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Abstract 

Image processing algorithms have developed rapidly in recent years. Imaging functions are 

becoming more common in electronic devices, demanding better image quality, and more 

robust image capture in challenging conditions. Increasingly more complicated algorithms are 

being developed in order to achieve better signal to noise characteristics, more accurate 

colours, and wider dynamic range, in order to approach the human visual system performance 

levels. 

The research presented in this thesis proposes a novel and efficient approach to improve the 

performance of image processing algorithms by modelling the image sensor characteristics. 

The proposed approaches allow not only achieve better operational performance but also a 

number of algorithmic optimizations, making their practical use feasible. 

The fundamental aim of the research presented in this thesis is to review the traditional image 

processing algorithms and to find ways to use the information about image sensor 

characteristics efficiently in them by re-arranging the image processing pipeline and re-

designing the algorithms. The re-design of the image processing pipeline requires the re-design 

of the main processing blocks. The results of the proposed research allow newly designed 

functional blocks to work reliably and improve their performance to levels, where their use 

becomes practical. 

The results of the research presented in this thesis cover a number of important image 

processing areas.  

Proposed spatial and spatial-temporal noise reduction techniques allowed achieving the 

performance on the level and above of the best known noise reduction algorithms. Due to a 

number of algorithmic optimizations and a novel approach of applying algorithms in the Bayer 

RAW domain, using sensor noise modelling, the proposed algorithms were efficiently 

implemented in hardware and used in a number of commercial products. Other algorithms of 

comparable performance are not known to be used commercially. 

The proposed frame accumulation algorithm for de-noising of still images is shown to perform 

to a high standard. It is based on previously developed technique and was implemented in 

hardware. The ability of the proposed frame accumulation algorithm to compensate for large 

objects offsets and efficiently accumulate still images is unique and enables improved camera 
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performance in low light conditions. Other known techniques are not used in commercial 

products due to complexity and, more importantly, poor image quality in various conditions. 

The proposed multi-exposure image fusion algorithm is based on the frame accumulation 

algorithm and allows multi-exposure fusion free from ghosting artefacts. The algorithm for 

multi-exposure image fusion enables the wide dynamic capture in standard cameras. The 

algorithm is implemented in hardware and allows wide dynamic range fusion in real time. 

The proposed edge detection normalisation technique improves object detection reliability. The 

algorithm performs edge detection on sensor data directly, thus allowing object detection to be 

implemented on camera without the image processing pipeline. The object detection system, 

using the proposed approach, is implemented in hardware and demonstrates improved 

detection performance compared to traditional object detection system. 
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Chapter 1 

Introduction 

 Research Problem statement 1.1.

The technology of manufacturing image sensors has been rapidly evolving in the recent years, 

making image sensors available for mobile device use, reducing power consumption, 

increasing image capturing resolution and frame rate. Although a significant progress has been 

achieved in many areas of electronic imaging, digital imaging systems are still significantly 

inferior, when compared with the human visual system. The human visual system outperforms 

digital imaging systems in many areas, such as: the dynamic range of a captured scene, amount 

of captured details, sensitivity, limitations due to the presence of noise, as the image sensors 

concerned, and finally the capture rate at a nominal resolution. In our research we will attempt 

to resolve some of the outstanding operational and performance issues of digital imaging 

systems. The proposed approach will study the image sensors characteristics and behaviour in 

different situations, and use the modelled sensor behaviour to improve the image processing 

algorithms, by making them more robust yet feasible for practical use in digital image 

processing.  

There are known algorithms for images and video de-noising, such as BM3D and VBM3D 

described in [3], [4]. The performance of BM3D and VBM3D algorithms is one of the best 

among known algorithms, however due to complexity the algorithm is not used in camera 

systems as its practical implementation  is not possible not in software nor in hardware. There 

are other algorithms [6],[11],[13] based on non-local means block matching, block 

accumulation techniques, or PCA [10]. However their performance is inferior comparing to the 

BM3D and VBM3D. 

The algorithms for frame accumulation and video de-noising were proposed in [9],[24],[25], 

however it was discovered that large object displacements is difficult to compensate. The 

proposed algorithms were implemented in RGB domain, and were unable to use the 

information about sensor noise. The quality of frame accumulation is fully depends on the 

quality of motion estimation and compensation, which is known to be a very difficult problem, 
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therefore the method of frame accumulation is not very common in practice. Attempts to 

minimize the effect of motion estimation imprecision were taken in [25], however the 

requirements for memory bandwidth and algorithm complexity made this algorithm 

implementation not practical. 

The problem of multi-exposure images fusion is very difficult and related to the problem of 

frame accumulation. Another complication in multi-exposure fusion is that images are taken at 

different exposures. Due to possible large object displacements the appearance of ghosting 

artefact is very common and unacceptable in consumer applications. The problem of ghost-free 

multi-exposure fusion was not solved yet. The attempts to resolve the ghosting artefacts 

appearance in multi-exposure image fusion were taken in [45],[46],[52]. Currently there are no 

known methods allowing performing multi-exposure image fusion without ghosting artefact 

suitable for practical use. 

The area of object detection is developing rapidly, however existing approaches assuming the 

object detection algorithms to run on recorded video or still images. One of the most reliable 

object detection techniques is known as HOG-SVM and described in [40],[41],[42],[43],[44]. 

There are a number of issues with the mainstream approach to object detection. Firstly object 

detection always need image processing system to produce quality RGB image or video 

sequence, which in many cases means increased system complexity. Secondly the object 

detection algorithms assume no knowledge about image source, as the image processing 

settings are not known. The performance of object detection algorithms deteriorates quickly in 

low light conditions. The possibility of running object detection algorithms on sensor data 

directly and use the sensor characterization to improve object detection quality is not 

investigated. The possibility of implementation of object detection system on the sensor silicon 

was investigated in [39], however the sensor can offer very limited resources for object 

detection algorithm, so the idea of object detection on sensor is not very practical. 

 Aim and Objectives 1.2.

The aim of this thesis is to propose the re-organisation of a standard image processing pipeline 

as well as to propose novel approaches to traditional image processing algorithms, where data 

related to ground truth is used to operate algorithms in a more reliable fashion by modelling the 

sensor characteristics. The increased algorithmic performance also enables the reduction of the 

complexity of the algorithms and makes their practical use in commercial and industrial 



Chapter 1: Introduction

 
 

 
14 

 

devices feasible. The focus is to develop algorithms allowing efficient implementation in 

hardware e.g. FPGA, ASIC devices, as hardware implementation is the preferred method of 

implementation that guarantees no compromise between algorithm quality and performance. 

The ultimate goal is to increase the quality and performance of the algorithms to a level at 

which their practical use will not be a concern, such as in multi-exposure, wide dynamic range, 

image stitching, image data accumulation.  

The following research objectives, if met, can assure the achievement of the aforementioned 

goals: 

 Study the existing approaches and identify their weaknesses.  

 Investigate possible solutions by assuming that the image sensor can be used as a 

calibrated measurement instrument. 

 Concentrate on algorithms’ design suitable for efficient hardware implementation to 

eliminate the compromise between algorithmic quality, performance and power 

consumption. 

 Concentrate on algorithms’ hardware implementation to be within 1-1.5 million gates, 

when implemented in ASIC, consider algorithmic optimizations first as most efficient. 

Satisfying this requirement make algorithms implementation practical and suitable for 

commercial use. 

 Actively re-design the image processing pipeline to access image data at a point where 

they are not affected by non-linear algorithms and can be accurately and directly related 

to the model of the image sensor.  

 Develop a spatial noise reduction algorithm, allowing high level of optimization for 

hardware implementation, at the same time providing the details preservation and the 

efficiency of noise filtering on the level or above of the best known algorithms. 

 Develop a spatial-temporal noise reduction algorithm, featuring local motion 

compensation and efficient data accumulation. The developed algorithm should allow 

high level of optimization for hardware implementation and minimization of memory 

bandwidth, at the same time providing the details preservation and the efficiency of 

noise filtering on the level or above of the best known algorithms. 

 Develop a frame accumulation algorithm able to compensate large object offsets to 

allow photographic images accumulation to improve signal to noise ratios in a low light 

conditions. The developed algorithm should allow high level of optimization for 
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hardware implementation and minimization of memory bandwidth, at the same time 

providing the details preservation and the efficiency of noise filtering. 

 Develop an algorithm for fusion of images taken and different exposures to achieve 

wide dynamic range capture and eliminate appearance of ghosting artefact. The 

developed algorithm should allow high level of optimization for hardware 

implementation. 

 Re-design edge detection algorithm used in object detection system to improve 

detection rate and reduce false positives rate by using image processing techniques 

developed in this work. 

 Allow re-designed object detection system to work with sensor data directly, thus 

eliminating the need for image processing sub-system in embedded object detection 

systems. 

 Contributions 1.3.

A number of original contributions have resulted from the work conducted within the research 

context of this thesis. 

 A spatial noise reduction algorithm was proposed to operate on Bayer RAW data 

obtained from the image sensor. An image scale pyramid and a block matching 

approach were used directly on the image sensor data. The sensor noise model was used 

to weigh the decisions made during the block matching process. A non-liner SAD filter 

was proposed to separate data auto-correlation from noise. The proposed algorithm 

implemented as a hardware block, achieved significant improvements in spatial noise 

reduction and has already being used in a number of commercial devices. 

 The novel spatial noise reduction block has been used within a temporal noise reduction 

algorithm in order to match image data between different frames and perform precise 

pixel mapping. The original idea was to perform block matching in Bayer RAW data 

space. The sensor noise model was used to define the reference for the block matching 

algorithm, which enabled accurate local motion compensation. Another contribution is 

to use a Gaussian background model to achieve optimal data accumulation and suppress 

errors in temporal data matching. Performing data accumulation in Bayer RAW data 

domain enabled the use of the sensor noise model as a reference data variance in the 

Gaussian background model. 
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 The above Spatio-Temporal noise reduction algorithm was further extended by using a 

robust optical flow based approach (working in Bayer RAW data space), which enabled 

the improvement of the motion field estimation at relatively low computational cost. 

Proposed Spatial-Temporal noise reduction algorithm is able to compensate motion on 

a very large scale, as well as accurately match image data between different frames at a 

pixel level. A specific contribution made was to use the sensor noise model as a 

reference for any pattern matching process, making the decision more reliable, and the 

algorithm less complex. 

 Subsequently the Spatial-Temporal noise reduction algorithm and the robust optical 

flow algorithm above are used in multi-exposure frame fusion. The novelty of this work 

is to reformulate the problem of multi-exposure image fusion into the problem of 

spatial-temporal image data matching, using the noise reduction framework. The result 

of this work is an algorithm, which allowed performing multi-exposure image data 

fusion, eliminating any local motion artefacts and producing wide dynamic range 

images, matching the human vision capabilities. 

 Finally the methods of data processing developed in previous research are used to 

improve feature extraction quality in object detection algorithms. The specific 

contribution made by this research is to investigate and develop a method for the 

normalisation of edge detector responses, based on the sensor noise model. It will be 

shown that the results of a typical object detection task can be significantly improved 

based on this improvement.  
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 Organisation of Thesis 1.4.

This thesis is organized in two parts. The first part includes non-contributory chapters 

providing basic information about the research problem addressed in the thesis and 

fundamental background knowledge of the subject area. The second part of thesis includes five 

contributory chapters, each dedicated to a particular problem in image processing area and a 

novel approach to addressing that problem. A summary of each part/chapter can be represented 

as follows: 

1.4.1. Part 1: Introduction, background theory and known methods 

Chapter 1 provides an overview of the thesis, defines the research problem, states the research 

motivation and specifies the thesis aims and objectives. Finally it outlines the organisation of 

the thesis. 

Chapter 2 provides an overview of an image processing system and fundamental elements of a 

typical image processing pipeline. This chapter also presents the known approaches to image 

processing, spatial and temporal data accumulation in particular, which we will employ in our 

proposed algorithms in an unusual way. 

1.4.2. Part 2: Novel image processing algorithms and methods to solve 

difficult known problems in image processing. 

Chapter 3 proposes a novel block matching noise reduction method, applied in Bayer RAW 

data space, algorithmically optimized for efficient hardware implementation. This chapter also 

includes a literature review and presents state of the art algorithms in the image noise reduction 

area, as well as an explanation of contributions and experimental results. 

Chapter 4 provides details of the proposed Spatio-Temporal noise reduction method, applied in 

Bayer RAW data space. It is shown that the proposed algorithm is optimized for hardware 

implementation. The method of image matching in spatial domain is extended to perform a 

data accumulation in temporal domain. Sensor noise characteristics are used to normalize 

spatial and temporal variations. A literature review of state-of-the art algorithms in image noise 

reduction area, as well as an explanation of the original contributions and experimental results 

is also provided in this chapter. 

Chapter 5 provides a description of a novel algorithm for image data accumulation based on 

optical flow, which is designed to de-noise high resolution photographic images. In this 
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research the robust optical flow algorithm was improved by using the information about the 

image sensor noise characteristics. Temporal data accumulation method described in Chapter 4 

was adopted in this proposed algorithm. This chapter also includes a literature review and 

presents state of the art algorithms in image noise reduction, as well as explanation of the 

contributions made by the proposed algorithm. 

Chapter 6 provides details of the application of the algorithm for Image Matching in Bayer 

RAW domain for ghosting removal in multi-exposure image fusion. In this research, 

previously developed reliable methods for image matching and data accumulation were used to 

match images taken at different exposures. A literature review, a presentation of state of the art 

algorithms in image noise reduction and an explanation of the contributions made by the 

proposed research is presented. 

Chapter 7 presents details on research conducted in Sensor Noise modelling, which will be 

used in edge detection, to improve the performance of object detection algorithms. In this 

research the impact on object detection and false positive rate imposed by the sensor noise 

modelling has been investigated in the edge detection part of an object detection algorithm. A 

literature review and presentation state-of-the-art algorithms in the image noise reduction area, 

as well as explanation of the contribution made by the research presented in this thesis and 

relevant experimental results are also provided in this chapter. 
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Chapter 2  

Background Theory and Related Work 

 Overview of image sensors and their characteristics 2.1.

Image sensors perform a transformation of optical information into electrical signals. In order 

to acquire the image data, image sensor area is divided into a large number of individual photo-

sites - pixels. Thus each pixel characteristics can be described as a single photo diode, whereas 

the whole device can be considered as a spatial grid of photo-diodes, performing spatial 

sampling of optical information. Such characteristics as spectral sensitivities and quantum 

efficiency are defined by the photo-diode, while noise generated by the image sensor is given 

by various noise sources: quantisation of photons count, random thermal processes in image 

sensor material, pixel data multiplexor circuits, analogue amplification circuits, analogue to 

digital converter quantization noise. It is important to note that various noise sources can be 

separated by the effect they produce on a final digital image. 

 Data sampling 2.2.

A spatial grid of photo-diodes can be considered as a two-dimensional sampling array. We can 

consider that sampling theory is applicable to image sensors. Image sensors have common 

problems with optical crosstalk between adjacent pixels, electrical crosstalk between pixels. 

There is also a problem with spatial frequency aliasing, which is a result of spatial sampling 

without filtering in spatial domain in order to limit the bandwidth of signal. In order to capture 

colour information, the Bayer RGGB pattern is commonly used. In the proposed research 

different sensor array patterns such as RGBW, RGBIR or more exotic random pattern sensors 

will not be considered, as it would not affect our research, the results of which can be 

generalized for any alternative image data sampling methods. 

 Image processing pipelines  2.3.

Image data, captured by the sensor is usually processed by a number of functional units, 

arranged in a chain of sequential processing blocks, named in literature as an Image Processing 
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Pipeline (IPP). Each stage of the processing is performed by its corresponding block. An 

example of a traditional IPP is presented in Figure 1: 

Multi-

Exposure 

fusion

Defective 

pixel 

correction

Shading 

compensation
Demosaic

Color

correction

Gamma

correction

RAW RAW RAW RAW RGB RGB sRGB

MPEG

JPEG

Spatial 

NR

Spatial-

Temporal 

NR

Object 

Detection

 Information about sensor characteristics is difficult or 

impossible to use.

 Algorithms in RGB domain work with noisy image data, 

resulting in even more noise in the final resulting image. 

 Optimal algorithm performance can be achieved only at 

very high cost of extra complexity.

 

Figure 1: Traditional image processing pipeline. 

In the above pipeline it is seen that some stages of processing are performed in the Bayer RAW 

data space, while some other processing is performed on RGB image data. It is important that 

starting from the de-mosaic block, processing of the data is performed by non-liner algorithms, 

making image intensity levels non-linearly distributed, thus braking linear dependencies 

between different regions in the image. In this research an attempt is made to design image 

processing blocks, working in linear Bayer RAW data space, in order to benefit from 

predictable nature of data, enabling to perform effective sensor noise modelling. The 

estimation of the noise characteristics for each image region can drastically improve the 

reliability of most image processing algorithms, by providing a very reliable reference for any 

decision made by the algorithm’s logic. However processing in the Bayer RAW data space will 

impose additional constraints and create some difficulties in algorithms design. The research 

conducted in this thesis will attempt to overcome these issues and propose reliable, robust but 

yet feasible solutions for algorithms that are practically implementable. The block scheme of 

proposed organization of IPP is presented in Figure 2: 
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Figure 2: Proposed Image processing pipeline organization. 

 Noise characteristics 2.4.

In the proposed research we will consider the effect of noise, added to the image. It has been 

previously investigated by other researches [12],[13],[16],[17] that the additive noise model is 

generally applicable for describing noise of an image sensor. It has been also proven that the 

actual sensor noise fits the Gaussian and Poissonian random processes model very well.  The 

image data representing the actual scene image sampled by the sensor without noise added to 

the image is defined as ),,( tyxI p .  The ideal image data ),,( tyxI p is a function of coordinates 

yx, and t. In this research two dimensional coordinates yx,  denoted as v for the compactness 

of equations, therefore the ideal image data to be defined as ),( tvI p . Noise of different nature 

is assume:  analogue noise ),( tvna
, originating from analogue circuits and added to the image 

data, fixed pattern noise (FPN) )(vn fpn , originating from multiplexors and sensor defects 

therefore not being a function of time, and photon noise )),(( tvIn pq , also known as a shot 

noise that is added to the image data ),( tvI p , captured at time t and is sampled by the sensor as 

follows: 

)),(()(),(),(),( tvInvntvntvItvI pqfpnaps   (1) 

It is assumed that noise has a random nature and can be represented by a zero mean random 

process, therefore it can be removed by averaging data and noise. The expectation is that the 

signal and the noise are not correlated, and that image data are represented by some regular 
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patterns, so that correlation functions of image data between different parts of the image can be 

found. If data and noise are not correlated, the selection of averaging kernels, should allow us 

to preserve the details while reducing the amount of noise.  

The Gaussian noise, usually produced by analogue circuits ),( tvna  has a thermal nature and 

can be approximated by a zero mean Gaussian random process. Analogue noise does not 

depend on characteristics of light, and is added to the useful image data by analogue sensor 

components. In the proposed research a Gaussian distribution with a standard deviation of a  

is used to characterize the analogue noise.  

Further, sensor defects
 
affect the level of resulting noise. Common sensor defects found in 

many sensors are namely, line, column and fixed pattern noise. Line and column noise can be 

characterized using a Gaussian noise distribution, applied in each dimension x and y with 

corresponding standard deviations ax  and
ay . Fixed pattern noise can be characterized by 

using a Gaussian noise distribution 
fpn  which is fixed over the time. Sensor defects can be 

considered as an addition to analogue noise ),( tvna .
 

Another source of noise present in a typical imaging sensor is photon noise )),(( tvIn pq , which 

increases as the light level increases, due to a larger numbers of photons captured by the 

sensor. This noise source can be described as a random process with a Poissonian distribution 

with standard deviation q . It is assumed that ),(),( tvItvI ps  , which in practice means that 

the signal is stronger than noise. According to that assumption it can be put

)),(()),(( tvIntvIn sqpq  . The proposed system architecture can benefit from the knowledge 

of sensor noise characteristics. Sensor noise modelling was investigated in [12],[13],[16],[17] 

and standard deviation for sensor noise can be defined as follows: 

 
max

222 ),(
),(

I

tvI
tv s

qa    (2) 

Where Imax is a maximum level of intensity captured by the sensor. The standard deviation of 

sensor noise vs the intensity of the light captured by the sensor was calculated at different 

analogue gain values: 1, 4, and 8 times. The sensitivity of the sensors used in our experiments, 

corresponds to ISO100 at an analogue gain of 1, ISO400 at a gain of 4 and ISO800 at a gain of 
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8, as standard. The corresponding noise curves for the sensor AS3372, refer appendix B, are 

represented in Figure 3: 
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Figure 3 Sensor noise at ISO100, ISO400 and ISO800 

Further the precision of equation (2) can be illustrated by the scatter plot and the best fit graph 

illustrated in Figure 4:  

         

Figure 4: Sensor noise experimental data 



Chapter 2: Background Theory and Related Work 

 
 

 
24 

 

In Figure 4, red, green and blue dots represent noise variances for the corresponding pixel 

colours, measured at different light intensities. The above graph is usually referred to as a 

sensor noise profile. For the experimental work conducted in this thesis different image sensors 

were used, refer Appendix B. The noise profile presented in Figure 4 was experimentally 

measured for a sensor AS3372 at ISO100, refer Appendix B for details. The values of a
2 and 

2

q characterize the noise characteristics of a sensor and being used in equation (2) can 

provide the estimation of a noise for each pixel at given ISO settings. 

 Interpolation and statistical data accumulation 2.5.

As we have seen above, the image data captured by the sensor cannot be represented directly as 

the image captured by the image sensor. Important stages of image reconstruction, usually 

referred to as image processing stages, would be required to separate the image data captured 

by the sensor from noise, normalize data levels, compensate for sensor defects. The captured 

image data has to be interpolated in order to obtain brightness, contrast and colour information 

and subsequently to restore the true colours of the image. Spatial filtering kernels can be used 

to significantly reduce the image data variance within the kernel radius. In a situation where 

several images are captured for the same scene and the sequence of images is available, 

temporal averaging can significantly improve signal to noise ratios of the image. At the same 

time the details in the image can be preserved if the correlation between the parts in the 

reference image and the accumulated image can be found. It is important to note that the sensor 

data acquisition time, usually called the integration time, can be increased in order to improve 

the signal to noise ratio in the data captured by the sensor. In the proposed research both spatial 

and temporal data accumulation techniques has been used. Both spatial and temporal 

accumulation techniques require respectively intra frame and inter frame image data matching 

to be performed, to enable data accumulation. The spatial data accumulation methods were 

proposed in [1],[3],[4],[5],[6],[11],[19],[20]. It was proved that the accumulation of image data 

from single image can significantly improve signal to noise ratio. The idea of temporal data 

accumulation (inter-frame) was investigated in [1],[18],[19],[24],[25]. It was proved that inter-

frame image data block accumulation very efficient technique for image or video de-noising. 

Let ),( tvI represent an image captured by the sensor at a discrete time t. Let us consider a pixel 

of the image ),( tvI with coordinate x at a discrete time t and its neighbourhood ),( tvN  defined as 

a set of pixels of the image ),( tvI  within an area of size of kk   and a centre at coordinate v. In 
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order to perform data averaging, a limited search area ),( tvS  of size of ss   and a centre at v 

within the same image ),( tvI  can be used. In this work the values of s and k are constrained to 

satisfy the following rule 1 ks and both s and k are odd numbers. As the size of ),( tvS  was 

defined to be 1 ks we can define a set of pixels ),(),( tvStvI j  . For each pixel ),( tvI j at 

coordinates 
jv a neighbourhood ),( tvN j

 can be defined, as a set of pixels of the image ),( tvI  

within an area of size of  kk   and a centre at coordinates
jv . In this research it is assumed 

that the image is formed by regular patterns and the self-correlation function is not singular, in 

that case spatial or temporal averaging of correlated data will reduce the amount of noise, given 

that the signal and noise are not correlated. Thus the neighbourhoods ),( tvN j
 of image ),( tvI

can be averaged with weights ),,( tvvw j  to produce the de-noised image neighbourhood ),(' tvN

, according to the equation (3): 
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A new image neighbourhood ),(' tvN corresponds to a new (de-noised) image ),( tvI  , so that 

'' IN  . Repeating the accumulation process defined in equation (3) for each pixel of ),( tvI  

and corresponding neighbourhood ),( tvN  it can be seen that the accumulated image ),( tvI 

can be defines as: 
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In equation (4) weights ),,( tvvw j  are obtained as averaging of weights ),,( tvvw jN within the 

search window S. It can be noted that 
jv can take ss possible values. Further the t is omitted 

for the compactness of formulas as all data utilized in the accumulation process corresponds to 

the same time t. It can be seen that the weights ),,( tvvw j should have a higher value for 

correlated pixel neighbourhoods and lower or zero value for non-correlated pixel 

neighbourhoods. The efficiency of noise reduction and the preservation of image details thus 

fully depend on the correctness of weights ),,( tvvw j  calculation.  The process of intra-frame 

accumulation is represented in Figure 5: 
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Figure 5: Intra-frame accumulation 

In situations where the scene is captured by several images, images taken at different time can 

be accumulated in a frame buffer )(vI fb . In this case search for the matching image data is 

performed between the reference image )(vI  and accumulated image in the frame buffer )(vI fb . 

From the frame buffer image data, the matching current de-noised image is obtained according 

to the following equation (5): 
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vSv
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fb

j

j

vvw

vIvvw

vI  (5) 

The temporal difference between matching )(' vI fb and )(vI is minimized, so that their linear 

combination can be used to update the content of the frame buffer and stored for the next frame 

as de-noised accumulated image. The process of inter-frame image data matching is presented 

in Figure 6: 
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Search kernel S(v) in image I(v)
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Figure 6: Inter-frame image data matching 

Both data accumulation methods are widely used in [1],[3],[4],[6],[9],[10],[11],[14], 

[15],[20],[24] to reduce the amount of noise in captured images. However the challenge is to 

find optimal ),( jvvw and ),( jfb vvw at a minimum cost and decide on the strategy when the data 

correlation matrix is singular.  

  Muti-scale data segmentation 2.6.

In the proposed research the sensor noise distribution has been investigated in different spatial 

frequency bands. It was found that normally sensors would generate significant amount of 

noise in the high frequency band as well as in the relatively low frequency bands. Practically 

the frequency analysis of noise shows that the noise speckles of 1-2 pixels in size are as 

common as large noise patches of 30-60 pixels in size. In this work in order to efficiently filter 

the image data, a multi-scale approach has been used to achieve a large effective filtering 

kernel, while keeping resource usage minimised, and at the same time to improving the 

efficiency of filtering. The idea of data processing in frequency bands is not new and was used 

in [2],[3],[4],[6],[8],[11], however, in this research the challenge was to find the method of 

representation of image data by independent frequency bands, which is efficient for hardware 

implementation. A requirement was to keep the complexity of such a transformation low, in 

Sfb(v)

N(v)

Nfb(vj)

Search kernel S(v) in current image I(v)

Search kernel Sfb(v) in accumulated image Ifb(v)
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order to allow real-time performance and low resource usage. In the proposed research the 

algorithms have been constrained to work in the linear Bayer RAW domain, which results in 

particular requirements for the transformation and filtering techniques. To this effect, the 

Gaussian kernels have been used to perform image data filtering.  

The multi-scale approach we used can be described as a Gaussian pyramid of the image ),( yxI . It 

is computed for each colour plane according to equation (6): 












  8,4,2,1;),(),(

0);,(
),(

1 kdydxyxgyyxxG

kyxI
yxG

ggggggk

k  (6) 

As in the general case of this research we used the kernel ii ggg  ' , where, 

)16/1,0,16/4,0,16/6,0,16/4,0,16/1(ig . 

The difference between the previous Gaussian image G0 and filtered image G1 is named as the 

Laplacian image L0. This process is continued to obtain a set of band-pass filtered images, 

expressed as in equation (7): 

}....1,0{);,(),(),( 1 KkyxGyxGyxL kkk    (7) 

From the above formula, it can be seen that the Laplacian pyramid is a set of band-pass images. 

It contains all of the image's textural features, at different scales. The bottom level of the 

pyramid contains the highest spatial frequency components such as the sharp edges, textures, 

high-frequency noise etc. The top level contains the lowest spatial frequency components. The 

intermediate levels contain features gradually decreasing in spatial frequency from high to low. 

A Laplacian pyramid has an important feature: the sum of Laplacian images will produce the 

original image: 





Kk

k yxLyxI
:0

),(),(  (8) 

Since the filter parameters are related to the noise standard deviation of every level of the 

Laplacian pyramid, the noise characteristics of a Gaussian-Laplacian image pyramid needs to 

be investigated. If the standard deviation of the original noisy image is
2

0 , the noise variance 

2

s of the smoothed image, filtered with Gaussian kernel ),( gg yxg   is given by equation (9): 
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Here, 
2

g  is the standard deviation of Gaussian kernel and ),( yxGs  is a mean value of 

),( yxGs  by definition of standard deviation. In a particular case of image data processing, 

),( yxGs can be computed as temporal average of ),( yxGs , when multiple observations of 

),( yxGs are available, or as an average of ),( yxGs  in a spatial kernel with centre at yx,  

assuming that the ground truth data variation is zero.  In the proposed research, 
2

g =1. Thus, 

if 
2

0 denotes the noise variance of the level 0 image of an Gaussian pyramid, the noise 

variance of the level k image in the Gaussian pyramid is given by equation (10), below: 
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The noise variance of every 
kL  can be computed according to equation (11). 
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As the level of Laplacian pyramid increases, the amount of noise of Laplacian image decreases 

rapidly. In the proposed research the correlation between image parts is calculated by using of 

block matching technique with greatly reduced comparison window size for calculating the 

weights on scales }....2,1{ Kk  , as the noise levels of Laplacian images decrease. For image 

data where the useful signal is well above the noise level, comparing similarity in small 

windows or even comparing pixel values gives reliable information for noise filtering.  
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 Temporal methods: image data accumulation using the 2.7.

Gaussian background model. 

In the proposed temporal noise reduction algorithms, temporal filtering is used to reduce the 

variations of image data from frame to frame, over time. In practice, temporal variations can 

produce large scale noise, thus the removal of temporal noise can reduce requirements for the 

maximum filtering kernel size used in spatial filtering. In the proposed research we assume that 

temporal differences can be described as a mixture of Gaussian zero mean process and random 

process with Poissonian distribution, which has being investigated in [1],[15],[17],[25],[26] 

and denoted as ),(2 tv , (refer equation (2)). It is assumed that moving objects typically found 

in video sequences will consistently keep moving in the same direction (i.e. will have salient 

movement) at least for some period of time. Though an attempt is made to minimize the 

temporal difference by performing temporal matching, it is expected that the temporal 

differences will be increased in the areas corresponding to the moving objects. As the 

measurements of motion will be affected by noise using a Kalman Filter as investigated in 

[53],[54],[55] can help to minimize the error of prediction of a new scene by using the 

knowledge about temporal differences from the previous scenes. Assume that the original 

image ),( tvI and accumulated frame buffer image ),( tvI fb  are functions of discrete time t and 

coordinate v, are the two signals that are input to the temporal filter (coordinate v is omitted 

from the further equations in this chapter for the purpose of clarity), the temporal difference 

)(tD for each coordinate x would be calculated as: 

)()()( tItItD fb   (12) 

It is noted that at any time interval t the new pixel value )(tI  of an image can belong to the 

moving object or the static background, with some probability. Further it is assumed that the 

temporal difference )(tD  gradually increases as the moving object enters the scene and the 

object moves consistently, i.e. not changing the direction of the motion randomly. In other 

words it is assumed that the image can be reconstructed by the transformation of the image 

stored in a frame buffer at time )1( t
 
with error )(tD . When temporal difference is calculated, 

the expectation of the current image )(ˆ tI for each pixel can be found using a Kalman filter. In 

our case we assume that the error )(tD  is small and the content of the frame buffer is changing 
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slowly. Thus the expectation of the modified frame buffer image is )1()(ˆ  tItI fbfb . In the 

situations when our assumption is not valid, the efficiency of the accumulation will deteriorate 

and the effect of noise reduction will reduce.  Assuming that the error at each discrete time t is 

)(tD  
 and the correction coefficient is )(tK , we get:

 

)()()(ˆ)(ˆ tDtKtItI fb   (13) 

))1()(()()(ˆ)(ˆ  tItItKtItI fbfb  (14) 

As )1()(ˆ  tItI fbfb , the resulting formula would be: 

)()())(1)(1()(ˆ tKtItKtItI fb    (15) 

In our work we found )(tK  as the coefficient optimal for the Kalman filter to be defined as: 

II

tDtKtK


1
)()

1
1()1()( 

 

  (16) 

Function )(tK  in a real system should be limited by minK < )(tK  < 
maxK , where parameters 

minK and
maxK  correspond to the maximum and minimum frame buffer image update rates, 

respectively. Parameter I is proportional to the standard deviation of pixel intensity and is 

defined as a constant for each particular system. When both )(tK and )(ˆ tI  are calculated they 

are saved in the frame buffer to be used for the next frame. When the proposed algorithm is 

implemented in hardware, the parameter )(tK can be quantized to 4 bit precision data. For the 

equation (16) to be operational, the parameter )(tK can be calculated via lookup tables. At 

each discrete time t the content of a frame buffer: )(tI fb  and )(tK  can be considered as 

temporal mean and variance of an image. Calculating mean and variance for the background 

and foreground parts of an image we found Gaussian mixture model applicable. Gaussian 

model of a background is very efficient method of data accumulation as it reduces memory 

bandwidth and helps to avoid appearance of motion blur artefact due to adaptive filtering and 

separation between static background and moving foreground.  
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Chapter 3  

Block matching de-noising method for photographic 

images, applied in Bayer RAW domain, optimized for 

real-time implementation 

 Introduction  3.1.

In any imaging system producing still or motion pictures, noise reduction is a very important 

component, which defines the resulting image quality of the image processing pipeline. 

Though noise reduction techniques are known for many years, practically their use in consumer 

electronics, video surveillance, professional photo and video devices is constrained and 

therefore rather limited. 

The idea proposed in this work is to adapt block matching, block accumulation filters in a 

multi-scale system as investigated in [5],[8],[9], to de-noise photographic and video images in 

Bayer RAW data space as in [2], using sensor noise modelling as in [6],[9]. The idea of block 

matching block accumulation applied to Laplacian pyramid in Bayer RAW domain, using 

sensor noise modelling is new and was not investigated yet. There are a number of advantages 

in doing the processing on RAW data. One of the advantages is to have predictable noise 

characteristics, thus allowing making the decision about noise levels easier and more reliable. 

The evaluation of existing CMOS sensors shows that the kernel size required for efficient noise 

reduction should not be smaller than approximately 31×31 pixels for full HD sensors. Using 

large sensors (e.g. 12 megapixels and above) the kernels of the size of 127×127 pixels are 

absolutely necessary, while even a 31×31pixel size kernel is considered to be relatively large 

for a typical image processing pipeline.  

The complexity of a block matching algorithm can be analysed as follows. If N
 
is the number 

of pixels in an image, kk 
 
is the number of pixels in a comparison window K (matching 
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block), the complexity of such algorithm is O(k
2
×N

2
).  For computational purposes, the 

simplified algorithm restricts the search range of similar windows in a search window S of size 

of s×s pixels. The final complexity of the algorithm is O(s
2
×k

2
×N). By fixing the search 

window S at the size of 11×11 pixels and the comparison window K size at 5×5 pixels, the 

complexity of such algorithm would be O(25×121×N). The complexity of local algorithms 

with kernel of 11×11 pixels would be O(121×N). Even the simplified algorithm still takes 

significant time to de-noise a full HD image on a general purpose PC. For a hardware 

implementation, performing block matching in a window of 11×11 pixels with block size of 

5×5 pixels is feasible but not practical as the minimum kernel size of 31×31 pixels is required 

in most practical cases. It can be seen that the high computational complexity makes it not 

feasible to tackle with practical issues by applying non-local means de-noising approach 

directly.  

In order to address the issue of algorithmic complexity a multi-scale approach for running non-

local means on a raw sensor data is adopted. The simplification of filter design for higher 

filtering scales is also considered. Multi-scale approach enables modular filter design. Filters 

used on each scale, except for the first, can be the same. Another reason for use of a multi-scale 

architecture is to avoid specific banding artefacts produced by one large filter, seen in other 

implementations (Adobe Lightroom ©Adobe) on smooth gradients, while keeping the kernel 

sizes on each level of scale pyramid small. As investigated by other researchers de-noising in 

transform space (e.g. DCT, Fourier, Wavelet) has a number of advantages. The most 

significant advantage is that filtering does not necessarily lead to contrast and resolution loss 

and does not produce banding artefacts. In the chosen system architecture, firstly, image 

transformation cannot be performed on Bayer RAW data directly. Secondly the advantage of 

knowing the noise levels will be lost. Additionally image transform on its own is a 

computationally heavy task, increasing the computational cost in case of software 

implementation or requiring additional memory and logic when implemented in hardware. 

Finally the need to de-mosaic the image, prior to the transformation, would undermine the 

entire concept. Applying transforms on mosaic colour planes [3] is also possible but has other 

disadvantages. In the proposed algorithm an attempt is made to solve the abovementioned 
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known problems and optimize the algorithms to enable their implementation in commercial 

grade programmable logic devices.  

The major artefact produced by filtering with a large kernel in the pixel intensity space is a 

contouring effect on smooth gradients. Appearance of this artefact can be diminished by 

reducing the filtering kernel size. Unfortunately, this contradicts with the main goal – the desire 

to increase the kernel size to deal with larger scale noise. In order to work around this 

contradictive requirement a multi-scale approach for Bayer RAW data is proposed. In the 

proposed system we decompose the image into 4 bands (in the case of a large kernel), and filter 

each scale with a relatively small kernel filter, 9×9 for the first scale and 7×7 for all other 

scales. Filters applied to the scales of Laplacian pyramid would correspond to a 15×15 pixels 

kernel for the first scale, 31×31 pixels kernel for the second scale, 63×63 pixels kernel for the 

third scale, and so on, in the final RGB interpolated data. Effective kernel size, achieved with 

this approach, reached 127×127 pixels in the interpolated final RGB image. Multi-scale 

approach however has an impact of increased residual noise, though the problem is less 

prominent when compared to what can be achieved with Adobe Lightroom (see the results 

section).  

Applying noise reduction early in the image processing pipeline helps to improve signal to 

noise ratio for the rest of the pipeline, supplying cleaner data for the processing blocks such as, 

dynamic range compression, de-mosaic, colour correction and others. All these algorithms are 

sensitive to noise. The better the signal to noise ratio, the more reliable is the result that can be 

achieved from the complete image processing pipeline. 

Due to the kernel size constraints and the requirement to implement the algorithm in hardware, 

it is highly desirable to perform processing in sensor RAW data space. The proposed algorithm 

was implemented in a real image processing pipeline to process both video and still images. 

The block diagram of the proposed algorithm that uses a 3 layer Laplacian pyramid is 

represented in Figure 7: 
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Figure 7: Algorithm block diagram. 

The first step is to calculate the intensity for each pixel, including the information on colour 

cross- channel correlation. Further as mentioned previously the proposed algorithm will work 

in RAW data space. For the sensors with RGB Bayer pattern the intensity calculation is 

important for two reasons: an equal decision regarding filtering should be made for any colour 

when pixels of different colours belonging to the same object detail. Calculating intensity also 

helps to obtain an image with lower noise by eliminating colour cross-channel noise, thus 

helping to detect image details more reliably. Intensity calculation in multiple scales also 

removes the possibility of a checker pattern artefact appearance in the resulting RGB image, a 

fundamental drawback of some previously proposed algorithms [3].   

The second step of the proposed algorithm is to calculate noise characteristics. This calculation 

is performed on a pixel basis. In parallel with intensity and noise profile calculations the image 
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is passed through the set of filters: High pass filter (HPF1), Band pass filter (BPF2), Low pass 

filter (LPF4), see Figure 7. When the filtering is completed, image data, intensity and noise 

profile data are used by non-local means filters (Filter 1), (Filter 2), (Filter 4), see Figure 7. The 

results of non-local means filtering are sent to the fusion block, i.e. the final processing block. 

3.2. Block matching approach for Bayer RGB sensors 

Non-local means approach [2],[3],[21],[25] is a technique, when the decision regarding 

similarity of different parts of the image is made based on evaluation of blocks of a certain 

size, and averaging is applied to a blocks of pixels. In the proposed algorithm this approach is 

applied in Bayer sensor data domain. In the non-local means technique a pixel neighbourhood  

)(vN  will be used to obtain the measure of similarity with another neighbourhood  )( jvN  as 

defined in Chapter 2, which then will be compared against the noise levels and a decision will 

be made, whether to use that neighbourhood )( jvN to average with the current pixel 

neighbourhood )(vN and what averaging weight to use.  The idea of RAW data filtering using 

non-local means technique was described in [3],[4], however in the proposed work several 

important improvements to the basic approach have been introduced. In the proposed work, 

two methods are developed to set appropriate thresholds for each block accumulation, 

dynamically, in contrast to previous attempts that used a fixed threshold value.  The sensor 

noise was modelled to obtain an estimate of noise levels, refer Chapter 2, equation (2), to 

calculate the weights for block averaging. Further a method for non-linear data analysis has 

been developed to estimate the energy of image details, leading to the prediction of correlation 

values, which enables the guaranteeing of preservation of image details, while at the same time 

on image parts where no details can be found, the filtering strength is increased. In the 

proposed research a concept of spatial data accumulation is used, refer Chapter 2, equation (5). 

In the proposed algorithm the block matching and accumulation will be applied to the layers of 

Laplacian pyramid of image )(vI , which in its turn is obtained as an intensity of a sensor RAW 

data. Let us assume )(vNk
to be a neighbourhood of a noisy Laplacian image )(vLk

 at 

coordinate v. In the proposed algorithm a limited search range )(vS  of size of ss   is used. 

Thus the neighbourhood )()( vSvN jk   of Laplacian image )(vLk can be averaged with 
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weights ),( jk vvw  to produce a de-noised Laplacian image, )(' vLk , (refer Chapter 2, equation 

(5)), according to the equation (17): 
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The weights ),( jk vvw are calculated from block differences ),( jk vvd for corresponding 

neighbourhoods )(vNk
 and )()( vSvN jk  for each pixel coordinate v. 
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However each block difference ),( jk vvd  will be constructed by the sum of noise differences 

),( jk vvd 
 and image autocorrelation functions ),( jk vvd 

. In the proposed algorithm no 

attempt is made to rotate or scale blocks to achieve better correlation. Thus, it is required to 

estimate the value of ),( jk vvd 
 to adjust ),( jk vvw calculation. In this work ),( jk vvd  is 

estimated by the evaluation of the block difference ),( jk vvd  and expected noise level )(v , 

adjusted for the Laplacian scale according to the equation (8). For each block we estimate 

),( jk vvd  according to equation (19): 

),(),(),( jkjkjk vvdvvdvvd    (19) 

Resulting ),( jk vvd   is consequently converted into corresponding ),( jk vvw  by comparison 

with the expected variation of noise, derived from the sensor characterization as specified in 

equation (2). On the level k of Laplacian pyramid the result of averaging )(' vLk in each pixel 

location will be obtained as the result of averaging of data )(vLk  within the search area )(vS  

with weights ),( jk vvw . As discussed in Chapter 2 the number of weights ),( jk vvw  and block 

differences ),( jk vvd  associated with each pixel location will be ss , where s is a size of 

search area S. In this research the block differences ),( jk vvd were calculated in linear Bayer 
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RAW data domain, this fact allows us to use the estimation of a noise level )(v as a reference. 

In this work we propose to normalize the block differences according to equation (20), (21) and 

(22): 

normjknormjknormjk vvdvvdvvd ),(),(),(    (20) 

)(/),(),( vvvdvvd jknormjk   (21) 

normjkjknormjk vvdvvvdvvd ),()(/),(),(     (22) 

In this work we propose to find ),( jk vvd  as follows: 

))(/),(min(),( vvvdvvd jknormjk    (23) 

The equation (23) is expected to be valid in the situations when the image data in the search 

area S(x) contains neighborhoods )(vNk
and )( jk vN  with good correlation, i.e. small value of 

normjk vvd ),( , presumably the minimum block difference will be achieved in a situations when 

the best match can be achieved and the normalized block difference is stayed within several 

sigma range. In the situations when good match in the search area is not possible the estimation 

of normjk vvd ),(  has to be forced to be a large number, which is finally result in details 

preservation at cost of reduced noise filtering efficiency. This corner case however is an 

important situation when logical decision can resolve the situations when the algorithm cannot 

be efficiently used. In this research it is proposed to introduce a coefficient Ca, which will 

force normjk vvd ),( to be increased in a “no match” situations. The final equation for 

normjk vvd ),(  provided below: 

Cavvvdvvvdvvd jkjknormjk  )))(/),(min()(/),((),(   (24) 

In this work it was experimentally found that the optimum Ca can be calculated as: 

))(/),(min(

))(/),((

vvvdCn

vvvdmeanCn
Ca

jk

jk








  (25) 
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The coefficient Cn is usually chosen from range 1:2. The physical meaning of equation (25) is 

that the coefficient 1Ca  and has no effect on the final weights ),( jk vvw  in situations when 

normalized differences are not much different from 1, whereas in situations when the image 

contains texture and details, but reliable block matching is not possible the coefficient Ca will 

become greater than 1 as the variations in block matching results will increase. The equation 

(25) for the coefficient Ca is not unique, however in experiments it was seen that proposed 

formula performs well and easy for implementation. The conversion of normalized 

normjk vvd ),( into ),( jk vvw is performed according the equation (26): 

























2
),(

exp),(
Csigma

vvd
vvw

normjk

jk


 (26) 

In the proposed algorithm there are two constants: Cn and Csigma. The first constant Cn is 

used to adjust subjective parameter of non-regular image details preservation, which was set to 

1.5 in all experimental results presented. The second constant Csigma is used to adjust 

subjective parameter of noise-suppression aggressiveness. In all experimental results presented 

this parameter was set to 1 and never changed. The algorithm presented in this research 

automatically adopted to different sensors and lighting conditions, given that the sensor noise 

model was provided and was correct. The experimental results are provided in a next section. 
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3.3. Experimental results 

In the experiments conducted three de-noising algorithms were compared: the proposed 

algorithm NLBM; BM3D and Adobe Lightroom (©Adobe Systems). Two individual testing 

procedures were adopted, a Simulated test and a Real world test. 

3.3.1. Simulated test 

In this test a reference ISP (©Apical LTD) within which the proposed noise reduction 

algorithm is included was used for the evaluation of results. The proposed de-noising was 

applied to the sensor RAW data, as illustrated in Figure 5. 

Reference image

De-noised image

Processed reference image

PSNR result

Noise added
Bayer data 

sampling

De-noising 

using 

proposed 

algorithm

Demosaic

Bayer data 

sampling

Sharpening 

(unsharp 

mask)

PSNR 

calculation

Demosaic

Sharpening 

(unsharp 

mask)

 

Figure 8: Block diagram of the simulated test process 

For the purpose of comparison we applied BM3D and Adobe Lightroom algorithms on RGB 

data as these algorithms are designed for RGB data processing. All processing parameters were 

the same as used for the evaluation of the proposed NLBM algorithm: 
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Reference image

De-noised image

Processed reference image

PSNR result

Noise added
Bayer data 

sampling

De-noising 

BM3D

Lightroom

Demosaic

Bayer data 

sampling

Sharpening 

(unsharp 

mask)

PSNR 

calculation

Demosaic

Sharpening 

(unsharp 

mask)

 

Figure 9:  Block diagram of the simulated test procedures for BM3D and Adobe Lightroom. 

In the above experiments a directional linear de-mosaicking algorithm, with a kernel of 5x5 

pixels was used. The selection of the interpolation algorithm was based on attainable accuracy 

and predictable behaviour to minimize the effect of noise reduction on interpolation. An un-

sharp mask with an effective kernel of 1 pixel and strength 0.5 was applied to return the 

subjective sharpness of the output image to the level of the original image. The same 

sharpening algorithm (un-sharp mask) was used in all cases. 

 Three different levels of noise were added to the Kodak Test images

255/30,255/20,255/10 . The value of PSNR in dB, for each test image, calculated per 

colour and as an average of RGB (labelled as A in Table 1) values, for 3 different noise levels 

for each of 3 tested algorithms are presented in Table 1. The proposed noise reduction 

algorithm is referred as NLBM, Adobe Lightroom is referred as LR. 
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    10/255 20/255 30/255 

   NLBM BM3D LR NLBM BM3D LR NLBM BM3D LR 

(1) 

 

R 

G 

B 

A 

30.97 

31.06 

31.21 

31.08 

29.37 

29.52 

29.49 

29.46 

30.04 

30.22 

29.69 

29.98 

27.80 

27.99 

28.11 

27.96 

26.77 

27.24 

27.18 

27.06 

27.43 

27.75 

27.30 

27.49 

25.98 

26.19 

26.34 

26.17 

24.99 

25.85 

25.75 

25.53 

26.08 

26.51 

25.97 

26.18 

(4) 

 

R 

G 

B 

A 

32.62 

34.01 

33.90 

33.51 

31.94 

33.76 

33.52 

33.07 

31.92 

33.02 

32.31 

32.41 

30.04 

31.28 

31.17 

30.83 

27.48 

30.82 

30.40 

29.56 

27.93 

30.24 

29.88 

29.35 

28.52 

29.83 

29.80 

29.38 

25.02 

29.28 

28.56 

27.62 

26.47 

29.67 

28.80 

28.31 

(23) 

 

R 

G 

B 

A 

36.16 

37.22 

36.81 

36.73 

35.90 

36.84 

36.48 

36.40 

34.83 

35.87 

34.16 

34.95 

32.49 

33.69 

33.22 

33.13 

30.65 

33.05 

32.50 

32.06 

30.10 

31.92 

30.86 

30.96 

30.20 

31.44 

31.17 

30.93 

27.18 

30.55 

30.15 

29.29 

28.15 

30.65 

29.33 

29.37 

(24) 

 

R 

G 

B 

A 

33.47 

33.44 

33.64 

33.51 

32.67 

32.83 

32.68 

32.72 

32.27 

32.56 

31.56 

32.13 

29.66 

29.76 

29.95 

29.79 

28.97 

29.24 

29.02 

29.07 

29.55 

29.63 

29.05 

29.41 

27.75 

27.73 

27.93 

27.80 

26.84 

27.33 

27.07 

27.08 

27.80 

28.03 

27.32 

27.71 

Table 1: PSNR values for three different noise reduction algorithms on a sub-set of Kodak 

images. 
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It can be seen in Table 1 that the proposed algorithm produces better results compared to the 

benchmark algorithms in the case of all test images. The levels of improvement vary from 

0.3dB to over 1dB for the listed average PSNR values. Further the subjective appearance of 

artefacts produced by the algorithm was considered. It is noted that the proposed algorithm 

does not emphasize on contrast preservation at cost of the quality degradation that results from 

artificial defects produced on the flat surfaces, when compared with the BM3D algorithm. 

However it is seen that the amount of image details is significantly more and the contrast is 

maintained better in the proposed algorithm when compared with images generated by Adobe 

Lightroom (see results for Kodak image 4 at noise 30/255 illustrated in Figure 10: 

Noisy Original  (21.52dB)       NLBM (29.38dB)                BM3D (27.62dB)                 Lightroom (28.31dB) 

 

Figure 10: Kodak image (4) close-up. 

The results of the noise reduction algorithms, applied for Kodak image (23) are presented in 

Figure 10: 

 Noisy Original (22.37dB)      NLBM (30.93dB)                 BM3D (29.29dB)               Lightroom (29.37dB) 

 

Figure 11: Kodak image (23) close-up. 
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In the experiments conducted the proposed algorithm’s parameters were adjusted to produce 

the maximum PSNR values while keeping image details at a reasonable level and artefacts 

under control. As demonstrated by the results illustrated in Figure 10, Figure 11, a further 

reduction of residual noise in Lightroom or artefacts in BM3D is only possible at the cost of 

scarifying details, which would automatically lead to smaller PSNR values. Banding artefact 

on a smooth gradient produced by Adobe Lightroom in image 23 can be seen clearly in Figure 

11. As seen in close-up images, the proposed algorithm provides the most natural looking 

images, even in extremely noisy conditions. However it is very important to evaluate the 

performance of noise reduction algorithm in real situations, as the noise generated by the image 

sensor is not exactly the simulated Gaussian random process. It is important to mention that the 

Poissoninan noise found in actual imaging systems is not necessarily produce Gaussian noise 

in RGB domain. In practice noise distribution in RGB domain is significantly non-linear in 

most imaging systems, therefore the efficiency on noise reduction techniques assuming noise 

distribution to match the Gaussian distribution is compromised.  In the forthcoming section the 

method of comparison of the proposed algorithm with industry leading Adobe Lightroom 

Spatial noise reduction approach is presented. Special arrangements have been made to 

perform a fair comparison of noise reduction algorithms. 
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3.3.2. Real world test 

Experiments were conducted on real camera using a Sony Nex-5 camera. A series of images of 

the same scene were captured with different exposure times and ISO values. Images were taken 

in controlled lighting conditions with a fixed camera and a remote shutter release. Figure 12 

samples taken at 200 ISO and 12800 ISO. During PSNR calculations special measures are 

taken to align images and eliminate any differences in pixel levels to avoid errors that emerge 

due to different intensity levels in images taken at different ISO. 

ISO 12800 ISO 200 

  

Figure 12: Images taken by Sony Nex-5 camera at ISO12800 and ISO200. 
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The block diagram of the real world test procedure is presented in Figure 13: 

Reference image ISO200

Noisy image PSNR

Noisy image ISO12800

NLBM de-noised PSNR

Lightroom de-noised PSNR

Lightroom processing NO NR

Prop ISP processing NO NR

Lightroom processing + NR

Prop ISP processing + NR

Prop ISP processing NO NR

PSNR

calculation

PSNR

calculation

PSNR

calculation

 

Figure 13: Block diagram of the real-world test procedure 

In the experiments conducted the PSNR of an image when processed by the Lightroom image 

processing pipeline was calculated. Using an image of ISO12800 (i.e. the original image), the 

proposed NLBM approach is compared to a Lightroom image processing pipeline processed 

image (see Figure 14).  The corresponding PSNR values are also indicated.  
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Original 23.01 dB  

 

Lightroom 33.38 dB 

 

NLBM 35.94 dB 

 

Figure 14: Real world test results. 
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The average PSNR values for R, G, and B colour channels were calculated, as seen from the 

previous set of tests. It is observed that the numbers across colour channels are not very 

different. It is also worth mentioning that we used the ISO200 reference image produced by our 

ISP to calculate the effect of de-noising of our algorithm and ISO200 reference produced by 

Lightroom to calculate the effect of de-noising of Lightroom as shown in a Figure 14. 

 Conclusion 3.4.

In this chapter, a robust and a fast non-local de-noising algorithm has been proposed. The 

algorithm is based on a Laplacian pyramid and a modified non-local means noise reduction 

filter. The Laplacian pyramid is used to break up a noisy image into band-pass images. By 

performing a modified non-local means noise reduction algorithm on different levels of the 

Laplacian pyramid, with different sizes of comparison windows, both high and low-frequency 

noise are effectively removed, while preserving the image details (edges, textures, etc.) and 

keeping algorithm complexity low. 

The proposed algorithm was implemented as a hardware block and used in Apical IPP. The 

results of algorithm implementation on Altera FPGA and in ASIC, using 65nm TSMC 

technology libraries are presented in Table 2: 

 FPGA ASIC 

Logic elements (gate-count) 117K 750K 

Effective kernel size 31x31 31x31 

Number of scales 2 2 

Multipliers 240 (included in gate-count) 

Pixel clock frequency 150MHZ 350MHZ 

Video performance 1080p 60fps 4k camera 60fps 

Device (silicon area) Altera FPGA 

EP4C150 

1.12 mm
2
 using 65nm process. 

Table 2: Spatial noise reduction synthesis results 

 



Chapter 3: Block matching de-noising method for photographic images, applied in Bayer RAW 

domain, optimized for real-time implementation

 

 

 
49 

 

In a hardware implementation of the proposed algorithm on an Altera FPGA EP3C120 a two 

layer Laplacian pyramid with an effective kernel size of 31×31 pixels and a bit-depth 

(precision of algorithm) 12 bits was used. It was possible to achieve a processing speed of 

150Mpix/sec, which is sufficient to process HD video at 60 frames per second. 

It is important to mention that due to the multi-scale architecture, the effective kernel of the 

proposed algorithm, implemented in hardware, can be increased to a very large size e.g. 

127×127 at a very small increase in gate count.  

It was shown that the proposed noise reduction algorithm shows improvements over many 

well-known noise reduction algorithms. The proposed algorithm is compared against Adobe 

Lightroom and BM3D. In most situations the proposed algorithm shows an advantage over 

competitive algorithms in PSNR, noise structure (spectral characteristics) and the natural look 

of images.   
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Chapter 4   

A Spatio-Temporal noise reduction method optimized 

for real-time implementation 

 Introduction 4.1.

In any imaging system producing still or motion pictures, noise reduction is a very important 

component, which defines the resulting image quality of the image processing pipeline. 

Though noise reduction techniques were known for many years, practically their use in 

consumer electronics, video surveillance, professional photo and video applications is 

constrained and therefore rather limited. 

In this work an attempt is made to solve the complexity and performance issues with an 

optimized implementation of a practical spatial-temporal de-noising algorithm. Spatial-

temporal filtering was performed in Bayer RAW data space, which enabled to benefit from 

predictable sensor noise characteristics and reduce memory bandwidth requirements. The 

proposed algorithm efficiently removes different kinds of noise in a wide range of signal to 

noise ratios. In our algorithm the local motion compensation is performed in Bayer RAW data 

space, while preserving the resolution and effectively improving the signal to noise ratios of 

moving objects.  

The main challenge for the use of spatial-temporal noise reduction algorithms to de-noise video 

sequences is the compromise between the quality of the motion prediction and the complexity 

of the algorithm and required memory bandwidth.  In photo and video applications it is very 

important that moving objects should stay sharp, while the noise is efficiently removed in both 

the static background and moving objects. Another important situation is when the background 

is non-static as well as the foreground where objects are moving. 

The original aim of the proposed research is to combine block matching, block accumulation 

filters investigated in [3],[4],[6] and temporal noise reduction based on Gaussian background 

modelling described in [26],[27] to de-noise photographic and video images in RAW data 
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space, using sensor noise modelling investigated in [12] and covered in Chapter 2. The purpose 

of using block matching block accumulation filters was not just to do filtering in spatial 

domain, but also to find the best match between the current image of the video sequence and 

the accumulated image, thus performing the task of local motion compensation, to minimize 

the temporal difference. However there is a difficulty of matching current video data with 

accumulated video data in Bayer RAW data space. The Bayer pattern of modern RGB sensors 

has a structure with 2 pixel period, which means that simple matching of repetitive patterns 

may lead to loss of image details. In order to address this issue the block matching algorithm 

was modified to perform block matching of local neighbourhoods of red and blue pixels 

differently, from block matching within local neighbourhoods of green pixels. The proposed 

modification of the block matching technique seems viable as in most de-mosaic algorithms 

the green color planes normally have higher priority for details interpolation and, hence full 

precision in green color plane motion compensation is absolutely required, while the impact of 

reduced precision of motion compensation in red and blue color planes does not produce any 

significant degradation of the image quality during the de-mosaic interpolation. Another 

important modification to the block matching algorithm, that has been made, was concerned to 

the use of the non-linear weight filter. In Chapter 3 the use of a non-linear weight filter was 

proposed to reduce the amount of residual noise and grain. In our current work the logic of this 

filter has been altered to minimize the number of matches between accumulated image and the 

current image in a video sequence. These modifications made to the non-linear weight filter 

helped to maintain better sharpness in the output image. 

There are a number of advantages in performing the processing in RAW data domain. One of 

the advantages is to have predictable noise characteristics, thus allowing making the decision 

about noise levels easier and more reliable. Another advantage is that the signal to noise ratios 

are greatly improved in the front end of the image processing pipeline, allowing other blocks to 

work more precisely and reliably with cleaner image data. 

The evaluation of existing CMOS sensors shows that the kernel size required for efficient noise 

reduction should not be smaller than approximately 31×31 pixels for full HD sensors. On a 

large sensors (e.g. 12 megapixels and above) the kernels of the size of 127×127 pixels are 

absolutely necessary, while even a 31×31pixel size kernel is considered to be relatively large 

for typical image processing pipeline. On the other hand temporal noise reduction in most 

cases allows reducing the kernel size down to 15x15 for full HD sensors. 
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Because of the kernel size constraints, memory bandwidth limitations and the requirement to 

implement the algorithm in hardware, it is highly desirable to perform processing in sensor 

RAW data space. Our algorithm was implemented in a camera image processing pipeline to 

process both video and still images. The block diagram of the proposed non-local means 

algorithm with a kernel of size of 15x15 pixels and Gaussian background modelling temporal 

filter is represented in Figure 15: 

Input image 

I(x,t)
Color cross-

channel 

correlation filter

Noise Profiler

Temporal filter

Spatial-filter

Temporal-

matching

filter Output image

I’(x,t)

Bayer RAW data

Intensity data

Noise data

Filtered RAW data

Frame buffer

Spatially de-noised image I’(x,t)

Frame buffer 

image Ifb(x,t)

Temporal

matched I’fb(x,t)

 

Figure 15: Algorithm block diagram. 

The first step in our processing is to calculate the intensity for each pixel, including the 

information about colour cross-channel correlation. Further as mentioned previously our 

algorithm will work in RAW data space. For the sensors with RGB Bayer pattern the intensity 

calculation is important for two reasons: equal decision regarding filtering should be made for 

any colour when pixels of different colours belonging to the same object detail. Calculating 

intensity also helps to obtain an image with lower noise by eliminating colour cross-channel 

noise, thus helping to detect image details more reliably. Intensity calculation also allows us to 

avoid a checker pattern appearance in the resulting RGB image, unlike in some existing 

algorithms [3]. 
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The second step in our proposed algorithm is to calculate noise characteristics. This calculation 

is performed for each pixel according to equation (2). In parallel with intensity and noise 

profile calculations the image is passed through the spatial filter to get rid of some noise, 

especially in a high frequency band. At the same time the original image and the data from the 

frame buffer passed to temporal matching block. The result of filtering along with data from 

temporal matching block then sent to temporal filter GM, which performs temporal filtering by 

computing whether image data belongs to the Gaussian background model or needs to be 

updated from the current video data. The result is stored in a frame buffer. The result of 

temporal filtering is sent to the output and stored in the frame buffer with updated variance 

estimation. In the research presented here we put I(t-1) as the image captured at discrete time t-

1, I(t) as the image captured at discrete time t, )(' tI  as the image transformed to match the 

image )(tI . The variance of temporal noise of image )(' tI  is denoted as ))('var( tI . The 

variance of temporal noise of image )(tI fb  is denoted as ))(var( tI fb . The operational block 

diagram of the proposed Spatial-Temporal filter presented in Figure 16: 

I(t) Spatial 

filter

I(t-1)

)(tI fb

))((var tI fb

))('(var tI

FB

)(' tI

Temporal 

matching

GM

)(' tI fb

 

Figure 16: Spatial-Temporal filter block diagram  

In the figure above )(' tI has a meaning of temporal average of predicted image, i.e. obtained in 

a result of temporal matching and accumulation. The use of Gaussian background model 

enables recursion-like data accumulation, reducing the requirements for the memory bandwidth 

drastically. Comparing the requirements for memory bandwidth of the proposed algorithm with 

algorithm described in [25], it is likely that the memory bandwidth in the proposed algorithm is 

5 times less, considering that in the proposed algorithm the image data has 12 bit precision and 
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variance estimation use 4 bit quantization, while in [25] filtering is applied to 8 bit YUV data 

and the matching is performed for 4 pairs of images. 

 Block matching approach for Bayer RGB sensors 4.2.

Non-local means approach used in inter-frame data accumulation is a known technique 

described in [25], but in this research this method was applied for Bayer sensor data. The idea 

of Bayer RAW data filtering using non-local means technique was described in [3], however in 

our work we included several important improvements. In the proposed research two methods 

were developed to set appropriate thresholds for each block accumulation dynamically, in 

contrast to other researchers, who used a fixed threshold value. The sensor noise was modelled 

to get the estimate of noise levels, to calculate the weights for block averaging (see Chapter 2). 

Further a method of non-linear data analysis to estimate the details energy has been developed, 

leading to prediction of correlation values, which allowed us to guarantee details preservation 

while at the same time having increased strength of filtering on image parts where no image 

details can be correlated. In a discussion related to the image matching, using block matching 

algorithm, it is noted that both ),( tvI and ),( tvI fb correspond to the same discrete time t, so the 

variable t will be omitted.  Let us put )(vN to be a neighbourhood of a noisy image )(vI  at 

coordinate v. In the proposed algorithm a limited search range )(vS  of size of ss   is used. 

Thus the neighbourhood )()( vSvN j   of image )(vI can be averaged with weights ),( jvvw  to 

produce a de-noised image, )(vI   according to the equation (27), (see Chapter 2, equation (5)): 
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In case of temporal matching we would need to match the image data stored in a frame buffer 

)(vI fb  and current image )(vI . Frame buffer data, matching current de-noised image obtained 

according to equation (28) (refer Chapter 2, equation (6)): 
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In case of intra frame accumulation, the weights ),( jvvw are calculated from block differences

),( jvvd for corresponding neighbourhoods )(vN  and )()( vSvN j   of pixels of image )(vI . 

The block differences  ),( jvvd are given by the equation (29): 





)(

)()(),(
vSv

jj

j

vNvNvvd  (29) 

In case of inter-frame accumulation, the weights ),( jfb vvw are calculated from block differences

),( jfb vvd for corresponding neighbourhoods )(vN  of image )(vI  and )()( vSvN jfb   of 

pixels of image )(vI fb
 with coordinates v and vj  respectively: 





)(

)()(),(
vSv

jfbjfb

j

vNvNvvd  (30) 

Each block difference ),( jfb vvd  will be constructed of a sum of noise differences ),( jvvd
 and 

image autocorrelation functions ),( jvvd
. In our algorithm we do not attempt to rotate or scale 

blocks to achieve better correlation, thus, we need to estimate the value of ),( jvvd
 to adjust 

),( jfb vvw calculation. In our implementation we estimating ),( jvvd by evaluation of the block 

difference ),( jfb vvd and expected noise level )(v adjusted for the image data according to the 

equation (2). In spatial filtering block, for each block we calculate the estimation of ),( jvvd
 

according to equation (31): 

),(),(),( jjj vvdvvdvvd    (31) 

In the temporal matching algorithm it is more important to measure ),( jvvd
, as it will 

represent the similarity between the best matching block in frame buffer image and the current 

image. The estimation of ),( jxvd
 can be calculated according to the equation (32): 

),(),(),( jjfbj vvdvvdvvd    (32) 

Resulting ),( jvvd  is consequently converted into corresponding ),( jfb vvw  by comparison 

with the expected variation of noise, derived from the sensor characterization and specified in 

equation (2). The result of averaging )(' vI fb in each pixel location will be obtained as the result 
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of averaging of data )(vI fb  within the search area )(vS  with weights ),( jfb vvw . As discussed 

in Chapter 2 the number of weights ),( jfb vvw  and block differences ),( jfb vvd  associated with 

each pixel location will be ss , where s is a size of search area S. In this work, block 

differences ),( jfb vvd are calculated in linear Bayer RAW data domain, this fact allows to use 

the estimation of a noise level )(v as a reference. In this research we propose to normalize the 

block differences according to equation (33) and (34): 

normjnormjfbnormj vvdvvdvvd ),(),(),(    (33) 

)(/),()(/),(),( vvvdvvvdvvd jjfbnormj     (34) 

The equation (34) provides the estimation of block matching normjvvd ),( and based on directly 

measured ),( jfb vvd and predicted ),( jvvd . In this work ),( jvvd can be put )(),( vvvd j   . In 

this case the value of normalized block difference, reflecting the similarity of the blocks can be 

expressed as: 

1)(/),(),(  vvvdvvd jfbnormj   (35) 

The conversion of normalized normjvvd ),(  into ),( jfb vvw  is performed according the equation 

(36): 

























2
),(

exp),(
Csigma

vvd
vvw

normj

jfb

  (36) 

In the proposed algorithm the parameter of Csigma is used as a threshold for a block 

accumulation and normally set to 1, the best matching blocks will be taken from )(vI fb
 and 

accumulated with higher weight. The algorithm presented in this research automatically 

adopted to different sensors and lighting conditions, given that the sensor noise model was 

provided and was correct. In the proposed algorithm matching )(' vI fb and )(vI  are used by 

Gaussian background model, which performs temporal accumulation of data, and consequently 

reduce the amount of noise in accumulated image.  
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 Temporal data accumulation using Gaussian background 4.3.

model 

In our system we use temporal filtering to reduce the variations of image data from frame to 

frame over time. In practice temporal variations can produce a very large scale noise, thus 

removal of temporal noise can reduce requirements to the maximum filtering kernel size. In 

our research are we assuming that the temporal differences have a distribution with variance

),( tv , described in Chapter 2, equation (2). In this research is it assumed that moving objects 

found in video sequence will consistently keep moving in the same direction at least for some 

period of time. Though we will attempt to minimize temporal difference by performing 

temporal matching, we expect that temporal differences will be increased in the areas 

corresponding to the moving objects. Let us assume that the original image ),( tvI and 

accumulated frame buffer image ),( tvI fb  are the functions of discrete time t and coordinate 

v=(x,y), these two signals are the inputs of our temporal filter, further the coordinate v will be 

omitted for the compactness of the formulas. The formula for the temporal filtering and the 

recursive coefficient was derived in Chapter 2, equations (15), (16): 

)()())(1()1()(ˆ tKtItKtItI fb    (37) 

In our work we found )(tK  as the coefficient optimal for the Kalman filter to be defined as: 

II

tDtKtK


1
)()

1
1()1()( 

 

  (38) 

Parameter I is proportional to the standard deviation of pixel intensity and is defined as a 

constant for each system. When both )(tK and )(ˆ tI  are calculated they are saved in the frame 

buffer to be subsequently used for the analysis of the next frame. In the proposed system )(tK  

is quantized to 4 bit precision data, for the equation (38) to work we defined )(tK calculations 

via lookup tables. Proposed temporal data accumulation method provided an efficient way of 

reducing noise in video image sequences and allowed to minimise the appearance of motion 

blur artefacts. 
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 Experimental results 4.4.

In the experiments conducted a custom camera system using image sensor AS3372 (see 

Appendix B) which provided access to raw data was used. Integration time was set to 1/60 sec. 

For outdoor scenes the lens aperture was set to F2.0, whereas for indoors scenes the lens 

aperture was set to F8.0. In order to expose the image correctly, the sensor gain was 

programmed to 30dB. The videos were processed through the full image processing pipeline. 

For comparison purposes we have compared our proposed algorithm and VBM3D at the same 

operational place in the image processing pipeline, making sure that the processing is done 

using the same image processing pipeline settings. For the VBM3D integration we have used 

the method described in [3]. See examples in Figure 17, Figure 18, Figure 19 and Figure 20 

below. The effect of motion compensation can be seen in Figure 19 and Figure 20 below: 

   

(a) No noise reduction 

applied (26.44 dB) 

(b) Proposed de-noising 

applied (39.84 dB) 

(c) VBM3D de-noising 

applied (39.41 dB) 

Figure 17: Experimental results 

Experimental results illustrate that the proposed algorithm is able to remove noise efficiently in 

an image with static background and a moving foreground object. The appearance of residual 



Chapter 4: A Spatio-Temporal noise reduction method optimized for real-time implementation  

 
 

 
59 

 

noise in (b) is smooth and very similar to one found in an images captured with low gain 

settings (corresponds to ISO-100), which looks aesthetically and more pleasing than the result 

in (c). Another example is presented in Figure 18: 

   

(a)  No noise reduction 

applied (28.83 dB) 

(b) Proposed de-noising 

applied (38.45 dB) 

(c) VBM3D de-noising 

applied(38.11 dB) 

Figure 18: Experimental results 

In Figure 18 it is observed that the colour noise suppression as well as the suppression of large 

scale noise is more efficient in (b) than in (c). Though the contrast in (c) is higher than in (b), it 

is worth mentioning that pixel levels and contrast in (b) is close to that of the original image 

(a). In the comparison conducted the executable model of VBM3D was used and an attempt 

was made to match noise and details. As VBM3D model was used as a black box it was not 

possible to match outputs precisely, though it is believed that the results achieved are good 

enough for a valid comparison. 
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(a) No noise reduction 

applied (21.83) 

 

(b) VBM3D noise 

reduction applied 

(32.48 dB) 

 

 

(c) NLBM3D noise 

reduction applied with 

motion compensation 

enabled (32.16 dB) 

 

(d) NLBM3D noise 

reduction applied with 

motion compensation 

disabled (32.78 dB) 

Figure 19: The effect of motion compensation 

In Figure 19 it is demonstrated that in extremely noisy video the best results are produced by 

the proposed algorithm. Further using the block matching filter for local motion compensation 

helps to suppress noise better and recover more details (see (b) and (d)).   
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(a) No noise reduction 

applied 

(b) Motion compensation 

enabled 

(c) Motion compensation 

disabled 

Figure 20: Experimental results, Motion Compensation evaluation. 

As seen in Figure 20 (b) and (c), the motion compensation has a significant effect on the 

appearance of temporal ghosting artefacts, which can be seen around the hand and leg regions 

in Figure 20(c). In Figure 20 a sequence, was captured with a handheld camera, in which the 

background is not static. It can also be noticed that the local motion compensation improves the 

sharpness of background image. 
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Since it is not possible to use the ground truth image, for the purpose of estimating the noise 

levels, areas within the static background were used (see Figure 21 below): 

 

(1) Indoors scene 

 

(2) Outdoors low 

light scene 

Figure 21: Ground truth images.  

In selected areas the average PSNR values have been calculated for temporal variations over a 

number of frames. The results are presented in Table 3: 
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Scene (1) - Red Patch PSNR 

 Red (dB) Green (dB) Blue (dB) Average (dB) 

VBM3D σ=16 37.3881 42.4937 38.3489 39.4102 

NLBM3D 39.6227 40.5834 39.3227 39.8429 

No NR applied 25.4603 27.1247 26.7285 26.4378 

Scene (1) - Green Patch PSNR 

 Red (dB) Green (dB) Blue (dB) Average (dB) 

VBM3D σ=16 38.2573 39.9474 36.1338 38.1129 

NLBM3D 38.5209 39.1383 37.6942 38.4511 

No NR applied 28.8421 29.3311 28.3259 28.8330 

Scene (2) - Blue Patch PSNR 

 Red (dB) Green (dB) Blue (dB) Average (dB) 

VBM3D σ=16 38.8525 39.4941 37.7438 38.6968 

NLBM3D  41.9110 42.1838 40.2060 41.4336 

No NR applied 29.7782 29.5214 26.8559 28.7185 

Table 3:  PSNR values comparison table. 

Settings for de-noising algorithms were chosen to produce a substantial amount of noise 

reduction, while preserving similar amount of details. However it can be seen that the 

efficiency of VBM3D algorithm reduces as the noise level increases, unlike in the proposed 

algorithm where details and noise suppression efficiency are maintained better at higher sensor 

gains (see Figure 17 and Figure 18 for details).  
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 Conclusion 4.5.

In this chapter a robust and efficient spatio-temporal de-noising algorithm was proposed. Due 

to a number of algorithmic optimizations, the proposed algorithm, when implemented in 

hardware can be compact and the memory bandwidth requirements can be reduced, compared 

to the spatio-temporal noise reduction algorithm described in [25]. The proposed algorithm was 

implemented on an Altera FPGA EP3C120 and synthesized for ASIC chip, using 65nm TSMC 

technology library. Synthesis figures are presented in Table 4: 

 FPGA ASIC 

Logic elements (gate-count) 105K 680K 

Effective kernel size 17x17 17x17 

Number of scales 1 1 

Multipliers 190 (included in gate-count) 

Pixel clock frequency 150MHZ 350MHZ 

Video performance 1080p 60fps 4k camera 30fps 

Device (silicon area) Altera FPGA 

EP4C150 

0.96 mm
2
 using 65nm process. 

Table 4: Spatio-Temporal noise reduction block implementation details 

Using a commercial grade FPGA it is possible to achieve a processing speed of 150Mpix/sec, 

which is sufficient to process HD video at 60 frames per second. ASIC implementation can 

perform more than two times faster and able to process 4k video resolutions in real time. The 

proposed algorithm was compared with the VBM3D algorithm. In most situations the proposed 

algorithm shows an advantage over competitive algorithms in the efficiency of noise reduction, 

noise structure and the natural look of images. The efficiency of noise reduction in proposed 

algorithm will reduce when the object moving fast and the displacement is greater than the size 

of a serch window S. The possibility to use the proposed algorithm for frame accumulation of 

photographic image, where large object displacement is possible, is investigated in a next 

Chapter 5. 
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Chapter 5  

Image Matching in Bayer RAW Domain to De-noise 

Low-light Still Images, Optimized for Real-Time 

Implementation. 

 Introduction  5.1.

Noise reduction is a very important component, which defines the resulting image quality of 

the IPP. Efficient and robust spatial-temporal noise reduction algorithm is especially important 

for cameras with small sensor and poor optics, with limited light capturing capabilities. Though 

noise reduction techniques were known for many years, practically their use in consumer 

electronics, video surveillance, professional photo and video applications is constrained and 

therefore rather limited. 

Temporal accumulation is a known approach to improve signal to noise ratios of still images 

taken in low light conditions [25]. However the complexity of known algorithms often lead to 

high hardware resource usage, memory bandwidth and increased computational complexity, 

making their practical use impossible.  In the proposed research an attempt is made to solve 

this problem with an implementation of a practical spatial-temporal de-noising algorithm, 

based on image accumulation. Image matching and spatial-temporal filtering was performed in 

Bayer RAW data space, which allowed one to benefit from predictable sensor noise 

characteristics. This enables the use of a range of algorithmic optimisations. Proposed 

algorithm accurately compensates for global and local motion and efficiently removes different 

kinds of noise in noisy images taken in low light conditions. Global and local motion 

compensation are conducted in the Bayer RAW data space, while preserving the resolution and 

effectively improving signal to noise ratios of moving objects. Proposed algorithm is suitable 

for implementation in commercial grade FPGA’s and capable of processing 12MP images at 

capturing rate (10 frames per second). 
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The main challenge for still images matching is the compromise between the quality of the 

motion prediction and the complexity of the algorithm and required memory bandwidth. Still 

images taken in a burst sequence must be aligned to compensate for background motion and 

foreground objects movements in a scene. A high resolution of still images as well as 

significant time between successive frames produce significant displacements of the parts of an 

image and creates additional difficulty for image matching algorithms. In photographic 

applications it is very important that the noise is efficiently removed in both static backgrounds 

and moving objects and the resolution of the image is maintained. In the proposed algorithm 

the issue of matching the current image with the accumulated image data in Bayer RAW data 

space is resolved in order to efficiently perform the Spatial-Temporal noise reduction. In this 

chapter the proposed algorithm is compared with the state of the art noise reduction algorithms 

and subjective experimental results are provided to demonstrate the ability of the proposed 

method to match noisy still images in order to perform efficient de-noising and avoid motion 

artefacts in resulting still images. 

The idea of accumulation of images taken in a burst sequence is not new. However there are a 

number of difficulties, preventing this method to be used in industry. In practice there are no 

spatial-temporal frame accumulation algorithms able to deliver acceptable image quality at 

reasonable cost of implementation. First of all, images are taken at very high resolutions, which 

automatically mean that the time interval between subsequent captures is significant. In the 

experiments within the research context of this thesis capture rates of 7-10 images per second 

were used at resolutions 8-16MP. It can be expected that during that interval the whole scene 

composition can significantly change. The experiments revealed that the parts of the scene can 

move by as much as 512 pixels. This means that the first step of processing should be motion 

estimation and compensation. Another objective difficulty is that the lighting conditions may 

also change between frames. This can be due to the environmental changes or even indoors in 

controlled light conditions. When the scene is lit by an artificial light source, the camera can 

produce a significant variation of image brightness and colour due to the interference between 

the light and the shutter. Considering the scene variation between successive frames a 

conclusion was reached that the motion estimation has to rely on the data, invariant to image 

brightness, rotation and scale variations. Another requirement for motion estimation and 

compensation is that it should be done in the Bayer RAW space, as the previously developed 

Spatio-Temporal noise reduction technique is to be used. The aim of this work is to develop 
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frame accumulation algorithm delivering good image quality and compact, when implemented 

in hardware to be suitable for practical use. The idea of the proposed research is to perform 

coarse motion estimation and compensation in Bayer Raw domain and use the pre-matched 

images as input data for the previously suggested Spatio-Temporal noise reduction algorithm 

(see Chapter 4). This algorithm was constructed as a combination of block matching, block 

accumulation described in [4],[8],[9] and temporal noise reduction filters based on Gaussian 

background modelling, investigated in [17],[18] to de-noise photographic and video images in 

RAW data space, using sensor noise modelling according to [8],[9]. 

There are a number of advantages in performing the processing in RAW data domain. One of 

the advantages is to have predictable noise characteristics, thus allowing making the decision 

about noise levels easier and more reliable. The other advantage is that the signal to noise 

ratios are greatly improved in the front end of the image processing pipeline, allowing other 

blocks to work more precisely and reliably with cleaner image data. 

The block diagram of the proposed algorithm with non-local means filter and Gaussian 

background modelling temporal filter is represented in Figure 14:  

I(t+2)

I(t+1)

MC1

Out
Blending

Intensity 

matching

MC2Intensity 

matching

I(t)

)1(' tI

GM1

GM2

))2('( tIvar

)(' tI

))('( tIvar

FB2

FB1

)2(' tI

))1('( tIvar

 

Figure 22: Algorithm block diagram. 
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Initially the sequence of images I(t), I(t+1), I(t+2)... enters the algorithm. The first step in our 

processing is to match the intensity of input images, followed by motion compensation MC1 

and MC2. Each motion compensation block MC is processing a pair of images: MC1 is 

compensating motion between the image I(t+1) and the accumulated image )1( tI fb , which 

was stored in a frame buffer and corresponds to the image I(t). MC2 compensates the motion 

between image I(t+1) and I(t+2). The implementation of bi-predictive scheme allowed the 

effective update of the accumulated image with objects that newly appear. A pairs of motion 

matched images are then processed through Gaussian Mixture temporal filters GM1 and GM2, 

which perform calculation of updated temporal mean I’(t), I’(t+2) and variance var(I’(t)), 

var(I’(t+2)). Blending block chose the mean with minimum variance and updates )1(' tI . 

The use of Gaussian background model enables recursion-like data accumulation, reducing the 

requirements for the memory bandwidth drastically. Comparing the requirements for memory 

bandwidth of the proposed algorithm with the algorithm described in [25], it is likely that the 

memory bandwidth in the proposed algorithm is 4 times less, assuming that in our algorithm 

the data has a precision of 12 bit and the variance estimation has 4 bit quantization, while in 

[25] filtering is applied to 8 bit YUV data. 

 Robust optical flow 5.2.

In the proposed algorithm a multi-scale sparse feature matching was adopted to perform coarse 

motion estimation. On each scale the image was transformed into a set of feature vectors, in 

order to achieve invariance to brightness change and improve robustness in the cases when 

objects in a scene rotate or change scale. In order to resolve the situation when a new object 

appears in a scene it is suggested to implement the bi-predictive scheme.  

Modern optical flow estimation is usually posed as an energy minimization problem as 

investigated in [30],[29],[31],[33]. Let us consider two frames: )(1 vI  and )(2 vI  corresponding 

to the same scene, we denote two dimensional coordinate as ),( yxv  . In this research )(1 vI

and )(2 vI represent an intensity of an image. Let us denote U as a flow field that represents the 

displacement vectors u(v) between )(1 vI  and )(2 vI  for each pixel coordinate v, so that 

Uvu )( .  As the flow field is unknown we will attempt generate a set of Un and evaluate them 

in order to choose the best one. The data term ),( UvE can be defined as: 
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  (39) 

Where  is the gradient function,   and   are the weights balancing the costs of intensity 

matching and gradient matching and S(v) is a spatial kernel of size s×s with centre at 

coordinate v. The matching field U is computed as the field Un corresponding to minimum 

energy ),( nn UvE . The robustness of sparse feature matching multi-scale optical flow can be 

improved by introducing the estimation of data term remainder )(vR , which will bias the 

estimation of energy due to the noise factor. The definition of the remainder )(vR  is the energy 

estimation ),( nn UvE obtained for the set of static image, where the ground truth translation field 

0nU .  It is proposed to implement the optical flow calculation in linear Bayer RAW space, 

which allows us to estimate the noise variation of )(vI for every pixel location and, thus 

estimate the data term remainder )(vR for the set of ),( nn UvE . Even for a sequence of images 

corresponding to a static scene the data term can be non-zero in the presence of noise. 

Furthermore the data term calculated for low contrast parts of an image can easily produce 

false minimums. It can be noted that the remainder )(vR  as it is defined for static image 

capture: 

)()0()()0()( 21

)(

21 jj

vSv

jj vIvIvIvIvR
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  (40) 

The data term remainder can be represented as: 
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vIvIvIvIvR    (41) 

Considering that images )(1 vI  and )(2 vI correspond to the same scene we can conclude that the 

remainder is actually represents the temporal variance of a random process of capturing images 

)(1 vI and )(2 vI , )(1 vI  and )(2 vI . Thus the equation for the remainder can be reformulated as: 

)()()( vvvR g   (42) 

In this work )(vg  considered to be proportional to )(v as was proved in Chapter 2 for 

Laplacian operator. Thus we can finally define )0,(vR  as: 
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)()( xvR   (43) 

When optical flow is calculated in gamma corrected image data domain it is believed that the 

different parts of an image have same noise characteristic. Although this is true to some extent and 

most cameras are designed to have constant noise characteristics. However when the ISO setting of 

a camera is increased, noise characteristics can vary significantly. Further it is worth mentioning 

that sensors with small pixel pitch, normally used in the mobile industry, do not satisfy uniform 

noise characteristics even at low ISO setting, being restricted to use a standard gamma. The use of 

standard gamma is required to match the inverse gamma of a standard display, where the image 

will be displayed. The noise characteristics of cameras using such sensors are significantly different 

from being uniform across the intensity range. However noise characteristics of a typical sensor 

remain constant, thus, being measured once, the sensor noise model can be used to normalize the 

response of a data term, making the search of a minimum energy precise and more reliable. As 

optical flow will be used for noise reduction applications, it has to be especially robust in the 

presence of significant amount of noise. In this research it is proposed to use the noise remainder 

)(vR calculated locally to weight the local differences between )(2 jvI and ))((1 jnj vuvI  . The 

following energy normalization scheme is proposed: 

)(/))())(()())(((),( 21

)(

21 jjjnj

vSv
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  (44) 

It can be noted that the proposed energy normalization method is similar to block difference 

normalisation. Effectively it normalizes the response from the local image features based on the 

measure of their reliability by comparison with predicted noise levels. In proposed experiments we 

prove that the introduction of noise remainder )(vR improves the reliability of optical flow 

calculation to make its practical use feasible, thus improving the results of image matching. In 

practice the reliability of the proposed method made the algorithm suitable for the practical use. As 

the result, some of the experimental results provided without reference as the optical flow 

calculation without normalization technique does not meet minimal reliability expectations for 

motion field estimation.  Multi-scale sparse feature matching in our algorithm is enabled by the 

Gaussian image pyramid discussed in Chapter 2. The use of Gaussian pyramid is explained by the 

ease of implementation, additionally research made in [25],[34],[35] proves that other than 

Gaussian multi-scale pyramid image representation does not provide significant advantage in 

motion estimation.  Features for matching are calculated on each scale of a pyramid. The process of 

feature pyramid calculation is illustrated in Figure 23: 
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Calculate feature vectors 

for each pixel location

a) Image data Pyramid                          b) Feature data pyramid 

Figure 23: Image scale pyramid. 

The search of displacement vectors between pairs of feature scales is performed by multi-scale 

sparse feature matching. On a most detailed scale, image matching is performed by a pixel 

mapping block. The process of motion compensation in an image pyramid is illustrated in 

Figure 24: 

i jSearch translation vectors 

For each pixel location

i j

j’

Search translation vectors 

For each pixel location

j

j’

i

Perform pixel mapping

for each pixel location
J*

 

Figure 24: Multi-scale optical flow calculation 
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 Block matching approach for Bayer RGB sensors 5.3.

Non-local means is a known technique [3],[18],[19]. However within the research context of 

this thesis an attempt is made to apply this method for Bayer sensor data. In the non-local 

means technique a measure of similarity between pixel neighbourhoods )(vN  and )( jfb vN  

will be calculated and then will be compared against the noise levels  and the decision will be 

made, whether to use that neighbourhood  )( jfb vN , to average with the current pixel 

neighbourhood )(vN  or not, see Chapter 2.  The idea of RAW data filtering using non-local 

means technique was described in [3]. However in the proposed work several important 

improvements are introduced. Two methods are developed to set appropriate thresholds for 

each block accumulation dynamically, in contrast to methods proposed in literature that use a 

fixed threshold value.  Sensor noise is modelled to obtain an estimate of noise levels, to 

calculate the weights for block averaging (see Chapter 2). Further a method of non-linear data 

analysis has been developed to estimate the details of energy, leading to the prediction of 

correlation values, which allows the guaranteeing of preservation of detail while at the same 

time having increased strength of filtering on image parts where no details can be found. In the 

proposed algorithm a block matching algorithm, previously suggested in Chapter 4 is used. For 

temporal matching it is needed to match the image data stored in the frame buffer )(vI fb  and 

the current image )(vI . It is important to mention that the block matching algorithm developed 

previously allows accurate image matching between image )(vI  and de-noised accumulated 

image )(vI fb stored in a frame buffer, even in situations when correlation between images is 

difficult to find. Assume )(vN to be a neighbourhood of a pixel with coordinate x of a noisy 

image )(vI . In the proposed algorithm a limited search area )(vS of size of ss  is used. Thus 

the neighbourhood )()( vSvN fbjfb   of image )(vI fb can be averaged with weights ),( jfb vvw  to 

produce a de-noised image )(vI fb
  according to the equation (45) (refer Chapter 2, equation 

(6)): 
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The process of image data matching between the frame buffer )(xI fb  and the current image 

)(xI is referred in this research as pixel mapping process. The weights ),( jfb xxw  can be 

considered as a synthesized aperture, which will perform data interpolation to produce the best 

match between the frame buffer image data )(xI fb  and the current image data )(xI  on a pixel 

and sub-pixel level.  The process of pixel mapping is based on inter-frame image data matching 

and explained in Chapter 2, Figure 6, equation (6). 

The weights ),( jfb xxw are calculated from block differences ),( jfb xxd for corresponding 

neighbourhoods )(xN  and )()( xSxN fbjfb   of pixels of images )(xI  and )(xI fb
 with 

coordinate x. 





)(

)()(),(
xSx

jfbjfb

j

xNxNxxd  (46) 

However each block difference ),( jxxd  will be constructed of sum of noise differences 

),( jxxd
 and image autocorrelation functions ),( jxxd

. In our algorithm we do not attempt to 

rotate or scale blocks to achieve better correlation, thus, we need to estimate the value of 

),( jxxd
 to adjust ),( jfb xxw calculation. In our implementation we estimating ),( jxxd by 

evaluation of the block difference ),( jfb xxd and expected noise level )(x adjusted for the 

image data according to the equation (2). In spatial filtering block, for each block we calculate 

the estimation of ),( jxxd
 according to equation (47): 

),(),(),( jjj xxdxxdxxd    (47) 

Resulting ),( jxxd  is consequently converted into corresponding ),( jfb xxw  by comparison 

with the expected variation of noise, derived from the sensor characterization and specified in 

equation (2). The method for ),( jxxd  estimation and calculation of ),( jfb xxw  is described 

in Chapter 4. The efficiency of the proposed algorithm has been investigated and the 

experimental results are provided in a next section. Special attention has been paid to 

demonstrate that the results of the proposed frame accumulation are artefact free and the 

algorithm is efficient in all conducted tests.  
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 Experimental results 5.4.

In the proposed experiments a camera system able to capture high resolution raw data at 10 

frames per second is used. In order to expose the image correctly, the camera system was 

programmed for a gain equivalent to ISO1600-ISO25600, enabling the capture of images at a 

fast shutter speed, thus eliminating motion blur. The burst sequences were processed through 

the full image processing pipeline ©Apical. In the first series of experiments the custom made 

camera system with OV8835 sensor was used. All burst sequences were taken with the camera 

being held by hand, thus significant amount of camera shake produced significant amount of 

motion in a static background captured by the camera. The amount of background motion 

comparable with the motion of a foreground object can be seen in Figure 25. The experiments 

proposed do not use any other algorithms for comparison, as an algorithm able to deal with 

realistic object displacements as in the case of the proposed, was not found. The result of the 

optical flow calculation on a coarse scale and two consecutive frames overlaid are illustrated in 

Figure 25 below: 

  

(a) Two consecutive frames overlaid (b) The result of optical flow calculation 

Figure 25: Motion field 

The result of the noise reduction applied to noisy images taken at ISO1600 on a mobile sensor 

at 8MP resolution can be seen in Figure 27, Figure 28, Figure 29, Figure 30 below: 
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(a) No noise reduction applied (b) Proposed de-noising applied 

Figure 26: Experimental results, moving background. 

Noise reduction effect in moving background demonstrated in Figure 26. 

 

  
(a) No noise reduction applied (b) Proposed de-noising applied 

Figure 27: Experimental results, moving foreground. 

Noise reduction effect in moving foreground object is demonstrated in Figure 27.  
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The PSNR values are calculated for the sample images in green, blue and red patches and 

provided as overlays and are also presented in Table 5.  

  

(a) No noise reduction applied (b) Proposed de-noising applied 

Figure 29: Experimental results, indoors  scene 

  

(a) No noise reduction applied (33.28 dB) (b) Proposed de-noising applied (42.75 dB) 

Figure 28: Experimental results, indoors scene 

42.02dB 32.62dB 
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(a) No noise reduction applied (34.47 dB) (b) Proposed de-noising applied (43.52 dB) 

Figure 30: Experimental results, lab scene 

The following samples were taken with a Sony Nex-6 camera at 16MP resolution at  

ISO25600: 

  

(a) No noise reduction applied (28.67 Db) (b) Proposed de-noising applied (37.86 dB) 

Figure 31: Experimental results, lab scene low light  
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(a) No noise reduction applied (b) Proposed de-noising applied 

Figure 32: Experimental results, lab scene low light 

 

  

(a) No noise reduction applied (b) Proposed de-noising applied 

Figure 33: Experimental results, indoors low light 

Since it is not possible to use the ground truth image, for the purpose of estimation of noise 

levels flat areas in the background were used. In selected areas the average PSNR was 

calculated. The results are presented in Table 5: 

36.66dB 28.63dB 

37.86dB 28.67dB 
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Scene (1) - Red Patch PSNR  

 Red (dB) Green (dB) Blue (dB) Average (dB) 

Proposed algorithm 42.06 42.09 41.92 42.0233 

No NR applied 32.63 32.62 32.60 32.6167 

Scene (2) - Green Patch PSNR 

 Red (dB) Green (dB) Blue (dB) Average (dB) 

Proposed algorithm 37.86 37.94 37.78 37.8601 

No NR applied 28.69 28.66 28.65 28.6667 

Scene (3)* - Blue Patch PSNR 

 Red (dB) Green (dB) Blue (dB) Average (dB) 

Proposed algorithm 36.63 36.71 36.65 36.6633 

No NR applied 28.61 28.67 28.63 28.6367 

Table 5: PSNR values comparison table. 

Settings for de-noising algorithms were chosen to produce a good amount of noise reduction, 

while producing an increased amount of detail. In the proposed algorithm, as opposed to spatial 

only noise reduction techniques, it is seen that an increased amount of image details are 

obtained, at the same time achieving a remarkable amount of SNR improvement. In scene (c) 

we have the efficiency of the NR reduced by around 1 dB due to a significant amount of light 

variation (flicker).  
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 Conclusion 5.5.

In this research, a robust and efficient spatial-temporal de-noising algorithm has been 

proposed. Due to a number of algorithmic optimizations, the proposed algorithm, when 

implemented in hardware can be compact and memory bandwidth requirements can be 

substantially reduced compared to the spatial-temporal noise reduction algorithm described in 

[25]. The proposed algorithm was not compared against any existing algorithm such as 

VBM3D, as it would require defining a VBM3D search area of around 400 pixels, which will 

make the execution of the algorithm in any computer, unrealistic. The proposed algorithm has 

been implemented in hardware in an Altera FPGA EP3C120 and processing speed of 

150Mpix/sec was achieved, which is sufficient to process HD video at 60 frames per second or 

8MP images at capture rate of 15fps. Synthesis figures for the image matching block, 

implemented in Altera FPGA and ASIC 65nm TSMC library are presented in Table 6: 

 FPGA ASIC 

Logic elements (gate-count) 93K 640K 

Effective kernel size 15x15 15x15 

Number of scales 1 1 

Multipliers 160 (included in gate-count) 

Pixel clock frequency 150MHZ 350MHZ 

Video performance 1080p 60fps 4k camera 60fps 

Device (silicon area) Altera FPGA 

EP4C150 

0.91 mm
2
 using 65nm process. 

Table 6: Synthesis details for the image matching block 

In most situations the proposed algorithm proved to be very competitive in efficiency of the 

noise reduction, noise structure and the natural look of images. As opposed to the previous 

implementation of an image matching algorithm proposed in Chapter 4, the spatial kernel was 

reduced as the image data was pre-matched by the Optical Flow and motion compensation. The 

proposed algorithm is compact when implemented in hardware and can be practically used 

digital camera systems to de-noise video and low-light photographic images. 
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Chapter 6  

Image Matching in Bayer RAW Domain to Remove 

Ghosting in Multi-Exposure Image Fusion 

 Introduction 6.1.

Multi exposure image fusion is a well-known approach adopted to create High Dynamic Range 

(HDR) images and emulate the Human Visual System (HVS) using Standard Dynamic Range 

(SDR) cameras. The main limitation of current multi-exposure image fusion techniques is their 

inability to compensate for moving objects in a scene and camera shake. Previous attempts to 

solve camera shake have been able to accurately align the multi-exposure images that have 

static backgrounds prior to their fusion. Nonetheless, image alignment cannot solve the issue of 

ghosting artefacts due to moving objects. In the proposed research local motion compensation 

technique, previously used for noise reduction purposes, is used to efficiently remove ghosting 

artefacts due to both, camera shake and object movement in the scene.  

HDR photography can be achieved by capturing images at different exposures and then fusing 

them to produce a HDR image. However, in order to produce artefact free images, the fusion 

technique has to be able to compensate for motion caused by camera shake and object 

movements in the scene. During the fusion process, ghosting artefacts are generated due to the 

fractionally time difference instances of the objects’ displacement within the multi-exposure 

images captured. An attempts were made by other researches to resolve ghosting artefacts in 

[45],[44],
 
however practical solution to the problem of multi-exposure image fusion has not 

been found. 

In Chapter 5 a practical method to perform spatial-temporal noise reduction in RAW images, 

and wide dynamic range images from SLR cameras was proposed. The spatial-temporal 

method relied on the idea of matching, blending, and recursive accumulation of image data into 

a frame buffer to improve signal to noise ratio. Errors due to motion were handled by the noise 

reduction engine. In this chapter, the previously developed spatial-temporal noise reduction 
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method has been extended, and utilised for the purpose of multi-exposure image fusion. It is 

noted that this is a practical application of the previously proposed spatial-temporal noise 

reduction method, in which accumulation of data is carried out by the sensor, and not by a 

frame buffer. Thus, the problem of matching images taken at different exposures is 

transformed into an already solved problem, which consists of matching a clean image and a 

noisy image in order to produce artefact free HDR images.  

 Proposed Image Fusion Method 6.2.

In the proposed HDR method, all processes are performed in Bayer RAW domain as it allows 

more accurate calculations when fusing the images due to the linear nature of the data. The first 

step in the proposed approach is to match the intensities of the multi-exposure images prior to 

compensating for motion. The motion estimation and compensation is carried out in two 

stages. Firstly, a robust optical flow method described in Chapter 5 is used for coarse motion 

estimation and matching. Secondly, coarse image matching is followed by a block-matching 

process described in Chapter 5, allowing a sub-pixel image matching. Once the multi-exposure 

images are motion corrected, the images are fused through a blending process, and finally a 

dynamic range compression method is used to create the resulting HDR image. Figure 34 

shows the block diagram of the proposed multi-exposure image fusion method: 
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Figure 34: The block diagram of the proposed multi-exposure image fusion algorithm 
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The advantage of the proposed approach is that in the case of a failure in motion estimation, the 

resulting image will not have any warping distortions. In the worst case, the resulting image 

will appear as if motion estimation was never performed. Image matching algorithm is applied 

to the frame triplets with a frame order of Long-Short-Long (whenever available), where the 

Short-exposure image is considered to be a reference. Intensity matching is applied to match 

the global levels of the images intensity. Effectively Long-exposure images are divided by the 

exposure ratio value. 

Optical flow is calculated for the intensity matched Short/Long-exposure image pairs using 

sparse image feature vectors matching technique previously proposed in Chapter 5. Pixel 

mapping is performed for the areas where motion error is less than the estimated noise, 

elsewhere the pixel data is taken directly from the Short-exposure image. 

Resulting motion-compensated estimates are blended according to the least error that is 

obtained during motion compensation. 

6.2.1. Intensity Matching 

In the stage of intensity matching, the short exposure and long exposure images I(t+1) and I(t), 

I(t+2) with exposures     and    are matched in the intensity domain. Further, images I(t), 

I(t+2)will be referred as Il1 , Il2 and the short exposure image I(t+1) as Is. In order to match the 

intensity of the multi-exposure images, the exposure ratios Er1 and Er2 given by equation (48) 

are calculated, if not known from the camera system, and Il1 , Il2 are matched to Is using 

equation (49), where, Îs1 and Îs2  are the intensities of matched images. 
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The intensity matching process is performed to allow the image fusion process to have the least 

error. Otherwise, it would not be possible to blend parts of images that have the same content 

but non-matching pixel values. The intensity matching process can be very accurate since it is 

performed in linear Bayer RAW domain and the exposure ratio is known or controlled. 
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6.2.2. Coarse and fine motion estimation and compensation 

The motion estimation and compensation process (MC) that matches Îs1 and Îs2 to Is 
prior the 

fusion is accomplished in a two stage process represented as Îsmc1=MC(Is, Îs1 )  and 

Îsmc2=MC(Is, Îs2 ). In the first stage, coarse motion estimation and compensation is performed to 

remove possible artefacts due to large object movements and camera shake. This is achieved by 

adopting an extended version of the multi-scale motion estimation technique descried in 

Chapter 5, which is based on linear matching of image features in a transform space. The 

extension of the multi-scale approach in this research included algorithmic optimisations and 

modifications to operate in linear Bayer RAW domain. In the second phase of motion 

estimation, a non-local means filter described in Chapter 4 is used in order to achieve sub-pixel 

precision matching of the images. The use of the non-local means filter allows accurate 

removal of artefacts due to possible objects’ local motion in scenes and inability of coarse 

motion estimation to compensate local motion with pixel precision. An example of the motion 

map calculated during the proposed motion estimation process is presented in Figure 36. The 

combination of the two methods allowed achieving motion estimation and compensation for a 

wide range of object displacements and camera shake, while producing a high level of 

precision in image matching. 

6.2.3. Image blending 

In order to fuse the multi-exposure images, the image temporal filter proposed in Chapter 4 is 

adopted to perform images blending. In this stage two predicted images Îsmc1 and Îsmc2 are 

blended, based on the evaluation of its differences from the reference Is, producing a wide 

dynamic range image, IWDR. In this stage of processing, one can benefit from predictable noise 

levels, which can be used as an absolute reference for the quality of matching. In reference to 

the Figure 34, local variances: ))('var( tI  and ))2('var( tI  can be normalised by the local noise 

variance expectation  according to equation (50), (51): 

/))('var( tIdt    (50) 

/))2('var(2  tIdt  (51) 

Being normalised, matching differences can be linearly related to each other, making it 

possible to blend the resulting image on a pixel level according to formula (52): 
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The image )1(' tI  will be referred further as wdrI . The proposed method allows artefact free 

precise image fusion with local motion compensation. The proposed algorithm’s complexity 

does not prohibit its practical implementation. Furthermore based on the algorithms described 

in previous chapters, it can be implemented as a hardware block.  

6.2.4. Dynamic range compression 

In order to be able to visualise the contents of the wide dynamic range image produced during 

the image blending stage, a local histogram equalization technique is applied to IWDR 
in order to 

make the shadow part of the image as visible as the highlighted parts of the image. The 

dynamic range compression algorithm ©Apical was used in experiments. This dynamic range 

compression algorithm is an important part of the evaluation of the system, though not the 

subject for the proposed research. The objectives for the inclusion of the dynamic range 

compression algorithm are: the ability to represent the shadow parts of the resulting Iwdr image, 

matching the look of corresponding parts in the Il, and the ability to represent the highlight 

parts of an image in the resulting Iwdr image, matching the look of corresponding parts in the Is, 

and the minimisation of any low spatial frequency artefacts. The objectives are quite difficult 

to formalize and describe, using quantitative metrics. Thus such issues are not investigated 

assuming that the dynamic range compression algorithm serves its purpose. Thus the work 

concentrates on the noise measures of the resulting image Iwdr. The objectives discussed above 

are demonstrated in Figure 35 and can be found in each experimental result presented in this 

chapter. 
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 Experimental results 6.3.

Experiments were carried out to evaluate the performance of the proposed approach and its 

ability to remove ghosting artefacts in multi-exposure image fusion. Figure 35 illustrates the 

short and long exposure images taken with exposures that differ by a factor of 8 or 16 and 

processed by a conventional image-processing pipeline, compared with the result of proposed 

fusion technique followed by dynamic range compression:  

   

   

   

Normally exposed standard 

image 

Under-exposed standard 

image 

The resulting WDR image 

Figure 35: The results of fusion. 

It can be seen in Figure 35 that the shadow parts of WDR image visually equivalent to 

corresponding image parts in normally exposed image, while the highlight parts of WDR 

image are taken from the under-exposed images.  
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The example of coarse motion calculation presented in Figure 36 below, image in the left 

column represents 3 video frames stacked. Image in the right column represents the motion 

fields calculated, overlaid on the reference image.  

  

 

 

  
  

Figure 36: Example of motion and calculated motion field. 

It is observed how fast moving objects are best represented partially in a short exposure image, 

and partially in the long exposure image. This scenario is a common situation where fusion 

techniques fail to deal with object displacements, and therefore ghosting artefacts are produced. 
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In the examples provided, the long exposure image has clipped highlight parts, while the 

shadow area is dark, but contains some detail. In contrast the short exposure image has well-

exposed highlights but the shadow areas are clipped. The DRC algorithm applied to the short 

exposure image would reveal large amounts of noise in the shadow area, while long exposure 

image would provide reasonably clean shadow areas and clipped highlights. The proposed 

multi-exposure image fusion is able to produce a ghost free HDR image, and preserve the noise 

levels in shadow parts of the image, matching the long exposure image. The results are 

provided in Figure 37 and Figure 38. 

 

a) DRC applied to Is 

 

b) DRC applied to Iwdr 

without motion 

compensation 

 

c) DRC applied to Iwdr with 

motion compensation 

Figure 37: PSNR values, calculated on images with DRC applied. 
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a) DRC applied to 

Is 

 

b) DRC applied to 

Iwdr without motion 

compensation 

 

c) DRC applied to 

Iwdr with motion 

compensation 

Figure 38: PSNR values, calculated on images with DRC applied. 
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41.14dB 



Chapter 6: Image Matching in Bayer RAW Domain to Remove Ghosting in Multi-Exposure 

Image Fusion 

 
 

 
90 

 

Another example of the use of the proposed approach is presented in Figure 32. In this case 

images were captured with a Sony NEX-6 camera at 16MP resolution and 8 times exposure 

ratio: 

 

Figure 39: HDR image obtained as the result of the proposed HDR method. 

The limitations of the proposed algorithm is similar to that of the previous proposed spatio-

temporal noise reduction algorithm, i.e. in order to match objects in a pair of images, the 

objects should be present in both scenes and should be captured in both images. This limitation 

sets a limit on the range of optimal exposure ratios usable when capturing multi-exposure 

images. If images are taken at very different exposure levels, dark objects may have no details 

captured in a short exposure image, thus making the multi-exposure matching task impossible. 

In the experiments conducted an exposure ratio values of up to 16 was successfully used for 

this purpose. 

The effect of dynamic range compression in the proposed experiments was balanced to achieve 

the visibility of shadow parts to match corresponding image sections of the long exposure 

image. The effectiveness of proposed image fusion algorithm was evaluated by measuring the 

PSNR values in shadow parts of resulting WDR image. The closer the PSNR values between 

43.02dB Double 

exposureWDR 

  

 

  

 

33.42dB Short 

exposure only 
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the long exposure image and the WDR image, the better is the quality of fusion, given that the 

ghosting artefacts were not found in the resulting WDR image. 

Scene (a) - Red Patch PSNR  

 Red (dB) Green (dB) Blue (dB) Average (dB) 

Long exp 42.056 43.258 43.754 43.0233 

Short exp. compressed 33.453 32.682 34.142 33.4257 

Double exp. compressed 42.057 43.780 44.482 43.4397 

Scene (b) - Green Patch PSNR 

 Red (dB) Green (dB) Blue (dB) Average (dB) 

Long exp 41.5630  41.1813 41.7133 41.4859 

Short exp. compressed 27.4847 27.6332 27.6023 27.5734 

Double exp. compressed 39.3774 39.7915 39.5819 39.5836 

Scene (c) - Blue Patch PSNR 

 Red (dB) Green (dB) Blue (dB) Average (dB) 

Long exp 41.8070 42.3748 41.5054 41.8957 

Short exp. compressed 29.8470 29.9396 29.8507 29.8791 

Double exp. compressed 41.1211 41.3653 40.9409 41.1424 

Table 7: PSNR values, comparison table. 
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 Conclusion 6.4.

A multi-exposure image fusion algorithm suitable for practical implementation in hardware has 

been proposed in this chapter. The proposed algorithm is able to perform images stitching, on 

images taken at different exposures, to allow dynamic range compression. A part of proposed 

image fusion algorithm referred to pixel mapping was implemented in hardware. The details of 

pixel mapping block implementation in Altera FPGA and ASIC 65mn are presented in Table 8: 

 FPGA ASIC 

Logic elements (gate-count) 119K 750K 

Effective kernel size 17x17 17x17 

Number of scales 1 1 

Multipliers 240 (included in gate-count) 

Pixel clock frequency 150MHZ 350MHZ 

Video performance 1080p 60fps 4k camera 60fps 

Device (silicon area) Altera FPGA 

EP4C150 

1.12 mm
2
 using 65nm process. 

Table 8: Synthesis results for proposed pixel mapping block. 

The proposed algorithm proved to be efficient in different lighting conditions and scenes and 

was proven to work well with different sensors. It was shown that the shadow areas taken at 

longer exposures have better contrast and contain more details than the same areas processed 

through Spatio-Temporal NR. Proposed algorithm can successfully absorb mismatches 

between images being matched. In the situations when the successful images matching is not 

possible, the proposed algorithm demonstrates reduced de-noising effect, however affected 

image areas look natural and artefact free. Image areas, where pixel-mapping was successful, 

were reproduced by details captured in long-exposure image precisely.  
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Chapter 7  

The use of sensor noise modelling in the segmentation 

and detection of objects. 

 Introduction 7.1.

Most of the existing object detection algorithms are based on machine learning classifiers, 

which in their turn use features extracted from an image. The research being conducted at 

present in the object classification area is very intense, one of the most successful object 

detection techniques is known as HOG-SVM described in [24],[25],[26],[27],[28]. The results 

produced by object detection algorithms are continuously improving. Fundamentally there are 

two approaches to enhance the results of an object detection algorithm. The first approach is an 

enhancement of classification methodology, where many techniques have been proposed in 

literature (Linear classifiers, Neural networks etc.). The second approach is an enhancement of 

features used. Researches who focus their work on the enhancement of features extracted from 

an image mostly concentrate on finding the set of discrete primitives, describing the image 

content. The process of feature extraction is usually related to filtering of the image data and 

normalisation of the filter’s response. However, there is one common flaw in most feature 

extraction techniques, i.e., during the normalisation and accumulation of image features the 

assumption is made that the filters producing stronger response represents stronger image 

features. In practice all researches work with digital video or photographic images, that are 

products of image processing pipelines, processing the image sensor data with unknown 

settings. As previously discussed, such processing can significantly alter image data, breaking 

linear dependencies between parts of an image and unbalancing the appearance of different 

image elements. This chapter investigates how feature extraction can be made more robust by 

taking sensor characteristics into account during feature extraction. 
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 A feature extraction model, utilizing histogram of 7.2.

oriented gradients. 

The first step in the calculation of Histogram of Oriented Gradients is edge detection, As opposed 

to the standard approach presented in [40],[41],[42],[43],[44] edge kernels will be applied to linear 

data and the output will be normalised according to the expected noise. Gabor edge kernels with 6 

different orientations were used in our experiments. The Gabor functions for an orientation of 90 

degrees are presented in Figure 40: 

),(90

sin yxG  

 

),(90

cos yxG  

Figure 40:  Edge segmentation functions. 

 The response for one edge orientation would be calculated according to the equation (53): 
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Where ),( kiK  is a spatial kernel of the Gabor function. Assuming that local details of an image 

),( yxI  at each coordinate were illuminated with different intensity, the response ),( yxE will 

significantly differ for bright and dark parts of the image. In the proposed object detection system, 

however the interest is in some measure of reliability of detected edges. As the edge response was 

calculated in linear RAW data space, the response can be normalised by the expectation of noise at 

each pixel with coordinate x,y in the image. 

 Proposed feature normalization method 7.3.

In reference to the equation (2), the expectation of noise variance ),( yx  for each image area 

),( yxI  can be matched. Further it should be considered that the edge detection kernels ),(cos yxG

and ),(sin yxG
are constructed as a linear combination of Gaussian function ),( yxGK  and functions 

of )sin(x  and )cos(x . Thus the normalization of the edge response is performed according to the 

following equation (54): 
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For the purpose of comparison the Edge response ),( yxE gamma

 was calculated according to the 

formula (55): 
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Where ),( yxI g is a non-linear representation of ),( yxI , obtained by the application of the non-

linear standard gamma function sRGB. ),( yxEnorm

  and ),( yxE gamma

 were used for the comparison 

of the object detection algorithm’s performance. The proposed edge response normalization 

approach demonstrates improved performance of object detection, operating in non-standard 

conditions, such as low-light, which is also important for sensors with non-standard noise 

characteristics. It is important to note also that the proposed scheme makes object detection 

independent from the settings of the image processing pipeline, which guarantees the best 

performance in embedded and mobile devices. 
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 Experimental results 7.4.

In the experiments conducted a RGB sensor with a Bayer pattern was used. The sensor is 

typical for use within security, automotive and computer vision systems. The setup of the 

experiment consisted of the custom made camera system, allowing video capture in Bayer 

RAW format at full HD resolution and 25 frames per second. A firmly mounted camera system 

was used to record video in indoor conditions. The computer vision algorithm, trained to detect 

people was used for object detection. In one scenario feature extraction was done traditionally, 

i.e., without any knowledge about image sensor. In the second scenario extracted features were 

locally normalized by the sensor noise variance expectation. To evaluate the effectiveness of 

the proposed scheme, a number of experiments were conducted, capturing video sequences at 

different lighting conditions. As expected, the detection rate deteriorates as the noise within the 

image increases. Another observation is that the detection rate was higher in a system, where 

sensor noise characteristics were taken into account. Examples of individual detections are 

presented in Figure 41 in which, the first row presents the original video frames, the second 

row presents the objects detected using proposed method and the third row presents the objects 

detected using the standard gamma method. 

The statistics of the results of detections are presented in Table 9. People detection was 

performed under 2 categories: head and upper body (UB). Heads were detected using 3 

classifiers, trained for 3 different poses. Upper body was detected using 5 classifiers, trained 

for 5 different poses, respectively. Strong detections refer to positive classifier responses larger 

than 0.4 and weak classifier responses refer to positive classifier responses between 0.1 and 

0.4. People detections refer to combined response from either of two categories. Formal 

detection rate is counted as the number of strong detections over the number of possible 

detections. A human object is considered to be detected if it has a strong detection in either 

category. The formal false positive rate is based on the ratio of strong incorrectly classified 

objects to the total number of objects to be detected. 
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Figure 41: Object detection experimental results. 
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 ISO-100  ISO-1600 

 Sensor 

normalized 

 Gamma 

normalized 

 Sensor 

normalized 

 Gamma 

normalized 

heads detected 635  634  593  565 

heads strong 620  607  568  524 

heads weak 15  27  25  43 

heads missed 0  1  31  57 

        

UB detected 631  631  612  598 

UB strong 617  602  581  561 

UB weak 14  29  31  37 

UB missed 0  0  2  16 

        

False positives 0  0  4  21 

        

Missed people 0  0  2  16 

        

Track errors 0  1  1  1 

        

Formal people detection rate 100.00%  99.84%  99.76%  97.06% 

Formal heads detection rate 97.64%  95.59%  91.02%  83.97% 

Formal UB detection rate 97.78%  95.40%  94.62%  91.36% 

Formal false positives rate 0%  0%  0.32%  1.69% 

        

Table 9: Detection rates statistical data.  

It can be seen that the normalization according to sensor noise model significantly improves 

detection rate and reduces false positives rate, which is more prominent at higher ISO settings. 

The visualization of the first three components of the edge detectors at 90, 60 and 30 degrees 

are presented in Figure 42.  It is noted that the original image was taken from a camera system 

running at ISO-1600 sensitivity. 
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Figure 42: An example of noise model normalized edge segmentation. 
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In Figure 42 it is seen that the response from the edge detector is cleaner after the 

normalization, comparing to the response from the standard edge detector, which was running 

on gamma corrected data. The improved system response in the presence of the noise, 

improves the results of object detection, the results of which are presented in Table 9. It is a 

fair statement that a similar effect can be achieved by using noise reduction techniques. 

However achieving a noise free output from the edge detectors by performing the sensor noise 

modelling is a more efficient way of improving the system performance.  

 Conclusion 7.5.

The proposed method of edge detectors response normalization was successfully used in object 

detection engine, implemented in hardware. The details of object detection engine implemented 

in Xilinx Zynq 7045 FPGA are presented in Table 10 below: 

Resource Utilization Available Utilization % 

FF 151193 437200 34.6 

LUT 103865 218600 47.5 

Memory LUT 259 70400 0.4 

BRAM 197 545 36.1 

DSP48 734 900 81.6 

BUFG 5 32 15.6 

MMCM 0 8 0.0 

Table 10: Object detection system resource utilization 

The proposed edge detection improvements allowed achieving better object detection 

performance comparing to other known systems. The proposed method of edge detectors 

response normalization also allowed running object detection engine on sensor RAW data. It 

can be noted that the proposed method can allow object detection system implementation 

without the ISP being involved, which reduces the overall cost of the system and can be 

beneficial when the actual image from the object detection system is not required for a privacy 

reasons. 
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Chapter 8  

Conclusions and Future Work 

 Conclusions 8.1.

This chapter summarizes contributions made to the research area of image processing 

algorithms by the work presented in this thesis. It further concludes the findings of the 

contributory chapters (3-7) based on experimental results and evaluations.  

This thesis made a number of original contributions in further improvements of image 

processing algorithms, and image processing systems. In particular it was proved that image 

processing algorithms, using images sensors as calibrated instruments, can benefit from 

predictable noise characteristics and demonstrate better performance, while allowing 

significant algorithmic optimizations. 

1. It was proposed that multi-scale block matching algorithms would perform better, 

preserve more details and suppress noise more efficiently, when applied in Bayer RAW 

data space. Despite additional complexity associated with processing in RAW domain, 

the complexity of the algorithm can be reduced due to the reduction in number of color 

components to process. Due to access to linear sensor data it was possible to perform 

sensor noise modelling, providing a reliable reference for a block matching algorithm. 

A non-linear SAD filter was designed to separate data auto-correlation from sensor 

noise. The non-linear SAD filter allowed the preservation of additional details and 

boosted noise suppression. It can be concluded that the proposed spatial noise reduction 

algorithm can outperform the best known spatial noise reduction algorithms, while its 

complexity remains at acceptable level. The algorithm has been included  in a number 

of commercial products and appears to be one of the highest valued algorithms in 

Apical LTD’s portfolio. 

2. The multi-scale block matching algorithm designed to work within Bayer RAW data 

was subsequently modified to perform image matching in a video sequence. It was 

shown that inter-frame block matching proved to be more reliable when operated in 

Bayer RAW domain. Temporal data accumulation was implemented recursively, 
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Kalman filter coefficients were used to predict the aggressiveness of the accumulation, 

Due to access to linear sensor data, it was possible to perform sensor noise modelling, 

and use noise estimation as a reference level for accumulation aggressiveness 

calculation. Proposed algorithmic solutions allowed achieving one of the best known 

noise reduction performance characteristics commercially, while the resource usage and 

bandwidth were kept at a reasonable level, making practical use of the developed 

algorithm feasible.  

3. The further development of Spatio-Temporal noise reduction algorithm was done by 

using the Optical flow algorithm to estimate the motion field. An introduction of 

Optical flow allowed reduction of the requirements for block matching and 

compensated for large object displacements. Aforementioned features allowed large 

resolution image processing, making the algorithm suitable for still image accumulation 

to perform image de-noising on a burst of still images. The quality and performance of 

widely used Optical flow algorithms would not allow us to propose any practical 

solution. In order to improve the precision of the optical flow and introduce algorithmic 

optimizations, it was proposed that optical flow is calculated in the Bayer Raw domain 

and use predicted sensor noise levels as a normalization factor in energy minimization 

framework. The noise-related normalization factor introduced, enabled the 

improvement of the precision of motion field prediction and to avoid more complex 

motion field filtering. Proposed algorithmic optimizations enabled the practical use of 

the proposed algorithms in commercial imaging devices. 

4. Previously developed image matching algorithms were proved to perform reliably and 

being feasible for practical use in commercial devices. However a further key challenge 

that remains an open research problem is that these algorithms have not yet reached an 

acceptable level of quality to become useful is the problem of multi-exposure image 

fusion. This problem was traditionally approached from the side of post processing. In 

our research we proposed to attempt to solve this difficult problem form the point of 

view of noise reduction. The problem of image fusion was reformulated into a problem 

of image matching, using a spatio-temporal noise reduction framework. In the proposed 

approach we adopted previously developed algorithms to perform image matching in a 

liner data space, which allowed us to match images more precisely, in addition to more 

reliable image matching, performed by inter-frame block matching, Gaussian 

accumulation and optical flow. Being built on the base of previously developed 
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algorithms, multi-exposure image fusion was performed by the image processing 

blocks implemented as hardware blocks. This work makes an important use case of the 

image processing algorithms served by Apical’s image processing pipeline. 

5. Methods and algorithm developed in previous research were used to improve the 

quality of feature extraction functional block in an object detection system. The edge 

features used by the Histogram of Oriented Gradients were extracted in Bayer RAW 

data domain, whilst sensor noise model was used to perform the filter’s response 

normalization. In our experiments we proved that the quality of edge feature extraction 

can be improved, compared to traditional methods of HOG feature extraction. Another 

important outcome of the proposed solution is that the object detection system proposed 

does not require an image processing pipeline that makes the whole system more 

compact and allows building an object detection camera, which does not produce video. 

The results of our research were used to produce an embedded object detection system, 

implemented as a hardware block.  

 Future work 8.2.

In the research conducted within the scope of this thesis investigated how knowledge about the 

image sensor can be successfully used to improve traditional algorithms, related to image 

processing and object detection. In general any algorithm working with the intensity of color 

gradients and features can operate more reliably, when estimated noise levels can be predicted. 

In practice it means that the whole image processing pipeline has to be redesigned to allow 

algorithms to access linear data from the sensor. However as with any research work there is 

room for further development of the ideas presented in this thesis. 

In the proposed research it was assumed that the sensor noise can be successfully modelled by 

the Gaussian Poissonian noise model. As the image sensors become more and more advanced 

the noise generated by such sensors does not match our simple model sufficiently well. In the 

future we are looking at the possibility of adding PCA to train the filter to learn the sensor 

noise and hence to detect sensor specific noise patterns and enforce their removal from the 

output image. 

Our proposed block matching and Optical flow algorithms were designed to be robust to image 

brightness variations. However there is certainly an effect imposed by the varying image 

brightness on the quality of block matching and Optical flow calculation. Further the effect of 
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local brightness variation has a negative impact on multi-exposure image fusion. In the 

experiments conducted global brightness correction was adopted, but better quality of image 

processing could have been expected by introducing local image brightness matching. 

The algorithm proposed in this thesis to perform still image matching and accumulation was 

implemented to improve the signal to noise characteristics of an image. However it can be 

successfully used to combine images taken with different focus settings, providing an image 

with infinite depth of field. Normally such an effect is achieved by reducing the lens’s aperture, 

which has an impact of increased noise. It was proposed to use previously developed 

techniques to fuse images taken at different times at different focuses of lens. The image 

obtained would have all areas in a good focus and demonstrate a level of noise reduction. The 

resulting image can be consequently processed by algorithms, simulating shallow depth of 

field, in order to achieve DSLR like images. The contribution of this improvement will be to 

provide a better quality image, revealing more details and focused better in general. Out of 

focus effect can be simulated by using thin lens model. 

Proposed in our work method of edge filters output normalization, according to modelled 

sensor noise can be generalized and used to improve the response of local binary pattern 

feature extraction algorithms. It is a known issue with local binary patterns (LBP) that their 

resilience to noise is weaker than in edge segmentation methods. The modelling of the sensor 

noise can improve the reliability of local pattern detection and consequently the quality of 

machine vision algorithms. 

The work presented in this thesis result in a number of practical algorithmic implementations, 

making products where these algorithms were included, more competitive and of better quality 

practically. One of the philosophical outcomes of this work was the finding that understanding 

the nature of a data is a benefit to any algorithm, where this knowledge can be effectively used. 

Proposed methods require considerable efforts to be implemented in image data processing 

algorithms, but offer high practical value. 
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Appendix B. Sensors used in experiments 

 

Sensor model: AS3372 OV8835 Sony NEX-5 Sony NEX-6 

     

Resolution 2M 8M 13M 16M 

Capture rate 60fps 12fps 7fps 12fps 

Data bits 12 10 14 14 

Sensor active 

area size 

4.6x3.4 mm 4.6x3.4 mm 23.6x15.6 mm 23.6x15.6 mm 

Pixel size 2.7u 1.4u 3.5u 3.3u 

Max S/N ratio 59dB 36.6dB Not available Not available 

Table 11: Image sensors used in experiments 


