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1. Introduction  

Traffic data collection is an essential issue for road-traffic control departments, which need 
real-time information for traffic-parameter estimation: road-traffic intensity, lane occupancy, 
congestion level, estimation of journey times, etc., as well as for early incident detection. 
This information can be used to improve road safety as well as to make an optimal use of 
the existing infrastructure or to estimate new infrastructure needs.  
In an intelligent transportation system, traffic data may come from different kinds of 
sensors. The use of video cameras (many of which are already installed to survey road 
networks), coupled with computer vision techniques, offers an attractive alternative to other 
traffic sensors (Michalopoulos, 1991). For instance, they can provide powerful processing 
capabilities for vehicle tracking and classification, providing a non-invasive and easier to 
install alternative to traditional loop detectors (Fathy & Siyal, 1998; Ha et al., 2004). 
Successful video-based systems for urban traffic monitoring must be adaptive to different 
traffic or environmental conditions (Zhu & Xu, 2000; Zhou et al., 2007). Key aspects to be 
considered are motion-based foreground/background segmentation  (Piccardi, 2004; Beymer 
et al., 2007; Kanhere & Birchfield, 2008), shadow removal algorithms  (Prati et al., 2003; 
Cucchiara et al., 2003), and mechanisms for providing relative robustness against 
progressive or sudden illumination changes. These video-based systems have to deal with 
specific difficulties in urban traffic environments, where dense traffic flow, stop-and-go 
motion profiles, vehicle queues at traffic lights or intersections, etc., would be expected to 
occur. 
This chapter is focused on background subtraction, which is a very common technique for 
detecting moving objects from image sequences using a static camera. The idea consists of 
extracting moving objects as the foreground elements obtained from the “difference” image 
between each frame and the so-called background model of the scene  (Spagnolo et al., 2006). 
This model is used as a reference image to be compared with each recorded image. 
Consequently, the background model must be an accurate representation of the scene after 
removing all the non-stationary elements. It must be permanently updated to take into 
account the eventual changes in the lighting conditions or in the own background contents. 
Surveys and comparisons of different algorithms for background subtraction can be found 
in the literature (Piccardi, 2004; Chalidabhongse, 2003; Cheung & Kamath, 2004). 
Regarding to the category of parametric background subtraction algorithms, in the simplest 
case, it is assumed that each background pixel can be modelled by a single unimodal 
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probability density function. This is the case of the algorithm known as running Gaussian 
average (Wren et al., 1997; Koller et al., 1994), which is a recursive algorithm where a 
Gaussian density function is fitted for each pixel. 
Temporal median filter is another common strategy which has been reported to perform 
better than those methods based on the average. The background estimate is defined for 
each pixel as the median of all the recent values (in the case of the non-recursive version of 
the algorithm). The assumption is that a background pixel must be clearly visible for more 
than 50% of the considered period (Cucchiara et al., 2003; Lo & Velastin, 2001; Zhou & 
Aggarwal, 2001). 
Mixture of Gaussians (MoG) is another parametric strategy that has also been widely used 
(Stauffer & Grimson, 1999; Stauffer & Grimson, 2000; Harville, 2002). A single Gaussian 
density function for each pixel is not enough to cope with non-stationary background 
objects, such as waving trees or other natural elements. The idea under the MoG is to be able 
to model several background objects for each pixel. The achieved background tries to model 
the different intensities that can appear on each background pixel, using a mixture of n 
Gaussian density functions (Power & Schoonees, 2002) . The optimal tuning of the parameter 
set in this algorithm is considered not to be a trivial issue. In  White & Shah (2007), an 
automatic tuning strategy based on particle swarm optimization is proposed. 
Another set of algorithms lay in the category of non-parametric algorithms. They are more 
suitable when it is assumed that the density function is more complex or cannot be 
modelled parametrically, since a non-parametric approach is able to handle arbitrary 
density functions. Kernel density estimation (KDE) is an example of non-parametric methods. 
It tries to solve a problem with the MoG and the other previous methods. These previous 
methods are able to effectively describe scenes with smooth behaviour and limited 
variation, as in the case of gradually evolving scenes. However, in the presence of a dynamic 
scene with fast variations or non-stationary properties, the background cannot be accurately 
modeled with a set of Gaussians. This technique overcomes the problem by estimating 
background probabilities at each pixel from many recent samples using kernel density 
estimation  (Elgammal et al., 1999). In  Mittal & Paragios (2004), density functions are 
estimated in a higher-dimensional space combining intensity information with optical flow, 
in order to build a method able to detect objects that differ from the background in either 
motion or intensity properties. 
Another non-parametric approach is followed by the algorithm based in the called Codebook 
model  (Kim et al., 2005). In this case, the background model for each pixel is represented by a 
number of codewords (instead of parameters representing probabilistic functions) which are 
dynamically handled following a quantization/clustering technique. An important parallel 
issue in the conception of this technique is an appropriate colour modelling. Haritaoglu et 
al.  (2000) describe what they call W4 algorithm, where each background pixel is represented 
by a combination of the minimum and maximum values together with the maximum 
allowed change in two consecutive frames. 
A different category of methods considers predictive strategies for modelling and predicting 
the state dynamics at each pixel. Some of them are based on Kalman filter (Karmann & 
Brandt, 1990; Koller et al., 1994), where intensity values and spatial derivatives are 
combined to form a single state space for background tracking. Alternatively, they may rely 
on the Wiener filter, as the  Wallflower algorithm (Toyama et al., 1999), or on more complicate 
models such as autoregressive models  (Monnet et al., 2003; Zhong & Sclaroff, 2003). Finally, 
we can also mention methods based on eigenspace representation, known as 
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eigenbackgrounds  (Oliver et al., 2000), where new objects are detected by comparing the 
input image with an image reconstructed via the eigenspace. 
Apart from background subtraction techniques, another extended approach is based on 
salient feature detection, clustering and tracking  (Beymer & Malik, 1996; Coifman et al., 
1998). In this case, no background model has to be estimated and continuously updated. 
Instead, a bunch of prominent features that are expected to be stable along time are 
extracted from the vehicles’ image. Then, sophisticated spatiotemporal clustering algorithms 
are applied in order to group those features which are likely to belong to the same vehicle 
(proximity, motion coherence, velocity, can be used as clues). The main problem with these 
algorithms is that they assume that all the features for a given vehicle lie on the same plane, 
which can be acceptable for far viewpoints and small targets. Some other approaches try to 
overcome this problem projecting the extracted features onto a plane parallel to the road 
surface (Kanhere & Birchfield, 2008). 
From an implementational point of view, video-based traffic equipments are frequently 
based on embedded processors with significant computational limitations. They have to 
perform several tasks in real time, including considerable amount of image processing 
 (Toral et al., 2009a). In this chapter, background subtraction algorithms with low 
computational requirements are considered for implementation on embedded processors. In 
particular, algorithms that allow reducing floating point computations to a minimum are 
preferable. This is the case of the above-mentioned median filter. However, the computation 
of the median value for each pixel from a number of recent samples is also a costly 
operation. A recursive algorithm, based on the sigma-delta filter, providing a very fast and 
simple approximation of the median filter with the additional benefit of having very low 
memory requirements, was proposed by McFarlane & Schofield (1995). In this algorithm, 
the running estimate of the median is incremented by 1 if the input pixel is above the 
estimate and decreased by one if over it. Manzanera and Richefeu  (2004) use a similar filter 
to compute the time-variance of the pixels, which is used for classifying pixels as “moving” 
or “stationary”. Recent enhancements of this algorithm have been proposed by Manzanera 
and Richefeu  (2007), with the addition of some interesting spatiotemporal processing, at the 
expense of a higher complexity. 
In addition to the concern on computational efficiency, this chapter is specifically focused in 
urban traffic environments, where very challenging conditions for a background subtraction 
algorithm are common: dense traffic flow, eventual traffic congestions or vehicle queues are 
likely to appear. In this context, background subtraction algorithms must handle the moving 
objects that merged into the background due to a temporary stop and then become 
foreground again. Many background subtraction algorithms rely on a subsequent post-
processing or foreground validation step, using object localization and tracking, in order to 
refine the foreground detection mask. The aim of the proposed algorithm is to avoid the 
need of this subsequent step, preventing the background model to incorporate these objects 
which are stopped for a time gap and maintaining them as part of the foreground. At the 
same time, the algorithm should avoid the background model to get too obsolete after a 
change in the true background or in the illumination conditions. Consequently, special 
attention must be paid in deciding when and how updating the background model, 
avoiding “pollution” of the model from foreground slow moving or stopped vehicles, while 
preventing, at the same time, the background model to get outdated. 
A new background subtraction algorithm based on the sigma-delta filter is described in this 
chapter and then compared with previous versions reported in the literature. A more 
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reliable background model is achieved in common adverse conditions typical of urban 
traffic scenes, satisfying the goal of low computational requirements. Moreover, the 
implementation of the proposed algorithm on a prototype embedded system, based on an 
off-the-shelf multimedia processor, is discussed in this chapter. This prototype is used as a 
test-bench for comparison of the different background subtraction algorithms, in terms of 
segmentation quality performance and computational efficiency. 

2. Sigma-Delta background estimation algorithms 

2.1 Basic Sigma-Delta algorithm 
The basic sigma-delta background estimation algorithm provides a recursive computation 
of a valid background model of the scene assuming that, at the pixel level, the background 
intensities are present most of the time. However, this model degrades quickly under slow 
or congested traffic conditions, due to the integration in the background model of pixel 
intensities belonging to the foreground vehicles. Table 1 describes the basic sigma-delta 
algorithm from Manzanera & Richefeu (2004) (a statistical justification of this method is 
given in Manzanera, 2007). For readability purposes, the syntax has been compacted in the 
sense that any operation involving an image should be interpreted as an operation for each 
individual pixel in that image. 
 

00 IM =                       // Initialize background model M 

00 =V                          // Initialize variance V 

for each frame t 

ttt IM −=Δ        // Compute current difference 

if 0≠Δ t  

( )11 sgn −− −Δ⋅+= tttt VNVV   // Update variance V 

end if 

( )ttt VD ≥Δ=         // Compute detection image D 

if 0==tD             // Update background model M … 

( )11 sgn −− −+= tttt MIMM  // with relevance feedback 

end if 
end for 

Table 1. The basic sigma-delta background estimation. 

Mt represents the background-model image at frame t, It represents the current input image, 
and Vt represents the temporal variance estimator image (or variance image, for short), carrying 
information about the variability of the intensity values at each pixel. It is used as an 
adaptive threshold to be compared with the difference image. Pixels with higher intensity 
fluctuations will be less sensitive, whereas pixels with steadier intensities will signal 
detection upon lower differences. The only parameter to be adjusted is N, with typical 
values between 1 and 4. Another implicit parameter in the algorithm is the updating period 
of the statistics, which depends on the frame rate and the number of grey levels. This 
updating period can be modified by performing the loop processing every P frames, instead 
of every frame. The same algorithm computes the detection image or detection mask, Dt. This 
binary image highlights pixels belonging to the detected foreground objects (1-valued 
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pixels) in contrast to the stationary background pixels (0-valued pixels). The described 
algorithm is, in fact, a slight variation of the basic sigma-delta algorithm, where the 
background model is only updated for those pixels where no detection is signalled, instead 
of doing it for all pixels. This selective updating is called relevance feedback and it is usually 
preferable, as it provides more stability to the background model. 

2.2 Sigma-Delta algorithm with spatiotemporal processing 
The basic sigma-delta algorithm only performs a strict temporal processing at the pixel level. 
Recent improvements suggest enhancing the method by adding some spatiotemporal 
processing (Manzanera & Richefeu,  2007). The aim of the additional spatiotemporal 
processing is to remove non-significant pixels from the detection mask and to reduce the 
“ghost” and aperture effects. The “ghost effect” is the false detection produced by an object 
which suddenly starts moving after a motionless stay (a slow moving vehicle causes an 
effect similar to a ghost-like trail which can be apparent in the background model). The 
aperture effect produces poor detection for those objects with weak projected motion (for 
instance, objects moving nearly perpendicular to the image plane). The additional 
processing tries to improve and regularize the achieved detection through the following 
three operations: common-edges hybrid reconstruction, opening by reconstruction and 
temporal confirmation. These operations consider several common morphological operators 
 (Vincent, 1993; Heijmans, 1999; Salembier & Ruiz, 2002): 

• )(XDilλ : Morphological dilation of an image X, using a ball of radius λ  as structuring 

element. 

• )(XEroλ : Morphological erosion of an image X, using a ball of radius λ  as structuring 

element. 

• )),(()( YXDilMinXilD
Y

λλ =
%

: Geodesic dilation of a marker image X, using a ball of 

radius λ  as structuring element and a reference image Y. 

• )(lim)(eR kXXc
k

Y

∞→
=

%
: Geodesic reconstruction of an image X (marker image), using a 

reference image Y. Here, the geodesic dilation is used in a recursive manner, as: 

))1(()( −= kXilDkX
Y
λ

%
, with XX =)0( .  It can be shown that the series )(kX  defined in 

such a way always converges after a finite number of iterations. 

Besides these classical morphological operators, a special reconstruction, called hybrid 

reconstruction, )(eR
~

Xc
Y
α , is introduced by Manzanera and Richefeu,  (2007), based on the 

idea of gradually forgetting the marker. This operator is implemented as a four-step 

forgetting reconstruction, as follows: 

( )[ ]),1()(eR
~

),,()1(),(),,(),()(eR
~ )0()0(

rcXcrcXMaxrcXrcYMinrcXc
YY −−+= αα αα  

( )[ ]),1()(eR
~

),,()(eR
~

)1(),()(eR
~

),,(),()(eR
~ )1()0()0()1(

rcXcrcXcMaxrcXcrcYMinrcXc
YYYY +−+= αααα αα  

( )[ ])1,()(eR
~

),,()(eR
~

)1(),()(eR
~

),,(),()(eR
~ )2()1()1()2( −−+= rcXcrcXcMaxrcXcrcYMinrcXc

YYYY
αααα αα  

( )[ ])1,()(eR
~

),,()(eR
~

)1(),()(eR
~

),,(),()(eR
~ )3()2()2()3( +−+= rcXcrcXcMaxrcXcrcYMinrcXc

YYYY
αααα αα  

)3(
)(eR

~
)(eR

~
XcXc

YY
αα =  

(1) 

In these expressions, c and r refer to the column and row of each pixel in the image, 
respectively, while 1/α is the reconstruction radius replacing the structuring element. 
The three operations involved in spatiotemporal processing that make use of the detailed 
morphological operators are then: 
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1. Common-edges hybrid reconstruction: ( )( ))(),(MinecR
~

ttt It Δ∇∇=Δ Δ∇
α  This step tries to 

make a reconstruction within Δt of the common edges in the current image and the 

difference image. It is intended to reduce the eventual ghost effects appearing in the 

difference image. )(I∇  must be understood as the gradient module image of I. The 

minimum operator, Min(), acts like an intersection operator, but working on gray-level 

values, instead of binary values. This operation retains the referred common edges 

belonging both to Δt and It. Finally, the ()ecR
~

tΔ
α  operator performs the aforementioned 

reconstruction, trying to recover the whole object from its edges, but restricted to the 

difference image (Manzanera & Richefeu,  2007). 

2. Opening by reconstruction: ( )( )t
D

t DL t
λEroecR

%
= . After obtaining the detection mask, 

this step is applied in order to remove the small connected components present in it. A 

binary erosion with radius λ , )(Eroλ , followed by the usual geodesic reconstruction, 

restricted to Dt, is applied. 

3. Temporal confirmation: ( )1ecR −
∇ = t

L
t LD t

%
. The final detection mask is obtained after 

another reconstruction operation along time. This step, combined with the previous 

one, can be interpreted as: “keep the objects bigger than ┣ that appear at least on two 

consecutive frames”. 
Table 2 describes the complete sigma-delta with spatiotemporal processing algorithm. 
Despite this rather sophisticated procedure, this algorithm also exhibits eventual problems 
due to its intrinsic updating period. For instance, it shows a limited adaptation capability to 
certain complex scenes in urban environments or, in general, scenes permanently crossed by 
lots of objects of very different sizes and speeds. In Manzanera and Richefeu  (2007), the 
authors suggest overcoming this problem using the multiple-frequency sigma-delta 
background estimation. 
 

00 IM =                       // Initialize background model M 

00 =V                          // Initialize variance V 

for each frame t 

ttt IM −=Δ       // Compute current difference 

if 0≠Δ t  

( )11 sgn −− −Δ⋅+= tttt VNVV   // Update variance V 

end if 

( )( ))(),(MinecR
~

ttt It Δ∇∇=Δ Δ∇
α   // Common-edges hybrid reconst. 

( )ttt VD ≥Δ= ∇        // Compute initial detection mask D 

( )( )t
D

t DL t
λEroecR

%
=    // Opening by reconstruction 

( )1ecR −
∇ = t

L
t LD t

%
 // Final det. mask after temporal confirmation 

if 0==∇
tD            // Update background model M … 

( )11 sgn −− −+= tttt MIMM     // with relevance feedback 

end if 
end for 

Table 2. Sigma-delta background estimation with spatiotemporal processing. 
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2.3 Multiple-frequency Sigma-Delta algorithm 

The principle of this technique is to compute a set of K backgrounds ],1[, KiM
i
t ∈ , each one 

characterized by its own updating period αi. The compound background model is obtained 
from a weighted combination of the models in that set. Each weighting factor is directly 
proportional to the corresponding adaptation period and inversely proportional to the 
corresponding variance. The background model is improved, but at the expense of an 
increment in the computational cost with respect to the basic sigma-delta algorithm. Table 3 
details an example of multi-frequency background estimation using K different periods 
α1<…<αK. 
In this case, the relevance feedback is not convenient due to fact of using several 
background models with different periods. 
 

for each [ ]Ki ,1∈  

00 IM
i=  // Initialize background model for each period, Mi 

00 =iV   // Initialize variance for each period,Vi 

end for 

00 =V          // Initialize global variance V 
 

for each frame t 

tt IM =0   // Initialize base-case model 

00 =tV    // Initialize base-case variance 

for each [ ]Ki ,1∈  

              if t is a multiple of αi 
       // Recursive rule for updating background model Mi 

( )i
t

i
t

i
t

i
t MMMM 1

1
1 sgn −

−
− −+=   

end if 

t
i
t

i
t IM −=Δ    // Compute current difference with model Mi 

if 0≠Δit  

( )i
t

i
t

i
t

i
t VNVV 11 sgn −− −Δ⋅+=   // Update variance Vi 

end if 
end for 

∑
∑

∈

∈
=

],1[

],1[

Ki i
t

i

Ki i
t

i
ti

t

V

V

M

M
α

α

    // Compute global background model 

ttt IM −=Δ   // Compute current difference with global model 

if 0≠Δt  

( )11 sgn −− −Δ⋅+= tttt VNVV   // Update global variance 

end if 

( )ttt VD ≥Δ=   // Final detection mask 

end for 

Table 3. Multiple-frequency sigma-delta background estimation. 
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2.4 Sigma-Delta algorithm with confidence measurement 

A different improvement of the basic sigma-delta background subtraction algorithm has 

been proposed by Toral et al., (2009b). The aim of this algorithm consists of trying to keep 

the high computational efficiency of the basic method, while making it particularly suitable 

for urban traffic environments, where very challenging conditions are common: dense traffic 

flow, eventual traffic congestions, or vehicle queues. In this context, background subtraction 

algorithms must handle the moving objects that merged into the background due to a 

temporary stop and then become foreground again. Many implementations overcome this 

problem with a subsequent post-processing or foreground validation step. The aim of this 

algorithm is to alleviate this subsequent step, preventing the background model to 

incorporate objects which are slow moving or stopped for a time gap. For this purpose, a 

numerical confidence level which is tied to each pixel in the current background model is 

introduced. This level quantifies the trust the current value of that pixel deserves. This 

enables a mechanism that tries to provide a better balance between adaptation to 

illumination or background changes in the scene and prevention against undesirable 

background-model contamination from slow moving vehicles or vehicles that are 

motionless for a time gap, without compromising the real-time implementation. The 

algorithm is detailed in Table 4. Three new images are required with respect to the basic 

sigma-delta algorithm: the frame counter image ( FC
tI ), the detection counter image ( DC

tI ) 

and the confidence image ( CON
tI ). 

 The variance image is intended to represent the variability of pixel intensities when no 
objects are over that pixel. In other words, the variance image will solely be determined by 
the background intensities, as a proper threshold should be chosen from that. A low 
variance should be interpreted as having a “stable background model” that has to be 
maintained. A high variance should be interpreted as “the algorithm has to look for a stable 
background model”. One of the problems of the previous versions of sigma-delta algorithms 
in urban traffic environments is that, as the variance grows when vehicles are passing by, 
the detection degrades because the threshold becomes too high. Then, it is necessary to 
perform a more selective background and variance update. 
The main background and variance selective updating mechanism is linked to the so-called 
“refresh period”. Each time this period expires (let us say, each P frames), the updating 
action is taken, provided that the traffic conditions are presumably suitable. The detection 
ratio can be used as an estimation of the traffic flow. Notice that this is an acceptable 
premise if we assume that the variance threshold filters out background intensity 
fluctuations, as intended. Values of this detection ratio above 80% are typically related to the 
presence of stopped vehicles or traffic congestion over the corresponding pixels. If this is not 
the case, then the updating action is permitted. 
On the other hand, high variance values mean that the capability for a proper evaluation of 
the traffic flow is poor, as the gathered information related to the detection ratio is not 
reliable. In this case, it is wiser not to recommend the updating action. 
A parallel mechanism is set up in order to update the confidence measurement. This second 
mechanism is controlled by the so-called “confidence period”. This is not a constant period 
of time, but it depends on the confidence itself, for each particular pixel. The principle is that 
the higher the confidence level is, the lower the updating need for the corresponding pixel 
is. Specifically, the confidence period length is given by a number of frames equal to the 
confidence value at the corresponding pixel. Each time the confidence period expires, the 
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00 IM = ;    
iniV ν=0

      // Initialize background model and variance 

000 == FCDC
II ;   

ini

CON
cI =0

    // Initialize detection, frame counter and confidence measure  

for each frame t 

1+= FC

t

FC

t II        // Increment frame-counter image 

// Period evaluation and background updating decision making: 

if CON

t

FC

t II <        // If current confidence period not expired yet 

if FC

tI  is a multiple of P   // If refresh period expires 

if 
tht vV ≤  //Low variance => we assume we can rely on the gathered information (in

 particular in the detection counter) => traffic flow may be evaluated  

if ( ) 8.0/ ≤FC

t

DC

t II    // If not very heavy traffic 

1=tU                 // Refresh period updating mode 

end if 
end if 

end if 
else     // If current confidence period expires 

if 
tht vV ≤  // Low variance => we assume we can evaluate traffic flow 

)/( FC

t

DC

t

CON

t III γ=+   // Confidence updating as a function of the detection ratio 

if 
mincI

CON

t ==    // If confidence goes down to the minimum … 

1=tU               // … force updating 

end if 
else                // We cannot reliably evaluate traffic flow 

1=tU    // Confidence period updating mode, to avoid background model deadlock 

end if 

0== FC
t

DC
t II   // Reset detection counter and frame counter 

end if 
// Background updating (if appropriate) and detection: 
if 1==tU   // If updating recommended, follow sigma-delta algorithm  

 ( )11 sgn −− −+= tttt MIMM    // Update background model 

ttt IM −=Δ                              // Compute current difference 

( )1min1 sgn −− −Δ⋅++= tttt VNvVV   // Update variance 

( )ttt VD ≥Δ=          // Compute detection mask 

else                                       // Do not update, just detect 

ttt IM −=Δ                

( )ttt VD ≥Δ=  

end if 

( )1===+ t

DC

t DI            // Update detection-counter image 

end for 
 

Table 4. Sigma-delta algorithm with confidence measurement. 
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confidence measure is incrementally updated, according to an exponentially decreasing 
function of the detection ratio, d: 

 ( ) ( exp( ) 1)d round dγ α β= ⋅ − −   (2)  

The gain α is tuned as the confidence maximum increment (when the detection ratio tends 
to zero), while β, defining the increment decay rate, has to be chosen such that negative 
increments are restricted to large detection rates. 

The recommended values are, α = 11, so the maximum confidence increment is 10 frames, 
and β = 4 which adjusts the crossing of the function with -0.5 around 75%-80% of detection 
rates. 
In case the confidence is decremented down to a minimum, background updating is forced. 
This is a necessary working rule since, in the case of cluttered scenes, for instance, the 
background model may not be updated by means of the refresh period. Thus, in that case, 
this underlying updating mechanism tries to prevent the model to get indefinitely locked in 
a wrong or obsolete background. 
As a last resort, there is another context in which the updating action is commanded. This is 
the case when the confidence period expires but the detection capability is estimated to be 
poor. In such a case, as no reliable information is available, it is preferred to perform the 
background update. In fact, by doing otherwise, we will never change the situation, as the 
variance won’t be updated, hence the algorithm would end in a deadlock. 
The confidence measurement is related to the maximum updating period. In very adverse 

traffic conditions, this period is related to the time the background model is able to keep 

untainted from the foreground objects. Let us suppose a pixel with correct background 

intensity and maximum confidence value, for instance, cmax = 125 frames. Then, 125 frames 

have to roll by for the confidence period to expire. If the traffic conditions do not get better, 

the confidence measure decreases until 124 and no updating action is taken. Now, 124 

frames have to roll by for the new confidence period to expire. At the end, 

125+124+123+…+10 = 7830 frames are needed for the algorithm to force the updating action 

(assuming minimum confidence value, cmin = 10). At the typical video rate of 25 frames per 

second, this corresponds to more than 5 minutes before the background starts becoming 

corrupted if the true background is seldom visible due to a high-traffic density. The 

downside is that, if we have a maximum confidence for a pixel with wrong intensity (for 

instance, if the background of the scene itself has experienced an abrupt change), also this 

same period is required for the pixel to be adapted to the new background. Nevertheless, if 

the change in the background is a significant illumination change, this problem can be 

alleviated in a further step by employing techniques related to shadow removal, which is 

beyond the scope of this paper (Prati et al., 2003; Cucchiara et al., 2003). 

When the evaluation of the confidence measurement and the detection ratio recommend 
taking the updating action, the basic sigma-delta algorithm is applied. If no updating is 
required, the computation of the detection mask is just performed. 

3. Comparative results 

3.1 Qualitative performance analysis 

A typical traffic urban sequence is used in this qualitative comparative study. In such scenes 

the background model from the basic sigma-delta algorithm quickly degrades, assimilating 
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the slow moving or stopped vehicles. Another undesirable effect is that, in the long term, the 

corresponding variance values tend to increase immoderately in the areas with a higher 

traffic density. As the variance is used as a detection threshold, this detection is not very 

sensitive, producing a poor detection mask. This is illustrated in Fig. 1 for the traffic-light 

sequence. The first column of the figure shows the current image at frame 400 (that is 16 

seconds after the sequence starts), which is the same for every row. The second column 

represents the current background model for each compared method. The third column 

represents the visual appearance of the variance image, and the fourth column represents 

the detection mask. The results shown in the first row corresponds to the basic sigma-delta 

algorithm, SD (parameter settings: N=4).  The second row corresponds to the sigma-delta 

with spatiotemporal processing, SDSP (parameter settings: N=4, 1,8/1 == λα ), while the 

third row represents the results from the multiple-frequency sigma-delta background 

estimation, SDM (N=4, K=3 backgrounds models used, with adaptation periods: 11 =α , 

82 =α  and 163 =α ). Finally, the fourth row corresponds to the sigma-delta with confidence 

measurement, SDC (parameter settings: N=4, [ ] [ ]200,10, maxmin =∈ vvVt , 

[ ] [ ]125,10, maxmin =cc , minvini =ν , minccini = , mincP = , 38=thv ). 
It can be seen that the adaptation speed of multi-frequency sigma-delta and the proposed 
method (when it is seeking for a new background) are similar. In particular, the moving 
vehicles present in the image at the beginning of the sequence have not been completely 
“forgotten” yet, producing the ghost vehicles noticeable in the case of these two algorithms. 
On the other hand, we can appreciate the effect of ghostly trails apparent in the background 
model, produced by the slow moving vehicles (or vehicles moving in a direction nearly 
perpendicular to the image plane), in the case of the two first algorithms. 
Fig. 2 illustrates another sample of the behaviour of these four algorithms at frame 1200 (48 
seconds after the sequence start). In this case, some vehicles have been stopped in front of a 
red light for a maximum of 20 seconds approximately. It can be seen that these vehicles have 
been blended into the background model for both, the basic sigma-delta and sigma-delta 
with spatiotemporal processing, while they have been partially blended into the 
background for the multi-frequency sigma-delta. The sigma-delta with confidence 
measurement algorithm keeps this background model unpolluted from those stopped 
vehicles, being able to attain its full detection as foreground items. It can also be observed 
that the variance values have not been significantly increased in the region of the stopped 
vehicles, keeping the detection threshold conveniently sensitive. 
Next, the situation a few seconds later is shown in Fig. 3, corresponding to frame 2170, 86 
seconds after the beginning of the sequence, and around 15 seconds after the vehicles in 
front of the traffic light started moving again. It can be seen that those vehicles have not 
been completely “forgotten” from the background model in the case of the basic sigma-
delta, the sigma-delta with spatiotemporal processing and the multi-frequency sigma-delta 
algorithms. On the other hand, since this frame has been preceded by a significant traffic 
flow, the variance in the case of the first three algorithms has raised accordingly, producing 
a poor detection in the areas with higher variance. On the contrary, the sigma-delta with 
confidence measurement algorithm tries to keep the variance conveniently sensitive in those 
areas, as the variance is intended to represent the variability of the intensity levels of the 
background pixels only. 
Finally, in Fig. 4, the situation 240 seconds after the sequence start is shown. This frame is 
part of the third red light cycle. The same comments made with respect to Fig. 2 are 
extensible to this later fragment of the sequence. 
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Fig. 1. Traffic-light sequence. Comparative results at frame 400. 
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Fig. 2. Traffic-light sequence. Comparative results at frame 1200. 
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Fig. 3. Traffic-light sequence. Comparative results at frame 2170. 
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Fig. 4. Traffic-light sequence. Comparative results at frame 6000. 

3.2 Quantitative performance analysis 
There are different approaches to evaluate the performance of the background subtraction 

algorithms, from low-level, pixel-oriented evaluation to object-level or application-level 

evaluation. In the latter case, the goal-based evaluation of the foreground detection would 

be influenced by other higher level components of the application, e.g. a blob feature 

extraction module or a tracker module, which are out the scope of this paper. Consequently, 

in this section, a pixel-oriented evaluation has been preferred. 

In a binary decision problem, the classifier labels samples as either positive or negative. In 

our context, samples are pixel values, “positive” means foreground object pixel, and 

“negative” means background pixel. In order to quantify the classification performance, 

with respect to some ground truth classification, the following basic measures can be used: 

• True positives (TP): correctly classified foreground pixels. 

• True negatives (TN): correctly classified background pixels. 

• False positives (FP): incorrectly classified foreground pixels. 

• False negatives (FN): incorrectly classified background pixels. 
Using these basic measures, the true and false positive rates can be estimated: 

 True positive rate: 
FNTP

TP

positivesactualoftotal

TP
TPR

+
==   (3) 

 False positive rate: 
FPTN

FP

negativesactualoftotal

FP
FPR

+
==   (4) 

Precision and recall are defined as: 

 Precision: 
FPTP

TP

positivesestimatedoftotal

TP
PR

+
==   (5) 

 Recall: TPRRE =   (6) 
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Other measures for fitness quantification, in the context of background subtraction 
techniques, have been proposed in the literature (Rosin & Ioannidis, 2003; White & Shah, 
2007; Ilyas et al., 2009). The following are some examples: 

 F-measure:  )10(,2 ≤≤⎟
⎠

⎞
⎜
⎝

⎛
+
⋅

= FF S
REPR

REPR
S   (7) 

which combines precision and recall in the form of their harmonic mean, providing an index 
more representative than the pure PR and RE measures themselves. 

 Percentage of correct classification: )10(, ≤≤
+++

+
= CCCC S

FNFPTNTP

TNTP
S   (8) 

The percentage of correct classification alone is very commonly used for assessing a 
classifier’s performance. However, it can give misleading estimates when there is a 
significant skew in the class distribution (Rosin & Ioannidis, 2003). In particular, if 
foreground elements are only present in a small part of the image, lets say 5%, there is not 
much difference in the achieved high ratings of this coefficient with respect to the case of 
simply classifying everything as background. Using additionally the Jaccard and Yule  
coefficients (Sneath & Sokal, 1973) can reduce the problem, when there is a large volume of 
expected true negatives: 

 Jaccard coefficient: 10, ≤≤
++

= JJ S
FNFPTP

TP
S   (9) 

 Yule coefficient: )11(,11 ≤≤−−+=−
+

+
+

= YNY SPRPR
FNTN

TN

FPTP

TP
S   (10) 

PRN has to be understood as the precision in the background classification (negatives), in the 
same way PR is the precision in the foreground classification (positives). In its original form, 
the Yule coefficient is defined on the interval [-1,1]. The lower limit of this interval occurs 
when there are not matching pixels, while a perfect match would make the coefficient to hit 
the upper bound. 
Finally, Ilyas et al. (2009) proposes a weighted Euclidean distance, considering the 
deviations of FPR and TPR from their respective ideal values, 0 and 1. It is defined as 
follows: 

 )10(,)1()1( 22 ≤≤−−+= γγ γγ ETPRFPRE   (11) 

where γ (0< γ <1) is a weighting coefficient, that has to be adjusted according to the desired 
trade off between sensitivity and specificity. For instance, when a low false alarm rate is the 
priority, at the expense of loosing sensitivity, high values for this coefficient have to be 
chosen. 
A representative ground truth dataset has been elaborated using the traffic light sequence. A 
number of samples from the traffic light sequence have been extracted and manually 
annotated using the publicly available annotation tool: InteractLabeler  (Brostow et al., 2009). 
One ground-truth frame for every 100 frames has been picked out, which corresponds to a 
0.25 fps sampling rate. An initialization stage of around 20 seconds long is skipped over.  
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The following index sets have been considered as a valuable quantification of relative 

performance of each algorithm: { } { }),,,)1(5.0,, 75.050.025.0 EEEESSSS YJF =+= . The first 

set includes fitness coefficients with ideal value equal to 1, while the second set includes 
fitness errors with ideal value equal to 0. The values of each one of these coefficients will be 
averaged for all the chosen frames. In addition, the typical deviation of each one is 
calculated. It can be noticed that the SCC coefficient has been dropped from the analysis as, 
in agreement with the above comments, it exhibited a very poor sensitivity, yielding very 
high scores for every algorithm. 
Table 5 details the average, ┤, and typical deviation, σ, for the chosen fitness indexes and the 
traffic light video sequence. According to the authors in Manzanera & Richefeu (2007), 
parameter N=2 was recommended for the SD, SDSP and SDM algorithms. However, in our 
experiments N=4 performed slightly better in some videos. Therefore, both values have been 
considered for each one of the four sigma-delta alternatives. 
Results of the proposed sigma-delta algorithm with confidence measurement are clearly on 
top according to the fitness coefficients, both for N=2 and N=4. On the other hand, according 
to the fitness error coefficients, the proposed algorithm is significantly better than any of the 
other algorithms, featuring also a moderate typical deviation. 
 

SF SJ 0.5 (1+SY) E0.25 E0.50 E0.75 
Algorithm 

μ σ μ σ μ σ μ σ μ σ μ σ 

SD (N=2) 0,44 0,156 0,29 0,125 0,66 0,072 0,36 0,143 0,30 0,115 0,22 0,078 

SD (N=4) 0,59 0,172 0,44 0,161 0,87 0,062 0,45 0,152 0,36 0,124 0,26 0,087 

SDSP (N=2) 0,63 0,180 0,48 0,177 0,92 0,027 0,42 0,168 0,34 0,137 0,24 0,097 

SDSP (N=4) 0,56 0,185 0,41 0,167 0,94 0,018 0,50 0,151 0,41 0,123 0,29 0,087 

SDM (N=2) 0,42 0,160 0,28 0,126 0,66 0,075 0,40 0,141 0,33 0,114 0,24 0,078 

SDM (N=4) 0,55 0,169 0,40 0,153 0,87 0,064 0,49 0,142 0,40 0,116 0,28 0,082 

SDC (N=2) 0,83 0,031 0,72 0,045 0,92 0,025 0,16 0,032 0,13 0,026 0,09 0,018 

SDC (N=4) 0,83 0,034 0,70 0,048 0,95 0,016 0,21 0,044 0,17 0,036 0,12 0,025 

Table 5. Quantitative evaluation of the foreground segmentation for the traffic-light 
sequence. 

4. Hardware implementation 

Embedded multimedia processors are expected to be on the basis of future ITS electronic 

equipments (Barrero et al., 2010). From a hardware point of view, a RISC processor is the 

core component of the multimedia processor. They can easily support an operating system 

for managing interfaces to communication channels like Ethernet and wireless devices, to 

massive storage devices like MMC/SD cards and USB pen drives, and to digital I/O or LCD 

screens. The multimedia processor also includes special support for video applications. 

From a software point of view, embedded processors can incorporate not only 
computational intensive algorithms to allow traffic parameter estimation or incident 
detection, but also standard communication protocols, interface to data storage media (USB, 
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MMC) and wireless connectivity (Bluetooth), FTP and SSH servers for software upgrading 
and a web server for remote configuration. Because of these complexities, it is advisable the 
use of an embedded operating system allowing the application programmers to focus on 
higher-level functionalities, like those based on artificial vision techniques. The selected 
operating system should support preemptive multitasking or multi-threading and device 
drivers for required connectivity. In this context, RISC processors are especially well suited 
for running such an operating system, offering a large spectrum of choices, both open 
source or proprietary. 
A prototype based on the Freescale i.MX21 multimedia processor has been developed to deal 
with the computer vision functionality as well as the multimedia and networking 
capabilities (Fig. 5). The i.MX21 processor includes an ARM926EJ-S core, operating at 266 
MHz. On-chip modules include LCD and memory card/secure digital controllers 
(MMC/SD), serial port controller (USB OTG), CMOS sensor interface, and enhanced 
MultiMedia Accelerator (eMMA), which consists of a video Pre-processor (PrP) unit, an 
Encoder (ENC) and a Decoder (DEC) module, and a Post-processor (PP) unit. MPEG-4 and 
H.263 protocols are supported as well as real-time encoding/decoding of images from 
32×32 pixels up to CIF format at 30 frames per second. The PrP resizes input frames from 
memory or from the CMOS sensor interface, and performs color space conversion. The PP 
module takes raw images from memory and performs additional processing to de-block, de-
ring, resize, and color space conversion on the decoded frames for MPEG-4 video streaming. 
The prototype board is also provided with mini USB and SD card connector, RJ45 Ethernet 
connector, Bluetooth expansion connector, and a coaxial connector, which provides the 
analog signal to a video decoder chip. 
 

 

Fig. 5. Hardware prototype. 

Although a multitude of embedded operating systems are currently available (Wind River’s 
VxWorks, Microsoft Windows CE, QNX Neutrino, etc), Linux is firmly in first place as the 
operating system of choice for smart gadgets and embedded systems (Toral et al., 2009c). All 
embedded operating systems require a considerable effort of customization, because they 
incorporate a wider variety of input/output devices than typical desktop computers. As a 
consequence, it is necessary to adapt the operating system to the particular features of the 
selected processor. Fortunately, Linux comes under a GPL license and the community of 
support around Linux ports are of great help during the customization task. Linux runs on 
multiple embedded architectures, but ARM and PowerPC are the best supported 
processors. Besides, Linux support multitasking/multithreading, allowing several processes 
and services running in concurrent operation. In the proposed application, the i.MX21 video 

www.intechopen.com



Computer Vision Techniques for Background Modelling in Urban Traffic Monitoring   

 

55 

processor is running under ARM Linux (kernel 2.4.20). The main process corresponds to the 
background model estimation, but several processes executing additional services are in 
concurrent operation: 

• A HTTP server for configuration and supervision purposes. 

• A Web command server module, in charge of processing specific requests from the 
configuration web page. 

• A SSH server for remote logging into the system. 

• A FTP server for upload and download operations. 

• A watchdog process for rebooting the system when a periodic signal is not received 
from the main process.  

• A video delivery process for video compression and delivery using an Ethernet 
interface. 

All the sigma-delta algorithms have been programmed using C++ programming language. 
Full resolution, gray-scale images 720x576 pixels are subsampled to resolution 360×288 
before being processed. Table 6 shows the time requirements of each one of the considered 
algorithms, while performing on a typical traffic sequence. 
Considering the average time or the effective velocity columns, the basic sigma-delta 
algorithm is the less time consuming, as expected, followed by the proposed algorithm. The 
multifrequency sigma-delta takes around 2.5 times more than the proposed algorithm, while 
the sigma-delta with spatio-temporal processing is about 13 times slower. On the other 
hand, regarding to the maximum cycle time, we can see that both, the multifrequency 
sigma-delta and the SDC algorithm, double their respective average times, while the sigma-
delta with spatio-temporal processing triplicate its average time in the worst case. 
Furthermore, the basic sigma-delta algorithm and the enhanced version with confidence 
measurement have the benefit of a much lower typical deviation in its cycle time.  
 

Algorithm Tmin (ms) Tmax (ms) Tmean (ms) Tdesv (ms) Speed (fps) 

SD (N=4) < 1 31 11,37 6,84 87,95 

SDSP (N=4) 218 1201 387,07 52,48 2,54 

SDM (N=4) 31 172 77,64 14,04 12,88 

SDC (N=4) 15 62 30,18 5,71 33,14 

Table 6. Time requirements of each algorithm. 

5. Applications 

The main process of the prototype corresponds to vision-based vehicle detection system. 
This detection relies on the so called detection areas. Each one of these areas or regions is a 
user-configurable polygon with an arbitrary shape or size, and an associated functionality. 
Three kinds of detection regions have been programmed: presence, directional and queue 
regions, allowing the estimation of useful traffic information. The functionality of these 
regions is clarified below: 

• Presence-detection regions. They may be considered as virtual loop detectors, quite 
similar to the traditional on-the-road loop detectors buried under the road surface 
(Michalopoulos, 1991). These non-invasive loop detectors generate a binary output 
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(vehicle presence or absence) depending on a configurable threshold, and incorporate a 
software vehicle counting functionality. 

• Directional-detection regions. The directional regions are also used for counting 
vehicles. Unlike the previous type, its goal is to estimate the vehicle running direction, 
checking how close it is to the configured direction associated to the region. Depending 
on the agreement of both directions, the vehicle is counted or ignored. This kind of 
regions is useful for selective vehicle counting in or near intersections, one-way 
violation detections or restricted turn infringements. 

• Queue-detection regions. The queue regions are intended to estimate vehicle queue 
length and queuing frequency, typically, in front of a traffic light. A binary output can 
be also associated with these regions, indicating whether the instantaneous queue 
length is above or below a configured threshold. 

This main process requires the complete configuration of the scene, which can be made via 
the HTTP server running in the multimedia processor. Fig. 6 illustrates one of the screens in 
the system’s configuration web page. 
 

 

Fig. 6. Equipment configuration web site. 

The image on the centre of the web page shows a snapshot of a video stream delivered by 
the real-time application. Several detection regions have been defined: two presence-
detection regions in yellow configured to count vehicles running on both lanes, one 
directional detection region in pink configured to count vehicles coming from the right side 
of the intersection, and two queue regions in blue in front of a traffic light. Associated to 
each detection area, both instantaneous and time-aggregated data can be obtained: 

• Presence-detection regions: occupancy and vehicle counting data during the 
aggregation period. The occupancy gives an estimation of the percentage of time the 
presence level is above the configured threshold (presence on). 
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• Directional-detection regions: directional vehicle counting data. 

• Queue-detection regions: queue counting data (number of times the queue has 
exceeded the configured threshold during the aggregation period), time ratio the queue 
is above the configured threshold (queue on) and average queue length. 

Instantaneous data overlaid on the real-time image (upper left corner of the image of Fig. 6), 
and produce digital outputs emulating traditional detectors. The aggregated data can be 
also recorded on a log file (which is updated at the end of each aggregation period), and 
then downloaded using the FTP server. 

6. Conclusion 

In this chapter, several background modelling techniques have been described, analyzed 
and tested. In particular, different algorithms based on sigma-delta filter have been 
considered due to their suitability for embedded systems, where computational limitations 
affect a real-time implementation. A qualitative and a quantitative comparison have been 
performed among the different algorithms. Obtained results show that the sigma-delta 
algorithm with confidence measurement exhibits the best performance in terms of 
adaptation to particular specificities of urban traffic scenes and in terms of computational 
requirements. A prototype based on an ARM processor has been implemented to test the 
different versions of the sigma-delta algorithm and to illustrate several applications related 
to vehicle traffic monitoring and implementation details. 
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