
On The Mining and Usage of Movement Patterns in
Large Traffic Networks

Mohammed Al-Zeyadi
Department of Computer Science

University of Liverpool
Liverpool, UK

m.g.a.al-zeyadi@liv.ac.uk

Frans Coenen
Department of Computer Science

University of Liverpool
Liverpool, UK

Coenen@liv.ac.uk

Alexei Lisitsa
Department of Computer Science

University of Liverpool
Liverpool, UK

lisitsa@liv.ac.uk

Abstract—Paper presents the Shape Movement Pattern
(ShaMP) algorithm, an algorithm for extracting Movement
Patterns (MPs) from network data, and a prediction mechanism
whereby the identified MPs can be used to predict the nature
of movement in a previously unseen network. The principal
advantage offered by ShaMP is that it lends itself to parallelisa-
tion. The reported evaluation was conducted using both Massage
Pass Interface (MPI) and Hadoop/MapReduce; and artificially
generated and real life networks. The later extracted from the
UK Cattle tracking Systems (CTS) in operation in Great Britain
(GB). The evaluation indicates that very successful results can
be produced, average precision, recall and F1 values of 0.965,
0.919 and 0.941 were recoded respectively.

Keywords-Big Network Data; Pattern Mining; Movement Pat-
terns; Prediction; Hadoop; MPJ Express.

I. INTRODUCTION

Over the last decade “big network” mining has attracted
considerable attention because of the large amount of network
data that is increasingly generated by a great variety of
application domains: social networks [1], computer networks
[2], Peer-to-Peer Networks [3], road traffic networks [4] and
so on. The mining of such networks can take different forms,
for example we might wish to identify communities within
such networks [5], or alternatively we might wish to identify
“influencers” within such networks [6]. In this paper we are
interested in providing answers to questions of the form:
“given the nature and volume of ‘traffic’ in a given network
N at time t what will the nature and volume of traffic be at
time t+ �?”, or alternatively “given the nature and volume of
‘traffic’ in a given large network N what will be the nature and
volume of traffic in a closely related network M?”. Note that
this is distinct from other applications that involve movement
such as trajectory or link prediction.

The fundamental idea presented in this paper is the usage of
the concept of Movement Patterns (MPs) to provide an answer
to the above form. A MP is a tuple of the from hF,E, T i where
F and T are descriptions of two vertices in a network, and
E is a description of the movement (traffic) between these
two vertices (assuming such movement exists). The objective
is thus to extract MPs from a given network where the traffic
is known and apply these patterns to a related network where
the traffic is unknown. In other words, we wish to apply our
MPs to a network work where we only have descriptions of

the vertices and not the edges; it is the edges and their nature
that we wish to predict.

The challenge, given the above, is the size of the networks
(in the evaluation considered later in this paper networks with
25 million edges are used). The first contribution of this paper
is the Shape Movement Pattern (ShaMP) mining algorithm.
The algorithm leverages knowledge of the restrictions imposed
by the nature of traffic patterns to obtain efficiency advantages
not available to more traditional pattern mining algorithms that
might otherwise be adopted. A further advantage of ShaMP is
that it readily lends itself to parallelisation. The algorithm is
fully described and its operation analysed using a Linux cluster
and two well known distributed computing techniques: (i) Map
Reduce (MR) on a top of Hadoop [7] and (ii) Massage Passing
Interface (MPI) [8]. The second contribution is a mechanism
for applying the identified MPs in related networks so as to
predict the nature of the traffic in these networks.

II. LITERATURE REVIEW

In the era of big data the prevalence of networks of all kinds
has growing dramatically. Coinciding with this growth is a cor-
responding desire to analyse (mine) such networks, typically
with a view to some social and/or economic gain. A common
application is the extraction of customer buying patterns [9],
[10] to support business decision making. Network mining is
more focused, but akin to graph mining [11]. Network mining
can take many forms; but the idea presented in this paper is
the extraction of Movement Patterns (MPs) from movement
networks. The concept of Movement Pattern Mining (MPM)
as conceived of here, to the best knowledge of the authors,
has not been previously addressed in the literature. However,
patten mining in general has been extensively studied. This
section thus presents some background to the work presented
in this paper. The section commences with a brief review
of the pattern mining context with respect to large networks,
then continues with consideration of current work on frequent
movement patterns and the impact of distributed processing to
find such patterns in large data networks.

A central research theme within the domain of data mining
has been the discovery of patterns in data. The earliest
examples are the Frequent Pattern Mining (FPM) algorithms
proposed in the early 1990s [12]. The main objective being to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80780179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

discover sets of attribute-value pairings that occur frequently.
The most well established approach to FPM is the Apriori
approach presented in [12]. A frequently quoted disadvan-
tage of FPM is the significant computation time required
to generate large numbers of patterns (many of which may
not be relevant). The MPM concept presented in this paper
shares some similarities with the concept of frequent pattern
mining. However, the distinction between movement patterns
and traditional frequent patterns is that movement patterns
are more prescriptive, as will become apparent from the
following section; they have three parts: (i) sender, (ii) details
of movement and (iii) receiver; none of these parts can be
empty. Note also that the movement patterns of interest with
respect to this paper are traffic movement patterns and not the
patterns associated with the video surveillance of individuals,
animals or road traffic; a domain where the term “movement
pattern” is also used. To the best knowledge of the authors
there has been very little (no?) work on movement patterns as
conceptualised in this paper.

The MPM concept also has some overlap with link pre-
diction as found in social network analysis where we wish
to predict whether two vertices, representing individuals in a
social network, are likely to be linked at some time in the
future. MPM also has some similarity with the problem of
inferring missing links in incomplete networks. The distinction
is that link prediction and missing link resolution is typically
conducted according to graph structure, dynamic in the case
of link prediction [13] and static in the case of missing link
resolution [14].

Many effective single-machine FPM algorithms have been
proposed typically founded on the concept of some form of set
enumeration tree structure [15], [16], that do not readily lend
themselves to parallelisation; although some parallel variations
of such algorithms have been proposed whereby the tree
structures used can be partitioned (see for example [17]).
Researchers have thus been motivated to consider MapReduce
style distributed memory systems [18], [19], and Message
Passing Interface (MPI) style algorithms [20], [21] for large
scale FPM. In the context of the proposed ShaMP algorithm
presented later in this paper, the usage of both MPI and
MapReduce are considered. More specifically MPJ Express, an
implementation of MPI using the Java programming language;
and MapReduce on a top of Hadoop, the most popular
MapReduce open-source implementation.

III. PROBLEM STATEMENT AND FORMALISM

In the context of the work presented in this paper a network
G is defined in terms of a tuple of the form hV,Ei, where
V is a set of vertices and E is a set of edges [22]. The
vertices can represent individuals (as in the case of social
networks), inanimate entities (as in the case of computer
networks) or locations (as in the case of distribution and road
traffic networks). The edges then indicate connections between
vertices (virtual or actual). These edges might be indicative
of some relationship, such as a friend relationship, as in the
case of social networks; or a “hard” connection as in the

case of a wired computer network or a road traffic network.
In this paper we conceive of edges as bearing attributes
indicative; for example: (i) the number of messages sent from
one individual to another in a social network, (ii) the volume of
data exchanges between two computers in a computer network,
(iii) the quantity of goods sent in a distribution network or
(iv) the amount of traffic flow from one location to another
in a road traffic network. As such edges are directed (not
necessarily the case in other forms of network). To distinguish
the networks of interest with respect to this paper from other
forms of network considered in the literature we will use the
term movement network; a network G(V,E).

Fig. 1: Example movement network (V = {�1,�2, . . . ,�5}
and E = {✏1, ✏2, . . . , ✏9}).

An example movement network is given in Figure 1 where
V = {�1,�2, . . . ,�5} and E = {✏1, ✏2, . . . , ✏9}. Note that
some of the vertices featured double as both receiver “to” and
sender “from” vertices. Thus the set of from vertices and the
set of to vertices are not disjoint. Note also that some vertices
in the figure are connected by more than one edge. This is
because we do not simply wish to consider traffic flow in a
binary context (whether it exists or does not exist) but in terms
of the nature of the traffic flow. Thus where vertices in the
figure are connected by more than one edge this indicates more
than one kind of traffic flow. For example in a distribution
movement network two edges connecting one vertex to another
might indicate the dispatch of two different commodities. As
such edges have a set of attributes associated with them AE .
Similarly the vertices have a set of attributes associated with
them, AV . The nature of these attribute sets will depend on
the application domain, however each attribute will have two
or more values associated with them. Where necessary we
indicate a particular value j belonging to attribute i using the
notation vij .

As established in the introduction to this paper, given a large
traffic network, of the form shown in Figure 1, the nature of the
traffic exchange between vertices can be described in terms of
Movement Patterns (MPs); three part patterns describing some
traffic exchange comprising: (i) a from vertex (F), (ii) the
nature of the traffic (E) and (iii) a to vertex (T). Thus “sender”,
“details of movement” and “receiver”. A movement pattern
can thus be conceived of as a tuple of the form hF,E, T i,
where F and T subscribe to the attribute set AV , and E

to the attribute set AE . In the figure AV = {X,Y } and

AE = {A,B}; each attribute X , Y , A and B has some
value set associated with it, in the figure the value sets are
{x1, x2}, {y1, y2}, {a1, a2} and {b1, b2} respectively. Given
a movement network G we wish to find the set of MPs M in G

so that they can be used to predict the set of movement patterns
M 0 in a previously unseen (initially unconnected) graph G

0

comprised of a set of vertices V

0 that subscribe to the same
vertex attribute set AV . The aim is to predicted the nature of
the traffic in the new network.

From the foregoing an MP comprises a tuple of the form
hF,E, T i where F , E and T are sets of attribute values. The
minimum number of attribute values in each part must be at
least one. The maximum number of values depends on the
size of the attribute sets to which F , E and T subscribe,
although an MP can only feature a maximum of one value
per subscribed attribute.

The movement networks from which we wish to extract
MPs can also be conceived of as comprising hF,E, T i tuples.
The movement network presented in Figure 1 can thus be
presented in tabular form as shown in Figure 2 (for ease
of understanding the rows are ordered according to the edge
identifiers used in the figure). We refer to such data as “FET”
data . Thus MPM can be simplistically thought of as the
process of extracting a set M of frequently occurring MPs
from a dataset D so as to build a model of D that can then be
used to predict traffic in some previously unseen network D

0

(G0) comprised solely of vertices (no known edges, the edges
are what we wish to predict). An MP is said to be frequent, as
in the case of traditional FPM [23], if its occurrence count in
D is in excess of some threshold � expressed as a proportion
of the total number of FETs in D. With reference to the
movement network given in Figure 1, and assuming � = 30%,
the set of MPS, M , will be as listed in Figure 3 (the numbers
indicated by the # are occurrence counts).

Fig. 2: Movement network from Figure 1 presented in tabular
form.

IV. MOVEMENT PATTERN MINING USING THE SHAMP
ALGORITHM

From the foregoing the ShaMP algorithm, as the name
suggests, is founded on the concept of “shapes”. A shape is
a MP template with a particular configuration of attributes

Fig. 3: The MPs (the set M) extracted from the Movement
network given in Figure 1 using � = 30%.

taken from AL and AE (note, shapes do not specify particular
attribute value combinations). The total number of shapes
that can exist in a FET dataset D can be calculated using
Equation 1, where: (i) |AL| is the size of the attribute set AL

and (ii) |AE | is the size of the attribute set AE . Recall that
attributes for F and T are drawn from the same domain. Thus
if |AL| = 2 and |AE | = 2, as in the case of the network given
in Figure 1, there will be (22 � 1) ⇥ (22 � 1) ⇥ (22 � 1) =
3 ⇥ 3 ⇥ 3 = 27 shapes. If we increase |AE | to 5 there will
be (22 � 1) ⇥ (25 � 1) ⇥ (22 � 1) = 3 ⇥ 31 ⇥ 3 = 279
different shapes. Thus the number of shapes to be considered
increases exponentially with |AV | and |AE |, and consequently
the efficiency of the ShaMP algorithm is directly related to the
number of different shapes to be considered.

(2|AV | � 1)⇥ (2|AE | � 1)⇥ (2|AV | � 1) (1)

In this paper two implementations of the ShaMP Algorithm
are considered, one using the MPJ open source Java message
passing library and one using Map-Reduce (MR) over Hadoop;
the two variations are referred to as ShaMP MPJ and ShaMP
Hadoop. The pseudo code for the two algorithms is presented
in Algorithms 1 and 2. At a high level both algorithms operate
in a similar manner. The input in both cases is a collection of
“FETs” D = {r1, r2, . . . } describing some movement network
G and a support threshold �. The output in both cases is a
set M of frequent MPs together with their support counts,
M = {hMP1, count1i, hMP1, count1i, . . . }. Both algorithms
commence by generating a set of shapes and then proceed by
populating the shapes by looping over the input data.

Returning to Algorithm 1 (ShaMP MPJ) the Algorithm first
generates the complete set of shapes ShapeSet. The algorithm
then divides the ShapeSet equally into N subsets according
to the number of machines available. Note that all machines
work in parallel. For each shape the algorithm loops through
the data set D and compares each record rj 2 D with the
current shape shapei. A record rj matches a shapei if all the
attributes featured in shapei are also featured in rj (rj may
include additional attributes not featured in shapei). Where a
match is found the relevant attribute values in ri form a MP. If
the identified MP is already contained in M we simply update

the support value, otherwise we add the newly discovered MP
to M with a support value of 1. Once all shapes have been
processed we loop through M and remove all MPs whose
support count is less than �.

Input:
D = Collection of FETs {r1, r2, ...} describing network G

� = Support threshold
Output:

M = Set of frequently occurring MPs
{hMP1, count1i, hMP2, count2i, . . . }

ShapeSet = the set of possible shapes
{shape1, shape2, . . . }

M = ;
N = Number of Machines in a cluster
Split And Distributed ShapeSet across a cluster of machines
where;
ShapeSet =
SubShapeSet1 t SubShapeSet2... t SubShapeSetN

In Parallel: process all SubShapeSet independently
forall the shapei 2 SubShapeSet do

forall the ri 2 D do
if ri matches shapei then MPk

= MP extracted from ri

if MPk in M then increment support
else M = M

S
hMPk, 1i

end
end
forall the MPi 2 M do

if count for MPi < � then remove MPi from M

end
Algorithm 1: ShaMP MPJ Algorithm

Referring to Algorithm 2 (ShaMP Hadoop), as in all Map-
reduce algorithms, this comprises both Map and Reduce
functions. The input for the Map function is again a network G

represented in terms of a FET dataset D, and a desired support
threshold �. While the output is a set S, which is a temporary
set to hold all hKey, V aluei pairs; where Key is an MP and
the Value is occurrence of MP which at this stage will equate
to 1. The input to the Reduce function is the set S and the
output is the desired set of MPs, M . The Map task commences
by generating the available set of shapes. For each shape, the
algorithm loops through D comparing each record rj 2 D

with the current shape shapei, where a match is found, a key-
value hMP, 1i is created. The Reduce function aggregates all
the MPs with the same key (MP) so as to produce frequency
counts for each key (MP). After that the set S is processed and
any MPs that have a frequency count greater than � appended
to the set M .

The two algorithms have two principal advantages: (i) the
nature of the value of � has very little (no?) effect on the
algorithm’s run time (as will be demonstrated later in Sub-
section VI-B) and (ii) individual shapes can be considered in
isolation hence the algorithm is well suited to parallelisation.

V. MOVEMENT PATTERN PREDICTION

Once a set of frequently occurring MPs have been mined
from a network G = {V,E} we will wish to apply them to
predict movement (traffic) in a previously unseen but related

Input:
D = Collection of FETs {r1, r2, ...} describing network G

� = Support threshold
Output:

M = Set of frequently occurring MPs
{hMP1, count1i, hMP2, count2i, . . . }

Map Function:
Begin:
S = ;
ShapeSet = The set of possible shapes

{shape1, shape2, . . . }
forall the shapei 2 ShapeSet do

forall the ri 2 D do
MPk = MP extracted from ri

MPkSupportCount = Count (MPk,1)
end

end
S = S

S
hMPk, 1i

Reduce Function:
Begin:
Input:

S set from Map Function
Output:

M = Set of frequently occurring MPs M =
{hMP1, count1i, hMP2, count2i, . . . }

forall the hMPs, 1i pairs 2 S do
hMPs, counti = Aggregation all hMPs, counteri

pairs that have same MP

if count for MP > � then M = M [hMPs, counti
end

Algorithm 2: ShaMP Haddop Algorithm

network G

0. Note that the previously unseen network G

0

will be comprised solely of vertices. The pseudocode for the
prediction mechanism is given in Algorithm 3. The algorithm
takes as input a set of previously derived MPs M and a
network G

0 = {V 0
, E

0} where E

0 = ;. Note that V is not
necessarily equal to V

0. The output is a set of predicted MPs
I; on start up I = ;. The algorithm commences by looping
through all MPs in M . For each MP the “from” and “to”
vertex attribute-value sets (Fromi and Toi) are extracted. The
algorithm then loops through V

0 to check if Fromi is a subset
of any vj 2 V

0. If so the algorithm loops through V

0 again
to check if Toi is a subset of any vk 2 V

0. If so the edge
attribute-value set is extracted from MPi and used to form
the tuple hFromi, Edgei, T oii which is added to the set i so
far (the set of predicted MPs).

VI. EXPERIMENTS AND EVALUATION

Experiments to determine the efficiency of the proposed
ShaMP algorithms were conducted using a collection of
artificially generated networks whose parameters could be
controlled; the metric used was run time (seconds). Experi-
ments concerning the accuracy of the prediction mechanism
were conducted by applying the algorithm to a collection of
large networks, extracted from the GB Cattle Tracking System
(CTS) database, where the MPs were known. The evaluation
metrics here were precision, recall and F1. The objectives of
the evaluation were as follows:

Input:
M = Set of frequently occurring MPs M =

{hMP1, count1i, langleMP2, count2i, . . . }
describing trafic a network G

G

0 = A previously unseen net work G

0 = {V 0
, E

0}
where E

0 = ;
Output:
I = Set of predicted MPs in G

0, I =
{hMP

0
1, count

0
1i, langleMP

0
2, count

0
2i, . . . }

Start:
for MPi 2 M do

Fromi = From attribute value set extracted
from MPi

Toi = To attribute value set extracted
from MPi

for vj 2 V

0 do
if Fromi ✓ vj then

for vk 2 V

0 do
if Toi ✓ vk and vj 6= vk then

Edgei = Edge attribute values
set extracted from MPi

I = I [hFromi, Edgei, T oii
end

end
end

end
end

Algorithm 3: Prediction Mechanism

1) To compare the operation of Shape approach versus a
traditional Apriori based approach in term of support
threshold and number of edges.

2) To determine the effect on the ShaMP algorithms of the
size of the network under consideration in terms of the
number of edges.

3) To compare the operation of ShaMP MPJ versus ShaMP
Haddoop.

4) To determine the effectiveness of the prediction mech-
anism by comparing the set of predicted MPs with the
set of known MPs.

A. Data Sets

Experiments were conducted using both artificial and real
networks. The reason why artificially generated networks were
required was that the number of edges and vertices could be
controlled as well as the nature of the sets AV and AE . A
purpose built network generator was used. For each generated
artificial network the from and to vertices, for the specified
number of edges, were selected at random (“self referencing”
was not permitted). As a consequence the degree for each
vertex was also generated randomly; the average number of
inward or outward edges could be calculated using |V |/|E|.
As in the case of the CTS networks (see below) the artificially
generated networks were typically unconnected and featured
some vertices with degree zero.

With respect to real networks, the CTS database associated
the UK’s cattle movement tracking system was used; this is
managed by The UK’s Department for Environment, Food and
Rural Affairs (DEFRA). The database records the movement
of all cattle between pairs of locations in GB. As such,
these locations can be viewed as nodes, and the movement of
cattle as edges between node pairs. The database was used to
generate a collection of time stamped networks where for each
network the vertices represented cattle holding areas and the
edges occurrences of cattle movement (traffic). The database
was preprocessed so that each record represented a group of
animals moved, of the same type, breed and gender, from a
given “from location” to a given “to location” on the same
day. The attribute set AV comprised: (i) holding area type and
(ii) county name. While the set AE comprised: (i) number of
cattle moved, (ii) breed, (iii) gender, (iv) whether the animals
moved are beef animals or not, and (v) whether the animals
moved are dairy animals or not. The ShaMP algorithm was
designed to operate with binary valued data (as in the case
of traditional frequent item set mining). The values for the
numCattle attribute were thus ranged into five sub ranges. The
end result of the normalisation/discretisation exercise was an
attribute value set comprising 391 individual attribute values.

The CTS database, preprocessed as described above, was
then used to generate four networks covering the years 2003,
2004, 2005 and 2006 respectively. The number of vertices in
each network was about 43, 000, while the number of edges
was about 270, 000 . Given the foregoing, and using Equation
1, the number of shapes that will need to be considered, in the
context of the CTS networks, by the ShaMP algorithms, will
thus be |ShapeSet| = 22�1⇥25�1⇥22�1 = 3⇥15⇥3 =
279.

B. Shape approach versus traditional Apriori approache

This section presents two sets of experiments conducted to
compare the operation of the Shape based approach with a
more tradition “Apriori” approach taken from the domain of
Frequent Itemset Mining (FIM) [12]. At face value the MP
Apriori based approach operates in a very similar manner to
the FIM Apriori based approach in that it adopts a candi-
date generation, occurrence count and prune cycle. However,
the distinction is that we are dealing with three part MPs
(hF,E, T i) and that none of these parts should be empty.
Note that all the experiments were conducted using a single
machine because the Apriori approach does not lend itself to
parallelisation.

The first set of experiment considered in this section were
concerned with efficiency using a range different support
thresholds values (�). In the context of FIM the lower the
� value the more frequent itemsets that will be found. Low
� values are seen as desirable because by finding many
frequent itemsets there is less chance of missing anything
significant, the same is true for MPs. In terms of FIM it
is well established that efficiency decreases as the number
of potential frequent itemsets increases (as the value of �

decreases). It was anticipated that this would also be true with

respect to the Apriori based MP mining. How this would effect
the Shape approach was unclear, although it was conjectured
that changing � values would have little effect. Experiment
were thus conducted using a range of � values from 2.0
to 0.5 decreasing in steps of 0.5, and using the 2003 CTS
movement networks described above (|D| = 2, 712, 603).
The results are presented in Figure 4 where, for each graph,
the x-axis gives the � values and the y-axis runtimes in
seconds. As expected, in the case of the Apriori approach,
runtime increases exponentially as � decreases. However, as
conjectured, from the figure it can clearly be seen that sigma

has little effect on the Shape approach. It is interesting to
note that it is not till � drops below 1.0 that usage of the
Shape approach becomes more advantageous than usage of
the Apriori approach. However, we wish to identify as many
relevant MPs as possible and to do this we would need to use
very low � values (� 1.0).

Fig. 4: Runtime (secs.) comparison between ShaMP and
Apriori using a range of � values.

In the second set of experiments the correlation between the
two approaches and number of edges was tested using artificial
data. In total five data sets were generated of increasing size:
100000, 300000, 500000, 1000000 and 2000000. The two
approaches were tested on each of the data sets using � = 0.5.
The results are presented in Figure 5. From the figures it
can clearly be seen that, as was to be expected, the run
time increased as the number of records considered increased.
However, the Shape approach is clearly more efficient than the
Apriori approach. It can also be seen that the run time with
respect to the Apriori approach increases dramatically as the
number of edges increases, while the increase with respect to
the Shape approach is much less dramatic.

C. Comparison of ShaMP MPJ and ShaMP Haddoop

This section presents the results obtained with respect to
experiments conducted to compare the efficiency of operation
of the proposed ShaMP MPJ and ShaMP Haddoop algorithms.
For this purpose the four CTS networks and a sequence of five
artificial networks were used.

The efficiency results with respect to the CTS network
datasets, using ShaMP MPJ and ShaMP Haddoop, are pre-

Fig. 5: Runtime (secs.) comparison between ShaMP and
Apriori using a sequence of artificial networks.

Fig. 6: Runtime comparison between ShaMP MPJ and ShaMP
Hadoop using CTS networks.

sented in Figure 6. From the figure it can clearly be seen
that the run time for ShaMP MPJ is much faster than for
ShaMP Hadoop. The reason for this was because the nature of
MPI was more beneficial where the massages passed between
processes were not too large as in case of CTS network
(number of edges less than 3 million). As the number of edges
increased the runtime for ShaMP MPJ and ShaMP Hadoop
would also increased. However, there will be a point where
one of these algorithms can no longer process the number of
edges to be considered. To determine where this point might
be a sequence of five artificial data sets was generated that
featured increasing numbers of edges ranging from 5, 000, 000
to 25, 000, 000 in steps of 5, 000, 000. The number of vertices
in the artificial networks was maintained at |V | = 2, 000, 000
in all cases. In addition, for the artificial data sets |Av| = 2
and |AE | = 5 were used because these were the values
featured in the CTS datasets. For the experiments � = 1.0
was used. Figure 7 presents the results obtained using the
artificial data sets. From the figure it can be seen that there is
no significant differences in operation between ShaMP MPJ
and ShaMP Haddoop for the first two artificial data sets where
the number of edges 10 million. However, as the number of

edges is increased, the ShaMP MPJ algorithm was no longer
be able to process the datasets as the extent of the message
passing between machines became restrictive. On the other
hand, the ShaMP Haddoop algorithm was able to process
all five artificial networks. The reason for this relates to the
Hadoop Distributed File System (HDFS) and the MapReduce
process. Hadoop splits files into blocks and distributes them
across nodes in a cluster. To process data, Hadoop transfers
packaged code for nodes to process in parallel based on the
data that needs to be processed.

Fig. 7: Runtime comparison between ShaMP MPJ and ShaMP
Hadoop using artificial nrtworks.

D. Accuracy of Prediction Mechanism

The accuracy of the proposed prediction mechanism was
tested using the CTS network datasets where the edges (MPs)
were known. The evaluation was conducted by applying the
MPs generated with respect to one year to the vertices of all
other years and determining the frequent MPs that resulted
(using the same � value). In each case the resulting set M

0

of predicted MPs was then compared with the set of known
“ground truth” MPs MT . As noted above, the performance
measures used were Precision, Recall and the F1 measure [24].
Note that high precision relates to a low false positive rate,
and high recall relates to a low false negative rate. High scores
for precision and recall show that the predictor is performing
well. The F1 measure combines both precision and recall and
is thus the most significant measure.

The results are presented in Tables I, II, III and IV. Each
table shows the application of MPs generated from a particular
CTS data sets (2003, 2004, 2005 and 2006 respectively) to
the remaining three CTS datasets. Concentrating on the F1
measure average values of 0.945, 0.951, 0.935 and 0.932 were
generated, a overall average of 0.941, a very good result. The
overall average values for precision and recall were 0.965 and
0.919 respectively, again a very good result.

VII. CONCLUSION

In this paper the authors have proposed: (i) the ShaMP
algorithm (two variations using MPJ and Hadoop) for iden-
tifying Movement Pattens (MPs) in network data and (ii) a

TABLE I: Accuracy of proposed prediction mechanism using
MPs generated from the 2003 CTS data set.

Network from which G0 network = 2003
MPs were extracted percision Recall F1

2004 0.978 0.967 0.973
2005 0.967 0.89 0.927
2006 0.961 0.929 0.945

average 0.961 0.929 0.945

TABLE II: Accuracy of proposed prediction mechanism using
MPs generated from the 2004 CTS data set.

Network from which G0 network = 2004
MPs were extracted percision Recall F1

MPs from 2003 0.971 0.971 0.971
2005 0.979 0.895 0.935
2006 0.946 0.948 0.947

average 0.965 0.938 0.951

TABLE III: Accuracy of proposed prediction mechanism using
MPs generated from the 2005 CTS data set.

Network from which G0 network = 2005
MPs were extracted percision Recall F1

2003 0.95 0.917 0.933
2004 0.962 0.918 0.939
2006 0.954 0.913 0.933

average 0.955 0.916 0.935

TABLE IV: Accuracy of proposed prediction mechanism using
MPs generated from the 2006 CTS data set.

Network from which G0network = 2006
Ms were extracted percision Recall F1

2003 0.957 0 .863 0.907
2004 0.968 0.889 0.927
2005 0.991 0.817 0.896

Average 0.979 0.892 0.932

prediction mechanism for applying the identified (MPs) to
previously unseen networks (where we wish to predict the
edges/traffic). The MPs were defined in terms of a three
parts tuple; From-Edge-To. The acronym FET was coined
to describe such patterns. The three part MP concept has
some similarities with traditional frequent itemsets except that
the attributes that can appear in a particular part is limited,
consequently the search space can be considerably reduced.
A particular challenge was the size of the networks that
to be analyse. The evaluation was conducted using artificial
movement networks and movement networks extracted from
the GB Cattle Tracking System (CTS) in operation in GB.
The evaluation firstly indicated that, although the ShaMP MPJ
approach seemed the most appropriate given its speed, the
size of the networks to be considered meant that ShaMP
Hadoop was in many cases more desirable. The evaluation
secondly indicated that MPs could be effectively used to
predict traffic (movement) in previously unseen networks. The
main findings may thus be summarised as fallows: ShaMP
MPJ can successfully identify MPs in small networks with
reasonable computational efficiency, on the other hand ShaMP
Hadoop is more suitable with respect to much larger networks;

the proposed prediction mechanism demonstrated that accurate
traffic predictions could be made using the MP concept.

VIII. ACKNOWLEDGMENT

The first author would like to thank the Iraqi Ministry of
Higher Education and Scientific Research and University of
Al-Qadisiyah for partially funding this research.

REFERENCES

[1] N. Matsumura, D. E. Goldberg, and X. Llorà, “Mining directed social
network from message board,” in Special interest tracks and posters of
the 14th international conference on World Wide Web. ACM, 2005,
pp. 1092–1093.

[2] B. Chandrasekaran, “Survey of network traffic models,” Waschington
University in St. Louis CSE, vol. 567, 2009.

[3] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta, “Dis-
tributed data mining in peer-to-peer networks,” Internet Computing,
IEEE, vol. 10, no. 4, pp. 18–26, 2006.

[4] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag, “Adaptive
fastest path computation on a road network: a traffic mining approach,”
in Proceedings of the 33rd international conference on Very large data
bases. VLDB Endowment, 2007, pp. 794–805.

[5] L. Tang and H. Liu, “Community detection and mining in social media,”
Synthesis Lectures on Data Mining and Knowledge Discovery, vol. 2,
no. 1, pp. 1–137, 2010.

[6] C. Kiss and M. Bichler, “Identification of influencers—measuring influ-
ence in customer networks,” Decision Support Systems, vol. 46, no. 1,
pp. 233–253, 2008.

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. MIT press, 1999,
vol. 1.

[9] A. Raorane and R. Kulkarni, “Data mining techniques: A source for
consumer behavior analysis,” arXiv preprint arXiv:1109.1202, 2011.

[10] J. Gudmundsson, P. Laube, and T. Wolle, “Movement patterns in spatio-
temporal data,” in Encyclopedia of GIS. Springer, 2008, pp. 726–732.

[11] W. M. Campbell, C. K. Dagli, and C. J. Weinstein, “Social network
analysis with content and graphs,” Lincoln Laboratory Journal, vol. 20,
no. 1, 2013.

[12] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[13] C. A. Bliss, M. R. Frank, C. M. Danforth, and P. S. Dodds, “An
evolutionary algorithm approach to link prediction in dynamic social
networks,” Journal of Computational Science, vol. 5, no. 5, pp. 750–
764, 2014.

[14] M. Kim and J. Leskovec, “The network completion problem: Inferring
missing nodes and edges in networks.” in SDM, vol. 11. SIAM, 2011,
pp. 47–58.

[15] F. Coenen, G. Goulbourne, and P. Leng, “Tree structures for mining
association rules,” Data Mining and Knowledge Discovery, vol. 8, no. 1,
pp. 25–51, 2004.

[16] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in ACM Sigmod Record, vol. 29, no. 2. ACM, 2000, pp.
1–12.

[17] F. Coenen and P. Leng, “Partitioning strategies for distributed association
rule mining,” The Knowledge Engineering Review, vol. 21, no. 01, pp.
25–47, 2006.

[18] N. Li, L. Zeng, Q. He, and Z. Shi, “Parallel implementation of apriori
algorithm based on mapreduce,” in Software Engineering, Artificial
Intelligence, Networking and Parallel & Distributed Computing (SNPD),
2012 13th ACIS International Conference on. IEEE, 2012, pp. 236–241.

[19] Z. Farzanyar and N. Cercone, “Efficient mining of frequent itemsets in
social network data based on mapreduce framework,” in Proceedings of
the 2013 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining. ACM, 2013, pp. 1183–1188.

[20] A. Vishnu and K. Agarwal, “Large scale frequent pattern mining using
mpi one-sided model,” in 2015 IEEE International Conference on
Cluster Computing. IEEE, 2015, pp. 138–147.

[21] A. Javed and A. Khokhar, “Frequent pattern mining on message passing
multiprocessor systems,” Distributed and Parallel Databases, vol. 16,
no. 3, pp. 321–334, 2004.

[22] J. Galloway and S. J. Simoff, “Network data mining: methods and tech-
niques for discovering deep linkage between attributes,” in Proceedings
of the 3rd Asia-Pacific conference on Conceptual modelling-Volume 53.
Australian Computer Society, Inc., 2006, pp. 21–32.

[23] C. C. Aggarwal, “Applications of frequent pattern mining,” in Frequent
Pattern Mining. Springer, 2014, pp. 443–467.

[24] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel et al., “Performance
measures for information extraction,” in Proceedings of DARPA broad-
cast news workshop, 1999, pp. 249–252.

