21,427 research outputs found

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Human motion modeling and simulation by anatomical approach

    Get PDF
    To instantly generate desired infinite realistic human motion is still a great challenge in virtual human simulation. In this paper, the novel emotion effected motion classification and anatomical motion classification are presented, as well as motion capture and parameterization methods. The framework for a novel anatomical approach to model human motion in a HTR (Hierarchical Translations and Rotations) file format is also described. This novel anatomical approach in human motion modelling has the potential to generate desired infinite human motion from a compact motion database. An architecture for the real-time generation of new motions is also propose

    Comparison of input devices in an ISEE direct timbre manipulation task

    Get PDF
    The representation and manipulation of sound within multimedia systems is an important and currently under-researched area. The paper gives an overview of the authors' work on the direct manipulation of audio information, and describes a solution based upon the navigation of four-dimensional scaled timbre spaces. Three hardware input devices were experimentally evaluated for use in a timbre space navigation task: the Apple Standard Mouse, Gravis Advanced Mousestick II joystick (absolute and relative) and the Nintendo Power Glove. Results show that the usability of these devices significantly affected the efficacy of the system, and that conventional low-cost, low-dimensional devices provided better performance than the low-cost, multidimensional dataglove

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    3D Time-Based Aural Data Representation Using D4 Library’s Layer Based Amplitude Panning Algorithm

    Get PDF
    Presented at the 22nd International Conference on Auditory Display (ICAD-2016)The following paper introduces a new Layer Based Amplitude Panning algorithm and supporting D4 library of rapid prototyping tools for the 3D time-based data representation using sound. The algorithm is designed to scale and support a broad array of configurations, with particular focus on High Density Loudspeaker Arrays (HDLAs). The supporting rapid prototyping tools are designed to leverage oculocentric strategies to importing, editing, and rendering data, offering an array of innovative approaches to spatial data editing and representation through the use of sound in HDLA scenarios. The ensuing D4 ecosystem aims to address the shortcomings of existing approaches to spatial aural representation of data, offers unique opportunities for furthering research in the spatial data audification and sonification, as well as transportable and scalable spatial media creation and production
    • …
    corecore