44 research outputs found

    Calling for validation: demonstrating the use of mobile phone data to validate integrated land use transportation models

    Get PDF
    In this paper we demonstrate the use of a particular source of ICT data, Mobile phones, generated and provided by a mobile phone service provider, to help validate an integrated land use transportation (LUT) model calibrated for the Lisbon, Portugal, metropolitan area (hereafter LMA). Specifically, we use 1 month of anonymous data provided by a private cell phone network operator. These data allowed us to identify, for each phone, all phone activity, localized to the nearest cellular telephone tower (601 towers in LMA). We use the cellular phone towers to generate analysis zones consistent with existing statistical and administrative boundaries (i.e., census blocks and civil parishes). We also infer, for each cell phone tower analysis zone, the number of phones that “reside” and/or “work” in that zone, based on the phone activity profile generated over the observed month.Peer Reviewe

    Inferring movement patterns from geometric similarity

    Get PDF
    Spatial movement data nowadays is becoming ubiquitously available, including data of animals, vehicles and people. This data allows us to analyze the underlying movement. In particular, it allows us to infer movement patterns, such as recurring places and routes. Many methods to do so rely on the notion of similarity of places or routes. Here we briefly survey how research on this has developed in the past 15 years and outline challenges for future work

    Fast Frechet Distance Between Curves With Long Edges

    Full text link
    Computing the Fr\'echet distance between two polygonal curves takes roughly quadratic time. In this paper, we show that for a special class of curves the Fr\'echet distance computations become easier. Let PP and QQ be two polygonal curves in Rd\mathbb{R}^d with nn and mm vertices, respectively. We prove four results for the case when all edges of both curves are long compared to the Fr\'echet distance between them: (1) a linear-time algorithm for deciding the Fr\'echet distance between two curves, (2) an algorithm that computes the Fr\'echet distance in O((n+m)log(n+m))O((n+m)\log (n+m)) time, (3) a linear-time d\sqrt{d}-approximation algorithm, and (4) a data structure that supports O(mlog2n)O(m\log^2 n)-time decision queries, where mm is the number of vertices of the query curve and nn the number of vertices of the preprocessed curve

    Trajectory analysis at intersections for traffic rule identification

    Get PDF
    In this paper, we focus on trajectories at intersections regulated by various regulation types such as traffic lights, priority/yield signs, and right-of-way rules. We test some methods to detect and recognize movement patterns from GPS trajectories, in terms of their geometrical and spatio-temporal components. In particular, we first find out the main paths that vehicles follow at such locations. We then investigate the way that vehicles follow these geometric paths (how do they move along them). For these scopes, machine learning methods are used and the performance of some known methods for trajectory similarity measurement (DTW, Hausdorff, and Fréchet distance) and clustering (Affinity propagation and Agglomerative clustering) are compared based on clustering accuracy. Afterward, the movement behavior observed at six different intersections is analyzed by identifying certain movement patterns in the speed- and time-profiles of trajectories. We show that depending on the regulation type, different movement patterns are observed at intersections. This finding can be useful for intersection categorization according to traffic regulations. The practicality of automatically identifying traffic rules from GPS tracks is the enrichment of modern maps with additional navigation-related information (traffic signs, traffic lights, etc.)

    Modeling Checkpoint-Based Movement with the Earth Mover's Distance

    Get PDF
    Movement data comes in various forms, including trajectory data and checkpoint data. While trajectories give detailed information about the movement of individual entities, checkpoint data in its simplest form does not give identities, just counts at checkpoints. However, checkpoint data is of increasing interest since it is readily available due to privacy reasons and as a by-product of other data collection. In this paper we propose to use the Earth Mover’s Distance as a versatile tool to reconstruct individual movements or flow based on checkpoint counts at different times. We analyze the modeling possibilities and provide experiments that validate model predictions, based on coarse-grained aggregations of data about actual movements of couriers in London, UK. While we cannot expect to reconstruct precise individual movements from highly granular checkpoint data, the evaluation does show that the approach can generate meaningful estimates of object movements. B. Speckmann and K. Verbeek are supported by the Netherlands Organisation for Scientific Research (NWO) under project nos. 639.023.208 and 639.021.541, respectively. This paper arose from work initiated at Dagstuhl seminar 12512 “Representation, analysis and visualization of moving objects”, December 2012. The authors gratefully acknowledge Schloss Dagstuhl for their support
    corecore