
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2021-09

CUSTOMIZING APPLICATION HEADERS FOR
IMPROVED WARFIGHTING COMMUNICATIONS

Pittner, Kenneth J.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/68372

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

CUSTOMIZING APPLICATION HEADERS FOR
IMPROVED WARFIGHTING COMMUNICATIONS

by

Kenneth J. Pittner

September 2021

Thesis Advisor: Geoffrey G. Xie
Second Reader: Vinnie Monaco

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2021 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
CUSTOMIZING APPLICATION HEADERS FOR IMPROVED
WARFIGHTING COMMUNICATIONS

 5. FUNDING NUMBERS

 RCQ5H

 6. AUTHOR(S) Kenneth J. Pittner

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
NIWC PAC, San Diego, CA 92152

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Currently, U.S. Navy shipboard communications have a great disadvantage: the data rates of satellite
links are limited, typically below 4 Mbps for each link. Improving efficient utilization of these links while
out to sea is paramount to maintaining our military advantage. Also, any improvement must be transparent
to end user functionality. This thesis first explored implementing a free version of a
commercial-off-the-shelf wide area network (WAN) optimizer, Artica, on a simulated shipboard network
consisting of three local area networks (LAN). Artica works by performing auto-corrections on some web
traffic and changing the transmission control protocol (TCP) window sizes. Results from browsing Alexa’s
top 1,000 websites on the LANs show that Artica can speed up web traffic by 13–26% at link speeds
between 1.544 and 8 Mbps. It then explored compressing Domain Name System (DNS) traffic by filtering
out IPv6-related queries and removing unused fields of DNS queries and responses. Experimental results
show that DNS compression did not significantly improve web traffic performance, which highlights the
importance of selecting traffic-intensive applications to compress and control compression-induced
processing overhead. Finally, the thesis explored whether Artica and the custom DNS compression program
can be deployed together. In summary, this thesis shows that using WAN optimization techniques and
saving bits over a slow data rate link can effectively speed up web traffic.

 14. SUBJECT TERMS
network, networking, compression, efficiency, satellites, SATCOM, protocol compression 15. NUMBER OF

PAGES
 83
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CUSTOMIZING APPLICATION HEADERS FOR IMPROVED WARFIGHTING
COMMUNICATIONS

Kenneth J. Pittner
Lieutenant, United States Navy
BS, U.S. Naval Academy, 2014

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2021

Approved by: Geoffrey G. Xie
 Advisor

 Vinnie Monaco
 Second Reader

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Currently, U.S. Navy shipboard communications have a great disadvantage: the

data rates of satellite links are limited, typically below 4 Mbps for each link. Improving

efficient utilization of these links while out to sea is paramount to maintaining our

military advantage. Also, any improvement must be transparent to end user functionality.

This thesis first explored implementing a free version of a commercial-off-the-shelf wide

area network (WAN) optimizer, Artica, on a simulated shipboard network consisting of

three local area networks (LAN). Artica works by performing auto-corrections on some

web traffic and changing the transmission control protocol (TCP) window sizes. Results

from browsing Alexa’s top 1,000 websites on the LANs show that Artica can speed up

web traffic by 13–26% at link speeds between 1.544 and 8 Mbps. It then explored

compressing Domain Name System (DNS) traffic by filtering out IPv6-related queries

and removing unused fields of DNS queries and responses. Experimental results show

that DNS compression did not significantly improve web traffic performance, which

highlights the importance of selecting traffic-intensive applications to compress and

control compression-induced processing overhead. Finally, the thesis explored whether

Artica and the custom DNS compression program can be deployed together. In summary,

this thesis shows that using WAN optimization techniques and saving bits over a slow

data rate link can effectively speed up web traffic.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Problem Statement. 2
1.2 Research Questions . 2
1.3 Thesis Organization . 3

2 Background 5
2.1 Network Traffic Compression 5
2.2 Virtual Networks . 6
2.3 Protocol to be Explored . 10
2.4 DNS . 11
2.5 Related Works . 13

3 Experimental Design 15
3.1 Testbed Design . 15
3.2 Algorithmic Choices . 18
3.3 Selection of Performance Metrics 21

4 Implementation and Integration 23
4.1 Experimental Configurations. 23
4.2 Experimental Flow . 26
4.3 Results . 27
4.4 Chapter Summary . 30

5 Conclusion 35
5.1 Future Work . 36

Appendix A Network Setup 39
A.1 Create the User Machines . 40
A.2 Create the Routers . 41

vii

Appendix B Source Code 45
B.1 create_traffic.py . 45
B.2 for_all_start.sh . 47
B.3 trials.sh . 48
B.4 tc.sh . 48
B.5 start.sh . 49
B.6 control_run.sh . 49
B.7 kill_all.sh . 50
B.8 finish_check.sh . 51
B.9 shore dns_shore_server.py. 52
B.10 ship dns_server.py . 54

Appendix C Artica Setup 59

List of References 61

Initial Distribution List 65

viii

List of Figures

Figure 2.1 WAN Notional Concept. Source: [7] 6

Figure 2.2 NAT Example. Source: [9] . 8

Figure 2.3 SSH Communication Depiction. Source: [15] 10

Figure 2.4 DNS Process Illustration. Source: [16] 12

Figure 2.5 DNS Header Illustration. Source: [18] 12

Figure 3.1 Shipboard Topology Map . 16

Figure 3.2 DNS Process Illustration. Adapted From: [16] and [18] 19

Figure 4.1 Baseline Topology Map . 24

Figure 4.2 Artica Topology Map . 25

Figure 4.3 Flow Diagram . 26

Figure 4.4 2 Mbps Box Plot . 28

Figure 4.5 300 Mbps Box Plot . 28

Figure 4.6 Comparisons of Configurations by Network Speeds 32

Figure 4.7 CDF Comparisons by Experimental Configuration 33

Figure A.1 Basic Network Configuration 39

Figure A.2 Artica Network Configuration 40

Figure A.3 sysctl.conf Sample Image . 42

Figure A.4 setup_iptables.sh . 43

Figure A.5 setup_iptables.sh For ship_gateway_router 43

Figure C.1 Artica TCP Configuration . 60

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 4.1 HW/SW Configuration Table . 23

Table 4.2 Network Configuration by Experiment 24

Table 4.3 DNS Compression Ratios . 29

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

ASCII American Standard Code for Information Interchange

CANES Consolidated Afloat Network and Enterprise Services

CDF cumulative distribution function

CDN content distributed network

COTS commercial-off-the-shelf

CPU central processing unit

DoD Department of Defense

DNS Domain Name System

DNSSEC Domain Name System (DNS) security

FQDN Fully Qualified Domain Name

GUI graphical user interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ID identification

IDE integrated development environment

IP Internet Protocol

IPTables Internet Protocol (IP) Routing Tables

IPv4 IP version 4

IPv6 IP version 6

LAN local area network

MAC media access code

MB Megabytes

Mbps Megabits per second

NAT network address translation
xiii

OS operating system

RAM random access memory

RD recursion desired

SDN software defined network

SSH Secure Shell

TCP transmission control protocol

UDP user datagram protocol

URL uniform resource locator

US United States

USN United States (U.S.) Navy

VM virtual machine

WAN wide area network

xiv

Acknowledgments

Carol and Arya: Thank you for always supporting me. It has been a long process with many
hardships, but there are no two other people I would rather go through them with than you
two. I could not have done it without you. To the work here and work ahead: Fortis Fortuna
Adiuvat.

Professor Xie: Thank you for all of the lessons going through this process and thementoring.
It has been a great experience!

Dan Lukaszewski: For helping me tweak programs, scripts, and always asking why; it drove
me to be better and understand more about virtual networks. Thank you!

Mom and Dad: Without the foundations you taught me as a child, I would not be where I
am today.

The Three Amigos: It has been great to go through NPS with great friends like you two.
Thank you for all the laughs and cheer while here.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

Demands for faster networks to handle more traffic have been ever increasing for the past
decade. While home- and shore-based facilities have been able to keep pace with demand,
ships at sea have not. Current speeds for the United States (U.S.) Navy (USN) are still
below 10 Megabits per second (Mbps) from a dedicated satellite link. Given the limited
transmission capacity, an important technical question is how to maximize the performance
of the link with respect to a chosen performance metric or metrics.

This thesis simulates a ship network in a virtual network and investigates the link perfor-
mance question while focusing on application latency as the primary metric. For example,
application latency for a web browser characterizes the delays the browser takes to download
web pages. Broadly speaking, there are two ways to reduce application latency. First, by
requiring fewer bits to retrieve the same information, transmission and receiving delays can
be reduced. This method is commonly referred to as data compression. Second, by keeping
information close by and easier to access, the number of communication hops and round
trips can be reduced. This reduction method is commonly referred to as data caching.

Many applications are decades old using a high amount of bits to communicate information.
As is observable in network traffic, most of these bits do not change or can be inferred by
other information. These superfluous bits in the applications offer areas that can be cut,
reduced, or compressed to save on the total number of bits moving over a given data link.
Domain Name System (DNS) is one of these applications. DNS was originally built to
accommodate a request with a varying number of queries: greater than or equal to one.
However, according to Andersson and Montag, analyzing network traffic reveals that DNS
requests typically only carry one query [1]. With this being the case, it is easily conceivable
that many of these bits in a DNS packet can be compressed or cut, the packet sent, and then
the packet reassembled at some distant end. This reassembly will ensure the packets are
interoperable with the rest of the Internet when the expected information is returned. The
answer to the query is almost a copy of the original request, with a little more information
added, namely the Internet Protocol (IP) address. This close copy also means these answers
are able to be compressed on their return; further increasing bit savings. In this thesis,

1

the virtual machines (VMs) do not cache DNS information so as to generalize to other
applications that do not cache data.

Another solution to compressing network traffic is by utilizing a wide area network (WAN)
Optimizer. At a high level, it sits near the edge of a private network, close to the gateway
router, and exists to increase performance and speed of traffic. There are a number of ways
they achieve this speed up. Mainly, they either do types of calculations for fastest routes,
compress application information within the packet.

1.1 Problem Statement
With a majority of USN ships utilizing a satellite link with data rates less than 4 Mbps
and their enterprise networks setup similarly to a business with an overwhelming amount
of web traffic, more efficiency is needed across this link to enhance communications. The
hypothesis of this thesis is that using WAN optimizers and reducing the amount of bits
across a satellite link while still communicating the same information will yield an increase
in efficiency to communication speed.

1.2 Research Questions
Currently, CISCO estimates 194.4 Exabytes of data move monthly on networks globally [2].
To counter this foreseen problem, a lot of research has been done in the past to make
network traffic more efficient. Of note, researchers for delta encoding and transmission
control protocol (TCP) compression show decent strides in reducing the amount of traffic
across the network, yielding a higher throughput [3]. Also, research to improve DNS has
had some success. For example, bundling multiple DNS requests into one message before
transmission ultimately saves four to twelve bytes per message [4].

This technique proves useful for intranets and internal networks, and has great potential to
help the USN’s unclassified web browsing as it relies on some public architecture. The
benefits of making these paths more efficient is to increase speed and throughput of a
network by freeing space for other transmissions. Also, benefits made and discovered
working with unclassified network traffic can easily be translated over to classified traffic
with minor modifications.

2

Assumptions made in order to do this compression is that the entire transmission path must
be owned by one owner before being forwarded to the rest of the public internet. Also, the
compression work is done around the bottleneck to provide the maximum benefits. To this
end, this thesis assumes no caching and no added packet loss outside of the congestion the
three local area networks (LANs) will create. This thesis also assumes that all the LANs
concentrate into one satellite link, consistent with enterprise networks currently deployed
by the USN.

Outside of Hypertext Transfer Protocol (HTTP) traffic and the DNS technique mentioned,
little has been done to make other network applications more efficient. For the researched
applications, only one or two techniques have been tested leaving room for more research
and testing. This thesis will develop a custom compression algorithm for DNS and will
conduct a proof of concept for slower communications paths to specifically answer these
two questions:

• Does compressing DNS traffic increase network performance and throughput for
lower data rate network links?

• How does a commercial-off-the-shelf (COTS) WAN optimizer product perform to
speed up network traffic?

Through our study of application-level protocols, we are going to answer the following
additional questions:

• How does information get removed from a DNS, transmitted, and re-expanded to
convey the same information invisible to the end user?

• Can the WAN optimizer and the custom DNS compression be combined and how do
they perform together?

1.3 Thesis Organization
Chapter 2 begins by discussing IP Network Traffic Compression; specifically a WAN
Optimizer. The chapter discusses Virtual Box, general information about it, and how
it responds to setting up an overload network address translation (NAT) and IP Routing

3

Tables (IPTables) on an Ubuntu host virtual machine. Then, it goes into running Python 3,
specifically running it inside a bash script and networking with it. It delves deeply into in
depth protocol information to be studied and compressed. Finishing, it highlights related
works and previous research completed on compressing network application protocols.

Chapter 3 investigates the choices behind various implementations and network designs,
and then details the one chosen for this thesis. First, a baseline is established for normalcy
expectations and the various ways to generate traffic. Then, it details the psuedo-code for
customized compressing of DNS queries and responses. Finishing Chapter 3, the algorithm
for calculating results is given, specifically how to calculated the compression ratio for DNS
runs.

Chapter 4 details the execution flows of the various experiments. It also gives the individual
network changes that need to be made in between those experiments to do the minimal
network reconfiguration. It concludes with the results of experiments to include: base-
line, WAN Optimizer, DNS Compression, and the WAN Optimizer with the custom DNS
Compression.

Lastly, Chapter 5 discusses this thesis’s conclusion and potential future research projects in
this area of networking.

4

CHAPTER 2:
Background

This chapter provides essential background details to software and protocols used in this
thesis. It begins by delving into network traffic compression, more specifically compression
as it relates to a WAN Optimizer. Then, the components of the employed virtual network,
specifically including Virtual Box and Ubuntu. Moreover, technical methodology such
as NATing, manipulating IPTables, Bash Scripting, and Secure Shell (SSH) will also be
defined and their uses in these experiments will be described. The penultimate topic will
be the DNS protocol under investigation by this thesis. This chapter concludes with an
in-depth discussion related works in this area of research.

2.1 Network Traffic Compression
Network Traffic Compression is a key enabler to increasing throughput without increasing
the data rate for them. There is a lot to be gained from compression techniques. Many
studies, already, “have examined real-world network traffic and concluded the presence of
considerable amounts of redundancy in the traffic data” [5]. This topic will only gain more
recognition due to continuously growing demand for data movement across an internet with
limits to data transfer at bottlenecks.

2.1.1 WAN Optimizer
A WAN is a network that has a router that utilizes IP addresses to route traffic. It is
more advanced than a simple LAN that only uses media access code (MAC) addresses
to local traffic. WAN Optimization is one of many areas to attempt to increase network
performance and compress traffic. Ultimately, the optimizer’s goal is to conduct complex
network calculations to determine the fastest way to route IP traffic. Typically, it runs on
a software defined network (SDN) technology for simplification purposes [6]. One team’s
approach ran an Optimizer on the SDN controller, thereby having the controller handle the
complex calculations [6]. When implemented correctly, WAN Optimizers help increase
bandwidth utilization, prioritize traffic, and increase throughput on a network via their heavy
duty calculations and congestion control. Figure 2.1 depicts the notional concept of a WAN

5

Optimizer on a private network and illustrates the data flow on the network. The dotted line
represents packets traversing networks from a client in a private network to some public
server. Specifically, the image depicts a WAN Optimizer sitting near a gateway router, and
performing work to increase speed of network traffic.

Figure 2.1: WAN Notional Concept. Source: [7]

2.2 Virtual Networks
Virtual networks have similar components to physical networks; however, multiple virtual
servers will run on only one physical server. Thus making management of the network
easier and faster to communicate changes across it. VirtualBox is an enabling application
for virtual machines and networks chosen for this thesis.

6

2.2.1 VirtualBox
Virtual Box is an open source product owned by Oracle. It is completely free to use and
easy to install on Mac. It enables running another operating system on the Mac computer.
Additionally, multiple operating systems can be run simultaneously, up to the limits of
the Mac hardware for a specific machine. VirtualBox works by allocating disk space on
the host machine to load another operating system (OS) image file. Once the new OS is
instantiated, a portion of the host computer’s resources are allocated for the new virtual
machine instance. While easy to use for simple uses, it is also easy to search on Google
for answers or read their instruction manual for more complex set ups, such as this thesis’
network.

Ubuntu OS
Ubuntu is an open source variation of Linux; it is designed to run on amultitude of platforms,
easy to manipulate, and change settings to suit the needs of individual users. While it is
possible to do everything using the graphical user interface (GUI) a user gets when they
first log in to the OS, it is much preferable to use the command line terminal. The latter
ensures changes are absolute and the user receives more detailed feedback of the OS actions.
Throughout this thesis, instances are used as standard central processing unit (CPU)’s and
routers to simulate a USN ship’s network. Herein, instructions will be given in this thesis
to set up these instances for the experiment.

2.2.2 NAT
NAT is used to change the IP address of a LAN packet to a common set of IP addresses
apportioned to the WAN from a higher tier authority [8]. It is typically used to connect
private networks to public, allowing for the re-use of IP addresses and assigning packets
with a globally unique address, enabling more robust routing [8].

Figure 2.2 shows a schematic diagram of a router running NAT to translate the private IP
to a public IP before sending the packet on to the rest of the Internet. From the client
perspective, an IP source address is added to the packet it sends off. Once that packet makes
it to the router, it is saved and the router puts its public IP address on it while remember
where the packet came from. This way, from the public perspective, all the packets came
from one IP address; thereby eliminating the need for multiple public IP addresses for one

7

network. Then, once the answer returns for the client, the router will put the client’s address
back on the packet.

Figure 2.2: NAT Example. Source: [9]

8

2.2.3 IPTables
The command “iptables” is used to manipulate the firewall and OS filter rules on Linux
flavored systems. It is an important enabler to change how the OS sends IP traffic [10]. Most
applicably for this thesis, the iptables command provides the ability to explicitly state how to
route IP traffic to the next hop in the virtual network. For this thesis, the iptables command
is utilized to build the routes internal to the virtual network. Without this command, none
of the machines would communicate with each other.

2.2.4 Python 3
Python 3 is an open source, interpreted, high-level, and object-oriented language for com-
puter programming [11]. The language is very versatile, enabled by a plethora of libraries
that can be loaded to work in any area on a machine or network. To further make it easier to
code in Python 3, many integrated development environments (IDEs) exist now to handle
Python 3 and error check the coder as they work.

Networking
Networking in Python can be handled in a multitude of ways. The first way is to import the
OS library to get regular command line instructions to feed the computer through Python.
While working for basic functions such as ping and traceroute, it does not succeed for deep
packet inspections of traffic because most OS’s are not built to access that protected memory
very easily. To enable this capability through the command line OS functions is not feasible
due to the level of difficulty.

A superior approach is to use libraries created for Python 3, such as IO and Scapy. Specif-
ically, the IO library provides the Python library the commands to fetch inbound and
outbound data streams [12]. Using the IO library, a programmer can access the network
traffic coming in and out of the computer and move it to memory. The Scapy library allows
for manipulation of network packets [13]. Together, Scapy and IO are powerful and allow
for obtaining control, manipulating, and sending packets in and out of computers. For this
thesis, these libraries will be critical to compressing and de-compressing the network traffic.

9

2.2.5 Bash Scripting
Bash scripting is crucial to this thesis. In order to generate sufficient network traffic for data
and statistical trends, bash scripting must be employed. At its basic level, bash scripting
utilizes the command line language interpreter, bash, and allows automating commands [14].
For this thesis, the bash script must be run with "super-user" level permissions, sudo;
otherwise the network traffic will not be collected. The appendices of this thesis will
provide the utilized bash code.

2.2.6 SSH
SSH is a protocol used for remote log-in from another computer. It utilizes logical port 22
on a machine to communicate and is established using the client-server model [15]. Once
logged in, a user receives a command shell to execute commands on the remote machine.
This capability is particularly useful for user access, and convenient operation.

Figure 2.3 illustrates the process for client log-on to an SSH Server. The term SSH server
is generic in this instance, any machine can run an SSH server. For this thesis, all Ubuntu
machines have an SSH server running on them to make it easy to log in to them via SSH.

Figure 2.3: SSH Communication Depiction. Source: [15]

2.3 Protocol to be Explored
At their most basic level, networking protocols are an agreed upon ordering of bits in
network traffic that have been standardized. This standardization enables communication
and a list of rules to handle certain traffic. Users can bend or break those rules; however,
they run the risk of the public Internet not understanding, deciphering, nor processing

10

unconventional data transmissions. Therefore, if users expect to communicate with the rest
of the world, they must put packets back into standard form. This thesis will ensure that
process is faithfully completed so the network can communicate with the public.

2.4 DNS
TheDNSprotocol is critical for network operations. Users unknowingly employ it whenever
accessing the internet. It is the protocol responsible for associating Fully Qualified Domain
Name (FQDN) and IP addresses. DNS allows users to remember something easy such
as www.google.com, the FQDN, rather than 172.217.12.68 or 2607:f8b0:4000:80d::2004,
the IP version 4 (IPv4) and IP version 6 (IPv6) addresses, respectively. One special item
to note: when a user goes to www.cnn.com or www.foxnews.com, the DNS protocol is
not only used to determine the IP addresses of those websites, but also used to determine
all of those sites’ embedded images and advertisements. This extended utilization quickly
compounds and leads to network traffic congestion.

DNS relies on a user-server model, where the server’s usage is hierarchical. Most enterprise
networks employ a DNS server that receives unique query identifications (IDs) from the
user’s machine and then handle the request if the answer is unknown. Once the answer is
obtained, the DNS server will send back an answer to the user’s machine with the unique
ID to match the query. Figure 2.4 provides and illustrates the process in which a client goes
to a DNS server for query, requesting a recursive look up. The recursive lookup will ask the
server to do any future lookups and simply pass the ultimate answer back to the user. Until
the server receives the answer, it conducts the iterative lookups, whereby it goes to DNS
servers where it thinks the answers are, asking every time and being redirected to another
DNS server until it receives the ultimate answer.

11

Figure 2.4: DNS Process Illustration. Source: [16]

While a very useful protocol, DNS’s first RFC publication dates all the way back to
September of 2000 [17]. As such, it has a high overhead number of bits and the queries are
in American Standard Code for Information Interchange (ASCII) value, adding even more
bits for plain text letters. To compound the issue and add congestion to the network, the
vast majority of DNS queries and answers traversing the network only have one query. So,
accessing that one website and all of its advertisements and embeds increases the number of
queries, and increases the number of unnecessary bits moving on the network. Figure 2.5
is an illustration of the DNS Protocol Header.

Figure 2.5: DNS Header Illustration. Source: [18]

12

There are many bits within the header that can be cut and compressed to save the total
number of bits traversing networks. An example of the DNS header is shown in Figure 2.5.
Many of the header fields are only required for either the query or the answer. An example
is the recursion desired (RD) flag. It is only needed by the client asking the question to ask
its DNS server to do all the iterative requests. Also, the counts of the various queries and
answers can be inferred, so the bits to give those numbers is not needed in transmission.
Similarly, the Opcode assignment is there for giving whether it is a query or the type of
answer that is being sent back to the questioner [19]. These opcodes are also easily inferred
and able to be cut to save bits.

2.5 Related Works
Much work has been done in compressing data traversing a network to attempt to increase
efficiency for some protocols; HTTPbeing chief among them. In recent years, a compression
scheme for HTTP, called HTTP/2 has been developed and started to be fielded [20]. It works
by encoding the most common header field values in an exchange so as to reduce the amount
of bits for the headers. For the uncommon, or not frequently used field values, the literal
strings are sent [20]. The table that stores the most common header field values is dynamic;
it keeps a count of the values and will ensure the most common values are continually up
to date in the network exchange.

A team at Orange Labs in France researched howmuchHTTP/2 actually saves in traffic [21].
What they discovered is that for major websites, it has the potential to save a lot of time
for the exchange. However, for smaller websites, it is not worth the overhead. Also, they
discovered that on mobile networks, it actually hurts performance due to the instability of
the physical network, i.e. cell phones going in and out of range to a cell tower [21].

However, not nearly as much has been done for the other protocols. Although past work
to improve efficiency has not focused as much on other protocols, there have been some
improvements in DNS and other general network traffic. Two of these improvements are
briefly discussed in this section.

For DNS, Krische and Klauck have made the protocol more efficient by combining mul-
tiple queries into one packet, thereby reducing the amount of overhead if these were sent

13

individually [22]. They also reduced the number of bits in some fields in the transport and
IP layers, such as the time to live value for the packet. On average, they saved roughly four
to twelve bytes per message [22]. While initially that does not seem like much, if that is
extrapolated over the hundreds of DNS queries that move across the network every second,
that can be a lot of bytes saved and not sent on the network.

DNS security (DNSSEC) has also been making strides in not only security, but also speed
of information. The original goal of DNSSEC was to provide security to DNS information
being transmitted so attackers could notmaliciouslymodify or deny it [23]. A new technique
for it is to distribute the secure information to make it faster due to it being closer to the
host [23]. However, a challenge here would be to compress that traffic further depending
on the security choices made such as encryption. It would again require full ownership of
the transmission path so the client and server would know the compression algorithms used
and be able to understand each other.

For all of the protocols, Amdahl at F5 Networks, Inc developed a compression of all data
transmitted on the network and patented it [24]. It is very efficient at saving bits by encoding
many used portions into a few bits [24]. It achieves this highly compressed traffic at the cost
of complexion. According to the patent, he created a middle-ware box that examines the
network traffic on the wire, creates a fitness function to select chunks of data, and then sends
specific chunks in data structures over the internet to be received by another middle-ware
box for interpretation [24]. His invention requires heavy computing to create the fitness
function and continually analyze it to ensure that correct data is going across the network. It
also requires advanced data structures capable of holding a lot of information and searching
through them quickly. While this solution is feasible for large enterprise networks, it is not
feasible for USN ships; the processing power on the enterprise network for Navy ships is
not present. Therefore, while this thesis will look similar to his network setup, it will not
require or perform such heavy powered computing.

14

CHAPTER 3:
Experimental Design

This chapter will detail high-level design decisions toward developing a testbed to test
configurations, and to evaluate COTS WAN optimizers and DNS traffic compression. It
will start by describing the setup of the network and the rationale for generating test traffic.
It will then provide details for the various compression algorithms to be tested. This chapter
will conclude with a detailed description of the performance metrics.

3.1 Testbed Design

3.1.1 Network Design
At the high level, the testbed of this thesis simulates a USN ship’s network. From the
networking perspective, USN ships typically have three major enclaves that feed traffic into
one gateway router that has a reach-back link to shore. The three major enclaves are the
enterprise networks to facilitate work at all security levels. They look and act similarly to
any business network for any big corporation.

After leaving the ship, the signal relays through a satellite, goes to a ground station, and
then goes to the shore side’s router to be routed to the public internet. While the satellite-out
path for the network is interesting, this thesis will focus more on the ship network and the
satellite link itself.

Currently on the ship side of the network, the Navy is working on virtualizing more
components of the ship’s enterprise networks. The Navy started with and has rolled out
Consolidated Afloat Network and Enterprise Services (CANES), moving a majority of
the network core components to a virtual environment [25]. This thesis aligns with the
Navy’s intention to improve enterprise networks throughout the Fleet. Also, in a virtual
environment, the command and control of this network is easier to execute experiments and
move and save data for analysis.

The advantages of running this thesis on a testbed that is completely virtual is further

15

amplified by a complete simulation ofOSs on hardwarewith enoughCPUpower and random
access memory (RAM) to completely run all five OSs. The hardware, Mac computer, has
the prerequisite capabilities to run this thesis.

To simulate a ship, this network has three LAN Ubuntu machines that represent the three
major enclaves and two Linux machines, converted to routers, that represent the ship’s
gateway router and shore’s router. This thesis also chose to utilize virtual technology to
make the entire testbed run in a virtual environment (running on VirtualBox). While an
alternate way to conduct this experiment may have been to implement every piece of gear
in hardware, and execute the testing in that manner, it would not be aligned to the Navy’s
direction for the future. The setup is given in Figure 3.1 with a more in detail setup given
in Appendix A.

ADNS (Ship Router) Shore Router

Internet
Unclassified Enclave

Classified
Enclave

TS Enclave

Figure 3.1: Shipboard Topology Map

3.1.2 Traffic Generation
In order to generate network traffic, the three LANs were visiting the Alexa’s top 1000
websites on a top internet sites list under various conditions and configurations to test [26].
Of note, the list was slightly modified to remove many explicit websites that would not
have been authorized on USN networks. This amount of network traffic is required for two
reasons: accurate measurements and statistical power for these experiments. Without this
amount of traffic, it would be difficult to determine whether the success or failure was a
fluke, or if it was able to be repeated. This need is due to the constantly changing routing

16

environment on the Internet. Routes on the Internet are constantly being recalculated for
better routes, so what may have been the route one time, may not be the route in the future.
Therefore, it needs to be repeated multiple times to prove results.

Another way existed to generate traffic that was not plausible. Traffic captures on ships
could have been taken, and then replayed on this test bed to give full fidelity to a ship’s
traffic. This choice presents a multitude of challenges. First, portions of that traffic on the
ship are classified, so it could not successfully reach out to the public internet and return
anything. This thesis does not simulate this traffic exactly. However, classified traffic routes
similarly to unclassified traffic in that it has servers and applications run from the ship to
the shore. In this case, the "public" servers are simply managed by the Department of
Defense (DoD).

Second, the unclassified traffic is already accounted for. A majority of the traffic on a ship’s
enterprise network is what would exist on any business network: requests sent to news sites,
Facebook, GMail, etc. This thesis has already accounted for it by utilizing the top websites
list that would include these popular websites among Sailors anyway.

In this thesis, designing and running three LANs is a critical choice. It keeps true to the
standard configuration on Navy ships where they have three major LANs. This design is
beneficial because the three LAN VMs can generate traffic as if they had multiple hosts
running on them; this constant visiting of the top websites. However, the drawback of this
design is that these LANs do start to act similarly to hosts. They will cache previously
visited, such as web and DNS information, for a limited time similar to any OS on currently
on the market. This drawback is nullified because the time delay between visits is enough in
that there should be enough of a change to cause the python get to behave as if it were going
for the information the first time. Another drawback that is prevalent through this design
choice is that all the VMs are running and generating traffic on the same host. This problem
causes delays in processing throughout the experiment. However, the delays do not impact
the times taken for the python get because of the way that python script is coded to mark
the time, execute the python get, and then immediately mark the time again. The code is
also marked to timeout after ten seconds for the python get. Ten seconds is used because in
this author’s observations, a majority of users will give up and either click refresh or give
up entirely on getting to the website after that time period.

17

A final choice to fully simulate a network is in between every python get there is a random
sleep time. This time simulates multiple users requesting information at various times.
Seed files were created for each run on each LAN, and each file has 1000 random times.

3.2 Algorithmic Choices
There exist a range of choices to compress or eliminate network traffic. First and foremost,
there exists tools to compress the TCP traffic between two points to reduce the amount of
transmitted bits [27]. For example, there are various WAN optimizers, such as Artica [28],
that achieve this compression. Secondly, another choice for compression is application
specific compression, with HTTP traffic as the most preferred target for compression. Since
most HTTP traffic is sent in plain-text (very costly on network resources), tools exist to
compress the HTTP traffic being sent to again reduce the amount of bits being transmitted.

Caching is also a popular technique utilized to reduce the amount of traffic sent across a
network. Every machine caches a small amount of data and most business networks have
servers that cache as well, so they do not have to go out for information that has not changed
for a short period of time. Examples of caches include DNS information and web pages for
a limited time.

This thesis utilizes the WAN optimizer Artica. It was chosen for its ease of install and
plug-n-play ability. It also has ample online support for install and troubleshooting issues,
however not much was disclosed in how Artica worked. It was observed, though, to work
by auto-correcting get requests made by the client to limit the number of round trips to get
the same information, thereby making the traffic seem faster. Also, Artica is configurable
to adjust the TCP window size to allow for the maximum amount of data to be requested
from the server as possible. The benefit is all of Artica’s work is transparent to the end user.

The DNS compression algorithm chosen for these experiments herein is due to the over-
whelming unmet need to improve this application; recent improvements are not as plentiful
as those for HTTP/Hypertext Transfer Protocol Secure (HTTPS). This application is chal-
lenging because of the communications required as discussed in Chapter 2. If a DNS
server on the internet gets a message in an improper format, then the request will not be
answered, thereby causing a communication failure and unsuccessful fulfillment of the end

18

host request. Likewise, if a client gets an improperly formatted message, it will not accept
the information contained thereby causing a communication failure. Therefore, the easiest
way to save bits for the application is to create a technique for this unmet need.

Figure 3.2 illustrates the compression algorithm. The DNS compressor operates by re-
ceiving a DNS request from a client on the ship gateway router, verifying it is asking for
the “A” record (IPv4), reading the FQDN and transaction ID, and then sending those two
pieces of information along in a user datagram protocol (UDP) packet to the shore gateway
router. If the request was for the “AAA” record (IPv6), it immediately creates a "service not
available packet and sends that to the client so it stops asking for that record and clogging
up the in-pipe. The client requests both records separately because if the DNS server does
not handle “AAAA” records, it will return an error for the whole set of requests to that
one transaction ID, including the A record [29]. By sending these requests separately, it
guarantees at least one will be answered for the client.

Figure 3.2: DNS Process Illustration. Adapted From: [16] and [18]

While waiting for a response from the shore gateway, the ship saves the pertinent information
from the client’s request into a dictionary (using the transaction ID as the key) for lookup
later: port sent from by the client, IP address for the request, and the FQDN.

19

The reason only the transaction ID and FQDN are sent from the ship to the shore is
because they are the only unique pieces to DNS Queries. The remainder of the bits, seen
in Figure 2.5, are not needed in the query. The Opcode field can be ignored, along with the
other flags that come after the OPCODE. They all can be standardized to always ask for an
authoritative answer and perform how the overwhelming majority of DNS queries perform
in Internet traffic.

The shore, after receiving the transaction ID and the FQDN, performs the IPv4 lookup of
the FQDN using Google’s public DNS server. After receiving the information, sends a
UDP packet back to the ship with only the transaction ID and the IP address of the FQDN.
The rest of the information in the answer can be cut out. First, the ship only needs one IP
address to connect to for the website, not the plethora that usually come back in an answer.
Also, with the information stored on the ship’s DNS compressor, the query can already be
reassembled by the ship, so that information can be cut out of the response from the shore
to the ship. The Opcode is not needed because the end user will not read it unless there is
an error, and the remainder of the flags can be set by the ship since they are standard with
any successful DNS answer.

Once the ship receives the two pieces of information from the shore, the transaction ID and
IP address, it does a lookup in its dictionary for the previously saved information, and then
takes that information as well as what was the UDP packet and creates a properly formatted
DNS response packet containing the answer to the original query, and sends that back to
the LAN. The advantage of this method is it strips out all of the unneeded information and
flag bits along the link that is the most resource constrained.

This thesis will also explore combining the two previous techniques: TCP compression and
DNS compression. These two techniques will be combined to explore if there is any benefit
in combining techniques. If there is a benefit, it will also explore the net increase in traffic
speed. This dual-targeted approach is being explored because it will ultimately serve as a
proof of concept for these combinations.

20

3.3 Selection of Performance Metrics
There are many ways to measure performance for this thesis. One simple method is to
compute a running average of web browsing delays for each simulated LAN. Once the
experiments are finished, then the average could be stored and plotted for later use. This
method does not provide enough fidelity for how much the network performance may vary
based on times of day, and change during the experiment. Therefore, more measurements
need to be taken throughout the experiment. This thesis records the time for every “python
get” out to the website to provide accuracy for every single outreach. This way, more
accurate trends can be established and calculated. More formally, let (denote the set of
distinct python get instances executed in an experiment. For each | ∈ (, we derive
the running round trip time of | based on C1(|) and C2(|) where w is the python get
command, two timestamps collected right before and after the python get execution.
The timestamps have a resolution out to six decimal places for accuracy.

A (|) = C2(|) − C1(|) (3.1)

Additionally, we collect data tomeasure traffic reduction of theDNS andHTTP compression
algorithms. More formally, for each | ∈ (, we record 11(|) and 12(|), the total byte counts
of all targeted control messages (i.e., DNS queries or HTTP/HTTPS GETs) pertaining to |
before and after compression, respectively. We derive a compression ratio for | as follows.

2(|) = 11(|)
12(|)

(3.2)

There is more on the network than just the targeted DNS and HTTP messages. To be an
honest broker of information, all traffic should be captured since the WAN optimizer will
compress all TCP traffic. This thesis does this by using "tcpdump" to collect every packet
traversing the network at the ship gateway router for two reasons: that particular router
has visibility for every packet on the network and utilizes NAT, which hides the specific
LAN the packet came from after it, so it needs to be captured there. With that visibility,
the calculations will be more comprehensive and include all the traffic seen during these
experiments.

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

CHAPTER 4:
Implementation and Integration

This chapter will first present configuration details for the experiments. Then it will explain
the flow of the experimental execution order. It will conclude with the results of the
experiments: baseline, Artica (WAN Optimizer), customized DNS compression algorithm,
and a joint deployment of Artica and the DNS compression algorithm.

4.1 Experimental Configurations
There are four major experiments executed for this thesis. A detailed, step-by-step in-
struction set on exactly how to set up the VMs and the baseline network can be found
in Appendix A. All of the supporting code, bash scripts, and python programs to run the
experiments can be found in Appendix B.

Table 4.1 summarizes the hardware and software configurations for each of the VMs per
experimental configuration. The differences will be highlighted in sections 4.1.1 - 4.1.4. Of
note, 2048 Megabytes (MB) were used for the LANs’ memory due to machine limitations.
Extending above this VM MB limit would have exceeded the physical machine’s capacity
to simultaneously handle all of the required processes and its own OS.

Table 4.1: HW/SW Configuration Table
VM OS Memory (MB) Bridged Network Adapters Processors

Shore Router Ubuntu 20.04 4096 2 2
Ship Router Ubuntu 20.04 4096 4 2

LAN1 Ubuntu 20.04 2048 1 1
LAN2 Ubuntu 20.04 2048 1 1
LAN3 Ubuntu 20.04 2048 1 1
Artica Debian 64-bit 4096 2 2

23

Table 4.2 summarizes the network configurations for VMs that change for each of the
experiments in sub-sections 4.1.1-4.1.4.

Table 4.2: Network Configuration by Experiment
Experiment LANs Gateway Router (DNS Server) Ship Gateway Router (DNS Server)

Baseline Ship Router (8.8.8.8) Shore Router (8.8.8.8)
Artica Ship Router (8.8.8.8) Artica Interface .3 (8.8.8.8)
DNS Ship Router (Ship Router) Shore Router (8.8.8.8)

Artica w/ DNS Ship Router (Ship Router) Artica Interface .3 (8.8.8.8)

For each configuration, there are 12 runs completed where each run consists of each LAN
visiting 1000 websites at the throttled link speeds by utilizing the “tc” commands: 1.544
Mbps, 2 Mbps, 4 Mbps, 8 Mbps, 300 Mbps.

4.1.1 Baseline Experiment
The baseline network is set up in accordance with Figure 4.1. Its purpose is to establish a
baseline for the hardware and software this experiment is running on; it will give a control
so the differences in the configurations can be discovered.

Ship Router Shore Router

Internet

LAN1

LAN2

LAN3

Figure 4.1: Baseline Topology Map

24

4.1.2 Artica WAN Optimizer Experiment
The Artica WAN Optimizer configuration is in accordance with Figure 4.2. Of note, its
major difference is that the Artica WAN Optimizer is set up between the ship and shore
router. In this experiment, Artica is simulated as being on the ship, so the link between
Artica and the shore is the satellite link and is throttled. The ship router also uses Artica as
its gateway router.

This setup is the best approach because any WAN optimizer will have the most impact on
the ship. It is closest to the machines and servers working, so bits can be saved before the
satellite link.

Ship
Router

Artica Server Shore Router

Internet

LAN1

LAN2

LAN3

Figure 4.2: Artica Topology Map

4.1.3 DNS Compression Experiment
The DNS Compression Experiment network is set up similarly to the baseline network. The
only difference is that the LANs use the ship gateway router as their DNS servers, and as
such, send their queries there. The DNS code running on the ship gateway router will then
catch and handle the uniform resource locator (URL) queries.

4.1.4 DNS Compression with Artica Experiment
This experimental network is set up similarly to the Artica Experiment configuration, and
has the LANs utilizing the ship gateway router as their DNS server. This configuration is

25

utilized to see how much, if any more savings can be seen with these two working together.

4.2 Experimental Flow
The logic of each experiment follows the flow described in Figure 4.3.

Figure 4.3: Flow Diagram

1. for_all_start.sh is executed on the Ubuntu ship gateway router. This program exists
to start the whole experiment run and call trials.sh.

26

2. trials.sh controls each run through the experiment. It is ultimately called 12 times per
experiment and calls control_run.sh and grab_files.sh as it moves through each of the
network speeds.

3. control_run.sh starts tcpdump on the ship and shore routers, and then calls start.sh on
the LANs.

4. start.sh starts create_traffic.py on each LANwhich will generate all the of the "python
get" requests and eventually writing the metrics.

5. After control_run.sh sees that all three LAN have finished generating their traffic,
kill_all.sh is called to kill all the tcpdump commands running.

4.3 Results
The experimental configurations produced some expected and unexpected results. Over-
all, the data show that link performance, whether compression is through a COTS WAN
optimizer or a self-made algorithm, is worth the effort. Also, the 95% confidence interval
for each of the data sets is +/- 0.03 seconds. This confidence interval shows that the data
collected is highly reliable.

4.3.1 Artica Results
As can be seen from the speed comparisons in Figures 4.4, 4.5, and 4.6 the Artica configu-
ration consistently retrieved web pages faster than the baseline configuration for speeds less
than 300 Mbps, ranging from 13-26% faster. At 300 Mbps they performed about the same,
only about 3% slower, which makes it clear that it is no longer worth the processing time
to compress the traffic. It is much faster to send the bit at that speed: the break over point
was reached. After this break over point, it could potentially hinder speed and slow down
the overall network.

27

Figure 4.4: 2 Mbps Box Plot

Figure 4.5: 300 Mbps Box Plot

The speedup in Artica can be attributed to their geographically dispersed infrastructure,
similarly to a content distributed network (CDN), in order to provide timely auto-correction
of HTTP URLs and adjustment of the TCP window size. Upon studying the network
traffic transiting across Artica, it revealed that Artica analyzes the URLs, and if there
is any error with the URL, it automatically corrects it in the packet and then sends the
updated packet along, hence the auto-correct feature. An example is changing a simple
GET www.youtube.com, which would trip an correction question from the server, to GET
www.youtube.com/index.html to ensure no confusion on the server’s end. This lack of
confusion and explicit direction prevents multiple round trips, thereby shortening the overall
get time for that website.

28

Figure 4.7 provides the cumulative distribution function (CDF) plots for the various exper-
imental configurations. As these plots show, Artica consistently has a higher probability of
having a majority of its web browsing faster than the other configurations. Also, the DNS
configuration probability lines match closely to the baseline configuration lines, therefore
showing that DNS compression helps, but not significantly.

As expected, Figure 4.7 shows a correlation that the faster the network data rate, the faster
the python get time is. This point helps show that the network did perform as expected and
none of the configurations caused any major slowdown that would cripple a network.

4.3.2 DNS Compression
First and foremost, the proof of concept was a success for compressing DNS traffic. The
results prove that it successfully compressed DNS queries and responses all the while
staying invisible to the simulated users. This success also proves that customization could
be accomplished for any application protocol so long as it is uncompressed before leaving
the owned network heading to the rest of the public Internet. Furthermore, it shows that self-
made customization can start to compete with commercial optimization products, especially
at slower data rates that the USN still utilizes.

Table 4.3 summarizes the compression ratios and does not take IPv6 savings into account
for the queries and answers.

Queries were consistently compressed by 16 bytes if they were requesting the A record, or
not accepted if they were requesting the AAAA record. The only variance in the query is
how long the FQDN was which accounts for the variance in the compression ratios. The
longer the FQDN, the less that was technically saved since the 16 bytes accounted for less
in the network packet.

Table 4.3: DNS Compression Ratios
DNS Compression Ratio Queries Responses

Min 1.16 1.35
Median 1.36 2.05
Mean 1.36 2.24
Max 1.46 8.44

29

For the response ratios, there is a much higher variance. This variance is due to multiple
number of IP addresses that could be contained in the original answer. While this thesis
only sent back the first IP address received at the shore router, there usually were multiple
contained in the response. The major byte savings did result in fewer bytes being sent across
the satellite link.

Unexpectedly, the DNS custom configuration performed on par with the baseline at slower
speeds, and then at faster speeds, performed worse. It only had a 6-8% increase for speeds
1.544-4 Mbps and performed 8-30% worse for higher speeds compared to the baseline.
These results clearly show that the slower the speed, customizing to compress traffic pays
dividends. After the breakover point is reached, it is not longer worth the processing delay
to compress the traffic; it is faster to simply send the original packet.

The results also show that targeting a more traffic intensive application protocol, such as
HTTP or HTTPS could potentially yield much better results. DNS may represent too small
of a portion of the overall traffic to significantly impact network performance.

As more evidence that DNS traffic may be too small a portion to significantly impact the
overall performance, the Artica with DNS configuration shows a speed up comparatively
to the regular DNS configuration, 3-6% for speeds less than 8 Mbps. Artica, and its
performance, appears to be the dominant factor to speed gains.

4.3.3 Artica with Custom DNS Compression
The Artica server and custom DNS compression worked together at slower speeds. As
another proof of concept, the results show that it is possible to combine a COTS WAN
optimizer and customized compression algorithms. Figure 4.6 also shows that it performed
better than the baseline at slower speeds. The extra processing incurred by the DNS
algorithm resulted in no significant speedup of web browsing, and worse performance at
link rates above 4 Mbps.

4.4 Chapter Summary
In this chapter, the experimental configurations and main logic flowwere discussed. Specif-
ically, it detailed how the network changed from one configuration to the next before more

30

experiments were run. Then, the results were discussed. First, Artica performed very well
for web traffic speeds. Second, the DNS compression algorithm succeeded at slow speeds
and was able to work with Artica. The results show that customizing a broader range of
protocols have the potential to further enhance the link performance.

31

(a) 1.544 Mbps (b) 2 Mbps

(c) 4 Mbps (d) 8 Mbps

(e) 300 Mbps

Figure 4.6: Comparisons of Configurations by Network Speeds

32

(a) 1.544 Mbps (b) 2 Mbps

(c) 4 Mbps (d) 8 Mbps

(e) 300 Mbps

Figure 4.7: CDF Comparisons by Experimental Configuration

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

CHAPTER 5:
Conclusion

This thesis investigated ways to make USN satellite links more efficient for web browsing
through experimenting with a free version of a WAN optimizer, compressing DNS traffic,
and understanding how the two techniques are interoperable. The main conclusions from
the investigation are as follows:

1. Artica sped up theweb browsing for link speeds between 1.544 and 8Mbps, by 13-26%
on average. The speedups are significant and can be attributed to its geographically
dispersed infrastructure that provides timely auto-correction of HTTP URLs and its
adjustment of the TCP window size.

2. The DNS algorithm developed by this thesis was able to achieve average compression
ratios of 1.36 and 2.24 for DNS queries and answers, respectively. However, it was
observed that the compression did not cause significant speedup at higher speeds
compared to baseline. This lack of speedup can be attributed to two primary factors.
First, DNS traffic volumes, measured by bits, represented a small percentage of overall
web traffic. Second, the compression algorithm introduced non-trivial processing
delays at the ship and shore routers. At higher speeds, there was a slight performance
degradation due to the extra processing delays.

3. Artica and the custom DNS program were shown to be interoperable at slower speeds
(1.544 – 4 Mbps) and did not cause further performance degradation beyond what
DNS compression introduced. However, at higher speeds, it degraded the perfor-
mance of Artica because the extra DNS processing had a greater impact than the
speedup Artica was able to achieve.

Ultimately, compression and bit transmission saving measures will increase performance
on a network. However, as learned from this thesis, customized written code should target
a broad range of protocols, not just one, for the most effective outcome. The USN should
look into adopting non-patented measures to quickly increase its own efficiency, such as
auto-correcting URL’s and compressing traffic of widely used applications.

35

5.1 Future Work
Much of the future work identified in this section involves more customization of different
protocols or testing other WAN optimizers; there are still a plethora of them to test with a
variety of features. The proof of concept in this thesis showed it is possible to attempt to
optimize any protocol, so long as the transmission path is controlled by the same owner.

1. Develop custom programs to optimize highly used protocols, such as HTTP or TCP.
While TCP is not an application layer protocol, it is still responsible for a massive
amount of data being moved on the internet and as such should be investigated.

2. Develop custom software to be pushed to clients, instead of a pseudo-proxy design,
to cut out the middle-ware box and still be invisible to the user. This saving of the
middle-ware would hopefully yield better times with fewer processing stops in the
traffic path.

3. Develop a bit encoding scheme for DNS to represent the top 1000 websites so only a
few bits are sent, not the whole FQDN. This method would save even more space in
the queries. This thesis showed averages compression ratios of 1.36 and 2.24 for DNS
queries and responses, respectively. With a bit encoding scheme, these ratios could
potentially be even higher. Also, a potential security benefit exists with this method.
If this traffic were intercepted, it would not give away what was queried without the
list corresponding the numbers to the FQDNs.

4. Experiment with other WAN optimizers to infer additional techniques to reduce
application latency. No singleWAN optimizer is the same, and as such, each uniquely
compresses ormodifies network traffic. This yields the question ofwhich combination
of techniques works best for the USN’s environment.

With any of these future research topics chosen, the way to test would be very similar to this
thesis: establish a baseline and run them against the baseline to measure performance. All
of these should be run against a baseline on the machine they are running to be an honest
broker of performance.

The interoperability between COTS and customized protocol work has potential for a huge
cost savings measure in future work. Having shown in this thesis that the two techniques

36

are complementary, it is clear that more savings could be done if implemented correctly and
broadly enough. Combining these two is key for the future ofUSN satellite communications.

There is also potential for future work in researching the security implications in the
customized application protocol software. This work raises a concern of the security risk
of only passing the first IP address back as the DNS answer. There potentially exists a way
to poison a DNS cache, or only the first address in the cache, and that address would be
used. The other addresses would not be included in the answer for verification purposes.

Another security field to research with this implementation are threats of side-channel
attacks. By paying attention to the only IP address sent back to the ship, it could potentially
give away its geographic location since that IP address is likely the closest server to the
ship. While security was not heavily researched for this thesis, it should not be completely
ignored before implementing any of this thesis’s work.

A final question for future work is how to handle compressing network traffic through en-
cryption. Is it possible to compress specific portions through encryption? Achieving this
modular approach would allow for security to co-exist with traffic compression and opti-
mization. This capability would guarantee that upgrading network compression methods
could continue to be a module on the network and not impact the security of the network.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

APPENDIX A:
Network Setup

While easy to set up individual virtual machines on VirtualBox, it is much more difficult
to setup multiples of them and have them communicate with each other. This appendix
provides the steps to set up the testing network. First, the steps to make the individual User
machines will be given. Following the user machines, instructions will be given to set up
the two routers. These instructions assume Virtual Box is already downloaded.

Figure A.1: Basic Network Configuration

39

Figure A.2: Artica Network Configuration

A.1 Create the User Machines
1. Begin by going to https://ubuntu.com/download/desktop and downloading a copy of

the Ubuntu 20 Desktop .iso image file.
2. Open Virtual Box and select create new operating system and select the Ubuntu .iso

file.
3. Install using the default selections. Name it LAN1 Ubuntu.
4. Boot the machine.
5. Log in and install the SSH Server with the command: "sudo apt-get install openssh-

server".
6. install scapy with the command "sudo apt-get install scapy"
7. Power down the machine.
8. Navigate to the Network Adapter Settings under properties on the machine and select

40

it as bridged only.
9. Boot the machine.

10. Select the "Ethernet Connected" label from the top right triangle of options on the
machine.

11. Select Wired Settings.
12. Select the Ethernet Settings Gear on the row for the connected network connection.
13. Select the IPv4 tab.
14. Clickmanual for IPv4method andDNS and add the following to the table underneath:

(a) Address: 192.168.1.11
(b) Netmask: 255.255.255.0
(c) Gateway: 192.168.166.4 (Will be set up later as a router).
(d) DNS: 8.8.8.8 (Google’s Public DNS Server)

15. Close those windows and shut down the machine.
16. Create a shared directory for the VM to write all of its files to during the experiment

one [30]. This thesis created it on the Desktop of the Mac for simplicity.
17. On the Virtual Box list of Virtual Machines will be LAN 1 Ubuntu.
18. Create Full Clone. Note, it must be a full clone so data collected during the experi-

ments remain separated.
19. Rename the new clone LAN2 Ubuntu. Repeat to create LAN3 Ubuntu.
20. Boot LAN2 Ubuntu and LAN3 Ubuntu machines.
21. Navigate to their Address table under IPv4 insert these IPAddresses (the other settings

will be there):
(a) User 2 Ubuntu: 192.168.2.22
(b) User 3 Ubuntu: 192.168.3.33

A.2 Create the Routers
1. Create a newUbuntuMachine using the same .iso file used to create the usermachines,

and name this one "shore_router". Create with the same defaults as well.
2. Before booting the machine, select the "Network Adapter Settings" from the top row

network drop down menu. In the upper right hand corner select "Add Device.
3. Select "Network Adapter" and click "Add...".
4. Select "Bridged" for this network connection. There should be one network connec-

41

tion that has NAT selected and a second one for the hosts.
5. Power on the virtual machine.
6. After logging in, open a terminal.
7. Type: "sudo nano /etc/sysctl.conf" [31].
8. In that file, change the line "#net.ipv4.ip_forward=0" to "net.ipv4.ip_forward=1".

Figure A.3 gives an example. You must save and close it [31]. Be very careful, an
error in this file will be detrimental to this virtual machine.

Figure A.3: sysctl.conf Sample Image

9. Install SSH Server with the command "sudo apt-get install openssh-server".
10. Install scapy with the command "sudo apt-get install scapy"
11. Restart the virtual machine and log in.
12. Create a file called setup_iptables.sh with the commands in Figure A.4 [32]. Be sure

to keep it in an easy place, this will have to be run every time the VM is restarted.
These series of commands force the VM to forward IP traffic and NAT it as if it were
a router. You may also set it up to run on startup [33].

13. Reboot the machine if you choose to have it automatically run or run the script with
command "sudo bash setup_iptables"

42

Figure A.4: setup_iptables.sh

14. Shutdown the VM.
15. Create a copy of the VM and name it ship_gateway_router.
16. Change both network interfaces to be "bridged" and add two more interfaces as

bridged as well.
17. Boot ship_gateway_router.
18. One interface should have the IP address of 192.168.166.2, another should have

192.166.1.11, another should have 192.168.2.22, and the final one should have
192.168.3.33. All of them should have the DNS server as 8.8.8.8. The interface
with the IP address of 192.168.166.2 should have a gateway of 192.168.166.1 to start
and the others should have a gateway of 192.168.166.2 to point them to the simulated
satellite link.

19. change the setup_iptables.sh file to look like Figure A.5:

Figure A.5: setup_iptables.sh For ship_gateway_router

20. Reboot the machine so the script applies or run it so the changes are made.

43

Now, your network should be configured. All the user Ubuntu machines will route traffic
through the ship_gateway_router to the shore_router and from there to the rest of the Internet
using your host machines internet connection to its network.

44

APPENDIX B:
Source Code

This is the source code for programs and scripts executed during this thesis.

B.1 create_traffic.py
"""

Created on Tue Oct 20 09:10:40 2020

create_traffic.py generates all of the network traffic

by conducting a series of python gets with random wait times

in between each get.

It takes 4 arguments:

1: seed_number to know which seed file to read for waits

2. the run folder to save the run information to

3. the total_number of websites to go to

4. the speed that is currently being test to save as a part

of the file name

@author: kenne

"""

import pandas as pd

import numpy

import requests

from datetime import datetime

from pathlib import Path

import time

import sys

df = pd.read_csv("top-1m.csv")

i = 0

45

#change for sys argv

seed_number = sys.argv[1]

run_folder = sys.argv[2]

total_websites = int(sys.argv[3])

string_to_add = sys.argv[4]

write_location = "/media/sf_share/run_scripts/" + run_folder +

"/Run" + seed_number

string_to_open = write_location + "/" + string_to_add +

"_LAN1_run_times.txt"

seed_open = "./Seeds/seed_run" + seed_number + ".txt"

f_seed = open(seed_open, "r")

delta_calc = datetime.now()

visit_time_dict = {}

for index, row in df.iterrows():

web_page = "http://www." + row[0]

success = True

try:

now1 = datetime.now()

receive = requests.get(web_page, params={"Cache-Control":

"no-cache"}, timeout=5)

now2 = datetime.now()

#print("Webpage: ", web_page, "\tReceived now:", receive)

delta_calc = now2 - now1

value_str = str(abs(delta_calc.total_seconds())) + "," +

str(success) + "," + "LAN1" + "," + str(receive)[11:14]

visit_time_dict.update({web_page:value_str})

except Exception as e:

#print(e)

now2 = datetime.now()

success = False

delta_calc = now1 - now2

value_str = str(abs(delta_calc.total_seconds())) + "," +

46

str(success) + "," + "LAN1" + "," + "Failed"

visit_time_dict.update({web_page:value_str})

time.sleep(float(f_seed.readline()))

if(i == (total_websites-1)):

f = open(string_to_open, "w")

f.write("FQDN,Wget_time_sec,Success,LAN,Response_code\n")

for k,v in visit_time_dict.items():

string_to_write = k + "," + str(v) + "\n"

f.write(string_to_write)

f.close()

f_seed.close()

break

i+=1

B.2 for_all_start.sh
#! /bin/bash

#$1 number of trials

#$2 run folder save to

#$3 the number of websites to visit

folder=$2

websites=$3

for ((i=1; i<=$1; i++))

do

date

echo "Starting Run$i seed $i"

./trials.sh $i $folder $websites

done

date

47

B.3 trials.sh
#! /bin/bash

#$1 Run number and seed number

#$2 run folder save to

#$3 the number of websites to visit

mkdir /media/sf_share/run_scripts/$2/Run$1

for speed in 300000 1544 2000 4000 8000

do

echo "starting $speed"

./tc.sh add $speed $2

./control_run.sh $1 $2 $3 $speed

./tc.sh del $speed $2

sleep 5

done

B.4 tc.sh
#! /bin/bash

#$1 = add or del

#$2 = speed setting in kbit

#$3 is folder argument

test_var="artica"

folder=$3

sshpass -p defaultpassword ssh newuser@10.0.2.15

"sudo tc qdisc $1 dev enp0s8 root tbf rate $2kbit latency

50ms burst 1540"

sleep 5

if [["$folder" == "$test_var"]]; then

48

echo "doing artica tc"

sshpass -p root ssh root@192.168.166.3

"tc qdisc $1 dev eth0 root tbf rate $2kbit latency

50ms burst 1540"

else

echo "doing regular tc"

sudo tc qdisc $1 dev enp0s3 root tbf rate $2kbit latency

50ms burst 1540

fi

B.5 start.sh
#start.sh

#!/bin/bash

nohup python3 create_traffic.py $1 $2 $3 $4 & > /dev/null&

B.6 control_run.sh
#! /bin/bash

#$1 Run number and seed number

#$2 run folder save to

#$3 the number of websites to visit

#$4 is test speed in kbits

echo "starting shore"

sshpass -p defaultpassword ssh newuser@10.0.2.15

"./start_shore.sh $4kbit Run$1 $2 >& /dev/null && exit"

sleep 5

49

echo "starting ship gateway tcp dump"

bash /home/newuser/start_ship.sh $4kbit Run$1 $2 >& /dev/null

sleep 5

echo "starting 1"

sshpass -p defaultpassword ssh newuser@192.168.1.11

"nohup ./start.sh $1 $2 $3 $4kbit >& /dev/null && exit"

sleep 5

echo "starting 2"

sshpass -p defaultpassword ssh newuser@192.168.2.22

"nohup ./start.sh $1 $2 $3 $4kbit >& /dev/null && exit"

sleep 5

echo "starting 3"

sshpass -p defaultpassword ssh newuser@192.168.3.33

"nohup ./start.sh $1 $2 $3 $4kbit >& /dev/null && exit"

sleep 600

./finish_check.sh Run$1 $2 $4kbit

echo "Killing all"

./kill_all.sh

sleep 5

B.7 kill_all.sh
#! /bin/bash

50

sshpass -p defaultpassword ssh newuser@10.0.2.15

’sudo pkill "tcpdump" && exit’

sleep 5

sudo pkill "tcpdump"

B.8 finish_check.sh
#! /bin/bash

#$1 is Runnumber

#$2 is folder number

#$3 is speed in kbit

echo "LAN11 check"

while [! -f /media/sf_share/run_scripts/$2/$1/

$3_LAN1_run_times.txt]

do

echo "still waiting LAN11"

sleep 120

done

echo "LAN22 check"

while [! -f /media/sf_share/run_scripts/$2/$1/

$3_LAN2_run_times.txt]

do

echo "still waiting LAN22"

sleep 60

done

echo "LAN33 check"

while [! -f /media/sf_share/run_scripts/$2/$1/

$3_LAN3_run_times.txt]

do

echo "still waiting LAN33"

sleep 30

51

done

B.9 shore dns_shore_server.py

import socket

import dns.resolver

import sys

#declarations for socket connections

localIP = "192.168.166.1"

localPort = 55000

bufferSize = 8000

ship_address = "192.168.166.2"

ship_port = 53

comms_port = 60000

timeout_time = 10.0

nameservers = ["8.8.8.8"]

#alt DNS servers for NPS

#nameservers = ["172.20.20.11", "172.20.20.12"]

Create a datagram socket

UDPServerSocket = socket.socket(family=socket.AF_INET,

type=socket.SOCK_DGRAM)

Bind to address and ip

UDPServerSocket.bind((localIP, localPort))

#create UDPServerSocket for Communicating to shore router

UDPServerSocket_send_ship = socket.socket(family=socket.AF_INET,

type=socket.SOCK_DGRAM)

UDPServerSocket_send_ship.bind((localIP, comms_port))

#setup dns resolver

52

resolver = dns.resolver.Resolver()

resolver.timeout = timeout_time

resolver.lifetime = timeout_time

resolver.nameservers=nameservers

print("DNS up and listening")

Listen for incoming datagrams

while(True):

bytesAddressPair = UDPServerSocket.recvfrom(bufferSize)

message = bytesAddressPair[0]

address = bytesAddressPair[1]

#handle IP requests from LANs

#Transaction ID is always first 2 bytes of DNS header

xID = message[0:2]

#FQDN is the remainder of message

url_str = message[2:].decode(’utf-8’)

try:

#do the look up for the IPv4 record

record = resolver.query(url_str,"A")

#since xID is in bytes, IPv4 address must be in bytes

bytes_to_send = xID + bytes(map(int,

str(record[0]).split(".")))

#send back to the ship

UDPServerSocket_send_ship.sendto(bytes_to_send,

(ship_address,53))

except Exception as e:

pass

#for t/s

#print_string = "URL:" + url_str + "\t" + str(e)

#print(print_string)

53

B.10 ship dns_server.py
import socket

from scapy.all import DNS, DNSQR, DNSRR, IP, send, sr1, UDP

import dpkt, dpkt.dns

import sys

#sys.argv[1] is expected to be speed i.e. speed1

#sys.argv[2] is expected to be the Run folder # i.e. Run1

#iplookup for testing if want to make this the

#primary dns servery for t/s

def ip_lookup(fqdn):

#print("Starting lookup")

resolver = dns.resolver.Resolver()

resolver.timeout = 10.0

resolver.lifetime = 10.0

resolver.nameservers=["8.8.8.8"]

#resolver.nameservers=["172.20.20.11","172.20.20.12"]

try:

record = resolver.query(url_to_look,"A")

except:

return "8.8.8.8"

return record[0]

def dns_parser(pkt):

dns = dpkt.dns.DNS(pkt)

return [dns.id,dns.qd[0].name,dns.qd[0].type]

#declared variables for use sending and receiving sockets

localIP = "192.168.166.2"

localPort = 53

bufferSize = 8000

shore_address="192.168.166.1"

shore_port = 55000

interface_connection = "enp0s10"

54

out_port = 60000

ipv6_number = 28

file_location = "/media/sf_share/dns_runs_test/

dns_ship_request_compression.txt"

#for testing

#file_location = "testrun.txt"

#create Dictionary as data structure for requests

requests_dict = {}

Create a datagram socket

UDPServerSocket = socket.socket(family=socket.AF_INET,

type=socket.SOCK_DGRAM)

Bind to address and ip

UDPServerSocket.bind((localIP, localPort))

#create UDPServerSocket for Communicating to shore router

UDPServerSocket_send_shore = socket.socket(family=socket.AF_INET,

type=socket.SOCK_DGRAM)

UDPServerSocket_send_shore.bind((localIP, out_port))

f = open(file_location,"w")

f.write("FQDN,full_request_size,new_request_size\n")

print("DNS up and running")

while(True):

#variables for receiving from buffer

bytesAddressPair = UDPServerSocket.recvfrom(bufferSize)

message = bytesAddressPair[0]

address = bytesAddressPair[1]

#if this is a response from the shore router/DNS server there

if address[0] == shore_address:

55

try:

#handle response from server

xID = message[0:2]

ip_address = message[2:]

#saves is "ipv4_address,port,fqdn"

saved = requests_dict.pop(int.from_bytes(xID,"big"))

#print("Got from dictionary: ", saved)

saved_items = saved.split(",")

#get the full fqdn

fqdn_response= saved_items[2]

#response_pkt, src must be the .2 and same port

#since that is where request went to

#the id must be in base 16 for the message back

#the query being answered must be there as well

#so the requesting machine knows how to process

response_pkt = IP(src=localIP,dst=saved_items[0])/

UDP(dport=int(saved_items[1]),sport=53)/

DNS (id=int.from_bytes(xID,"big"), qr=1, qd=DNSQR (qtype="A",

qname=saved_items[2]),

ancount=1,an=DNSRR (rrname=saved_items[2],

rdata=socket.inet_ntoa(ip_address)))

#must specify the interface so it comes from

#the correct IP address

send(response_pkt,verbose=0,iface=interface_connection)

except Exception as e:

print(e)

#this is a query from one of the LANs

else:

#handle IP requests from LANs

#Transaction ID is always first 2 bytes of DNS header

xID = message[0:2]

#get the important parts from the dns message

56

dns_list_items = dns_parser(message) #id, name

if dns_list_items[2] == ipv6_number:

#send client dns packet saying not handling AAAA

response_pkt = IP(src=localIP,dst=address[0])/

UDP (dport=int(address[1]), sport=53)/

DNS (id=int.from_bytes(xID,"big"), qr=1, qd= DNSQR

(qtype="AAAA",qname="unavailable"))

#must specify the interface so it comes

#from the correct IP address

send(response_pkt,verbose=0,iface=interface_connection)

continue

else:

#send the ID and fqdn to the shore side, cutting

#everything else out

bytes_to_send = xID + dns_list_items[1].encode()

UDPServerSocket_send_shore.sendto(bytes_to_send,

(shore_address,shore_port))

#save info in data structure for response from

#shore side later

save_string = address[0] + "," + str(address[1]) + "," +

dns_list_items[1]

requests_dict.update({dns_list_items[0]:save_string})

string_to_write = dns_list_items[1] + "," +

str(len(message)) + "," + str(len(bytes_to_send)) + "\n"

f.write(string_to_write)

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX C:
Artica Setup

While Artica is easy to setup, here are some guiding steps on configurations changes this
thesis did to get the Artica working on the network and operating as it would on a ship.

1. Download a copy of Artica 4 and the manual from their wiki [28].
2. Install using Virtual Box with two network interfaces that are bridged. Also, the OS

flavor is Debian 64-bit.
3. Upon boot up, navigate to the network option, top selection, and assign values to the

interfaces for the virtual network. In this case, its DNS server should 8.8.8.8. One
interface, for this thesis, was 192.168.166.3with its netmask 255.255.255.0 and its de-
fault gateway as 192.168.166.4. The other interface for this thesis was 192.168.166.4
with its netmask as 255.255.255.0 and its default gateway as 192.168.166.1.

4. Navigate back to the home screen, and then navigate to the Change Web Interface
selection. There, change the SuperAdmin credentials for the online GUI interface.
Of note, default admin credentials for this command line view are login:root pass-
word:root. Those are not the credentials for the GUI interface, hence the need to
change them.

5. Reboot Artica.
6. Once rebooted, go to another VM and navigate to the web address for the GUI

interface listed at the top of home page for Artica’s boot up.
7. Once at the GUI, log in with the new credentials created in step 4.
8. On the navigation pane on the left hand side, select Your Proxy, and then listen ports

from the drop down.
9. Once the window appears, select Transparent Ports from the top navigation selection.

10. For proper management of the network, successful communications for the DNS
servers, and successful communications for the LANs out to get the websites, ports
80, 443, 53, 22, and 55000 must be opened. 55000 (the only port greater than 1023),
must be opened because that was the port chosen for the DNS servers to utilize for
communications.

11. Select Apply Configuration.

59

12. Select Global Settings under Your Proxy. Navigate to timeouts from the navigation
pane across the top.

13. Match settings to Figure C.1.

Figure C.1: Artica TCP Configuration

14. Select Apply at the bottom of the page.

60

List of References

[1] K. Andersson and D. Montag. (2007). Development of DNS security, attacks
and countermeasures. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.120.7896&rep=rep1&type=pdf

[2] CISCO. (2016). VNI complete forecast highlights. [Online]. Available: https://www.
cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/
Global_2020_Forecast_Highlights.pdf

[3] J. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential benefits of
delta encoding and data compression for HTTP,” Proceedings of ACM SIGCOMM
’97 conference, pp. 181–194, 1997.

[4] R. Klauck and M. Kirsche, “Enhanced DNS message compression - optimizing
mDNS/DNS-SD for the use in 6LoWPANs,” in 2013 IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOM Workshops),
2013, pp. 596–601.

[5] A. Beirami, M. Sardari, and F. Fekri, “Packet-level network compression: Realiza-
tion and scaling of the network-wide benefits,” IEEE/ACM Transactions on Network-
ing, vol. 24, no. 3, pp. 1588–1604, 2016.

[6] L. Vdovin, P. Likin, and A. Vilchinskii, “Network utilization optimizer for SD-
WAN,” in 2014 International Science and Technology Conference (Modern Network-
ing Technologies) (MoNeTeC), 2014, pp. 1–4.

[7] A. Padmanabhan, R. Zhang, P. Thakkar, T. Kopenen, and M. Casado. (2015, Octo-
ber). United States Patent WAN Optimizer for Logical Networks. [Online]. Avail-
able: https://patents.google.com/patent/US9172603B2/en

[8] CISCO. (2020, November). Network address translation (NAT) FAQ. [Online].
Available: https://www.cisco.com/c/en/us/support/docs/ip/network-address-
translation-nat/26704-nat-faq-00.html

[9] Homenet Howto. (2021). Address translation, complete picture. [Online]. Available:
https://www.homenethowto.com/advanced-topics/address-translation-complete-
picture/

[10] R. Russel, M. Boucher, J. Morris, J. Kadlecsik, and H. Welte. (2020). iptables(8) -
linux man page. [Online]. Available: https://linux.die.net/man/8/iptables

[11] python.org. (2021). Python:about. [Online]. Available: https://www.python.org/
about/

61

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.7896&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.7896&rep=rep1&type=pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2020_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2020_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2020_Forecast_Highlights.pdf
https://patents.google.com/patent/US9172603B2/en
https://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/26704-nat-faq-00.html
https://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/26704-nat-faq-00.html
https://www.homenethowto.com/advanced-topics/address-translation-complete-picture/
https://www.homenethowto.com/advanced-topics/address-translation-complete-picture/
https://linux.die.net/man/8/iptables
https://www.python.org/about/
https://www.python.org/about/

[12] P. S. Foundation. (2021). io - core tools for working with streams. [Online]. Avail-
able: https://docs.python.org/3/library/io.html

[13] P. Biondi and the Scapy community. (2021). Scapy: Packet crafting for python2 and
python3. [Online]. Available: https://scapy.net/

[14] L. Rendek. (2021). Bash scripting tutorial for beginners. [Online]. Available: https:
//linuxconfig.org/bash-scripting-tutorial-for-beginners

[15] T. Ylonen, “SSH - secure login connections over the internet,” in 6th USENIX Secu-
rity Symposium, vol. 6, 1996, pp. 37–42.

[16] A. W. Services. (2021). What is DNS? [Online]. Available: https://aws.amazon.com/
route53/what-is-dns/

[17] D. E. 3rd. (2000, September). Domain Name System (DNS) IANA Considerations.
[Online]. Available: https://www.hjp.at/doc/rfc/rfc2929.html

[18] L. V. Winkle. (2021). Hands-on network programming. [Online]. Available: https:
//www.oreilly.com/library/view/hands-on-network-programming/9781789349863/
812dd5c5-0d22-4ccd-8faf-f339b416bb2e.xhtml

[19] D. E. 3rd. (2013, April). Domain Name System (DNS) IANA Considerations. [On-
line]. Available: https://www.hjp.at/doc/rfc/rfc6895.html

[20] R. Peon and H. Ruellan. (2015, May). HPACK: Header Compression for HTTP/2.
[Online]. Available: https://www.hjp.at/doc/rfc/rfc7541.html

[21] H. de Saxcé, I. Oprescu, and Y. Chen, “Is HTTP/2 really faster than HTTP/1.1?”
in 2015 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2015, pp. 293–299.

[22] R. Klauck and M. Kirsche, “Enhanced DNS message compression - Optimizing
mDNS/DNS-SD for the use in 6LoWPANs,” in 2013 IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOM Workshops),
2013, pp. 596–601.

[23] G. Ateniese and S. Mangard, “A New Approach to DNS Security (DNSSEC),” in
Proceedings of the 8th ACM Conference on Computer and Communications Se-
curity, ser. CCS ’01. New York, NY, USA: Association for Computing Machinery,
2001, p. 86–95. [Online]. Available: https://doi.org/10.1145/501983.501996

[24] S. C. Amdahl. (2011, February). Compression of data transmitted over a network.
[Online]. Available: https://patents.google.com/patent/US7882084B1/en

62

https://docs.python.org/3/library/io.html
https://scapy.net/
https://linuxconfig.org/bash-scripting-tutorial-for-beginners
https://linuxconfig.org/bash-scripting-tutorial-for-beginners
https://aws.amazon.com/route53/what-is-dns/
https://aws.amazon.com/route53/what-is-dns/
https://www.hjp.at/doc/rfc/rfc2929.html
https://www.oreilly.com/library/view/hands-on-network-programming/9781789349863/812dd5c5-0d22-4ccd-8faf-f339b416bb2e.xhtml
https://www.oreilly.com/library/view/hands-on-network-programming/9781789349863/812dd5c5-0d22-4ccd-8faf-f339b416bb2e.xhtml
https://www.oreilly.com/library/view/hands-on-network-programming/9781789349863/812dd5c5-0d22-4ccd-8faf-f339b416bb2e.xhtml
https://www.hjp.at/doc/rfc/rfc6895.html
https://www.hjp.at/doc/rfc/rfc7541.html
https://doi.org/10.1145/501983.501996
https://patents.google.com/patent/US7882084B1/en

[25] Northrop Grumman. (2021). Consolidated Afloat Networks And Enterprise Services
(CANES). [Online]. Available: https://www.northropgrumman.com/what-we-do/
sea/consolidated-afloat-networks-and-enterprise-services-canes/

[26] Amazon.com. (2021). Alexa top sites. [Online]. Available: https://aws.amazon.com/
alexa-top-sites/

[27] M. B. Nirmala, “WAN Optimization Tools, Techniques and Research Issues for
Cloud-Based Big Data Analytics,” in 2014 World Congress on Computing and Com-
munication Technologies, 2014, pp. 280–285.

[28] Artica Tech. (2021). Artica wiki. [Online]. Available: https://wiki.articatech.com/

[29] S. Hogg. (2017, June). Why Should We Separate A and AAAA DNS Queries? [On-
line]. Available: https://blogs.infoblox.com/ipv6-coe/why-should-we-separate-a-
and-aaaa-dns-queries/

[30] estorgio. (2021, July). Mounting VirtualBox shared folders on Ubuntu Server
18.04 LTS (Bionic Beaver). [Online]. Available: https://gist.github.com/estorgio/
0c76e29c0439e683caca694f338d4003

[31] networkinghowtos.com. (2013, July). Enable IP Forwarding on Ubuntu 13.04. [On-
line]. Available: https://www.networkinghowtos.com/howto/enable-ip-forwarding-
on-ubuntu-13-04/

[32] askubuntu.com. (2018). Route all traffic of a machine through another within a sub-
net? [Online]. Available: https://askubuntu.com/questions/907972/route-all-traffic-
of-a-machine-through-another-within-a-subnet

[33] L. Rendek. (2020, February). How to run script on startup on Ubuntu 20.04 Fo-
cal Fossa Server/Desktop. [Online]. Available: https://linuxconfig.org/how-to-run-
script-on-startup-on-ubuntu-20-04-focal-fossa-server-desktop

63

https://www.northropgrumman.com/what-we-do/sea/consolidated-afloat-networks-and-enterprise-services-canes/
https://www.northropgrumman.com/what-we-do/sea/consolidated-afloat-networks-and-enterprise-services-canes/
https://aws.amazon.com/alexa-top-sites/
https://aws.amazon.com/alexa-top-sites/
https://wiki.articatech.com/
https://blogs.infoblox.com/ipv6-coe/why-should-we-separate-a-and-aaaa-dns-queries/
https://blogs.infoblox.com/ipv6-coe/why-should-we-separate-a-and-aaaa-dns-queries/
https://gist.github.com/estorgio/0c76e29c0439e683caca694f338d4003
https://gist.github.com/estorgio/0c76e29c0439e683caca694f338d4003
https://www.networkinghowtos.com/howto/enable-ip-forwarding-on-ubuntu-13-04/
https://www.networkinghowtos.com/howto/enable-ip-forwarding-on-ubuntu-13-04/
https://askubuntu.com/questions/907972/route-all-traffic-of-a-machine-through-another-within-a-subnet
https://askubuntu.com/questions/907972/route-all-traffic-of-a-machine-through-another-within-a-subnet
https://linuxconfig.org/how-to-run-script-on-startup-on-ubuntu-20-04-focal-fossa-server-desktop
https://linuxconfig.org/how-to-run-script-on-startup-on-ubuntu-20-04-focal-fossa-server-desktop

THIS PAGE INTENTIONALLY LEFT BLANK

64

Initial Distribution List

1. NIWC PAC
San Diego, CA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

65

	21Sep_Pittner_Kenneth_First8
	21Sep_Pittner_Kenneth
	Introduction
	Problem Statement
	Research Questions
	Thesis Organization

	Background
	Network Traffic Compression
	Virtual Networks
	Protocol to be Explored
	DNS
	Related Works

	Experimental Design
	Testbed Design
	Algorithmic Choices
	Selection of Performance Metrics

	Implementation and Integration
	Experimental Configurations
	Experimental Flow
	Results
	Chapter Summary

	Conclusion
	Future Work

	Network Setup
	Create the User Machines
	Create the Routers

	Source Code
	create_traffic.py
	for_all_start.sh
	trials.sh
	tc.sh
	start.sh
	control_run.sh
	kill_all.sh
	finish_check.sh
	shore dns_shore_server.py
	ship dns_server.py

	Artica Setup
	List of References
	Initial Distribution List

