2,460 research outputs found

    A single-chip FPGA implementation of real-time adaptive background model

    Get PDF
    This paper demonstrates the use of a single-chip FPGA for the extraction of highly accurate background models in real-time. The models are based on 24-bit RGB values and 8-bit grayscale intensity values. Three background models are presented, all using a camcorder, single FPGA chip, four blocks of RAM and a display unit. The architectures have been implemented and tested using a Panasonic NVDS60B digital video camera connected to a Celoxica RC300 Prototyping Platform with a Xilinx Virtex II XC2v6000 FPGA and 4 banks of onboard RAM. The novel FPGA architecture presented has the advantages of minimizing latency and the movement of large datasets, by conducting time critical processes on BlockRAM. The systems operate at clock rates ranging from 57MHz to 65MHz and are capable of performing pre-processing functions like temporal low-pass filtering on standard frame size of 640X480 pixels at up to 210 frames per second

    Computer Vision Techniques for Background Modeling in Urban Traffic Monitoring

    Get PDF
    Jose Manuel Milla, Sergio Luis Toral, Manuel Vargas and Federico Barrero (2010). Computer Vision Techniques for Background Modeling in Urban Traffic Monitoring, Urban Transport and Hybrid Vehicles, Seref Soylu (Ed.), ISBN: 978-953-307-100-8, InTech, DOI: 10.5772/10179. Available from: http://www.intechopen.com/books/urban-transport-and-hybrid-vehicles/computer-vision-techniques-for-background-modeling-in-urban-traffic-monitoringIn this chapter, several background modelling techniques have been described, analyzed and tested. In particular, different algorithms based on sigma-delta filter have been considered due to their suitability for embedded systems, where computational limitations affect a real-time implementation. A qualitative and a quantitative comparison have been performed among the different algorithms. Obtained results show that the sigma-delta algorithm with confidence measurement exhibits the best performance in terms of adaptation to particular specificities of urban traffic scenes and in terms of computational requirements. A prototype based on an ARM processor has been implemented to test the different versions of the sigma-delta algorithm and to illustrate several applications related to vehicle traffic monitoring and implementation details

    Novel image processing algorithms and methods for improving their robustness and operational performance

    Get PDF
    Image processing algorithms have developed rapidly in recent years. Imaging functions are becoming more common in electronic devices, demanding better image quality, and more robust image capture in challenging conditions. Increasingly more complicated algorithms are being developed in order to achieve better signal to noise characteristics, more accurate colours, and wider dynamic range, in order to approach the human visual system performance levels. [Continues.

    Reconstructing cosmic growth with kSZ observations in the era of Stage IV experiments

    Get PDF
    Future ground-based CMB experiments will generate competitive large-scale structure datasets by precisely characterizing CMB secondary anisotropies over a large fraction of the sky. We describe a method for constraining the growth rate of structure to sub-1% precision out to z1z\approx 1, using a combination of galaxy cluster peculiar velocities measured using the kinetic Sunyaev-Zel'dovich (kSZ) effect, and the velocity field reconstructed from galaxy redshift surveys. We consider only thermal SZ-selected cluster samples, which will consist of O(104105)\mathcal{O}(10^4-10^5) sources for Stage 3 and 4 CMB experiments respectively. Three different methods for separating the kSZ effect from the primary CMB are compared, including a novel blind "constrained realization" method that improves signal-to-noise by a factor of 2\sim 2 over a commonly-used aperture photometry technique. Measurements of the integrated tSZ yy-parameter are used to break the kSZ velocity-optical depth degeneracy, and the effects of including CMB polarization and SZ profile uncertainties are also considered. A combination of future Stage 4 experiments should be able to measure the product of the growth and expansion rates, αfH\alpha\equiv f H, to better than 1% in bins of Δz=0.1\Delta z = 0.1 out to z1z \approx 1 -- competitive with contemporary redshift-space distortion constraints from galaxy surveys.Comment: 16 pages, 8 figure

    AURORA:autonomous real-time on-board video analytics

    Get PDF
    In this paper, we describe the design and implementation of a small light weight, low-cost and power-efficient payload system for the use in unmanned aerial vehicles (UAVs). The primary application of the payload system is that of performing real-time autonomous objects detection and tracking in the videos taken from a UAV camera. The implemented objects detection and tracking algorithms utilise Recursive Density Estimation (RDE) and Evolving Local Means (ELM) clustering to perform detection and tracking moving objects. Furthermore, experiments are presented which demonstrate that the introduced system is able to detect by on-board processing any moving objects from a UAV and start tracking them in real-time while at the same time sending important data only to a control station located on the ground

    COrE (Cosmic Origins Explorer) A White Paper

    Full text link
    COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than 3σ3\sigma for r=(T/S)>=103r=(T/S)>=10^{-3}. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added, minor errors corrected
    corecore