
A Single-Chip FPGA Implementation of
Real-time Adaptive Background Model

Kofi Appiah Andrew Hunter
Department of Computing and Informatics

Faculty of Technology, University of Lincoln
Lincoln, LN6 7TS, UK

{kappiah, ahunter}@lincoln.ac.uk

Abstract

This paper demonstrates the use of a single-chip
FPGA for the extraction of highly accurate back-
ground models in real-time. The models are based
on 24-bit RGB values and 8-bit grayscale intensity
values. Three background models are presented, all
using a camcorder, single FPGA chip, four blocks
of RAM and a display unit. The architectures have
been implemented and tested using a Panasonic NV-
DS60B digital video camera connected to a Celox-
ica RC300 Prototyping Platform with a Xilinx Virtex
II XC2v6000 FPGA and 4 banks of onboard RAM.
The novel FPGA architecture presented has the ad-
vantages of minimizing latency and the movement of
large datasets, by conducting time critical processes
on BlockRAM. The systems operate at clock rates
ranging from 57MHz to 65MHz and are capable
of performing pre-processing functions like temporal
low-pass filtering on standard frame size of 640X480
pixels at up to 210 frames per second.

1. Introduction

We demonstrate the use of Field Programmable
Gate Array (FPGA) for the extraction of accurate
background models under variable lighting condi-
tions in real-time. This implementation has a number
of uses in embedded systems as well as automated vi-
sual surveillance systems. Real-time image process-
ing is difficult to achieve on a serial processor, due
to the movement of large data sets and complex op-
erations that need to be performed on the image [9].
Advances in semiconductor technology makes it pos-
sible to design complete embedded System-on-Chip
(SoC) by combining sensor, signal processing and
memory onto a single substrate [13]. New embed-
ded vision systems have emerged as a result of this
level of integration and are estimated to increase in
the coming years. The aim of computer vision sys-
tems is to scan objects and make judgements on those

objects at rates much faster than human observers,
thus the need to identify imaging functions that al-
low the computer to behave like a trained human
operator[17].

Field Programmable Gate Array, a technology
which has recently been made available to re-
searchers, is used as an alternative platform for
speedup in computer vision and digital image
processing. The potential uses of FPGAs in ar-
eas like medical image processing, computational
fluid dynamics, target recognition, embedded vi-
sion systems, gesture recognition and automotive
infotainment have been demonstrated in [2] [4]
[10] [11] [13]. Digital Image processing or computer
vision algorithms can be broken down into three ma-
jor stages [8]: early processing, implemented by local
pixel-level functions; intermediate processing, which
includes segmentation, motion estimation and feature
extraction; and late processing, including interpreta-
tion and using statistical and artificial intelligence al-
gorithms. Typically algorithm sophistication is con-
centrated in the later stages, but processing demands
dominate in the early stages.

Vanderlei et al [2] used a simplified method in
converting Red, Green, and Blue (RGB) values into
Hue, Saturation, and Intensity (HSI) components, for
extracting their binary region of interest (ROI) for
their RAM-based neural network. The simplification
was necessary to achieve feasible FPGA implemen-
tations. The choice of T1 and T2 (inferior and supe-
rior thresholds respectively) as shown in equation 1 is
not very clear in their implementation. Elham Ashari
[1] used an adaptive thresholding method to separate
the foreground and background pixels in gray level
images. Hardware implementation results in terms
of visual performance, speed, and area consumption
of the implementation is given, yet the algorithm is
application dependent and requires some training pe-
riod for perfect segmentation. Jim et al [16] used an
experimental colour representation for filtering com-
mon colours found in road signs. They used RGB val-
ues as opposed to HSV to avoid computationally ex-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/53962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pensive conversions as outputs of many cameras are
in RGB mode.

f(x, y) =
{

1 T1 ≤ f(i, j) ≤ T2

0 otherwise
(1)

From the above analysis it becomes clear that most
object and activity recognition systems require some
form of object extraction at their initial stages, a re-
quirement which has not easily been achieved on re-
configurable platforms such as FPGA. Background
subtraction is the commonly used method for extract-
ing moving targets in a scene. Even though it is ro-
bust and less computationally expensive, it requires
the maintenance of a background model. The main-
tained model can lead to accumulated errors if not up-
dated over time. This paper presents three different
real-time adaptive background models, which have
successfully been implemented on FPGA with min-
imal use of external memory.

The paper is organized as follows. Section 2
briefly describe some background modelling algo-
rithms used for segmenting moving objects. Their
advantages and disadvantages for FPGA implemen-
tation are also given. Section 3 gives details of the
system showing how the various components and pe-
ripherals are connected. This is followed by our back-
ground modelling approach in section 4 with details
on how it is implemented on FPGA. Section 4 also
gives results and analysis of each implementation. Fi-
nally, we present a summary of our work and point
out future directions.

2. Previous Work

The first stage in processing for many video appli-
cations is the segmentation of (usually) moving ob-
jects with significant difference in colour and shape
from the background. Where the camera is station-
ary, a natural approach is to model the background
and detect foreground object by differencing the cur-
rent frame with the background. A wide and increas-
ing variety of techniques for background modelling
have been described; a good comparison is given by
Gutchess et al [6].

The most popular method is unimodal background
modelling, in which a single value is used to rep-
resent a pixel, which has been widely used due to
its relatively low computational cost and memory re-
quirements [7] [18]. This technique gives a poor re-
sults when used in modelling non-stationary back-
ground scenarios like waving trees, rain and snow.
A more powerful alternative is to use a multimodal
background representation, the most common variant
of which is a mixture of Gaussians [5] [15]. However,
the computational demands make such techniques
unpopular for real-time purposes; there are also dis-
advantages in multimodal techniques [5] [15] [18] in-
cluding the blending effect, which causes a pixel to

have an intensity value which has never occurred at
that position (a side-effect of the smoothing used in
these techniques). Other techniques rely heavily on
the assumption that the most frequent intensity value
during the training period represents the background.
This assumption may well be false, causing the out-
put to have a large error level.

2.1 Grimson’s Algorithm

Grimson et al [15] introduced a multimodal ap-
proach, modelling the values of each pixel as a mix-
ture of Gaussians. The background is modelled with
the most persistent intensity values. The algorithm
has two variants, colour and gray-scale: in this paper,
we concentrate on the gray-scale version. The prob-
ability of observing the current pixel value is given
as:

P (Xt) =
k∑

i=1

ωi,tη(Xt, μi,t, σi,t) (2)

Where μi,t, σi,t and ωi,t are the respective mean,
standard deviation and weight parameters of the ith

Gaussians component of pixel X at time t. η is a
Gaussian probability density function

η(Xt, μi,t, σi,t) =
1

σi,t

√
2π

e

(Xt−μi,t)
2

2σ2
i,t (3)

A new pixel value is generally represented by one
of the major components of the mixture model and
used to update the model. For every new pixel value,
Xt, a check is conducted to match it with one of the
K Gaussian distributions. A match is found when
Xt is within 2.5 standard deviation of a distribution.
If none of the K distributions match Xt, the least
weighed distribution is replaced with a new distrib-
ution having Xt as mean, high variance and very low
weight. The update equations are as follows:

wi,t = wi,t−1 + α(mi,t − wi,t−1) (4)

where α is the learning rate and

mi,t =
{

1 if there is a match
0 otherwise

(5)

μt = μt−1 − ρ(Xt − μt) (6)

σ2
t = (1 − ρ)σ2

t−1 + ρ(Xt − μt)T (Xt − μt) (7)

Only the matched distribution will have its mean and
variance updated, all others remain unchanged. For

ρ = αη(Xt|μt, σt) (8)

The first B distributions (ordered by ωk) are used as
a model of the background, where

B = argb min(
b∑

k=1

ωk > T). (9)

The threshold T is a measure of the minimum por-
tion of the data that should be accounted for by the
background.

2.2 Temporal Low-Pass filtering Algorithm

Aleksej [12] introduced a method to avoid false
alarms due to illumination, using a temporal filter to
update the background model, while a global thresh-
old value T was used to extract target regions. The
background update he used is of the form

B(k, l, n) =
(p − c)

p
B(k, l, n − 1) +

c

p
I(k, l, n)

where c is the number of consecutive frames during
which a change is observed and is reset to zero each
time the new value becomes part of the background;
p is the adaptation time or insertion delay constant.
The moving target is extracted on a pixel level with
the following relation:

f(k, l, n) =
{

1 |I(k, l, n) − B(k, l, n)| > L
0 otherwise

(10)
where f(k,l,n), B(k,l,n) and I(k,l,n) are the respective
foreground, background and the grayscale intensity
value of pixel (k,l) for the nth frame and L is the
global threshold value.

The low-pass filtering algorithm is attractive for
two reasons. First it is very simple and hence updat-
ing the background information is computationally
cheap and memory consumption is minimal. The use
of single global threshold value as well as a single
mode makes it unattractive for scenes with varying
lighting intensities. In contrast, Grimson’s algorithm
[15] is robust to outdoor environments where lighting
intensity can suddenly change, and it handles multi-
modal backgrounds such as moving foliage (cyclical
motion) without manual initialisation. Unfortunately,
the use of floating-point numbers in all its update pa-
rameters makes it computationally expensive, and un-
suitable for hardware implementation [1].

3 Overview of Setup

The hardware system we present here is composed
of a Panasonic NV-DS60B digital video camera, a
display unit and an FPGA prototyping board. The
camera is interlaced and runs at 50Hz, thus effec-
tively transmitting at 25Hz in 24-bit RGB values of
size 768×567 in PAL format. The output of the cam-
era is connected directly to the RC300 prototyping
board via the S-video input. The RC300 board is
packaged with Xilinx Virtex II XC2v6000, 4 banks
of ZBT SRAM totalling 32MBytes (thus 4 banks x
2M x 36bits) and two DVI output ports. The outputs
of the processed image and the background are dis-
played on different VGAs for visual inspection. This
constrains the available memory resource.

The inability to read from and write to a single
bank of RAM in a single clock cycle calls for the use

of all available memory banks. Two banks hold cam-
era data, whilst the other two hold background up-
date information. A control unit controls the RAM
bank the camera data is written to and which bank
the VGA reads from. The two banks reserved for
camera data are swapped after every full frame is
acquired. Similarly the RAM bank for the display
unit is swapped. The architecture is such that, when
data from the camera is being written to bank �1 the
processing unit reads captured camera data from bank
�2 and processes it with stored background data from
bank �3. Concurrently, background data is written to
bank �4 after update. Figure 1 shows this architecture
in detail, which is the same for all three implementa-
tions.

bank #1

bank #2

bank #3

bank #4

write image

A B C D E F G H
SELECTED

ON-LINE processor

read image

read background data

write background data

foreground

background
model

Figure 1. The RAM switching architec-
ture

4 Our Approach

We present here a novel hybrid background mod-
elling algorithm that combines the attractive features
of Grimson’s algorithm [15] and the temporal low-
pass filtering [12], with appropriate modifications
to improve segmentation of the foreground image,
and to allow an efficient implementation on a recon-
figurable hardware platform such as Field Program-
mable Gate Array (FPGA).

Following Grimson [15], we maintain a number of
clusters, each with weight wk, where 1 ≤ k ≤ K, for
K clusters. Rather than modelling a Gaussian distrib-
ution, we maintain a model with a central value, ck of
11-bits (8 bits integer part and 3 bits fractional part).
We use an implied global range, [ck − 15, ck + 15],
rather than explicitly modelling a range for each pixel
based on its variance as in [15]. The weights and cen-
tral values of all the clusters are initialised to 0.

A pixel X = I(i, j) (where X is 11-bit fixed-
point) from an image I is said to match a cluster, k,
if X ≥ ck − 15 and X ≤ ck + 15. The highest
weight matching cluster is updated, if and only if its
weight after the update will not exceed the maximum
allowed value (i.e. wk ≤ 64, given the data width of
the weight as 6 bits). The update for the weight is as

follows:

wk,t =
{

63
64wk,t−1 + 1

64 for the matching cluster
63
64wk,t−1 otherwise

(11)
The central values of all the clusters are also updated
as follows:

ck,t,i,j =
{

7
8ck,t−1,i,j + 1

8Xi,j matching cluster
ck,t−1,i,j otherwise

(12)
Where ck,t,i,j is the central value for cluster k at time
t for pixel (i, j)

If no matching cluster is found, then the least
weighted cluster’s central value, cK is replaced with
X; its weight is reset to zero. The way we construct
and maintain clusters make our approach gradually
incorporate new background objects. This is similar
to [12] and hence the insertion delay is 23 = 8 frames
in our case.

The K distributions are ordered by weight, with
the most likely background distribution on top. Simi-
lar to [15], the first B clusters are chosen as the back-
ground model, where

B = argb min(
b∑

k=1

ωi > T). (13)

The threshold T is a measure of the minimum portion
of the data that should be accounted for by the back-
ground. The choice of T is very important, as a small
T usually models a unimodal background whiles a
higher T models a multi-modal background.

We classify a pixel as foreground pixel based on
the following two conditions:

1. If the intensity value of the pixel matches none
of the K clusters.

2. If the intensity value is assigned to the same
cluster for two successive frames, and the inten-
sity values X(t) and X(t − 1) are both outside
the 40% mid-range [ck − 6, ck + 6].

The second condition makes it possible to detect tar-
gets with low contrast against the background, while
maintaining the concept of multimodal backgrounds.
A typical example is a moving object with grayscale
intensity close to that of the background, which
would be classified as background in [15]. This re-
quires the maintenance of an extra frame, with val-
ues representing the recently processed background
intensities.

4.1 Gray-Scale Background Modelling

It is not always necessary to maintain a multi-
modal background. Many vision systems for hand-
held devices may have limited memory and may not
require the maintenance of multi-modal backgrounds

to operate correctly. For these reasons we demon-
strate how we can model background scenes in real
time on FPGA using a unimodal background. The al-
gorithm used is similar to that described above with
K = 1 and no associated weight. The central value is
updated on each processed frame and hence the back-
ground data can suffer from high deviation.

4.1.1. FPGA System Design. The implementa-
tion of the unimodal grayscale background modelling
algorithm is made up of six distinct processes all run-
ning in parallel. The first of these is the image capture
block which acquires pixels in RGB format, at cam-
era rate of 25Hz and converts it to 8-bit grayscale in
a single cycle. This block has iterative mechanisms
to acquire all pixels from the camera. Thus after ac-
quiring pixel (i, j) this block iterates several times for
pixel (i + 1, j).

This iteration is necessary and possible as the
clock rate of the design is much higher than the cam-
era transmission rate. The successfully acquired pixel
is sent to the memory write block. This block takes
two cycles to write the camera data to external RAM.
The first cycle is used to enable memory write for ei-
ther RAM�1 or RAM �2. The data is written to the
appropriate RAM, which is dependant on the RAM
Control signal (RAM switch) in the second cycle.
Figure 2 is a pictorial representation of the memory
writing pipeline in two clock cycles.

Two display units (VGA) are use for visual in-
spection to display the background model and mov-
ing targets respectively. The two units have the same
vertical blanking and hence it is possible to gener-
ate different outputs with a single data. The back-
ground data read from RAM�3 (or RAM�4 depending
on the RAM control) is used to extract the foreground
image, which is sent to the foreground display unit
(FDU). Simultaneously, the background data is sent
to the background display unit (BDU). This has been
made possible by reading pixels six cycles ahead of
their display time.

Out of these six cycle, the first cycle is used to en-
able memory read for RAM �2 and �3 (or RAM�1
and �4), camera and its corresponding background
data is made available in the second cycle. The 8-bit
grayscale intensity value is converted to 11-bit fixed-
point value in the third cycle. The fourth cycle is used
to build a cluster around the 11-bit central value main-
tained as the background value. This is followed by
the fifth and final stage, which estimates if the 11-
bit grayscale value falls in this cluster. If the value
falls out of range of the cluster, the grayscale value is
sent to the foreground display unit else zero (intensity
value of zero) is sent.

The background value is simultaneously sent to
the background display unit. The fifth cycle is
also used to enable memory write for RAM�4 (or
RAM�3). The final and sixth cycle displays the

values on the display units and writes the updated
background value to the external RAM. It should be
pointed out that the first six pixels of the display units
are incorrect on reset.

y x

RAM#1

RAM#2
10

10

P

i

p

e

li

n

e

r

e

g

i

s

t

e

r

21

24

RAM Switch Write Enable

RAM#2

RAM#1

Write

36

36

8

Figure 2. The the 2 stage memory write
pipeline architecture

4.1.2. Results and Analysis. The design de-
scribed above runs at 64.81MHz as reported by the
Place and Route (PAR) tool. At this speed, the de-
sign is able to process camera data at more than real-
time. The total latency from the time the camera
sends the first pixel to the time the the pixel is avail-
able for display on display units is approximately
0.2μsec. This is because it takes 5 clock cycles to
write a pixel from the camera, which runs at 25Hz.
It takes 6 clock cycles to update the background data
and extract the region of interest for a given pixel.
Thus at a clock speed of 64.81MHz, the latency
is approximately 0.2μsec. Table 1 summarizes the
resource utilization of this implementation. When
the pipeline is full the FPGA produces result for a
pixel every clock cycle. Thus running at 64.81MHz,
the output of a pixel is ready every 15.429ns. At
this frequency we can effectively process 210fps of
RS-170/NTSC (640×480) frame size and 146fps of
CCIR/PAL (768×576) frame size.

4.2 RGB Colour Background Modelling

Many colour segmentation algorithms have been
proposed in the past for skin lesion images, intru-
sion detection and feature extraction. Very few of
these have successfully been implemented on hard-
ware platform for speed-up. This is due to a lack
of resources to meet the real-time processing needs
of these very complex and computationally expen-
sive colour segmentation algorithms. The need for
such algorithms running on dedicated systems like
FPGAs is mentioned by Neuenhahn [14]. Real-time
colour image segmentation could be particularly use-
ful in many applications, especially in biomedical im-
age analysis [3].

Resource Total Used Per.
Flip Flops 1,112 out of 67,584 1%
4 input LUTs 1,762 out of 67,584 2%
Block RAMs 0 out of 144 0%
bonded IOBs 366 out of 824 44%
Occupied Slices 1,156 out of 33,792 3%
SSRAM (NTSC) 16 out of 256 Mbits 4.3%
SSRAM (PAL) 11 out of 256 Mbits 6.3%

Table 1. Resource utilization of the uni-
modal grayscale implementation, us-
ing XC2v6000, package ff1152 and speed
grade -4.

In this section we demonstrate how this challeng-
ing task in image processing can be achieved with
simplified yet robust algorithms, running at real-time
on reconfigurable computing platforms with minimal
resources. The architecture we present here is sim-
ilar to that in section 4.1, but instead of using an 8-
bit grayscale intensity value this architecture relies on
24-bit RGB values. Again, the entire system is fitted
on a single FPGA chip with 4 banks of SRAM.

 P

Q

<
=
>

11 bit comparator

 P

Q

<
=
>

11 bit comparator

S1

S2

D

C ENB

Multiplexer

Black

Figure 3. The fifth stage of the six-stage
pipeline

4.2.1. FPGA System Design. Similar to the
grayscale implementation, this architecture has six
processes running in parallel. These are: the RAM
control; pixel reading from camera; writing camera
data to RAM; processing stored data for the output
device and updating background data; writing to the
output device; and writing the update background

data back to RAM.
These processes take 12 clock cycles in total. The

longest process, the background updating and target
extraction process, takes 5 cycles. The first cycle gen-
erates memory addresses and reads the correspond-
ing background and camera values from the respec-
tive RAM blocks. The length of the camera data is
24bits (8 bits for each RGB channel) and that of the
background is 33bits (11bits for each channel). The
second cycle makes the addressed data available for
processing. This is followed by extending the 3×8
bit RGB values into 11 bit fixed point values in the
third cycle. The fourth cycle is used to build a clus-
ter of width 30, each for the Red, Green and Blue
colour components. The fifth cycle is used to decide
if all the colour components of the observed pixels
belong to the RGB clusters. The result of this de-
fines the output to the VGA. If all colour components
fall in their corresponding clusters, then the pixel is
displayed as a background pixel else displayed as a
foreground pixel. The last pipeline stage is depicted
in figure 3, for the Red colour component, as the other
two components have a similar structure.

4.2.2. Results and Analysis. This design also
runs at an impressive speed of 64.40MHz, about
0.4MHz less than that of the grayscale implemen-
tation. The percentage of the resources consumed
by this implementation is the same as that of the
grayscale implementation, with the exception of 4 in-
put LUTs (approximately 3% in this case). This can
be attributed to the increase in the number of pipeline
registers. The total latency from the time the cam-
era sends the first pixel to the time the pixel is avail-
able for display on display units is also 0.2μsec. The
percentages of external RAM consumed by the de-
sign for processing a PAL and NTSC frame sizes
are 13% and 19% respectively. When the pipeline
is full the FPGA produces result for a pixel every
clock cycle, thus running at 64.40MHz, the output
of a pixel is ready every 15.526ns. At this fre-
quency we can effectively process 209fps of RS-
170/NTSC (640×480 colour) frame size and 145fps
of CCIR/PAL (768×576 colour) frame size.

4.3 Bimodal Gray-Scale Background Mod-
elling

Multimodal background modelling is required to
model scenes with non-stationary background ob-
jects, so reducing false positive alerts. To success-
fully implement our algorithm on a Field Program-
mable Gate Array, access to 17n bits of background
data is required every clock cycle, where n is the total
number of background clusters and 17 bits is the total
number of bits require for the cluster’s weight (6 bits)
and central value (11 bits). Having access to 36 bits in
a clock cycle, we can effectively implement a multi-

Code Description
000 cluster 0 highest wgt. & data out of range
001 cluster 0 highest wgt. & data in range
010 cluster 0 second wgt. & data out of range
011 cluster 0 second wgt. & data in range
100 cluster 1 highest wgt. & data out of range
101 cluster 1 highest wgt. & in of range
110 cluster 1 second wgt. & out of range
111 cluster 1 second wgt. & in of range

Table 2. Econding scheme for determin-
ing which cluster camera data belongs

modal background with n = 2. We demonstrate the
success of this implementation and how easily any n
can be increased based on the available resources.

4.3.1. FPGA System Design. The design of the
bimodal background is common with all the other ar-
chitectures; it has six different processes running in
parallel. The interesting part of the design is the eight
stage pipeline for extracting moving targets and up-
dating the background. The first two stages are used
for reading the camera and its corresponding back-
ground data from external RAM. The 8-bit grayscale
value from the camera is converted into 11-bits fixed
point value in the third stage. To avoid deeply nested
conditions as well as iteration in sorting the weights
of the background clusters, different registers are
used for the results of the sorted weights. This makes
it possible to sort the weights in a single clock cycle
in the fourth stage in the pipeline. Clusters are also
built on the various central values in this stage.

The fifth stage is used to determine if the cam-
era data belongs to the highest weighted cluster. We
use an encoding scheme to know which cluster the
camera data belongs to. Table 2 gives the encod-
ing scheme used for the bimodal implementation and
can easily be used for multimodal implementations.
The weight and the background values are updates
as in equations 11 and 12. If the camera data does
not match the highest weighted cluster, the appro-
priate code is set and the camera data is compared
with the second weighted cluster in the sixth stage.
The pipeline stages will increase depending on the
number of clusters used in the implementation. This
causes a delay in terms of setup and propagation time
for the pipeline registers but the speed gain as com-
pared to a deeply nested conditional statement is very
significant.

In the seventh and final stage the lowest weighted
cluster’s central value is replaced with the 11bit fixed
point camera data and its weight set to zero if the data
does not belong to any of the clusters. The foreground
bit-map for the FDU is extracted in this same stage.
For the BDU, a grayscale value is displayed if the

Resource Total Used Per.
Flip Flops 1,766 out of 67,584 2%
4 input LUTs 3,347 out of 67,584 4%
Block RAMs 57 out of 144 39%
bonded IOBs 366 out of 824 44%
Occupied Slices 2,124 out of 33,792 6%
SSRAM (NTSC) 37 out of 256 Mbits 14.4%
SSRAM (PAL) 25 out of 256 Mbits 9.7%

Table 3. Resource utilization of the bi-
modal grayscale implementation, us-
ing XC2v6000, package ff1152 and speed
grade -4.

pixel belongs to the highest weighted cluster or none
of the clusters, and a red value is displayed if the pixel
belongs to the second-weighted cluster. This colour
display mode can also be used in a multimodal model.
The updated background and weights of the clusters
are sent to the background updating processing unit
to be written to external RAM. It takes 8 cycles to get
the first correct pixel displayed after reset.

4.3.2. Results and Analysis. This design runs
at 57.00MHz, about 7.81MHz less than that of the
unimodal implementation. This has only been possi-
ble with the use of the encoding scheme, as an earlier
implementation could only run at maximum speed of
25MHz due to the use of deeply nested condition for
evaluating the cluster that the camera data belongs to.
To reduce noise due to the camera jitter, morphologi-
cal opening is conducted on the foreground extracted.
This is entirely conducted on the BlockRAM avail-
able on the FPGA. Effectively, this reduces the la-
tency by a factor of 9 per pixel as it takes only one
cycle to access data from the dual-port BlockRAM as
compared to two cycles for the external RAM. Table
3 gives a summary of the resource utilization in this
design. At 57MHz an output is ready every 17.543ns,
when the pipeline is full.

5. Experimental Results

We evaluate the performance of our approach
against that of [15] using K = 3, thus 3 cluster in
our case and 3 distributions in [15]. We use eight
randomly selected video sequences, four each from
outdoor and indoor scenes. Manually marked frames
are used as reference images for the sequences.
Our result is based on pixel-wise errors against
the reference image, in terms of true positive(TP),
true negative(TN), false negative(FN) and false
positive(FP) pixels.

There are approximately 50 frames in each se-
quence. Table 4 clearly shows the superiority of our
algorithm against that in [15] in terms of sensitivity.

Scene Our Approach (%)
SENS. SPEC. PPV

In1 84.88 98.94 84.01
Out1 83.18 99.87 94.79
In2 76.26 97.28 62.23

Out2 76.87 99.31 92.50
In3 76.72 96.51 47.82

Out3 81.39 99.56 58.03
In4 86.39 89.14 30.62

Out4 56.35 99.06 48.53
Grimson’s (%)

SENS. SPEC. PPV
In1 82.20 99.10 85.68

Out1 80.99 99.85 93.50
In2 68.70 97.72 63.93

Out2 64.33 99.22 89.75
In3 68.54 98.30 62.68

Out3 75.58 99.70 65.40
In4 85.38 91.71 36.38

Out4 45.96 99.38 53.91

Table 4. Pixel errors evaluation results

The algorithm does produce more false positive er-
rors; this is the side-effect of our approach in detect-
ing targets with low contrast against the background.
However, in our target application false positive er-
rors of the type reported are more acceptable than
false negative errors, as subsystem tracking stages
can discard distracters such as shadows.

The evaluation parameters used in table 4 are de-
fined as follows: Sensitivity (SENS.) is the propor-
tion of positives that are correctly classified and it’s
expressed as TP

(TP+FN) , Specificity (SPEC.) is the
proportion of negatives that are correctly classified
and it’s expressed as TN

(TN+FP) and Positive Predic-
tive Values (PPV) is the proportion of cases classi-
fied as positives that are actually positive and it’s ex-
pressed as TP

(TP+FP) .

Figure 4 gives sample images of the outputs gen-
erated by the two algorithms. These are output re-
sults of seven out of the eight sequences used in table
4. Visual inspection of the images shows where our
approach outperforms that of Grimson’s. Grimson’s
algorithm suffers from the foreground aperture prob-
lem, but our approach with its frame-level processing
suffers minimally from this problem.

6. Summary and Conclusions

We have demonstrated how a single chip FPGA
can effectively be used in modelling robust multi-
modal backgrounds in real-time. We have presented
architectures for modelling unimodal backgrounds
using grayscale intensity value, RGB colour values
and bimodal backgrounds with grayscale values. The
novelty detector used is motivated by [12] and [15]

Figure 4. Sample outputs of the algo-
rithms: Left shows our approach, mid-
dle is the original frame and the right is
Grimson’s algorithm

with modifications to enable the extraction of tar-
gets with low contrast. The processing speed and re-
sources used in the implementation make room for
other imaging algorithms for tracking and activity in-
terpretation.

7. References

[1] E. Ashari. FPGA Implementation of Real-Time Adap-
tive Image Thresholding. SPIE–The International So-
ciety for Optical Engineering, December, 2004.

[2] V. Bonato, A. Sanches, and M. Fernandes. A Real
Time Gesture Recognition System for Mobile Robots.
International Conference on Informatics in Control,
Automation and Robotics, Portugal, August, 2004.

[3] R. Cucchiara, C. Grana, S. Seidenari, and G. Pella-
cani. Exploiting color and topological features for re-
gion segmentation with recursive fuzzy C-means, vol-
ume 11. 2002.

[4] P. Ekas. Leveraging FPGA coprocessors to optimize
automotive infotainment and telematics systems. Em-
bedded Computing Design, Spring, 2004.

[5] A. Elgammal, D. Harwood, and L. Davis. Non-
parametric Model for Background Subtraction. Pro-
ceedings of the 6th European Conference on Com-
puter Vision, Dublin, Ireland, 2000.

[6] D. Gutchess, M. Trajkovic, E. Cohen-Solal,
D. Lyons, and A. K. Jain. A Background Model
Initialization Algorithm for video Surveillance.
IEEE, International Conference on Computer Vision,
2001.

[7] I. Haritaoglu, D. Harwood, and L. Davis. W 4: Who?
When? Where? What? A real time system for detect-
ing and tracking people. IEEE Third International
Conference on Automatic Face and Gesture, 1998.

[8] J.Batlle, J. Martin, P. Ridao, and J. Amat. A New
FPGA/DSP-Based Parallel Architecture for Real-
Time Image Processing. Elsevier Science Ltd., 2002.

[9] C. T. Johnston, K. T. Gribbon, and D. G. Bailey. Im-
plementing Image Processing Algorithms on FPGAs.
Proceedings of the eleventh electronics New Zealand
Conference, ENZCON’04, Palmerston North, Nov,
2004.

[10] M. Leeser, S. Miller, and H. Yu. Smart Camera
Based on Reconfigurable hardware Enables Diverse
Real-time Applications. Proceedings of the 12th an-
nual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM’04), 2004.

[11] B. Levine, B. Colonna, T. Oblak, E. Hughes, M. Hof-
felder, and H. Schmit. Implementation of a Target
Recognition Application Using Pipelined Reconfig-
urable Hardware. Military and Aerospace Applica-
tions of Programmable Devices and Technologies In-
ternational Conference, 2003.

[12] A. Makarov. Comparison of Background extraction
based intrusion detection algorithms. IEEE Int. Con-
ference on Image Processing, 1996.

[13] S. McBader and P. Lee. An FPGA Implementation
of a Flexible, Parallel Image Processing Architecture
Suitable for Embedded Vision Systems. Proceedings
of the International Parallel and Distributed Process-
ing Symposium, IPDPS’03, 2003.

[14] M. Neuenhahn, H. Blume, and T. G. Noll. Pareto
Optimal Design of an FPGA-based Real-Time Wa-
tershed Image Segmentation. 15th Annual Workshop
on circuits systems on signal processing, November,
2004.

[15] C. Stauffer and W. E. L. Grimson. Adaptive back-
ground mixture models for real-time tracking. IEEE
Conference on Computer Vision and Pattern Recog-
nition, 1999.

[16] J. Torresen, J. W. Bakke, and L. Sekanina. Efficient
Image Filtering and Information Reduction in Recon-
figurable Logic. Proceeding of the 22nd NORCHIP
Conference, Norway, November, 2004.

[17] R. Williams. Increase Image Processing System Per-
formance with FPGAs. Xcell Journal, Summer, 2004.

[18] C. Wren, A. Azarbayejani, T. Darrel, and A. Pent-
land. Pfinder: Real-time tracking of the human body.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1997.

