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Trajectory analysis at intersections for traffic rule identification
Chenxi Wang, Stefania Zourlidou , Jens Golze and Monika Sester

Institute of Cartography and Geoinformatics, Leibniz University Hannover, Hannover, Germany

ABSTRACT
In this paper, we focus on trajectories at intersections regulated by various regulation types 
such as traffic lights, priority/yield signs, and right-of-way rules. We test some methods to 
detect and recognize movement patterns from GPS trajectories, in terms of their geometrical 
and spatio-temporal components. In particular, we first find out the main paths that vehicles 
follow at such locations. We then investigate the way that vehicles follow these geometric 
paths (how do they move along them). For these scopes, machine learning methods are used 
and the performance of some known methods for trajectory similarity measurement (DTW, 
Hausdorff, and Fréchet distance) and clustering (Affinity propagation and Agglomerative 
clustering) are compared based on clustering accuracy. Afterward, the movement behavior 
observed at six different intersections is analyzed by identifying certain movement patterns in 
the speed- and time-profiles of trajectories. We show that depending on the regulation type, 
different movement patterns are observed at intersections. This finding can be useful for 
intersection categorization according to traffic regulations. The practicality of automatically 
identifying traffic rules from GPS tracks is the enrichment of modern maps with additional 
navigation-related information (traffic signs, traffic lights, etc.).
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1. Introduction

With the development of mobile positioning devices 
and cloud computing technologies in recent years, 
collecting and processing mobile position information 
has become easier. The fact that modern databases can 
effectively store, process, and retrieve massive mobile 
positioning data has promoted the research on trajec-
tory data mining (Zheng 2015). Through the analysis 
of trajectory data, it is possible to predict human 
activities (Makris and Ellis 2002, 2003; Hu, Xie, and 
Tan 2004; Piciarelli and Foresti 2005) and identify 
vehicles’ movement patterns (Gudmundsson, Laube, 
and Wolle 2008). For example, processing trajectory 
data from urban transportation can provide a good 
solution for optimized transportation routes, road 
condition prediction, and urban planning (Feng and 
Zhu 2016). Intersections are locations where two or 
more roads meet or cross, with the most common 
intersection types being the crossroads (4-way inter-
section) and T-intersections. Traffic rules regulate how 
traffic participants should cross those locations. 
Depending on intersection complexity and traffic 
flow, different traffic rules areset. At intersections 
with heavy traffic, most often there are traffic lights, 
while at locations with low traffic, there are traffic- 
signs that indicate the priority or yield of the vehicles 
from each direction (Åberg 1998). Other intersections 
may be uncontrolled, with no traffic lights or signs, 
where the right-of-way-rule is applicable. As hubs of 
urban roads, intersections restrict the traffic capacity 

of the entire area and for this reason, traffic congestion 
events and accidents are closely related to them 
(Solomon et al. 2006). Therefore, understanding and 
studying the traffic conditions at intersections can be 
beneficial for traffic planning.

This study is motivated by the need to find a way to 
extract movement patterns at intersection locations, 
by analyzing GPS tracks. In particular, given a set of 
trajectories, we want to find the different ways that 
vehicles move at those locations, that is 1) in which 
possible directions, and then 2) per direction, to find 
out the different ways they move along that direction. 
For example, from west to east, there might be two 
different ways to move along this given direction: 
without stopping and with a short stop. The final 
aim is to explore if the identified movement patterns 
at intersections can be indicative of the traffic regula-
tion that applies at those locations. If so, traffic rules 
can be automatically identified by analyzing vehicles’ 
movement patterns from GPS trajectories, which 
means that, in practice, maps can be further enriched 
with intersection-related attributes such as traffic- 
rules. This kind of information is subject to changes – 
therefore, an approach that collects it in a potentially 
continuous fashion is highly relevant.

2. Related work

We identify two main thematic topics related to the 
aim of this study: 1) learning semantic scene models 
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(activity modeling) and 2) traffic regulation detection 
and recognition from GPS tracks. Regarding the first 
topic, the aim of learning a semantic scene model is to 
derive the structure of a scene from trajectories 
obtained by tracking moving objects (pedestrians, 
vehicles, etc.). Given that the structure of a scene 
affects the motion of moving objects, by analyzing 
multiple observations from the scene, the structure 
of the scene can be revealed. The hypothesis here is 
that objects show similar motion preferences in space 
when crossing the same scene, that is pedestrians and 
vehicles do not move in a scene in an unstructured 
way or randomly.

Makris and Ellis (2003, 2005) were among the firsts to 
propose an activity-based semantic scene modeling 
method, where the model is learned through unsuper-
vised learning and it is intended as a means for support-
ing the interpretation of the interaction of a target object 
with the scene. The entry/exit zones, routes, paths, and 
intersections are considered as semantic entities. Entry/ 
exit zones are learned using two clustering algorithms: 
K-means and Expectation-Minimization (EM), with the 
latter outperforming the former. The found locations are 
represented with ellipses defined from Gaussian Models 
(GMs). Routes, paths, and intersections are derived hier-
archically. First, the geometric model of the route is 
derived based on the separation distances between the 
trajectories. Processing proceeds in an on-line way, so in 
every comparison of a pair of trajectories, the position of 
route nodes is updated (or when necessary, new nodes 
are introduced in new positions). Paths are derived from 
routes according to merging criteria, and intersections 
are defined at the locations where routes diverge. The 
distribution of the route-learning set of trajectories is 
estimated over each geometric route model and the 
trajectories are then classified to routes using a Fuzzy 
Logic trajectory classifier. Low-Level Hidden Markov 
Models (LLHMM) are defined, with states representing 
the nodes of all route models, and temporal predictions 
of the state of an object being at time-step k + K, given 
the observation vector at time-step k is done under the 
HMM prediction framework (K denotes a future time- 
step). Atypical trajectories are identified as those having 
a low probability of being in a state Sj at time-step k + K, 
given the previous states O1O2 . . . Ok for time-steps 1, 
2, . . ., k.

Similar studies on the same field are those of Junejo, 
Javed, and Shah (2004), who propose a method for 
detecting nonconforming trajectories of moving 
objects based not only on spatial features but also on 
dynamic, such as the velocity and curvature informa-
tion. Lastly, Morris and Trivedi (2011) present 
a general framework for scene activity analysis which 

further supports future behavior prediction and 
abnormality detection, so that the task of manually 
monitoring scenes from video surveillance systems 
being assisted with no prior scene information. The 
proposed model consists of Points of Interest (POIs) 
and activity paths between POIs, where the former are 
represented as nodes and the latter as edges of 
a topographical map of the scene. How objects are 
moving along a route is encoded with Hidden 
Markov Models (HMMs), describing that way the 
spatio-temporal properties of the route.

In terms of the second theme related to the topic of 
our study, Hu et al. (2015) suggest a method for 
recognizing the traffic regulation of intersections 
from GPS tracks. Using a mixture of physical1 and 
statistical2 features, both supervised (Random 
Forests) and unsupervised methods (Spectral cluster-
ing) are tested for a 3-class classification problem 
(stop-signs, traffic lights, uncontrolled intersections), 
achieving an over 90% classification accuracy. 
Moreover, Meneroux et al. (2020) detect traffic lights 
using speed-profiles. By testing three different ways of 
deriving features (speed-profiles), namely 1. func-
tional analysis of speed logs, 2. raw speed measure-
ments and, 3. image recognition technique, they 
demonstrate that the functional description of speed 
profiles with wavelet transforms, outperforms the 
other approaches. Regarding the classification task, 
Random Forests scored the best accuracy (95%) com-
pared to other tested techniques. Zourlidou, Fischer, 
and Sester (2019) and Kuntzsch, Zourlidou, and 
Feuerhake (2016) explore the effect of high-quality 
speed profiles derived from CAN-Bus, as features for 
a classifier trained to distinguish between traffic light 
controlled and priority/yield-controlled intersections. 
The results of the former study show high Recall 
(100%) for prediction of traffic light category but low 
Precision (31%) and F-measure (41.5%). More studies 
on the same topic are enlisted and discussed in 
a recently conducted literature review by Zourlidou 
and Sester (2019).

3. Methodology

In this section, we describe the methods we used for 
analyzing the movement behavior of vehicles at inter-
sections. In subsection 3.1, we describe the dataset we 
used, and in 3.2 and 3.3 we discuss the steps we 
followed for realizing the analysis. In 3.2 we explain 
the clustering approach we used to find the different 
paths that vehicles follow while crossing the intersec-
tions. Subsequently, the movement behavior within 
each path (cluster of trajectories detected in the 
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previous step) is explored to find out in how many 
different ways vehicles move along those same paths. 
This is achieved by clustering speed- and time-profiles 
of trajectories that follow the same paths and is the 
methodology is described in Subsection 3.3.

3.1. Dataset

Six intersections from the city of Hanover, Germany, 
with different shapes (4-way and 3-way intersections), 
traffic rules (traffic lights, priority/yield signs, and 
uncontrolled intersections), and sampling density 
(number of trajectories that cross each intersection), 
were chosen for our analysis, as shown in Table 1. Two 
of them are 4-way and four are 3-way

intersections. Regarding their traffic-regulations, 
two are Traffic-light controlled, two Priority/Yield 
controlled, and two Uncontrolled (right-of-way rule). 
The data were recorded by a smartphone GNSS sensor 
with a frequency of 1 second. Each datapoint contains 
information about time (timestamp), position (lati-
tude, longitude), speed and a unique identification 
number for each trajectory (trip). The data are natur-
alistic, as the driver of each trip (trajectory) was driv-
ing without any given instruction of how to drive or 
where to drive. The intersection crossings are all parts 
of daily traveling, such as routine driving from home 
to work. In Figure 1 are depicted the six intersections 
along with the trajectories that cross them.

3.2. Trajectory clustering

The first objective of this study is to find the different 
paths that vehicles follow while crossing the intersec-
tions. This objective is a pre-requisite for the second 
objective. We assume as a path, a time-ordered sequence 
of locations that is followed by multiple trajectories. To 
find those paths, we apply trajectory clustering.

Trajectory clustering is a two-step process. First, the 
similarity of each trajectory with the others needs to be 
measured. Different measures can be used for asses-
sing similarity (Zhang, Huang, and Tan 2006), such as 
Euclidean distance, Hausdorff distance, Fréchet dis-
tance, Dynamic Time Warping (DTW), and Longest 
Common Subsequence (LCSS), to mention some of 
them. We selected to test the Hausdorff distance, the 
Fréchet and DTW as they consider the direction of 
trajectories and they do not require the trajectories to 
have the same number of points (or length). Other 
methods do not distinguish between trajectories of 

different/opposite directions, that is trajectories from 
the same road but opposite directions are regarded to 
have a high degree of similarity. Moreover, as trajec-
tories consist of a sequence of time-ordered GPS 
points (latitude, longitude, timestamp), they have 
a certain length and number of points. For practical 
reasons similarity metrics that can assess the similarity 
degree of trajectories independently of their length 
and/or number of points, are more convenient than 
methods that require the opposite. For these reasons, 
we selected to conduct our experiments by testing the 
Fréchet and DTW distance. The Hausdorff distance, 
additionally to the aforementioned advantages of 
Fréchet and DTW measures, is computationally very 
fast and for this reason it was selected for our compar-
ison analysis. After computing the similarity of trajec-
tories with each other, the next step is to find out 
groups of similar trajectories, in other words, to clus-
ter them. There are various clustering techniques 
(Kisilevich et al. 2009), mainly categorized as direct, 
hierarchical, density-based, and graph-based. For our 
analysis, we test Agglomerative clustering and Affinity 
propagation (Xu and Tian 2015).

Agglomerative clustering (Müllner 2011) belongs to 
the Hierarchical Clustering family and follows the bot-
tom-up principle. This clustering approach starts by 
considering each data point as a single cluster. In an 
iterative manner, the similarity measures are calculated 
between each cluster, and the most similar clusters are 
merged. The clustering process ends when all clusters 
are finally merged into a single cluster. This way a tree- 
like structure is obtained, called a “Dendrogram”. The 
clustering results are obtained by “cutting” the tree at 
either a specific height or number of clusters.

Affinity propagation (Thavikulwat 2008) is an unsu-
pervised machine learning algorithm to cluster given 
data points, especially when the number of clusters is 
unknown. This clustering approach can be seen as 
a communication network, where every node sends 
a similarity message to each other node. The same way 
the responsibility answer to these messages is received 
at the sending node. Based on this communication 
structure, which is executed in an iterative way, the 
similarities are maximized for each set of data points 
and form the resulting clusters.

3.3 Movement behavior behavior analysis with 
speed- and time-profiles

The second objective of the study is to explore the 
behavior within each path (cluster of trajectories 
detected in the previous step) and find out how 
many different ways vehicles move along those same 
paths. We pursue this aim by clustering speed- and 
time-profiles of trajectories that follow the same paths. 
Since trajectories do not consist of the same number of 
GPS points, we segment them into equidistant 

Table 1. Number of trajectory samples (within parentheses) 
per intersection used in this study. With A, B, C, D, E, and F we 
distinguish the different intersections we use in our analysis.

Intersection type Traffic lights Priority/Yield Uncontrolled

4-way 
3-way

A (148) E (228)
B (175) C (68), D (48) F (189)
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segments of 1-meter length and interpolate the speed 
and timestamp values at the newly created points. 
From the intersection center, we select the parts of 
trajectories that are 50 meters before and 50 meters 
after the intersection center. That is, we select all 
trajectories that cross a certain intersection and con-
sider for our calculations, parts of them that are 
exactly 100 meters long. In this way we generate 
speed-profiles, assuming that the intersection center 
is the point of reference for calculating the distance 
that vehicles travel, each of them consists of 100-speed 
values corresponding at every meter distant from the 
intersection center, starting from 50 meters before the 
intersection (denoted in Figures 3, 4, 5, and 6 as 
negative distance the in x-axis), 49, 48, . . ., 1 meter 
and after the intersection, 2, 3, 4, . . ., 50 meters (posi-
tive distance in the x-axis of the aforementioned 
Figures). Similarly, we compute the time-profiles, 
where instead of speed we have time (assuming 0 sec-
onds is the time when vehicle is 50 meters away from 
the intersection center). Having computed the feature 
vectors for clustering, we use the Fréchet distance as 
a similarity measure and the Affinity propagation 
algorithm for clustering the profiles.

4. Results

4.1. Results of trajectory clustering

Table 2 shows the trajectory clustering accuracy, defined 
as the correctly predicted cluster labels divided by the 
total number of cluster labels (total number of trajec-
tories), under different settings: for different similarity 
measures and classification methods. In Figure 2 the 
average performance of the applied methods is also gra-
phically depicted. From these results, we can infer that 

regarding the similarity measures, the DTW and Fréchet 
distance outperform the Hausdorff distance. Fréchet 
appears to have a slightly better performance than 
DTW. The computational complexity of Hausdorff has 
the advantage of being faster than the others.

Regarding the clustering methods, Agglomerative is 
slightly better than Affinity Propagation, when com-
bined with DTW or Fréchet. However, Agglomerative 
requires to set the number of clusters to be set in 
advance. This makes the Affinity propagation 
a preferable option for problems where such knowl-
edge is given. Overall, we regard Affinity Propagation 
with the Fréchet distance measure as the optimal solu-
tion in the context of the problem we study, and for 
this reason, under these settings, we cluster the speed- 
and time-profiles, as shown in the next subsection.

4.2. Results of speed-, time-profile clustering

Figures 3 and 4 show the speed and time profiles of 
trajectories crossing Intersection A and Intersection 
B, both regulated by traffic lights. We can distinguish 
three patterns (clusters) in speed-profiles (for 
Intersection A: Figure 3(a–c), for Intersection B: 
Figure 4(a–c)), depicted in different plots and colors. 
The first cluster (blue) has low speed with stop(s) 
before the intersection center, whereas the other 
two clusters present an unhindered movement beha-
vior while crossing the intersection. This mixed beha-
vior observed at those locations is also highlighted in 
the time-profiles (Figures 3(d) and 4(d)), where clus-
ters of different time/position development are 
observed. About 30 meters before the intersection 
center some vehicles stopped for 16–90 s, whereas 
others cross the intersection without any stop or 
speed adjustment.

Figure 1. Sample trajectories from the six intersections of the study.  
Source: Imagery © 2020 GeoBasis-DE/BKG, GeoContent, Maxar Techonologies, Map data © 2020 GeoBasis-DE-BKG (© 2009).
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Table 2. Clustering accuracy of the three tested similarity measures with 95% confidence level.
Affinity propagation Agglomerative clustering

Hausdorf DTW Fréchet Hausdorf DTW Fréchet

A (traffic lights) 99% 
±1.0

99% 
±1.0

99% 
±1.0

99% 
±1.0

98% 
±2.2

100% 
±0.0

B (traffic lights) 95% 
±3.3

95% 
±3.3

96% 
±2.9

92% 
±4

93% 
±3.8

100% 
±0.0

C (priority/yield) 87% 
±8.1

95% 
±4.7

94% 
±5.6

73% 
±10.5

100% 
±0.0

100% 
±0.0

D (priority/yield) 88% 
±9.4

82% 
±11.1

91% 
±7.9

83% 
±10.6

90% 
±8.7

100% 
±0.0

E (uncontrolled) 89% 
±4.1

95% 
±2.8

97% 
±2.3

60% 
±6.4

99% 
±1.1

99% 
±1.05

F (uncontrolled) 91% 
±4.1

93% 
±3.6

98% 
±2.1

93% 
±3.6

99% 
±1.3

94% 
±3.4

Average performance 91.5% 
±5.0

93.2% 
±4.4

95.8% 
±3.6

83.3% 
±6.0

96.5% 
±2.8

98.8% 
±0.7

Figure 2. The average performance of different similarity measures and clustering methods with 95% confidence level.

Figure 3. Clusters of speed ((a), (b), (c) and time (d) development from North to South at intersection A (traffic-light). 0 point in the 
x-axis, is denoted the intersection center. The negative distance denotes the distance (trajectory length) of the location of a vehicle 
from the intersection before the former crosses the junction center. Positive distance corresponds to the distance the vehicle has 
from the intersection center after it has crossed the intersection center.
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Figure 5 shows the clustering results at 
Intersections C and D, which are priority/yield regu-
lated. Regarding the priority regulation, we can see 
that at Intersection C, two clusters are observed 
(Figure 5(a,b)) one with unhindered behavior (5(a)) 
and the other (5(b)) with a deceleration event 30 
meters before the intersection. At Intersection 
D (Figure 5(g–i)), all clusters represent unhindered 
movement at different speed levels (over 50kph, 
40kph, and 30kph). Examining Intersection C, con-
cerning the non-expected deceleration pattern along 
the priority roadway, we found that 30 meters before 
the intersection there is a pedestrian crossing and in 
front of that there is a traffic sign, warning the drivers 
of the upcoming crossing. This fact explains both the 
low average speed of the cluster with the unhindered 
behavior (Figure 5(a)) and that with the speed mod-
eration for letting pedestrians pass the crossing 
(Figure 5(b)). This finding on the one hand highlights 
the validity of the method to detect movement pat-
terns, on the other hand, it shows that when there are 
additional ruleswithin the observation site, the 
affected movement behavior as encoded in the speed- 
profile encompasses all the rules that influence the 
movement and not just the rule of the intersection 
control. Nevertheless, the stop behavior as depicted 
in the time-profile (Figure 5(f)) is of low-duration 
and follows the expected behavior when stopping at 
a pedestrian crossing.

Concerning the yield regulation, as can be seen in 
Figure 5(d and e), vehicles either stop very close to the 

intersection center (about 10 meters before as shown 
in Figure 5(d)) or decelerate until almost stopped 
(Figure 5(e)). The speed at both clusters is below 
40kph. Moreover, the duration of stop events due to 
yield is on average 18–20 s, which compared to the 
corresponding value at traffic lights is considerably 
shorter.

Lastly, the movement behavior at the uncontrolled 
intersections E and F is depicted in Figure 6. At such 
locations, we expect a low-speed movement, with 
short-duration stops if there is any traffic from the 
right and the driver must yield. Depending on the 
visibility of the roadway to the right, drivers regulate 
their speed accordingly. That is, when the visibility is 
good, as is the case in the examined intersections 
(Figure 1(e,f)) where there is no building close to 
the intersection to “hide” the incoming traffic from 
the right, drivers may cross the intersection without 
decelerating for checking the traffic, as they can make 
the appropriate checks early before the intersection. 
In case of the low visibility of the traffic to the right, 
a deceleration or stop behavior is expected (similar to 
a yield sign). Nevertheless, no matter if the vehicles 
decelerate or not at an uncontrolled intersection, the 
crossing speed is lower (less than 40kph) compared 
to priority roadways (over 40kph). This means that 
uncontrolled intersections can be distinguished from 
priority/yield intersections, if we compare the speed 
at priority roadways with that at an uncontrolled 
location (even with very good visibility), as shown 
in the examples of Figure 6.

Figure 4. Clusters of speed ((a), (b), (c)) and time (d) development from East to West at Intersection B (traffic-light).
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4.3. Can we infer traffic rules from speed-profiles?

From the analysis of the six intersections with different 
traffic rules, we can reflect on whether we can infer the 
traffic rules from speed/time-profile clustering. For 
any intersection type (three- or four-way), we should 
first check the time clustering result. If there are tra-
jectories with stop time for over 20 s, the intersection 
can be inferred to be traffic light-regulated. In general, 

at this traffic rule, the collective behavior is expected to 
be a mixture of unhindered crossings, slight deceler-
ated speed, and stops, where stops have a duration of 
20–90 s. This expectation was validated from our 
analysis (Intersections A and B).

Uncontrolled intersections have the characteristic of 
low crossing speed. The visibility of the traffic to the 
right can define whether vehicles will decelerate or stop 
to check for traffic coming from the right. If the 

Figure 5. Different clusters of speed and time development at Intersection C from West to East (a, b, c), where a priority traffic-sign 
regulates the traffic and from South to West (d, e, f) where a yield-sign is valid. Similarly, plots g, h, i, j refer to Intersection D, from 
West to East, where vehicles have priority over other participants.
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visibility is good, vehicles will only decelerate or stop to 
yield for other traffic participants crossing the intersec-
tion at the same time. If nobody comes from the right, 
the crossing will be unhindered. At an intersection of 
low visibility of the traffic to the right, vehicles will have 
to decelerate for the appropriate check of the traffic and 
stop only if there is traffic from the right. This means 
that there may be some uncontrolled intersections with 
a pattern combination of unhindered behavior, decel-
eration, and stop and some others with deceleration 
and stop pattern combination.

Given that at a yield sign, the same patterns are met 
as at low visibility uncontrolled intersection, we found 
that what can be distinctive between these intersection 
control types (uncontrolled and yield/priority signs), 
is the fact that the speed at uncontrolled intersections, 
no matter the visibility of the traffic to the right, is 
lower than that at locations with priority signs.

Due to limitations of the dataset, we did not have 
trajectories crossing the yield-controlled roadway of 
Intersection D, so we analyzed the yield category only 
based on the data from Intersection C. We consider 
this fact as a limitation of our study, as well as the fact 
that both examined uncontrolled intersections are of 
good visibility. It would be interesting to compare the 
results of the analysis of low and good visibility uncon-
trolled intersections. Another limitation of the study is 
the number of intersections per control type we have 
studied (two). Nonetheless, the fact that the results of 
the analysis validated the expectations we had on the 

possible movement patterns per control type, is 
encouraging regarding the effect that these limitations 
may have on the conclusions we drew from this small- 
scale analysis. We regard these findings as preliminary 
indications that speed and time profiles can be used 
for categorizing intersections according to traffic reg-
ulators in the context of a three-class classification 
problem, as examined in this study.

5. Conclusions

In this paper, we tested some similarity trajectory 
measures and clustering techniques for analyzing tra-
jectories at intersections, using a dataset of six inter-
sections from the city of Hanover, Germany. 
Regarding the similarity measures, we found that 
DTW and Fréchet distance performed better than 
Hausdorff, when dealing with bi-directional trajectory 
data, with Fréchet distance performing slightly better 
than DTW.

Concerning clustering methods, the comparison of 
Affinity propagation with Agglomerative clustering 
showed that the latter has somewhat higher accuracy 
than the former. With Agglomerative clustering, the 
number of clusters should be given by the user, which 
makes the approach less general than Affinity propa-
gation. After that, clustering was applied to speed and 
time profiles sampled from the six intersections that 
are controlled by various traffic rules. The aim was to 
detect possible movement patterns and to examine 

Figure 6. Different clusters of speed and time development at Inter. E from North to South and at Inter. F from South to North. 
Both junctions are uncontrolled (right-of-way priority rule).
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whether they are indicative of the traffic controls that 
regulate the intersections.

To determine if an intersection is regulated by traffic 
lights, time-profiles seem to be more informative than 
speed-profiles, as they reflect the stop-duration of vehi-
cles at those locations. The stop-duration at traffic lights 
is considerably longer than at other types of controlled 
intersections, so traffic lights can be distinguished by this 
characteristic. For the distinction between the other 
regulation categories, the results showed that speed pro-
files encompass all the required information needed for 
the scope. More specifically, we found that although 
movement patterns at yield and uncontrolled intersec-
tions share close similarities, on average the crossing 
speed of the movement patterns at uncontrolled inter-
sections is considerably lower than that at priority- 
controlled intersections. This means that uncontrolled 
intersections can be distinguished from yield/priority 
intersections based on the average crossing speed. 
Priority from yield rules can then be easily identified as 
the observable patterns in speed-profiles are distinctive. 
We regard these findings as preliminary indications that 
speed and time profiles can be used for categorizing 
intersections according to traffic regulators in the con-
text of a three-class classification problem. 

Notes

1. physical features: final stop duration, minimum 
crossing speed, number of deceleration events, num-
ber of stops, distance of last stop from the 
intersection.

2. statistical features: minimum, maximum, mean, and 
variance of physical features.
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