655 research outputs found

    A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors

    Get PDF
    NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein-protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein-protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs

    The Role of Genomic Context in Bacterial Growth Homeostasis

    Get PDF
    The growth of bacteria is a complex but well-orchestrated dance involving the repetitive and reproducible production of their diverse cellular components in order to divide. A lot can go astray and therefore the cell has developed several strategies in order to ensure everything remains synchronized. This problem is only further complicated as the cells adjust their growth rate to their living conditions resulting in ripple effects throughout the cell physiology. One notable change is that as nutrient availability and quality increases so too does the average size and the concentration of ribosomes in the cell. The latter enables the production of the largest macromolecule faction in the cell (proteins) including the production of more ribosomes required to maintain the protein synthesis requirements. With the increase in volume of the cell comes a required increase in surface area, and a disbalance between these two would result in untenable levels of internal pressure. How then do bacteria ensure that volume growth is synchronized with the production of cell envelope components so that cell homeostasis is maintained, especially in the face of fluctuating growth rate? Genomic context is known to assist in co-regulation of genes thereby synchronizing them to respond to different cellular stimuli. As the bacterial genome is highly fluid, the existence of conserved genomic contexts suggests important loci of co-regulation. Could it be in these gene clusters that a possible link between growth and surface expansion is found? To answer this question this thesis undertook three missions, firstly we established a genome comparison tool (www.GenCoDB.org) that will take advantage of the ever-growing availability of bacterial genomes to assist us in the analysis, comparison, and quantification of genome contexts. This will rely on novel strategies in order to: accommodate the breadth of genome data available in a computationally efficient manner, reduce the effect of sampling bias that plague most bacterial datasets and ensure candidates are considered significant for their evolutionary context. The availability of GenCoDB is sure to facilitate genomic context research in the microbiology community and improve accessibility to non-bioinformatics to this wellspring of important biological data. With the swath of genomic neighbourhood data, we then sought to understand and analyse the evolution of conserved gene clusters in order to narrow down possible volume-surface regulating candidates. By tracking the evolution of gene clusters throughout the Bacteria kingdom we found that co-orientation is strongly conserved, however, this does not influence the subsequent context around the cluster nor the expansion of the cluster. We found that vertical transmission and not horizontal gene transfer was found to be the driving factor of gene cluster occurrence in chromosomes and that the origin and terminus are hotspots for cluster maintenance. Finally, we found that despite the apparent frequency of operon organization in gene clusters, gene clusters appear to be maintained due to other selective pressures such as within-cluster protein-protein interactions and the essential status of their genes. We suggest that operons are a consequence and not a cause co-localization over evolutionary time. We identified a single gene cluster candidate that met all the requirements we believe are required for cell growth homeostasis of synchronized surface and volume expansion. These requirements were a broad conservation within Bacteria, and a connection between ribosome-associated proteins (growth) with cell envelope synthesizes. In agreement with our evolution studies we found that whilst the cluster was co-regulated this did not appear to be the selective pressure that brought these different processes together. Instead we found a potential role of genomic channelling, linking the production of pyrimidines with the synthesis of the cell envelope which is reliant on the co-localization of this cluster. Together, this work will forward the understanding of chromosome evolution in Bacteria and the potential implications of genomic context in metabolite utilization. It challenges the roles that operons and horizontal gene transfer play in the long-term evolution of gene order and it provides a new quantitative and statistical resource providing access to over 1.9 million gene neighbourhoods

    A framework to identify epigenome and transcription factor crosstalk

    Get PDF
    While changes in chromatin are integral to transcriptional reprogramming during cellular differentiation, it is currently unclear how chromatin modifications are targeted to specific loci. To systematically identify transcription factors (TFs) that can direct chromatin changes during cell fate decisions, we model the genome-wide dynamics of chromatin marks in terms of computationally predicted TF binding sites. By applying this computational approach to a time course of Polycomb-mediated H3K27me3 marks during neuronal differentiation of murine stem cells, we identify several motifs that likely regulate dynamics of this chromatin mark. Among these, the motifs bound by REST and by the SNAIL family of TFs are predicted to transiently recruit H3K27me3 in neuronal progenitors. We validate these predictions experimentally and show that absence of REST indeed causes loss of H3K27me3 at target promoters in trans, specifically at the neuronal progenitor state. Moreover, using targeted transgenic insertion, we show that promoter fragments containing REST or SNAIL binding sites are sufficient to recruit H3K27me3 in cis, while deletion of these sites results in loss of H3K27me3. These findings illustrate that the occurrence of TF binding sites can determine chromatin dynamics. Local determination of Polycomb activity by Rest and Snail motifs exemplifies such TF based regulation of chromatin. Furthermore, our results show that key TFs can be identified ab initio through computational modeling of epigenome datasets using a modeling approach that we make readily accessible

    A functional and regulatory perspective on Arabidopsis thaliana

    Get PDF

    Inference of gene regulatory interactions from deep sequencing data

    Get PDF
    This thesis describes our work on the inference of gene regulatory interactions from deep sequencing data. In the first part we start with an introduction to the problem of inferring transcription regulatory interactions (Chapter 2). Then we describe detailed methods of promoterome construction in human and mouse genomes from deep CAGE data (Chapter 3), and show how promoters together with gene expression data can be used to infer transcription regulatory interactions (Chapter 4). Finally, we show an application of this methodology to a human macrophage lineage undergoing differentiation accompanied by a detailed experimental validation of the predicted network structure (Chapter 5). Work presented in Chapter 5 comes from the FANTOM4 project. In the second part we focus on the regulatory functions of two small nucleolar RNAs (snoRNAs). In Chapter 8 we describe an atypical function of snoRNAs - regulation of the mRNA alternative splicing process by a particular class of mouse snoRNAs (MBII-52 variants). These are of great interest, as the locus encoding MBII-52 is linked to Prader-Willi Syndrome. Methods include in silico RNA hybridization screens and experimental confirmation of the predictions. In Chapter 9, we report a discovery of the first virus-encoded snoRNA in Epstein-Barr Virus (EBV). Again, we show that the function of this snoRNA (v-snoRNA1) is atypical: it is processed into small, 24 nt long fragments that can function as microRNAs

    Sox10 regulates enteric neural crest cell migration in the developing gut

    Get PDF
    Concurrent Sessions 1: 1.3 - Organs to organisms: Models of Human Diseases: abstract no. 1417th ISDB 2013 cum 72nd Annual Meeting of the Society for Developmental Biology, VII Latin American Society of Developmental Biology Meeting and XI Congreso de la Sociedad Mexicana de Biologia del Desarrollo. The Conference's web site is located at http://www.inb.unam.mx/isdb/Sox10 is a HMG-domain containing transcription factor which plays important roles in neural crest cell survival and differentiation. Mutations of Sox10 have been identified in patients with Waardenburg-Hirschsprung syndrome, who suffer from deafness, pigmentation defects and intestinal aganglionosis. Enteric neural crest cells (ENCCs) with Sox10 mutation undergo premature differentiation and fail to colonize the distal hindgut. It is unclear, however, whether Sox10 plays a role in the migration of ENCCs. To visualize the migration behaviour of mutant ENCCs, we generated a Sox10NGFP mouse model where EGFP is fused to the N-terminal domain of Sox10. Using time-lapse imaging, we found that ENCCs in Sox10NGFP/+ mutants displays lower migration speed and altered trajectories compared to normal controls. This behaviour was cell-autonomous, as shown by organotypic grafting of Sox10NGFP/+ gut segments onto control guts and vice versa. ENCCs encounter different extracellular matrix (ECM) molecules along the developing gut. We performed gut explant culture on various ECM and found that Sox10NGFP/+ ENCCs tend to form aggregates, particularly on fibronectin. Time-lapse imaging of single cells in gut explant culture indicated that the tightly-packed Sox10 mutant cells failed to exhibit contact inhibition of locomotion. We determined the expression of adhesion molecule families by qPCR analysis, and found integrin expression unaffected while L1-cam and selected cadherins were altered, suggesting that Sox10 mutation affects cell adhesion properties of ENCCs. Our findings identify a de novo role of Sox10 in regulating the migration behaviour of ENCCs, which has important implications for the treatment of Hirschsprung disease.postprin

    Analysis of craniofacial defects in Six1/Eya1-associated Branchio-Oto-Renal Syndrome

    Get PDF
    Poster Session I - Morphogenesis: 205/B10117th ISDB 2013 cum 72nd Annual Meeting of the Society for Developmental Biology, 7th Latin American Society of Developmental Biology Meeting and 11th Congreso de la Sociedad Mexicana de Biologia del Desarrollo.Branchio-Oto-Renal (BOR) syndrome patients exhibit craniofacial and renal anomalies as well as deafness. BOR syndrome is caused by mutations in Six1 or Eya1, both of which regulate cell proliferation and differentiation. The molecular mechanism underlying the craniofacial and branchial arch (BA) defects in BOR syndrome is unclear. We have found that Hoxb3 is up-regulated in the second branchial arch (BA2) of Six1-/- mutants. Moreover, Hoxb3 over-expression in transgenic mice leads to BA abnormalities which are similar to the BA defects in Six1-/- or Eya1-/- mutants, suggesting a regulatory relationship among Six1, Eya1 and Hoxb3 genes. The aim of this study is to investigate the molecular mechanism underlying abnormal BA development in BOR syndrome using Six1 and Eya1 mutant mice. Two potential Six1 binding sites were identified on the Hoxb3 gene. In vitro and in vivo Chromatin IP assays showed that Six1 could directly bind to one of the sites specifically. Furthermore, using a chick in ovo luciferase assay we showed that Six1 could suppress gene expression through one of the specific binding sites. On the other hand, in Six1-/- mutants, we found that the Notch ligand Jag1 was up-regulated in BA2. Similarly, in Hoxb3 transgenic mice, ectopic expression of Jag1 could be also detected in BA2. To investigate the activation of Notch signaling pathway, we found that Notch intracellular domain (NICD), a direct indicator of Notch pathway activation, was up-regulated in BAs of Six1-/-; Eya1-/- double mutants. Our results indicate that Hoxb3 and Notch signaling pathway are involved in mediating the craniofacial defects of Six1/Eya1-associated Branchio-Oto-Renal Syndrome.postprin

    Transcription Initiation Patterns Indicate Divergent Strategies for Gene Regulation at the Chromatin Level

    Get PDF
    The application of deep sequencing to map 5′ capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: “focused” promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and “dispersed” promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5′ capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization

    Comparative and functional analysis of the Msx-1 proximal regulatory region

    Get PDF
    corecore