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Samenvatting

Genexpressie is een dynamisch proces, dat voortdurend beïnvloed wordt door signalen van binnen —en
buitenaf. Het doel van dit project bestond uit twee delen. Als eerste trachtten we te bestuderen hoe
regulatie en expressie georganiseerd zijn in het genoom en in de context van functioneel geassocieerde
genmodulen. Als tweede doel hadden wij voor ogen deze data aan te wenden in de context van func-
tiepredictie van genen in Arabidopsis met een tot op heden ongekende functie.

We begonnen met een systematische identificatie van functionele genmodulen (i.e. sets van genen
die geassocieerd zijn met elkaar op basis van een biologische eigenschap) en het bestuderen van de on-
derliggende regulatorische en expressiecomponent. De modulen werden afgelijnd op basis van grootschalige
expressiedata, functionele gen-annotatie, experimenteel geverifieerde eiwit-eiwit interacties en regula-
torische TF-doelwitgeninteracties. De beperkte overlap tussen de verschillende geselecteerde experi-
mentele inputdata bevestigde het voordeel van het combineren van verschillende datatypes. De sys-
tematische identificatie resulteerde in 1 562 modulen, die 13 142 genen omvatten. De meeste modulen
toonden een significant niveau van co-expressie, maar de cis-regulatorische en functionele coherentie
was beperkt. Hub genen werden significant geassocieerd bevonden met letaliteit in de embryofase en
boden bewijs van crosstalk tussen verschillende biologische processen. Om na te gaan in welke mate
de co-expressiecomponent van de modulen bewaard was over verschillende species heen werden de
modulen overgezet naar andere species op basis van orthologie. Op basis van de expressie data van
de verschillende species werd aangetoond dat 58% van de modulen een significante conservatie ver-
toonde van co-expressie. Naast het bestuderen van regulatie hebben we de modulen ook aangewend
in de context van functiepredictie. Op basis van modulen konden 5 562 genen geannoteerd en geëval-
ueerd worden op basis van nieuw beschikbare experimentele functionele annotaties. Voor 197 genen die
sinds de start van onze analyse een nieuwe functie hadden toegewezen gekregen kon 38,1% voorspeld
worden in de modulecontext. Voorspelde functies vallen binnen de domeinen van celwand biogenese,
xyleem en floëem, celcyclus, hormoonsignalisatie en circadiane ritmes. Globaal gezien werden hypothe-
ses gegenereerd voor respectievelijk 1 701 en 43 624 functioneel ongekende genen in Arabidopsis en zes
andere plantenspecies.

Vervolgens hadden we als doel om de genomische organisatie van transcriptionele regulatie te bestud-
eren in Arabidopsis. Publiek beschikbare data van ChIP experimenten voor 27 TF’s werden geselecteerd.
Alle experimenten werden gereanalyseerd op een uniforme wijze om zo onderlingen compatibiliteit te
garanderen. Dit resulteerde in een netwerk van 15 188 potentiële doelwitgenen, verbonden door 46
619 potentiële regulatorische interacties. Op basis van de gecombineerde bindingsprofielen werden hub
genen en highly occupied target regions geïdentificeerd. Binnen het onderzochte netwerk waren deze
genen significant geassocieerd met ontwikkeling, stimulussignalisatie en gen regulatorische processen.
Met de controverse omtrent de functionaliteit van HOT regio’s in het biomedische veld in het achterhoofd
hebben we meerdere analyses uitgevoerd om aan te tonen dat zij in planten weldegelijk functionele bind-
ing bevatten. HOT regio’s bevatten aangerijkte DNA motieven, zijn aangerijkt voor differentieel geëx-
presseerde genen, en zijn vaak geconserveerd binnen de cruciferen en de dicotyle planten. Een andere set
van atypische gebonden regio’s zijn deze die op een grote afstand (< 4kb) liggen van hun dichtstbijzijnde
gen. Net als de andere gebonden regio’s zijn zij onder de invloed van negatieve selectie. Daarenboven
zijn zij aangerijkt voor een chromatinestaat die geassocieerd is met het Polycomb repressieve complex.
Het aantal bindingen in de nabijheid van een gen bleek gelinkt te zijn aan de breedte van expressie van
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het gen in kwestie. Hypothesen betreffende co-binding en tethering tussen TF’s betrokken bij bloemon-
twikkeling en lichtregulatie werden geformuleerd aan de hand van de overlap in bindingsprofielen en
motiefaanwezigheid na integratie van non-canonical en canonical motiefinformatie.

In parallel met de genoomwijde analyse van de experimentele ChIP data werd een exploratieve zoek-
tocht naar TF bindingsplaatsen uitgevoerd op basis van sequentieconservatie in 12 species. We hebben
een fylogenetisch footprinting framework opgezet gebruik makende van zowel alignerings- als niet-
aligneringsgebaseerde methoden. De footprinting aanpak werd ingesloten in een uitgebreid achtergrond-
model om de significantie te verzekeren van de resulterende geconserveerde niet-coderende sequenties
op een FDR cut off van 5%. In totaal werden 69 361 footprints geëxtraheerd, die geassocieerd konden
worden met 17 895 genen. Door de footprints te linken aan TF’s waarvoor het bindingsmotief reeds
gekend was (uit literatuur en experimentele studies) kon een genregulatorisch netwerk opgesteld worden
bestaande uit 40 758 interacties. De relevantie van deze bindingsplaatsen werd aangetoond door middel
van hun lokalisatie (2/3 ligt in een open chromatine regio). Daarenboven waren de genen nabijgele-
gen genen aangerijkt voor experimenteel geverifieerde in vivo doelwitgenen van de gekende TF’s. Door
middel van een geïntegreerde aanpak van vijf verschillende biologische validatiescores konden we de
kwaliteit van het netwerk verder aantonen. In een laatste proof-of-concept experiment slaagden we erin
om de statische interacties om te zetten naar een dynamisch netwerk door te doelwitgenen en TF’s te
linken aan hun expressieprofiel in specifieke condities.







Summary

Gene expression is a dynamic process, responding to various internal and external cues. The aims of
this project consisted of two parts: one is the study of how transcriptional regulation and expression is
organised across the genome and across functional gene modules. The other consists of using this data
to assign function to unknown Arabidopsis genes.

We started by performing a systemic identification of functional gene modules (i.e. sets of genes
that are associated based on a biological property) and to study the underlying levels of coexpression
and coregulation. The modules were delineated based on large-scale expression data, functional gene
annotations, experimental protein-protein interactions, and transcription factor-target interactions. The
little overlap between different selected experimental input data sets corroborates the advantage of com-
bining multiple data types. The resulting set of 1,563 modules covered 13,142 genes. Most modules
displayed a significant level of expression coherence (i.e. the degree to which genes in a module co-
express), but functional and cis-regulatory coherence (using DNA motif presence as a proxy) was less
prevalent. Hub genes were significantly associated with embryo lethality and provided evidence for
crosstalk between different biological processes. To test the conservation of the coexpression component
underlying functional modules, the modules were translated into other plant species using orthology.
Based on expression data in those species, it was established that 58% of the modules showed conserved
coexpression across multiple plants. Apart from studying regulation, the modules were explored in the
context of function prediction. Based on the modules, 5,562 genes were annotated and evaluated using
newly acquired experimental gene-GO associations. Out of 197 recently experimentally characterized
genes, we found that 38.1% of newly associated gene functions could be inferred through the module
context. New confirmed functions included cell wall biogenesis, xylem and phloem pattern formation,
cell cycle, hormone stimulus, and circadian rhythm. Overall, biological hypotheses were generated for
1,701 unknown genes in Arabidopsis and six other plant species (43,621 genes).

Next, we aimed at studying the genomic organisation of transcriptional regulation in Arabidopsis.
Publicly available genome-wide ChIP experiments were selected for a total of 27 TFs. All experiments
were re-analysed in a uniform manner to ensure comparability between the experiments. This resulted
in a experimental network containing 15,188 potential target genes connected by 46,619 potential regu-
latory interactions. Based on the integration of all these binding profiles, we identified hub targets and
highly occupied target (HOT) regions. In the context of the currently profiled network, genes with many
binding events in their regulatory regions are enriched development, stimulus responses, signalling and
gene regulatory processes. Taking the controversy concerning HOT regions and their functionality in
the biomedical field in consideration, we collected several lines of evidence that TF binding at plant
HOT regions is functional. HOT regions harbour specific DNA motifs, are enriched for differentially
expressed genes, and are often conserved across crucifers and dicots, even though they are not under
higher levels of purifying selection than non-HOT regions. Another set of atypical bound regions was
the set of distal regions, lying further than 4kb from their closest genes. Similar to all bound regions,
distal bound regions were found to be under purifying selection. In addition, they are enriched for a
chromatin state associated with regulation by the Polycomb repressive complex. The number of binding
events in the vicinity of a gene is linked to their expression breadth. Hypotheses on co-binding and teth-
ering between specific TFs involved in flowering and light regulation were formulated to explain part of
the low correspondence between binding and DNA motif presence through integration of non-canonical

xiii



and canonical DNA motif information.

In parallel with the genome-wide analysis based on experimental ChIP data, we performed an ex-
ploratory search of TF binding sites based on sequence conservation across 12 species. We have de-
veloped a phylogenetic footprinting approach based on alignment and non-alignment-based techniques
in concert. The footprinting approach was embedded in an elaborate background framework to ensure
significance at an false discovery rate of 5%. In total, 69,361 footprints were extracted, located in the reg-
ulatory regions of 17,895 genes. By associating the footprints with TFBS of which the binding TF was
known obtained from literature and experimental studies, we built gene regulatory network composed
of 40,758 interactions. Relevance of these binding sites was shown through their localisation (2/3 of
all CNSs) in DNase I hypersensitive sites. The resulting network shows significant enrichment towards
experimentally verified in vivo targets of the known TFs in the network. Using an integrated approach
of five different biological validation metrics, we substantiated the quality of the network. In a final
proof-of-concept experiment, we studied the regulatory events in the context of detailed expression data.
This allowed us to convert the static CNSs into condition-dependent regulatory networks.
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Preface

This manuscript is aimed at providing a scientific overview of the research I performed over the past four
years. It consists of a general introduction, followed by three research chapters, and a general conclusion
of the results together with my perspectives on the future of regulatory genomics.

Given the complexity of the matter to non-experts, the introduction is aimed at providing necessary
knowledge to understand the research chapters. Therefore, it provides low-level information on the
different processes and techniques that form the basis of the performed experiments. The general intro-
duction is by no means a complete review of the field in question. The field of regulatory genomics is
absolutely booming and a lot of exciting research is being done, far beyond the scope of this introduc-
tion. Therefore, I have aimed a providing the original publications, in combination with good reviews
as entry-points for further study for the different techniques and concepts. More specific introductions,
tackling the specific matter of the research chapters are provided embedded within the chapters. Relevant
advances in the field towards the future are explored in the general conclusion and perspectives.

This being said, I wish you an interesting read.
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CHAPTER 1
Introduction

As many hikers will be able to tell, you can never make the same hike twice. Surroundings are always
changing, always adapting to seasons passing. Around the year, different flowers color the fields depend-
ing on the time of year, fruits color the trees in summer; and in fall, the pinnacle of colour is achieved
by the colouring tree leaves while nature prepares for winter. All these changes are the result of complex
systems in which plants perceive signals from their surroundings, and subsequently adapt their internal
systems to constantly optimise towards their ultimate goal: grow and procreate. Apart from following
robust seasons, sudden changes such as predator attacks need to be dealt with, shifting resources from
growth to defence. Suffice it to say that the system regulating the plant needs to be complex to be dealing
with constant perturbation.

Internally, the system traces back to the cell’s components: proteins, microRNAs (miRNAs), metabo-
lites, etc. Many of these interact to form large, dynamic networks and regulate each other’s activity. As
such, they form interacting complexes and signalling cascades that transfer exogenous signals down to
the core of the complex, which can then provide an answer to the perturbation at hand. Underlying it all
are the genes from which proteins and ribonucleic acid (RNA) components are formed. This PhD thesis
handles with the manner in which genes are regulated to feed the system of all its components.

1.1 Levels of regulation

Regulation occurs at two main levels: the gene expression level (i.e. the creation of the gene products
based on their deoxyribonucleic acid [DNA] sequence) and the protein level (e.g. post-translational
modifications, conformational changes, and protein-protein interactions). In theory, all steps are potential
points of regulation (Figure 1.1). Because of the numerous steps between activation of transcription
and the functional protein, a change in gene expression level does not necessarily indicate a change in
protein level/activity and vice versa. Genes expression consists of two major steps: transcription (DNA
is transcribed to messenger RNA [mRNA]) and translation (mRNA is translated into peptides).

Regulation on the protein level is widely implemented in signalling pathways of plant hormones,
where proteins undergo modifications upon stimulus and are poised for degradation (e.g. AUX/IAA
upon auxin stimulus and DELLA upon giberellic acid stimulus1). These cascades will often ultimately
result in a stable transcriptomic response, and exhibit the interconnection between the different regulatory
levels. This thesis will focus on transcriptional regulation, but we refer to Walton et al. 2 for an elaborate
review of studies on protein regulation, in plant hormone signalling cascades specifically. Given the
scope of the thesis, the following sections will focus on transcription.

1.2 Gene expression

Transcription

In a gene, the two strands of DNA are called the coding strand, and the template strand. These arbitrary
names reflect the fact that the resulting mRNA will have the same sequence as the coding strand, while
the template (opposite) strand is the one actually being used to guide the mRNA synthesis (Figure 1.2).
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1. INTRODUCTION

Figure 1.1: From gene to protein: levels of regulation. Eukaryotic gene expression can be regulated at multiple levels: (1)
genomic regulation, by gene amplification, DNA rearrangements, chromatin (the collection of DNA and its associated proteins)
decondensation or condensation, or DNA methylation; (2) transcriptional regulation; (3) RNA processing, and RNA turnover in
the nucleus and translocation out of the nucleus; (4) translational control (including binding to endoplasmatic reticulum (ER)
in some cases); (5) post-translational control (including mRNA turnover in the cytosol, and the folding, assembly, modification,
and import of proteins into organelles). Source: Taiz and Zeiger 3

The DNA is transcribed to RNA by a DNA-dependent RNA polymerase. The type of polymerase differs
depending on the type of gene: RNA polymerase II (Pol II) is responsible for transcription of pre-
mRNAs, microRNAs (miRNAs), and a class of small nuclear RNAs (snRNAs).4–6 Because Pol II is
involved in the expression of protein coding genes, it is by far the most elaborately studied. RNA
polymerase I (Pol I) transcribes most of the ribosomal RNAs (rRNAs). The best known targets of RNA
polymerase III (Pol III) are the different tRNAs.

In the case of RNA genes, the process of transcription directly synthesizes the gene product. In case of
protein-coding genes, the mRNA undergoes translation to a protein. The transcription of protein-coding
and miRNA genes consists of four stages: promoter recruitment, initiation, elongation and termination.
Although all four stages are complexly regulated, the study of gene expression regulation is aimed pri-
marily towards promoter recruitment and initiation.7

The initiation requires the assembly of the basal transcription apparatus at the core promoter region:
the pre-initiation complex.8 Historically, the promoter is the sequence located upstream of the transcrip-
tion start site (the first nucleotide that is copied into the mRNA molecule). Nevertheless, TF binding
can also occur in the untranslated regions (UTRs), downstream, or in one of its introns9, as evidenced
both from genome-wide chromatin immunoprecipitation (ChIP) studies (e.g. ERF11510; see also sec-
tion 1.6), and expression quantitative trait loci (eQTL) analyses.11 eQTL analyses are large scale studies
that assign causal relations between genomic variations and an observed expression differences. The
promoter can roughly be divided into a proximal part (or core promoter) and a distal part (located 5’ of
the core promoter). The distal part contains the cis-regulatory elements – also called transcription factor
binding sites (TFBS) or sequence motifs – required for spatio-temporal expression (Figure 1.3). The
TFBSs are recognised by transcription factors (TFs), which function in the assembly of the pre-initiation
complex.There are two classes of TFs: general TFs and spatio-temporal TFs. General TFs are those
always required in the formation of the pre-initiation complex.12 In addition, spatio-temporal TFs are re-
sponsible for the spatio-temporal expression of the target gene.8 Interactions mediated by components of
the basal machinery and both types of TFs ensure efficient and regulated transcription.3,8 Transcription
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1.2. Gene expression

Figure 1.2: Gene expression in eukaryotes. RNA polymerase II binds to the promoter of genes that encode proteins. Genes
are divided into introns and exons. Transcription from the template strand proceeds in the 3’ to 5’ direction at the transcription
start site. The pre-mRNA is processed into a mature mRNA (removal of introns) after which this leaves the nucleus to be
translated by the ribosomes. Source: Taiz and Zeiger 3

initiation ends with the incorporation of the first few nucleotides of the mRNA.

Figure 1.3: Organization and regulation of a typical eukaryotic gene. (A) Features of a typical eukaryotic RNA poly-
merase II minimum promoter and proteins that regulate gene expression. (B) Regulation of transcription by distal regulatory
sequences and trans-acting factors. The trans-acting factors bound to distal regulatory sequences can act in concert to activate
transcription by making direct physical contact with the transcription initiation complex. Source: Taiz and Zeiger 3

When the transcriptional machinery is in place, the transcript is elongated to its full length. How-
ever, the (near complete) assembly of the initiation complex can also be part of a strategy to poise the
promoter.13 This ensures a fast response to subsequent additional signals that either provides a last addi-
tional final TF, or remove a repressing TF (e.g. the removal of AUX/IAA from the ARF TFs after upon
auxin stimulus1).

Elongation is a complex and highly regulated phase of the transcription cycle.7 A lot of factors con-
tribute to its dynamic control: some modulate activity of RNA polymerase II, others facilitate the tran-
scription by influencing chromatin (the ensemble of DNA and its associated proteins; see section 1.3).
Elongation plays a central role in coordinating transcription and various co-transcriptional RNA process-
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1. INTRODUCTION

ing steps such as 5’-capping, splicing and polyadenylation.

Finally, when the full-length mRNA is formed, transcription is terminated by polyadenylation, the 5’
end is capped and the the polymerase complex and all its co-factors are disassembled.

Translation

Transcription results in the formation of a pre-mRNA. The pre-mRNA is spliced into a mature mRNA
by removal of the introns (Figure 1.2). The mature mRNA is read out by the ribosomes to assemble the
correct series of amino acids from which peptides and proteins are formed.

1.3 Regulation of Transcription

Studying transcriptional regulation is often simplified to studying the gene regulatory network of TFs
and target genes. In reality, whether or not a TF can bind the promoter of a target gene is influenced by
the state of the chromatin, which is defined by the combination of different modifications present on the
chromatin.14 Lack or presence of cooperating TFs also influence either the binding of the TF, or whether
the binding will result in an expression signal.

The Transcriptional Gene Regulatory Network

The transcriptional network is the complete collection of interactions between TFs and their target genes.
Differential gene expression is accomplished by the presence/absence of regulating TFs. In Arabidopsis
thaliana (hereafter Arabidopsis), around 1,700 genes are predicted to be transcription factors, represent-
ing± 5% of the total gene count. The fact that this percentage is twice that of C. elegans possibly reflects
a higher regulatory complexity.15,16

TFs typically consist of at least two domains: a DNA binding domain and a transcription activating
domain or a transcription repressing domain. The DNA binding domain defines the specificity towards
DNA, while the activating or repressing domain influences transcription of the target gene. TFs are
divided into TF-families according to their DNA binding domain, of which 50-58 exist in Arabidopsis
depending on the source.17,18

Conceptualising the interactions between TFs and their target genes as a directed graph allows for
network analysis.16,19 This mathematical approach has been shown to be able to retrieve biological in-
formation. A transcriptional network can be broken down into four levels of detail (Figure 1.4). The
basic unit of the network is the interaction between TF and TFBS. The higher levels of the network all
hold biological information. For example, the network motif level —not to be confused with the se-
quence motif —can be used to explain or model oscillations. The module level gives insight into dense
subgroups of higher connectivity and those are linked to co-regulatory modules. And finally, the entire
transcriptional network holds information about the global organisation of the transcriptional network
and helps to find its central components, called hubs. The latter have been shown to coincide with vital
components in the biological network.20

The Importance of the Chromatin State

Taking into account merely the presence or absence of the transcription factor to determine transcrip-
tion initiation is a simplification. Whether or not a transcription factor can bind the DNA is not solely
dependent on the presence/absence of the TF itself. It is also determined by the chromatin state of the
region.

Chromatin is the whole of DNA and all of its associated proteins and consists of the paired DNA
strands that are wrapped around nucleosomes (protein cores of different histone proteins). Chromatin
is a dynamic structure, with two main possible states: heterochromatin and euchromatin. There is also
a third —intermediate —state called bivalent chromatin, which contains both activating and repressing
marks and is the chromatin variant of poised promoters.21 The structure depends on the types of protein
modifications that are present on the histon tails. Heterochromatin is tightly packed (�30 nm), and forms
a closed conformation in which the genes residing in the region are silenced. Euchromatin is a loosely
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Figure 1.4: Transcriptional network analysis. (a) The basic unit of a transcriptional network is the interaction between a TF
and its target gene. (b) Network motifs are combinations of basic units that provide the structure of the network and are linked
to dynamics of the nework. Some motifs such as the feed-forward loop (FFL), single input module (SIM) and multiple input
modules (MIM) are found commonly. (c) Modules are genes in the network that are associated more densely with each other
than with the rest of the network. These often represent genes involved in the same process. (d) The complete transcriptional
network —although holding all information —is the least usefull for biolocal analysis. Source: Babu et al. 16

packed (�11 nm), open configuration that harbours expressed genes. Historically, chromatin was mainly
thought of as a DNA packaging mechanism. Now chromatin is seen as a highly dynamic structure af-
fecting all DNA transactions: replication, repair, recombination, transposition, chromosome segregation
and transcription.22 In addition, chromatin states can potentially be inherited in cell lineages, meaning
that the expression state of the genes they influence is stable across generations, even when the original
stimulus responsible for has disappeared. When this is the case, these modifications are epigenetic: they
represent a heritable trait that is not linked to changes in the DNA sequence. Unfortunately, the term
epigenetics is often used in a loose fashion for any kind of chromatin modification, which is erroneous
by definition and the subject of debate.23

Nucleosomes in DNA form a barrier for proteins that need to bind the DNA, including those that reg-
ulate gene expression (i.e. TFs). The restriction of the chromatin state on the DNA accessibility is dy-
namic and changes during development and in response to exogenous cues: e.g. stress, pathogen attack,
temperature and light.24 Chromatin states — and as a consequence the accessibility of the DNA — are
modified by a variety of mechanisms and factors: covalent modifications of the histone core, the incor-
poration of histone variants, DNA methylation, chromatin-remodelling enzymes and small non-coding
RNAs (transcriptional co-suppression; Figure 1.5).22 Among the many mechanisms, histone modifica-
tions play a major role. How the histone modifiers are recruited to the DNA is largely unanswered, but
one mechanism is recruitment by transcription factors.24,25 So there seems to be an interplay between
the epigenetic level and the transcription factors: transcription factors help modify the chromatin state
and the chromatin state defines the accessibility of the DNA to transcription factors. Some examples of
chromatin modifications and their link to transcription are shown in Figure 1.6.

Keeping in mind that plants need to be able to respond to a broad range of environmental factors, it is
also interesting to mention that repressive histone modifications in Arabidopsis occupy smaller domains
compared to those in metazoans, possibly making them more readily reversible in Arabidopsis. This
may reflect the higher developmental plasticity so well known in plants.24

Post-transcriptional regulation

After transcription and splicing, the mRNA is ready to be translated. Post-transcriptional regulation
interferes at this point. It is achieved through a sequence similarity dependent mechanism based on
miRNAs or short interfering RNAs (siRNAs). The RNA molecules bind transcripts based on sequence
similarity which allows it to target entire gene families at once (post-transcriptional co-suppression). A
well-known example mechanism of miRNA regulation is its role in virus-induced gene silencing27.

1.4 The Arabidopsis thaliana genome does not exist

While the "Arabidopsis thaliana genome" has been sequenced in 201028, this is in essence a simplifi-
cation of the truth. As for humans, any plant is an individual, and as such has its own ’personalised’
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Figure 1.5: Different mechanisms of epigenetic regulation. Different mechanism of epigenetic transcriptional regulation are
shown. DNA methylation is the methylation of cytosine residues in a CG, CHG or CHH context (H is either A, T or C). Histone
post-translational modification involves the addition of groups to the histone tails by histone modifying enzymes. RNA based
mechanisms make use of ncRNA’s. MiRNA or siRNA induce heterochromatin formation in regions with sequence similarity to
the RNA. Source: Allis et al. 26

Figure 1.6: Distribution of chromatin modifications over genes and their relationship with expression. Chromatin marks
analyzed using genome-scale approaches are represented along a schematic Arabidopsis gene. 1 kb of 5’ and 3’ flanking
regions, the transcription start site, the 5’ and 3’ UTRs and the coding region are indicated. No assumption is made about the
co-deposition of the different marks at a single locus. Note that as in other eukaryotes, the region around the transcription start
site of actively transcribed genes typically shows an apparent nucleosome depletion (not shown). (+) and (-) denote a tight
association with active or repressed transcription, respectively, whereas (+/-) indicates no particular association. H3K4me1
= addition of 1 methyl group to histone 3 at the 4th residue which is a lysine; C5mG = methylation of a cytosine residue in CG
context; H2A.Z = a histon variant. Source: Roudier et al. 22

genome. Because Arabidopsis is highly selfing, its population was historically considered to be a collec-
tion of asexual lineages (ecotypes). This would have meant that the variation in each lineage was fixed
and that variation of different ecotypes would never transfer into another lineage. Any new difference
of a plant compared to its parent would then have arisen from mutation. The genome sequence of Ara-
bidopsis is in fact the sequence of a variant called Columbia-0, which is also the most widely used for
experimentation.

This ecotype view has been shown to be false, as there is clear evidence of recombination between
different accessions.29 As a consequence, there is no phylogeny of variants. A phylogeny would impli-
cate that each lineage had remained independent after it ’speciated’ from another lineage. This does not
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1.5. Evolution of the transcriptional network

signify that a complete population cannot exhibit a tree-like population structure, which simply indicates
that individuals within the same population are much more related to each other than to a different popu-
lation. The latter can be observed in the isolation by distance when relating the genomic distances to the
geographical distances between pairs of accessions.

The study of the variation in genomes between populations and individuals is called population ge-
nomics. Possible variation are single nucleotide polymorphisms (SNPs), small insertions and deletions
(INDELS), and reversions. The first studies on population genomics were based on PCR-based se-
quencing29 or array-based profiling of a limited set of sequence regions.30 With the appearance of next-
generation sequencing, complete genomes are now resequenced, with as prime example the complete
resequencing of over 1200 accessions from across the world in the 1001 Genomes Project.31

Variation can be non-synonymous or synonymous, meaning the change in the DNA has or has no effect
respectively. Non-synonymous changes are easily explained in the context of protein-coding genes,
where the incorporated amino acid is altered due to a change in the codon. In contrast, synonymous
changes do not alter the amino acid and thus have no influence on the final gene product.

However, non-synonymous and synonymous variation is of equal —if not more —importance in the
non-coding genome, where a non-synonymous SNP would affect the regulation of a gene. Around
60% of the genomic variation lies in the non-coding genome Cao et al. 31 , which is of importance be-
cause the non-coding genome harbours a plethora of regulatory elements. Any variation in TFBSs can
influence the wiring of the transcriptional network, either due to loss of the binding site, or due to a
changed interaction specificity between TF and TFBS. At this point, it is impossible to assign a non-
synonymous/synonymous label on all the non-coding SNPs, simply because the non-coding genome is
far from profiled.

Using eQTL analyses, it is possible to link variations in the genomes to differences in expression.32

Historically, this was done with a limited set of markers33, but the methodology has now evolved to
using the complete set of known SNPs in a genome thanks to whole-genome resequencing.34 Many
non-coding SNPs have since been associated with differences in gene expression. Their importance is
stressed by their involvement in many disease-associated variants in humans where they systematically
perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form
regulatory networks35 and phenotypic variation in plants. The latter has been extensively reviewed by
Cubillos et al. 36 .

Therefore, while we are still nowhere near having unravelled the transcriptional network in Columbia-
0, the next challenge of mapping variations in the transcriptional network in a population is already
known.

1.5 Evolution of the transcriptional network

In addition to being variable in a single species, the transcriptional network has also evolved differently
from the ancestral state in different species. Similarly to the variants, evolution of the wiring of the
transcriptional network is believed to have been one of the major driving forces in adaptation of dif-
ferent species to different conditions. It is known that genome duplication is a major driving force for
evolution37 because this allows for rewiring in a in a duplicated network, thus lowering the potential
detrimental influence (Figure 1.7). Explanations on how rewiring of the interactions would evolve on
the molecular scale are depicted in Figure 1.8. The latter can of course also happen without a prior
duplication, as was the case for the LEAFY TF.38

On the level of cooperating genes, analysis of the yeast transcriptional network has indicated that
most transcriptional modules (sets of genes that are coexpressed and share at least one motif and are
thus presumed to be coregulated and cooperate functionally) in a network are conserved39–41, yet some
are lineage specific. The mechanism by which they arise is transcriptional network expansion. The
transcriptional network can expand by either duplication of the TF, duplication of the target gene, or both
(Figure 1.7). In most cases, a duplicated gene (i.c. TF) will loose its function, but in some cases there
is neofunctionalisation (i.c. loss and gain of interactions). If this happens, this could be the ’seed’ for
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a new transcriptional module. The conservation of transcriptional modules can also be used to identify
TFBSs through a methodology called phylogenetic footprinting42, which is explained more thoroughly
in section 1.6.

Linked to the evolution of the sequence motifs, one can investigate the conservation of TF-target
interactions. While a TF can co-evolve with its TFBS, it can also loose its binding. By comparing
the binding events of two TFs across human, mouse, dog, rat, and chicken, Schmidt et al. 43 showed
that the motifs are rarely conserved, but that some regulation is conserved due to the emergence of a
new sequence motif in the vicinity. This process is called turn-over. It was shown that the binding
sites that are organised in cis-regulatory modules (multiple cis-regulatory elements located together) are
more often conserved. When conserved, they function in critical pathways.44 Changes in cis-regulatory
modules were also shown to correlate better with changes in transcript levels compared to changes in
single binding events.45

Figure 1.7: Mechanisms of transcriptional network expansion. Possible scenarios for the evolution of the basic unit are
duplication of (i) the transcription factor, (ii) the target gene and (iii) both. Transcription factor duplication results in both
copies regulating the same target. During divergence, new or existing regulatory interactions may be gained or lost. Similarly,
target gene duplication results in both copies being regulated by the same transcription factor. Divergence may result in gain
or loss of regulators. Source: Babu et al. 16

1.6 METHODOLOGY: Profiling the gene regulatory network

Chromatin Immunoprecipitation (ChIP)

The most widely used method to detect the binding sites of a known TF is ChIP (Figure 1.9). The TF (or
any other DNA binding protein) is cross-linked to the DNA. The DNA is then sonicated into small pieces
and the bound DNA region is extracted using either antibodies directly against the TF (e.g. Thibaud-
Nissen et al. 46) or antibodies against a protein TAG that has been genetically fused to the TF (e.g. Verkest
et al. 47). The cross-linking is reversed, releasing the DNA from the TF. Strategies exist that perform
the pull-down on native DNA (no cross-linking), but these are more suited for histone modifications.48

Initially, the technique was used to verify target gene binding using PCR (requires prior knowledge about
the binding site). An alternative methodology With development of the tiling array (ChIP-chip;49), and
later next-generation sequencing (ChIP-seq;50), the technique could be used in a exploratory manner.
In the ChIP-chip methodology, the bound DNA is profiled by hybridisation on a tiling array. Different
tiling arrays exist, but the Affymetrix one has been most widely used in Arabidopsis. On the array,
the Arabidopsis genome is probed by stretches of 25bp, spaced by 10bp, which results in an overall
resolution of 35bp. With the emergence of next-generation sequencing, the tiling array was replaced
by the complete sequencing of the immunoprecipitation sample. The sequencing theoretically provides
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Figure 1.8: Alternative mechanisms for the evolution of the regulation of transcriptional modules. Each panel shows a
distinct scenario of the inferred evolution of an ancestral regulatory program (Upper) into programs observed in 2 or more
extant species (Lower). For each module, a schematic representative promoter is shown (black line) along with cis-elements
(boxes) and transcription factors (ovals). Ancestral conserved sites and proteins are in light yellow, and innovations and
divergences are in bright yellow or red. (a) Conservation of both the cis-element and trans-factors (b) A gradual divergence
of binding site sequence. (c) Augmentation of an existing program by the emergence of a new site along an ancestral one. (d)
Abridgement of an augmented program by binding site loss. (e) Switching of the transcription factor while maintaining the
same cis-element. (f,g) Full switching of a program from one cis-element to another. In some cases (f), this can occur by a
combination of augmentation and abridgement. Source: Tanay et al. 41

access to binding/non-binding information for every single nucleotide in the genome.

Performing a ChIP experiment results in a snapshot of the regulatory state, since all interactions
are ’frozen’ into place by cross-linking. While this ensures detection of both active interactions, and
interactions that are part of a poised promoter complex, interactions that are not of relevance in the pro-
filed condition and transient interactions will be missed.13 In the light of condition-specific conditions,
methodologies have now been developed to perform differential ChIP-Seq analysis.52,53 These allow the
detection of binding events that are different across conditions, or even across different natural acces-
sions.

Computationally, a ChIP experiment requires the identification of local enrichments of signal com-
pared to the control. A tiling array essentially contains DNA polymers (probes) that represent the entire
genome. Sensu strictu, each DNA polymer on the array should overlap with the next, to truly cover the
complete genome. Instead however, the Affymetrix Arabidopsis Tiling array consists of 25bp probes,
with 10bp gaps in between. Since DNA sequences extracted by ChIP are usually around 200bp, this does
not interfere with the signal-capture.

The data needed to analyse a tiling array hybridisation experiment consists of a CEL file, and a bpmap
file. The former contains the signal intensities for each position on the array, while the latter contains the
coordinates of each probe’s position on the genome. Given the premise of the ChIP biology, the analysis
consists of identifying regions in the genome that have higher signals in the ChIP sample compared to
a control sample (complete input sample). The combination of the signal information and the genomic
coordinates of the different probes leads to information such as visualised in Figure 1.10.

The field of microarray data analysis is very mature, and different procedures have been devised to
optimally compare samples with their controls. Software tools that can be used to detect peaks include
HMM (hidden markov model)55, TileMap56, MAT (model-based analysis of tiling Array)50, and BAC
(Bayesian analysis of ChIP-chip)57.

In a ChIP-Seq experiment, the IP sample is profiled by using next-generation sequencing technology
instead of hybridising it on a tiling array. The sequencing results in millions of reads for which their
genomic region of origin needs to be determined. This step is achieved by mapping the sequences back
the the reference genome.
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Figure 1.9: ChIP Methodology. Source: Farnham 51

Since the emergence of next-generation sequencing, the diversity of available mapping tools has
equally boomed. It has been a rapidly developing field, constantly pushed by the evolutions of the
sequencers themselves towards longer reads and greater output. Although the read length has gone up in
ChIP-Seq experiments from 32bp to 75bp, long reads are of less importance in ChIP experiments as the
whole protocol is based on finding local stacks of reads.

Different mappers have been developed using different algorithmic strategies and implementations.
There are two major schools: hash-table based and Burrows-Wheeler Transform (BWT) based. The
most commonly used tools for each category are Bowtie / BWA (BW) and MAQ / GSNAP. Over the
years, evaluating and benchmarking has been a daunting task, and very dependent on the definition of
correctness. An overview of benchmarking papers, together with a recent benchmark is given by58. In
general, one can say that the choice of mapper is dependent on the question at hand. BWA is most often
used for ChIP analyses, while GSNAP, which is focused on dissecting complicated splicing patters is a
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Figure 1.10: ChIP-chip (left) and ChIP-Seq (right) signal visualisation in GenomeView.54 (Left) Visualisation of the 25bp
probe signal (’Ratio Pileup’) mapped onto its correct genomic coordinates leading to the identification of a TF-bound region.
(Right) Visualisation the pileup of the DNA reads mapped at their correct genomic location, leading to the identification of a
TF-bound region.

good choice for RNA-Seq.

Finally, the local enrichment of reads is called by a peak caller, of which many have been developed
over the years. Each of them have slightly different approaches, ranging from different manners to
compare to sample to control, different underlying distributions and different manners to calculate FDR.
An overview of a number of them is given in Fig. 1.11.

Yeast-1-Hybrid

Whereas ChIP techniques are TF-centred, the yeast-1-hybrid methodology allows detection of protein-
DNA interactions of any sort.60 The technology is based on the genetic fusing of a library of proteins to
a strong transcriptional activation domain. The sequence of interest is cloned in front of a reporter gene,
which allowed screening of binding events based on the expression of the reporter gene.

At first, the yeast-1-hybrid system was mainly used with short DNA elements (30 bp) as DNA baits.
The technique was drastically improved to facilitate the high-throughput and unbiased identification of
protein-DNA interactions.61–63 The improved system can be used with both small (e.g., cis-regulatory
elements), and large DNA fragments (e.g., gene promoters). The use of promoters circumvents the need
to identify functional sequence motifs for a gene of interest a priori. The system was used to, among
others, construct a gene regulatory network in root.64,65 Because of the complementary perspectives, the
combination of ChIP and yeast-1-hybrid would allow to traverse and experimentally map the transcrip-
tional network.

Indirect Methods

Finally, there are a number of experimental methods that determine the sequence motif that is bound
by a TF in vitro, but do not directly determine the interaction between a TF and its target gene(s). To
determine the actual genomic locations where the TF binds, the sequence motif has to be computationally
mapped on the genomic sequence, which is prone to false positives. Integration of mapping with other
data types such as functional and expression coherence of nearby target genes, or data on the chromatin
state of the mapping location is often used to enrich the list towards true positive mappings.66

Electrophoretic Mobility Shift Assay (EMSA) is a gel-based method to separate protein-bound DNA
molecules from unbound DNA molecules and identify the motif for a given TF. By introducing one point
mutation per DNA molecule, it is possible to accurately determine the nucleotides that are necessary for
the TF to bind and as such detect the motif.67

Systematic Evolution of Ligands by EXponential enrichment (SELEX) is based on the iterative se-
lection and amplification of the DNA sequence with the highest affinity for a given TF. Using a PCR,
a batch of random DNA sequences is generated. Multiple rounds of ligand selection and amplifica-
tion exponentially enrich the population for the highest affinity species that can be clonally isolated and
characterized.68–70

Protein binding microarrays (PBMs) have been gaining a lot of ground as it is a high-throughput
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Figure 1.11: ChIP-Seq Peak Calling Algorithms. aThe labels 1: and 2: refer to one-sample and two-sample experiments,
respectively. bThese descriptions are intended to give a rough idea of how control data is used by the software. ’NA’ means
that control data are not handled. cDescription of how FDR is or optionally may be computed. ’None’ indicates an FDR is
not computed, but the experimental data may still be analyzed; ’NA’ indicates the experimental setup (1 sample or 2) is not
yet handled by the software. # control / # ChIP, number of peaks called with control (or some portion thereof) and sample
reversed. dThe lists of ’user input parameters’ for each program are not exhaustive but rather comprise a subset of greatest
interest to new users. e’Strand-based’ artifiact filtering rejects peaks if the strand-specific distributions of reads do not conform
to expectation, for example by exhibiting extreme bias of tag populations for one strand or the other in a region. ’Duplicate’
filtering refers to either removal of reads that occur in excess of expectation at a location or filtering of called peaks to eliminate
those due to low complexity read pileups that may be associated with, for example, microsatellite DNA. f N+ and N- are the
numbers of positive and negative strand reads, respectively. Source: Pepke et al. 59

methodology for determining the sequence specificity of TFs.71 A TF of interested is purified, either in
its native state, or genetically fused with a tag. The PBM contains naked double-stranded DNA and the
binding site of the TF is determined by investigating the hybridisation signal of the TF with the DNA.
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In silico strategies for motif discovery

Apart from experimental methods of determining binding locations and sequence motifs of TFs, a num-
ber of computational strategies exist as well. The difference in the strategies lies in the method to max-
imise the signal-to-noise ratio necessary to retrieve the correct sequence motif. There are two common
approaches: integration of coexpression information and integration of phylogenetic information.

When using coexpression information, the underlying assumption is the fact that coexpressed genes
are more likely to share a common motif. But although it is true that genes with a shared motif show,
on average, a higher degree of coexpression, is has been concluded in Drosophila melanogaster that
the reverse is not true.72 Nevertheless, this assumption has proven to be valuable when trying to detect
motifs in coexpression datasets. The second assumption is that the coexpression is the result of co-
regulation at the level of transcriptional initiation. Because of the assumptions, motif discovery on these
kinds of datasets involves mining for enriched motifs in the coexpression clusters. This means that not
all genes in the module are required to have the motif because of the incomplete correctness of the
assumptions.25,73,74

A second strategy is the incorporation of phylogenetic information. The underlying idea is that func-
tional motifs will be conserved to a higher degree than non-functional regions of the promoter.75–77 As
such, functional motifs can be found overrepresented in the different regulatory regions of homologous
genes. Phylogenetic information can be used as an integrative method to improve the motif discovery
with coexpression information78 or as a stand-alone strategy where all non-coding regions of interest of
entire genomes are scanned for stretches of sequence that are conserved in the orthologs.77

Two approaches exist based on this idea: phylogenetic footprinting and phylogenetic shadowing.
The difference lies in the number of species and the evolutionary distance involved. In phylogenetic
footprinting, typically two species are used that are distantly related, e.g. human and mouse. This method
retrieves ancient motifs that were already present in the common ancestor of the compared species. In
phylogenetic shadowing, multiple closely related species are compared, e.g. multiple primates, and this
allows detection motifs that arose more recent in evolution.74,79 These multiple species are necessary
because of the close evolutionary distance between them. All the evolutionary distances are ’summed’
to have enough divergence, allowing to distinguish between conserved and non-conserved sequences. A
more elaborate introduction of this topic can be found in section 5.1.

Similar to the indirect experimental methods, the disadvantage of these methods is the fact that they
do not establish a regulatory link between a TF and its targets. The result of these predictions is a
sequence motif, but no knowledge of which TF binds the motif. Based on known TF binding motifs
and/or expression information on the possible upstream TFs, potential regulatory links can be inferred
but this is prone to error. Network inference in itself is an entire field on its own, with many algorithmic
approaches80.

1.7 METHODOLOGY: Profiling the chromatin

Apart from knowing which TF can bind which promoter, we need to account for the chromatin state
before we can expand the binding event to a generalised interaction. Ideally, ChIP experiments for TF
binding should be accompanied by chromatin profiling experiments in the same condition. Only when
we have such a complete view on a binding event, will we be able to exact rules for TF binding.

DNA Methylation

DNA methylation is the process where cytosine residues receive a methyl group on their structure and
functions in transposon silencing and gene regulation (Figure 1.5). Loss of methylation leads to develop-
mental aberrations due to wrongful gene activation, and loss of transposon silencing.81–83 Methylation
patterns are often inherited, and can thus be an epigenetic modification. The robust inheritance of DNA
methylation does not lie in single site methylations, but rather in larger regions of contiguous methyla-
tion.84,85 The mutation rate for these larger regions are similar to that of classic DNA mutations. Because
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DNA methylation exhibits a clock-like accumulation in a geographically dispersed Arabidopsis popula-
tion, it also reflects genetic distance.86

Chromatin Modification

Apart from direct methylation of the DNA, a number of additional modifications can be applied to the
histones of the chromatin (Figure 1.5). The different modifications known are methylation (not to be
confused with direct DNA methylation), acetylation, ubiquitinylation, sumoylation, phosphorylation,
ADP ribosylation, deimination and proline isomerisation.87 Note that only when these marks are stable
and inherited after cell division, the modifications can be called epigenetic. The study of chromatin
modifications is a field on its own, which is clear from the elaborate reviewing in Arabidopsis in the
context of —among others —seed performance and plant development88,89, gene responsiveness90, bud
dormancy91, and flower development.92

Apart from the study of different modifications, integrative studies aim at determining the different
quantitative combinations in which they occur across the genome, as well as their genomic context. The
latter has given rise to the notion of chromatin states. The first study to define four chromatin states
was Roudier et al. 14 , based on twelve modifications on chromosome 4 (including DNA methylation),
marking active genes, repressed genes, silent repeat elements and intergenic regions. More recently,
Sequeira-Mendes et al. 93 and Wang et al. 88 have defined nine and six states based on 11 histone mod-
ifications (combined with CG methylation, nucleosome occupancy, and three histone variants) and 13
histone modifications(combined with two histone variants and DNA methylation) respectively.

DNase I and MNase Hypersensitivity

DNase I hypersensitivity (i.e. DNA that is extensively cleaved upon addition of DNase I) provides a
method to map changes in chromatin structure. The method is based on the difference between gen-
eralised sensitivity and hypersensitivity. Both are linked to the open chromatin state but the former is
inherent in all actively expressed genes while the latter refers to regions showing extreme sensitivity in
short stretches of DNA ranging from 100 to 400 bp in length. These are likely to harbour functional
motifs. The regions can be determined at various resolutions ranging from a few hundred bases to a
single nucleotide. Given a detected region, the motif can be determined using different follow-up exper-
iments.67,74 Note that this method does not require prior knowledge about the TF.

Complementary to DNase I, which maps the open regions, micrococcal nuclease (MNase) maps oc-
cluded regions. Although similar in the principle that both nucleases will cut accessible DNA, MNase
will digest DNA until it is prohibited by a DNA-binding protein. As such, the regions that are profiled are
the occluded ones rather than the open ones94,95. A review of the different methodologies on profiling
nucleosomes is provided by Zentner and Henikoff 96 .

Chromatin Folding

Finally, the spatial organisation of the chromatin is of importance for bringing TFBSs close to the pro-
moter (Figure 1.3) on which they act. A nice example is the promoter looping required for the correct
expression of FLC.97 The latter exemplifies the interplay between chromatin organisation and chromatin
modification since the loop is disrupted during vernalisation by polycomb dependent epigenetic silenc-
ing.

With the development of the of the chromosome conformation capture (3C) method98, and its succes-
sors chromosome conformation capture-on-chip (4C)99, chromosome conformation capture carbon copy
(5C)100, and Hi-C101 techniques, it has become possible to identify chromatin regions that lie in adja-
cency of each other. The 3D packing of the chromatin is not random as it needs to be efficiently untangled
when there is need for transcription. Overall, the Arabidopsis chromatin interacts in 3D following the
linear strand: most interactions for a given region are with the adjacent regions on the strand.88,102,103

Nevertheless, special structures such as the KNOT104 and positive strips of long-range interaction have
already been identified.88
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1.8. Glossary of Terms

1.8 Glossary of Terms

Throughout the Introduction and results, some databases, tools and measures are mentioned that could
use further clarification. Rather than occluding the main text with these explanations, many of these
terms are shortly explained in the glossary below.

• GO (Slim): Gene Ontology. A dynamic, controlled and structured vocabulary that is used to
annotate genes. GO a slime is a trimmed version of the GO structure to get a broader overview of
gene annotations.105

• AraNet: Bayesian network of gene-gene functional associations in Arabidopsis thaliana.106

• CORNET: Web tool containing protein-protein interactions and expression data for Arabidopsis
thaliana.107

• AtRegNet: Database of regulatory interactions in Arabidopsis thaliana.17

• TAIR: The Arabidopsis information Resource. Web portal collecting, among other things, all
functional data of Arabidopsis thaliana.

• AGRIS: Database containing DNA motifs in Arabidopsis thaliana.17

• PLACE: Database containing DNA motifs in Arabidopsis thaliana.108

• Embryo-lethal genes: Genes that when mutated lead to a non-viable individual.109

• AthaMap: A genome-wide map of potential transcription factor and small RNA binding sites in
Arabidopsis thaliana

• PhosPhAt: The Arabidopsis Protein Phosphorylation Site Database containing interactions be-
tween kinases and targets.110

• GEO: Gene Expression Omnibus. Database containing metadata and results of publicly available
gene expression and ChIP experiments.111

• SRA: Short Read Archive. Database containing the raw data of publicly available next-generation
sequencing experiments.

• MapMan: A dynamic, controlled and structured vocabulary that is used to annotate genes.112

• psRNAtarget: a tool to predict miRNA target sites.113

• PMRD: Plant miRNA Database. Database containing miRNA genomic coordinates in plants.114

• Expression Coherence: the fraction of gene pairs in a module that exhibit significant coexpression
out of all possible gene pairs.

• CAST: Cluster Affinity Search Technique. Network-based clustering algoritm that assigns genes
to clusters based on their affinity towards the entire cluster iteratively.115

• Weeder: Exact word-based de novo motif finding tool.116

• MotifSampler: Position Weight Matrix-based de novo motif finding tool.117

• MotifRanking: Tool to collapse different motifs into a single core one (if possible).117

• Peak-Motifs: Tool determine enriched DNA motifs in a ChIP dataset.118

• BWA: Tool map next-generation sequence reads to the genome.119

• STAMP: DNA motif alignment webtool and comparison to databases of motifs.120

• MACS: Model-based Analysis of ChIP-Seq. Tool for calling significantly enriched regions in a
sample versus control setting of a ChIP-experiment.52

17



1. INTRODUCTION

• rMAT: R version of MAT, the Model-based Analysis of Tiling Array. Tool used for ChIP-chip.121

• Starr: R package for ChIP-chip analysis.122

• VCF tools: Tool package for parsing VCF files (Variant Calling Format) and performing population
genomics statistics.123

• BEDtools: Tool package to perform operations on different BED-format files.124

• LASTZ: DNA Sequence alignment tool that can cope with repeat-rich sequences (e.g. genomes).

• MULTIZ: DNA alignment tool that can handle inversions and duplications.125

• PhyloP: Tool to determine the conservation in an alignment.126

• PhastCons: Tool to identify sequence constraint in an alignment.127

• DialignTX: Pairwise DNA alignment tool.128

• Sigma: Pairwise DNA alignment tool specifically designed for non-coding DNA.129

• ACANA: Pairwise DNA alignment tool.130

• Seaweeds: Pairwise DNA alignment tool based on a moving window.131

• Polycomb Repressive complex: A complex of polycomb family proteins that function in gene
regulation by remodelling the chromatin nearby their target genes.132
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CHAPTER 2
Research Aims and Scope

Changes in gene expression have been observed under a wide variety of conditions and changes in
environment: cell differentiation, stress response, etc. Because of its importance, there has been great
effort in trying to unravel the process (and its elements) of regulated gene expression. This PhD thesis
focuses on plants, which exhibit the a great range of environmental responses.133 Because plants are
sessile, it is of vital importance that they be able to cope with different conditions each meteorological
season brings by versatile gene expression.

The primary objective of this project was to study the organisation of transcriptional regulation based
on experimental high-throughput data. The research will be subdivided in two levels: the module level
and the gene level. On the module level we will study genes that are functionally associated, and inves-
tigate how different associations relate to the regulation of the module. As many genes in Arabidopsis
lack functional information to date, an important secondary objective was to provide reliable functional
annotation for as many genes as possible. On the gene level, we will investigate the organisation and
conservation of gene expression networks.

Initially, we will study the organisation of gene regulation through the context of functional gene
modules. Modules will be built based on an integration of protein-protein interactions, TF-targets, and
Gene Ontology association, and coexpression. For each of the module types, we will assess whether
there is evidence for the genes being regulated by the same regulators. In addition, we will investigate
the conservation of the regulation of modules by building orthologous modules. The modules will also
be used for function predicting using the guilt-by-association principle, where conserved regulation is
an added evidence of the correctness of the prediction. The transfer of modules to other species will
facilitate translational research from model species to crops.

Next, all available Arabidopsis ChIP-Seq data sets will be collected, and an automated pipeline will
be developed to analyse all datasets in a homogeneous manner. Next, the general properties will be
analysed per data set. More specifically, we will study (i) which regions of the genome are bound by
TFs (intergenic, intronic, exonic, etc.); (ii) whether a bound region can be unambiguously assigned to
a target gene; (iii) whether a DNA motif can be found within the bound region; (iv) how many regions
a TF binds; (v) whether a correlation can be detected between the location of a bound region and (a
combination of) chromatin signatures, and (vi) what the nucleotide variation is in bound regions across
the Arabidopsis thaliana population. This will allow us to detect long-range enhancers, disclose indirect
regulation and link the regulatory code to e.g. histon modifications.

Subsequently, we will study the conservation of bound regions between related species. For a given
binding site, the regulatory sequences will be aligned with the orthologous regions of other species within
the dicotyledonous species. Based on these alignments, the species-specificity of binding sites will be
evaluated using a conservation score. Using this score, we will evaluate whether the genomic position
of a TFBS is a determining factor in its conservation, and whether conservation scores are similar for
different biological processes.
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CHAPTER 3
Systematic identification of functional plant modules

through the integration of complementary data
sourcesa

Abstract

A major challenge is to unravel how genes interact and are regulated to exert specific biological func-
tions. The integration of genome-wide functional genomics data, followed by the construction of gene
networks, provides a powerful approach to identify functional gene modules. Large-scale expression
data, functional gene annotations, experimental protein-protein interactions, and transcription factor-
target interactions were integrated to delineate modules in Arabidopsis thaliana. The different experi-
mental input data sets showed little overlap, demonstrating the advantage of combining multiple data
types to study gene function and regulation. In the set of 1,563 modules covering 13,142 genes, most
modules displayed strong coexpression, but functional and cis-regulatory coherence was less prevalent.
Highly connected hub genes showed a significant enrichment towards embryo lethality and evidence for
crosstalk between different biological processes. Comparative analysis revealed that 58% of the mod-
ules showed conserved coexpression across multiple plants. Using module-based functional predictions,
5,562 genes were annotated and an evaluation experiment disclosed that, based on 197 recently exper-
imentally characterized genes, 38.1% of these functions could be inferred through the module context.
Examples of confirmed genes of unknown function related to cell wall biogenesis, xylem and phloem
pattern formation, cell cycle, hormone stimulus, and circadian rhythm, highlight the potential to identify
new gene functions. The module-based predictions offer new biological hypotheses for functionally un-
known genes in Arabidopsis (1,701 genes) and six other plant species (43,621 genes). Furthermore, the
inferred modules provide new insights into the conservation of coexpression and coregulation, as well as
a starting point for comparative functional annotation.

aThis chapter is based on Heyndrickx and Vandepoele 134 . KSH and KV designed the study and wrote the manuscript. KSH performed the analyses and
created all figures.
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3.1 Introduction

The sequencing of Arabidopsis thaliana (hereafter Arabidopsis) and the emergence of high-throughput
functional genomics techniques like microarrays, systematic T-DNA knock-out
screens, and protein-protein interaction (PPI) mapping have enabled the development of integrative ap-
proaches to study gene function and regulation. One of the major challenges of computational biology
is the integration and exploitation of genome-wide data sets such as transcriptome and interactome data,
metabolomics and other -omics data, and large-scale phenotyping.135 Data integration is often performed
through gene network analysis106,136 and the resulting networks can increase our knowledge of functional
gene relationships and the interplay of different types of interactions. However, to study specific biolog-
ical processes, networks are frequently studied through gene modules.19 From a practical point of view,
modules are typically identified as highly connected subgraphs within the network.137 Depending on
the type of interaction data, different types of modules are defined and examples in Arabidopsis include
coexpression modules138–140, protein complexes107,141–143, and modules grouping genes that are regu-
lated by the same transcription factor (TF).144 Genes can be part of different (sometimes overlapping)
modules, while modules can be involved in different biological processes. As a consequence, gene net-
works are frequently highly connected, revealing the pleiotropic roles of different genes. Consequently,
the module context can be explored to identify genes that are present in many different modules and
that have a functional association with many other genes (hub genes137). These hub genes represent
important components of biological systems and can provide crosstalk between different processes.

Modules based on expression data are typically inferred through clustering of genes with similar ex-
pression profiles. Most often, each gene pair receives an expression similarity measure and this coexpres-
sion information is used to detect highly connected sub-graphs in the coexpression network, representing
modules. Although numerous expression network analyses have been performed in Arabidopsis, some
studies focused on a specific process using guide-genes (genes known to function in the process) to draw
new hypotheses about the functional interplay between functionally known and unknown genes based
on guilt-by-association.138,145,146 Other studies employed module delineation and guilt-by-association
on a genome-wide scale to predict gene functions.139,140,147–150 From a regulatory point of view, mod-
ule genes are often regulated by multiple cis-regulatory elements (referred to as motifs), organized into
cis-regulatory modules (not to be confused with the gene module).151 Therefore, coexpression modules
are often used to investigate the cis-regulatory elements controlling the genes within the modules using
known DNA motifs or de novo motif finding.149,150,152

A disadvantage of coexpression analysis is the false assumption that coexpressed genes are de facto
coregulated.153 The emergence of chromatine immuno-precipitation (ChIP) allows the direct profiling
of the regions bound by a TF and the detection of TF target genes. The technique can be applied in a
genome-wide fashion when followed by a whole-genome tiling array (ChIP-chip) or deep sequencing
(ChIP-Seq).144 The ChIP technique provides a snapshot of the regulatory binding state of the genome
by cross-linking all proteins to nearby bound DNA. In Arabidopsis, ChIP-chip/Seq has been applied to
a range of TFs, primarily those active in flowering and development. Because of the static nature of
a ChIP experiment (it is a snapshot of the biological state), the genome-wide profiling of TF binding
sites is often combined with differential expression analysis in a knockout154–157 or an inducible over-
expression line.46,158–160 By combining these two data types, TF target interactions can be viewed with
respect to the expression of both the TF and the target, thus transforming the static ChIP image to a
set of dynamic transcriptional modules. A third type of modules is based on PPI networks. Although
there have been several PPI studies in Arabidopsis, their main focus lay on building the interactome,
rather than on breaking down the network to the module level.141,143,161–163 Studies that did explore the
network module contexts, found modules recapitulating known biological functions and also suggesting
new biological hypotheses for several plant-specific genes, often through the integration with expression
data.107,142,143,164

Although several plant studies performed some kind of data integration when delineating gene mod-
ules, the number of data types is often limited. Recently, a few Arabidopsis studies have been published
reporting large networks for function prediction based on multiple data types. These networks were
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built combining expression and PPI data with sequence data136, genetic and physical interaction data165,
phylogenetic profiles and gene location166, and the integration of functional genomics, proteomics and
comparative genomics data sets.106 Apart from studying gene modules in a one species, recent studies
have applied comparisons across species to identify conserved gene coexpression in plants.167–169 The
analysis of coexpression networks between more distantly related species exploits the assumption that
predicted gene function associations, occurring by chance within one organism, will not be conserved in
a multi-species context. Consequently, the analysis of conserved modules with specific functions pro-
vides an invaluable approach for biological gene discovery in model species and for translation of new
gene functions into species with agricultural or economical value.170

In this study, we investigated how Arabidopsis genes are organized into gene modules based on four
different data types (Gene Ontology or GO, PPI, ChIP, and AraNet) and studied the functional and
regulatory properties of these modules. Furthermore, module evolution was examined by integration of
orthologous sequences and expression data of six related plant species. Overall, our results revealed that
currently available experimental data sources are highly complementary, different functional categories
show varying levels of regulatory complexity, a large fraction of Arabidopsis gene modules is conserved
in other plant species, and conserved modules provide a valuable source to study gene functions.

3.2 Results

Construction of Arabidopsis gene modules using experimental and computational gene associations

Based on an ensemble of primary data sets covering TF target interactions from AtRegNet17, probabilis-
tic gene-gene associations from AraNet106, non-electronic gene-GO annotations (see list of evidence
codes in Material and Methods) from TAIR171, and PPIs from CORNET107, functional gene modules
were delineated in Arabidopsis (Table 3.1). To assemble a set of high quality gene associations, the
GO, PPI, and TF targets data were filtered to only contain experimental information (see Materials and
Methods). In contrast, the AraNet data is an integration of 24 distinct types of gene associations (e.g.
coexpression, PPI, shared protein domains, similarity in phylogenetic profile, orthology) including both
experimental and computational observations. In total, the final input data set covered 22,492 unique
genes and > 1 million interactions, with the largest fraction coming from the AraNet network. Nearly all
gene associations were unique to one input data type, with the fraction of unique associations ranging
from 75% for PPI to 99% for AraNet and TF targets (Table 3.1).

Table 3.1: Overview of the primary data sets and delineated modules with their properties.

To delineate gene modules from the different gene association data sets, two clustering strategies were
applied (Figure 3.1). Firstly, for the TF targets and GO data, expression information was integrated to
cluster genes into modules (expression-based clustering, see Materials and Methods). This was done be-
cause the TF target ChIP data provides a static image of genome-wide TF binding and as a consequence,
TF target genes do not necessarily form functionally coherent modules. By integrating expression data,
these static images are converted into spatial-temporal TF target maps. Similarly, GO categories do not
represent functionally coherent gene modules.150 Therefore, per GO category, genes with non-electronic
GO annotations were used as prior information to guide the creation of coexpression clusters using dif-
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ferent expression compendia from CORNET.107 Genes used as guides are referred to as seed genes in the
remainder of the manuscript. Different Arabidopsis expression compendia (see Materials and Methods)
were used because the degree of coexpression can be influenced by the specific expression data used.172

Therefore, genes from GO categories were clustered using the compendium in which the coexpression
was the highest, measured by Expression Coherence (EC). EC is a measure for the amount of expression
similarity within a set of genes for a given expression compendium (see Materials and Methods). All
GO categories across the three GO hierarchies ’Biological Process’, ’Molecular Function’, and ’Cellu-
lar Component’ (abbreviated as BP, MF, and CC, respectively) were used as sources for seed genes to
build modules of different specificity (i.e. general versus very specific processes). As many genes in
Arabidopsis have not yet been functionally annotated, many GO categories are incomplete. To overcome
this problem, GO category-based seed sets were expanded with genes showing high coexpression with
the seed genes prior to the clustering (Multi-Query Seed Expansion, MQSE; see Materials and Methods).
Since different TFs can regulate the same gene and genes can be associated with multiple GO categories,
genes can belong to more than one resulting module. Secondly, PPI and AraNet gene associations were
clustered based on the connectivity of the genes in their respective input networks without linking to
expression data (referred to as connectivity-based clustering, see Materials and Methods). As a con-
sequence, highly connected sub-graphs were identified in both networks to delineate PPI and AraNet
modules, respectively.

Figure 3.1: Delineation of functional gene modules. A, Four different primary data sets were processed to extract functional
gene modules, resulting in 1,563 non-redundant modules. Data types are in roman font, methods are in italic font. B, Biologi-
cal properties (functional coherence, expression coherence, and cis-regulatory coherence) of gene modules were characterized.
Dotted lines indicate gene-GO associations and non-significant PCCs for the functional coherence and the expression coher-
ence panels, respectively. In the cis-regulatory coherence panel, the blue triangle represents an enriched motif.
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All modules from the different input data types (PPI: 72, AraNet: 419, TF targets: 518, GO: 1,105)
were compiled into one final dataset covering 2,114 coexpression modules derived from GO, transcrip-
tional modules derived from TF targets, PPI modules derived from the PPI network, and AraNet modules.
To determine the extent to which the different datasets complement each other, the overlap between the
different data types was assessed (see Materials and Methods). On the level of gene content, 40% of the
genes in the modules is present in more than one input data type (Figure 3.2A). However, the overlap
based on the gene-gene associations both in the input (Table 3.1) and the module associations was dras-
tically smaller with only 3% of the gene pairs within a module having support by more than one primary
data type (Figure 3.2B). After removing redundant modules based on the number of shared genes (see
Materials and Methods), the final data set consisted of 1,563 modules comprising 13,142 genes (63% of
all genes on the ATH1 microarray). Based on the redundant modules, the low overlap between different
data types, was confirmed, as most modules (1,556 / 1,563) could only be found through a single data
type (Figure 3.2C). Examples of modules confirmed by multiple data types (7) include genes related to
amino acid metabolism and transport (see Table S1a for modules and gene sets discussed throughout
the article). The majority of modules contained between five to ten genes (50%), while larger module
sizes were increasingly less frequent (Figure 3.2D). These observations were in line with the notion of
a hierarchical structure of biological networks, where smaller and more specific clusters reside within
larger and more general clusters.173

Functional, expression and cis-regulatory coherence of plant modules

Based on the gene modules inferred through the different primary data types, we next sought to char-
acterize different biological properties. The investigated properties describe the level of coexpression
among the genes in a module, whether the module genes are potentially regulated by the same transcrip-
tion factor, and whether a specific function or biological process can be linked to a module (Table 3.1;
Figure 3.3). An additional websiteb is available to browse modules, genes, coexpression information,
primary gene associations, functional annotations, and motifs.

For each module, the level of coexpression was determined using EC. To minimize the possible in-
fluence of the specific expression data set used to determine the level of coexpression, EC scores were
initially calculated for each module based on a global compendium and other specific compendia, and
only the maximum EC score was retained for further analysis. Note that for GO and TF targets, these
compendia correspond with the expression data used to delineate the modules. Overall, for the non-
redundant set of 1,563 modules, the median EC score was above 50%, indicating that coexpression is
an important property of most modules (Figure 3.3A). Comparing the maximal EC scores for modules
derived from different primary data types, revealed that coexpression levels were also high for PPI and
AraNet modules (98.6% and 88.5% show significant EC), despite the fact that expression information
was not directly integrated during the module delineation. At the 10% EC threshold, which corresponds
with a p-value ≤ 0.02 (based on randomized gene modules, see Materials and Methods), the difference
between the EC scores from the global and specific expression compendia was the largest for the TF
target modules.

To assess the cis-regulatory module properties (cis-regulatory coherence), de novo motif finding was
performed to identify putative transcription factor binding sites in the 1-kb promoters of the genes. The
motif finding was performed with the complementary tools Weeder and MotifSampler.152,174,175 To dis-
card potentially false motifs, enrichment analysis was performed and only motifs showing significant
enrichment within a module were retained (q-value ≤ 0.01). Redundant motifs within modules were re-
moved based on sequence similarity and gene-motif occurrences (see Materials and Methods), resulting
in 1,544 different motifs in the modules. MotifSampler and Weeder exclusively supported 1,190 (77.1%)
and 285 (18,5%) motifs, respectively, while 69 (4.5%) motifs were supported by both tools, emphasizing
their complementarity. To validate the reliability of motifs found by only one tool, the overlap of mo-
tifs found by MotifSampler or Weeder was compared with a set of 515 known motifs from PLACE176

and AGRIS.17 Of the 1,544 de novo motif instances in modules, 528 corresponded to a known motif.
ahttp://www.plantphysiol.org/content/suppl/2012/05/15/pp.112.196725.DC1/196725Table_S1.xls
bhttp://bioinformatics.psb.ugent.be/cig_data/plant_modules/

28

http://www.plantphysiol.org/content/suppl/2012/05/15/pp.112.196725.DC1/196725Table_S1.xls
http://bioinformatics.psb.ugent.be/cig_data/plant_modules/


3.2. Results

Figure 3.2: Basic properties of the derived functional gene modules. A, Number of different module types per gene. B,
Number of different input data types per module edge. C, Overlap between the different types of modules. D, Gene size
distribution for the set of 1,563 non-redundant gene modules.

For these 528 known motif instances, 408 (77.3%) and 71 (13.4%) were found uniquely by MotifSam-
pler and Weeder, respectively, and 49 (9.3%) were retrieved by both tools. In addition, both methods
reported a similar but complementary fraction of known motifs (MotifSampler 408/1,190 [34.3%] and
Weeder 71/285 [24.9%]) among their total number of reported motifs. To facilitate downstream analysis,
the combined set of de novo motifs and known motifs from PLACE and AGRIS was grouped into 813
motif families based on sequence similarity (see Materials and Methods). Within these de novo motif
families, 65 contained a known motif, while 748 families contained purely de novo motifs. Finally, the
cis-regulatory coherence was defined as the fraction of modules with at least one enriched motif (Figure
3.3B). cis-regulatory coherence scores ranged from 40% (AraNet: 172/419 and TF target: 224/502) to
60% (PPI: 43/72 and GO: 341/579). In total, 49.4% of the non-redundant set of modules contained at
least one motif (772/1563). A weak but significant (R2 = 0.03; p-value < 1.42e-11) relation was found
for the number of different motif families in one module in function of EC. Apart from the cis-regulatory
coherence analysis, these motifs provide an important resource to annotate and map specific TF target
interactions at the module level.

The functional coherence was determined by GO enrichment analysis for non-electronic biological
process annotations and enrichment for genes associated with embryo lethality. Information about genes

29



3. INTEGRATIVE PLANT MODULES

Figure 3.3: Functional, expression and cis-regulatory coherence. A, Comparison of expression coherence scores between
the modules from different input data types. The EC scores are shown for both the general compendium (dotted line) and
the compendium showing the maximum EC (solid line). The vertical dotted line indicates the threshold for significant EC. B,
GO-BP and motif enrichment statistics for the modules delineated using the different input data types.

involved in embryo lethality was based on the SeedGenes database.109 The functional coherence re-
vealed large differences between modules from the different primary data types (Table 3.1; Figure 3.3B).
As expected, the GO modules showed the highest functional coherence (80% of the modules). While for
AraNet and PPI, respectively 27% and 72% of the modules showed functional coherence, the TF targets
data had the lowest functional coherence (10% of the modules). Overall, 40% of the modules could be
linked to a significantly enriched biological process or embryo lethality, while 98% of the modules con-
tained one or more genes with a known experimental annotation. To obtain an overview of the different
biological processes in which the modules were involved, the module predictions were categorized ac-
cording to their GO Slim terms (Figure 3.4). Control experiments indicated that there were no significant
enrichments towards any GO category in either the complete set of input genes, nor the complete set of
resulting modules.

Hub genes and organization of transcriptional regulation in Arabidopsis

Genes can have pleiotropic roles and can thus be involved in multiple processes or modules. Because
of the different input data types and the way different GO categories were used to guide module de-
tection using MQSE, genes can occur in multiple though non-redundant modules. Hub genes137 were
identified as genes that are present in a large number of modules and are possibly providing crosstalk
between the different biological processes they are involved in. The number of modules per gene ranged
from 1 to 26, following a power law, making the gene-module associations a scale-free network (Figure
3.5A; Figure A.1). Genes present in more than ten modules (116 genes, top 5%) were extracted as hub
genes, and a functional enrichment analysis revealed that these genes are involved in immune response,
photosynthesis, cell cycle, and carbohydrate metabolism (Table S1a and Figure A.2A), which is in accor-
dance with earlier studies.177,178 Among the hub genes, we found MEK1 (MAPKK), MPK11 and MPK4
(MAPK), SNAP33 (SNARE), RABH1C (RAB GTPase), and XLG2 (GTP-binding protein), revealing
that several hub genes are involved in signal transduction. Evidence for crosstalk mediated by hub genes
was found for chromatin modification and development, through the genes CYP71, AT5G63960, and
FUSED. Light response and photosynthesis were found to be coupled through the genes LIL3:1, FBA1,
ISPF, and DXR. Finally, SYP121, SYP122, ATPAD4, NSL1, PBS3, WRKY70 (TF), JAZ1, ATNPR1,
ATRCD1, ATCTL1, and AT1G15430 (based on module-based GO prediction) describe the crosslink be-
tween response to biotic/abiotic stimuli and hormone signaling through jasmonic acid (JA) and salicylic
acid (SA). In addition, hub genes are also three-fold enriched for embryo lethal genes, confirming the
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Figure 3.4: Overview of GO-BP slim biological processes in which modules were predicted to be involved in. Modules
with multiple GO-BP annotations can be present in different GO slim categories.

relationship between network connectivity and essentiality.173

Besides investigating gene-module organization, the organization of motifs was also examined at the
module and gene level. On the module level, the number of motifs ranged from zero to eight (Figure
3.5B) and modules regulated by five or more motifs (approximately 2%; Table S1a) are involved in
processes associated with flower development, protein synthesis, and stimulus responses. On the gene
level, the number of motifs per gene varied from zero to 26 (Figure 3.5C). Genes are mostly regulated by
one to five motifs, but approximately 2% are regulated by more than ten motifs. These highly regulated
genes are involved in cell cycle, systemic acquired response, and salicylic acid signaling (Table S1a).

To define the regulatory complexity of a gene, the number of modules and the number of motifs
were combined in one plot (Figure 3.5D). A gene is considered complexly regulated when present in
multiple modules and harboring multiple motifs. A significant positive correlation was found between
the number of motifs and the number of modules (adjusted R2 = 0.40; p-value ≤ 2.2e-16). Whereas
for the GO-BP slim main category ’Biological process’ the linear fit followed the 1:1 line, not all genes
follow this strict "one module - one motif" principle. Examining the module - motif relationships for
different GO-BP slim subcategories revealed processes where genes were present in many modules, but
without being regulated by many motifs. This indicates that, based on the number of motifs, hub genes
are not necessarily regulated by many TFs (Figure A.2B). Carbohydrate metabolism, lipid metabolism,
secondary metabolism, photosynthesis, cellular homeostasis, and generation of precursor metabolites
and energy consistently showed a linear fit with a less steep slope, indicating more modules than motifs.
Reversely, DNA metabolism and cell cycle showed a steeper slope than the main ’Biological process’
category, indicating more motifs than modules and combinatorial regulation.
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Figure 3.5: Regulatory complexity of genes in modules. A, Number of modules in which a gene is present. Asterisks denote
values higher than zero. B, Number of motifs per module. C, Number of motifs per gene promoter. D, Regulatory complexity,
defined as a combination of the number of modules in which a gene is present, and the number of motifs in its promoter. All
13,142 genes are included and the number of genes at each coordinate is given as a colored size scale. The grey circle indicates
the average regulatory complexity for all 13,142 genes. The dotted line is the function f(x) = x.

When isolating the top 200 genes based on regulatory complexity (i.e. genes with a high number of
modules and motifs), functional enrichments were found related to immune response, stress response,
and cell cycle (Table S1a).

Conservation of gene modules in other plants

Based on the inferred Arabidopsis modules and their different biological properties, we next charac-
terized if these modules are conserved in other plant species, since it has been shown that dynamic
properties are primarily conserved at the module level.179 The evolution of functional gene modules
was examined using conservation of coexpression (EC) and conservation of regulatory DNA motifs
(cis-regulatory coherence) based on orthologous genes in the dicots Glycine max (soybean), Medicago
truncatula, Populus trichocarpa (poplar), Vitis vinifera (grapevine), and the monocots Zea mays (maize)
and Oryza sativa ssp. japonica (rice). Orthologous modules were delineated using the PLAZA integra-
tive orthology approach, which infers orthologous genes using complementary detection methods (i.e.
phylogenetic trees, OrthoMCL families, and Best-Hits-and-Inparalogs families), which are considered as
evidences.180 For each Arabidopsis gene, the orthologous gene(s) with the highest number of evidences
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was (were) retained in each of the sampled species (Table S2c). Orthologous modules were subsequently
constructed by grouping the orthologous genes based on with the Arabidopsis modules. Despite the po-
tential problem of modules expanding significantly in size due to one-to-many orthology relationships,
the applied ensemble approach retrieved one-to-one orthologs for on average (over the six species) 67%
of the genes.

To study coexpression conservation, EC scores were calculated in the six species using publicly avail-
able microarray data (see Materials and Methods). For gene pairs with multiple orthologs, coexpression
was considered present when at least one orthologous gene pair showing significant coexpression was
found. Orthologous genes missing from the microarray were not taken into account. EC values of or-
thologous modules with less than five genes on the microarray of the respective species were marked as
missing to distinguish them from zero values. The EC scores were compared to those of a set of random
modules with the same gene size distribution (Figure A.3A) and based on these background scores, 910
(58%) modules with EC ≥ 10% in three or more species showed a significant conservation of coexpres-
sion (p-value ≤ 0.025; Table S1a). These conserved modules comprised a wide range of functions and
biological processes, while modules with ultra-conserved coexpression (i.e. EC > 10% in 7 species, 92
modules; Table S1a) showed enrichments for processes linked with energy metabolism (e.g. NADPH
metabolism, photosynthesis, starch biosynthesis).

For the set of modules with significant coexpression conservation in other plants, the conservation of
cis-regulatory coherence was investigated, since conservation of both properties would strongly indicate
conservation of regulation. To measure motif conservation, enrichment analysis for each of the motifs
present in the original Arabidopsis modules was conducted in each of the species based on the promoter
sequences of genes in the orthologous modules (Figure A.3B). Fifty-five percent of modules with con-
served coexpression (500/910 modules) had at least one enriched motif in Arabidopsis, and based on the
comparative motif analysis, we were able to confirm motif enrichment for 27.4% of these modules in
at least one other species (137/500 modules; Table S1a). Four modules exhibited both expression and
motif conservation in all seven species. These were involved in ribosome assembly, DNA modification,
and response pathways and harbored motifs such as SORLIP2, SITEIIATCYTC, TELOBOX, UP1/2,
BS1EGCCR, E2F, ABRE, and G-box. In contrast, 42% of modules without coexpression conservation
had at least one motif in Arabidopsis (272/653 modules), but for only 5% of those modules, the motif
enrichment was conserved (20/272 modules). This result showed that modules with conserved coexpres-
sion in other species are four-fold enriched in motif conservation compared to modules lacking conserved
coexpression. The modules with conserved motif enrichment harbor 90 motif families (5% of all motif
families), of which 67 represent new motifs and 23 were previously known. A detailed map associating
motifs with specific functional categories is shown in Figure A.4.

Module-based functional annotation of unknown plant genes

Complementary to the cross-species analysis of different regulatory module properties, the conserved
module contexts provide a promising resource for hypothesis-driven gene discovery in other plant species.
The Arabidopsis sequencing project was succeeded by the Arabidopsis 2010 program, of which the goal
was the annotation of all Arabidopsis genes by 2010d. Despite many efforts based on forward and reverse
genetics, and computational predictions, functional annotation is still lacking for many genes. Although
advanced computational gene function prediction tools have been developed106,181, our main intention
was to investigate how the integrated gene associations could lead to new functional hypotheses.

Since the initial download of the GO data for the module delineation (hereafter referred to as ’data
freeze’), 2,940 genes belonging to the gene modules have received new experimental GO-BP annotations.
Since these gene-GO associations were not available at the time of the module delineation, they form an
ideal basis to evaluate the module-based gene function predictions inferred through the integration of the
different primary gene associations. These new associations can be categorized in three groups: (i) genes
that had no GO information from any hierarchy in the input data; (ii) genes that had no GO information

chttp://www.plantphysiol.org/content/suppl/2012/05/15/pp.112.196725.DC1/196725Table_S2.xls
dhttp://www.arabidopsis.org/portals/masc/FG_projects.jsp
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with non-electronic evidence tags in the BP hierarchy; and (iii) other experimental BP genes that had
non-electronic BP information available, which was not linked to the new experimental association. To
evaluate our module-based function predictions, very general categories were not taken into account to
avoid an overestimation of the number of true positives (see Materials and Methods). Results showed
that out of the 2,940 genes with a new experimental GO-BP, 1,460 genes were assigned to modules
with GO-BP enrichment and 29.7% (434) of those had a correct GO-BP inferred through the modules
(Table 3.2; Table S3e). For the 197 functionally unknown genes from category (i), this percentage was
38.1%. Conversely, from the perspective of the modules, 5,562 genes received a new module-based GO-
BP prediction of which 434 genes had their prediction confirmed by a new experimental GO annotation
(7.8%; Table 3.3). Based on the fraction of true positives for the functionally unknown genes from
category (i), this would suggest that > 2,000 genes (38.1% of 5,562) can be correctly characterized based
on the functional coherence of the modules. The results for the different categories are presented in more
detail in Tables II and III. All new module-based Arabidopsis functional annotations were submitted to
TAIR.

Table 3.2: Comparison of 2,940 genes having new experimental GO-BP annotations (of which 1,460 are present in
modules) with the module-based function predictions.

Despite the increasing number of genes receiving experimental GO-BP annotations during the last
decades, still 7,233 Arabidopsis genes exist for which no GO-BP information is available (neither exper-
imental nor electronic information in any GO hierarchy; Table S1a). From these functionally unknown
genes, 3,553 genes were assigned to a module of which 68% (2,419/3,553) were part of a module that
showed expression conservation (Table 3.4). Based on a functional enrichment analysis using GO or
embryo lethal genes, a functional annotation could be associated to 1,701 genes. The fraction of mod-
ules containing genes of unknown function and having enrichment-based functional predictions was
roughly two times higher for conserved modules compared to modules lacking expression conservation
(1,435/2,419 and 266/1,134, respectively). The newly annotated genes in the coexpression conserved
modules represented a wide range of biological processes, as can be seen in Figure A.5. Based on gene
orthology in the significantly coexpression conserved modules, 43,621 genes with unknown experimen-
tal GO-BP in other plants could be assigned a function.

Table 3.3: Comparison of 5,562 module-based function predictions with new experimental GO-BP annotations.

The following paragraphs report a number of examples of module-based gene function predictions
that correspond with recent experimental work, which can be explored using the additional data web-

ehttp://www.plantphysiol.org/content/suppl/2012/05/15/pp.112.196725.DC1/196725Table_S3.xls
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sitef. The first module, MQSE_BP_GO:0006030_3 (Figure 3.6A), is derived from the GO term ’chitin
metabolic process’, and also includes some PPI, TF targets, and AraNet edges. The module contains
five true positive genes: MYB63182, IRX15 and IRX15-L183, ANAC073184, and RWA1185, all of which
were correctly predicted to be involved in cell wall biogenesis. MYB63 and ANAC073 are a MYB and a
NAC TF, respectively, and whereas MYB63 was known to be involved in JA/SA response pathways186,
no BP information was known for ANAC073. In contrast, RWA1, IRX15, and IRX15-L were com-
pletely unknown (no GO in any hierarchy). Additionally, eight currently functionally unknown genes
(AT2G41610, AT2G31930, AT1G09610, IQD10, AT1G72220, AT1G33800, IQD13, and AT4G27435)
are present in the module. Furthermore, the genes reported in the module correspond with those found
by Persson and co-workers in their study of cell wall biogenesis.145 Out of the four genes that were tested
by mutant analysis in their investigation, IRX8 was present as seed gene in the input data, but CTL2 and
AT4G27435 were added by the MQSE methodology (AT5G03170 was not present in the module). In
addition, looking at the 25 highest ranked genes with CESA4, CESA7, and CESA8 (including the four
tested genes), we observed four genes that were seed genes, and ten genes that were added to our module
by MQSE.

Table 3.4: Module-based annotation of genes for which the GO-BP is currently unknown using experimental GO and
embryo lethality data.

The second module originated from the GO category ’meristem initiation’ (MQSE_BP_GO:
0010014_1; Figure 3.6B) . The true positive gene in this module is PXY, which had only a computa-
tional BP annotation related to protein amino acid phosphorylation. Based on the module, the gene was
predicted to be involved in xylem and phloem pattern formation, which has recently been annotated by
an experimental GO annotation.187 The module contains multiple genes known to be involved in xylem
and phloem pattern formation, including AtPIN1, IFL1, and ATHB15. All genes in the module have
experimental associations with meristem-related processes, which refers to the formation of phloem and
xylem out of cambium cells (meristematic tissue).

The third module PPI_14 (Figure 3.6C) is based on the experimental PPI network, but many edges
are supported by AraNet as well. This PPI module contains 14 genes and is predicted to be involved in
DNA endoreduplication, the process of continued DNA replication without mitosis in order to support
cell growth. Genes AT1G32310, AT1G06590, and OSD1 were unknown, but AT1G06590 has recently
been experimentally validated.188 Experiments have shown that a hemizygous mutant line of this gene
has an endoreduplication index (the mean number of endoreduplication cycles) significantly different
compared to wild-type plants. Genes in the module with a known link to endoreduplication were APC8,
APC6, FZR2, CDC27B, and APC10.

The fourth module (MQSE_BP_GO:0051726_1; Figure 3.6D) was identified based on the GO term
’regulation of cell cycle’ and includes the functionally unknown genes AT5G48310, AT3G56870,
AT3G14190, AT1G10780, AT2G32590, AT3G42660, AT3G56870, AT4G14200, AT3G58650,
AT5G01910, and AT4G39630. Given the strong coexpression in the entire module (EC = 0.97) and the
conservation of the coexpression (in all six species but Medicago), there is strong evidence that these
genes are involved in cell cycle regulation as well. A large fraction of the genes are co-regulated by the
E2FA-DPA TF complex. An essential role in cell division coincides with the observed embryo lethality
of the module genes HTR12, EMB2795, POLA2, SMC2, AESP, and ATSMC3. The prediction for
AT5G55820, which was only known to be functionally involved in embryo sac and seed development,

fhttp://bioinformatics.psb.ugent.be/cig_data/plant_modules/
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Figure 3.6: Example of a delineated module with true positive genes. A, Cell wall biogenesis. B, Xylem and phloem pattern
formation. C, DNA endoreduplication. D, Cell cycle regulation. Edges with EC conservation in less than three species are
hidden. E, Response to GA. Modules can be explored in detail using the additional data website.

is supported by additional InterPro domain evidence as it contains the ’inner centromere protein, ARK-
binding domain’. This domain is involved in the coordination of chromosome segregation during cell
division in yeast189, thus linking it to the cell cycle. Furthermore, the de novo motif discovery retrieved
enriched motifs with an E2F core (TCCCGC).

The last module MQSE_BP_GO:0009739_3 is delineated from the GO category ’response to gib-
berellin (GA) stimulus’ (Figure 3.6E), and has some AraNet and PPI edges as well. The functional
prediction of the module yielded the GO terms ’response to GA’, as well as ’response to salt stress and
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hormones (auxin, JA, SA, and abscisic acid)’. However, the module also showed enrichment towards
’circadian rhythm’ and ’long-day photoperiodism, flowering’ (GO:0007623 and GO:0048574, respec-
tively). These two predictions are particularly interesting as the module contains LCL5, encoding a
MYB family TF that was only known to be involved in response to hormone stimuli, but has recently
been experimentally assigned to both ’photoperiodism, flowering’ and ’circadian rhythm’.190 Next to
the newly assigned MYB LCL5, the module contains two more MYB TF genes (RVE1 and CIR1). Al-
though the MYB TF gene RVE1 had a GO-BP association based on a traceable author statement, the
annotation ’regulation of cellular transcription’ (GO:0045449) was far from specific. Together with the
unknown gene AT4G15430, the module thus provides a strong prediction for two functionally unknown
genes. CIR1, LHY, and CCA1 were the known circadian regulators on which the module prediction
was based. The module is enriched for the motif sTsAGCCACwAn, which contains the SORLIP1 (Se-
quences Over-Represented in Light-Induced Promoter 1) core (CCAC) described in PLACE, which is
a phytochrome A-induced motif. Finally, given the enrichments for genes responsive to a GA stimulus
and circadian clock genes, this module reaffirms the crosstalk between both processes reported by Arana
and coworkers.191

3.3 Discussion

To delineate a wide range of gene modules, an ensemble of input data types was assembled, based on
experimental gene associations (GO, PPI, and TF targets) and AraNet. Although the different com-
bined data sets comprised more than 1 million gene associations, the overlap between individual data
sets was surprisingly low. This observation was confirmed by the large fraction of unique associations
per primary data type and the low overlap in gene content between the modules before redundancy re-
moval, indicating the advantage of combining different experimental data sources. Based on a set of
2,355 Arabidopsis proteins, Lysenko and co-workers also reported that the integration of multiple data
sets, apart from sequence-based gene functions, was beneficial for the functional annotation of modules
inferred using graph-based clustering.192 In addition, their data revealed that, despite the integration of
experimental data sources, only a limited number of all Arabidopsis genes could be embedded into an
integrative network. Complementary to network construction methods that start from a limited number
of experimentally characterized genes, other studies have applied clustering tools on large expression
compendia to identify gene modules at a genome-wide scale139,149;.140 Although including more genes,
these approaches typically yield a limited number of functional modules, as functional gene information
is mostly incorporated during post-processing to link modules to specific biological processes.140,173 To
circumvent this problem, we developed the MQSE method to use genes with non-electronic GO annota-
tions as guide genes to define coexpression modules. While guide gene approaches are typically applied
for the analysis of a specific process138,145,146, the integration of all GO categories resulted in a set of
modules covering a wide range of processes in Arabidopsis (Figure 3.4). Although Cho et al. also in-
tegrated different GO annotations during the delineation of yeast modules193, as far as we are aware,
this approach has not been applied to plants. GO-based clustering without any modification to the gene
sets would result in many missing genes due to the incomplete functional annotation of the Arabidopsis
genome and the low expression coherences in some categories. To overcome this problem, the guide
gene MQSE strategy allowed to fine-tune the GO seed sets prior to expression clustering by identify-
ing strongly coexpressed seeds and by adding more than thousand genes with highly similar expression
profiles. Whereas MQSE is related to the Multi-Experiment Matrix (MEM) method of Adler and co-
workers194, MEM uses one gene as seed, while our approach can integrate multiple seed genes. This
is a significant improvement since this allows the analysis of coregulation within a process of interest.
Secondly, whereas the output of MEM is a ranked list of genes that are coexpressed with the query gene,
there is no determination of an optimal set of coexpressed genes. In contrast, MQSE returns the optimal
set of coexpressed genes using a rank-based enrichment score.

Based on the EC scores and the percentage of modules for which a regulatory DNA motif could be
found (50%), it is clear that coexpression and coregulation are two important factors to ensure the proper
functioning of genes. Remarkably, PPI is the second best data type when considering expression and
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cis-regulatory coherence, indicating that interacting genes are also frequently coregulated. Conversely,
the cis-regulatory coherence of the TF target data was not higher than in other data sets, supporting the
concerns about the specificity of ChIP data sets, as many reported TF targets do not correlate with each
other at the expression level.144 However, the EC of TF target data set was influenced most by different
expression compendia, suggesting differences in the condition specificity for the different target genes
(Figure 3.3A). The analyzed module properties indicate that GO combined with coexpression and PPI
data is the most suited to delineate functionally and regulatory coherent modules. The same trend was
observed when determining true positive module-based GO predictions per input type, as true positives
were found in 214 (37%) GO, 22 (31%) PPI, 47 (11%) AraNet, and 15 (3%) TF modules. In addition, we
observed that highly integrative approaches, such as AraNet, yielded many modules lacking functional
coherence and that more than thousand conserved gene modules were found, based on one of the other
primary data types.

On the organizational level, it is clear that, as for other biological networks, most genes are present
in few modules, while a limited number of hub genes exists. On the regulatory level, a similar pattern
was observed with most modules and genes containing a limited number of motifs. The maximum
number of 26 motifs per genes is high, but in line with a recent estimation of the number of binding
sites per gene, being, based on available Arabidopsis Chip-Seq studies, up to 75 binding events per
gene.144 Although it is currently unclear whether this pattern holds for all genes, this estimate provides
an experimental indication that complex regulation, as indicated by our modules, will be true for some
genes. The variation in regulatory complexity for different GO-BP slim categories confirms that function,
apart from other factors, is an important element contributing to a gene’s regulation.168,195

Genome-wide modular approaches have often been used to infer functions for functionally unknown
genes. However, to our knowledge, this study is the first one to integrate different functional data types
as well as conserved coexpression in seven species (soybean, Medicago, poplar, grapevine, rice, and
maize) to characterize new plant gene functions. Whereas integrative approaches have been performed
combining heterogeneous data in Arabidopsis136,166, Mutwil and co-workers included cross-species ex-
pression information to study gene functions in seven plant species.169 An important advantage of the
module-based approach with respect to function prediction is that homologs are not required for a gene to
receive a prediction. In agreement with a recent comparative transcriptomics study reporting conserved
modules between maize and rice167, we observed that modules showing ultra-conserved coexpression,
primarily cover genes that are related to energy and housekeeping functions, such as photosynthesis,
ribosome biogenesis, and translation. However, the 910 modules showing significant coexpression in
other angiosperms, cover a broad range of biological processes and provide a valuable resource to iden-
tify new gene functions and translate biological information from model species to crops. Based on
our module-based functional predictions, 5,562 Arabidopsis genes received a functional annotation and
an evaluation experiment showed that, based on a set of previously functionally unknown genes that
were recently experimentally characterized, 38.1% of these gene functions could be inferred through the
modules. Clearly, the annotation of genes of unknown function seems to benefit from the integration
of coexpression conservation, as modules showing conserved coexpression, recover almost two times
more experimental GO-BP annotations compared to non-conserved modules. However, true positive
annotations could be found in non-conserved modules as well, thus not only providing support for these
annotations, but also suggesting that high-quality experimental data sets are important to study species-
specific or adaptive gene functions. Overall, as a result of the integration of sequence and expression
data for six plant species, the module-based predictions offer new biological hypotheses for currently
functionally unknown genes in Arabidopsis (1,701 genes) and six other plant species (43,621 genes).

3.4 Material and Methods

Data sets

Twelve expression data sets (abiotic stress conditions, biotic stress conditions, developmental stages,
flowering tissue, genetic modification, hormone treatment, leaf tissue, root tissue, seed tissue, all stress
conditions, whole plants, AtGenExpress, and a general compendium) for Arabidopsis were retrieved
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from the CORNET database in November 2010.107 The expression data for soybean (15,753 genes),
Medicago (17,614 genes), poplar (28,969), grapevine (8,255 genes), rice (34,153 genes), and maize
(10,068 genes) were assembled from NCBI Gene Expression Omnibus.111 CEL files were analyzed using
a custom-made CDF (at least five probes per probe set) and normalized using the RMA method.196 A list
of experiments for the different species is reported in Table S4g. Redundant experiments were removed
by clustering experiments over genes, and experiments with Pearson correlation coefficient (PCC) âL’ě
0.99 were considered redundant. The number of retained experiments was 1,153, 43, 108, 39, 258, and
85 for soybean, Medicago, poplar, grapevine, rice, and maize, respectively. AraNet gene associations
were retrieved in November 2010.106 GO associations105 for Arabidopsis genes were retrieved from the
PLAZA2.0 database in November 2010.197 Genes assigned to a GO term were recursively assigned to all
of the GO terms’ parental terms. Only gene-GO associations with non-electronic evidence codes were
taken into account for module delineation: EXP, IDA, IPI, IMP, IGI, IEP, IC, and TAS. The PPI data
were downloaded from the CORNET database in November 2010107 and only experimentally identified
PPIs were retained. Interaction data of TFs and their targets were retrieved from the AtRegNet database
in November 2010.17 The targets of each TF were divided based on the effect on their expression:
activation, repression, and all (this group also contains the genes with unknown effect). Orthologous
genes were identified using the integrative orthology method available from PLAZA 2.0 only retaining
orthologs with the highest number of evidences.180 The embryo lethal genes were obtained from the
SeedGenes database by selecting for confirmed embryo defective genes.109

Module delineation using expression- and connectivity-based clustering

Both connectivity-based clustering and expression-based clustering were performed with a Perl imple-
mentation of the graph-based Cluster Affinity Search Technique (CAST) algorithm.115 Connectivity-
based clustering was directly applied to the PPI and AraNet input gene associations, and was optimized
by selecting the threshold that maximized the largest number of genes assigned to modules, and the
number of modules with GO functional enrichment (PPI: 0.5 and AraNet: 0.33).

Expression-based clustering was performed using a relative PCC threshold (95th percentile) based on
a set of 10,000 random gene pairs, specific to each expression compendium. Clustering was optimized
for each set of genes (either a set of TF target genes or a set of genes with a common GO annotation) by
prior selection of the CORNET expression compendium with the best EC for the given set of genes. The
minimum and maximum clustering size was set at 5 and 100, respectively.

The GO seed genes were submitted to the MQSE approach prior to clustering. The MQSE approach
adds new genes that show significant coexpression, while also removing seed genes that do not coexpress
coherently with the other seed genes. The decision of which genes to add and which genes to remove is
based on a rank statistic that incorporates the number of coexpressed seed genes, the standard deviation
of the expression profile of the coexpressed seed genes, and the median rank towards all seed genes (see
Protocol S1). The final expanded gene set is defined by selecting the top set of ranked genes yielding the
highest significant enrichment towards seed genes. Subsequently, these expanded gene sets are clustered
using CAST after which only clusters with enrichment towards the initial seed genes are retained, to
ensure retention of the initial functional category (hypergeometric distribution, p-value âL’d’ 0.05).

To identify and remove redundant modules within and across the different data types, the gene overlap
between all modules was assessed using the Jaccard score. In cases where one module was completely
embedded in the other, the overlap score was set at 1. Based on all pairwise overlap scores, modules
were clustered by CAST using a score cut-off of 0.85. As a result, overlapping modules were grouped in
a cluster of similar modules and the most highly connected module in each cluster was assigned as being
the representative (i.e. the module with the highest average overlap in the cluster of similar modules).

In order to make the module information publicly available, an additional data website was devel-
opedh. From the start page, all genes, modules, and GO categories from the module data set can be
queried. Results include the modules and their genes, regulatory DNA motifs, comparative coexpression

ghttp://www.plantphysiol.org/content/suppl/2012/05/15/pp.112.196725.DC1/196725Table_S4.xls
hhttp://bioinformatics.psb.ugent.be/cig_data/plant_modules/
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results, and visualizations of the modules based on either the comparative coexpression links or the input
data gene associations. Bulk downloads are also available.

Expression Coherence

The EC for a set of N genes was calculated as the fraction of all possible N*(N-1) / 2 gene pairs with a
PCC higher than or equal to the threshold value defined for that compendium.198 The p-value for an EC
threshold of 10% in Arabidopsis modules was estimated at ≤ 0.02 based on 960,000 random modules
with a size distribution identical to the real data set.

Gene functional annotation

GO enrichment analysis was based on the same GO dataset as for the module delineation (described
under ’Data sets’). Enrichment of a GO category in a module was calculated as the ratio of the module
frequency over the genome-wide frequency. The enrichment values were validated statistically using
the hypergeometric distribution and adjusted using FDR correction for multiple hypotheses testing.199

The significance level was set at 0.01 and at least two genes in the cluster had to be associated with the
GO label before a GO was assigned to a module. Due to this stringent threshold, some GO modules
determined by MQSE lack enrichment in the final set of non-redundant modules. Enrichment towards
embryo lethal genes was performed similarly.

Motif finding

De novo motifs were identified using MotifSampler (default settings) followed by MotifRanking (default
settings)175 and Weeder (default settings)174 for word sizes ranging from 6 to 12, on the 1-kb promoter
(sequence upstream of start codon, based on TAIR9) taking both strands into account. MotifSampler
was run with a third order background model based on all Arabidopsis promoters from PLAZA2.0.
Weeder motifs were transformed to position weight matrices (PWMs) based on their reported frequency
matrix. Motif enrichment was determined for each motif based on genome-wide promoter mapping
of their PWMs using MotifLocator (default settings).175 Enrichment was defined as the ratio of the
module frequency over the genome-wide frequency and enrichment values were statistically evaluated
using the hypergeometric distribution, adjusted by the FDR correction for multiple hypothesis testing.199

Only significantly enriched motifs with a corrected p-value ≤ 0.01 were retained. To determine motif
representatives (and remove redundancy) within each module, motifs were clustered based on sequence
similarity and gene-motif occurrences. To compare sequence similarity, motif PWMs were transformed
into vectors and for each pair of motifs, the PCC between the vectors was determined using a sliding
window while retaining a minimum overlap of six nucleotides. Subsequently, the motifs were clustered
using a PCC threshold of 0.75. The results of the sequence-based clustering were submitted to the
occurrence-based clustering, based on the method described by Xie and co-workers.77 Based on these
results, a set of non-redundant motifs was defined for each module and motifs with a similar sequence,
but residing in a distinct set of genes, were considered as distinct motifs. Known motifs were extracted
from AGRIS17 and PLACE176, and the redundancy was removed similarly as for the modules.

Motif conservation was determined by mapping the PWMs on the 1-kb promoters (both strands) of the
different species with MotifLocator. For each species, backgrounds of the third order were built based
on all 1-kb promoters (PLAZA2.0). For each module, the enrichment was determined in each species
based on the occurrences in the orthologous module and the genome-wide occurrences. P-values for
enrichment were calculated based on the hypergeometric distribution and corrected by FDR.

Motif annotation was performed by integrating the module functional annotation and the coexpression
conservation. For each motif family, the motif instances across different modules were used to translate
the functional annotation of the module to the motif family. Furthermore, each motif family annotation
obtained in this manner was weighted by the expression conservation of the module. When multiple
modules supported the association between GO and motif family, the expression conservation was aver-
aged over the different modules. The motif - GO network was created using Cytoscape200 and reduced
by retaining the most specific GO nodes (and discarding related but less significant nodes).
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Functional prediction of genes of unknown function

To validate module-based GO predictions, an updated Gene Ontology gene association file was down-
loaded from TAIR on 20/01/2012. All associations with non-electronic evidence tags that were created
after the input data freeze, were compared with the module-based predictions. Note that some new ex-
perimental gene associations were derived from publications prior to the data freeze. A prediction was
called as true positive if and only if the most specific common parent between the prediction and the
new experimental association was more specific than any existing experimental GO-BP term. If the most
specific common parent was a general term (GO:0008150, GO:0051704, GO:0009987, GO:0008152,
GO:0044237, GO:0044238, GO:0050794, GO:0044260, GO:0043170, GO:0044249, GO:0050789,
GO:0034645, GO:0010468, GO:0031326, GO:0010556, GO:0051171, GO:0009889, GO:0080090,
GO:0019222, GO:0060255, GO:0065007, GO:0031323, GO:0009058, GO:0006139, GO:0009059,
GO:0034641, GO:0044267), it was not considered a true positive. The different categories for a true
positive prediction listed in Table 3.2 are visualized in Figures 3.7-3.8. The categories ’unknown’ and
’unknown experimental BP’ were the same from the perspective of the true positive determination, as
in both cases there were no existing GO-BP categories in the input data (only non-electronic evidence
GO-BPs were selected for input data). These scenarios are depicted by Figure 3.7. The third category,
’other experimental BP’, describes genes that had GO-BP annotations with experimental evidence codes,
but of which the true positive prediction was not linked to the existing annotations (Figure 3.8). As such,
the predictions were not a consequence of the existing non-electronic annotations.

Figure 3.7: True Positive Gene Annotation Prediction for AT1G73805. In the input data set, the gene AT1G73805 had
no annotations with a GO-BP with any type of evidence. The module-based GO prediction ’systemic acquired resistance’
(GO:0009627; grey) has been experimentally confirmed through the new GO-BP association ’regulation of systemic acquired
resistance’ (GO:0010112; red). Black lines represent ’is a’ relationships and yellow lines indicate regulatory relationships.

Genes that did not have GO-BP associations with non-electronic evidence types in the updated GO
association file were selected as currently unknown. The functional prediction was based on the en-
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Figure 3.8: True positive gene annotation prediction for AT1G70940. In the input data set, the gene AT1G70940 had
several GO-BP annotations a non-electronic evidence code: pattern specification process (GO:0007389), root development
(GO:0048364), root hair elongation (GO:0048767), tropism and gravitropism (GO:0009606 and GO:0009630) and auxin
polar transport (GO:0009926). However, the module-based prediction provided a new annotation ’response to far red light’
(GO:0010218; cyan). Since the data freeze, this gene has been experimentally associated with the response to light stimuli
(GO:0009416). As the most specific overlap between these two terms is response to light stimulus, this association is a true
positive. Although the gene had existing GO-BP with experimental support, these annotations had influence on the predicted
annotation. Black lines represent ’is a’ relationships and blue lines indicate ’part of’ relationships.

richments for GO-BP categories and embryo lethal genes. Orthologous genes without non-electronic
GO-BP associations were assigned the functional prediction of the Arabidopsis module if and only if
these modules had a significant EC conservation, as well as a significant EC in the respective species.
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CHAPTER 4
A functional and evolutionary perspective on

transcription factor binding in Arabidopsis thalianaa

Abstract

Understanding the mechanisms underlying gene regulation is paramount to comprehend the translation
from genotype to phenotype. The two are connected by gene expression, and it is generally thought
that variation in transcription factor (TF) function is an important determinant of phenotypic evolution.
We analysed publicly available genome-wide ChIP experiments for 27 transcription factors (TFs) in Ara-
bidopsis thaliana and constructed an experimental network containing 46,619 regulatory interactions and
15,188 target genes. We identified hub targets and Highly Occupied Target (HOT) regions, which are en-
riched for genes involved in development, stimulus responses, signaling and gene regulatory processes
in the currently profiled network. We provide several lines of evidence that TF binding at plant HOT
regions is functional, in contrast to that in animals, and not merely the result of accessible chromatin.
HOT regions harbor specific DNA motifs, are enriched for differentially expressed genes, and are often
conserved across crucifers and dicots, even though they are not under higher levels of purifying selection
than non-HOT regions. Distal bound regions are under purifying selection as well, and are enriched for
a chromatin state showing regulation by the Polycomb repressive complex. Gene expression complexity
is positively correlated with the total number of bound TFs, revealing insights in the regulatory code for
genes with different expression breadths. The integration of non-canonical and canonical DNA motif in-
formation yields new hypotheses on co-binding and tethering between specific TFs involved in flowering
and light regulation.

aThis chapter is based on Heyndrickx et al. 201 . K.S.H., K.V., C.W., and D.W. designed the research methodology. K.S.H. (ChIP pipeline, binding properties,
population genomics, expression and motif analysis) J.V.d.V. (DH I enrichment analysis, chromatin state analysis, CNS pipeline and analysisFigures 1B, 2E), and
C.W. (1001 genomes assembly and SNP calling) performed data analyses. K.S.H., J.V.d.V, D.W., and K.V. wrote the manuscript.
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4.1. Introduction

4.1 Introduction

Unravelling the mechanisms underlying gene regulation is an important premise to understand how the
genotype is translated into a functional organism. Transcriptional regulation by transcription factors
(TFs) is one of the most investigated mechanisms, as it can be considered the primary level of regu-
lation.202 The emergence of Chromatin Immunoprecipitation (ChIP) followed by genome-wide readout
through microarray (ChIP-chip) or deep sequencing (ChIP-Seq) has stimulated the experimental identifi-
cation and comprehensive characterization of target genes bound by a specific TF.49,50 Studying a single
TF using ChIP (henceforth referring to both ChIP-chip and ChIP-Seq) is already valuable to examine its
DNA binding motif, identify putative target genes and unravel its biological role through the functional
analysis of its targets. Going further, the integration of complementary functional genomics data sets has
the potential to provide insights regarding the bound DNA and the mechanisms underlying co-regulation
by multiple TFs.

While these genome-wide approaches can open many interesting avenues for subsequent studies, the
biological interpretation of ChIP studies involves a number of important challenges. Firstly, ChIP data
have revealed only weak correlation between TF binding and transcriptional regulation of the poten-
tial target genes.154 Possible explanations are the dependency on other condition-specific factors, such
as cofactors or chromatin remodelling, for the correct regulation of the target gene, or that many of
the observed binding events are non-functional. In the latter case, such binding events are suggested
to be the result of passive thermodynamics instead of active recruitment203 and non-functional binding
events have been linked with highly bound genes (hub target genes) and Highly Occupied Target (HOT)
regions (bound by many TFs) in the worm Caenorhabditis elegans and in the yeast Saccharomyces cere-
visiae.204,205 Secondly, some TF-bound regions show enrichment for multiple different DNA sequence
motifs, complicating the identification of directly regulated targets. In regions of the genome of Ara-
bidopsis thaliana (hereafter Arabidopsis) bound by SEPALLATA3 (SEP3), a TF involved in flower de-
velopment, enrichment was found for five known TF sequence motifs.158 Multiple enriched DNA bind-
ing motifs in a ChIP data set can be a sign of cooperative binding by multiple TFs, or of tethering, where
the profiled TF associates with the chromatin through a protein-protein interaction with a second TF.
Some of the first integrative regulatory studies were in the context of the ModENCODE and ENCODE
projects in C. elegans205–207, Drosophila melanogaster208,209, and Homo sapiens.210–212 Information on
protein-protein interactions, miRNA-target interactions and gene expression profiles has been harnessed
for the identification of master regulators and network motifs207,211, and for inferring gene regulatory
networks and predictive models of gene expression levels of target genes.205,213 Ferrier et al. 144 and
Mejia-Guerra et al. 214 have already generated an overview of the available TF profiling studies in Ara-
bidopsis. They also listed several challenges related to unravelling TF binding complexity in plants;
however, an integrated experimental gene regulatory network describing cooperative TF binding events
in plants is currently missing.144,214

Here, an integrative study of 27 genome-wide TF profiling experiments containing 15,188 potential
target genes in Arabidopsis is presented, in combination with complementary TF perturbation informa-
tion, chromatin states, population genomic data and various functional data sets. We study the organ-
isation and mechanisms underlying TF regulation and uncover the following insights in transcriptional
regulation in plants:

• Grouping potential target genes into modules of functionally related genes offers, complementary
to filtering potential target genes using DNA motifs, a valuable approach to identify TF-regulated
genes, and provides a computational alternative to differentially expressed genes obtained through
TF perturbation experiments.

• TF binding is organised in distinct islands across the genome that correlate well with DNase I
hypersensitive (DH) sites. TF bound regions have different levels of complexity, ranging from
being bound by a single TF to up to more than half of the profiled TFs.

• Hub potential target genes are enriched for functions related to signalling and regulation, responses
to stimuli and development, and are examples of complexly bound genes. Furthermore, through
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the integration of miRNA and kinase networks, we confirmed that TFs themselves are complexly
targeted through several mechanisms.

• Broad expression and high gene expression levels are correlated with complex regulation by many
TFs, offering insights into how transcriptional control for genes expressed under numerous condi-
tions is encoded in the genome.

• Cross-species sequence conservation, population sequence diversity, and chromatin states of the
bound regions together with functional analysis of the potential target genes indicate that HOT
regions are functional and do not reflect spurious binding events due to open chromatin. This
pattern is different from results in animals, where it has been reported that HOT-associated genes
are less likely to be regulated than other genes.

• Overlap with chromatin states links a subset of distal upstream bound regions to binding events
under regulation by the Polycomb complex, an important repressor complex in plant development.

• For several TFs, a large number of DNA binding events are associated with non-canonical motifs,
generating new testable hypotheses of co-binding TFs and TFs associating with chromatin through
tethering.

4.2 Results

Construction of an experimental Arabidopsis gene regulatory network through the integration of TF ChIP
experiments

At the start of our study, 34 ChIP experiments had been performed in Arabidopsis using the Affymetrix
Tiling Array or short read sequencing, profiling 30 different TFs (Table 4.1). These factors are pri-
marily involved in flowering (AGAMOUS-LIKE 15 [AGL15], APETALA1 [AP1], APETALA2 [AP2],
APETALA3 [AP3], SEPALLATA3 [SEP3], SCHLAFMUTZE [SMZ], SUPPRESSOR OF OVEREX-
PRESSION OF CO 1 [SOC1], SHORT VEGETATIVE PHASE [SVP], PISTILLATA [PI], LEAFY
[LFY], FLOWERING LOCUS C [FLC], WUSCHEL [WUS], FOUR LIPS/MYB88 [FLP/MYB88],
and FLOWERING LOCUS M [FLM]), circadian rhythm and light response (PSEUDO RESPONSE
REGULATOR 5 [PRR5], PSUEDO RESPONSE REGULATOR 7 [PRR7], SOC1, TIMING OF CAB
EXPRESSION 1 [TOC1], PHYTOCHROME INTERACTING FACTOR 3 [PIF3], PHYTOCHROME
INTERACTING FACTOR 4 [PIF4], PHYTOCHROME INTERACTING FACTOR 5 [ÃŔF5], REVO-
LUTA [REV], and FAR-RED ELONGATED HYPOCOTYLS 3 [FHY3]), cell cycle (WUS), hormone
signalling (BRI1-EMS-SUPPRESSOR 1 [BES1] and ETHYLENE-INSENSITIVE 3 [EIN3]), and other
aspects of development (GLABRA 1 [GL1], GLABRA 3 [GL3], GT2-LIKE 1 [GTL1], FUSCA 3
[FUS3], ABORTED MICROSPORES [AMS] and ETHYLENE RESPONSE FACTOR 115 [ERF115]).
To create comparable data sets, we developed an analysis pipeline consisting of quality control, platform-
specific signal processing, and peak calling to re-process all raw data in a standardised and uniform
manner (see Methods, Figure 4.1). Thus, the integrated network comprised 27 unique TFs binding near
15,188 potential target genes, covering 46,619 unique TF-target interactions (Figure 4.2). For the re-
mainder of this manuscript, we use the terms potential target genes or bound genes for genes that were
associated with a TF binding event. Genes that are bound and display differential expression (DE) upon
perturbation of the TF will be referred to as TF-regulated genes. The TFs for which DE data was available
are listed in B.1.

Genome-wide ChIP experiments can lead to the identification of many potential target genes, some of
which have no known functional association with the TF. The integration of DE data, which results in
a set of high confidence, directly regulated target genes is often used to filter ChIP data. However, TF
binding can also be part of a strategy to poise the promoter for fast response to subsequent other signals
that lead to a transcriptional response of the target gene. In the latter case there would be no DE response
of the potential target gene in the perturbation experiment.13 Therefore, as an alternative to using TF per-
turbation in a single condition, we sought potential target genes that show functional coherence, a sign of
bona fide regulated genes. False positive potential target genes will not show functional coherence with
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4.2. Results

Table 4.1: Arabidopsis TF ChIP Data Sets Used.

other potential target genes, in contrast to genuine regulated genes.66 To delineate functionally coherent
subsets of bound genes per TF, the enrichment of potential targets was determined in 1,563 functional
gene modules.134 The latter comprise 13,142 genes annotated with specific functional descriptions based
on co-expression, experimental Gene Ontology (GO) information, experimental protein-protein interac-
tion data, protein-DNA interactions described in AtRegNet17 or AraNet gene function predictions.106

The benefits of this strategy are illustrated by the finding that potential target genes are greatly enriched
for DE genes in 10 out of 15 ChIP experiments for which DE data is available and for which > 20% of
the potential target genes are in modules (Figure B.1). For an additional 4 experiments (LFY, FHY3, PI,
and AP1) the effect was marginal. The applicability of this approach is by definition dependent on the
presence of the potential target genes in the functional gene modules. For GLT1, GL1, BES1, GL3, PIF3
and GL3, there was support for less than 20% of the potential target genes and these were concentrated
in very few modules, leading to ineffective sub-selection.

In addition to the functional module enrichment, de novo motif finding using Peak-Motifs118 was
performed on the sequences underneath the bound regions identified after peak calling. Selecting for
potential target genes that are associated with a peak containing a significant DNA motif is based on the
fact that most TFs are thought to bind at specific DNA sequences, although some bind through protein-
protein interactions with other DNA-binding factors.215 The motif-based subset improved the enrichment
for DE genes, albeit less consistently than the enrichment in functional modules. The combination of
both criteria led to an additional gain in enrichment for some experiments (SOC1 ChIP-Seq, FUS3,
PIF5, GL3, both LFY experiments, FHY3, AP3, PI, PRR5, and both AP2 experiments; Figure B.1). We
conclude that the selection of potential target genes based on enrichment in functional modules, and to a
lesser extent DNA motif enrichment, complements TF perturbation data to filter genome-wide ChIP data
sets towards TF-regulated genes.
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Figure 4.1: Overview of the data and methodology used in this study.

We made use of the results described above to extract high-confidence subnetworks. In the multiple-
evidences (ME) network, a TF-target gene interaction is kept only when it has additional support of (i)
DE or the complementary approach of the functional modules or (ii) a significantly enriched DNA motif.
The High-Confidence (HC) network is filtered for TF-target gene interactions that are supported by both
(i) and (ii). Whereas the ME network contains all 27 TFs and 10,990 potential target genes (30,072
interactions; Figure B.2A), the HC network is reduced to 25 TFs and 3,957 potential target genes (8,872
interactions; Figure B.2B online). The experiments described in this manuscript were performed on these
networks in addition to the complete network and unless mentioned otherwise, results were found to be
robust in the subnetworks. The entire set of peak-called regions can be accessed and downloadedb (see
Methods). The GenomeView54 visualisation also includes the DH sites216 discussed below.

TF-binding properties

There are large differences in the number of potential target genes for different TFs, ranging from 56
(WUS) to 6790 (AGL15) (Figure 4.2A). While some of this variability might arise from the different
experimental conditions, the similarity in the number of potential target genes for TFs that have been
profiled using both ChIP-chip and ChIP-Seq indicates that those effects are minor. More important

bhttp://bioinformatics.psb.ugent.be/cig_data/RegNet/
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4.2. Results

Figure 4.2: Number of potential target genes per TF and the distribution of ChIP peaks across different types of genomic
regions. The coloured bars represent the fractions of peaks in each of the genomic regions (left y-axis). The exact number of
potential target genes is given in the labels at the bottom as n. TFs are ordered following the hierarchical clustering based on
potential target gene overlap.

than the overall number of potential target genes, is the type of genes that are bound (Figure B.3A
online), and more specifically, the number of potential target genes that are gene expression regulators
(TFs or miRNAs; Figure B.3B online). The highest fraction of regulators among potential target genes
is 18% (for FLC). The fraction gradually lowers to 6% (for GL1), but given the sigmoidal shape of the
distribution, the majority of TFs have around 12-14% potential target genes that are regulators (compared
to the expected 6%). With regard to transcriptional regulation of miRNAs, the fraction of bound miRNAs
ranges from 0 to 1.8% (for FUS3). Among the miRNAs that are found as potential target genes of TFs,
we find known flowering regulators such as miR172 and miR156.217 Thus, this network will also be a
valuable resource to investigate transcriptional regulation of miRNAs in flowering.

A second important difference between TFs is the distribution of the types of bound genomic regions
and how this compares against a random experiment (Figure 4.2A-B). Based on the function of TFs in
transcriptional regulation, we would expect to see the majority of binding sites in close proximity of the
potential target genes. Although most TFs exhibit depletion of exonic binding (Figure 4.2B), there are
TFs with a substantial amount of intragenic binding in exons (WUS, GL1, FUS3, TOC1, GL3, ERF115,
BES1, FHY3, AP3, PI, PRR5, AP2, PRR7). To ensure that the differences in binding distribution be-
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tween TFs were not an effect of assigning a bound region based on its 1-bp-peak summit, the observed
distributions were confirmed based on the overlap using the entire peak regions (Figure B.4). The robust-
ness of TF binding sites in codons in the ME and HC subnetworks (Figure B.2) confirms their relevance.
They might be instances of what has been termed dual-use codons in plants.218

Concerning the position of the binding sites with respect to the gene, we observed that 57% and 28%
of the binding events are upstream and downstream of the potential target gene, respectively. Overall,
89% (23,891 / 26,717) of all upstream binding sites are within 2 kb of the transcription start site (73% in
1kb promoter). At the 3’ end of the gene, 91% (11,687 / 12,828) of all binding sites are within 2 kb and
72% within 1 kb from the transcription stop. The highest fraction of binding for all TFs is close to the
transcription start site (Figure B.5). To group TFs having similar binding profiles within a locus context,
we clustered binding information for the different TFs. Whereas for some TFs binding is restricted to
a small region around the gene body (see clusters 1, 6 and 7 in Figure B.5), the binding landscape of
clusters 2, 4 and 5 is more diffuse across the 2 kb upstream region (e.g. AP1). SVP (cluster 3) is unique
based on the fact that it is the only TF in the data set with substantial binding at 300-400 bp downstream
of the transcription termination site.

Detection of hub targets and HOT regions

To estimate the complexity of gene regulation in the network, all TF-target gene interactions were inte-
grated for the 27 unique TFs. The majority (63%) of the potential target genes are bound by more than
one TF (Figure 4.3A), but the number of genes decreases rapidly for an increasing number of bound TFs,
reaching a maximum of 18 bound TFs per potential target gene. The distribution itself best fits an expo-
nential seen as a linear relation in a log-y scale (top insets Figure 4.3A), instead of the more commonly
described power-law (which would be linear in a log-log scale, bottom inset). In a network context,
hub genes are attributed the important function of providing crosstalk between different processes.137

To delineate the hub genes in the ChIP gene regulatory network, a random TF-gene target distribution
was built (Figure 4.3A) by randomising the relationships between TFs and potential target genes while
preserving the number of potential target genes per TF.213 Based on the 99th percentile values of the ran-
domised distributions, we defined the 1,174 potential target genes that are bound by eight TFs or more
as target hubs. Non-hub genes include all other genes.

In complement to the hub target genes, we delineated HOT regions in the genome as regions in which
many TFs bind. HOT regions differ from hub genes as the hub genes can be bound by many TFs each
binding at a different position (Figure 4.3C-D). To delineate HOT regions, all peak-called regions from
all 27 TFs were merged (see Methods) and collapsed. To avoid chaining of multiple single-bound regions
into long stretches based on limited overlap, all peaks were trimmed to regions of 235 bp at each side
of the summit (unless original regions were shorter), which is the average length of all peaks (Figure
B.6A). This resulted in conservative ’merged regions’ with a median length of 349 bp that were used to
identify HOT regions (Figure 4.3C; Figure B.6B online). The region occupancy followed an exponential
curve, where approximately 44% of the regions are bound by more than 1 TF (Figure 4.3B). A total of
1,185 HOT regions were defined as those being bound by seven or more TFs. Non-HOT regions include
all other merged regions.

Whereas hub genes measure TF complexity at the level of the target gene, HOT regions define how
many TFs bind to the same region at such close proximity that the ChIP peaks could not be discerned
from each other. Similar to peak annotation of individual binding events, each HOT region is assigned to
the closest gene to obtain the potential target genes associated with HOT regions. Based on the two gene
lists, we observe that of the 1,174 hub genes, 355 (30%) are not associated with HOT regions, because
of the TFs binding at different regions (Figure 4.3D). The distributions are robust in the ME and HC
subnetworks (Figure B.7).

Target hubs are enriched for regulatory genes

Through the integration of different datasets, the regulatory complexity was also functionally investi-
gated. Hub genes are significantly enriched for genes involved in stimulus responses, development,
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Figure 4.3: Organisation of Hub genes and HOT regions. (A) Histogram of the number of regulating TFs per potential
target gene and (B) per peak region. The black line is the cumulative number of targets, the grey band is the ensemble of 1,000
random distributions. The insets are log, or double log transformed representations of the same data. (C) Four examples of
peak region merging. (D) Example of a hub gene, which is not classified as HOT-associated because the set of the regulating
TFs bind at two distinct regions (5’ and 3’). The ’Peak-Called Regions’ track contains all regions called in any of the single
TF experiments used for the Hub and HOT analysis. Zooming in shows the name of the TF binding at each region based on the
name of the region. The âĂŸMerged RegionsâĂŹ track shows the result of our merging procedure of separate binding regions
into genomic binding regions. The DH I Flower track shows the results of the study by Zhang et al. 216 . (E) Enrichment of
bound regions for DH sites in flower and leaf and in the chromatin states delineated by Sequeira-Mendes et al. 93 .

signalling, and process regulation. No enrichment for these GO terms was found in the non-hub genes,
nor in a more specific set of low-complexity genes, defined as potential target genes bound by one or two
TFs. While these processes are enriched in hub genes in the currently profiled network, it will be impor-
tant to see whether this pattern is confirmed in other subsets of the complete Arabidopsis transcriptional
network.

53



4. FUNCTION AND EVOLUTION OF TF-BOUND DNA

To further explore the functional properties of hub genes, other gene function information was col-
lected, including all TFs from AGRIS, miRNAs from ’AthaMap MicroRNA targets’219, embryo-lethal
genes109, and the set of kinases described by PhosPhAt.110 Although there is a significant enrichment
for TFs in the entire set of potential target genes, the enrichment is dependent on the level of target
complexity: there is a significant 3-fold enrichment of TFs in hubs while they are significantly under-
represented among genes bound by less than three TFs (Fold enrichment [FE] = 0.87). Similarly, there
is a significant enrichment for kinases in the hub genes (FE = 3.15). No enrichment could be found for
miRNAs or embryo-lethal genes among the hub genes.

In addition to evaluating the enrichment of miRNAs and kinases in the set of TF hubs, we determined
hub target genes of the miRNAs and kinases in their respective networks in the same manner as in
the TF network (Figure B.8). Kinase hub targets are defined as being phosphorylated by ≥ 5 kinases,
whereas miRNA hub targets are regulated ≥ 6 miRNAs. Interestingly, both the miRNA and kinase
hubs are significantly enriched for DNA-dependent nucleic acid binding and TF activity. Three kinase
hubs (ATBZIP12, BIN2, and ABI5) are also TF target hubs, all of which are involved in brassinosteroid
signalling. The enrichment for TF activity in hubs of different network types reveals that genes related
to transcriptional regulation are also complexly regulated through other regulatory mechanisms.

Expression levels are correlated with the total number of bound TFs

Apart from function, we evaluated expression of the potential target genes in the context of regulatory
complexity (see Methods). Because our TF set involved a large number of known flowering regulators
(Table 4.1), we focused on potential target genes associated with flowering based on the functional
modules (n=406 genes). They were divided into low-complexity genes (bound by≤3 TFs), intermediate-
complexity (bound by 3-7 TFs), and hub or high-complexity genes, and compared using the Kolmogorov-
Smirnov (KS) test.

Expression breadth, defined as the number of conditions in which a gene is expressed, is positively
correlated with the number of regulating TFs of the potential target genes (Figure 4.6; p-value ≤ 0.05).
Although high-complexity genes also display a U-shaped distribution with some genes being expressed
in only a few conditions, genes expressed in only a single condition are most frequently bound by only
one or a few TFs. To determine whether the observed correlation was due to the presence of HOT
regions or the added complexity of all nearby bound regions, we compared the distributions for the hub
genes (Figure 4.6) and those of the HOT-associated genes, and found the shift was not significant when
comparing HOT- and non-HOT-associated genes (Figure B.9). Therefore, we conclude that the total
regulatory TF complexity of the potential target genes is the main responsible factor. This is supported
by the same analyses performed on the subnetworks, where the shift is consistently larger for hub target
genes than for HOT-associated target genes (data not shown). Similarly, using median gene expression
levels instead of expression breadth confirms this bias (Figure B.10).

To assess whether the signal was due to a difference in CG content of HOT regions, we calculated the
%GC of the bound regions in relation to its complexity (i.e. number of bound TFs). Figure 4.4 Shows the
%CG histograms for the different types of bound regions (low, intermediate, and HOT). Whereas there
indeed seems to be a difference in the shape of the distributions (confirmed by a Kolmogorov-Smirnov
test), the difference is due to the reduced variation with higher binding scores (Figure 4.5). It is not the
case that the regions with the lowest number of bound TFs exhibit the highest %CG overall. We do not
observe a correlation between complexity and %GC.

HOT regions are enriched for DNase I hypersensitive (DH) sites

A common characteristic of all genomic regions associated with regulatory proteins is a pronounced
sensitivity to DNase I digestion.216 We evaluated the overlap between DH sites from flower and leaf216

with our merged regions describing TF binding (Figure 4.3E). All bound regions (non-HOT and HOT)
are significantly enriched for flower DH sites (p-value ≤ 0.001), with the enrichment in HOT regions
being twice as high as in non-HOT regions. The fraction of HOT regions that overlap with DH sites is
87%, compared to 55% for non-HOT regions. The same patterns were observed when using the DH sites
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Figure 4.4: Normed histograms of the %CG values for low, intermediate and high-complexity (HOT) bound regions

Figure 4.5: Boxplots of %CG in merged region in function of the number of bound TFs (score).

determined in leaf tissue. The significant overlap of DH sites with bound regions in general confirms
their susceptibility to transcriptional regulation while the higher enrichment for HOT regions suggest a
more steady open chromatin state, possibly because of the high number of TF binding events.

Hub and HOT-associated genes respond to TF perturbation

Next, we investigated how TF perturbation affected potential target genes, and how this was reflected
by regulatory complexity. Van Nostrand and Kim (2013) reported that HOT-associated potential target
genes in C. elegans are less responsive to TF perturbation in C. elegans. For each of the 18 TFs with
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Figure 4.6: Expression breadth as a function of regulatory complexity. Expression breadth distributions based on a non-
redundant expression compendium of 111 conditions for three series of complexity: Low: ≤ 3 TFs; Intermediate: ≥ 3 TFs and
≤ 8TFs; hub: ≥ 8 TFs (n=406). The lines indicate the cumulative histograms. The Kolmogorov-Smirnov (KS) statistic and
p-value are calculated between the low complexity and the hub series.

perturbation data in our data set, we compared the enrichment for DE genes, defined as genes that
respond to perturbation of the profiled TF among non-hub - non-HOT genes (low-complexity binding)
and hub - HOT genes (high-complexity binding). Overall both low- and high-complexity bound genes
are significantly enriched for DE genes, and in most (13/18) data sets, there is no significant reduction in
expression responsiveness in hub genes or HOT-associated genes (Figure B.11). Also, TFs display higher
DE enrichment in the high-complexity bound gene sets. Deviating patterns are found for some specific
TFs: PIF3 potential target genes show higher DE enrichment in non-hub genes and non-HOT-associated
genes, while FUS3-, PIF4-, LFY-, and PI-bound genes exhibit almost no difference in enrichment. Only
FLC potential target genes have different patterns for hub and HOT-associated genes.

Chromatin states of bound regions

The Arabidopsis genome can be divided into nine chromatin states93 based on nine genome-wide histone
modification marks, three histone variants, nucleosome density, genomic G+C content, and CG methy-
lated residues. The combination of these marks into signatures or states holds more power for functional
association than different marks in isolation. With regard to our set of TF-bound regions (Figure 4.3E),
we observed significant enrichment for state 1 (associated with transcribed regions and transcription
start sites), 2 (similar to 1, but lower nucleosome density and located outside the gene body but in the
promoter) and 4 (similar to state 2, but with fewer active marks, mostly overlapping with non-coding
intergenic regions and upstream promoter). By contrast, the bound regions were significantly depleted
for states 3 (transcription elongation), 7 (gene body and intron), 8 (AT-rich heterochromatin), and 9 (GC-
rich heterochromatin). The association with states 1 and 2, and the depletion for 3 and 7 appears to be a
direct consequence of the location of most bound regions near genes, and the enrichment for state 4 and
depletion for states 8 and 9 confirm the functionality of the intergenic bound regions.

Based on the ChIP peak-gene distance distribution, we defined a set of 195 distal bound regions as
those further than 4 kb away from the closest gene. Although a small fraction (11%) of the distal up-
stream bound regions lies in heterochromatic regions (state 8 and 9), they are significantly depleted for
these heterochromatin-typical states. Interestingly, the remainder of the distal upstream bound regions
can be split into enrichment towards states 4 and 5 (Polycomb chromatin). The Polycomb pathway is
an important repressive pathway in development, including flowering, which is known to act by regu-
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lating chromatin accessibility to binding sites. When the repression is overcome, TF binding leads to
target gene regulation.132 The enrichment for state 5 suggests that the distal upstream bound regions are
candidate distal elements where the chromatin is under regulation by the Polycomb complex similar to
the distal element of FLOWERING LOCUS T220, which is brought to close association with the prox-
imal promoter through a chromatin loop.221 While downstream distal elements appear to show similar
enrichment patterns for state 4 and 5, the sample size is too small to obtain significant results.

Population sequence diversity and conservation of bound DNA

If bound regions are of functional importance for transcriptional regulation, we expect them to be under
purifying selection. Based on complete re-sequencing data of 369 Arabidopsis strains from the 1001
Genomes project222, we assessed the nucleotide diversity within the bound regions using the average
number of nucleotide differences per site, π .223 We compared the TF-bound regions with fourfold de-
generate (4D) sites and other sets of genomic regions (Figure 4.7). 4D sites are thought to be the most
neutrally evolving sites in the genome, as such mutations do not affect the encoded amino acid, and cod-
ing sequences are less likely to have other regulatory functions. 4D sites are indeed less constrained than
either intergenic regions or 1 kb up- and downstream regions of genes (π of 0.0052, 0.0050, and 0.0034
respectively, versus π of 0.0070 for 4D sites), but bound regions have the lowest diversity (p-value ≤
0.001 based on reshuffling; see Methods). The diversity of bound regions is similar to that of 5’ and 3’
UTRs, and almost as low as coding sequences. Importantly, the ME and HC subnetworks show only
little additional constraint for bound regions (Figure 4.7).

Figure 4.7: Nucleotide diversity (π) in different sets of genomic DNA. Nucleotide diversity values based on 369 Arabidopsis
strains for different genomic regions, including bound regions from the complete network (Bound), the subnetworks (Bound ME
and Bound HC) and distal bound regions (all, and the subsets lying in the chromatin states 4 and 5). Comp. Interg. is the
complete intergenic space and 4D are fourfold degenerate sites in coding sequences (CDS). Bound DNA as black bars.

57



4. FUNCTION AND EVOLUTION OF TF-BOUND DNA

In addition, we examined HOT regions and distal bound regions in comparison to the non-HOT re-
gions and proximal bound regions, respectively. HOT regions show reduced π values compared to the
non-HOT regions, which can be explained by the necessity to retain binding sites for more TFs than non-
HOT regions, and further corroborating the functionality of HOT regions. Similarly, distal bound regions
show similar π values compared to regions acting proximally, providing evidence for their functionality.

Because of their function, bound regions are also often conserved across species, which is the premise
of genome-wide studies of conserved non-coding sequences (CNSs). We determined the fraction of
bound regions exhibiting conservation within the crucifers224 and within the dicot lineage225 based on
overlap with CNSs. Overall, CNSs supported 35% and 29% of the 24,898 bound regions in the crucifer
and dicot data, and 15% are supported in both sets. Bound regions are significantly enriched for overlap
with CNSs in crucifers (3.2 fold) and dicots (1.6 fold). For the set of 1185 HOT regions, we observe that
72% and 52% overlap with a conserved region, which results in a slightly higher enrichment of HOT
regions in CNSs of crucifer (3.8 fold) and dicot (1.6 fold) datasets compared to non-HOT regions (3.2
and 1.5 fold, respectively). This result complements the findings of the population sequence diversity
analysis regarding the higher constraint on HOT regions.

Hypotheses to explain the diversity of motifs in bound regions

Combinatorial control, where different TFs cooperate in a context-dependent manner, is an important
principle in transcriptional regulation (Singh, 1998;.148 For all 27 TFs, we determined the overlap in
potential target genes (Figure 4.8A), and clustered them accordingly. Importantly, when all experiments,
including ChIP-chip and ChIP-Seq experiments for the same TF, were taken into account, all experiments
of a single TF clustered together, rather than clustering based on the ChIP method used. We observed
significant overlaps for 255 out of the 351 TF pairs in our data set, showing that there is high degree of
overlap in the genes that are targeted by TFs involved in flowering, circadian rhythm and light response.
Among the profiled TFs, there are two major protein-protein interaction clusters: light response (marked
in orange), and a flowering cluster (marked in green; Figure 4.8B). Interacting TFs can be retrieved
from the overlap analysis (Figure 4.8A), albeit the flowering cluster is split up in three smaller clusters,
potentially revealing the more common interactions. Since HOT-associated genes have a large influence
on co-binding statistics209, the same matrix was constructed using only the non-HOT-associated genes.
Although fewer significant TF pairs were found (208 / 351), the cluster structure of the matrix is robust,
also when using the subnetworks (Figure B.12).

Whereas co-targeting of potential target genes reveals possible co-regulation, co-binding of TFs in
close proximity of each other, i.e., in the same bound region, can identify co-binding complexes. There-
fore, we integrated de novo motif finding for each of the profiled TFs (see Methods). An overview of all
enriched motif logos per TF, together with their frequency and location within the peak regions is given
in B.2. Importantly, motif definitions were determined stringently, meaning that differences in flanking
nucleotides were considered as different motifs, as can be seen for PIF5. Flanking nucleotides have been
shown to add important specificity in motif recognition, and are therefore not collapsed into a single de-
generate consensus binding site.226–228 Motifs were ranked by occurrence, with the most frequent motif
denoted as the primary motif.

For each factor, we evaluated whether any of the de novo motifs corresponded to the canonical motif
(the motif that is known to be bound by the TF, as opposed to non-canonical motifs), based on motif
alignments against the AGRIS database and comparison with motifs from literature (B.3). Notably, we
observed for several TFs that the primary motif is not the canonical motif. For most TFs, such as TOC1,
only a single motif fitted the canonical motif description, whereas for others, such as PIF5, multiple
motifs matched the canonical motif as motif differences resided in the flanking nucleotides.

In the traditional view, a DNA motif is expected to explain the binding site of the TF in the peak
region. A single motif however rarely covers more than 40% of the ChIP peaks (Figure B.13A), raising
the question of how the TF might be associated with the chromatin in the remainder of the peaks. In-
terestingly, when taking all significantly enriched motifs into account, the fraction of peaks with at least
one motif increased to 45-80%. This large increase indicates different motifs are rarely present in the

58



4.2. Results

Figure 4.8: Co-regulation and protein complexes of TFs. (A) TF co-binding matrix based on common target genes and
average-linkage hierarchical clustering based on Jaccard Index. The lower left half displays the Jaccard index and the upper
right half hypergeometric p-values of overlap between the two sets of regulated genes, corrected using the Bonferroni method.
(B) Experimental and predicted PPIs between the TFs. Solid lines indicate experimentally determined PPIs and dotted lines
indicate predicted interactions. Line thickness indicates number of supporting experiments.

same subset of peaks. Enrichment for DE genes shows that the sets of genes uniquely associated with the
non-primary motifs likely represent regulated target genes (with the exception of some motifs of GL1,
FLC, BES1, PIF4, and GL3; Figure B.13B). Notably, we did not observe a reduction in the fraction of
peaks with motif instances between non-HOT regions and HOT regions (Figure B.14).

Co-binding TFs, where one TF binds through association with another TF with a different DNA bind-
ing specificity, or where TFs modify each others’ DNA binding specificity, provide a possible explanation
for the widespread occurrence of different DNA motifs for the same TFs. This can only be the case if TFs
bind in the same bound region. Considering all identified motifs per TF and the complete set of potential
target genes, we systematically categorised binding events via canonical and non-canonical motifs. TFs
can bind (i) peaks where only a canonical motif instance is present; (ii) peaks where both canonical and
non-canonical motif instances are present; or (iii) peaks where only non-canonical motif instances are
present. Peaks of type I fulfil the traditional view of TF binding, where a TF binds its target directly.
Type II represents co-binding, where a second TF binds in cooperation with the profiled TF. The peaks of
type III represent tethering, where the profiled TF associates with the chromatin through a partnering TF,
an example being TCP binding via a protein-protein interaction with AS2.212,215 Based on the fraction
of these three peak types for a given TF, we observe that most TFs bind a mixture of these peak types
(Figure 4.9). Only a few TFs such as SEP3 and FLM tend to bind peaks that almost always include a
canonical motif.

To find explanations for the different DNA motifs in a single ChIP experiment, we assessed the co-
occurrence of pairs of TFs in bound regions (Figure 4.10). From the perspective of each TF, its entire
peak set was divided into the different categories of peaks and the number of co-occurrences was sta-
tistically evaluated. Starting from this matrix, we tested whether known co-binding regulators could be
recovered, and derived new testable hypotheses for several TFs. Firstly, in the -ChIP data for the MADS
domain protein SEP3, multiple different CArG motifs, typical for MADS domain proteins, are enriched
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Figure 4.9: Co-regulation and protein complexes of TFs. (A) TF co-binding matrix based on common target genes and
average-linkage hierarchical clustering based on Jaccard Index. The lower left half displays the Jaccard index and the upper
right half hypergeometric p-values of overlap between the two sets of regulated genes, corrected using the Bonferroni method.
(B) Experimental and predicted PPIs between the TFs. Solid lines indicate experimentally determined PPIs and dotted lines
indicate predicted interactions. Line thickness indicates number of supporting experiments.

(B.2). Binding of many other MADS box TFs is significantly enriched in the SEP3-bound regions. All
TFs that form a protein-protein interaction with SEP3229 have high co-binding scores: AGL15, AP1,
SOC1, PI, and AP3. Although there is no protein-protein interaction known or predicted between SEP3
and FLM, we observe a highly significant co-binding pattern in the same regions for these TFs as well.
Overall, the co-binding of the different MADS TFs is a likely explanation for the different CArG mo-
tifs (different flanking nucleotides) found in the peaks of SEP3. Similarly, PIF3-4-5 and PRR5-7 show
highly significant co-binding scores within their respective TF family members, fitting with the protein-
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protein interactions between them. Overall, for TF pairs that have a known protein-protein interaction,
the co-occurrence scores are higher compared to pairs without interactions.

Apart from canonical CArG motifs, many MADS domain TFs have non-canonical G-boxes as sec-
ondary motifs. Based on the co-binding of other TFs with MADS TFs, we attempted to identify new
cooperative TF interactions. For instance, AP1-bound regions that harbour non-canonical motifs also of-
ten bind PIF5, PIF3, PRR5, and PRR7. This suggests a link between the presence of the G-box, and the
co-binding of these TFs. In the PRR7 peaks, there is a relationship between the presence of the FHY3-
FAR1 binding site (FBS) motif (CACGCG; Lin et al. (2007)) and FHY3 found in the PRR7 peaks.
FHY3, which has an FBS motif as canonical motif, shows very high co-binding scores in the peaks with
both motif types, and in those with only non-canonical motifs. The fact that PRR7 has high co-binding
with FHY3 in its type II and III peaks, but low co-binding in its type I peaks with only canonical motifs,
corroborates the hypothesis that the non-canonical FBS in PRR7 is explained by FHY3. A similar signal
can be seen for AP1 and PRR7, and LFY and PRR7, where there is only significant co-binding in AP1
peaks where the G-box (PRR7 canonical motif) is found. In both cases, we hypothesise a tethering event.

4.3 Discussion

Large-scale analysis of TF binding can provide insights into the organisation and complexity underlying
transcriptional regulation. To investigate gene regulatory networks in Arabidopsis, we have compiled an
experimental network comprising 46,619 unique TF-target regulatory interactions based on 27 TF ChIP
profiling experiments. Given the different data analysis methodologies of the different source studies,
we reprocessed the raw data following a uniform pipeline to obtain an unbiased view on potential target
genes for different TFs. Prior to our study, the AtRegNet platform has made great efforts to collect
and store all Arabidopsis regulatory information from both small- and large-scale studies.17 However,
given the rapid increase in genome-wide ChIP studies in Arabidopsis, the AtRegNet database as of the
writing this manuscript is lacking 21 of the experiments included in this study. In contrast to AtRegNet,
we did not include data from small scale-studies, as we were primarily interested in discerning binding
patterns and properties of TFs for which global genomic binding information is required. Through the
integration of different functional datasets including Gene Ontology, functional modules, embryo-lethal
genes, miRNAs and kinases, as well as DNA motif finding information, our gene regulatory network
provides a functional view of TF regulation in Arabidopsis as well as an entry point to predict functions
for unknown genes in the set of potential target genes.

To investigate the organisation of regulation and binding sites among the potential target genes, all
ChIP data sets were merged, and the distributions of the number of regulators per potential target gene
and number of binding events per region were quantified. In both cases, an exponential distribution was
observed, which is distinct from the commonly described power-law in biological networks.137 However,
the exponential distribution was also reported in the C. elegans gene regulatory network by Cheng et al.
(2011). We delineated hub genes and HOT regions, two proxies for complex gene regulation. In contrast
to the modENCODE study206 where HOT regions had to be bound by more than 65% of the profiled TFs,
our definition of HOT regions is based on a percentile score inferred through network randomizations,
as was done by Shalgi and co-workers230, avoiding a static ad-hoc threshold. Functional analysis of the
potential target genes revealed that the genes bound by few TFs are depleted for TFs, while potential
target genes with high TF complexity were enriched for TFs. In addition, TFs were also enriched in the
hubs of kinase and miRNA networks, showing that regulatory genes in plants, such as those involved in
hormone signalling, are complexly targeted in different types of regulatory networks. Through overlap
analysis with DH sites, all bound regions showed significant enrichment for open chromatin regions.
HOT regions consistently exhibited higher enrichments, likely caused by a constraint on the chromatin
to maintain an open conformation because of the high number of binding TFs. This open conformation
raises concerns about whether the binding in HOT regions truly affects the regulation of the associated
target gene, or merely represents a state of massive TF binding, due to increased local accessibility of
DNA, without any regulatory consequences. There is evidence in non-plant species that (i) at H. sapiens
HOT regions, TF occupancy is strongly predictive of transcription preinitiation complex recruitment
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Figure 4.10: TF cobinding matrix based on merged regions. For each TF comparison, -10log(p-value) is given for the
genomewide co-occurrence in the merged regions, split per type of region based on the presence of non-canonical and canonical
motif instances. nCan = peaks with only non-canonical motif instances; Both = peaks with both canonical and non- canonical
motif instances; Can = peaks with only canonical motif instances; PPI: + means a PPI is known between the TFs.
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and moderately predictive of initiating Pol II recruitment, but not of transcript abundance231; (ii) highly
expressed loci are very amenable to ChIP in yeast, leading to HOT regions204, and (iii) DNA motifs
appear to be of less importance for TF binding in human HOT regions.232 To assess whether HOT
represent functional regulatory elements in plants, we investigated the expression of HOT-associated
genes, together with purifying selection patterns, chromatin states, and DNA motifs in HOT regions.

Firstly, we found that for most TFs, there is no indication that genes associated with HOT regions are
less prone to be responsive upon perturbation of the profiled TF than non-HOT-associated genes. These
results differ from those in C. elegans modENCODE, where it has been suggested that HOT-associated
genes are less prone to be regulated by the binding TFs. Instead, HOT-associated genes tend to be
ubiquitously expressed205, which is not the case for the plant HOT-associated genes delineated here.
However, it should be noted that Van Nostrand and Kim (2013) inferred this pattern for only two TFs,
raising the question whether this finding represents a global trend that is valid for other TFs as well.
Secondly, the percentage of peaks, as well as the distribution of canonical and non-canonical motifs,
harbouring a motif instance is similar in HOT regions and non-HOT regions, revealing that sequence-
specific TF binding is prevalent in HOT regions as well. This is again in contrast with results found
in humans, where the ENCODE project concluded that open chromatin facilitated TF binding in HOT
regions even in the absence of specific binding motifs for the particular TF examined.232 Through the
integration of genome-wide chromatin states, we explored whether different types of bound regions are
enriched for specific states, which could indicate functional differences. Overall, we observed that both
HOT and non-HOT regions are strongly enriched for states describing proximal and distal promoters, as
well as transcription start sites, and are depleted for heterochromatin. Furthermore, based on nucleotide
diversity data from 369 re-sequenced Arabidopsis strains, we found that bound regions, both HOT and
non-HOT, show strong signatures of purifying selection. Combining these different results, we therefore
concluded that the binding events occurring in Arabidopsis HOT regions are functional and are mediated
by specific DNA binding motifs, and are not merely the result of increased accessibility due to an open
chromatin configuration.

While we have shown that HOT regions are indicative of functional binding, one of the consistent
observations in genome-wide ChIP experiments is poor correlation between binding, DNA motif pres-
ence, and transcriptional response for candidate target genes. Possible explanations are the incorrect
assignment of a binding site to a potential target gene, functional redundancy among related TFs, con-
ditional differences between ChIP and transcript profiling (different cell-type, developmental stage, or
physiological condition), or an incompatible chromatin state.144 Additional hypotheses are that there is a
transcriptional response following the binding event, but the mRNA is immediately degraded, or that the
binding merely facilitates binding of co-factors essential for activation or repression of the targets.13 A
last explanation is that transcript-profiling studies in part capture indirect regulation. With respect to the
DNA motif presence in ChIP peak sequences, we have shown that when taking into account significantly
enriched non-canonical or non-primary motifs, the fraction of peaks with a motif instance substantially
increased. Furthermore, we observed for some TFs that the most frequent motif does not match the
canonical motif, which is consistent with the ENCODE results.212 Importantly, the potential target gene
sets associated with canonical and non-canonical motifs are similarly enriched for DE genes, implying
that both types of motifs mediate TF regulation.

Based on the non-canonical motifs and the TF co-occupancy at merged regions, we have inferred co-
binding events that are significantly more frequent compared to what would be expected by chance. For
example, the different motifs matching CArG boxes in one MADS domain TF ChIP profiling study can
be explained by the extensive co-binding among MADS domain family members.229 Furthermore, the
G-boxes found enriched in regions bound the AP1 MADS domain TF can be explained by co-binding
of PIF3, PIF5, PRR5, and PRR7. Similarly, we could correlate the significant enrichment of a non-
canonical FBS motif in the peaks of PRR7 to the co-binding with FHY3. Because these motifs and
co-binding is most strongly enriched in peaks with only non-canonical motifs, we hypothesise that these
binding events occur through tethering.212 Whereas it has recently been shown, based on in vitro in
protein binding microarrays233, that some plant TFs can bind different DNA sequences, based on our co-
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binding observations, we conclude that the non-canonical DNA motifs can for the most part be explained
as the result of cooperative TFs binding the same region.

In conclusion, the integration of different experimental ChIP datasets has revealed a number of insights
regarding the organisation of binding events on a genome-wide scale. In addition, we showed that bound
regions show a clear signal of purifying selection based on a population diversity, as well as conservation
analysis. Finally, we provide testable hypotheses for the cooperative regulation of TFs through tethering
based on the integration of DNA motif information for the different binding events.

4.4 Material and Methods

ChIP-Seq processing

Raw reads were downloaded from the NCBI Sequence Read Archive (SRA, Wheeler et al. 234 ; ac-
cession IDs listed in ). The quality of the raw data was evaluated with FASTQC (v0.10.0; http:
//www.bioinformatics.bbsrc.ac.uk/projects/fastqc), and adaptors and other overrepresented
sequences were removed using the fastx-toolkit (v0.0.13;
http://hannonlab.cshl.edu/fastx_toolkit/). The reads were mapped to the unmasked TAIR10
reference genome of Arabidopsis (TAIR10_chr_all.fas; ftp.arabidopsis.org) using BWA with de-
fault settings for all parameters (v0.5.9; Li et al. 119). Reads that could not be assigned to a unique
position in the genome were removed using samtools (v0.1.18; Li et al. 119) by setting the mapping qual-
ity threshold (-q) to 1. Redundant reads were removed, retaining only one read per start position, using
Picard tools (v1.56; http://picard.sourceforge.net). Peak calling was performed using MACS
(v2.0.10, Zhang et al. 52 ; default parameters except -g 1.0e8 and FDR ≤ 0.05). When replicates were
available, the Pearson correlation coefficient (PCC) between the peak FPKM (fragment per kilobase per
million) values was calculated for all peak-called regions across the different replicates (Figure B.15).
Since most ChIP-Seq studies were performed without biological replication, the analysis was continued
with the better replicate, with the choice of replicate being based on the results of the motif enrich-
ment under the peaks (see Methods on Peak Calling). A few of the older experiments (SRP002328,
SRP003928, and SRP000783) had lower PCC values between replicates than recent studies because of
lower consistency in quality. Both for experiments with high and low PCC values between replicates, the
replicate with better motif enrichment was retained (see Methods on Motif Finding further). An overview
of which replicates were used for the samples is provided in B.4. For EIN3, the time point at which the
maximal number of binding events occurred (4h) was processed.235 REV, AMS, and FLP/MYB88 were
removed from the data set due to a very low number of peaks in the results, the lack of paired-end read
processing in the computational pipeline, and an abnormally high fraction of peak regions near transpos-
able elements (Figure B.1A), respectively. All experiments were visually inspected with GenomeView.54

ChIP-chip processing

Raw CEL files were downloaded from Gene Expression Omnibus (GEO, Barrett et al. 111 ; accession IDs
are listed in section 4.4). The Affymetrix Tiling array bpmap files were updated to the current TAIR10
annotation with Starr.122 Normalisation and peak Calling was performed with the Bioconductor236 pack-
age rMAT121 in R (R Core Team, 2012). The PairBinned method was used to normalise the arrays and
peaks were called using a FDR cutoff of 0.05 except for the data sets GSE13090, GSE24684, GSE43291,
and GSE40519, in which the p-value was set of 10−3 (in analogy to the original study, and necessary
to obtain peak calling results). The minimum requirement of consecutive enriched probes was set at of
eight. Other parameters were left at their default setting. All replicates were taken into account by the
rMAT algorithm.

Peak annotation

Peak regions were annotated based on the location of their summits. A peak was assigned to the closest
gene as annotated in the TAIR10 release represented in the PLAZA2.5 database180; peaks can be as-
signed both 5’ and 3’ of a gene. Each assignment is considered as a potential TF-target interaction. The
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peak locations were categorized by assigning a peak to one of the following genomic regions: intergenic,
1 kb promoter (1 kb upstream of Transcription Start Site), 5’ UTR, coding, intron, 3’ UTR, and 1 kb
down of the Transcription stop site. For Figure B.2, the assignment based on the entire peak regions
shows the average fraction of the peak lengths assigned to each genomic region.

Motif finding

The sequences of the complete peak regions were masked for coding sequence and submitted to the
Peak-Motifs algorithm using default settings.118 Motifs that could be aligned with a correlation score
≥ 75% were collapsed. For each returned DNA motif, enrichment was defined as the ratio of the peak
set frequency over the frequency in 1,000 random sets of peaks of the same size and length distribution
sampled without replacement from the complete non-coding genome space (intergenic + UTR). The
motifs from Peak-Motifs were mapped using matrix-scan237 using the same parameters as used by Peak-
Motifs. To determine whether a motif corresponded with a TF’s canonical DNA motif, de novo motifs
were compared with known motifs from the AGRIS database17 using the STAMP web tool with default
settings.120

Population genomic analyses

Single nucleotide polymorphism (SNP) data was downloaded from the 1001 Genomes projectc on April
10 2014. Positions were only taken into account when they were sequenced in 70% of the strains.
π values223 were calculated per site using VCFtools123 and recalculated into region π values for the
different genomic data sets used. For the large intergenic regions (complete, 1kb up, and 1 kb down),
the regions with information in less than 70% of the accessions were discarded. For the other (smaller)
genomic elements, it was required that they were covered completely by regions with 70% information.
The significance of the difference in π for different regions was determined by shuffling the bound
regions across the Arabidopsis intergenic space 1000 times using BEDTools124 and its python extension
Pybedtools.238 The p-value was empirically determined by counting the number of iterations in which
the overlap was larger in the reshuffled than in the real data set.

Integrated functional data sets

Protein-protein interaction data was taken from the CORNET database239, excluding the EVEX and
AraNet relations. The functional modules were taken from our previous study.134 Phosphorylation data
was downloaded from PhosPhAt on March 24 2013.110 Only those interactions were taken into account
that describe a verified relationship between the kinase and the target protein itself: protein regulation,
activation/inactivation, phosphorylation, dephosphorylation, and autophosphorylation. The miRNA tar-
get data was extracted from the Supplemental table 1 of Bulow et al. 219 . MicroRNA-target relations were
filtered for psRNATarget113 expectation scores lower or equal to 3. DH sites (flowering and leaf tissue)
were from Zhang et al. 216 . DE data was obtained from the publications as listed in Supplemental Table
1. Genes were removed when they were present as being up —and downregulated upon perturbation
of a TF, because of different time points and conditions. The GO and MapMan gene annotations were
downloaded on May 15 2013. Enrichment of a functional category in a set of genes was calculated as the
ratio of the set frequency over the genome-wide frequency. All functional enrichment values (GO105,
MapMan112, functional modules134, and DE) were validated statistically using the hypergeometric dis-
tribution and adjusted using FDR correction for multiple hypotheses testing.199 The significance level
was set at 0.05. For DE enrichment, the potential target genes were filtered for those present on the ATH1
microarray.

Hub targets and HOT regions

Target Hub genes were identified as described by Shalgi et al. 230 . For TFs that were profiled by both
ChIP-chip and ChIP-Seq, only one of the experiments was taken into account. Hub genes are targeted by
more TFs than the 99th percentile of the maximal value in 1,000 randomizations of the columns in the TF

chttp://1001genomes.org/projects/MPICWang2013/
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to gene matrix. The TF-target randomisation preserved the number of targets for each TF but reassigned
each link. Following this procedure, target hubs are genes that are targeted by ≥ 8 TFs. For the ME and
HC networks, the cut off values for hub genes were ≥ 7 and ≥ 6, respectively. For the determination of
the HOT regions, all peak regions of all 27 TF data sets were merged after pruning long peak regions to
the median length of all peak regions (470 bp, Figure B.2). Gene regulatory complexity was defined as
the numbers of TFs that bind to peak regions assigned to a specific gene through peak annotation. The
HOT regions were determined using the same strategy as the target hubs, being bound by ≥ 7 TFs. For
the ME and HC networks, the cut off values was ≥ 6.

Enrichment analysis of bound regions in different genomic regions

The DH sites in flower and leaf were downloaded from NCBI SRA database (accession ID SRP009678.216

The chromatin states were downloaded from supplemental dataset 2 from Sequeira-Mendes et al. 93 . The
CNS data in dicots and crucifers was taken from Van de Velde et al. 225 and Haudry et al. 224 , respec-
tively. The HOT and non-HOT bound region files of each TF were formatted as BED files. Overlap
analysis was performed using the BEDTools function intersectBed. For DH sites and chromatin states,
the observed presence was determined with -u parameter and the -f parameter set to 0.5.124 Because of
the very long CNS regions in the crucifer data set, the overlap requirement was set to 50bp. In contrast,
the dicot CNSs are very short since they resemble actual binding sites and here, CNSs were required to
be completely embedded in bound regions. The expected presence in bound regions was determined by
shuffling the DH sites data set 1000 times using shuffleBed, excluding the actual positions of the real
instances. The overlap was determined using the same parameters for each shuffled file and the median
number of shared elements present over 1,000 shuffled files was used as a measure for the expected
presence. This was used to calculate enrichment as the ratio between observed presence and expected
presence.

TF co-regulation and co-binding

For the co-regulatory matrix, the TFs were clustered based on the Jaccard distance (1 - Jaccard Index)
between their target sets using average linkage hierarchical clustering. The overlap was validated sta-
tistically using the hypergeometric p-value, with Bonferroni correction for multiple hypothesis testing.
The cut-off for significance was set at 0.001.

The co-binding statistics per type of peak (based on the presence of canonical and non-canonical
motifs) were generated per query TF. For each query TF, the entire peak set was divided into the different
categories of peaks (only canonical, both canonical and non-canonical, and non-canonical). Based on
the merged regions to which each peak is associated, the number of times each other TF binds in the
same merged region was counted. The p-value for this overlap (number of merged regions in which they
co-bind) given the total set of merged regions, the set of merged regions associated with the query TF
(split per type), and the set of merged regions associated with the co-binding TF was calculated with the
hypergeometric distribution.

Expression values and condition specificity

Expression values were determined based on the filtered microarray compendium 2 from the CORNET
database.239 For condition-specificity, a gene was considered expressed if the log2 expression value was
above 7.5. The Kolmogorov-Smirnov test was executed using Scipy.240

Accession numbers

NCBI SRA and Gene Expression Omnibus accession IDs are as follows: FLPMYB88, GSE19763;
AGL15, GSE17717; GL3, GSE13090; GL1, GSE13090; AP2, E_MEXP_2653, SRP002328; SEP3,
GSE14635, SRP000783; WUS, E_MEXP_2499; SMZ, E_MEXP_2068; BES1, GSE24684; SOC1,
GSE33297, SRP020612; SVP, GSE33297; LFY, GSE28063, SRP003928; FUS, GSE43291; GTL1,
GSE40519; AMS, SRP002566; AP1, SRP002174; FHY3, SRP007485; REV, SRP006211; PIF4,
SRP010570; PIF5, SRP010315; FLC, SRP005412; TOC1, SRP010999; PRR5, SRP011389; AP3,
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SRP013458; PI, SRP013458; ERF115, GSE48793; PIF3, SRP014179; PRR7, SRP028272; FLM,
SRP026163; EIN3, SRP017902; DH sites, SRP009678.
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CHAPTER 5
Inference of transcriptional networks in Arabidopsis

thaliana through conserved non-coding sequence
analysisa

Abstract

Transcriptional regulation plays an important role in establishing gene expression profiles during devel-
opment or in response to (a)biotic stimuli. Transcription factor binding sites (TFBS) are the functional
elements that determine transcriptional activity and the identification of individual TFBS in genome
sequences is a major goal to inferring regulatory networks. We have developed a phylogenetic footprint-
ing approach for the identification of conserved non-coding sequences (CNSs) across 12 dicot plants.
Whereas both alignment and non-alignment-based techniques were applied to identify functional mo-
tifs in a multi-species context, our method accounts for incomplete motif conservation as well as high
sequence divergence between related species. We identified 69,361 footprints associated with 17,895
genes. Through the integration of known TFBS obtained from literature and experimental studies, we
used the CNSs to compile a gene regulatory network containing 40,758 interactions, of which two-thirds
act through binding events located in DNase I hypersensitive sites. This network shows significant en-
richment towards in vivo targets of known regulators and its overall quality was confirmed using five
different biological validation metrics. Finally, through the integration of detailed expression and func-
tion information, we demonstrate how static CNSs can be converted into condition-dependent regulatory
networks, offering new opportunities for regulatory gene annotation.

aThis chapter is based on Van de Velde et al. 225 . J.V.D.V, K.S.H. and K.V. designed the research methodology and wrote the manuscript. J.V.D.V (CNS
pipeline implementation, evaluation, condition-specific networks, and all figures,), K.S.H. (CNS pipeline design and implementation, ChIP pipeline and data
collection), and K.V. (condition-specific networks) performed data analysis.
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5.1 Introduction

Transcriptional regulation is a complex and dynamic process in which transcription factors (TFs) play a
fundamental role. Although being subject to many potentially overlapping control mechanisms, such as
miRNA regulation and chromatin accessibility coordinated by histone modifications and DNA methy-
lation, the binding of TFs on specific genomic locations modulating gene expression levels is pivotal
for the proper control of different biological processes. TF binding events can have a direct or indirect
effect on the activation or repression of gene transcription. More complex regulation of gene expression
is achieved through cooperative binding of different TFs adding an extra combinatorial level of con-
trol.15 These regulatory mechanisms allow organisms to process different endogenous signals related to
growth and development and to respond to changing environmental conditions including different types
of (a)biotic stresses.

Despite the functional importance of transcriptional regulation and the fact that 1500-1700 TFs have
been identified in Arabidopsis thaliana15,18, knowledge about the genes controlled by different TFs is still
very limited. AtRegNet, which is a part of the AGRIS database241, summarizes regulatory interactions
collected from small and large-scale experiments and contains 728 interactions when filtering on direct
and confirmed targets. This paucity of experimentally validated regulatory interactions can be partially
explained by the fact that previously used methods like electrophoretic mobility shift assay242, systematic
evolution of ligands by exponential enrichment243 and Yeast-one-hybrid244 are labour-intensive and only
yield a small number of interactions.214 More recent techniques such as protein binding microarrays,
chromatin immunoprecipitation (ChIP) with readout through microarray (ChIP-chip) or next-generation
sequencing (ChIP-Seq), allow TF protein-DNA binding to be analyzed in a high-throughput manner.
However published binding results using these methods have revealed a weak correlation between the
binding of a TF and transcriptional regulation of the potential target genes.245

Dozens of software tools have been developed to delineate regulatory regions based on experimental
features, such as co-regulation, or using advanced computational methods.73 Although the naÃŕve map-
ping of known DNA sequence motifs to promoter regions is frequently used to explore cis-regulatory
elements, this approach yields many false positives because TF binding sites are often short and typi-
cally contain some level of degeneracy in the binding motif.152 Although experimentally characterized
open chromatin regions, profiled through DNase I hypersensitive (DH) sites, offer a global picture of
accessible regions throughout the genome and can aid in reducing the motif search space216, determin-
ing individual TF binding events remains a major challenge. A promising solution for the computational
detection of functional elements is phylogenetic footprinting, which identifies conservation in ortholo-
gous genomic sequences.75,246 Orthologs are homologous genes derived from a speciation event in the
last common ancestor of the compared species. Regions of non-coding DNA in the genome that are
conserved across related species are likely to be under purifying selection and this signature can be seen
as evidence for functionality.42,148,150,247–251 Overall, it is not trivial to make the distinction between
conserved non-coding sequences (CNSs) that have arisen due to neutral sequence carry-over and func-
tionally constrained CNSs in closely related species. With the advent of methods such as PhastCons127,
which make use of aligned genomes and statistical models of sequence evolution, it has become possible
to determine CNSs in closely related species. These methods have shown greater power in the detection
of functional elements and lineage-specific conservation than detection methods based on comparing
more distantly related genomes in vertebrates, insects, worm and yeast.127 However, these approaches
require aligned genomes and the fraction of the genome that can be aligned drops drastically (≤40%)
when comparing species from different genera in flowering plants.252 This is due to large-scale genome
rearrangements and high sequence divergence. Furthermore, taxon sampling is still limited for flowering
plants with the exception of the Brassicaceae lineage. These factors make global alignment strategies for
the detection of CNSs impractical for many of the currently available plant genomes.253 An additional
difficulty for phylogenetic footprinting in plants lays in the fact that it is not trivial to identify one-to-one
orthology in plants„ due to a wealth of paralogs (homologous genes created through a duplication event)
in almost all plant lineages.180 Besides continuous duplication events, for instance via tandem dupli-
cation, many plant paralogs are remnants of whole genome duplications (WGDs). In flowering plants,
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the frequent WGDs in several lineages result in the establishment of one-to-many and many-to-many
orthologs (or co-orthologs). As a consequence, methods for identifying CNSs that were successfully
applied in yeast or vertebrates don’t work well in plants, as these methods cannot cope with complex
orthology relationships.148,254

Recently three approaches to identify genome-wide CNSs using multiple plant genomes have been
published. Baxter and co-workers used a local pairwise alignment approach, implemented in the Sea-
weed alignment plot tool131, to search for CNSs in the 2kb upstream of the transcription start site in
Arabidopsis.251 Pairwise alignments were generated between orthologous genes of Arabidopsis and
three highly diverged dicots: Papaya, Poplar and Grapevine (Carica papaya, Populus trichocarpa and
Vitis vinifera). The conservation scores associated with each pairwise alignment were aggregated while
orthologs were delineated using a combination of synteny and reciprocal best BLAST hits. Haudry
et al. 224 generated a whole genome alignment approach using a combination of the LASTZ (Harris,
2007) and MULTIZ125 tools across nine closely related Brassicaceae species. In this study a genomic
region was aligned with one or multiple regions in another species as a means to cope with polyploidy.
Conservation in the aligned regions was determined using PhyloP126 yielding a set of 95,142 Arabidop-
sis CNSs. Similarly, Hupalo and Kern (2013) created a whole genome alignment between 20 closely
and distantly related angiosperm genomes by making use of the LASTZ tool, and used PhastCons127 to
identify sequence constraint.

To generate a comprehensive overview of cis-regulatory elements in the Arabidopsis genome, we
developed a phylogenetic footprinting framework that identifies CNSs between 12 distantly related
genomes. Through the integration of information about known transcription factor binding sites (TFBS),
gene expression profiles, open chromatin states and different gene function annotations, the static CNSs
were annotated and translated into a gene regulatory network capturing known and condition-specific
regulatory interactions. In addition, we confirm using different experimental datasets and biological
validation metrics the quality of the inferred network.

5.2 Results

Detection of CNSs using a multi-species footprinting approach

We used a comparative genomics approach across 12 dicot plants to discover CNSs in Arabidopsis. A
computational framework was developed that uses the mapping of known motifs as well as de novo
local alignments to identify regulatory motifs conserved in multiple species. A local alignment-based
approach between orthologous regions was applied because global alignment strategies are impractical
for many of the currently available plant genomes due to massive loss of synteny conservation (Figure
C.1). The selected comparator dicot species used in this study are reported in Figure C.1. The first
method, called Comparative Motif Mapping (CMM), requires a candidate motif (e.g. a transcription
factor binding site represented as a consensus sequence or position count matrix) as input, and assesses
the motif conservation on, for example, the 2kb promoter of an Arabidopsis gene. Conservation is
scored based on the occurrence of the motif in the promoter regions of the orthologs from the query gene
in 11 other species, allowing for incomplete motif conservation. The statistical significance of a motif
conserved in a set of orthologous genes is determined by comparing the observed conservation score to
a background model that is built from conservation scores generated by processing the same motif on a
large number of randomly assembled non-orthologous families, containing the same species composition
and having the same sequence length distribution as in the real set of orthologs (see Methods). Based on
the phylogenetic footprinting principle, the assumption behind this statistical model is that conservation
of functional motifs will be higher between orthologous genes than between randomly chosen non-
orthologous genes. As orthologous genes between Arabidopsis and all other comparator species show
saturated substitution patterns (the fraction of synonymous substitutions per synonymous site, Ks ≥ 1,
see Methods), the identified CNSs show selective constraint indicating biological functionality.

The second method is alignment-based and uses a multi-species scoring approach to detect CNSs,
without requiring prior motif information. All footprints extracted from pairwise local alignments be-
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tween the query gene and its orthologs are collapsed onto the corresponding region of the query gene. As
such, the number of species that supports each nucleotide through a pairwise alignment is determined. In
the next step, conserved footprints are extracted and scored based on the number of species in which they
are conserved. Significant footprints are determined using a pre-computed background model built with
scores of footprints derived from non-orthologous families to which each real footprint is compared.
The same assumption regarding higher functional sequence conservation between orthologous genes
than between randomly chosen genes is made. For the alignment-based approach four alignment tools
were implemented in the framework and their performance was compared. These tools were DIALIGN-
TX128, Sigma129, ACANA130 and the Seaweeds alignment plot tool.131 The proposed methods are able
to cope with high sequence divergence when aligning non-coding sequences between related species. As
many motif and alignment comparisons are being made for thousands of genes, the false discovery rate
(FDR) was estimated by comparing the significant results of the real runs with those of control runs. The
FDR is defined as the ratio between the number of false positives estimated by the control run and the
number of rejected null hypotheses in the real run, and provides a better measure for controlling false
positives compared to the false positive rate, as the latter does not correct for the multiple tests performed
per query gene. Control runs are identical to real runs with the exception that the orthologous families are
randomly generated, maintaining the species constitution and gene size as observed in the real families
(see Methods). Unless mentioned otherwise, all presented results have an FDR below 10%.

After updating the TAIR10 genome annotation with 791 new miRNA loci obtained from the plant
microRNA database (PMRD)114, three different genomic sequence types were defined to identify CNSs
(2kb upstream, 1kb downstream and intron). In this analysis upstream and downstream are used relative
to the translation start site and translation stop site, respectively, because it has been shown, both through
promoter deletion experiments as well as using genome-wide ChIP analyses, that regulatory elements
can be found in 5’ and 3’ untranslated region (UTR).255–257 Another reason to include UTRs is that not
all genes have information about their UTR available. In total, the different genomic sequences cover
83% of the non-coding Arabidopsis genome and 84% of all complete intergenics. Gene orthology infor-
mation was retrieved from the PLAZA 2.5 integrative orthology method180, which uses a combination
of different detection methods to infer consensus orthology predictions, both for simple one-to-one as
well as for more complex many-to-may gene relationships. Here, two different orthology definitions
were used to delineate orthologs. The first definition uses a simple ’best BLAST hit’-derived method
that includes inparalogs, called best-hit and in-paralogous families (BHIF), while the second definition,
called consensus orthology, requires that at least two PLAZA detection methods confirm an orthologous
gene relationship (see Methods). Orthologs could be obtained for 24,241 Arabidopsis genes using BHIF
and for 21,300 genes using the consensus definition. For Arabidopsis genes with orthology information,
70% and 90% have orthologs in at least 10 species for the consensus and BHIF definition, respectively
(Figure C.2).

Combining phylogenetic footprinting experiments from the alignment-based and CMM runs, we iden-
tified in total 69,361 significant CNSs associated with 17,895 genes. These conserved regions cover 1070
kb of the Arabidopsis genome and all CNSs are available through a genome browser (see Methods). The
median length of a CNS was 11bp, while the largest and smallest CNS were 514bp and 5bp, respec-
tively (Figure 5.1A). All of the significant CNSs were conserved in at least two comparator species
while the median number of supporting species was six (Figure 5.1B). This result illustrates the strong
multi-species nature and potential functionality of the identified CNSs. Analyzing the contribution of
comparator species to footprints conserved in only two species showed no bias towards the most closely
related comparator species. Half of the CNSs are located in the 1 kb promoter region of annotated
genes and a large number of conserved regions were associated with introns (10,872) and downstream
sequences (6953) (Figure 5.1C). The alignment-based and CMM detection methods detect 30% and 60%
of all CNSs uniquely, respectively, while 10% is shared by both methods. CMM covers 473 kb and the
alignment-based-approach covers 686 kb. The complementarity of the two different orthology defini-
tions was evaluated by determining the uniquely detected CNSs and revealed that 70% of detected CNSs
were found using both definitions. The consensus and BHIF definition detected 19% and 11% unique
CNSs, respectively.
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Figure 5.1: Overview of CNS properties. A) Length distribution of significantly conserved footprints. All footprints are
grouped in bins of size 10bp. B) Overview of significantly conserved footprints in relation to the number of species in which
the footprint was conserved. For all conservation scores the relative percentage of significant footprints is shown (grey boxes)
as well as a cumulative distribution (black line). C) Breakdown of CNS over different genomic regions.

Besides regulatory elements, other structural features such as incorrectly annotated exons or missing
genes may show significant conservation across related genomes. To determine whether any of the
identified footprints represent coding features, we performed a sequence similarity search of all CNSs
against a large set of known plant proteins (see Methods). Only 499 CNSs (0.01% of all footprints)
showed a significant hit against the plant protein database and were discarded for downstream analysis.

Evaluation of different phylogenetic footprinting approaches using an experimental gold standard

In order to evaluate whether our footprints correspond with known regulatory sequences, we compared
our CNSs against the AtProbe dataset, which contains 144 experimentally determined cis-regulatory
elements (see Methods and Supplemental Online Data set 1b). Overall, our CNSs recovered 26% of the
experimental binding sites. This global true positive rate (TPR) was analyzed in more detail per detection
method (Figure C.3). Sigma, the best performing alignment tool, scores equally well compared to CMM
as both methods have a TPR of 19%. This result indicates that Sigma, which finds conserved regions
without any prior information, has sensitivity comparable to CMM, for which prior motif information is
required. Additionally, these methods are complementary as they uniquely detected 22% and 16% of the
recovered AtProbe elements, respectively. Whereas ACANA and Seaweeds-60 recovered experimental
instances (TPR of 5% and 3%, respectively), DIALIGN-TX and Seaweeds-30 did not, which is due to
the generation of spurious alignments yielding many false positives in the control runs.

To further validate our set of CNSs, we compared our results with three other CNS datasets from pub-
lished genome-wide phylogenetic footprinting approaches (Figure 5.2).224,251,252 Apart from evaluating
the sensitivity of the different studies, which relates to finding true positive AtProbe results, we also
assessed the specificity, which relates to identifying negative results. The latter is important, as a method
that would assign each non-coding nucleotide to a CNS would yield a high sensitivity but a low speci-
ficity, due to many false positives. Although it is not trivial to assemble a negative dataset of genomic
regions free from any regulatory sequence, we estimated false positives by reshuffling the AtProbe ge-
nomic locations 1000 times and determining the overlap with CNSs detected per footprinting study. The
estimated number of false positives was used to determine enrichment for known regulatory elements
(observed number of elements over expected number of elements, see Methods). This approach does not
guarantee that the reshuffled dataset, which covers in essence randomly selected non-coding genomic
regions that have no overlap with real AtProbe instances, contains only true negatives. However the
reshuffled dataset can be used as a proxy to estimate the specificity of different footprinting studies as
the same biases are present in the negative dataset for all methods.

Comparing the CNSs from the different studies showed that Haudry et al. (2013) has the highest
recovery of experimental binding sites (35% TPR), followed by our results (26% TPR) and Baxter et al.

bhttp://www.plantcell.org/content/suppl/2014/06/16/tpc.114.127001.DC1/tpc127001_Supplemental_Datasets.xls
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Figure 5.2: Recovery of AtProbe elements and comparison of CNSs from different phylogenetic footprinting studies. (A)
Overview of the recovery of experimental AtProbe elements in four different CNS studies. Black boxes show the percentage of
recovered elements and white boxes shows the percentage of uniquely recovered elements. Diamonds depict fold enrichments,
which are defined as the ratio of the observed overlap over the expected overlap by chance. (B) Genome-wide coverage of
CNSs. Black boxes show the total number of nucleotides assigned to CNSs per study while white boxes show the number of
nucleotides in CNSs that are unique to a single study.

(2012) (4% TPR). An overview of retrieved CNSs for the AtProbe genes for this study and Haudry et
al. (2013) can be found in Figure C.4. However, comparing the specificity using the shuffled AtProbe
datasets reveals that Haudry et al. (2013) has a lower enrichment towards experimentally determined
elements (8.5 fold enriched) than our approach (37 fold enriched) (Figure 5.2). Determining the genome-
wide coverage for the different CNS datasets revealed that Haudry et al. (2013), identified constraint for
4,834 kb of non-coding DNA. This coverage is substantially larger than our dataset (1,070 kb) and those
of Baxter et al. (2012) and Hupalo and Kern (2013), which cover 137 kb and 658 kb, respectively (Figure
5.2). Overall, our method, which we have shown to be accurate based on the analysis of known regulatory
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sites, identifies 64% of the nucleotides covered by our CNSs as evolutionary constrained which were not
identified by other methods, indicating that our phylogenetic footprinting approach covers a large fraction
of unique CNSs.

Conserved motif instances identify in vivo functional regions

To evaluate the functionality of the identified CNSs and to verify whether these conserved footprints
can provide a template to computationally map TF-target interactions, detailed comparisons of the CNSs
were made against different experimentally determined datasets. DH sites are associated with regions
of open chromatin where the DNA is accessible and as such provide a global perspective on possible
protein binding to the genome. Overall, 48% and 47% of our CNSs overlapped with a recently published
set of DH sites in flower and leaf tissue, respectively.216 This overlap is significant (p-value ≤ 0.001)
and shows high fold enrichment (4.0 for both DH sets, see Methods), revealing that a large part of the
CNSs can be accessed by TFs and as such can act as a functional TFBS. Our set of CNSs also exhibited
a significant overlap with H3K4me3, H3K9ac and H3K4me2 marks (2.6, 2.2 and 1.7 fold enriched,
respectively; Figure C.5). These histone modifications are indicative of active promoters and enhancer
elements.22,258 Interestingly, our regions showed an even higher enrichment for regions where DH sites,
H3K4me3, H3K9ac and H3K4me2 coincide (6.3 fold enriched, p-value ≤ 0.001), corroborating that
several of the conserved regions are associated with actively transcribed genes.

Whereas the experimental datasets profiling different chromatin states act as a proxy for function-
ality, more detailed regulatory information can be obtained by comparing the CNSs with experimental
datasets comprising functional TFBS. To delineate a high-quality dataset of in vivo functional TF-targets
covering directly regulated genes, publicly available ChIP-Seq data was combined with enriched motifs
in ChIP-Seq peaks and TF-perturbation expression profiles (see Methods). This was done for 15 TFs
(AGAMOUS-LIKE 15 (AGL15), APETALA1 (AP1), APETALA2 (AP2), APETALA3 (AP3), SUP-
PRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), PISTILLATA (PI), LEAFY (LFY), FLOW-
ERING LOCUS C (FLC), PSEUDO RESPONSE REGULATOR 5 (PRR5), PHYTOCHROME INTER-
ACTING FACTOR 3 (PIF3), PHYTOCHROME INTERACTING FACTOR 4 (PIF4), PHYTOCHROME
INTERACTING FACTOR 5 (PIF5), FAR-RED ELONGATED HYPOCOTYLS 3 (FHY3), BRI1-EMS-
SUPPRESSOR 1 (BES1) and FUSCA 3 (FUS3)) yielding a dataset of 2807 regulatory interactions (Sup-
plemental Online Data set 2b). Importantly, these in vivo functional targets were determined indepen-
dently of any comparative information and thus provide an independent dataset to evaluate our footprints.
Overlap analysis revealed that in total 787 functional binding sites (28%) were successfully recovered
by our CNSs. Although the recovery rate for individual TF varies from 8% for AP3 to 57% for PRR5
(median recovery 36%), the number of recovered genes for all 15 TFs was significantly higher compared
to the number of recovered target genes expected by chance (p≤0.001, see Supplemental Dataset 2b and
Figure 5.3).

To compare the specificity by which our CNSs identified functional TFBS with other computational
methods, two other protocols were evaluated. Whereas the first approach is based on the simple mapping
of all positional count matrices of all 15 TFs on the non-coding genomic DNA, the second approach
comprises motif mapping in open non-coding chromatin regions that were identified through DH sites.216

Enrichment analysis using shuffled datasets of the in vivo functional regions (see Methods) revealed that
our CNSs yielded higher specificity for functional regulatory elements than either of these alternative
protocols (median fold enrichment of 41.2 for CNSs versus 2.6 and 12.8 fold enrichment for the simple
and DH site-based mapping methods, respectively) (Figure 5.3, Supplemental Online Data set 3b and
Figure C.6).

Construction and biological evaluation of an Arabidopsis gene regulatory network

To get an overview of how transcriptional regulation is organized on a genome-wide level, motif infor-
mation was combined with our CNSs to construct a gene regulatory network (GRN) containing 40,758
interactions (see Methods). This GRN includes 157 TFs that, based on conserved binding sites, have

bhttp://www.plantcell.org/content/suppl/2014/06/16/tpc.114.127001.DC1/tpc127001_Supplemental_Datasets.xls
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Figure 5.3: Recovery of in vivo functional targets using CNS information. White and black boxes show fold enrichments
for CNSs and naÃŕve motif mapping, respectively. White and black diamonds show the fraction of recovered elements for CNSs
and a simple motif mapping approach, respectively.

one or more target genes and covers 11,354 genes in total (Supplemental Online Data set 4b). On av-
erage, a TF in the predicted network has 259 target genes while each target gene is regulated by 4 TFs.
The number of target genes per TF and their associated GO enrichment can be seen in Figure C.7. For
these interactions, 64.6% of the conserved binding sites are overlapping with a leaf or flower DH site.
To evaluate our network we used an experimental GRN of 1092 confirmed interactions derived from
AtRegNet259 and a collection of regulatory interactions obtained from small-scale studies concerning
secondary cell wall metabolism.260 Overlap analysis between the predicted network and the experimen-
tal network revealed that edges present in the predicted network are significantly more likely to also be
present in the experimental network than would be expected by chance (4.65 fold enrichment, p-value ≤
0.001; see Methods). Apart from comparing the global overlap between both networks, we also assessed
the overlap between the predicted and experimental TF-target interactions for individual TFs for which
motif information was available. For a sub-set of TFs with ten or more known target genes, a signif-
icant overlap was found for nine out of 13 TFs (p-value ≤ 0.001), which covers 99 out of 385 (26%)
experimentally determined gene regulatory interactions.

To evaluate which role intronic regions have in transcriptional gene regulation through TF binding,
an intron-specific GRN was generated. This network consists of 2821 interactions between 123 TFs
and 1552 target genes. Six out of the 99 experimentally confirmed interactions that were retrieved were
unique to this network (See Supplemental Online Data set 5). Examples of correctly inferred intron
interactions are binding events of AP2 and LFY to the intron of AGAMOUS (AG).261 Similarly, TF-
miRNA regulation was studied by constructing a small sub-network containing 24 TF-miRNA targets for
14 TFs and 10 target miRNAs (Supplemental Online Data set 6). One of the retrieved interactions is the
known binding of the ABRE binding factor (ABF1) to the promoter of mir168a.215 Another interesting,
however unconfirmed, interaction is that between AP2 and mir167a, the latter which is known to play a
role in flowering maturation.262

In addition to the recovery of known regulatory interactions, the biological relevance of the predicted
target genes was studied using five independent biological datasets. Gene Ontology (GO)105, Map-
man112 and functional gene modules134 describe functional annotations and were used to assess if target
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genes of the same TF participate in similar biological processes or have similar functions. The functional
modules comprise a set of 13,142 genes (1562 modules) annotated with specific functional descriptions
based on experimental GO information, protein-protein interaction data, protein-DNA interactions or
AraNet gene function predictions. The evaluation of our GRN is made based on the assumption that a
set of true target genes of a TF will have a higher enrichment for functional annotations than randomized
networks.213 For each TF, the enriched functional annotations were determined and compared against
that of randomized networks (see Methods). Next to the three functional datasets, two general gene ex-
pression compendia were used, stress and development239, to investigate if genes targeted by the same
TFs (called co-regulated targets) are more likely to be expressed at similar developmental stages or under
similar stress conditions. Following Marbach et al. (2012), co-regulated gene pairs are defined as genes
having 50% or more shared regulators. The average level of co-expression was calculated using correla-
tion analysis for all co-regulated gene pairs and compared to that of randomized networks (see Methods).
All five biological metrics were performed on the CNS-based GRN as well as on the experimental GRN
and we observed that both networks were significantly enriched for all five biological datasets (p-value≤
0.05, Figure 5.4). A detailed comparison revealed that GO fold enrichment was higher in the predicted
network. Although the opposite is true for both Mapman and the functional modules, there is still a
significant enrichment in our predicted GRN, illustrating the functional coherence of the predicted target
genes. The discrepancy between different functional annotation datasets can largely be explained by the
fact that for GO annotations a filtering step using GO slim terms was performed in order to have suffi-
cient annotations for all genes in the network. These terms are very broad and as such enrichment will be
lower compared to the two other functional classification datasets. Based on the stress and development
expression datasets, a higher level of co-expression was observed for co-regulated genes in the predicted
and experimental GRN, compared to random GRNs (Figure 5.4). The CNS-based network outperformed
the experimental network, as the fold enrichments were higher for the predicted GRN in both expres-
sion datasets. A similar evaluation was performed on two sub-sets of the predicted network, which were
defined based on the number of species in which a regulatory interaction is conserved. The predicted
network was divided into a highly (conservation CNS ≥6 species) and a moderately conserved (con-
servation CNS 2-6 species) sub-network. Both the highly and the moderately conserved sub-networks
showed significant enrichment for co-expression and functional coherence, indicating that CNSs with
support from a lower number of species are also biologically meaningful (Figure C.8).

Combining the CNS-based network with expression information to identify condition-specific gene
regulatory interactions

To investigate the biological role of the predicted GRN, the static gene regulatory interactions were
converted into condition-specific interactions through the integration of expression information. Co-
expression was determined between a TF and each predicted target gene based on 11 expression com-
pendia from the CORNET database239, comprising gene expression profiles from microarray exper-
iments performed for different organs (flower, leaf, root, seed), during development, under different
treatments and stresses (hormone, biotic and abiotic stress) (sdee Methods). Co-expression between a
TF and a predicted target gene can act as a proxy for regulation as both are frequently expressed in
the same conditions.263 6957 Interactions between a TF and its predicted target genes showed signifi-
cant co-expression in one or maximum three expression compendia (Supplemental Online Data set 7b).
Examples of specific co-expression patterns of predicted TF-target interactions that are confirmed by
experimentally confirmed target genes include interactions for MYB DOMAIN PROTEIN 58 (MYB58)
under biotic stress, MYB DOMAIN PROTEIN 83 (MYB83) in leaf and for AP2 and ELONGATED
HYPOCOTYL 5 (HY5) under abiotic and biotic stress. MYB DOMAIN PROTEIN 63 (MYB63) shows
co-expression of target genes in five different compendia, including (a)biotic stress and hormone (Figure
C.9). The following paragraphs highlight examples of condition-dependent GRNs.

Five secondary wall NAM-ATAF1/2-CUC2 (NAC) TFs were selected to illustrate how integrating
co-expression information into the predicted GRN can be used for modelling of the transcriptional net-
work in different conditions and plant organs. SECONDARY WALL-ASSOCIATED NAC DOMAIN
1 (SND1) is a master transcriptional regulator activating the developmental program of secondary cell
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Figure 5.4: Evaluation of the biological relevance of the predicted network using different biological metrics assessing
functional and expression coherence.Gene Ontology annotations, Mapman annotations and functional modules together
with a stress and developmental expression compendium were used to evaluate the biological relevance of the predicted GRN.
A comparison of fold enrichment is depicted between the predicted network (black bars) and the experimental network (white
bars). All reported fold enrichments are significant (p-value ≤ 0.05). Numbers in parentheses report the number of regulatory
interactions in the two networks and the number of genes having functional or expression information, respectively.

wall (SCW) biosynthesis. SND1 and its functionally related homologs NAC SECONDARY WALL
THICKENING PROMOTING FACTOR1 (NST1), NAC SECONDARY WALL THICKENING PRO-
MOTING FACTOR2 (NST2), VASCULAR-RELATED NAC-DOMAIN 6 (VND6) and VASCULAR-
RELATED NAC-DOMAIN 7 (VND7) regulate the same downstream targets in different cell types.184

While SND1 and NST1 activate the SCW biosynthetic program in fibers, VND6 and VND7 specifically
regulate SCW biosynthesis in vessels, and NST1 and NST2 act together in regulating SCW biosyn-
thesis in endothecium of anthers (Mitsuda and Ohme-Takagi, 2008;.184 These five TFs bind to an im-
perfect palindromic 19-bp consensus sequence designated as secondary cell wall NAC binding element,
(T/A)NN(C/T)(T/C/G)TNNNNNNNA(A/C)GN(A/C/T)(A/T), in the promoters of their direct targets.264

For VND6 an additional binding site has been described (CTTNAAAGCNA).265 Based on the predicted
targets of these 5 TFs, we used the co-expression information to introduce specificity through condition-
dependent regulation. For SND1, NST1 and NST2 we studied target genes co-expressed in a flower and
a seed expression compendium, because of their role in SCW biosynthesis in flower and reproductive
organs (Mitsuda and Ohme-Takagi, 2008;184 (Figure 5.5). Auxin, cytokinin, and brassinosteroids play
pivotal roles in xylem vessel formation (Fukuda, 2004) and VND6 and VND7 show elevated expression
levels in presence of these three hormones.266 Both TFs reside in the same functional module, which
is annotated with the GO term ’response to brassinosteroid stimulus’.134 Therefore, VND6 and VND7
targets co-expressing in a hormone compendium were selected. For all TFs, predicted target genes were
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only selected if they were part of a functional module grouping two or more predicted target genes. This
network groups 5 TFs showing 69 condition-specific interactions with 24 target genes (Figure 5.5). The
SCW network contains a large number of experimentally confirmed interactions (14/69) and nearly all
genes in the network are involved in SCW metabolism based on GO annotations (21/24). In this network,
two TFs, namely MYB DOMAIN PROTEIN 46 (MYB46) and SECONDARY WALL-ASSOCIATED
NAC DOMAIN PROTEIN 3 (SND3), which are known direct targets involved in the SCW pathway,
are present. Interestingly, these genes do not have a co-expression link with SND1 in flower or seed,
but a co-expression link is present with NST1, a TF that cooperates with SND1 in SCW biosynthesis in
fibers.184 Overexpression of MYB46 leads to activation of the entire SCW biosynthetic program and its
co-expressing targets in seed, flower and hormone expression compendia show a large number of shared
targets with the five master regulators as well as a large set of genes involved in SCW biosynthesis.184

Figure 5.5: A condition-specific secondary cell wall gene regulatory network.Gene Ontology annotations, Mapman anno-
tations and functional modules together with a stress and developmental expression compendium were used to evaluate the
biological relevance of the predicted GRN. A comparison of fold enrichment is depicted between the predicted network (black
bars) and the experimental network (white bars). All reported fold enrichments are significant (p-value ≤ 0.05). Numbers in
parentheses report the number of regulatory interactions in the two networks and the number of genes having functional or
expression information, respectively.

A similar approach was applied to delineate condition-specific targets for AP3 and PI, two TFs that
have been shown to act as bifunctional transcription factors in flower development.267 AP3 and PI are
necessary for the proper development of the petals and stamens.268,269 Plant hormones such as jasmonic
acid have been shown to play a role in both stamen and petal development.270,271 The expression data
for these two TFs shows induction in jasmonic acid treatment conditions. Therefore co-expressed target
genes in the hormone expression compendium were selected. This approach resulted in a hormone-
specific GRN with 223 target genes and 237 interactions. The network shows a strong enrichment for
genes involved in flower development (53/223)(Figure C.10. Additional evidence for the relevance of this
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network was generated through integrating ChIP-Seq and differential gene expression data. The ChIP
and differential expression experiments were performed at the early-intermediate floral stage (stage 4-5
flowers)267. In this network, we observe 11 interactions that are confirmed through binding of the TF in
the ChIP-Seq data and also 6 interactions that are confirmed through differential expression of the gene
after TF perturbation. Interestingly, AG is a predicted co-expressed target gene of AP3 in the hormone-
specific network and AG has been shown to be involved in stamen development through regulation of
jasmonic acid biosynthesis genes.272

5.3 Discussion

In this study we developed a new phylogenetic footprinting approach to identify conserved non-coding
sequences in Arabidopsis through the comparison with 11 dicot genomes. Distantly related species were
used because of the premise that, in comparison to one another, all non-coding regions that are not under
functional constrained will have undergone one or more mutations. A set of 69,361 CNSs associated
with 17,895 genes was delineated through the combination of an alignment-based and a non-alignment-
based approach. Twenty-eight percent of the CNSs were found downstream of genes, in introns or more
than 1kb upstream of a gene, indicating that regulatory elements are not restricted to the first hundreds
of base pairs upstream of a gene.253,273

A previous evaluation study reported that phylogenetic footprinting in plants works best by comparing
genomes that have diverged less than 100mya or have non-saturated substitution patterns.253 Phyloge-
netic footprinting methods that use genome synteny inferred through genome alignments as primary
source of orthology information indeed have difficulties integrating distantly related genomes.252 This is
due to the frequent nature of polyploidy and genome rearrangements in dicot plants (Figure C.1) causing
problems for global genome alignment methods. Here, a combination of different gene orthology pre-
diction methods was used that do not rely on synteny information. As such, our approach is well-suited
to incorporate more distantly related species including many-to-many gene orthology relationships. Our
alignment-based approach is best summarized as a multiple local alignment strategy, since first local pair-
wise alignments are identified which are subsequently aggregated on the Arabidopsis reference genome
in order to obtain multi-species footprints. We demonstrated that this approach is very suitable for de-
tecting CNSs over large phylogenetic distances, as half of our CNS are conserved in six or more species,
spanning ≥100 million years of evolution (Figure 5.1B). Furthermore, approaches based exclusively
on pairwise alignments lack the power to detect a large set of our CNSs over a similar evolutionary
distance.251,253

Comparing our CNSs with the experimental AtProbe benchmark dataset showed that both alignment
and non-alignment-based approaches have a similar performance, recovering 19% of the experimen-
tal regulatory elements. Both approaches are complementary as they together recovered 26% of the
AtProbe elements. This is largely explained by the fact that the alignment-based approach identifies
large conserved regions, typically covering clusters of individual TFBS, whereas the non-alignment-
based approach will also identify short conserved motifs. Based on a comparison of our footprints with
three recently published studies224,251,252, 64% of our CNSs represent newly discovered constrained se-
quences. This finding is in agreement with Haudry et al. (2013) who found that their CNSs show limited
conservation outside the Brassicaceae lineage. Compared to Baxter et al. (2012) and Hupalo and Kern
(2013), both the number of comparator species as well as the different alignment strategy contribute to
the difference in identified CNSs. Comparison with the three previously published CNS datasets revealed
that our CNSs have the highest enrichment for experimentally determined regulatory elements. Haudry
et al. (2013) recovered a larger number of bases covered by CNSs with a lower enrichment towards
the AtProbe elements. Although these results could indicate that their higher coverage is associated
with a reduced specificity, additional explanations can be formulated. As demonstrated by Haudry et al.
(2013), their CNSs also contain other types of functional non-coding sequences, such as RNA genes,
which are not accounted for in our benchmark. CNSs could also cover long-range enhancers. Also, the
conservation of functional non-coding sequences is likely greater within the Brassicaceae lineage due to
more specialized developmental processes and adaptation to environmental conditions, whereas our set
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of CNSs covers the regulation of processes that are highly conserved across a wide range of dicot plants.
A subset of the AtProbe regulatory elements recovered was unique to this analysis, corroborating the
complementarity of our CNSs with these previous studies.

The biological relevance of our CNSs was further evaluated by overlap analysis with a number of
different chromatin modification marks. Enrichment analysis showed that our CNSs are highly enriched
for DH sites as well as for histone marks promoting transcription indicating that our CNSs are located
within open chromatin regions or nearby actively transcribed regions. Processing of 15 TF ChIP-chip/seq
experiments together with the corresponding transcriptome profiling studies after TF perturbation gen-
erated a high-quality dataset of 2807 in vivo functional binding sites. In total 28% of these regions were
successfully recovered. Mapping the position count matrices for all 15 TFs genome-wide and retain-
ing only instances overlapping with a CNS, showed to be more specific to recover functional binding
sites compared to filtering using DH sites. In contrast to simple motif mapping approaches which are
associated with high false positive rates, computationally identified CNSs as well as experimental DH
sites offer two complementary data sources to start performing systematic regulatory genome annotation
in plants. The largest bottleneck for identifying all functional regions through conservation analysis is
caused by the highly degenerative nature of certain binding sites, such as CArG boxes for AP1 and AP3
(CC(A/T)6GG).274 The newly developed algorithm will not detect these binding sites as significantly
conserved because these sites will have high conservation scores in both the real and control run. An-
other explanation for the low recovery of functional binding sites for some TFs is the fact that the position
count matrices that are used to evaluate conservation in the orthologous regions of distantly related or-
ganisms might be too specific for Arabidopsis, making it more difficult to identify conserved instances.
Finally, in some cases a regulatory interaction might be species or clade-specific, making comparative
methods impractical. Overlap analysis of the recovered in vivo binding sites elements with CNSs from
the three other studies showed that 52.3% of the 787 recovered functional regions were uniquely discov-
ered by our approach. This further supports our conclusion that this study captures a unique fraction of
regulatory elements in Arabidopsis.

Whereas several studies reporting plant CNSs have suggested different lines of evidence to indicate
that sequence conservation implies functional conservation and a role for CNSs in transcriptional regula-
tion224,247–249,251,252, their success in inferring regulatory networks has been hampered by the difficulty
to convert CNSs into TF-target interactions. Based on different publicly available databases and ChIP
studies, TFs for which motif information was available were integrated with the CNSs to generate a gene
regulatory network containing 40,758 TF-target interactions. Overlap analysis with an experimental
GRN containing 1092 confirmed regulatory interactions showed that the predicted network is highly en-
riched for experimental edges. In addition, the functional and expression coherence of the target genes in
the different GRNs was evaluated by integrating five different biological datasets. Application of these
different validation metrics on the experimental and predicted network were used to assess the func-
tional and co-regulatory properties of the different TF-target interactions. Whereas both GRNs showed
significant enrichment for all biological datasets, the predicted network outperformed the experimental
network for the stress and developmental expression compendia and also for GO functional annotations.
Application of the co-expression metric on two sub-networks with edges supported by CNSs show-
ing conservation in a different number of species revealed that also regulatory interactions with lower
species support are biologically relevant. Although the predicted GRN, like the experimental network,
lacks many true regulatory relationships, comparison with experimentally validated targets as well as
validation through the different biological datasets showed that the predicted network is of high overall
quality. Compared to the experimental network, where each TF regulates on average 12 target genes, our
GRN predicts on average 20 times more target genes for 157 TFs. As our GRN likely identifies many
true interactions, which have not been detected and validated experimentally, it provides an important
step forward towards the systematic regulatory annotation of individual genes.

A sub-network containing unique regulatory interactions based on intronic CNSs recovered a small
subset of experimental interactions, confirming that intronic regions also play an important role in tran-
scriptional regulation in plants. The TF-miRNA network contained only 24 TF-miRNA interactions, for
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which one previously described interaction between ABF1 and mir168a could be confirmed. A major
challenge for phylogenetic footprinting of miRNA genes and the construction of miRNA GRNs is the
lack of miRNA orthology information across a number of related species, which is a prerequisite for
most phylogenetic footprinting methods.

Although the predicted GRN offers additional information on the transcriptional regulators controlling
individual target genes, the static nature of these CNS-based interactions offers few insights about the
biological context of these regulatory events. We demonstrated how integrating expression data for
different organs and conditions with the predicted interactions through co-expression analysis provides
an effective approach to obtain condition-specific networks. Based on 11 compendia containing gene
expression profiles in different biological contexts, we identified 6597 regulatory interactions where a
TF specifically co-expressed with its target gene in one or a few conditions. As shown for the secondary
cell wall and AP3/PI networks, this co-expression information can be used to filter the set of predicted
interactions and to identify previously unknown target genes as well as new regulators acting downstream
of the TF under investigation. Furthermore, for different TFs and signaling cascades, it also becomes
possible to investigate how the transcriptional control of some direct target genes changes in different
conditions while other targets show constitutive co-expression.

Apart from integrating sequence conservation and expression information, other approaches combin-
ing complementary functional datasets may improve the power to correctly identify regulatory inter-
actions. For example, the incorporation of additional regulatory information such as differentially ex-
pressed genes from TF perturbation experiments or genomic regions marked with transcription-promoting
chromatin modifications can offer new ways to identify functional target genes. With the advent of TF
binding data from protein binding microarray experiments for an increasing number of TFs66,233 our
CMM approach combined with co-expression analysis offers a practical means to convert in vitro TF
binding information from protein binding microarrays into functional and condition-specific GRNs.

5.4 Material and Methods

Sequence and orthology information

The 12 dicotyledonous genomes used in this paper were Arabidopsis thaliana (TAIR10), Carica papaya
(Hawaii Agriculture Research Center), Glycine max (JGI 1.0), Malus domestica (IASMA), Populus tri-
chocarpa (JGI 2.0), Fragaria vesca (Strawberry Genome 1.0), Medicago truncatula (Mt 3.5) Lotus japon-
icus (Kazusa 1.0), Theobroma cacao (CocoaGen v1.0), Ricinus communis (JCVI 1.0), Manihot esculenta
(Cassava4) and Vitis vinifera (Genoscope_v1) and were obtained from the PLAZA 2.5 database.180The
structural annotation of the genomes in PLAZA 2.5 was updated by adding all known miRNAs obtained
from the plant microRNA database.114 miRNA sequences were downloaded from PMRD and mapped to
the genomes using BLASTN275 and GenomeThreader (-mincoverage 0.89 -minalignmentscore 0.95)276

and only unique mappings were retained. The overlap with existing RNA gene annotations in PLAZA
2.5 and the database was determined by using BLASTN (e-value ≤ 1e-10) against all transcripts, and
only RNA genes lacking overlap with already annotated loci were added. In total, 791 new miRNA loci
were added in Arabidopsis and 20% of all miRNAs have orthologs in one or more related dicot genome.

Three sequence types, upstream, downstream and intronic, were used to identify CNSs. Upstream
sequences were restricted to the first 1000/2000 bp upstream from the translation start site or to a shorter
region if the adjacent upstream gene is located within a distance smaller than 1000/2000 bp (n = 33,703).
1000 and 2000bp upstream sequences were processed as two independent runs. Downstream sequences
were restricted to the first 1000 bp downstream from the stop codon or to a shorter region if the adjacent
downstream gene was within 1000bp (n = 33,809). The intronic sequence type is defined as the complete
gene locus with exons masked (n = 20,608).

Orthologs for each Arabidopsis gene were determined in 11 comparator dicot species using the
PLAZA Integrative Orthology method.180 The included orthology detection methods are OrthoMCL277,
phylogenetic tree-based orthologs and BHIF. Through Ks graphs in the PLAZA 2.5 platform, we con-
firmed that all included dicot species have saturated substitution patterns (mean Ks≥1) when comparing
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orthologous gene pairs with Arabidopsis.180

Synteny conservation

Orthologs were determined for each Arabidopsis protein-coding gene using the PLAZA Integrative Or-
thology method demanding that the orthology prediction is supported by at least two detection methods.
The conservation of the orthologous relationship for the flanking gene upstream and downstream of each
ortholog was determined for each of the comparator species.

Comparative Motif Mapping

Known motifs were mapped on the regions covered for the three sequence types for all included species
using dna-pattern allowing no mismatches.278 692 cis-regulatory elements were obtained from AGRIS259,
PLACE176 and Athamap.279 In addition, 44 positional count matrices were obtained from Athamap and
for 15 TFs positional count matrices were obtained from ChIP-Seq data (see section ’ChIP-Seq in vivo
targets’). Positional count matrices were mapped genome-wide using MatrixScan using a p-value cut-off
≤ 1e-05.278

For each Arabidopsis gene and per sequence type, a conservation score SCMM is determined per
motif. The SCMM is calculated as the number of species in which this motif was conserved in an
orthologous family context. The statistical significance of each motif with SCMM was tested through
a comparison with the SCMM derived from 1000 random gene families that have the same number of
orthologs and species but are lacking an orthologous relationship to the query gene. Evaluation of the
statistical significance using larger sets of random families (1000-100,000) confirmed that the p-values
obtained using 1000 non-orthologous families are robust.

The FDR was calculated through a control experiment in which the entire analysis, including all Ara-
bidopsis genes, was performed using non-orthologous genes. For each query gene a family was randomly
assembled sampling non-orthologous genes, but maintaining the number of genes and the species com-
position of the real orthologous family. The real and control run were compared and footprints in the
real run with a p-value that corresponds to a FDR ≤ 10% were retained.

Alignment-based phylogenetic footprinting

Pairwise alignments were generated between all Arabidopsis query genes and their orthologous genes
for all three sequence types and two orthology definitions. ACANA and DIALIGN-TX were run with
standard parameters. Seaweeds was run with the step size parameter set to 1 and window size to 60
bp and 30bp (referred to as Seaweeds-60 and Seaweeds-30, respectively) and only alignments with an
alignment score higher than 40 and 20, respectively, were retained. Sigma was run with the -x parameter
set to 0.5.

All pairwise alignments were aggregated on the query sequence generating a multi-species conserva-
tion plot that shows for each position of the investigated region how many species support this nucleotide
through pairwise footprints. All footprints for each level of conservation are extracted from the multi-
species conservation plot and each footprint is defined by its length and a multi-species level conservation
score SMSP, which denotes the number of comparator species supporting that footprint.

For each alignment tool and sequence type, a pre-computed pairwise background library, including
≥25 million alignments, was used to determine significant conservation of footprints. The background
model was created by binning all investigated regions of all species on length, selecting 150 genes from
each bin and making pairwise alignments for all possible length bin combinations. The reasoning behind
this binning approach is that we wanted to compare the investigated region of the query gene with a
background model consisting of genes that have regions of similar size. For each Arabidopsis gene,
1000 non-orthologous (random) gene families with the same species and ortholog composition as the
query gene were generated and their pairwise alignments were obtained from the background library.
Multi-species conservation is calculated for each family and the footprints obtained from all random
families are binned on length. Each bin needs to contain at least 1000 multi-species footprints together
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with their associated scores, otherwise one or more subsequent bins (with greater lengths) were added.
Finally, the statistical significance of each real footprint was then evaluated by counting the number of
footprints in random families that have an equally good or better SMSP in the associated background
length bin. Comparison of results between using a background library and generating these random
families on-the-fly for each gene has pointed out that the results are not altered but processing time is
greatly improved. Again, the real and control run were compared and footprints in the real run with a
p-value that corresponds to a FDR ≤ 10% were retained.

Browsing results in GenomeView

The complete set of CNSs, overlapping known motifs and DH sites can be browsed through the link
http://bioinformatics.psb.ugent.be/cig_data/Ath_CNS/Ath_CNS.php. While loading, when
asked, the file format needs to be specified to BED format.

Protein-coding potential of CNSs

The coding potential of a CNS was determined using BLASTX275 against the PLAZA 2.5 protein
database (780,667 proteins from 25 Viridiplantae species) and all significant hits were removed. To
establish an appropriate e-value cutoff for a significant hit, we randomly permuted each sequence in our
CNS dataset set and performed the BLASTX search using this set of sequences to obtain the distribution
of e-values for random sequences with the same length distribution.251 We then performed the same
BLASTX search on the real sequences, using the minimum e-value from the random set (e-value ≤
0.001) as the cutoff for a significant hit.

Overlap of CNSs with benchmarks

Our CNS dataset was compared with different functional datasets. The first one was the Arabidopsis
thaliana promoter binding element database (AtProbe) (http://exon.cshl.org/cgi-bin/atprobe/
instance.pl), which contains 172 experimentally determined regulatory sequences in 76 Arabidopsis
genes. This dataset was curated by removing results from promoter deletion experiments and CREs for
which mapping data was not correct with the coordinates in the dataset, resulting in a dataset of 144
CREs present in 63 genes (Supplemental Online Data set 1b). The benchmark dataset was formatted
as a BED file and the overlap (recovery of elements) was determined using the BEDTools function
intersectBed with -u parameter and the -f parameter on 0.5.124 This means that an experimental CRE
was considered ’correctly identified’ if more than half of the region was overlapping with a CNS. CNS
datasets from three recent studies were obtained through the UCSC genome browser at http://genome.
genetics.rutgers.edu/ (table top10conserved) for Hupalo and Kern (2013), the authors for the CNS
data of Arabidopsis from Haudry et al. (2013) or were assembled from supplementary data.251 These
files were also formatted as BED files and compared with the AtProbe benchmark. False positives were
determined by shuffling the AtProbe dataset 1000 times using shuffleBed, excluding coding sequences
and the actual AtProbe instances. The overlap with CNS files was determined for each shuffled file
and the median number of recovered elements over 1000 shuffled files was used as a measure for false
positives. This estimation of false positives was used to calculate a fold enrichment, defined as the ratio
between observed overlap and expected overlap by chance.

A list of 2807 in in vivo functional targets was assembled from genes that were annotated to a TF
ChIP-Seq peak in non-coding DNA in which a DNA motif was significantly enriched, and that show
regulatory response in the corresponding TF perturbation experiment (see Supplemental Online Data set
2b). Overlap and enrichment for in vivo functional targets was determined in the same way as for the
AtProbe benchmark. For DH sites and histone modifications datasets the number of overlapping CNSs
was also determined using BEDTools. Enrichment of our CNS dataset for these marked chromatin
regions was determined as described above.
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Detection of DNase I hypersensitive sites and histone modifications

The BED files with the flower and leaf DH sites were downloaded from the SRA database, SRA accession
number SRP009678.216 The histone modification datasets (H3K4me3, H3K4me2, H3K9ac) were down-
loaded from the SRA database, GEO accession number GSE28398.280 The reads were mapped to the
unmasked TAIR10 reference genome of Arabidopsis thaliana (TAIR10_chr_all.fas; ftp.arabidopsis.org)
using CLC assembly cell 4.2.0 with -c parameter for colorspace reads and -r to ignore redundant reads.
Peak calling was performed using DFilter 1.0 with -std 2.281

ChIP-Seq in vivo targets

For the ChIP-Seq datasets (PHYTOCHROME INTERACTING FACTOR 4 [PIF4]282, PHYTOCHROME
INTERACTING FACTOR 5 [PIF5]283, APETALA1 [AP1]160, APETALA2 [AP2]157, FLOWERING
LOCUS C [FLC]284, FAR-RED ELONGATED HYPOCOTYLS 3 [FHY3]285, PSEUDO RESPONSE
REGULATOR 5 [PRR5]286, APETALA3 [AP3]267, PISTILLATA [PI]267 and PHYTOCHROME IN-
TERACTING FACTOR 3 [PIF3]287), raw reads were downloaded from the SRA database (SRA acces-
sion numbers SRP010570, SRP010315, SRP002174, SRP002328, SRP005412, SRP007485, SRP011389,
SRP013458, SRP014179). The quality of the raw data was checked with FASTQC (v0.10.0; http:
//www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Adaptors and other overrepresented
sequences were removed using fastx (v0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/). The
reads were mapped to the unmasked TAIR10 reference genome of Arabidopsis thaliana
(TAIR10_chr_all.fas; ftp.arabidopsis.org) using BWA with default settings (v0.5.9119). Reads that
could not be assigned to a unique position in the genome were removed using samtools (v0.1.18119) by
setting the mapping quality threshold (-q) at 1. Redundant reads were removed, retaining only one read
per start position, using Picard tools (v1.56; http://picard.sourceforge.net). Peak calling was
performed using MACS (v2.0.10;52). The genome size (-g) was set at 1.0e8, and the FDR cut-off was
set at 0.05. Other parameters were set at their default values.

For the ChIP-chip data (BRI1-EMS-SUPPRESSOR 1 (BES1)288, SUPPRESSOR OF OVEREX-
PRESSION OF CO 1 (SOC1)289, AGAMOUS-LIKE 15 (AGL15)290, LEAFY (LFY)291 and FUSCA 3
(FUS3)292, raw CEL files were downloaded from GEO (GEO accession numbers GSE24684, GSE33297,
GSE17717, GSE28063, GSE43291). The Affymetrix Tiling array bpmap files were updated to the
current TAIR10 annotation with Starr.122 Peak Calling was performed with rMAT.121 The PairBinned
method was used to normalise the arrays. Peaks were called using a FDR cutoff of 0.05 except for the
datasets GSE13090, GSE24684, GSE43291, and GSE40519, in which the p-value was set of 1 x 10-3 (in
analogy to the original study, and necessary to obtain peak calling results). The minimum requirement
of consecutive enriched probes was set at of eight. Other parameters were left at their default setting.

Peak regions were annotated based on the location of their summits as determined by MACS. A
peak was assigned to the closest gene as annotated in the TAIR10 release present in the PLAZA2.5
database.180 Both upstream, intron and downstream regions of the peak were taken into account. The
complete (exon-masked) peak regions were submitted to the Peak-Motifs algorithm using default set-
tings.118 The p-value for motif enrichment in the peak set compared with the genomic background was
calculated by mapping the motifs using matrix-scan237 (using the same default parameters of Peak-
Motifs) in 1,000 random sets of peaks of the same size and length distribution sampled without replace-
ment from the complete intergenic genome space. Only motifs with significant enrichment (p-value ≤
0.05) towards peak regions for a specific TF were retained. Lists of differentially expressed genes fol-
lowing perturbation of the TF were gathered from their respective publications (for SOC1, the original
study describing the data was293).

Construction and analysis of a CNS-based gene regulatory network

Based on the known motifs compiled from the different databases and literature (see section Comparative
Motif Mapping), we retained 157 TFs for which specific motif information was available. A conserved
gene regulatory network was created with intersectBed (-f parameter was set to 1 demanding complete
motif presence in the conserved region, -u parameter was also used), which determined the overlap be-
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tween a BED file containing all CNSs, together with their associated genes, and BED files with genome-
wide occurrences of the motifs of all 157 TFs. Although in most cases experiments have confirmed the
specificity of the association between a TF and its binding site, we cannot exclude that predicted target
genes identified through a CNS are regulated by a member of the same TF family. Overlap between the
predicted GRN and the experimental network (n=1092) was evaluated by counting how may TF-target
interactions from the experimental network were present in the predicted network and enrichment be-
tween two networks was defined as the number of interactions that are present in both networks divided
by the number of interactions expected by chance. The number of common interactions expected by
chance is given by the mean of the hypergeometric distribution: N1*N2/T, where N1 and N2 are the
number of interactions in the two networks, and T is the total number of possible interactions. Statis-
tical significance of the observed number of overlapping edges was evaluated using the hypergeometric
distribution.213 Overlap was also determined per TF, demanding that a TF had at least ten target genes.

Functional enrichment was determined for each network by using five biological datasets. Three func-
tional datasets, Gene Ontologies105, Mapman112, functional modules134 and two expression datasets, a
stress expression compendia (336 microarray experiments) and a developmental expression compendia
(135 microarray experiments).239

For the functional annotation datasets the enrichment of functional terms was determined within the
set of target genes for each TF through the hypergeometric distribution with Bonferroni correction. A
enrichment score (-log(p-value)*fold enrichment) was created for each significantly enriched term and
the average of all enrichment scores within the network was determined. For Gene Ontology only GO
slim terms were taken into account. For the expression datasets a gene pair was considered to be co-
regulated in the given network if the two genes had ≥50% of their regulators in common. These gene
pairs were identified by computing the Jaccard similarity coefficient between the set of regulators of the
first gene and the second gene. For each co-regulated gene pair, we then measured the similarity of the
expression profile between both genes using the Pearson correlation coefficient. Finally, the biological
similarity was summarized by taking the average over all co-regulated gene pairs. For both functional
annotation and expression datasets the same procedure was repeated for 100 randomized versions of the
network, and fold enrichment was computed as the ratio of the average functional enrichment score,
or average Pearson correlation coefficient, of the original network to the average of the randomized
networks. Network randomization was done by permuting the labels of all TFs and permuting the labels
of all genes, which preserves the network structure. This assures that the observed enrichment is not due
to potential biases arising from structural properties of the network. Statistical significance was assessed
at a level of 0.05 using a one-sided Wilcoxon rank-sum test to compare the functional enrichment scores
or Pearson correlation coefficient from the original network with a random sample from the randomized
networks that has the same size as the real set of scores.213 P-values obtained using 100 randomizations
were identical to those from obtained through 1000 randomizations.

Construction and analysis of condition-specific GRNs

Co-expression was determined between all TFs and target genes using the Pearson correlation coefficient
based on 11 CORNET expression compendia: Abiotic stress TAIR10 (256 exp), Biotic stress TAIR10 (69
exp), Microarray compendium 2 TAIR10 (111 exp), Development TAIR10 (135 exp), Flower TAIR10
(72 exp), Hormone treatment TAIR10 (140 exp), Leaf TAIR10 (212 exp), Root TAIR10 (258 exp), Seed
TAIR10 (83 exp), Stress (abiotic+biotic) TAIR10 (336 exp), Whole plant TAIR10 (85 exp) from.239 A
Z-score transformation of correlation coefficients was performed in order to determine significant co-
expression. A TF-target interaction was deemed significantly co-expressing if the Z-score was bigger
or smaller than 2. Only TF-target interactions that showed significant co-expression in less than four
compendia was used as an additional filter to obtain specificity. This threshold was selected because of
the presence of three stress-related compendia.
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CHAPTER 6
General Conclusions and Perspectives

Before ending this PhD with a more general discussion of my perspectives on the field of regulatory
genomics, I would like to follow up on the objectives that were set out at the start of this project. If you
recall, we defined a primary objective and secondary objective, which were to study the organisation of
transcriptional regulation, and providing functional annotation predictions to guide molecular biologists
when studying unknown genes. I will start with the secondary objective, to end with general conclusions
and future perspectives on the primary objective of regulatory genomics.

6.1 Unravelling gene function in Arabidopsis

Integrative Modules Follow-up

To provide leads on the function of unknown Arabidopsis genes, we applied a guilt-by-association ap-
proach on the integrated modules that were delineated based on different data types, that exhibited strong
complementarity in their gene-gene associations.134 These annotations were validated by cross-checking
our predicitions with experimental results that had become available in the GO database since the start
of our analysis (i.e. the data ’freeze’). It included completely unknown genes and genes for which a un-
related function had already been known. The validation showed that out of 1,460 genes that had gained
a new annotation since the start of our analyses, we predicted 29.7% correctly. Based on these numbers,
one could extrapolate that we could correctly predict 30% of all gene functions that were unknown at
that point in time.

Reversely, among all of our 5,562 module-based function predictions, 7.8% of had been validated by
new experimental annotations. Whereas the this confirmation rate seemed low, we claimed this to be
a lower boundary since many of our predictions could still be validated in the future. As another two
years have passed —also roughly the interval between the data freeze and the first validation cross-check
—the validation was repeated in October 2014 using the latest Gene Ontology Data for Arabidopsisa.
The methodology followed was the same as described in section 3.4, with the slight adjustment that I
removed additional general GO terms of low information value (making the evaluation more stringent).

The comparison of the newest annotation file with the data freeze, 1,368 genes have received new
experimental GO-BP annotations. Remarkably, this number is lower than the 1,460 genes in 2012.
Upon further investigation, this was found to be due to clean-ups in the gene ontology annotation, as
891 genes were new compared to 2012, but 1,013 had been removed. Two randomly chosen examples
are AT5G54390 (AHL) and AT4G34580 (COW1). For AHL, there was an annotation in 2012 with
GO:0016311 (dephosphorylation) which is now gone. COW1 was associated with GO:0015914 (phos-
pholipid transport). This association has now been changed to the ’Molecular Function’ branch of the
GO under the name ’phosphatidylinositol transporter activity’. Thus, due to added genes, and changes
in existing annotations, the fraction of correctly predicted genes has risen to 54.3% (Table 6.1).

Complementary, based on the 5,397 predicted gene annotations, 13.8% has now been validated (Table
6.2). The rise in validation rate of our complete set of predicted annotations is of prime importance, as

ahttp://purl.obolibrary.org/obo/go/go-basic.obo
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Table 6.1: Comparison of 1,368 module genes having new experimental GO-BP annotations with the module-based
function predictions.

failure to do so would have abolished our claim of it being a lower-bound.

Table 6.2: Comparison of 5,397 module-based function predictions with new experimental GO-BP annotations.

On a general note regarding function prediction, and the use of predictions in research, it is impor-
tant to stress that, when utilising computational predictions, false positive predictions are always a risk.
Therefore, any researcher should always use predictions with care, trace back the root of the underlying
data if possible, and align the predictions with additional experimental results before accepting them as
truth. Additionally, predictions should only carefully be used as a basis for further predictions, as this
might propagate errors made in the initial predictions. However, based on the latest validation data pre-
sented above, we feel reassured that our predictions —when used properly —can make a contribution in
guiding researchers when diving into unravelling the function of an unknown gene.

In addition, we note that our supplementary data website containing all of our predictions and infor-
mation to trace back the sources has been consistently used, with almost 600 users and 7,000 pageviews
in since publication (Figure 6.1). It has been used in numerous studies. The study of UGT72E1 found
a possible explanation of its mutant phenotype294 because of the prediction in sugar giberillic acid pro-
cesses. Similarly, hac1 has provides resistance against Paclobutrazol, which inhibits seed germination
by inhibiting biosynthesis of gibberellins.295 The resistance is thought to act through EIL4, which is
predicted to be involved in gibberellic biosynthesis. These are just two quick examples of how the pre-
dictions have been used so far to complete experimental results with hypotheses based on the function
predictions.

Figure 6.1: Plant Modules Website Analytics. Unique users over the course of the past two years since publication. Source:
Google Analytics

ChIP-Seq as an aid to elucidate molecular pathways

The result chapters on the ChIP and the CNS network were focused on studying transcriptional regula-
tion from a holistic viewpoint. But apart from studying regulation in itself, the binding pattern of a TF
is a powerful method to gain knowledge on its biology. After all, the function of a TF is determined
by the processess in which its targets are involved. Over the past four years, I have been involved in
the biological elucidation of the processes around ETHYLENE RESPONSE FACTOR 115 (ERF115),
ANGUSTIFOLIA3 (AN3), PEAPOD (PPD), and FAR1 RELATED SEQUENCE 12 (FSR12). The fol-
lowing paragraphs are meant as illustrations on how regulatory experiments can help in unravelling
molecular pathways on a detailed scale by determining genome-wide leads. In combination with other
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data, these leads can be filtered down to a small set of genes that can be investigated further with classical
methods.

ERF115b

Root development is a pivotal process in plant development, since it provides the plant with nutrients
during its lifespan. Root growth is based on the continous division of the stem cell niche, located in the
in the proximal part of the root. The mechanism that is in place to make sure that stem cells retain their
stem cell identity is controlled by the quiescent center (QC), a group of organizing cells neighbouring
the stem cells. The QC itself is restrained from dividing by CELL CYCLE SWITCH 52 A2 (CCS52A2),
an E3 ubiquitin ligase296. Based on copurifucation experiments with CCS52A2, ERF115, which is a TF,
was identified and shown to induce a QC cell division phenotype upon ectopic expression.

To indentify the mechanism underlying the ERF115 controlled QC divisions, it was analysed by tran-
scriptomic and ChIP-Seq analysis. The ChIP-Seq analsis revealed 608 potential target genes. The GCC-
box sequence motif was found enriched, which corresponds to the canonical of the ERF1 TF. Twenty
potential target genes exhibited an expression shift upon overexpresssion of ERF155 (out of 259 up-
regulated genes, p-value ≤ 0.05).

One of the potential targets was PHYTOSULFOKINE PRECURSOR5 (PSK5), which was 8-fold
upregulated in the ERF115OE line. It has an ERF115 binding location at -780nt in relation to its promoter.
Through additional analysis, the lead was confirmed that ERF115 is a rate-limiting factor of QC cell
division by acting as a transcriptional activator of PSK5.

AN3c

AN3 is a known activator of cell proliferation in Arabidopsis, functioning as a transcriptional coacti-
vator in leaf development. A developing leaf consists of a proliferation phase (cell division at the leaf
primordia), followed by a transition phase, and an expansion phase (cell differentiation).298,299 Being
a transcriptional co-activator, it was known that AN3 was not a specific TF itself, but rather aids other
TFs in recruiting the promoter initiation complex. The molecular mechanism through which AN3 acted
however, was largely unknown.

Based on the protein-protein interaction formed by AN3 with subunits of the SWI/SNF complex, it
was hypothesised that AN3 was involved in chromatin remodelling by recruiting the SWI/SNF complex
to the promoters of its target genes. Simply put, chromatin remodelling prepares the chromatin for
binding of TFs. To identify lead genes to test the hypothesis, transcriptomics analyses were combined
with ChIP-Seq. The AN3 ChIP-Seq experiment resulted in 2,702 potential target genes, of which 20
were also found as upregulated in an AN3-GR line upon activation by DEX. There was an enrichment
for TFs among the potential targets, pointing towards the role of AN3 as a regulator of an extended
downstream transcriptional network. Based on these results, the hypothesis was drafted that AN3 binds
SWI/SNF chromatin remodelling complex to recruit the complex to the target genes of AN3.

ChIP-qPCR on the promoters of AN3, GRF3, GRF5, CRF2, COL5, HEC1, and ARR4 with an anti-
body against a tagged SWP73B subunit in was performed in Col-0, and an an3 background. The signif-
icant reduction of SWP73B localisation at the promoters of GRF5, GRF3, HEC1, COL5, and ARR4 in
the an3 background confirmed the role of AN3 in the optimal recruitment of the complex.

PPDd

During development, cell number and cell size are two important determinants of the final organ size.
The size of plant organs is of interest in the context of increasing the yield of crops. Since the plant organ
size in itself is highly heritable, there must be an underlying molecular mechanism of regulation. In ad-
dition to the different stages in a developing leaf (proliferation phase, transition phase, expansion phase),
meristimoid cells that lie dispersed across the the leaf epidermis lead to the stomatal lineage.301–303

bThis section is based on Heyman et al. 10 . K.S.H analysed the ChIP data and wrote the relevant sections.
cThis section is based on Vercruyssen et al. 297 . K.S.H analysed the ChIP data and wrote the relevant sections.
dThis section is based on unpublished workGonzalez et al. 300 . KSH performed the ChIP-Seq analysis.
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Thus, leaf size in Arabidopsis is governed by (i) the number of cells incorporated in the leaf primordia,
(ii) the rate of cell division, (iii) the developmental window of cell proliferation, (iv) the extent of cell
expansion, and (v) the timing of meristemoid division. A positive effect on leaf growth was found in
a ppd genomic deletion mutant, due to prolonged division activity of the epidermal meristemoids. The
Arabidopsis contains two PPD genes —PPD1, and PPD2 —, due to a tandem repeat. The PPD genes are
TFs belonging to the TIFY protein family. However, the mechanism through which the PPD genes act
on the meristomoid division was unknown.

Transciptomic analyses identified 49 genes that were differentially expressed in the first leaf pair of
ami-ppd (a line with overexpression of an artificial miRNA targeting the PPD genes) compared with
wild type. ChIP-Seq analysis identified 1,919 potential target genes of PPD2, among which the two
PPD genes themselves. The target genes were associated with regulation of transcription and hormone
metabolism. The sequence of the bound regions led to the identification of two sequence motifs. The first
motif, GmCACGTGkC, containing an ABF (abscisic acid-responsive elements binding factor) binding
site sequence (CACGTGGC) or less specific a G-box sequence (CACGTG), preferentially located near
the peak summit, is present in 726 peak sequences. The second motif, yctCACGCGCyt, is also related
to a G-box sequence and found in 275 peak sequences. Out of the 49 differentially expressed genes, 13
(including PPD2) were found in the list of genes with a PPD2 binding site nearby.

Notable targets include the cell-cycle related CYCD3;2, CYCD3;3 and the chromatin organiser HMGA.
This shows PPD might act by limiting the division of meristemoids during leaf development, more par-
ticularly the amplifying divisions as the activity of these D3-type cyclins proteins has been shown to
be important for determining cell number in developing leaves.304 A null mutation of HMGA has been
shown to result in a decreased rate of cell proliferation in mice305 thus hinting that PPD reduces cell
proliferation following multiple paths.

FRS12e

During development, plants needs to control the fine balance between spending energy on growth or on
defence strategies. Plants have adopted the pragmatic solution to invest in growth as long as no threat
poses itself. FRS12 was picked up in a protein-protein interaction complex with NINJA, a repressor of
jasmonate signalling. FRS12 is a TF of the FRS family, which also encompasses FHY3 and FAR1, well-
known regulators of light response, one of the most important pathways for plant development. Thus,
FRS12 and it close homologue FRS7 —also in the protein complex with NINJA —are good candidates
to be central regulatory elements in the switch between growth and defence.

Genome-wide binding analysis was performed both at daytime and night-time, to asses the influence
of light on the binding activity of FRS12. The analysis revealed 7,669 and 6,225 potential target genes
at daytime and night-time respectively, of which 85% were shared between the two conditions. GO Slim
analysis of loci binding sites highlighted diversified biological processes potentially regulated by FRS12
and included signalling, growth, flowering, development and metabolism. An inducible overexpression
construct was used to perform transcriptomic analyses, resulting in 351 differentially expressed genes,
of which 86 had a FRS12 binding event nearby.

We could not identify an influence of FRS12 on the JA-dependent wounding response (it was not
impaired upon frs12 knock-down), and FRS12 could not be identified as a switch between growth and
development. Nevertheless, we could gain insight in its role in light signalling. Among the target genes,
we found genes such as the flowering time regulator GI and the photomorphogenesis regulators PIF4,
PRE1 and PIL1 that showed strong peaks at their promoter regions thus partly unvealing the transcrip-
tional cascade.

eThis section is based on unpublished workRitter et al. 306 . KSH performed the ChIP-Seq analysis.
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6.2 Organisation of transcriptional regulation

Number of binding sites per gene

Whereas the concept of cis-regulatory modules was well-known in transcriptional regulation in plants
before the start of my PhD148,307–309, most analyses were based on small-scale experiments. As a conse-
quence, the degree to which different TFs can bind a same promoter has never been able to be studied.

Here, we explored the organisation of transcriptional regulation in the context of the sets of function-
ally associated genes (indirect evidence through de novo motif finding) and in the context of genomic
binding sites. Based on the de novo motif finding in our set of modules we performed on the integrative
modules, we found that the majority of genes harboured between 1 and five motifs, with just over 10%
holding more than 5 DNA motifs. Cis-regulatory modules had only been described experimentally for
3-5 TFs, so we were cautious about over-interpretation of this figure, especially since it was based on a
proxy rather than experimental evidence of binding. Nevertheless, in relation to the similar distribution
for the number of modules a gene resides in, it the number of motifs seemed perfectly plausible. Shortly
after our publication, Ferrier et al. 245 made the simple extrapolation of number of binding sites for a
given gene based on the ChIP data available at the time for Arabidopsis. Based on his calculations, there
would be around 75 binding events per regulated gene. The extrapolation was probably an overestima-
tion because it only took into account protein-coding genes, while we know that miRNAs and lncRNAs
have promoters as well, and it is extrapolates binding events, which are not all regulatory. Nevertheless,
they supported our high number of hypothesised binding sites per gene.

Confirmation of the distribution of the number of binding sites came from our integrated analysis of
ChIP data, which showed that up to 18 TFs can bind near a given gene in the limited network of 27
TFs. Although these conclusions are strictly speaking limited to the network that was profiled (which is
primarily light and flowering related), the results from the systematic modules provide confidence that
the pattern will hold across different subnetworks.

Function of hub genes in Arabidopsis

In both the systematic module analysis as well as the ChIP network, we extracted hub genes and evaluated
their function. It is important to stress that different types analyses identify different types of hubs. In
the module analysis, hubs are genes that are functionally associated with many modules, and thus exert a
function in the context of many small subsets of genes. functional enrichment analysis revealed that these
genes are involved in immune response, photosynthesis, cell cycle, and carbohydrate metabolism. In
addition, hub genes are also three-fold enriched for embryo lethal genes. In the transcriptional network,
hubs are genes that are bound (potentially regulated) by many TFs. Similarly, hub genes from in the ChIP
network are significantly enriched for genes involved in stimulus responses, development, signalling, and
process regulation. But whereas both sets of hub genes were enriched for response pathways, only the
module hubs were enriched for embryolethal genes. Thus embryo-lethality is linked to genes that have
broad functionality in many different modules but are not necessarily regulated by many TFs.

6.3 Future Data in Regulatory Genomics in Plants

Chromatin Conformation

DNA conformation methodologies have been proven useful in determining the global chromatin struc-
ture, but are less suited to aid in unravelling the regulatory genomic architecture. Another method, called
ChIA-PET holds a far greater potential in the field of regulatory genomics. Whereas 3C and its succes-
sors310 determine the chromatin interactions between regions of interest, ChIA-PET allows the selection
of genomic regions based on its association with a protein of interest (Figure 6.2). It works by pulling
down the ligated junctions associated with the protein of interest by use of an antibody. In other words, it
allows the detection of chromatin loops bringing a TF in proximity of the promoter of a target gene while
binding a sequence motif located elsewhere. A downside of the employment of ChIA-PET entails that
random ligation events occasionally could occur between highly enriched DNA fragments. Therefore,
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a suitable control experiment will be critical for the ChIA-PET method in the same way as for ChIP
studies.

Figure 6.2: ChIA-PET. ChIA-PET allows the detection of TF binding sites based on ChIP in addition to the chromatin loops
formed between different binding sites. (A) ChIA-PET analysis results in paired-end reads that identify the TF binding site
through their mapping position, and the chromatin interaction through their insert span. Arcs depict loops formed between
binding sites. (B) Schematic representation of a possible explanation of the data shown in (A). Source: de Wit and de Laat 310

The methodology has been applied in a number of studies in the human field, with some very important
results. Fullwood et al. 311 demonstrated that ER-α-mediated chromatin associations are essentially
local, because less than 1% of the data correspond to the association among genomic regions located
more than 1 Mb apart. Li et al. 215 scanned the genome for distant interactions based on RNAPII in
cancer cells. Apart from interactions between promoters and long-range cis-regulatory elements, they
found that interactions between promoter regions were also prevalent. Importantly, for the interactions
between promoters and non-promoter regions, more than 40% of the non-promoter regulatory elements
that were found to interact with a distant promoter regions exhibited no interaction with the nearest
promoters. This is of impact on the assignment of ChIP-Seq regions to their potential target genes.
Heidari et al. 312 performed ChIA-PET analyses on chromatin marks (marks known to associate with
enhancers, promoters, and active regulatory elements), POLR2A (a RNAPII subunit), and RAD21 (part
of the cohesin complex known to be involved in chromatin interactions during replication) and found
that —for the TFs profiled —interactions between enhancers and promoters are cell-type specific. While
proximal binding events were enriched at house-keeping genes, distal binding events confer regulation of
dynamic biological processes. Chen et al. 313 discovered that many miRNA and protein-coding loci are
coördinately expressed and functionally compartmentalised, forming transcription factories. Although
data in Arabidopsis suggests that transcription factories do not exists because there is no evidence of
large topological domains in conformation experiments88,103,314, similar ChIA-PET experiments with
RNAPII in different plants will give the definitive answer. On a sidenote: given the particularly dense
genome of Arabidopsis, it might not be the ideal model for these kinds conformational analysis as it does
not seem impossible that this could have impacted structure-based regulation.

All these results show a clear role of structural chromatin features in genomic regulation, and underline
the importance of profiling the chromatin in future regulatory genomics studies. Note that ChIA-PET
inherently not only detects the interactions, but also the protein binding sites, and is in essence replace
ChIP-Seq as an all-in-one method to this purpose.312
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Long Non-Coding RNA (lncRNA)

LncRNAs are a family of non-coding RNAs, with a minimal length of 200bp and containing multiple
exons. With respect to genomic features, they can lie antisense to coding transcripts315 (natural antisense
transcripts), be encompassed in an intron (incRNAs), or reside in the intergenic space (lincRNAs). In
comparison to miRNAs and siRNAs, lncRNAs are fairly new, and certainly the least well-understood of
the regulatory non-coding RNAs. In plants at least some of them are transcribed by RNA polymerases
IV and V316.

LncRNAs can be detected using genome-wide strategies317, and more than 16,000 lncRNAs are cur-
rently in the plant long non-coding RNA database318. The functions of the different lncRNAs remain
largely unexplored. Natural antisense products can lead to the formation of siRNAs after processing.
Other mechanisms described in human include transcriptional inference, initiation of chromatin remod-
elling, promoter inactivation by (i) binding to basal transcription factors, (ii) activation of an accessory
protein, (iii) activation of transcription factors, (iv) oligomerisation of an activator protein, (v) trans-
port of transcription factor, (vi) epigenetic silencing of gene clusters (probably not in plants as nuclear
topological domains are not formed in Arabidopsis), and (vii) epigenetic repression of genes319.

In plants, a number of mechanisms of lncRNAs have been identified. FLC is an flowering repressing
TF, that is repressed itself following vernalisation to allow flowering. COOLAIR is a long antisense
lncRNA of FLC320 while COLDAIR is an incRNA on the sense strand321 (Figure 6.3). COLDAIR in-
duces a epigenetic repression of FLC in coordination with polycomb, necessary for vernalisation through
H3K27me3 modifications. COLDAIR itself is upregulated upon degradation of FRIGIDA (FRI), thus
showing a nice example of how protein regulation, chromatin modification and transcriptional regula-
tion are intertwined. Importantly, FLC antisense promoter sequences of COOLAIR to a reporter gene
is sufficient to confer cold-induced silencing of the reporter which means that bound regions from ChIP
experiments at the 3’ end of genes might actually need to be assigned to the antisense transcripts. Sim-
ilarly, bound regions in introns might be regulating incRNAs, rather than the coding gene in which they
reside. The example of the FLC locus, harbouring two lncRNAs in addition to its protein coding gene
shows the complexity of future regulatory genomics analysis.

Figure 6.3: FLC non-coding transcripts. Schematic representation of transcription start sites for COLDAIR and COOLAIR
and the location of VRE at the FLC genomic region. Source: Heo and Sung 321

Plant lncRNAs can also act as the precursors of sRNAs, as 65,006 sRNAs found their loci on 5,891
lncRNAs.322 They are found to regulate miRNAs by acting as a miRNA target mimic323, and to modulate
alternative splicing regulators by hijacking nuclear AS regulators and displacing their normal targets.324

Given the wide range of modus operandi, unravelling the function and mechanisms of all lncRNA will
be a vast undertaking, but it is clear that this is yet another layer of transcriptional —and translational
—regulation that will need to be solved before we can completely map the regulatory logic.

Non-Coding Variation and its Conservation

Finally, one of the most interesting directions of plant genomics with regard to evolution is the study of
regulatory genomics in the context of population variation and conservation across species on the other
hand. A simple pubmed search on ’Arabidopsis natural variation’ returns a long list of publications
released in 2014. It is an important question which variations are present, how they impact molecular
mechanisms and how they have potentially lead to local adaptation.

One of the most studied traits in Arabidopsis in the context of natural variation —and thus functions
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nicely as an example —is flowering time. Flowering time is dependent on FRI and FLC, given that FLC
is regulated by FRI. Different types of variations (affecting the coding region and affecting expression
levels) have been found to influence the flowering time, for which two phenotypes exist: early-flowering
and late-flowering. Johanson et al. 325 found two different deletions alleles that result in a the disruption
of the open reading frame, thus rendering FRIGIDA useless. In addition, FLC has also been found to
exist in five predominant haplotypes326. But whereas the FRI variants affected the protein completeness,
the FLC variants affect FLC expression levels and rate of epigenetic silencing because of changes in non-
coding cis variation. Rosas et al. 327 found that flowering time also varies in response to the variation in
copy number of a small 7bp insertion in the promoter of CONSTANS (CO), effectively determining the
number of CDF1 binding sites. To make matter even more complex, there exist flowering time deter-
mining pathways independent of FLC, of which the components also exhibit variation in their regulation
thus forming a nice example of how complex natural variation is.328 One of the future challenges of
regulatory genomics will undoubtedly be to investigate how variation across the genome has affected the
transcriptional network and subsequently, the manner in which these variations have led to adaptation.

One important note concerning the societal value of plant research is that whereas Arabidopsis has
been a very useful model species and will continue to provide important insights, many studies are mov-
ing towards economically more interesting species. The analysis of regulatory variation in the context of
the 3000 rice genomes project will therefore be of much greater societal value329.

Experimentally studies of the conservation of transcriptional binding haven’t been performed in plants,
but have given interesting results in the animal field. The first study to experimentally profile the binding
patterns of four orthologous TFs across species was performed in 2007330, and revealed that 41% -
81% of the individual binding events were species specific. However, it was later shown that while
many binding events were species specific, the ones associated with functional targets (i.e. genes that
responded to TF knock-outs) were highly conserved.331 A similar conclusion was reached by Schmidt
et al. 43 , who found that binding events are rarely conserved, but that genes that with expression levels
that are dependent on the a TF were often bound by the TF in multiple species. A follow-up study by
Ballester et al. 44 found that when organising human binding events into cis-regulatory modules, only
half of those were found in a second species. However, the conserved ones were associated with liver
pathways and disease loci identified by genome-wide association studies. Similarly, functional enhancers
in Drosophila are more likely to be found in regions with conserved TF ChIP binding events45.

The consistent conclusion that many single binding events are not conserved point towards the non-
functionality and misannotation of many of them before anything else. Conclusions on the evolution
of the transcriptional network should only be made based on binding events that exert an effect. The
goal of being able to label binding sites functional or non-functional might potentially be reached by
integration with other genomic data sets. After all, many important TFBSs are conserved, as shown
by the proven track record of comparative genomics being able to identify conserved binding sites that
can be linked to TFs and their functions. This was proven in a very recent publication332, where binding
profiles were created for 34 orthologous TFs in concert with chromatin modifications. Around half of the
bound regions could be aligned between human and mouse. Within the set of bound regions that could
be aligned, some factors exhibited no conserved binding events whereas for others up to 60% of binding
events were conserved, showing that it is highly factor dependent, but in the same range as the results by
Odom et al. 330 . Preference of binding location of TFs does appear well-conserved although promoter
region binding is, as well as the chromatin states. Interestingly, while the primary motifs identified
for a TF are well conserved, the secondary motifs (of associated factors) appear to be lineage-specific.
TFs with conserved occupancy profiles are associated with pleiotropic functions, though to be due to
increased selective pressure of having regulatory functions in multiple tissues.

Similar studies should be executed in the plant field in the future in order to assess to what extent these
conclusions hold for transcriptional regulation in plants. Whereas most principles might be expected to
be the same, the difference in functionality of HOT regions in animal compared with Arabidopsis shows
differences might be present. As ChIP-studies in other plant species besides Arabidopsis are becoming
more and more available, such experiments should be feasible in years to come.
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6.4 The Interplay between Experiment and Computation

Finally, I would like to end my PhD thesis with my views on the future of being a bioinformati-
cian/computational biologist/data scientist and what the field should strive for.

As genome-wide experimental approaches are becoming increasingly refined, expanded and utilised,
the amount of genomic data that can be browsed in relation to transcriptional regulation increases.
Whereas many of the data sets are generated in the context of specific research questions, integration
of the different data sets is a biologically easily interpretable manner to learn what defines the context of
an active binding event (e.g. mapping PWMs in open chromatin regions reduces false positive rate225).

The reason this learning is important is because we will never be able to understand the regulatory
network unless we learn how different cues lead to binding of a TF, and potentially regulation following
the binding event. No matter how complex the regulatory landscape looks at this point in time, we must
never forget that nature is built logically, following the rules of physics and chemistry. In that aspect, it
is of importance to generate (i) as complete data views as possible, in (ii) as many regulatory conditions
as possible. The development of network inference tools and machine learning approaches will greatly
profit of this boom in genomic data and will become increasingly important in detecting the regulatory
logic and extracting rules of functional binding.

Importantly, one must also never forget that while studying transcriptional regulation in a integrated
genomics perspective, is still a simplification of the complete picture. The link between binding and
changes in transcript levels will still be obfuscated by mRNA stability and degradation. After the regu-
latory step of transcription, other points of regulation can influence the mRNA level, and even more the
presence of the protein.

A Complete Data view

In order to gain insight into the logic that determines binding of a TF and regulation of the targeted
gene, we need all the information on the current genomic state. Too many data sets are limited to one or
two data types for an experiment, e.g. binding information (ChIP-Seq) and expression response (RNA-
Seq following TF perturbation). When binding data is related to an expression response, the effect has
consistently found to be low. But while any of those binding events may be true, it might indeed just
be the case that there is no expression response. The promoter can be poised to activation, or the TF
can simply bind a stretch of DNA because it’s sequence motif while it lacks all other requirements for
steering expression. The FRS12 binding pattern is a good example of this, as 85% is identical between
day and night samples, while it is a light-signal steered TF.

Mapping the state of the chromatin, will ultimately be necessary to find which complete genomic
state represents a binding event that confers regulation. Any ChIP binding experiment should include:
mapping of the open chromatin using DNase I and MNase, mapping all known chromatin modifications
using ChIP, determining the methylation state of the DNA, DNA conformation information.

Data with a High Information-to-Noise Ratio

So far, many methodologies have been applied to non-specific samples such as whole plant or seedlings.
Even leaves are a collection of different cell types. While the information of the true binding is present
(the binding in the cells where the TF is regulating its target genes), it is diluted by binding events
(and lack thereof) in other cells. In the future, significant advances to learn the logic of transcriptional
regulation will only be made when the profiling is performed in single-cells, such as single cell transcrip-
tomics.333

The Future of Data Generation

Whereas many labs studying regulation are aware of these needs, at this point in time, a coordinated
effort is missing. Ideas on how these goals could be reached, and what these goals should specifically
encompass are excellently discussed by Lane et al. 334 , which reaches the same conclusion as us with
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6. GENERAL CONCLUSIONS AND PERSPECTIVES

regards to what kinds of data are needed. The overall idea is that a coordinated effort should be set in
place, following the example of the ENCODE projects in the animal model systems.

While the core principle of this idea is exactly what is necessary for data scientists to extract hypothe-
ses, I would like to add my personal thoughts on the feasibility. I would like to believe that such an effort
is possible in an academic setting, but this will ultimately depend on either joint funding, which stim-
ulates labs to honour deadlines and put dedicated people on them. Secondly, any project needs project
management, and the pENCODE effort would need someone with the necessary influence on individual
group leaders to steer the project. Many labs have different adaptations and tweaks of methods, which
could affect comparability of the results. However, the latter is a minor issue, as this would not diminish
the vast improvement of data quality compared to what is available now. Personally, I see the greatest
challenge in steering the project and managing the different group leaders.

Lastly, I see a need for a paradigm shift in the approach of molecular biology in the future. To put
it radically, data scientists should not be analysing data generated by molecular biologists to answer the
latter’s specific question as is often the case now. Instead, molecular biologists should be generating
the data required by data scientists. I deliberately is overly radicalised this statement, because ideally,
scientists themselves should be trained with knowledge of both molecular biologists and data science. In
a framework such as the envisioned pENCODE, the current paradigm will critically damage the progress.

6.5 Final Thoughts

Even if we could bring about all the ideal conditions and data years to come, it is perfectly possible that
we are still aware of all layers of genomic information, and thus will not be able to fully relate binding
to expression. But with the advances in regulatory genomics of the past 10 years in hindsight, I think I
can be optimistic that unravelling the transcriptional regulation is within a lifetime’s grasp.
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SUPPLEMENTAL DATA FILE A

Integrative Plant Modules

A.1 Supplemental Figures

Figure A.1: Number of modules per gene. Degree distribution of gene nodes in log scale.
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A. INTEGRATIVE PLANT MODULES

Figure A.2: Functional enrichment of hub genes and regulatory complexity of different biological processes. A, Func-
tional enrichment among hub genes represented by GO-BP slim categories. B, Regulatory complexity of different GO-BP
processes. The number of genes at each coordinate is given as a colored size scale. The grey circle indicates the average
regulatory complexity for all 13,142 genes. The dashed line is the function f(x) = x.
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A.1. Supplemental Figures

Figure A.3: Conservation of EC and motif enrichment across the green plant lineage. A, EC conservation across seven
species for real data (grey + black cumulative) and random data (white + black cumulative) respectively. B, Motif enrichment
conservation for expression- conserved modules across seven species.
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A. INTEGRATIVE PLANT MODULES

Figure A.4: Motif-GO map based on coexpression conservation. Motifs were associated to GO categories based on the
modules in which they were retrieved. Edges were weighted by the average number of species with conserved coex- pression
for these modules. Red nodes: motifs; Green nodes: GO categories.
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A.2. MQSE Protocol

Figure A.5: Overview of GO-BP slim predictions for 1,435 genes currently without GO-BP annotation. Modules with
multiple GO-BP annotations can be present in different GO slim categories.

A.2 MQSE Protocol

Multi-Query Seed Expansion: optimizing a set of seed genes prior to clustering Standard clustering tech-
niques only utilize the genes from the input data. MQSE is a semi-supervised strategy for co-regulatory
module detection that expands the gene sets (from here on referred to as âĂŸseed setâĂŹ) prior to the
clustering with genes that are coexpressed with the seed set and removes seeds that do not show expres-
sion coherence with the other seeds.

1. For each seed, all genes that coexpress significantly (relative Pearson correlation coefficient or PCC
threshold at the 95th percentile of a random distribution) with the seed are read (including the other
seeds). The genes are ordered descending by the PCC with the seed. The order gives each gene a
rank relative to the seed. The seed itself is removed from the ranking (rank 1 before removal). After
iterating over all seeds, every gene has a list of ranks (a rank for each seed).

2. Calculate for each gene:

a) The fraction of coexpressed seeds.

b) The standard deviation of the expression profile of the coexpressed seeds.

c) The median rank.

3. Calculate the ranking score for each gene (Scoreg in pseudocode).

4. Sort all genes based on their ranking score. Iterate over the ordered list taking into account one
extra gene in every iteration. Each time the gene is a seed, calculate the enrichment score in the
gene set towards the seeds. The gene set for which the enrichment score is highest, is returned as
expanded gene set.
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A. INTEGRATIVE PLANT MODULES

MQSE: Multi-Query Seed Expansion
for all S in Seeds do

i← 0
for all g in Genes do

if g 6= S and PCCS,g > c then
GS,i← g
i← i+1

end if
end for
Sort G on PCCS,g descending
k← 0
for all g in Genes do

Ranksg,S ← k
k← k+1

end for
end for
for all g in Genes do

Median_Rankg← median(Ranksg)

Max_SD←
Seeds[n]

∑
S=Seeds[0]

SDS

Sum_SD←
Ranksg,n

∑
S=Ranksg,0

SDS

Scoreg =
Sum_SD
Max_SD√

Median_Rankg∗100

end for
Sort Score descending
for i to n do

List[i]← Scorei
Calculate enrichment towards seeds
if List is enriched then

Last_enriched_index← i
end if

end for

=⇒ The extended list is List[0−Last_enriched_index]

The ranking score

Ranking all the genes is a crucial step in the process. If the ranking does not place those genes that
are associated with the seed genes on top, there will be no enrichment towards the seeds in the top of
the ranked list (the seeds themselves are expected to be ranked on top, together with other coexpressed
genes).

To calculate the rank score, several features were taken into account that are related to coregulation
with the seeds: number of coexpressed seeds, standard deviation of the coexpressed seeds and the median
rank of each gene towards the different seeds. Firstly, the number of coexpressed seeds represents the
fact that we wish to find genes that are coexpressed with the entire seed set (or at least with as many
seeds possible). Secondly, the number of coexpressed seeds is weighted by the standard deviations of
each seed. This approach has also been used previously in a somewhat different form in MEM194.
The assumption is that genes that have a low standard deviation are less likely to be regulated and the
difference in expression levels between the different datasets is merely noise. Therefore, genes that are
coexpressed with the most variable seeds are rewarded a greater weight. The third and final element
of the score is the median rank. Every gene has been ranked to each of the seeds individually (if they
coexpressed significantly). Based on these ranks, each gene has a median rank towards the seed set.
The higher this rank (rank 1 being the highest), the higher the resulting ranking score was. All these
elements were combined into a final score that is believed to place coexpressed genes that are likely to
be coregulated with the seed set on top of the ranking.

For each gene g, Ranks is the list of ranks the gene has for each of the coexpressed seeds in Seeds.
Max_SD is the sum of standard deviations of the different seeds (i.e. the maximum any gene can reach).
Sum_SD is the sum of the standard deviations of the seeds with which the gene coexpresses significantly.
Score is the ranking score calculated based on the different features. Note that the number of coexpressed
seeds is represented in the sum of the standard deviations.
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SUPPLEMENTAL DATA FILE B

Function and Evolution of TF-bound DNA

B.1 Supplemental Figures

Figure B.1: Enrichment for differentially expressed genes in network subcategories. Enrichment for differentially ex-
pressed genes in all potential target genes for subsets based on significant DNA motif enrichment and/or enrichment of the
target genes in functional modules. Note that any value drawn indicates enrichment, as the lower bound is of the y-axis is 1.
The gray dotted line marks twofold enrichment. * p-value ≤ 0.01.
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B. FUNCTION AND EVOLUTION OF TF-BOUND DNA

Figure B.2: Number of potential target genes per TF and their distribution across different genomic regions for the
(A) Multiple-Evidence subnetwork and (B) High-Confidence subnetwork. The coloured bars represent the fractions of
genomic regions (left y-axis). Star signs represent the number of genes (right y-axis). The exact number of potential target
genes is given in the labels (n=).

114



B.1. Supplemental Figures

Figure B.3: Fraction of different gene types bound by each TF. (A) The distribution of peak-associated gene types split
up in coding, pseudogenes (pseudo), transposable elements (te), and all types of RNA genes (rna). (B) The fraction of peaks
associated with regulator genes (TF and miRNAs).
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B. FUNCTION AND EVOLUTION OF TF-BOUND DNA

Figure B.4: Peak region annotation based on the fraction of overlap of the entire peak region. The y-axis describes the
average fraction of a peak that is assigned to each genomic region, only considering peaks uniquely covering a single region.

Figure B.5: eak location binding preference for the different TFs. The values represent the fraction of all bound regions
binding in each bin. Bins are size 100. TFs are hierarchically clustered based on the Pearson Correlation Coefficient between
their location vectors. Numbers on the left indicate clusters used to discuss different subtypes in the results.
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B.1. Supplemental Figures

Figure B.6: Length distributions of (A) all peak regions for each TF and (B) the merged regions based on all TF peak
regions. The inset in (B) shows the boxplot for the merged region lengths.

Figure B.7: Histogram of the number of TFs per (A) potential target gene and (B) per peak region for the Multiple-
Evidence (top) and High-Confidence subnetworks (bottom). The black line is the cumulative histogram, the grey band is
the collection of 1000 random distributions. The upper inset represents the same data on log-y scale; the lower inset represents
the same data on a log-log scale.
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B. FUNCTION AND EVOLUTION OF TF-BOUND DNA

Figure B.8: Histogram of the number of (A) regulating Kinases and (B) miRNAs per target gene. The black line is the
cumulative histogram, the grey band is the collection of 1000 random distributions. The upper inset represents the same data
on log-y scale (exponential distribution); the lower inset represents the same data on a log-log scale (power-law).

Figure B.9: Expression breadth in function of regulatory complexity. Expression breadth histograms based on a non-
redundant expression compendium of 111 conditions for three series of complexity: Low: < 3 TFs; Intermediate: >= 3 TFs
and < 8TFs; hub: >= 8 TFs) for HOT associated genes involved in flowering versus genes associated with low complexity
merged regions. The lines are the cumulative histograms. The Kolmogorov-Smirnov (KS) statistic and p-value are calculated
between the low complexity regions and the HOT regions.
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B.1. Supplemental Figures

Figure B.10: Histogram of the median expression values for flowering-associated genes for different series of regulatory
complexity. KS: Kolmogorov-Smirnov.

Figure B.11: Enrichment for differentially expressed (DE) genes in non-HOT- associated and non-hub genes versus
HOT-associated and hub genes.
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B. FUNCTION AND EVOLUTION OF TF-BOUND DNA

Figure B.12: Robustness of the clusters TF co-regulation. TF cobinding matrix based on common potential target genes,
and average-linkage hierarchical clustering based on Jaccard Index for (A) HOT-associated genes (B) ME subnetwork and
(C) HC subnetwork. The lower left half displays the Jaccard Index while the upper right displays hypergeometric p-values of
overlap between the two sets of bound genes, corrected using the Bonferonni method.
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B.1. Supplemental Figures

Figure B.13: DNA motif statistics. (A) Fraction of peaks containing each DNA motif per TF. (B) DE enrichment based on
the subset of peak-gene annotations uniquely associated with each motif. The term ’Highest Motif’ refers to the primary motif
while all other series refer to non-primary motifs.
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B. FUNCTION AND EVOLUTION OF TF-BOUND DNA

Figure B.14: Canonical versus non-canonical motifs in (A) non-HOT and (B) HOT regions. For each TF blue error flags
represent the fraction of peaks with solely a canonical motif, the yellow bar denotes the fraction of peaks with both a canonical
and a non-canonical motif instance, and the green error flag indicates the fraction of peaks with exclusively non-canonical
motifs.
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B.1. Supplemental Figures

Figure B.15: Number of modules per gene. For each ChIP-Seq data set with replicates, scatter plots are shown of the FPKM
values of all peak regions for all pairwise combinations of replicates.

123



B. FUNCTION AND EVOLUTION OF TF-BOUND DNA

B.2 Supplemental Tables

Table B.1: Arabidopsis TF ChIP Data Sets Used.
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B.2. Supplemental Tables

Table B.2: Different significant DNA motifs per TF in order of prevalence. Upper row: motif logo; middle row: motif
distribution in peak regions; lower row: percentage of peaks with the motif. In the TF column, the information provided are the
TF AGI ID and the TF family.
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B. FUNCTION AND EVOLUTION OF TF-BOUND DNA
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B.2. Supplemental Tables
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B. FUNCTION AND EVOLUTION OF TF-BOUND DNA

Table B.3: Motifs from supplemental Table 3 that fit the TF’s canonical motif.Alignments were created based on the
motifs on the AGRIS motif database, but references point to evidence of the motif being the canonical motif for the TF, not the
necessarily to the reference of the motif specified in the database. / means that no canonical motif could be defined, or was
found in our data set.a
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B.2. Supplemental Tables

Table B.4: Replicates used for each ChIP-Seq study with replicates.
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SUPPLEMENTAL DATA FILE C

Detection of Conserved Noncoding Sequences in
Arabidopsis

C.1 Supplemental Figures

Figure C.1: Overview of synteny conservation between Arabidopsis and other dicot species. This figure shows the per-
centage of orthologous genes for each Arabidopsis gene for which the flanking genes were conserved by collinearity. Criteria
to score collinearity conservation were: 1) whether the genes upstream and/or downstream of the ortholog in the comparator
species were orthologous to the genes upstream and/or downstream of the Arabidopsis test gene and 2) whether these orthologs
maintained the same relative orientation. In the figure complete (both upstream and downstream)(white box), upstream (grey
box) and downstream (black box) conservation is shown. Asterisks indicate species included for phylogenetic footprinting
(Arabidopsis lyrata was excluded due to a non-saturated substitution pattern).
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C. DETECTION OF CONSERVED NONCODING SEQUENCES IN ARABIDOPSIS

Figure C.2: Distribution of genes that have orthologs in the dicot comparator species for each orthology detection
method. The number of Arabidopsis genes with orthologs in different comparator dicot species is depicted for the integrative
orthology (purple boxes) and BHIF method (blue boxes), respectively (left y-axis). A cumulative overview is also shown for
both methods (purple and blue line, respectively) showing the total percentage of genes for which orthologs could be delineated
(right y-axis).
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C.1. Supplemental Figures

Figure C.3: Recovery of experimental AtProbe elements using different phylogenetic footprinting approaches. A) For
the different phylogenetic footprinting approaches developed in this study, the recovery of AtProbe elements was determined.
Black boxes show the percentage of recovered elements while white boxes show the percentage of uniquely recovered elements.
The black line shows the cumulative recovery over all methods. B) A venn diagram was constructed for the four methods that
recovered AtProbe elements. The number of recovered elements for Sigma are displayed in black, for ACANA in green, for
Seaweeds 60 in yellow and for CMM in purple.
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C. DETECTION OF CONSERVED NONCODING SEQUENCES IN ARABIDOPSIS

Figure C.4: Recovery of AtProbe elements for the CNSs described in this paper (A) and by Haudry et al. (2013)(B).
Black lines denote upstream sequences, colored boxes depict AtProbe elements, and black boxes show significant CNSs.
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C.1. Supplemental Figures

Figure C.5: Enrichment and overlap of in vivo functional regions with CNSs. Grey boxes show the fold enrichment of
different histone marks and DH sites. Black diamonds show the percentages of CNSs that overlap with each in vivo functional
region dataset.

Figure C.6: Comparison of fold enrichment for in vivo functional binding site regions. Fold enrichment for in vivo
functional binding sites is shown for our CNSs dataset (white boxes),simple motif mapping (grey boxes) and motif mapping
within DH sites (black boxes).
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C. DETECTION OF CONSERVED NONCODING SEQUENCES IN ARABIDOPSIS

Figure C.7: GO enrichment for all TF-targets in the predicted GRN. A heatmap was generated using Genesis that displays,
per TF, the enrichment of target genes towards GO slim annotations (hypergeometric distribution + Bonferroni correction). The
number of target genes for each TF is shown in parenthesis. The color gradient shows the p-values of the different enriched
gene sets.
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C.1. Supplemental Figures

Figure C.8: Evaluation of the biological relevance of highly and moderately conserved interactions using the biological
validation metrics. Comparison of the five biological metrics for the predicted sub-networks with highly (blue boxes, >6
species) and moderately (purple boxes, 2-6 species) conserved interactions. Fold enrichments are shown for the CORNET
stress and developmental expression compendia, Gene Ontology annotations, Mapman annotations and Functional modules.
All reported fold enrichments are significant (p-value < 0.05).

Figure C.9: Comparison between experimental and predicted GRN of co-expressed target genes in different conditions.
The fraction of target genes showing specific co-expression in each condition is displayed. The color gradient shows the frac-
tions of the target genes. The total number of target genes showing specific co-expression for each TF is shown in parenthesis.
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C. DETECTION OF CONSERVED NONCODING SEQUENCES IN ARABIDOPSIS

Figure C.10: A condition-specific GRN for PI and AP3 based on hormone-specific TF-target co-expression edges. Genes
that have GO annotations related to flower development are displayed. ChIP-bound regions associated with the target gene are
shown as dashed lines while differentially expressed genes are shown by an arrowhead for up-regulation and by a vertical line
for down-regulation, respectively. Red diamonds are the source TFs, grey diamonds are target genes that are TFs and rounded
rectangles are other target genes. Rounded boxes depict different GO biological processes.
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