nodes have a much larger role to play than that of the naive nodes. This thesis proposes an active congestion control (ACC) scheme based on Available Bandwidth-based Congestion Detection (ABCD), which regulates the traffic according to network conditions. Dynamic changes in the available bandwidth can trigger re-negotiation of flow rate. We have introduced packet size adjustment at the intermediate router in addition to rate control at sender node, scaled according to the available bandwidth, which is estimated using three packet probes. To verify the improved scheme, we have extended Ted Faber\u27s ACC work in NS-2 simulator. With this simulator we verify ACC-ABCD\u27s gains such as a marginal improvement in average TCP throughput at each endpoint, fewer packet drops and improved fairness index. Our tests on NS-2 prove that the ACC-ABCD technique yields better results as compared to TCP congestion control with or without the cross traffic. Source: Masters Abstracts International, Volume: 43-03, page: 0870. Adviser: A. K. Aggarwal. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Fog Computing

    Get PDF
    Everything that is not a computer, in the traditional sense, is being connected to the Internet. These devices are also referred to as the Internet of Things and they are pressuring the current network infrastructure. Not all devices are intensive data producers and part of them can be used beyond their original intent by sharing their computational resources. The combination of those two factors can be used either to perform insight over the data closer where is originated or extend into new services by making available computational resources, but not exclusively, at the edge of the network. Fog computing is a new computational paradigm that provides those devices a new form of cloud at a closer distance where IoT and other devices with connectivity capabilities can offload computation. In this dissertation, we have explored the fog computing paradigm, and also comparing with other paradigms, namely cloud, and edge computing. Then, we propose a novel architecture that can be used to form or be part of this new paradigm. The implementation was tested on two types of applications. The first application had the main objective of demonstrating the correctness of the implementation while the other application, had the goal of validating the characteristics of fog computing.Tudo o que não é um computador, no sentido tradicional, está sendo conectado à Internet. Esses dispositivos também são chamados de Internet das Coisas e estão pressionando a infraestrutura de rede atual. Nem todos os dispositivos são produtores intensivos de dados e parte deles pode ser usada além de sua intenção original, compartilhando seus recursos computacionais. A combinação desses dois fatores pode ser usada para realizar processamento dos dados mais próximos de onde são originados ou estender para a criação de novos serviços, disponibilizando recursos computacionais periféricos à rede. Fog computing é um novo paradigma computacional que fornece a esses dispositivos uma nova forma de nuvem a uma distância mais próxima, onde “Things” e outros dispositivos com recursos de conectividade possam delegar processamento. Nesta dissertação, exploramos fog computing e também comparamos com outros paradigmas, nomeadamente cloud e edge computing. Em seguida, propomos uma nova arquitetura que pode ser usada para formar ou fazer parte desse novo paradigma. A implementação foi testada em dois tipos de aplicativos. A primeira aplicação teve o objetivo principal de demonstrar a correção da implementação, enquanto a outra aplicação, teve como objetivo validar as características de fog computing

    Wireless networks

    Get PDF
    This module provides an introduction to wireless networks in general and wireless LANs in particular. It describes and explains what the different wireless technologies are, their main features, security issues, advantages, disadvantages and uses or applications.Peer ReviewedPostprint (published version
    corecore