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Abstract 

Metazoan embryogenesis is characterised by the large scale cellular movements 

of morphogenesis and the co-ordinated expression of genes specifying pattern in the 

resultant structures. In Drosophila one family of such genes, the homeobox genes, is 

involved in some of the key mechanisms effecting these processes. Homeobox genes 

play a similar role of patterning the body in vertebrate embryos. Msx- 1 is one member 

of a family of three vertebrate homeobox genes homologous to the Drosophila 

homeobox gene msh. Little is known of the role of the msh gene in Drosophila 

however detailed analysis of the expression pattern of Msx- 1 in the developing mouse 

has led to the proposal that it is involved, possibly through a role in inductive 

interactions, in development of the heart, eye, limbs and craniofacial structures. 

Detection of Msx- 1 transcripts by RNA in situ hybridisation demonstrates that precise 

spatial and temporal regulation of Msx- 1 expression is achieved at the transcriptional 

level. Experiments in the limb show that this regulation responds to positional cues as 

expected of a gene concerned with patterning the developing body. 

Knowledge of the mechanisms by which Msx- 1 transcription is regulated and 

identification of the gene products involved is vital to an understanding of the 

regulatory cascade that patterns the embryo, and to a view of the role of Msx- 1 in such 

a system. To elucidate this problem I have analysed the 5'-flanking region of the gene 

and attempted to identify cis-acting DNA regulatory elements close to Msx- 1. Non-

functional parts of the genome are subject to a gradual 'drift' in nucleotide content. 

Constraints against such change are placed upon the functional regions in the form of 

selection pressure. I exploit this to identify sequences of potential functional 

significance within the 5-flanking DNA of Msx- 1 by comparing similar, non-coding 

regions from the mouse and human cognates in a search for conserved sequence. In 

vitro analysis of a short DNA sequence thus identified shows it to be capable of 

binding proteins in a sequence-specific manner. Comparison of this sequence with the 

control regions of other genes reveals a similar feature upstream of another homeobox 

gene, Hoxd-9, also expressed in the developing limb. Gel-retardation and South-

western assays show that both sequences have similar protein-binding properties. A 

protein bound by all homologous sequences appears to be ubiquitously expressed in 

the mouse embryo. In vitro functional assays provide evidence that the sequence 

identified is the binding-site of a transcriptional repressor. 

It appears that a sequence located upstream of Msx- 1 and within the HoxD 

cluster may be the binding site for a transcriptional repressor ubiquitously expressed 

during murine development. 
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Chapter 1 

Introduction 



1 Introduction 

Faithful heritability of bodily form is one of the fundamental properties of 

multi-cellular organisms. Genetic instructions, inherited from the previous generation, 

direct development of the body during embryogenesis, ensuring structural homology. 

The nature of the instructions and the processes by which they are followed have been 

elucidated by the combined powers of classical genetics and molecular biology. 

Genetic analysis of the fruit fly, instigated by T.H. Morgan in the early part of this 

century, has led to an understanding of the organisation and deployment of genes 

involved in establishing a body-plan. The latter half of this century has seen the 

discovery of molecules involved in the interactions that lead to body-plan specification. 

Many of the genes and mechanisms involved in embryological development are 

conserved among widely divergent species. This enables access to the problems of 

embryogenesis in organisms less suitable to genetic analysis than Drosophila. Certain 

examples of extreme conservation highlight the central role of embryogenesis in 

metazoan evolution. While it is the genome that evolves, selection acts upon the 

functions of the body. The body is formed during embryogenesis according to 

information encoded by the genome and any bodily change that is selected for must be 

accompanied by a change in the appropriate embryogenetic processes generating it. 

Thus, embryogenesis imposes a restraint upon evolution of morphology as the 

potential for change is limited by the flexibility of the embryological processes 

concerned. The high degree of conservation that has been found between mechanisms 

of development, at the morphological and now the molecular level, reflects this. If we 

wish to understand the processes by which metazoan variation came about then a 

greater knowledge of the way in which genetic information is converted into three-

dimensional form is essential. 

A century ago, Bateson wrote on the variation of form found in the animal 

kingdom (Bateson, 1894). He noted that many dismorphic forms showed identifiable 

structures (or partial structures) inappropriately located at a position usually occupied 

by an alternative structure. This "phenomenon... not that there has merely been a 

change, but that something has been changed into the likeness of something else", he 

termed HOMEOSIS. Such 'homeotic' changes are readily definable in organisms with 

an overtly metameric body plan, such as the arthropods, where structural identities are 

often altered to those of adjacent metameres. While Bateson showed great foresight - 

"I believe that in the future its [homeosis] significance and the mode of its occurrence 

will become an object of high interest" - he was interested in such 'discontinuous 
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variation' for its role in speciation and hence evolution, not for the insight that it might 

provide into developmental strategies. 

Mutants in the fruit fly, Drosophila melanogaster, were first identified in 1910. 

Many mutants were collected, but as part of studies aimed at understanding the rules 

of heritability, not development. As a consequence, mutants disrupting the body plan 

were not examined until Ed Lewis started work on the bithorax mutant, in the early 

1950s. Over the next thirty years, by means of classical genetics, Lewis discovered 

many of the features of the immensely complicated 'bithorax complex'. Recent 

molecular analysis of this region has confirmed and clarified many of his findings. 

1.1 The Homeobox 

Lewis proposed that the homeotic selector genes of Drosophila melanogaster 

were members of a clustered, multigene family (Lewis, 1978). He had shown that 

mutants affecting segmental identity mapped to a tightly linked group, with similar 

phenotypic effects, that he termed the bithorax complex (BX-C). Such a gene complex 

could arise by duplication events producing an array of tandemly repeated genes 

related to a single precursor gene. He pointed out that this duplication and the 

consequent redundancy would enable the evolution of a wider repertoire of segmental 

identities and an accompanying increase in functional potential or "level of 

development". Further mapping of mutations affecting segmental identity led to the 

identification of a second cluster around the Antennapedia (Antp) gene (Kaufman et 
al., 1980). This was termed the Antennapedia complex (ANT-Q. Molecular cloning of 

the BX-C and ANT-C later confirmed that the complexes are gene clusters (Bender et 
at., 1983; Scott et al., 1983). One test of the proposal that BX-C and ANT-C arose by 

tandem duplication was to examine them for sequences repeated along their length. 

1.1.1 Discovery of the homeobox 

The question of whether the homeotic complexes represented multigene 

families formed by tandem duplication was addressed by several groups of workers at 

approximately the same time. Their findings confirmed many of Lewis's predictions and 

opened the way for the wealth of current research into the homeobox-containing 

genes. 

The first clue to the presence of repeated sequences came from Garber and 

colleagues who showed that a cDNA from the Amp gene hybridised to the adjacent 
locus, the Jlshi tarazu (ftz)  gene (Garber et al., 1983). McGinnis and colleagues went 

2 



further, demonstrating that certain 3' probes from the Antp cDNA hybridised to several 
restriction fragments within the Drosophila genome and that a probe from the 3' end of 
the ftz transcription unit hybridised to many of the same fragments (McGinnis et al. 

1984a). McGinnis and colleagues went on to show that a similar sequence was present 

in the 3' exon of the Ultrabithorax gene (Ubx). The association of this sequence with 

three genes involved in the segmental development of the fruit fly prompted them to 

search for other genes carrying the same sequence. Clones isolated from two genomic 

regions, using Antp and ftz probes on duplicate filters, were shown to contain the 

repeat sequence. One clone mapped to the bithorax complex, the other to the 

Antennapedia complex; both were shown to be expressed in a temporally controlled 

manner and in specific segmental regions within the developing embryo. The short, 

homologous region, seemingly restricted to genes involved in segmental development, 

was termed the homeobox. 

Sequence of the homeobox from Antp, Ubx and ftz revealed a region of high 
nucleotide sequence homology (75-79% identity) extending over approximately 180 bp 

(Scott and Weiner, 1984; McGinnis et al., 1984b). It is this 180 bp that has 

subsequently become deiTined as the homeobox. All three genes had open reading 

frames running the length of the homeobox, coding for highly homologous proteins 

(75-87% identity). The presence of several conservative substitutions between the 

peptide regions and the predominance of silent first and third position changes in the 

codons was taken to indicate that the homeobox represents a family of closely related, 

protein-coding DNA sequences. 

1.1.2 Phylo genetic distribution of the homeobox 

Early studies on the phylogenetic distribution of the homeobox led to 

speculation that it was limited to metameric organisms and unique to their 

characteristic developmental strategy (McGinnis et al., 1984c). Later work, however, 
showed that the distribution of Antp-like homeoboxes was wide and covered many 

phyla including arthropods, annelids, chordates, echinoderms and molluscs (McGinnis, 

1985; Holland and Hogan, 1986; Holland, 1992). Homeobox-containing genes were 

cloned from non-segmented organisms such as sea-urchins and were found to be 

expressed during embryogenesis in a stage specific manner (Dolecki et al., 1986). 
Antp-class homeoboxes are known to be in nematodes (Burglin et al., 1989; Kenyon 
and Wang, 199 1) and cnidarians (Schierwater et al., 1991), the latter being considered 

as among the simplest of metazoa. 
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Soon after its identification the homeobox was used as a probe to isolate genes 

from vertebrates including the frog, Xenopus laevis, mouse and human (Carrasco et 
al., 1984; Muller et al., 1984; McGinnis et al., 1984c; Levine et al., 1984). In all cases 

the homeoboxes were highly conserved when compared to Drosophila Antp. 

Homologies ranged from 70-80% at the nucleotide level and higher for the putative 

translation products. Homeobox genes have now been cloned from all model 

organisms used in the study of vertebrate development including the chicken and the 

zebrafish along with those mentioned (Wedden et al., 1989; Molven et al., 1990). 
The Antp-like homeobox is a sequence conserved across phyletic boundaries 

and throughout evolution. Its presence spans the major structural divisions of the 

animal kingdom (e.g. diploblastic and triploblastic organisms) and is not particular to 

any one developmental strategy. It seems likely that while it may be involved in the 

same mechanism used by several phyla, i.e. antero-posterior diversification, it generally 

plays the more common role of defining positional values in all metazoans. 

1.1.3 Divergent homeobox-containing genes 

So far I have discussed the Antp-like homeoboxes of the HOM-C and Hox 
complexes. As one of the first homeoboxes discovered, the Antennapedia homeobox 

has become the standard to which all homeoboxes are compared. All homeoboxes 

isolated in the early days of their study were of a type closely related to Antp. In 

addition to these genes, numerous other homeobox genes have been identified that are 

not members of one of the large complexes. This has come about both by searching for 

divergent homeobox sequences and by detection of homeobox motifs among 

previously cloned genes. Drosophila has yielded several examples of divergent 

homeoboxes; in many cases cognates of these genes are now known in vertebrates 

(Scott, 1990). Table 1.1 shows a list of several divergent homeobox-genes from 

Drosophila and their vertebrate cognates, where cloned. In addition to the groups 

defined by homology to Drosophila genes there are homeobox groups discovered from 

genes in other organisms. The POU homeoboxes are one such group. They were 

recognised as homologous between the mouse Pit-1 gene, the mouse Oct genes and 

the C.elegans gene Unc-86; PitiOctlUnc, hence POU. In the case of the POU and Fax 

genes the homeobox is only one of two highly conserved domains within the protein. 

The 'POU-specific' and 'Paired-box' domains are also DNA binding structures. Fax 

genes are defined as containing this motif but a number of them also contain a 

homeobox of the paired type. Whether a molecule has one or both of these domains is 

likely to affect the DNA target sites to which it binds (Czerny etal., 1993). 



While the HOM-C and Hox genes appear to specify anterior-posterior axial 

values, the divergent homeoboxes show a wide variety of expression patterns probably 

indicating widely varied functions. Several of these divergent homeobox genes, such as 

Emx, Otx, N/a, Msx and Dlx, are expressed in the developing brain. The Drosophila 
archetypes of two of these gene families, empty spiracles and orthodenticle, have been 
shown to have a role in segmentation of the head; the expression pattern of their 

vertebrate homologues (Emx and Otx) suggests that this function may have been 

conserved and that these genes may play a role in subdivision of the developing 

vertebrate brain (Cohen and Jurgens, 1990; Simeone et al., 1990; Holland et al., 

1992a). It has been suggested that given the ancient origin of the Hox-axis system and 

the relative evolutionary novelty of the brain, non-Hox genes have been recruited to 

provide positional values in more recent times (Holland et al., 1992a). 

The first non-Antp-like homeobox discovered was that of engrailed, a 
Drosophila gene with two vertebrate homologues (Poole et al., 1985; Fjose et al., 
1985; Kuner et al., 1985). Vertebrate En-1 and En-2 have a variety of expression sites 

including the embryonic midbrain-hindbrain boundary and the developing limb-bud 

(Joyner et al., 1985; Davidson et al., 1988). The limb is a site of expression for several 
divergent homeobox genes. As we shall see, the Msx genes are expressed there as are 
Dix-2, Evx-1 and Cdx-i (section 1.4.2; Bulfone et al., 1993; Niswander and Martin, 
1993a; Meyer and Gruss, 1993, respectively) 

Table 1.1 

Drosophila GENE VERTEBRATE HOMOLOGUES 

engrailed (en) En-1, En-2 

muscle-segment homeobox (msh) Msx-1, Msx-2, Msx-3 

even-skipped (eve) Evx- 1, Evx-2 

orthodenticle (otd) Otx- 1, Otx-2 

empty spiracles (ems) Emx- 1, Emx-2 

distalless (dli) Dlx- 1, Dlx-2 

caudal (cad) Cdx-1, CcLx-2, Cdx-3, Cdx-4 

NK/tinman 	 I  Nkx-i.i, N/a-2.2, N/a-2.5, Nkx-3.i 

The chromosomal location of the Evx genes is of interest in considering the 

evolutionary origins of all homeobox genes. Evx- 1 is located at the 5' end of the HoxA 
cluster and Evx-2 at the same end of the HoxD cluster (Bastian et al., 1992). The 
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location of homologous, divergent homeobox genes in a conserved position within two 

of the four mammalian clusters suggests that these two clusters are more recent 

relatives and were derived from a single Evx-associated cluster by a duplication event. 

The more interesting evolutionary question raised by the location of the Evx genes is 

whether all homeobox genes were once part of a single complex. In Drosophila, eve 

does not map near the HOM-C but examination of homeotic complexes from an 

increasing number of organisms may shed light on the relationship between the 

'divergent' homeoboxes and the 'Antp-like' homeoboxes. The homeobox can be 

considered to have a single evolutionary origin but it seems that while many homeobox 

genes remained linked (the HOM/Hox homologues) several others became scattered 

around the genome at an early stage, it is these that we now think of as the divergent 

homeoboxes. 

1.1.4 The homeobox encodes a DNA-binding protein 

It was noted that the high proportion of basic amino-acids encoded by the 

homeobox are consistent with a possible role in DNA or chromatin binding (Laughon 

and Scott, 1984). Weak homology was detected, in the 3' end of the 60 amino-acid 

region (the homeodomain), to the al and a2 proteins of the yeast MAT locus 

(Shepherd et al., 1984). These gene products had been implicated in control of gene 

expression at the transcriptional level (Strathern et al., 1981). The homeotic genes of 
Drosophila had been proposed as developmental switches controlling the large battery 

of genes responsible for elaborating segmental phenotypes (Garcia-Bellido, 1975; 

Lewis, 1978). The basic charge of the homeodomain along with homology to the yeast 

proteins suggested that it was a DNA-binding structure apparently common to 

developmental control genes (McGinnis et al., 1984b). The homeotic 'switches' 

therefore looked likely be DNA-binding transcriptional regulators (Shepherd et al., 
1984). This proposal of function was greatly strengthened by observations made in the 

key paper of Laughon and Scott (1984). They realised that the homeodomain of the 

Drosophila genes had, near the 3' end, a pattern of residues highly conserved among 

several bacterial DNA-binding proteins. The crystallographic structures of proteins 

such as X Cro, X repressor and Escherichia coli CAP protein revealed a DNA-binding 

structure consisting of two a-helices connected by a 3-turn (the so-called helix-turn-

helix - HTH). The C-terminal a-helix fits neatly into the major groove of the DNA 

molecule while the N-terminal helix lies across it making contacts with the sugar-

phosphate backbone of the DNA. Specific residues, known from genetic studies and 

model building to be involved in the maintenance of this structure, are highly 



conserved between these proteins. Laughon and Scott recognised this pattern of 

conserved positions essential to the helix-turn-helix within the 3' end of the homeobox. 

They noted that the positions involved in sequence-specific binding by the prokaryotic 

proteins were perfectly conserved between Antp, Ubx and ftz suggesting that they bind 
the same sequence. 

The DNA-binding capacity of the homeodomain was first demonstrated with 

the protein product of the Drosophila engrailed gene. Desplan and colleagues 
(Desplan et at., 1985) demonstrated the ability of proteins with an intact homeodomain 

to bind fragmented phage-X DNA under conditions only permitting specific 

interactions. They also showed that a cluster of three high-affinity binding sites for the 

en homeodomain were present in 900 bp of the 5-flanking DNA of the en gene. These 

sites are likely to be functional in vivo as they are conserved in another species of 

Drosophila and the chance grouping of apparently rare sites is highly improbable. 

1.1.5 Structure and specificity of the Homeodomain 

Specificity of action by the products of the homeobox genes is demonstrated to 

reside in the homeodomain. This is undoubtedly a rather broad oversimplification of 

the situation but it has been shown to be true for a number of Drosophila homeotic 
genes (Kuzoira and McGinnis, 1989; Ekker et at., 1992c; Dessain et al., 1992). The 

homeodomain is, by definition, a highly conserved structure yet it must provide 

differential specificity for the many gene-products in which it is found. As mentioned, 

the homeodomain is structurally related to the prokaryotic helix-turn-helix motif. 

Despite this homology the homeodomain does not bind DNA in a manner identical to 

the HTH. Genetic studies have shown that the DNA-binding specificity of the HTH 

resides in the N-terminus of the recognition helix (Pabo and Sauer, 1984; Wharton and 

Ptashne, 1985). In contrast, the homeodomain recognition helix has a C-terminal 

extension responsible for the specificity of the homeodomain-DNA interaction 

(Treisman et at., 1989; Hanes and Brent, 1989). Crystallography performed on 

homeodomain-DNA complexes confirms this, showing a C-terminus in contact with 

the DNA molecule while the N-terminus is at some distance (Qian et al., 1989; 
Kissinger et at., 1990; Otting et at., 1990). Systematic mutation of the bicoid and 
paired homeoboxes revealed that residue 9 of the recognition helix (helix 3 of the 

homeodomain) confers the ability on the homeodomain to distinguish between sites 

normally bound by divergent homeoboxes (Hanes and Brent, 1989; Treisman et at., 
1989). Determination of consensus binding sites for a large number of homeodomains 

indicates that all bind a common core sequence of 4 bp, flanked 3' by an additional 2 bp 
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that is highly variable. In this sequence, TAATNN, the bases present in the variable 

positions vary with the residue found at position 9 of the recognition helix (Treisman et 

at., 1992a). By comparison to previously characterised combinations it is possible to 

predict the sequence bound by a homeodomain from the amino acid sequence of this 

region: Msx-1 is a good example. The recognition helix has a Glutamine residue at 

position 9 (Hill et at., 1989, Robert et at., 1989), similar to the homeodomains of 
Antp, Ubx, ftz,  en and others (e.g. Ekker et at., 1991). From this one would predict 
that Msx-1 bound a sequence TAATFG, TG being the suffix to the core sequence 

recognised by these homeodomains. Precisely this sequence has recently been 

identified as an optimal binding site for Msx-1 (Catron et at., 1993). The specificity 

dictated by the identity of residue 9 does not, however, determine all differences in site 

recognition. This position is invariant in Dfd and Ubx but their homeodomains are not 

functionally interchangeable in vivo (Dessain et al., 1992). 

A large body of evidence suggests that homeodomain proteins usually bind 

DNA as monomers (Qian et at., 1989; Otting et at., 1990; Kissinger et at., 1990 
Florence et al., 1991) however there are reports of co-operative binding, by dimeric 

complexes of a human homeodomain protein, to tandem copies of a DNA-site with 

greater affinity than that found for the monomer (Galang et al., 1992). There appear to 

be regions of the protein distinct from the homeodomain that are essential for this 

cooperativity. Cooperativity was detected in vitro, in the absence of any accessory 

factors however, such factors have been implicated in the precise recognition of half-

sites by homodimers of the yeast ot2 homeodomain protein (Smith and Johnson, 1992). 

It was shown that an extension to the homeodomain of a2 interacted with a second 

yeast regulatory protein, MCM1 (Vershon and Johnson, 1993). This extension region 

functions independently as shown by linking it to the engraited homeodomain which 

then binds co-operatively with MCM1. The extension also specifies interaction with 

the Serum Response Factor (SRF) a human protein related to MCM1, raising the 

possibility that this is a common mode of recognition by homeodomain proteins. Such 

higher order complexes may be necessary in some cases to discriminate functionally 

significant cis elements from fortuitously similar sequences (Grueneberg et al., 1992). 

In summary, the homeodomain is a peptide region capable of binding DNA in a 

sequence-specific manner. The specificity is largely encoded by the recognition helix, 

with the identity of residue 9 directly influencing the sequence bound. 

The nature of the homeodomain raises the problem of how such a highly 

conserved structure can produce the variation of specificity required to perform the 

diverse operations involved in systems such as Drosophila segmentation (Hoey and 



Levine, 1988). The answer is far from clear but it is likely to involve a higher level of 

sensitivity in site recognition in vivo than is observed in vitro. There may also be 

several modes of DNA-binding by the homeodomain, the co-ordinated action of which 

maintains the accuracy of these complex systems. The majority of interactions appear 

to be made by monomeric homeodomain proteins but additional levels of specificity 

may operate by dimerisation of the proteins or formation of heteromeric complexes 

with the products of other genes. In vivo studies have shown there to be determinants 

of specificity outside the homeobox and these may represent domains involved in 

protein-protein interactions (Chan and Mann, 1993). 

1.1.6 Homeobox genes are transcriptional regulators 

Demonstration that the homeobox-containing genes encode proteins involved 

in transcriptional regulation came from work performed in cell free, cell-culture, and 

embryonic systems. The assignment of this function to the genes controlling 

Drosophila segmental identity supported the view that the homeotic genes are 'selector 

genes' that control 'realisator genes' responsible for terminal cytodifferentiation 

(Garcia-Bellido, 1975; Lewis, 1978). 

Transcriptional activation and repression by homeodomain proteins was 

demonstrated biochemically using cell free systems (Biggin and Tjian, 1989; Ohkuma 

et al., 1990). Repression was shown to occur by different mechanisms; steric hindrance 

of activators and active repression from a distance. Drosophila cells in culture were 

used in a number of studies that showed the activation and repression capabilities of 

several homeobox-gene products (Jaynes and O'Farrell, 1988; Han et al., 1989; 
Winslow et al., 1989; Krasnow et al., 1989). In many cases the genes regulated by 

these proteins are other homeobox-containing developmental genes. Work done in the 

embryo revealed that the product of the bicoid (bcd) gene was an activator of the 
hunchback (hb) gene (Driever and NUsslein-Volhard, 1989). This activation was 

shown to be dependent upon the concentration of the bicoid protein (Struhl et al., 
1989a). bicoid is a maternally expressed gene, the transcripts of which become 

distributed along the antero-posterior axis of the Drosophila egg in a concentration 
gradient. Interaction of this gradient with a number of bicoid binding sites located 

upstream of the hb transcription unit ensures that hb is activated only within a specific 

section of the gradient. Recently, repression by the products of the Ubx and abd-A 

genes has been shown to be cell-type specific, revealing mechanisms for a wider range 

of controlling functions by a single gene-product (Appel and Sakonju, 1993). 



1.2 Evolutionary conserved clusters: structure and function 

1.2.1 The homeobox-gene cluster is an ancient structure 

Genetic analysis of the BX-C and ANT-C of Drosophila revealed that the 

order of genes along the chromosome was 'colinear' with their domain of function 

along the antero-posterior axis (Lewis, 1978; Kaufman, 1980). The BX-C and ANT-C 

(known collectively as HOM-C, the homeotic complex) comprise several genes with 

an Antp-like homeobox; labial (lab), proboscipaedia (pb), Deformed (Dfd), Sex 

combs reduced (Scr), Ultrabithorax (Ubx) and Abdominal-A (Abd-A), along with 
Abdominal-B (Abd-B) which has a slightly divergent homeobox but with more 

similarity to that of Antp than to any other class. They are the so-called 'homeotic 

selector' genes (Garcia-Bellido, 1975; Akam, 1988). The expression pattern of these 

genes was studied by in situ hybridisation. Genes were found to be expressed in 

regions that directly coincided with their domain of genetic function, emphasising the 

colinearity rule as a specific phenomenon at the molecular level. 

Antp-like homeoboxes are organised into similar types of clusters in all 

organisms from which they have been cloned (Graham et al., 1989). This suggests that 

there are specific mechanisms associated with this type of organisation that have been 

strongly conserved during evolution. In mouse there are four clusters of genes that 

encode Antp-like homeoboxes. These gene complexes, HoxA, HoxB, HoxC and HoxD, 

are found on chromosomes 6, 11, 15 and 2 respectively (McGinnis and Krumlauf, 

1992 and references therein). The number of genes in each complex varies, with HoxA 
containing eleven genes and HoxB, C and D nine genes each. Sequence homology 

between genes of different clusters and conservation of the position of homologous 

genes along the clusters has led to the proposal that all four clusters are related. The 

present four clusters are thought to have arisen by a series of large duplication events 

in which the single, ancestral cluster was duplicated followed by similar duplication of 

each of the 'daughter' clusters (Hart et al., 1987; Graham et al., 1989; Duboule and 
Dollé, 1989; Schugart et al., 1989). It is possible to assign genes in different clusters to 

sub-families of paralogous genes with which they share especially high homology 

(figure 1.1). There are thirteen paralogue families in all. 

As the structure of these clusters was determined, several groups involved in 

the work performed in situ hybridisations to facilitate a comparative study of gene 

expression patterns along the clusters (Gaunt et al., 1988; Graham et al., 1989; 

Duboule and Dollé, 1989). There turned out to be a colinear relationship between the 

anterior boundary of expression of a gene (within the neural tube and the somitic 
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Figure 1.1 

HoxB 	 11 -, 	------- 
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Figure 1.1 Diagramatic representation of map positions in the four mouse Hox clusters (bottom) and the HOM-C cluster of Drosophila 
melanogaster, derived by fusion of ANT-C and BX-C. The colinearity between homologues of mouse and Drosophila is clearly demonstrated. Below is 
an indication of the temporal and spatial colinearity known for the mouse genes and the differential response to Retinoic Acid seen by these genes in EC 
cells (see text). 



mesoderm) and its position along the cluster, as with the genes of the HOM-C in 

Drosophila. In all cases a sharp anterior boundary of expression was noted with the 

signal extending posterior of this and in some cases fading slightly but never showing a 

clear posterior boundary. The colinear relationship was demonstrated directly for the 

entire HoxB cluster (Graham et al., 1989) and for genes found in adjacent paralogous 

groups in different clusters (Gaunt et al., 1988). 

The observation that the murine genes are organised into evolutionarily 

conserved clusters, colinearly expressed along the A-P axis, led to the discovery that 

the paralogous sub-groups are themselves related to members of the Drosophila 

HOM-C that are arranged along the chromosome in a similar order, if the ANT-C and 

BX-C are viewed as a contiguous structure (Graham et al., 1989; Duboule and Dollé, 
1989; Figure 1.1). Drosophila HOM-C and vertebrate Hox clusters are therefore 

presumed to be homologous structures. Figure 1.1 shows how the four murine 

complexes and the Drosophila HOM-C can be aligned such that the genes lying at a 

similar position along the parallel complexes represent those with the highest 

homology. The problem of the discontinuity of the HOM-C (into ANT-C and BX-C), 

as compared to the vertebrate clusters, was illuminated by the discovery that the 

HOM-C is continuous in the beetle Tribolium (Stuart et al., 1991; Beeman et al., 
1993). The split found in Drosophila may be specific only to a particular order of the 
insects, the dipterans. 

It is possible to assign lab, ph, Dfd and Abd-B to groups of mouse genes with 

some confidence, based largely on homeobox sequence homology (McGinnis and 

Krumlauf, 1992 and references therein). For Antp, Scr, Ubx and Abd-A the extreme 

homology between their homeoboxes makes it difficult to say with certainty to which 

groups they belong. They are therefore assigned to four groups of murine genes with 

which they share equally high homology. The murine group aligning between pb and 
Dfd is sometimes linked with the Drosophila homeobox gene Zerkniillt (Zen) as it 
maps to this position in the ANT-C. Zen is not, however, a true homeotic gene 

involved in differentiation along the A-P axis. This group of murine genes shares equal 

homology with ph and may represent a new group produced since the split between 

vertebrate and arthropod lineages. It may be that early in vertebrate evolution there 

was a duplication of the pb-like gene in the single cluster with the 'new' gene evolving 

faster than its progenitor. Alternatively there has been a gene lost from HOM-C at 

some stage in evolution. There are examples of the vertebrate-specific duplication 

event, involving the Abd-B-like genes. The HoxB cluster contains a single Abd-B-like 

gene, Hoxb-9. The other three clusters contain multiple examples of this type of gene. 

HoxA has four such genes while HoxC and HoxD both contain five. Clearly, during 
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vertebrate evolution the original Abd-B-like gene has been duplicated several times. It 

is not clear what the temporal relationship is between duplication of individual genes, 

along the chromosome, and duplication of the entire cluster to give the present 

structure but it would appear that the two processes have both occurred several times. 

Alternatively, the varying representation of paralogue groups in different clusters may 

result from differential gene loss from the duplicated copies of an original thirteen-gene 

vertebrate cluster (Schubert et al., 1993). The recent discovery of a single homeobox-

gene cluster in the chordate amphioxus (Garcia-Fernandez and Holland, 1994) 

suggests that multiple Hox gene clusters are a vertebrate-specific feature and that 

duplication may have been a significant step in the evolution of our own sub-phylum. A 

homeotic gene cluster has also been found in the nematode Caenorhabditis elegans 

and shown to be involved in patterning along the A-P axis (Wang et al., 1993). It 

contains at least four genes that can be aligned to genes (or groups of genes) from the 

HOM-C on the basis of homeobox homology. The genes are found in the predicted 

order and their expression patterns obey the colinearity rule. These findings suggest a 

direct link between morphological elaboration and homeobox gene amplification. 

It appears then that not only are the four murine clusters derived from a single 

progenitor but the Drosophila HOM-C is also related by some common ancestral 

cluster. This ancestral cluster must have been present in an organism alive some 600 

million years ago and from which both vertebrate and arthropod lineages are 

descended. Based on the most strongly conserved sequences found in extant species it 

has been suggested that such a cluster contained genes structurally similar to lab, pb, 
Dfd, Abd-B and at least one of the Scr/Antp/Ubx type (Krumlauf, 1992). It seems that 

the arthropod/vertebrate cluster is a version of an ancient structure existing before the 

divergence of the nematode and arthropod/chordate lineages. It has been proposed that 

the original cluster from which nematode, arthropod and vertebrate clusters are 

derived contained three genes, a lb/pb type, an Dfd/Scr/Antp/Ubx/Abd-A type and an 
Abd-B type (Schubert et al., 1993). Differential modification and elaboration of the 

structure of this cluster may have been significant to variations in body-plan as Lewis 

suggested (Lewis, 1978). The current role of the homeotic complex in the 

development of metameric organisms is likely to reflect the adoption of a pre-existing 

mechanism to a specific mode of development. 

1.2.2 Mouse homeobox genes function in Drosophila 

Considering the extreme conservation of sequence between the homeobox 

genes of insects and vertebrates, and the discovery that the gene complexes are 
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homologous structures, experiments were performed to determine the degree of any 

functional conservation. 

It is known from work on Drosophila that ectopic expression of a homeotic 

gene will often lead to a phenotype in which additional parts of the body are 

transformed into those specified in the normal domains of expression. Indeed, some of 

the original homeotic mutants are gain of function mutations where ectopic expression 

leads to homeosis (e.g. Schneuwly et al., 1987a & b). Ectopic expression of 

Drosophila genes is achieved using an inducible heat-shock promoter linked to the 

coding region of the gene in question. Similar ectopic expression of mouse genes in 

Drosophila showed that they gave a phenotype comparable to that produced by their 

endogenous cognate. Ectopic expression of the Hoxb-6 gene produced a phenotype 

similar to that of ectopic Antp, the HOM-C gene to which it is most closely related 

(Malicki et al., 1990). The phenotypic effects of ectopic expression of a homeotic 

selector gene are produced by inappropriate activation of the realisator genes that it 

controls. The assumption from the mouse-cognate experiment is that the vertebrate 

gene is able to activate many of the same genes as its fly counterpart. The Hoxa-5 gene 
is capable of activating expression of the Drosophila forkhead (Jkh) gene, a natural 
target of Scr of which Hoxa-5 is a cognate (Zhao et al., 1993). Experiments with 
human Hoxd-4, a Dfd cognate, revealed that the two share similar regulatory 

specificities (McGinnis et al., 1990). In this case the conservation of function has been 

shown to extend to the cis-acting elements associated with Dfd and Hoxd-4. Not only 
is the mouse protein functionally equivalent to that of Drosophila but the 

autoregulatory element from the fly functions in a conserved manner when introduced 

into mice (Awgulewitsch and Jacobs, 1992) and a regulatory element from the human 

gene localises expression to the Drosophila head (Malicki et al., 1992). This 

observation is not entirely unexpected as we might imagine that the great selective 

pressures that have preserved the homeobox genes during evolution have acted upon 

components of the regulatory circuits in which they function. 

Conservation of the HoxIHOM genes during evolution is seen to include not 

only structure but also function. The specificity of action of the homeodomain proteins 

has been maintained over 600 million years of evolution. Identity between functionally 

equivalent molecules is limited to the 3' end of the homeodomain with some additional 

homology in the conserved hexapeptide. This restricted homology has led to 

suggestions that there are higher levels of conservation such as tertiary structure or 

that the position of a gene within a complex is more relevant to its functional 

specificity than sequence alone (Hayashi and Scott, 1990; Zhao et al., 1993). Whatever 
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it may be, the molecular nature of this 'paralogue-specific' conservation must reflect a 

fundamental property of the HoxIHOM clusters 

1.3 Homeobox genes regulate axial patterning 

As mentioned, the murine Hox genes are expressed in positions that relate to 

their chromosomal location. This leads to a set of overlapping domains of which the 

anterior boundary is progressively more caudal the more 5' the gene is located. If the 

expression patterns are conceptually superimposed it becomes apparent that at any one 

level of the antero-posterior axis (somitic mesoderm or CNS) there is a specific 

combination of Hox genes expressed (Kessel and Gruss, 1991). This led to the 

proposal that position along the axis is defined by a combinatorial code of Hox genes, a 

model similar to that suggested for the homeotic genes of the BX-C (Lewis, 1978). 

Lewis' model states that a gene exerts its influence where it is the most posterior gene 

expressed. Therefore, it is the anterior boundary of the expression domain that is 

important. Clearly then, alteration of the expression domains should cause a change in 

pattern. A loss-of-function would result in transformation to a region with a more 

anterior identity (an anterior transformation) whereas a gain-of-function would cause a 

posterior transformation. These clear predictions of the 'Hox code' model can be tested 

by studying the effects of changing the set of genes that are expressed in a given 

position. This can be achieved by causing either gain- or loss-of-function for specific 

Hox gene products. 

1.3.1 Gain-of-function 

Kessel and Gruss (Kessel and Gruss, 1991) proposed the vertebrate 'Hox code' 
after studying the effects on axial patterning of the teratogen retinoic acid (RA). 

Retinoic acid is known to have teratogenic effects in a wide range of vertebrates 

(Tamarin et al., 1984; Lammer et al., 1985; Yasuda et al., 1986; Ruiz i Ahaba and 

Jessel, 1991). It was known that RA was capable of activating Hox genes in embryonal 
carcinoma cells (Colberg-Poley et al., 1985; Hauser et al., 1985) and more detailed 

studies had shown that genes were sequentially activated along the clusters in a 3' to 5' 
direction in response to an increasing concentration of RA (Breier et al., 1986; 
Simeone et al., 1990). Kessel and Gruss found that in utero application of RA caused 

homeotic transformations in the vertebral column. These transformations followed 

changes in the expression patterns of Hox genes along the A-P axis. In the cervical 

(anterior) region of the vertebral column RA produced posterior transformations that 
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followed an anterior shift in the anterior boundaries of Hox gene expression. This is 

consistent with the premature (more anterior) activation of more 5' Hox genes and the 

subsequent loss of the unique expression domains of the 3' genes; a gain-of-function in 

the domains of 3' genes caused by raising the RA concentration and resulting in 

posterior transformation of vertebral structures. 

RA resulted in ectopic expression of Hox genes in anterior regions. The effects 

of ectopic expression of specific genes in defined regions were examined using 

transgenic mice expressing Hox genes under the control of heterologous 

promoters/enhancers. Ubiquitous expression of the Hoxa-7 gene in mouse embryos 

resulted in complex cranio-facial abnormalities that were difficult to interpret (Balling 

et al., 1989). In the trunk, however, ectopic expression of this gene caused 

transformations in vertebral identity interpreted as partial posterior transformations 

(Kessel et al., 1990). Additional gain-of-function studies, using transgenic mice or 

injection of RNA into Xenopus embryos, have produced a variety of effects including 

alteration of axial identities but never a predictable set of transformations (Harvey & 

Melton, 1988; Wolgemuth et al., 1989; Wright et al., 1989; Cho et al., 1991; McLain 

et al., 1992). Over-expression of the human Hoxc-6 gene in posterior regions of the 

mouse embryo, from which it is normally absent, causes anterior transformations 

(Jegalian & De Robertis, 1992). Such transformations are similar to those reported for 

the null allele of Hoxc-8 (see below). This similar phenotype caused by both gain and 

loss-of-function suggests that the levels of homeobox-gene products are important in 

the specification of axial position. 

1.3.2 Loss-of-function 

Null alleles for the Hox genes have been created using homologous 

recombination technology in embryonic stem cells. Genes are inactivated by insertional 

mutagenesis in these cells which will then contribute to the germ-line of chimaeric 

mice. From these chimeras, homozygote mutants can be isolated in the F 2 . Hoxa- 1 null 

mice show many cranio-facial abnormalities probably due to a disturbance in the 

patterning of the cranial neural-crest (Lufkin et al., 1991). Similar effects are found in 

mice null for Hoxa-3 (Chisaka & Cappechi, 1991). Both of these genes are 

early/anterior Hox genes and the phenotypes produced reflect their domain of 

expression. Disruption of Hoxb-4 caused a partial homeotic anterior transformation in 

the cervical region, with the second vertebra, the axis, taking on certain characteristics 

of the first vertebra, the atlas (RamIrez-Solis et al., 1993). Disruption of a more 

posterior gene, Hoxc-8, gave a classic anterior transformation of the type predicted by 

16 



the combinatorial code (Le Moueffic et al., 1992). The most anterior lumbar vertebra 

was transformed into a vertebra with the likeness of its thoracic neighbour, including 

the presence of a pair of ribs. Targeted mutation of Hoxd-13 provides evidence that 
the Hox gene products are also involved in patterning the appendicular skeleton (Dollé 

et al., 1993b). Apparently axial differentiation in alternate parts of the body is 

regulated by a common mechanism. 

The presence of duplicated clusters in vertebrates complicates combinatorial 

models. Phenotypes may be rescued by functional redundancy among members of the 

same paralogue group. It is as yet unclear whether individual cells express multiple 

Hox genes at a given axial level, as the Lewis model requires. What is clear is that 

mutational analysis has the potential for elucidating the mechanisms whereby Hox 

genes provide axial information. 

1.3.3 The Hindbrain 

The hindbrain is divided into a series of units termed rhombomeres, recognised 

as bulges in the hindbrain neural epithelium. It was suggested that these may represent 

segmental units (Lumsden and Keynes, 1989) and subsequent grafting experiments 

confirmed this, showing each rhombomere to be a cellular compartment (Fraser et al., 

1990). There is a two-rhombomere periodicity to this compartmentalisation that 

ensures that cells will not mix between adjacent even and odd numbered segments. if 

two odd numbered rhombomeres are juxtaposed by grafting then their cells will mix 

freely. A similar periodicity of two rhombomeres is found in the differentiation of the 

branchial motor nerves from this region. The hindbrain represents the anterior limit of 

expression of the Hox genes. Anterior boundaries respect rhombomere boundaries with 

successive 5' genes expressed more posteriorly by a two rhombomere increment 

(Wilkinson et al., 1989). One exception to this is Hoxb-1 which is unique in having a 

defined anterior and posterior boundary limiting its expression to rhombomere 4 

(Murphy et al., 1989; Wilkinson et al., 1989). It is proposed that the identity of 

individual rhombomeres is determined, at least in part, by the Hox genes that they 

express. In support of this idea, mutation of the 3' gene Hoxa- 1 causes alteration to 

hindbrain pattern including the reduction or loss of the anterior-most rhombomeres 

expressing the gene (Carpenter et al., 1993; Dollé et al., 1993a). Patterning of the 

branchial arches may also be associated with the Hox code in the hindbrain (Krumlauf, 

1993; Wilkinson, 1993). The branchial arches grow ventro-laterally from the hindbrain 

region and are populated by cranial neural crest cells derived from this area of the 
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neural tube. These cells continue to express Hox genes corresponding to their position 

of origin in the hindbrain. The cranial neural crest forms the majority of mesodermally 

derived head structures in vertebrates with the branchial arch populations forming 

structures of the face and throat region (Noden, 1988). The disruption of normal 

expression patterns of the 3' Hox genes may cause the observed crarno-facial 

abnormalities by a perturbation of patterning in these neural crest populations (Lufkin 

et al., 1991; Chisaka & Cappechi, 1991). 

1.3.4 The Limb 

The implication of Hox genes in axial patterning is extended to secondary axes 

such as those of the developing limb. Genes of the HoxD cluster are expressed in the 

limb bud in a series of partially overlapping domains with a common posterior-distal 

boundary and progressively restricted anterior-proximal boundaries for more 5' genes 

(Dollé et al., 1989). This shows a marked similarity to the situation in the trunk. The 

limb is an accessible system in which regional interactions can be studied by grafting 

experiments. Regions of the limb bud have been identified as playing a role in defining 

the axial pattern of the structure, notably the Zone of Polarising Activity (ZPA) which 

determines antero-posterior polarity and the Apical Ectodermal Ridge (AER) which 

mediates outgrowth and proximo-distal patterning (Summerbell, 1974; Tickle et al., 
1975). HoxD genes expressed in the limb are from the 5' end of the complex and are 

also expressed in the posterior regions of the trunk (Dollé et al., 1991). The gene at 

the 5' end of the HoxD complex is expressed at the posterior extremities of the trunk 

and in the most posteriorly restricted domain within the limb. This domain maps to the 

region of the ZPA. The ZPA has been suggested as a source of retinoic acid (Thaller 

and Eichele, 1987). The 'mirror image' digits produced by anterior grafting of the ZPA 

can be phenocopied by anterior application of retinoic acid (Tickle et al., 1982). The 

similarity between trunk and limb Hox expression patterns, along with the recurring 

theme of RA, suggest that a common mechanism of Hox activation occurs during axial 

growth in the trunk and the limb. 

The common model proposed is that Hox genes are activated progressively in a 

3' to 5' direction along the cluster by a signalling centre (possibly using RA) moving in 

an anterior to posterior direction. A good candidate for this signalling centre in the 

trunk, given the that the Hox genes are first expressed during gastrulation, is the node 

(Hensens) at the cranial tip of the primitive streak (Hornbruch and Wolpert, 1986). As 

gastrulation proceeds the first cells passing through the streak form anterior structures. 



The Hox genes are sequentially activated down the cluster, in cells entering the node, 

resulting in the observed spatial-colinearity. In the limb this signalling centre is the 

ZPA. It is significant that grafts of node into the limb provide polarising activity akin to 

that of the ZPA (Hornbruch and Wolpert, 1986). During limb outgrowth Hox genes 

are progressively activated by a signal from the ZPA. The interaction of growth and 

sequential activation produces the observed 'nested' domains of expression. It has been 

proposed that spatial-colinearity is the observed end-product of a mechanism of 

'temporal-colinearity' due to the development of the vertebrate embryo in an anterior to 

posterior (anterior-proximal to posterior-distal in the limb) direction where the anterior 

of the embryo is always 'older' than the posterior (Dollé et al., 1989; Duboule, 1992). 

1.4 The Msh homeobox-gene family 

The Hox genes clearly have a fundamental function in the specification of body 

plan. They have filled the role of determinants of anterior-posterior specificity 

throughout a large part of metazoan evolution, no doubt influencing the paths taken in 

the establishment of morphological complexity. However, as mentioned earlier (section 

1.1.3), the Hox genes are but one class of the wider family of homeobox genes. In 

view, both of the importance granted to the Hox genes and the significant functions 

encoded by other classes of homeobox genes in Drosophila these divergent homeobox 

genes have also attracted much scrutiny. 

One family of diverged homeobox genes is that related to the Drosophila mh 

gene. Drosophila carries a single gene of this type encoding a homeodomain with only 

42% amino acid identity to that of Antp (Gehring, 1987). The ,nsh homeobox encodes 

the nine positions invariant among all other homeoboxes but shows divergent features 

such as an Arginine—Threonine substitution at position 43 in comparison with the 

Antp homeobox. This is a rare change previously found only in the labial like 

homeoboxes. Differing approaches were adopted in cloning mouse cognates of the 

Drosophila insh gene. Direct library screening, with the msh homeobox and 3' end, 
enabled isolation of a mouse insh-like gene (Robert et al., 1989). The same gene was 

isolated during a search for diverged homeobox sequences in which homeoboxes were 

sought that showed weak hybridisation to the Hoxa- 1 homeobox (labial-like) and none 
to the ftz homeobox (Hill et al., 1989). This gene encodes a homeodomain that differs 

from the msh homeodomain at only 5 positions. Homology extends eleven amino acids 

3' and at least seven amino acids 5' of the homeodomain. The gene was originally 

termed Hox-7. 1 but has been renamed Msx- 1 (Scott, 1992). Besides Msx- 1 there are 
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two other ,nsh-like genes in the mouse genome (Holland, 1991; Robert Hill, personal 

communication). Msx-2 encodes a protein with an overall 60% identity with Msx- 1 and 

a homeodomain that differs at only two positions (Monaghan et al., 1991). Msx-2 is 
the new name for the gene previously termed Hox-8. 1. Characterisation of the third 

gene has not yet been reported with the exception of the homeobox sequence that has 

been determined by Holland (1991). The Msx-3 homeodomain differs at one position 

from that of Msx- 1 and at three positions from that of Msx-2. The hexapeptide region 

upstream of the homeodomain, conserved among many Antp-like homeobox-genes, is 
poorly conserved in the Msx genes. Msx- 1 has 3 of the 6 residues and Msx-2 has only 
2. Msx- 1 maps to mouse chromosome 5 and is not linked to any known homeobox-

gene cluster (Hill et al., 1989). Msx-2 is not linked to Msx-1 (Monaghan et al., 1991) 
and maps to chromosome 13 (Bell et al., 1993). A single intron is present in both Msx-
1 and Msx-2 at the same position, 43 bp upstream of the homeobox; a genomic 

structure similar to many Drosophila HOM-C and murine Hox genes (Monaghan et 
at., 1991). Cognates of the Msx genes have been cloned, or at least identified, from a 

variety of organisms. In vertebrates including chicken, quail, zebrafish, human and 

mouse there are 1-3 Msx genes cloned (Yokouchi et at., 1991; Coelho et al., 1992; 
Takahashi and Le Douarin, 1991; Akimenko et al., 1991; Hewitt et al., 1991; Hill et 
al., 1989; Robert et al., 1989). It is likely that full characterisation will reveal each of 

these organisms to have three genes as in mouse. A possible exception among 

vertebrates is zebrafish which has 5 Msx genes (Akimenko et al., 1991; Monte 

Westerfield, personal communication). This unusual situation could result from the 

zebrafish genome being polyploidal (Ekker et al., 1992a). Holland has engaged in an 

evolutionary study of the msh-like genes. In contrast to the 3 genes he found in mouse 

and zebrafish he has isolated only a single msh-like gene from both a Cephalochordate 

(amp hioxus) and an Ascidian (Ciona intestinalis). Urochordates (including 

Ascidiacae) and Cephalochordates are considered the closest related organisms to the 

vertebrates. Vertebrates have many specific features not shared by these other 

members of the chordate phylum including the migratory neural crest, cranial and 

spinal ganglia, branchial arches and ectodermal placodes. The duplication of the msh-

like genes in the vertebrate sub-branch may be significant to the development of some 

of these features. This seems especially likely when the expression patterns of these 

genes are considered. 

Northern-blot analysis of mouse embryonic mRNA revealed that an Msx- 1 
transcript of 2.0-2.2 kb is expressed during embryogenesis, with a peak at -9.0 days 

post coitum (Hill et al., 1989). Detailed studies of expression patterns were undertaken 
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by RNA in situ hybridisation (Robert et al., 1989; Hill et al., 1989; Monaghan et al., 

1991; Davidson & Hill, 1991; MacKenzie et al., 1991a & b; MacKenzie et al., 1992). 

Unlike the Hox genes, Msx genes show no anterior-posterior specificity in their 

expression patterns. They are expressed along the full length of the embryo in the 

neural plate (subsequently in the neural crest) and the lateral plate mesoderm 

(Davidson & Hill, 1991). Neural plate expression is restricted to the tips of the neural 

fold which express high levels before and after neural tube fusion, when they mark the 

dorsal midline. Cells from this region constitute the migratory neural crest. They 

express Msx-1 at higher levels than Msx-2. Lateral plate expression is restricted to 

increasingly lateral positions with the final, stable domain of Msx-2 located more 

laterally and within that of Msx-1 (Davidson & Hill, 1991). It is possible that these 

genes play a role in patterning the medio-lateral axis of the early embryo. 

Cells of the neural crest undergo extensive migration (Le Douarin, 1982), 

maintaining expression of both Msx-1 and Msx-2 as they do so. Organogenesis 

involving Msx expressing mesodermal populations, along with migration of the neural 

crest to several morphogenetically active regions results in elaborate expression 

patterns for the Msx genes. Expression then appears to enter a second phase in which 

maintenance and regulation are under the control of local influences. Only one site of 

de novo expression is known at present, that in the developing eye (Monaghan et al., 

1991). All other expression is derived from this early pattern. This diverse set of 

expression domains includes the developing head and facial structures, pituitary, ear, 

heart, genital structures and limbs (MacKenzie et al., 1991a; Ekker et al., 1992b; Hill 
et al., 1989; Lyons et al., 1992; Davidson et al., 1991). The more closely studied of 

these systems are discussed in detail below. 

1.4.1 Cranio-facial expression 

In situ analysis of Msx gene expression in the developing mouse shows that 

early in the development of the head and face (8-9 dpc) Msx-1 is expressed in all neural 

crest cells that have migrated to this region (MacKenzie et al., 1991a). Msx-1 is highly 

expressed in both the epithelium and mesenchyme of the medial and lateral nasal 

processes at 9.5 days post coitum (dpc) (Hill et al., 1989; MacKenzie et al., 1991a). 

Expression is high in the mesenchyme of the first branchial arch (mandibular arch), 

decreasing in a distal—*proximal gradient. These sites of expression persist until fusion 

of the nasal, maxillary and mandibular processes during day 12 of development. By 11 

dpc expression in the first branchial arches is restricted to the distal tips with localised 

expression persisting proximally in the mesenchyme surrounding the dental epithelium 
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(MacKenzie et al., 1991a). Mesenchyme surrounding the developing brain, which 

forms bones of the skull, expresses highly during days 10 and 11 (Hill et al., 1989; 

Robert et al., 1989; MacKenzie et al., 1991a). This expression has been implicated in 

the phenotypic effects of a human MSX2 mutation (Jabs et al., 1993). The mutation 

causes a dominant defect in the sutures joining the skull bones resulting in 

craniosynostosis. During days 14-16 low levels of Msx-1 expression are detected in the 

bone and muscle anlage of the jaw, derived from neural crest and lateral plate 

mesoderm respectively (MacKenzie et al., 1991a). Expression is high in the neuro-

epithelium of the telencephalon that is destined to form the lateral choroid plexus. Msx-

1 may be involved both in patterning and organogenesis of the choroid plexus. As the 

choroid plexus forms, Msx-1 expressing epithelium delaminates and is convoluted by 

an invasion of overlying dorsal mesenchyme (MacKenzie et al., 1991b); this 

mesenchyme also highly expresses Msx-1. Ratbk&s pouch is another site of high Msx-1 

expression during its formation on days 9.5-11.5 (MacKenzie et al., 1991b). This small 

outpocketing of epithelium, in the roof of the oronasal cavity, forms the anterior 

pituitary. 

Both Msx-1 and Msx-2 are expressed in the developing tooth. Until the cap 

stage Msx-2 is expressed in the epithelium of the enamel organ, with expression also in 

the underlying mesenchyme of the dental papilla by the late cap and bell stages 

(MacKenzie et al., 1991a & 1992; Jowett et al., 1993). By contrast Msx-1 is expressed. 
solely in the underlying dental mesenchyme. Msx-2 expression persists until 

differentiation of epithelial cells into ameloblasts. The regulation of these genes during 

tooth development correlates with the developmental stage of the tooth rather than 

that of the embryo. 

Expression of the Msx genes may be involved in patterning the developing eye 

(Monaghan et al., 1991). Msx-2 expression marks the inner layer of the optic cup 

before invagination. Later, only the region of the inner layer destined to form the 

neural retina expresses. Msx-1 expression is specific to just below the tip of the optic 

cup from which the ciliary body develops. Expression marks this region up to two days 

before the ciliary body is morphologically distinguishable from the neural retina. 

The inner ear is also a site of Msx gene expression (Ekker et al., 1992b). In the 
zebrafish three Msx genes are expressed during the development of the semicircular 

canals and later in specific cell types within the structure. 

Msx-1 has recently been shown to be essential for correct development of 

craniofacial structures (Satokata and Maas, 1994). Mice homozygous for a mutation in 

Msx- 1 show defects in the secondary palate, mandible, maxilla and development of the 

teeth and middle ear. 
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1.4.2 Limb-bud expression 

Both Msx- 1 and Msx-2 are expressed in the developing limb (Davidson et al., 

1991). When the limb bud first protrudes from the flank Msx-1 is expressed throughout 
with Msx-2 confined to the ventro-distal ectoderm and a small region of underlying 

mesoderm. The expression pattern changes during outgrowth of the limb bud. By 11.5 

dpc Msx- 1 becomes restricted to the posterior-distal mesenchyme where it is expressed 

at high levels. Msx-2 is also present in the distal mesenchyme, at somewhat lower 

levels, and within the overlying ectoderm, the Apical Ectodermal Ridge (AER). The 

AER does not detectably express Msx- 1. Following formation of the foot-plate and 

cartilaginous condensations of the digits, Msx-1 is expressed in the interdigital 

mesenchyme (Hill et al., 1989). Cell death in this region is responsible for sculpting the 

limb. A chicken homologue of the Msx- 1 gene is expressed in a similar domain under 

the AER (Coelho et al., 1993a). Independent domains of expression are found in the 

proximal anterior and posterior regions of the limb-bud. These overlap but do not map 

exclusively to the anterior and posterior necrotic zones where cell death is again 

essential to the shaping of the limb-plate. The coincidence of Msx- 1 expression with 

sites undergoing programmed cell death suggests that Msx-1 is involved in this 
process. 

In the chicken embryo, grafting experiments and exploitation of certain chicken 

mutations affecting the limb have elucidated the mechanisms whereby the Msx genes 
are controlled during limb outgrowth. Msx- 1 and Msx-2 respond to positional cues 
within the limb (Davidson et al., 1991). This was shown by performing inter-specific 

grafts between mouse and chicken. A piece of proximal mouse limb-bud was taken 

from a region outside the distal expression domain of the Msx genes. This was grafted 

into a wing-bud of comparable stage in a more distal position; corresponding to the 

region in which the genes are expressed. Both genes were turned on in the graft in a 

manner dependent upon a distal position. Activation within the grafts closely matched 

expression in the surrounding tissue with a gradient of expression higher at the distal 

tip. These observations suggest that a diffusible factor emanating from the AER is up-

regulating the Msx genes. This hypothesis is strengthened by examination of Msx gene 
expression in the chicken mutant limbless (Robert et al., 1991). In limbless mutants 

there is a defect in the response of ectoderm to AER-inducing signals from the 

mesoderm (Carrington and Fallon, 1988). Consequently, initial budding is successful 

but outgrowth fails in the absence of a functional AER. Expression of the Msx genes is 

seen early in the budding flank mesoderm, prior to outgrowth, but is not maintained 

and soon disappears. The limbless phenotype can be rescued by grafting wild-type 
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ectoderm over the bud whereupon outgrowth continues. Such a rescue causes 

activation of the Msx genes as normal. Similarly, an additional outgrowth can be 

induced if an ectopic AER is grafted onto the dorsal side of a normal limb-bud (Robert 

et al., 1991). Mesenchyme underlying the AER in this extra outgrowth activates Msx 

genes as seen in the endogenous bud. Two other chicken mutations causing limb 

abnormalities demonstrate the intimate relationship between Msx expression and the 
AER (Coelho et al., 1993b). talpi& and diplopodia-5 both cause polydactyly as a 

result of an expanded anterior-posterior axis in the limb bud. The broad limb bud found 

in both of these mutants is capped by an AER that extends the full width of the bud. In 

both cases the mesenchyme underlying this extended ridge expresses Msx-1 in a 

proximo-distal gradient similar to that of normal limbs. In addition Msx-2 is expressed 

throughout the ridge. Interestingly these polydactylous mutants lack necrotic zones in 

the anterior and posterior proximal regions of the bud. This coincides with an absence 

of Msx gene expression in these regions. 

These data point to specific modes of regulation for the Msx genes in the 
vertebrate limb-bud. Study of the limbless mutation shows that there are two phases of 
Msx activation in the limb; an initial induction followed by an AER-dependent 

maintenance. The loss of part, but not all, of the expression pattern in the limbs of the 

polydactylous chickens implies that there are several regulatory influences acting upon 

these genes, possibly through different enhancers specific to each region (Coelho et al., 
1993b). The reliance upon a functional AER for Msx expression, and the close spatial 

relationship whereby underlying tissue expresses most highly, clearly suggests that the 

AER provides a factor essential for the maintenance of Msx gene expression. This 

factor is most likely a diffusible molecule such as a growth factor. Several candidates 

exist in this region of the limb; these include BMP-2A, BMP-4A, Wnt- 1 and Wnt-5A, 

all members of the TGF-0 family (Robert et al., 1991; Gavin et al., 1990; Parr et al., 

1993) and the FGF-like molecules FGF-4 and FGF-2 (Niswander and Martin, 1992; 

Munaim et al., 1988). Recent work has suggested that FGF-4 may indeed be a 

diffusible factor produced by the AER and acting on the underlying mesenchyme 

(Niswander et al., 1993b). Appropriate response of tissue grafted from mouse limb 

bud to that of chicken suggests that both the signalling pathway and the positional 

nature of the signal responsible for regulating these genes is highly conserved between 

birds and mammals. The expression pattern of Msx- 1 coincides well with a region 

defined as the 'progress zone' (Robert et al., 1991; Summerbell et al., 1973). This is a 

zone of undifferentiated mesenchyme at the distal tip of the bud thought to be the site 

of positional specification along the proximo-distal axis. Msx- 1 may have a role in 

maintaining the embryonic state of the progress-zone cells. This idea is supported by 
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the observation that over expression of Msx- 1 in myogenic cells blocks terminal 

differentiation of these cells into myotubes (Song et al., 1992). Overexpression of 

Msx-2 in the same system fails to prevent differentiation. 

Recent generation of mice lacking Msx- 1 function (Satokata and Maas, 1994) 

has cast doubt upon the role played by this gene in development of the limb, as the 

limbs of these mice are apparently normal. This conflict with the expression and 

functional data described may be explained by functional redundancy with Msx-2. 

Generation of mice homozygous for null alleles of Msx-2 and of both genes will 

address this possibility. 

1.4.3 Msx genes and epithelial-mesenchymal interactions 

A common feature of several sites expressing the Msx genes during 

embryogenesis is their involvement in epithelial-mesenchymal interactions. Such 

secondary interactions are characteristic of morphogenesis in many systems including 

the heart, ear, limb, tooth and facial processes; all sites of Msx gene expression. In 
many cases (tooth, limb, face) Msx- 1 and Msx-2 are expressed in the epithelium and 

mesenchyme in a complementary pattern suggesting that they may define differences 

between the two or be involved in their alternative responses to signals. There does not 

seem to be a consistent rule for which tissue type expresses which gene. 

Interaction between the flank mesoderm and the overlying ectoderm induces 

the formation of a region of thickened ectoderm, the AER, which in turn interacts with 

the underlying mesoderm inducing outgrowth of the limb bud (Saunders, 1948; 

Summerbell et al., 1974). Outgrowth of the facial primordia has also been shown to 

require epithelial-mesenchymal interactions (Wedden, 1987; Richman & Tickle, 1989). 

Recombination experiments have shown that the limb and face share similar signals 

responsible for mediating these interactions (Richman & Tickle, 1989). The 
distribution patterns of the Msx genes make them ideal candidates as molecules 

involved in these signalling pathways. Recent work has shown that Msx genes respond 

to positional signals from both the face and the limb (Brown et al., 1993). Inter-

specific grafts show that Msx genes are capable of responding to local signals in the 

maxillary process regardless from which facial process they originate. Similarly, 

mesenchyme grafted from the face can respond to local signals in the limb by 

expressing Msx genes appropriately. However, reciprocal grafts show that limb 

•mesenchyme is incapable of responding to signals in the face. 

It has been proposed that a similar system regulates outgrowth in the facial 

primordia and the limb bud (Richman and Tickle, 1992). Outgrowth of the tail may 
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also be regulated by the same system; the ventral tail ridge, a thickened ectodermal 

structure essential to tail development, also expresses Msx-1 (Lyons et al., 1992). The 
grafting experiments suggest that Msx genes are involved in such a system and that the 

epithelial to mesenchymal signals in face and limb are very similar, despite the lack of 

an ectodermal ridge on the facial processes. The inability of limb mesenchyme to 

respond to facial signals may represent a quantitative difference in the extra-cellular 

signals required or an absence of additional limb-specific signals (Brown et al., 1993). 
In vitro recombination assays involving dental epithelium and mesenchyme have 

elucidated the relationship between epithelial-mesenchymal interactions and Msx gene 
activation (Vainio et al., 1993). These assays enable examination of the effects of 

candidate signalling molecules and their role in pathways leading to gene activation. 

In summary, the Msx genes are a small family of diverged homeobox genes 

related to the Drosophila insh gene. They show expression patterns distinct from the 
Hox genes. Duplication of a single ancestral gene appears to be vertebrate specific and 

may have had a role in evolution of several vertebrate-specific features. Expression 

pattern studies support this hypothesis with the genes activated in regions such as the 

neural crest, ectodermal placodes and several cranial sense organs. Many sites of 

expression coincide with morphogenetically significant epithelial-mesenchymal 

interactions and the complementary patterns of different Msx genes in tissues implicate 

them in signalling or signal response. Expression in the limb correlates with a region of 

undifferentiated mesenchyme and along with cell transfection studies this suggests that 

the Msx genes are involved in maintaining cells in this state. Msx genes are also 

expressed in several locations undergoing programmed cell death, indicating a possible 

role in this process. 
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1.5 Transcriptional regulation 

The original paradigm for our understanding of the mechanisms of gene 

regulation, at the transcriptional level, was provided by the prokaryotic operon model 

of Jacob and Monod (1961). This basic model, in which gene activity is regulated 

through adjacent cis-acting sequences by trans-acting regulatory proteins, also applies 

to eukaryotic systems (reviewed in Gluzman, 1985). 

1.5.1 cis regulation 

Genes encoding messenger RNA's are transcribed by RNA polymerase II, one 

of three RNA polymerases in the cells of higher eukaryotes. Analysis of such genes has 

provided a view of the organisation of cis sequences in a typical poi II eukaryotic gene 
(Mamatis et al., 1987). This organisation is summarised in figure 1.2A&B. Two 

classes of DNA elements function in the regulation of these genes; promoters and 

enhancers. Promoters are situated immediately upstream of the transcriptional start site 

from which they mediate accurate and efficient initiation of transcription. Analysis of a 

number of promoters reveals the presence of a common set of features typical to this 

region (Dynan and Tjian, 1985; McKnight and Tjian, 1986; Myers et al., 1986; Figure 
1.2A). An AT-rich region termed the TATA box (or Golberg-Hogness box) is located 

approximately 30 bp upstream of the initiation site. This is the site at which assembly 

of the initiation complex (the polymerase and its associated factors) occurs; it may also 

be essential for strand separation (Buratowski et al., 1989; Roeder, 1991; KIug, 1993). 

Upstream of the TATA box are binding sites for a variety of proteins. Several 

ubiquitously expressed proteins are known to bind to these 'upstream promoter 

elements' where they act to promote the level of transcription. These elements include 

a sequence containing the CCAAT motif which binds several factors including the 

ubiquitous CTF (Dorn et al., 1987; Santoro etal., 1988), and the sequence GGGCGG, 

the so called GC-box, that binds the ubiquitous factor Spi (Dynan and Tjian, 1985). 

These proteins are involved in the stimulation of basal levels of transcription. Upstream 

promoter elements can bind both ubiquitous and cell-type specific factors, for example 

the CCAAT sequence interacts with the liver-specific factor CIEBP as well as CTF 
(Friedman et al., 1989). The 3-globin gene promoter has elements bound by both 

ubiquitous (CCAAT) and specific (CAC) factors (Mantovani et al., 1988). Specific 

promoter factors appear to co-operate with the ubiquitous proteins to stimulate 

transcription (deBoer et al., 1988). Recent X-ray crystallography studies of the 

27 



Figure 1.2 

Upstream POOtOr OIeflaflt 	
TATA box bound by transcription fOor proteins 

-100 bp 

A) 	 Typical promoter region 

Transcription factors bound to individual 
sites In distal enhancer element 

- - - 

Promoter region adjacent to transcription start Site and distant enhancer 

C 	TA 

OrRNA 

TA 

Promoter interacts with distant enhancer with intervening DNA looping out 

Figure 1.2 Diagrammatic summary of regulatory elements elements in a canonical 
eukaryotic gene. A) shows the organisation of the typical proximal promoter region. B) shows 
the binding of transcription factors to a distal enhancer element in which there are binding sites 
for specific factors and some of those usually associated with the proximal promoter. C) figure 
depicting the looping out of intervening DNA in one proposed mechanism of enhancer-
promoter interaction. 



interaction between the TATA box and the TATA-binding protein (TBP) suggest that 

the initiation complex may play a role in distorting the DNA such that the complex and 

the upstream element-binding proteins closely interact (Kim et al., 1993a; Kim et al., 
1993b). 

The use of multiple promoters by a single gene adds a further level of 

variability to transcriptional regulation (Schibler and Sierra, 1987). A number of 

Drosophila developmental genes are known to be transcribed from multiple promoters, 

including Amp (Schneuwly et al., 1986; Bermingham et al., 1990) and caudal 

(Mlodzik and Gehring, 1987). The alcohol dehydrogenase (Adh) gene of Drosophila 

also uses tandem promoters in a differential manner during its developmentally 

regulated expression in the larva and adult (Lockett and Ashburner, 1989). At the 

simplest level of control, one promoter may be significantly more efficient than the 

other, dictating the levels of transcript produced, independent of enhancer function. 

The use of different promoters provides several alternatives in the production of both 

transcript and protein product. The arrangement of promoters in relation to exons and 

start codons can provide diverse 5' leader sequences with a similar open reading frame 

(with or without the use of additional 5' exons) or variable translation products by 

using alternative initiation codons (Schibler and Sierra, 1987). 

Tissue-specific, region-specific and temporal regulation of transcription is 

largely mediated via the second class of cis elements. Enhancers are regions of DNA 

capable of acting at a distance from the promoter and in an orientation independent 

manner (Serfling et al., 1985; Ptashne, 1986; Hatzopoulos et al., 1988). Their position 

relative to the coding region varies greatly, being either upstream, downstream or 

within introns (figure 1.2B shows an enhancer element upstream of the gene). 

Enhancers are further defined as capable of conferring their specificity upon a 

heterologous promoter. They were first identified from studies on DNA tumour viruses 

such as SV40 and Polyoma (de Villiers and Schaffner, 1981; Banerji et al., 1981; 
Herbomel et al., 1983). Sequences close to the viral origin of replication were found to 

be capable of enhancing transcription from a heterologous promoter by several 

hundred-fold. Analysis of the immunoglobulin heavy chain gene revealed a sequence 

with similar properties within an intron (Gillies et al., 1983; Mercola et al., 1983). This 

enhancer specifically directs transcription within myeloma cell lines. Activation of 

genes at specific times during development is regulated through enhancers, as shown 

for the Mid-Blastula-Transition-specific enhancers of Xenopus laevis genes (Krieg and 

Melton, 1987). Heterologous genes linked to this are activated at the same stage of 

embryogenesis. Enhancers within exon 3 and downstream of the 13-globin gene 

specifically boost expression within erythroid lineages (Behringer et al., 1987; Kollias 
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et al., 1987). A master enhancer is present at the -globin locus that exerts an 

influence across the whole gene family on chromosome 11 (Grosveld et al., 1987). 

This 'Dominant Control Region' is also involved in providing erythroid-lineage-specific 

function (van Assenfeldt et al., 1989). Enhancers have been identified in many 

organisms and with a wide variety of specificity (Walker et al., 1983; Garabedian et 
al., 1986). 

Detailed analysis of enhancers reveals that they have many similarities with 

promoter regions. Enhancers vary in their level of complexity from as few as one 

protein binding site to a multi-level organisation in which many individual sites 

(enhansons) are grouped into 'modules' (Ondek et al., 1988; Dynan, 1989). Enhancers 

are found comprising one or several such modules. Enhancer activity can be produced 

by creating an array of adjacent, identical sites, a phenomenon demonstrated by early 

work on the SV40 major enhancer: mutants with a truncated enhancer, that were 

unable to produce high levels of transcription, often reverted by means of tandem 

duplications of the remaining, shortened enhancer region (Herr and Clarke, 1986). 

Despite the differences between promoters and enhancers, the same proteins are often 

found to bind to the two classes of cis element (Sen and Baltimore, 1986). 

The mode of action for an enhancer sequence located some distance from its 

point of influence, the promoter, has been the subject of much theorising. Enhancers 

are capable of acting not only at considerable distance on the same molecule but 

function in trans has been demonstrated where the two DNA molecules are either 

concatenated (Dunaway and Droge, 1989) or connected by a protein bridge (Muller et 
al., 1989). These observations discount one proposed model, the scanning model, in 

which the enhancer serves to recruit proteins that then migrate along the DNA to the 

promoter. They support, however, the view that action at a distance occurs by means 

of direct physical interaction between the two sites. The model now most widely 

accepted for enhancer function is one where an enhancer recruits regulatory protein 

complexes which then interact with the promoter by means of a looping Out of the 

intervening DNA (Figure 1.2C). The DNA-looping model is demonstrated to be 

correct by electron-microscopic analysis of DNA-protein complexes (Su et al., 1991; 
Mastrangelo et al., 1991). An interaction between two protein complexes, bound at 

proximal and distal sites, is seen to unite the two DNA sites resulting in an intervening 

DNA loop. This is proposed to be a mechanism for the maximal recruitment of 

regulatory molecules to the promoter. The ubiquitous activator Spi stimulates 

transcription to a far greater degree when present at the promoter in multiple copies 

(Anderson and Freytag, 1991). This activity is synergistic and may explain the strong 

effects exerted by enhancers as they recruit large numbers of regulatory molecules to 
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the promoter region. Enhancers can be said to act by 'sensing' the state of the cell, i.e. 

binding the relevant factors when present, by integrating the multi-factorial signal and 

then presenting it at the promoter (Dynan, 1989). The specificity of an enhancer, 

therefore, depends upon the sites comprising it, and its function relies upon the 

presence of the factors binding at those sites. 

The enhancers described all have a positive effect upon transcription. There is a 

class of enhancer-like elements, first discovered in yeast, that confer negative control: 

these 'silencers' also function at a distance and in an orientation independent manner 

(Brand et al., 1985). Negative regulatory elements are known from a large number of 

eukaryotic genes, some having silencer properties, some with stricter positional 

requirements; e.g. mouse Ig heavy chain gene (Imler et al., 1987); chicken ovalbumin 
gene (Gaub et al., 1987); human retinol-binding protein gene (Colantuoni et al., 1987); 
rat myosin heavy chain (Bouvagnet et al., 1987); human (X-interferon (Kuhl et al., 
1987); Drosophila Ubx (Qian et al., 1991). A characteristic of negative regulation in 

many systems is that it acts by repressing expression in inappropriate cell types 

(Atchison, 1988). An example is the expression of the myosin heavy chain gene which 

is repressed in all cell types but muscle cells (Bouvagnet et al., 1987). Complex 

expression patterns may be produced by a combination of positive and negative 

regulatory elements as is found in the Drosophila decapentaplegic gene involved in 
dorso-ventral axis specification (Huang et al., 1993). Negative regulation is often 

found in circumstances where rapid induction of gene expression is required, such as in 

the activation of survival pathways in response to insult (Lee et al., 1992). Negative 

regulation can be achieved in a variety of ways; any step along the pathway leading 

from polymerase assembly at the promoter to enhancement and elongation is a 

potential target for repression (Herschbach and Johnson, 1993). 

1.5.2 trans regulation 

Both upstream promoter elements and enhansons bind trans-acting regulatory 

proteins in a sequence-specific manner. As mentioned, there are in general two classes 

of proteins, in some cases binding similar sites. There are ubiquitous, general 

transcription factors such as Sp I, Oct-1 and CTF (Kadonaga et al., 1987; Sturm et al., 
1988; Mermod et al., 1989) and there are specific factors restricted to particular cell 

types, tissues or regions such as B-cell-specific Oct-2, the pituitary-specific Pit-1 or the 

Hox proteins (Clerc et al., 1988; Ingraham et al., 1988; McGinnis and Krumlauf, 

1992). The situation is complicated somewhat by the existence of factors that whilst 

ubiquitously expressed are only active in a subset of cells, e.g. dorsal, NF-iB. These 
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are grouped with the specific factors. These two classes of transcription factor act 

together to bring about high levels of appropriate gene expression. 

Co-transfection assays are used to study the function of a transcription factor: 

both the gene encoding the factor and a reporter gene, linked to an appropriate binding 

site, are introduced into the same cell where the factor binds to its cis-element thereby 

regulating transcription of the adjacent reporter gene. Assays of this type are employed 

in dissecting the transcription factor and determining which regions of the protein are 

responsible for its various activities (e.g. Ali and Bienz, 1991). In this way specific 

protein domains have been identified as domains of DNA-binding, transcriptional 

activation or protein-protein interaction. Transcription factors are often classified by 

the type of DNA-binding domain that they possess (Struhl, 1989b). I have extensively 

discussed the homeodomain proteins and mentioned that homeodomains themselves 

exist in several subclasses such as Antennapedia-like, paired-like and POU. In addition 

to the homeodomain some of the best characterised DNA-binding motifs are the zinc-

finger (Miller et al., 1985; Kadonaga et al., 1987; Neuhaus et al., 1992), basic helix-
loop-helix (bHLH; Murre et al., 1989a; Jiang and Levine, 1993; Gibson et al., 1993), 
basic-leucine zipper (bZIP; Johnson et al., 1987; Saudek et al., 1991) and forkhead 
domains (Weigel and Jackle, 1990; Monaghan et al., 1993). Other, lesser studied, 
DNA-binding motifs include the MADS box (Ma et al., 1991), the HMG domain 
(Laudet et al., 1993) and the helix-span-helix (Williams and Tjian, 1991b). 

Positive and negative modes of regulation are most often distinguished by the 

transcription factors bound by a particular regulatory region; there are, however, 

situations where the simple relationship between activator and repressor does not apply 

and both functions may reside in the same molecule (Diamond et al., 1990). Functional 
dissection of transcription factors has led to a view of them as modular structures, 

comprising a number of domains of largely independent function (Keegan et al., 1986; 
Giguere et al., 1986; Evans, 1988; Mitchell and Tjian, 1989; Ransone et al., 1990). As 
mentioned, the DNA binding domain is distinguishable as an independent unit of 

varying nature. Additional domains such as those mediating transcriptional activation 

have not been so well characterised (Johnston and Dover, 1988; Hollenberg and 

Evans, 1988). Specific structures have not been determined for these motifs and many 

are defined by general amino-acid content. The best known examples are the so-called 

'acidic-blob', proline-rich and glutamine-rich activation domains (Courey and Tjian, 

1988; Mermod et al., 1989; Courey et al., 1989). A functional mechanism has not yet 

been described for these regions but it has been proposed that the negatively charged 

region acts as an interface for interaction with the general transcriptional machinery 

(Ptashne, 1988; Sigler, 1988). Recent work has questioned the significance of charge- 
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interactions, suggesting that the clustering of acidic amino acids in activation domains 

may be required for structural conformation (Leuther et al., 1993). Further types of 

activation domains have been defined from a variety of factors and it seems that they 

may function by diverse mechanisms (Tasset et al., 1990; Sutherland et al., 1992; 
Quong et al., 1993; Attardi and Tjian, 1993). 

Induction of gene expression at the transcriptional level can be mediated 

through inducible transcription factors acting in either a positive or negative fashion. 

Increase in transcription can be a result of direct activation by the induced factor or by 

derepression upon induction. The serum response element found in the c-fos gene, the 

glucocorticoid response element (GRE) and the heavy metal response elements of the 

metallothionein genes are examples of inducible enhancer elements (Jantzen et al., 
1987; Culotta et al., 1989; Treisman, 1990). These sequences interact with proteins 

whose activity in some way depends upon an inducing agent. The glucocorticoid 

response element binds the glucocorticoid receptor, a member of a large group of 

related molecules comprising the steroid hormone receptor super-family (Evans, 

1988). These are the products of a group of related genes that encode inducible 

transcription factors. The steroid-hormone nuclear receptors are characterised by the 

ability to directly interact with a ligand, their inducing agent, thereby modulating their 

DNA-binding properties (Wahli and Martinez, 1991). Specific receptors have ligands 

including oestrogen, thyroid hormones and various retinoids (Evans, 1988; Giguere 
and Evans, 1990). Other inducible transcription factors have a less direct relationship 

with their inducing agent; they may be phosphorylated (or modified in some other 

way), by way of a signal transduction cascade from a cell surface receptor, eliciting 

responses such as a change in their DNA-binding affinity (Rivera et al., 1993). 

Alternatively they may be transported to the nucleus in response to a receptor signal as 

is the case for the dorsal gene product of Drosophila (Govind and Steward, 1993). 

Derepression as a mechanism of activation may be brought about by either ligand-

dependent loss of DNA-binding activity by a protein imposing a negative effect 

(Thompson et al., 1992), or by de novo synthesis or activation of an activating 

molecule competing for the same site as a repressor (Kimura etal., 1993). 

1.5.3 Transcriptional regulation of the Homeobox genes 

Homeobox-containing genes encode transcriptional regulators involved in 

positional specification during embryogenesis, as I have described. Their role in 

providing positional information relies upon the precise spatial and temporal 

distribution of active forms of their products. Region-specific activity may be regulated 
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at several levels including transcription, translation, post-translational modification and 

nuclear localisation. A large amount of work on embryonic patterning genes in 

Drosophila has provided examples of all such mechanisms, often in combination with 

one another, however the primary mechanism for a large majority of genes appears to 

be transcriptional regulation. 

Analysis of the pattern formation process in the early Drosophila embryo 
reveals cascades of gene activation in which the products of many genes are 

transcriptional regulators that directly control expression of 'downstream' genes, i.e. 

those genes acting next in the cascade: many of the downstream genes are themselves 

transcription factors (Ingham, 1988; Thisse and Thisse, 1992). Genetic studies enabled 

the identification of interacting genes and in many cases these interactions have now 

been characterised at the molecular level. In situ expression studies enable 

identification of candidate downstream and upstream genes where genetic studies 

provide no clues or are insufficiently advanced as in many other organisms. 

The early Drosophila embryo comprises a syncitium; a multi-nucleate, non-

cellularised space in which molecules are free to diffuse. In this 'syncitial blastodenn' 

the sequential expression of three classes of genes generates the basic segmental 

divisions of the embryo: these are the maternal, gap and pair-rule genes. Maternal 

genes such as bicoid, a homeobox gene, and nanos are transcribed from messenger 

RNA located in the egg at the anterior and posterior ends, respectively. A 

concentration gradient of bicoid protein is established along the anterior-posterior axis 

and has been shown to provide cues for the correct expression of the gap gene 

hunchback in a defined region of the AT axis (Tautz, 1988; Driever and Nüsslein-

Vothard, 1988). The spatially restricted expression of hunchback (hb) is achieved by 

concentration dependent transcriptional activation by bicoid protein. The requirement 

for a particular threshold level of bicoid is due to a series of bicoid-binding cis 
elements upstream of hb (Driever and Nüsslein-Volhard, 1989). Both the number and 

the affinity of these sites determine the level of the threshold and therefore the position 

of the hb expression domain within the bicoid gradient (Struhl et al., 1989a). In many 

cases it is known that the complex expression patterns of developmental genes are 

regulated at the transcriptional level. Enhancers with varying function can co-operate 

in the control of a single gene to regulate its expression in different domains within the 

embryo and at different times of embryogenesis. A good example of such a 

phenomenon can be seen in the transcriptional regulation of the Drosophila ftz gene, 
various aspects of which are co-ordinated by different enhancers (Dearoif et al., 1990). 
Analysis of the cis regulatory elements influencing HOM-CIHox genes is complicated 
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by the tight clustering of these genes which may enable the use of individual enhancers 

by multiple genes. The cis regulation of several mouse Hox genes has been studied 
revealing a situation similar to the multi-component regulation of Drosophila homeotic 
genes. Transgenic mice have been used extensively to reproduce endogenous 

expression patterns with reporter gene constructs. The most commonly used reporter 

is the bacterial lacZ gene encoding -galactosidase. Localised expression of - 

galactosidase can be visualised by staining embryos with the chromogenic substrate X-

gal. An example typical of much of this work is the study of Hoxa-7 (formerly Hox-
1.1) expression (Puschel et al., 1991). In this study correct regulation of Hoxa-7 was 
shown to be possible outwith the context of the HoxA cluster. Dissection of the DNA 

flanking the gene identified elements regulating position-specific expression in all 

tissues, confining expression to a domain limited by anterior and posterior boundaries. 

Further elements restricted expression to sclerotomal cells and to prevertebrae within 

this broad domain. It was shown that different elements were required at different 

stages of embryogenesis "reflecting different developmental decisions". Similar studies 

have been performed on the regulation of several Hox genes (Bieberich et al., 1990; 
Kress et al., 1990; Whiting et al., 1991). Elucidation of the genetical hierarchy of 

vertebrate development, equivalent to the known cascade of interacting genes in 

Drosophila, is at the earliest stage. Recent identification of the putative 'segmentation' 

gene Krox-20 as a regulator of the homeobox gene Hoxb-2 is the first step in an 

attempt to tie together the increasing number of known developmentally expressed 

genes into a 'body-building' system. 

1.6 Aims 

Msx-1 has advantages over many other homeobox genes in regard to the study 

of its transcriptional regulation. As a single gene, not part of a multi-gene complex as 

are the Hox genes, it is unlikely to have an especially complex arrangement of cis 
regulatory elements and may be structured much more like the canonical eukaryotic 

gene of figure 1.2. Regulatory elements found in the vicinity of the gene are almost 

certain to regulate Msx- 1 and not several adjacent genes which is a distinct possibility 

with the genes of the Hox clusters. The modular paradigm of cis regulatory control, 
discussed in section 1.5.3, in which a gene develops a complex expression pattern by 

responding to the activity of individual enhancer elements, functioning at different 

times and locations within the embryo, provides a conceptual model for Msx-1 
transcriptional regulation. Msx-1 has a complex expression pattern in the developing 

embryo but one which evolves from more simple origins. The early expression pattern 
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of Msx- 1 appears to be generated in response to position along the medio-lateral axis. 

Consequently one might predict the presence of cis elements responsive to notochord 
or neural-tube induced pathways in the Msx- 1 regulatory regions. Early expression is 

also in the neural crest and is probably defined by interaction between lineage-specific 

factors and particular regulatory regions. In the second phase of Msx- 1 expression 

there are many examples of response to epithelial-mesenchymal interactions. It is likely 

that all are effected by way of the same regulatory elements and possibly along a 

common pathway modulated in a manner appropriate to the system concerned, be it 

tooth, limb, heart or face. Both positive and negative regulatory influences are likely to 

interact in the generation of these patterns. 

The 5' proximal promoter region of Msx-1 was made the subject of this study in 

an attempt to elucidate the regulatory mechanisms controlling expression of this gene. 

The aim of this work is to characterise features of the transcriptional regulatory 

machinery acting to generate the spatially and temporally diverse expression pattern of 

the Msx- 1 gene in the developing mouse embryo. I hoped to exploit the conservation 

of function seen in other homeobox-gene regulatory systems and considered likely for 

Msx-1, given the widespread phylogenetic distribution of Msx-1 cognates. Principally 
the cis regulatory elements are the subject of enquiry, with the view that the discovery 

of such will lead to identification of trans regulatory factors controlling Msx- 1 
expression and encoded by genes upstream of Msx- 1 in the genetic hierarchy regulating 
embryogenesis. 
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Chapter 2 

Materials and Methods 



2.1 Bacterial cell culture 

2. 1.1 Bacterial media 

L-Broth (Luria-Broth) and agar - Per litre: lOg bacto-tryptone (Difco), 5g 
bacto-yeast extract (Difco), lOg NaCl, pH to 7.5. L-agar contains 15g agar (Difco) per 
litre in addition. 

H-agar - Per litre: lOg bacto-tryptone (Difco), 8g NaCl, 12g agar (Difco) pH 

to 7.3. H-agar plates are used for the lacZ blue/white test described (section 2.1.3). 

IPTG is added to the agar as an inducer for the 13-Galactosidase gene (0.024%). The 

agar is also supplemented with the chromogenic substrate X-gal (5-bromo-4-chloro-3-

indolyl-3-D-galactoside) which provides the blue colour (0.02% from 2% stock in 

dimethylforrnamide). 

Terrific Broth (Tartoff and Hobbs, 1987) - Per litre: 15g bacto-tryptone 

(Difco), 30g bacto-yeast extract (Difco), 5 ml glycerol, 1/10 volumes of 1M K2HPO4  
added immediately before use. This medium produces high density cultures and was 

routinely used for plasmid preparations. 

TYP-Broth - Per litre: 16g bacto-tryptone (Difco), 16g bacto-yeast extract 
(Difco), 5g NaCl, 2.5g K2HPO4 . This medium is used in the production of ssDNA by 
phagemid rescue. 

Media supplements - media were supplemented with antibiotics where 

described. Concentrations for each antibiotic are: Ampicillin (Sigma), 100 tg/ml; 

Kanamycin (Sigma), 30 j.ig/ml; Tetracycin (Sigma), 25 j.ig/ml. Stocks were made at 

1000x and stored at -20°C. IPTG and X-gal were added as described above. 

All media and glassware were sterilised by autoclaving, supplements were filter 

sterilised. Bacterial cultures were grown at 37°C with constant agitation on an orbital 

shaker. Permanent stocks of bacteria containing particular plasmids were maintained by 

freezing cultures in 20% glycerol at -70°C. 



2.1.2 Bacterial strains 

JM83 - ara, A(lac-pro AB), rspL, 4801acZAAM15, (rk, mk) (Yanish Perron et 
al, 1985). This strain was used as a host for pUC based plasmids. The 1acZAM15 gene 

is integrated into the host genome. 

XL1-Blue - recAl, endAl, gyrA96, thi-1 5  hsdRl7, supE44, relAl, lac, [F 
proAB, lacIqZAM15, TnlO (tetr)] (Bullock et al, 1987). This strain was also used as a 

general host for pUC based plasmids. The presence of the F plasmid permits infection 

by M13-based helper phage, via the sex pili, utilised during phagemid-rescue ssDNA 

production. 

2.1.3 DNA vectors 

Vectors used were pTZ-18R (Pharmacia) a general purpose vector; pGEM-

7Zf(-) from Promega, for its restriction sites suitable for unidirectional exolll deletion 

and for production of single-stranded DNA by helper phage rescue; pGEM-5Zf(-) 

from Promega, as a cloning vector with a NcoI site in the multiple cloning site; 

pBluescript II SK(+) from Stratagene which was used as an general-purpose vector 

with a large choice of restriction sites. 

2.1.4 Preparation of E.coli cells competent for DNA transformation 

The conditions under which E.coli cells are competent to take up plasmid DNA 
molecules have been well studied and optimised (Hanahan, 1985). E.coli cells (JM83, 
XL1-Blue, etc.) were made competent for DNA transformation by the following 

method. 100 ml of L-Broth media plus 10 mM MgC1 2  were inoculated with a single 
bacterial colony and incubated at 37°C; on an orbital shaker, until the optical density of 

the culture at 560 rim (OD54) was approximately 0.5. The cells were chilled on ice for 

10 minutes and all subsequent steps performed at 4°C. Cells were pelleted at 2500 rpm 

for 10 minutes then gently resuspended in 33 ml of cold, filter-sterilised FSB (10 mM 
CaC12, 10 mM potassium acetate, 100 mM RbCl, 45 nM MnC1 2, 3 mM hexamine 
cobalt chloride, 10 % Glycerol, pH 6.4). After 10 minutes the cells were again pelleted, 

as before, and resuspended in 8 ml FSB plus 280 jtl DMSO (spectroscopic grade). 

After 10 minutes a further 280 tl of dimethyl sulfoxide (DMSO) was added and 200 tl 

aliquots of the cells were quick frozen in liquid nitrogen. The aliquots were then stored 
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at -70°C. This method gave transformation efficiencies of up to 4 x 10 colonies/tg 

plasmid DNA. 

2.1.5 Transforming competent cells 

A 200 j.tl aliquot of competent cells was thawed slowly on ice and the DNA to 

be transformed was added (10-50 ng in approx. 10 p1). Cells and DNA were mixed 

and placed on ice for 30 minutes. After this period the cells were heat shocked for 

exactly 2 minutes at 42°C then returned to ice for a further 5 minutes. 500 tl of 2 x 

TY medium was added and the cells incubated at 37°C for 30 minutes. They were then 

plated on media supplemented with appropriate antibiotic and indicators and incubated, 

with the dishes inverted, at 37°C overnight. 

2.2 Isolation and purification of DNA 

2.2.1 Large Scale preparation of plasmid DNA 

A single colony was picked and used to inoculate 500 ml of Terrific Broth 

supplemented with the appropriate antibiotic. This was incubated, on a shaker, at 37° 

C overnight. The cells were pelleted at 6000 rpm and resuspended in 20 ml GTE 

(50mM Glucose, 25mM Tris Cl pH 8.0, 10 mM EDTA pH 8.0) plus lysozyme 

(lOmgIml). 40 ml alkaline SDS (0.2M NaOH, 1% SDS) was added and the lysate 

placed on ice for 5 minutes. 30 ml of 3M Sodium acetate (pH 5.0) was added, the 

solution mixed by inversion and the cell debris pelleted by centrifugation at 12000 

rpm for 30 minutes. The supernatant was strained through muslin and the DNA 

precipitated by addition of 0.6 volumes of isopropanol. DNA was pelleted by 

centrifugation at 8000 rpm for 20 minutes. The supernatant was discarded and the 

pellet dried under vacuum. The dried pellet was resuspended in 22 ml T.E. (10 mM 

Tris.Cl, 1 mM EDTA) to which was added 24g of caesium chloride (CsC1) and 2 ml 

Ethidium bromide (lOmg/ml). The CsCl was dissolved by shaking to give a solution 

of refractive index 9.3-9.45. The plasmid DNA was banded in a polyallomer tube by 

centrifugation at 40000 rpm, 20°C, overnight in a vertical rotor. The less dense upper 

band of plasmid DNA was visualised under UV light (300nM) and removed from the 

tube with a hypodermic syringe. The ethidium bromide was removed by repeated 

extractions with water-saturated butan-2-ol until the aqueous phase is colourless. The 

DNA was then precipitated by addition of 2.5 volumes of 75% ethanol and pelleted 
by centrifugation at 12000 rpm for 15 minutes. 

40 



2.2.2 Small scale preparation of plasmid DNA 

Typically, 3 ml of Terrific-Broth, supplemented with the appropriate antibiotic, 

was inoculated with a single colony and incubated at 37°C overnight on a rotary 

shaker. 1 ml of this culture was transferred to an eppendorf tube and the cells were 

spun down by centrifugation in a bench top centrifuge for 1 minute. All centrifugation 

in this method was performed at 12000 rpm in a bench top centrifuge. The supernatant 

was discarded and the pellet resuspended in 100t1 of GTE. 200pi of a fresh solution of 

alkaline SDS was added and mixed by inversion of the tube several times. The tube 

was placed on ice for 5 minutes. 150 41 of 3M potassium acetate (pH 4.8) was added 

and again mixed by inversion. The tube was then placed on ice for a further 5 minutes. 

The preparation was centrifuged for 5 minutes followed by transfer of the supernatant 

to a clean tube. 45041 of 100% ethanol was added to the supernatant and the tube was 

briefly vortexed. The preparation was centrifuged for 15 minutes. The supernatant was 

discarded and the pellet washed in ice-cold 70% ethanol. The ethanol was removed 

and the pellet dried under vacuum. The dried pellet was resuspended in an appropriate 

volume of water or TE (10mM Tris.HC1, 1mM ethylenediaminetetra-acetic acid 

(EDTA)). 

2.2.3 Single-stranded DNA rescue from phagemid carrying cells 

A 1-2 ml culture was set up in TYP-broth plus the appropriate antibiotic 

(usually 50 pg/ml ampidilhin) and grown at 37°C overnight. 100 ltl of this culture was 

used to inoculate 5 ml TYP (in a 50 ml tube) which was then incubated at 37°C for 30 

minutes. The helper phage M13K07 (Vieira and Messing, 1987) was added at a 

mutiplicity of infection of 10-20 (with the assumption that the 30 minute culture has 5 
X 10 - 1 x 108  cells/ml) and incubation continued for a further 30 minutes. At this 

point Kanamycin was added (to a concentration of 25 jtg/ml) to select for cells 

infected by M13K07 which carries a Kanamycin resistance gene. Incubation was 

continued for a further 5 hours. The cells where then pelleted by centrifugation at 

12000 rpm for 15 minutes. The supernatant was removed and subjected to a repeat of 

the centrifugation. 0.25 volumes of PEG precipitation solution (20 % polyethylene 

glycol, 3.75M ammonium acetate) was added to the supernatant which was then stored 

on ice for 30 minutes. The single-stranded DNA (ssDNA) was pelleted by 

centrifugation at 12000 rpm for 15 minutes and care was taken to remove all traces of 

the supernatant. The ssDNA was resuspended in 400 p1 of T.E., 400 jtl of 
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chloroform:isoamyl alcohol (24:1) was added and the mixture vortexed for 1 minute. 

The preparation was then centrifuged at 12000 rpm for 5 minutes. The upper 

(aqueous) phase was transferred to a clean tube (taking care not to transfer any of the 

interface) and 400 j.tl phenol: chloroform (1:1) (saturated with T.E.) was added. This 

was vortexed and centrifuged as before. This extraction was repeated until there was 

no material visible at the interface. The aqueous phase was extracted with an equal 

volume of chloroform, vortexed, centrifuged and repeated. The aqueous phase was 

transferred to a fresh tube. 200 t1 7.5M ammonium acetate and 1.2 ml ethanol were 

added, mixed by inverting the tube and stored at -70°C for 15 minutes. The 

preparation was centrifuged at 12000 rpm for 15 minutes, the supernatant removed 

and the pellet washed in 80% ethanol and dried under vacuum. The resulting ssDNA 

pellet was resuspended in 20 tl T.E. 

2.2.4 DNA purification and precipitation 

For use as a substrate in many reactions DNA must be purified by removal of 

proteins and salts that would otherwise interfere with the action of the enzymes used. 

The common way to do this is by a combination of Phenol:Chloroform extraction and 

ethanol precipitation. Extraction with Phenol:Chloroform (repeated if necessary) 

removes proteins and the DNA can be recovered from the aqueous layer, into which it 

partitions, by precipitation with ethanol. Typically, 2 volumes of 

Phenol:Chloroform:Isoamyl alcohol (25:24:1) are added to the preparation. This is 

vortexed for 1 minute followed by 2 minutes centrifugation in a microcentrifuge 

(12000 rpm, used for all centrifugation steps in this protocol). The upper, aqueous 

layer is transferred into a clean eppendorf tube and 2 volumes of diethyl ether are 

added. Care should be taken when transferring the upper phase not to remove any of 

the interface. The tube is thoroughly vortexed then the upper layer discarded and the 

tube heated to 65°C for 1 minute to remove traces of diethyl ether. Sodium Acetate is 

added to a final concentration of 0.3 M (pH 5.2). Next, 2.5 volumes of 100% ethanol 
is added and the tube vortexed. The tube is placed at -70°C for 15 minutes, to allow 

the DNA to precipitate, and then centrifuged for 15 minutes to pellet the DNA. The 

supernatant is discarded and the pellet washed once or twice with 80% ethanol. The 

pellet is then dried under vacuum and suspended in TE., or a buffer appropriate to the 

next step. For solutions of DNA with little or no protein the addition of sodium acetate 

and ethanol precipitation is sufficient. 
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2.3 Enzymatic manipulation of DNA 

2.3.1 Restriction endonuclease digestion 

The routine digestion of plasmid DNA by site-specific endonucleases was 

performed using enzymes purchased from Amersham International plc., Boehnnger 

Mannheim GmbH and New England Biolabs. Reactions were performed according to 

manufacturers instructions using reaction buffers supplied. 

2.3.2 DNA ligation 

Construction of recombinant DNA molecules requires the joining of fragments, 

most frequently vector and insert. This is achieved using the DNA Ligase enzyme 

encoded by bacteriophage T4. T4 Ligase was purchased from Boehringer Mannheim 

GmbH and used in the buffer provided (20 mM Tris-HC1, 10 mM MgC1 2, 10 mm 

DTT, 0.6 mM ATP, pH 7.6). In a typical ligation reaction approximately 25 ng of 

vector DNA was combined with insert DNA to give an insert:vector molar ratio of 1:1, 

2:1 or 5:1. Each reaction was performed in a total volume of 10 tl with 2 units of 

ligase and incubated at 16°C overnight. Multiple reactions were used with a variety of 

vector:insert concentrations along with reactions containing vector alone and fragment 

alone. This provides increased likelihood of optimisation of the reaction and enables 

assessment of the level of any vector re-ligation and vector background within the 

fragment preparation. 

2.3.3 Generation of double-stranded nested deletions 

The Pharmacia double-stranded nested deletion kit was used to produce such 

deletions to facilitate sequencing of large inserts. This kit is based on the method of 

Henikoff (1984). In brief, deletions are generated using exonuclease III (exo III), a 3' 

exonuclease, in conditions favouring a controlled digestion rate. Unidirectional 

deletions can be performed as exolll requires a double-stranded 3' end as a start point 

for digestion, whether a blunt ended molecule or one with a 5' overhang. 3' 

overhanging ends are resistant to digestion. A plasmid carrying the insert to be deleted 

is linearised with two restriction enzymes cutting at closely positioned sites. One 

restriction site is used to give a 3' overhanging end to the plasmid sequence and one to 

give a 5' overhang (or blunt end) to the insert sequence. A deletion reaction is set up in 

which the 3' end of the insert sequence is progressively digested and samples are 
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removed at regular time intervals. The remaining single-stranded overhang of these 

nested deletions is removed by digestion with Si nuclease. The extent of deletion can 

be analysed at this point by agarose gel electrophoresis and samples corresponding to 

the desired extent of deletion circularised by T4 ligase and transformed into competent 

bacteria to produce a 'deletion library' from which individual clones can be sequenced. 

Exolil deletion of the pDEL3 plasmid carrying the EcoRl-Smal fragment from 

the 5' flanking region of Msx- 1 was performed in 50 mM NaCl (a departure from the 

manufacturers recommended conditions) at 37°C. Conditions were established to give 

a suitable rate of deletion by several trial experiments. 2jig of DNA were added to the 

reaction mixture. Samples were removed every 5 minutes after addition of the 

exonuclease and a total of 8 time points were taken. After Si treatment and ligation 

the deletions were transformed into XL 1-blue cells and plated on L-amp agar. Single 

colonies were then picked and streaked onto L-amp/tet agar. Tetracycin selection was 

used to ensure maintenance if the F episome, essential for single-stranded rescue. 

2.3.4 Polymerase Chain Reaction on plasmid templates 

The Polymerase Chain Reaction (PCR) was employed to amplify regions from 

plasmid inserts. A typical reaction contained 30 ng plasmid template, 100 ng of each 

oligo, 50 nM for each dNTP (A,T,G & C), 1 x reaction buffer (500 mM KC1, 100 MM 

Tris.Cl (pH 9.0), 1% Triton X-100) and 0.2 units Taq DNA polymerase (Promega) in 

a total volume of 50 il. The various components were added and mixed, with the 

template added last. The reaction was overlaid with paraffm oil to prevent evaporation 

and placed on the thermal cycler. A program of 25 cycles was used, each one 

consisting of 30 seconds denature at 94°C, 30 seconds oligo annealing at the 

calculated temperature and 1 minute strand extension at 72°C. The annealing 

temperature was calculated by allowing 2°C per A or T and 3°C per G or C in the 

oligo, then summing the total. Oligonucleotides of 18-22 bases were used giving 

annealing temperatures in the order of 35-55°C. 

2.3.5 Agarose-gel electrophoresis 

Electrophoretic separation of DNA through agarose gels is a standard 

technique in molecular biology. It was used to analyse the products of enzymatic 

manipulations such as restriction digestions, ligations, deletions and PCR. Gels of 0.5-

3 % agarose (Sigma, Type II) in 0.5 x TBE (45 mM Tris-borate, 1 mM EDTA) were 
cast with a depth of -5 mm and in a variety of sizes: mini-gel - 5 cm x 7 cm; midi-gel - 
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11 cm x 14 cm. Larger, less concentrated gels were used to separate larger fragments 

while small gels were used to separate smaller fragments. Typically 1 % agarose was 

used except where particularly small fragments were separated, when 3 % agarose was 

used. DNA samples were loaded with addition of 1/10 volume of loading buffer (15 % 
Ficoll, 0.25 % Orange G, 0.25 M EDTA in 10 x TBE). Orange-G acts as a visible 

marker for the migration front of small (200-500 bp) DNA fragments. A voltage of 

10V/cm (maximum) was applied for the requisite period after which the gel was 

stained with ethidium bromide (1-2 drops of a 10 mg/ml solution). The ethidium 

bromide stained DNA could be visualised by exposure to ultraviolet light (254 rim) 

whereupon gels were photographed using a UVP video camera and Mitsubishi video 

copy processor. 

2.3.6 DNA recovery from agarose gel 

Specific fragments identified by agarose-gel separation are often required for 

further steps such as cloning or use as probes. In such cases purification of the 

fragments from the gel can be achieved. 

Typically a preparative gel of 0.8% SeaKem GTG agarose (FMC Bioproducts) 

was cast and separation performed as described (section 2.3.5). DNA restriction 

fragments were recovered from preparative agarose gels using one of two methods. In 

both, the bands were visualised by ethidium bromide staining of the gel and UV 

illumination. The required bands were excised using a clean scalpel blade. Method 1) 

used the COSTAR®  SPINEX filter centrifuge unit according to manufacturers 

recommendations. The excised agarose slice containing the chosen DNA fragment was 

finely chopped and placed in the SPINEX tube. It was centrifuged in a benchtop 

microcentrifuge at 12 000 rpm for approximately 10 minutes after which time the 

liquid component of the gel, including the DNA in solution, had passed through the 

filter into the lower tube. The DNA was then phenol extracted and ethanol precipitated 

as described. Method 2) used the 'Geneclean Kit ®' from BIO 101 according to 

manufacturers recommendations. This protocol exploits the DNA-binding ability of 

fine glass beads under appropriate conditions to isolate the DNA from the melted 

agarose. Both techniques provided clean DNA suitable as a substrate for the further 

enzymatic manipulations of the various cloning steps. 
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2.4 Radiolabelling DNA 

2.4.1 Nick translation 

Nick translation reactions were performed by the method of Rigby et al. (1977) 

using a kit from Gibco-BRL. This labelling method exploits the properties of two 

enzymes, E.coli DNA polymerase I and bovine pancreatic DNAse I. The DNAse 

creates intermittent nicks in one strand of the double-helix which act as a point of entry 

for the polymerase. Exonuclease activity of the polymerase removes nucleotides before 

it and re-synthesises the strand in its wake, incorporating a-dCT 32P radiolabelled 

nucleotide as it processes along the molecule. The reaction is performed at 16°C to 

provide a balance between sufficient strand extension speed by the polymerase and low 

enough levels of DNAse activity to prevent degradation. 

This technique was employed for labelling the concatamerised, double-stranded 

oligonucleotide probes used in South-Western hybridisation. Typically, 500 ng of DNA 

and 65 iCi {a-32P]dCTP were included in a standard reaction (according to 

manufacturers' instructions). A mixture of the two enzymes is added last and incubated 

for 1 hour. After this time the incorporation was tested using trichloroacetic acid 

(TCA) precipitation onto glass-microfibre filters (Whatman GFIB) and a Cerenkov 

counting protocol on a liquid scintillation counter. 

2.4.2 Random-Primer labelling of DNA 

This method was used as an alternative to nick translation for labelling double-

stranded DNA molecules to be used for probes on Southern blots. The method used 

was based on that of Feinberg and Vogelstein (1983). The basic principle is one of 

strand separation by high temperature melting followed by cooling in the presence of a 

mixture of all possible hexanucleotides. Second strand extension from the 

hexanucleotide primers was performed in the presence of radiolabelled dCTP which 

was incorporated into the nascent strand. A Random Prime kit from BCL was used for 

this reaction. In brief; 50-100 ng of DNA was denatured in 10 tl of DNA by heating to 

100°C; then chilled on ice, 5 tl of random prime buffer/dNTPs (4 x Klenow buffer, 

200 tM dATP/dTTP/dGTP) was added followed by 4 t1 of [a- 32P]dCTP and 1 p1 of 

DNA Polymerase I. The reaction was then incubated for at least 1 hour at 37°C and 

unincorporated radio-nucleotides removed as described (section 2.4.4). 



2.4.3 Oligonucleotide labelling 

Synthetic oligonucleotides were radio-actively labelled for a variety of purposes 

including cycle sequencing and Grunstein-Hogness screening for sub-clones. The 

protocol used T4 polynucleotide kinase (PNK) which transfers the 7- 32P from [7-
32P]ATP to the phosphate-less nucleotide at the 5' end of the oligonucleotide. Typically 
5 41 reactions were performed containing 5-10 pmoles of oligonucleotide (in 141), 1 p1 

of 5X PNK buffer (250 mM Tris.Cl (pH 7.6), 50 mM MgC12, 25 mM DTT, 0.5 mM 
spermidine HC1, 0.5 mM EDTA (pH 8.0)), 1 41 of [7- 32P]ATP (5000 Cilmmol), 1 p1 of 

PNK (10 units/p1; Boehringer Mannheim) and 1 p1 of water. This reaction mix was 

incubated at 37°C for 30 minutes after which time it was heat inactivated by 5 minutes 
at 65°C. Larger amounts of oligo were labelled by scaling up this basic reaction. The 

levels of incorporation were crudely assessed (where a more accurate measure was not 

required) by chromatography of a small sample of the reaction on DEAE ion exchange 

paper (Whatman DE81) with a solvent of 0.3 M ammonium formate. This separates 

unincorporated label, which travels at the solvent front, from labelled oligo which 

remains at the origin. A hand held counter was then used to gain an approximate 

measure of the percentage of incorporation. 

2.4.4 Removal of unincorporated radio-nucleotides 

After radio-labelling reactions it is desirable to remove radioactive nucleotides 

that have not been incorporated into the DNA. This cuts down on background signals 

and enables simple detection of the DNA as it is the only labelled molecule used; e.g. 

allows one to determine whether DNA had pelleted successfully simply by monitoring. 

Removal of free radio-label is achieved by size exclusion chromatography. The 

labelling reaction is passed over a Sephadex G-50 column (Bio-Rad Nick Column) that 

has been equilibrated with 1 x TE. Single nucleotides are sufficiently small to be 

retained by the column whereas the DNA is eluted in the second of two 400 j.il 

fractions of 1 x TE. 

2.4.5 Detection of radioactive signals 

Two methods were employed for the detection of signals from the radioactive 

probes used in sequencing, southern hybridisations, mobility-shift assays and south-

western hybridisations. 
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The first, autoradiography, was performed by placing the filter, or dried gel, 

next to a piece of Kodak X-OMAT AR X-ray film. The two were placed in an 

autoradiography cassette. After the appropriate exposure time the film was removed 

under safe-light and processed in an automatic developing machine. For the detection 

of weak signals, the performance of the fluorescence screens in the cassette was 

boosted by exposure at -70°C. Sequencing gels were examined by autoradiography 

exclusively, as were library screens. All other detections used a combination of 

autoradiography and phosphor-imaging. 

Phosphor-imaging was performed using a Molecular Dynamics Phosphor 

Imager (Model 400B). Images scanned using this machine were analysed on a personal 

computer running the windows based ImageQuantTm system. Briefly, radioactive filters 

or gels are placed in a Storage Phosphor Screen cassette for a short exposure 

(approximately one tenth that required for autoradiography). The screen stores energy 

from the radiation that is later 'read' by laser scanning and the information retrieved and 

converted into an image on the computer screen. The major advantages of this system 

over autoradiography are reduced exposure times and sensitivity over a far greater 

range of values; approximately 1 x 10 1  fold as compared to 200 fold for X-ray film. 

2.5 Identification of specific sequences 

2.5.1 Colony hybridisation screening 

Colony hybridisation is a rapid method of simultaneously screening several 

hundred transformed bacterial colonies to identify the plasmid or cosmid clone of 

interest. The method involves the removal of the components of the bacterial cell walls 

and the immobilisation of the remaining DNA onto a membrane on which the colonies 

were grown. This membrane can then be exposed to a radioactive DNA probe in 

conditions promoting selective hybridisation to complementary DNA sequences on the 

filter, enabling the identification of a colony containing the clone of interest. 

The method used is based on that found in Sambrook et al. (1989; section 

1.98) which is itself a version of the original method of Grunstein and Hogness (1975). 
Bacteria are plated onto nitro-cellulose (or nylon) filters and grown to give colonies of 

a suitable size (small if the density is high). Whatman 3MM paper was cut to size and 

fitted into the bottom of three plastic trays, often the lids of 20 cm x 20 cm plates. The 

filter paper was then saturated with one of three solutions, with any excess liquid being 

poured off. The solutions were 1) Denaturing solution - 0.5 M NaOH, 1.5 M NaCl; 2) 
Neutralising solution - 1.5 M NaCl, 0.5 M Tris.Cl (pH 7.4); 3) 2 x SSC (20 x SSC - 



3M NaCl, 0.3M Sodium citrate, pH 7.4). Filters were lifted from the plate, using 

Millipore blunt-nosed forceps, and placed colony side up on the filter paper of the first 

dish, that containing denaturing solution. To ensure even treatment of the colonies it 

was essential to avoid bubbles between the filters and the 3MM. Filters were left on the 

denaturing dish for 5 minutes then transferred, with care taken to avoid any excess 

liquid carry-over, to the neutralising dish. After 5 minutes neutralising and 5 minutes 

on the 2 x SSC dish the filters were immersed in 2 x SSC and remaining bacterial 

debris removed by gently stroking the filter in one direction with a gloved finger. 

Filters were placed on dry 3MM paper and left to dry completely. DNA was fixed to 

the filters by sandwiching them between two sheets of 3MM and baking them at 80°C 

in a vacuum oven for 1 hour. 

Prior to addition of the radiolabelled probe, filters were prehybridised in 'Hyb-
IVlix' (5 x SSC, 0.1% pyrophosphate, 0.1% SDS, 0.05% ficoll, 0.05% 
polyvinylpyrolidine, 0.05% bovine serum albumin, 100 pg/ml denatured salmon sperm 

DNA) for 1 hour at 68°C. Hybridisations were carried out in bottles in a bench-top 

rotary oven (Hybaid®) with the filters between sheets of nylon mesh. Labelled probe 

was added to the prehybridisation solution and the hybridisation continued at this 

temperature (or a lower temperature suitable for the probe used) overnight. The 

following day the radioactive hybridisation solution was removed and the filters were 

washed twice (30 minutes each wash) in 1 x SSC, 0.1% SDS at 68°C. Filters were 

then dried on 3MM paper, wrapped in Saran Wrap and autoradiographed. 

2.5.2 Cosmid library screening 

Screening of the cosmid library was done essentially as described in Sambrook 

et al. (1989). The library was plated on 20 cm x 20 cm plates onto Hybond nylon 

membrane overlaid on L-agar plus kanamycin (25 tg/ml). Plates were incubated 

overnight at 32°C, rather than 37°C, to produce small colonies. Duplicates were taken 

by placing a fresh filter on top of the one overgrown with colonies and applying gentle 

pressure evenly across its area. Originals and duplicates were marked using a 

hypodermic needle immersed in permanent ink. The duplicate was placed on a fresh 

agar plate and grown at 37°C for 4 hours. The membrane was processed in the same 

way as described for screening of plasmid colonies by hybridization with radioactive 

DNA probes (section 2.5.1). Colonies corresponding to the signals on the 

autoradiographs were picked by cutting a square of the nylon membrane -½ cm 2  
carrying the positive colony (or several colonies if it was impossible to identify an 

individual). This small piece of nylon was immersed in 1 ml L-broth, 15% glycerol and 



vortexed for several minutes. The resulting bacterial suspension can be stored 

indefinitely at -70°C. A dilution of this suspension was made and an equivalent of 0. ltl 

of original concentration was plated onto 82 mm nitro-cellulose discs (Schleicher and 

Schuell) overlaid on L-agar plus kanamycin, on each of a series of four 9 cm plates. A 

similar series was plated for two additional concentrations, 5 fold greater and 5 fold 
less than the first. These plates were grown at 32°C overnight, as before, and replica 

filters made. After 4 hours recovery at 37°C the replicas were processed and screened 

with the radioactive SacI-NcoI fragment as before. Clones were taken to an additional, 

tertiary screen to ensure single colony purity. 

2.5.3 Southern-blot hybridisation 

Transfer 

Digested DNA was separated by horizontal agarose gel-electrophoresis 
(section 2.3.5) and denatured prior to transfer to a membrane. The gel was soaked, 

with gentle shaking, in 0.5M NaOH, 1.5M NaCl for 45 minutes. It was then 

neutralised by gentle shaking in 1M Tris, 2M NaOH for 45 minutes. The gel was 

inverted onto a wick of Whatmann 17MM paper soaking in a reservoir of 20 x SSC 

(20 x SSC =3 M NaCl, 0.3 M Na Citrate, pH 7.4): Figure 2.1. Saran wrap was used 

Figure 2.1 

1kg 	 paper 
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to surround the gel to prevent transfer of the SSC other than through the gel. A piece 

of nitrocellulose (Schleicher and Schuell) or nylon membrane (Hybond-N, Amersham), 

cut to size, was soaked in distilled water and placed on top of the gel with care taken 

to exclude bubbles from between the two. Two pieces of 3MM Whatmann paper of 

similar size were placed over the membrane and covered with several layers of paper 

towels. A weight (-1 kg) was placed on top of the towels and transfer allowed to 

procede overnight. Transfer of the DNA to the membrane occurs by capillary action. 

The membrane was washed briefly in 5 x SSC. DNA was fixed to the membrane in one 
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of two ways. Nitrocellulose membranes were air dried and baked in a vacuum oven, at 

80°C for 1 hour. Nylon membranes were irradiated by UV in a Stratalinker 

(Stratagene). 

Hybridisation 

Hyridisation was performed in rotating bottles in a temperature-controlled oven 

(Hybaid). Each membrane was wetted in distilled water, sandwiched between two 

sheets of nylon mesh which were rolled up and placed in the bottle, unrolling to line 

the inside of the bottle. Approximately 30 ml of hybridisation mix were added (0.05% 

BSA, 0.05% polyvinylpyrolidine, 0.05% Ficoll, 0.1% SDS, 0.1% sodium 

pyrophosphate, 5 x SSC, 100 jig/ml denatured salmon sperm DNA) and the membrane 

was incubated at 68°C for 1 hour. This temperature was used for all southern 

hybridisations performed. Probes added had a specific activity of approximately 10 

cpm/mg, they were boiled for 5 minutes and added to the hybridisation solution giving 

3-6 x 10 cpmlml. The hybridisation was incubated overnight at 68°C after which the 

radioactive solution was discarded and the membrane rinsed 3 times in fresh wash 

solution (2 x SSC, 0.2% sodium pyrophosphate, 0.2% SDS) for 30 minutes at 68°C. 

After washing, the background non-specific radioactivity should have been largely 

removed leaving the signal. This was assessed using a hand held monitor and if no 

further washing was deemed necessary the excess liquid was drained from the 

membrane and it was wrapped in Saran wrap. The signal was detected by 

autoradiography. 

2.6 Sequencing 

The chain termination method of Sanger (1977) was used in all sequence 

determination. Two applications of this method were used, the standard chain-

termination technique using Sequenase® (USB) and a 'Cycle sequencing' method using 

Taq polymerase (GIBCO BRL; dsDNA Cycle Sequencing System). 

2.61 Sequenase sequencing 

Standard chain-termination sequencing was performed using Sequenase 

(United States Biochemicals) according to manufacturers recommendations. 

Termination products were labelled by incorporation of [a-35S]dATP.  Two types of 

template were used; 1) single stranded DNA produced from phagemid vectors; 2) 

double stranded DNA denatured with NaOH. 
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Single-stranded templates were generated by helper phage rescue of phagemids 

carrying the f  origin (section 2.2.3). Primer annealing, labelling and chain-termination 

reactions were performed according to the Sequenase manual. Primers were artificially 

synthesised and 5-10 ng was used per reaction. 

Double-stranded templates were CsC1 banded plasmids denatured by incubation 

of 4 tg DNA with 100tl of denaturing solution (200 mM NaOH, 0.2 mM EDTA) at 

37°C for 30 minutes. Denatured DNA was precipitated by addition of 1/10 volume 3M 

Sodium Acetate and 2.5 volumes ethanol. The precipitate was washed with 70% 

ethanol and dried under vacuum. DNA was resuspended in 7 tl H 2  0 to which was 

added 2 tl reaction mixture (Sequenase kit) and 1 j.il primer (10 ng). The mix was 

incubated at 37°C for 30 minutes to permit oligo annealing. Labelling and chain-

termination reactions were performed according to Sequenase manual. 

2.6.2 Taqpolymerase 'Cycle sequencing' 

Regions amplified from plasmid clones by polymerase chain reaction (PCR; 

section 2.3.4) were sequenced using a 'dsDNA Cycle-sequencing' kit from GIBCO-

BRL. This technique sequences by the chain-termination method but uses Taq 

polymerase and a thermal cycling protocol to amplify the signal in a linear fashion. An 

oligonucleotide, either one of those used for PCR amplification or an internal one, is 

added together with the linear template to a reaction mix containing deoxynucleotides 

and dideoxynucleotides. Thermostable Taq polymerase was added and several rounds 

of strand melting, annealing and extension were performed on a thermal cycler. The 

initial chain-terminated extension product was melted from the template and a new 

product synthesised in the next cycle. Very small amounts of template DNA can be 

sequenced in this way as the product signal is amplified by the number of cycles 

performed. The labelling for this sequencing was achieved by labelling the 5' end of the 
oligonucleotide with [y- 33P]ATP using polynucleotide kinase (section 2.4.3). This 

alternative isotope of phosphorous, 33P, was used as it gives sharp intense bands after 

several hours autoradiography. This is due to a higher specific activity than that of 32P, 

but a lower emmision energy than the other phosphorous isotope, more like that of 355 

Sequencing reactions were set up by following manufacturers instructions. The 

recommended 'quick cycle' was used with linear PCR-product DNA as template. 

Briefly, template DNA was melted at 94°C for 2 minutes followed by 30 cycles of 

sequencing/amplification (5 seconds at 94°C, 5 seconds at 55°C, 5 seconds at 72°C). 

The annealing temperature of 55°C was found to be suitable for most oligos used but 

was altered slightly in some cases. 
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2.63 Electrophoresis of sequencing products 

Sequencing reaction products were separated by electrophoresis through a 6% 

polyacrylamide, 6 M Urea, 1 x TBE denaturing gel. The gel was run at 27 watts 

(power limiting) in 1 X TBE buffer. To obtain maximum information from a single 

reaction it was usually necessary to run two gels, one for approximately two hours and 

the second for approximately four. After electrophoresis the gel was fixed in 10% 

methanoll10% acetic acid for 15 minutes then transferred to Whatmann 3MM paper 

and dried on a vacuum gel drier. The dried gel was autoradiographed overnight. 

2.6.4 Sequence analysis by computer 

Computer analysis and manipulation of sequence data was used for a variety of 

purposes; management of sequencing projects; sequence comparison, sequence-library 

searches and searches for known cis-elements. 

Individual gel-reads of sequence data were assembled in one of two ways. 

Sequence obtained from the deletion series of the mouse 5' region was input into the 

Staden automatic Contig-Assembly package (Amersham Staden-Plus; Release 1, 

Version 6) where overlapping ends were joined to form large stretches of contiguous 

sequence. This approach, although based on the ordered set of nested deletions, allows 

for a random input of sequences thereby accommodating the varied population of 

deletions found at any one time point. The second method employed the GCG program 

LINEUP. This program allows the user to input individual sequences one on top of the 

other and to slide them along relative to one another to obtain the optimum match by 

eye. This method is only appropriate when the relationship between each gel-read is 

clear, e.g. when they are known to be overlapping due to use of custom-made 

oligonucleotides to prime the sequencing reactions. This was the approach adopted in 

the sequencing of the majority of the human 5' sequence and LINEUP was used in the 

assembly of this sequence. 

The sequence-databases accessed were updated versions of the GenBank and 

EMBL databases maintained at the UK Human Genome Mapping Project Resource 

Centre (UK HGMP-RC) at Harrow in Essex. They were searched using the BLAST 

program available on site. Transcription factor binding sites were searched for by 

comparison with the Transcription Factor Database (TFD) (Ghosh, 1992) using the 

SIGNAL SCAN program (Prestridge, 1991), also at the UK HGMP-RC. 
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All computing was performed on Sun MicroSystems Sparc workstations 

running Unix operating system. Postscript files of plot output from GCG programs 

were printed on an Apple Laserwriter. 

2.7 Protein extracts 

2.7.1 Tissue culture conditions 

B16 and H3M cells were cultured to provide protein for in vitro binding 

studies and to enable transfection with reporter gene constructs. Both cell lines were 

grown under similar conditions. RPMI 1640 culture medium (Flow Laboratories) was 

used supplemented with 10% fetal calf serum (Gibco Bio-Cult) and cells were 

incubated at 37°C with 5% CO2. Cells were grown in plastic culture flasks (Nunc: 

typically 175cm 2) as monolayer cultures and split when confluent. To split, cells were 

first detached from the flask by trypsinisation using 1:10 trypsin:versene. After 5 

minutes incubation at 37°C the cells were dislodged by repeated pipetting of lOml of 

medium and the cell suspension distributed among new flasks to which fresh medium 

was added. 

2.7.2 Preparation of Protein from Mammalian cell culture 

Protein extracts from cultured mammalian cells was performed using the 

method of Andrews and Faller (1991). 

Cells from a confluent 175 cm 2  flask were scraped into 1.5 ml of ice cold PBS. 

The suspension was transferred to an eppendorf tube and the cells pelleted by 10 

seconds of bench-top centrifugation. The pellet was resuspended in 400m1 of ice cold 

buffer A (10 mM HEPES-KOH pH 7.9 at 4°C, 1.5 mM MgC1 2, 10 mM KC1, 0.5 mM 

DTT, 0.2 mM PMSF) by flicking the tube. The cells were allowed to swell on ice for 

10 minutes and then pelleted as above. The pellet was resuspended in 20-100mi (the 

volume depending on the number of cells) of ice-cold buffer C (20 mM HEPES-KOH 

pH 7.9, 25% Glycerol, 420 mM NaCl, 1.5 mM MgC12, 0.2 mM EDTA, 0.5 mM DTT, 

0.2 mM PMSF) and placed on ice for 20 minutes. Cell debris was pelleted by bench 

top centrifugation for 2 mm, at 4°C, and the supernatant stored at -70°C as the protein 

extract. B16 cells were kindly donated by Peter Budd. HeLa cells extracts were 

purchased from Promega (HeLasctibe). ES and F9 cell extracts were a generous gift 

from Dr. Richard Meehan. 
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2.7.3 Harvesting Mouse embryos 

Proteins were extracted from whole mouse embryos and from dissected 

embryo parts. Pregnant mice were provided by the animal facility at the Western 

General Hospital. Embryos were harvested from Swiss mice at 10 or 11 days post 
coitum (dpc). The mother was killed by cervical dislocation followed by opening the 

abdominal cavity and removing the two horns of the uterus. These were immersed in 

ice cold phosphate-buffered saline in order the kill the embryos. All subsequent 

dissection was performed in ice-cold PBS (phosphate buffered saline). Individual 

embryos were removed from the decidua by creating a small cut in the wall with a pair 

of spring-scissors. Slight pressure was then enough to cause the embryo within the 

amniotic sac to emerge. The extra-embryonic membranes were teased away using two 

pairs of fine forceps and the embryos processed further. 

When sub-regions of the embryos were required for region-specific protein 

extracts the embryos were dissected under a binocular dissection microscope while 

immersed in PBS. 

2.8 Gel retardation assay 

The gel retardation assay involves the use of radiolabelled double-stranded 

oligonucleotides, protein extracts and native polyacrylamide-gel electrophoresis. 

2.8.1 Oligonucleotides 

Oligonucleotides were synthesised as described. Oligonucleotides used for this 

assay are required at a higher level of purity than for other purposes and were 

therefore gel purified before further use. Purification was performed by electrophoresis 

through a denaturing polyacrylamide gel. This served the dual purpose of removing 

impurities, during the process of gel-migration and elution, that may interfere with 

protein-binding, and size fractionation as a band representing the full-length oligo 

could be excised. The oligo purification protocol is essentially that of Sambrook et al. 
(1989 - page 11.23). Typically, a 15 % polyaciylamide gel (separating oligonucleotides 

of 45-65 bp) in 1 x TBE was cast to a thickness of 1mm in a water cooled vertical gel 

apparatus (LKB). An equal volume of formamide is added to the oligo solution along 

with Orange-G to 0.2 % and it is heated to 55°C for 5 minutes to disrupt any 

secondary structure. - 2 OD 260units  of oligo are loaded in each well. In another well, 

alongside those loaded with oligonucleotide, an equal mixture of formamide and 
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tracking dyes (0.05 % xylene cyanol, 0.05 % bromophenol blue) is loaded. The 

migration of the dyes in varying percentages of acrylamide was assessed according to 

the table on page 11.26 of Sambrook et al. (1989). The gel was run at —200 V until the 

bromophenol blue band had run three-quarters of the way down the gel. The gel 

apparatus was then dismantled and the gel sandwiched between two sheets of Saran 

wrap. A gel of this concentration is robust and readily handled. The oligo bands were 

then visualised by ultra-violet shadowing. A TLC plate with a fluorescent coating was 

used (Whatman Silica Gel 60 A). Under ultra-violet light at 254 nm the coating 

fluoresces green. DNA absorbs light at this wavelength resulting in the 

oligonucleotides casting a shadow on the plate when it is illuminated through the gel. 

This enables the careful excision of the oligo band with a clean scalpel blade. The gel 

slice is placed in a clean eppendorf tube and eluted. Elution was performed by the 

'crush and soak' method. The gel slice is crushed against the sides of the tube using the 

disposable tip from a p 1000 Gilson pipette. 500 tl of oligo elution buffer (0.1 % SDS, 

0.5 M ammonium acetate, 10 mM magnesium acetate) is added and the tube is 

incubated on a rotary shaker at 37°C overnight. The eluate was recovered by 

centrifugation of the gel pulp through a SPINEX column. The oligonucleotides are 

recovered from this eluate using a 'Mermaid kit' from BlO 101® according to 

manufacturers instructions. 

Concentration of the gel-purified oligonucleotides was determined by 

measurement of optical density at 260 nm. The extinction coefficient (8) for each 

oligonucleotide was calculated, according to Sambrook et al. (1989; section 11.21), 
and the 0D 260  divided by it to give the concentration (OD=ExC). Equimolar 

concentrations of the two complementary oligos to be used in the assay were then 

mixed, heated to 90°C and cooled slowly to room temperature. The double-stranded 

oligos were recovered by ethanol precipitation at -20°C overnight. 

2.8.2 Binding Reactions 

Binding reactions were performed in multiwell plates enabling the simple and 

rapid processing of several reactions for one or two gels. Each reaction has several 

components: binding buffer which specifies the salt conditions etc., crucial to the 

protein-DNA interaction; non-specific competitor DNA to 'mop up' the excess of non-

specific DNA-binding proteins and provide a high stringency for the reactions; specific-

competitor DNA, either unlabelled probe or an alternative competitor to determine 

specificity; protein; radiolabelled double-stranded DNA probe. The copolymer poly -
d(I-C) was used as a non-specific competitor. Typically 3tg of poly d(I-C) was used 
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per reaction. Reactions were performed in a total of 20jil. All components except the 

labelled probe were added, mixed and incubated on ice for 15 minutes. The 32P labelled 
probe was added finally (typically 10 4-1O5cpmllane) and mixed followed by a further 15 

minute incubation on ice. Loading buffer was then added and the reaction mixture 

loaded onto the gel immediately. 

2.8.3 Native acrylamide gels 

Separation of the protein-bound and free oligonucleotide probes was achieved 

by electrophoresis through non-denaturing polyacrylamide gels. Typically 5% gels 

were cast by mixing 6.25m1 acrylamide (40% stock 19:1 acrylamide:bisacrylamide. 

Northumbria Biologicals Ltd) with 2.5m1 20 x TBE (final concentration of 0.5x), and 

300jil 10% ammonium persulphate in a total volume of 50m1. Just prior to casting 30.il 

of TEMED was added. A vertical, water cooled apparatus (LKB) was used with gels 

cast to a 1mm thickness. Binding mixtures were loaded upon addition of 1011 of 

loading buffer (0.1% bromophenol blue, 10% glycerol). A current of —15V/cm was 

applied until the bromophenol blue had migrated close to the bottom of the gel. The 

gel was dried under vacuum on a heated slab-gel drier and detected by phosphor-

imager. 

2.9 Southwestern blotting 

2.9.1 dsDNA probes from synthetic oligonucleotides 

dsDNA probes for use in South-western analysis were produced by 

concatenation of complementary synthetic oligonucleotides after Sambrook et al. 
(1989; section 12.32). 2 tg of each of the oligonucleotides was phosphorylated at the 

5' terminus. This reaction was performed in a kinase/ligase buffer (50mM Tris.Cl pH 

7.6, 10mM MgC12) in which both enzymes will function. The phosphorylated 
oligonucleotides were then annealed together by heating to 85°C and cooling slowly. 
The resulting double stranded oligonucleotides were ligated at 16°C overnight. 

Following ligation the concatenated product was phenol extracted and ethanol 

precipitated. The pellet was resuspended in 40tl of T.E. (pH 7.6) and 5tl of this 

(500ng) was used in each labelling reaction. Probe was labelled by nick translation (see 

above) to a minimum specific activity of 1 x 10 1  cpm/jig. 
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2.9.2 SDS - Polyacrylamide Gel electrophoresis 

Proteins were separated according to size by SDS-Polyacrylamide gel 

electrophoresis (Laemmli, 1970). Denatured (linear) protein is coated with negatively-

charged sodium dodecyl sulphate (SDS) thus acquiring a charge approximately 

proportionate to the length of the polypeptide. In this form the molecule will migrate 

through a polyacrylamide gel towards an anode with a mobility relative to its size. 

Proteins separated prior to South-western blotting were run on gels of varying 

concentrations dependent upon the degree of separation required for proteins of a 

particular molecular weight. It was determined that a gel of 7% acrylamide gave good 

separation in the 30-200 kD range when run at 6 volts/cm for approximately 16 hours. 

A 7% separation gel was used with a 4% stacking gel. Stock acrylamide (19:1 

acrylamide:bisacrylamide) was mixed with the relevant buffer (Stacking:- 0.5 M Tris 
pH 6.8, 8 mM EDTA, 0.4% (w/v) SDS; Separating:- 1.5 M Tris pH 8.8, 8 mM 

EDTA, 0.4% (w/v) SDS) and polymerised by addition of approximately 0.01 volumes 

of 10% ammonium persulphate and 0.001 volumes TEMED. The gel was cast to a 

thickness of 1mm in a water cooled vertical gel apparatus (LKB). Samples to be 

separated were mixed with 10 t1 (or an equal volume if the sample was larger than 10 

p1) of SDS sample buffer. SDS sample buffer was made by mixing 900 tl stock 

dissociation buffer (10% stacking buffer, 2% SDS, 10% Glycerol) with 50 p1 - 

Mercaptoethanol and 50 410. 1 % Bromophenol Blue (in stacking buffer). The mix of 

sample and sample buffer was incubated at 100°C for 2 minutes and loaded onto the 

stacking gel. An electrode buffer of 24.8mM Tris pH 8.3, 192mM Glycine, 2mM 

EDTA and 0.1% SDS was used and the gel run at 65 volts (6 volts/cm) for 16 hours. 

2.9.3 Electrotransfer of Proteins 

After SDS-PAGE separation, the proteins must be transferred to a nitro-

cellulose membrane prior to South-western blotting. Transfer was performed in a 

vertical electrotransfer apparatus (LKB). 

The gel was disassembled and the stacking gel cut away. The gel was soaked in 

transfer buffer (50mM Tris, 380mM Glycine, 0.1% (w/v) SDS, 20% (v/v) Methanol) 

for 1 hour. Nitro-cellulose membrane (0.45 tim) was cut to size, along with two pieces 

of Whatmann 3MM paper, and soaked in transfer buffer for 5 minutes. The membrane 

was placed on the gel, with care taken to avoid any bubbles between, and the two were 

placed between the 3MM paper in the transfer apparatus. The set-up was oriented with 



the membrane adjacent to the anode and transfer was performed at 50mA for 3 hours 
in buffer at 4°C. 

2.9.4 Filter processing and Hybridisation 

The method used was based upon that of Dikstein et al. (1992) which is itself 
an adaptation of the method used in Singh et al. (1988). 

Proteins were separated by SDS polyacrylamide-gel electrophoresis as 

described. The proteins were then electro-transferred to a nitro-cellulose support as 

described. Following transfer the intro-cellulose filter was first incubated for 1 hour at 

room temperature (on an orbital shaker) in a blocking solution containing non-fat dried 

milk (Marve  IT"  ) as a blocking agent (5% non-fat milk, 50mM Tris pH 7.5, 100mM 
NaCl, 1mM EDTA, 1mM DTT). The filter was then washed twice in TNE-100 

(10mM Tns pH7.5, 100mM NaCl, 1mM EDTA, 1mM DTT). This was followed by 1 

hour at room temperature in a protein-denaturing solution (7M guanidine HC1, 50mM 

Tris pH 8.0, 50mM DTT, 2mM EDTA, 0.25% non-fat milk). Finally the proteins were 

slowly renatured by incubation at 4°C overnight in a renaturing solution (50mM Tris 

pH 7.5, 100mM NaCl, 2mM Dfl', 2mM EDTA, 0.1% NP-40, 0.25% non-fat milk). 
Filters treated as above were incubated for 1-2 hours at 4°C in binding buffer 

(0.25mM DTT, 2mM, 10mM HEPES pH7.9, 100mM KC1, 100mM NaCl, 4mM 
spermidine, 2.5% glycerol) plus 0.1% Triton X-100, in the presence of 10 tg/ml of 

non-specific competitor DNA (poly dl-Q. The radiolabelled probe was added (5 x 106 

cpmlml) and the incubation continued for a further 30 minutes. Filters were then given 

three 5 minute washes in binding buffer plus 0.05% Triton X-100. The nitro-cellulose 

was removed from the washing solution and allowed to dry on a piece of Whatman 

3MM paper. The filters were wrapped in Saran wrap and autoradiographed. 



Chapter 3 

Comparative Sequence analysis 



3 Introduction 

The mechanisms regulating gene expression comprise two components, cis-

acting elements and trans-acting factors (section 1.5). In the absence of prior 

information, from genetic studies for example, the cis elements are more directly 

accessible to the molecular biologist. Cis-regulatory elements are features of the DNA 

sequence near to the gene (on a genomic scale) making it possible to clone them as 

adjacent DNA from the locus and to determine their location by a variety of means. 

Whatever method one chooses to identify cis elements, at some stage in the work it 

will be necessary to determine the nucleotide sequence of the DNA. One method used 

to define the position of cis regulatory elements is to apply a functional assay, such as 

reporter gene fusion, to sub-sections of the DNA with the aim of defining the minimum 

required stretch of DNA. Sequence of this region can then be determined. Alternatively 

the sequence itself can be exploited to identify which regions of it are functionally 

significant. This type of approach is taken in this study. 

As the number of model organisms used in the study of development grows, 

genes important to the processes of embryogenesis are isolated from a diverse range of 

animals with varying phylogenetic relationships to one another. It is becoming 

increasingly clear that many of the genes regulating development have been highly 

conserved during evolution, few more so than the homeobox genes (sections 1.1.3 & 

1.2.1). As transcription factors, the products of the homeobox genes interact with cis 

regulatory elements flanking genes downstream in the regulatory cascade. Given the 

evolutionary conservation of DNA binding domains, such as the homeodomains, it is 

not unreasonable to expect that the cis sequences with which they interact will also 

have been tightly conserved. On the basis of such functional constraint upon 

evolutionary change, cis elements may be identified by comparing the flanking, non-

coding DNA of cognate genes from related species. Functional sequences may be 

expected to stand out due to their higher level of homology. 

In addition to homology studies there are increasing bodies of information 

regarding the cis control regions of many genes, and any putative regulatory region 

(flanking sequence) can be assessed for the presence of known elements or 

characteristic features associated with regulation of gene expression. 

This chapter describes the use of comparative sequence analysis to search for 

conserved sequences possibly functioning as cis regulatory elements of Msx- 1. It also 
describes a detailed examination of other characteristics of Msx- 1 flanking DNA in 
reference to potential regulatory function. 
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3.1 Sequencing 5'-flanking DNA of the mouse Msx-1 gene 

As a first step toward analysing the 5'-flanking region of the mouse Msx- 1 gene 
a 1.7 kb genomic fragment of this region was subcloned into a suitable vector and 

sequenced. 

3. 1.1 Subcloning Msx-1 S'fragment 

The 5'-flanking DNA to be sequenced was a sub-fragment of a cosmid isolated 

by Robert Hill. The subclone provided by Dr. Hill was a plasmid, pCosX2-22/Sma#4, 

carrying a 1.7 kb EcoRl-Smal insert in the vector pTZ18. This vector was unsuitable 

for the required purposes so the insert was cloned into an alternative vector. The insert 

was excised by digestion with EcoRI and Xbal (thereby leaving a small portion of pTZ 

at the Smal end of the insert) and gel purified. It was ligated into the polylinker of 

pGEM-7Zf(-) (Promega) which was digested with the same two enzymes. The 

resulting plasmid was termed pDEL3 as it allowed for deletions to be made into the 3' 

end of the insert (figure 3.1). The pGEM-7 vector was chosen as it enabled production 

of single-stranded DNA, using the fl origin, and possessed convenient restriction sites 

to allow unidirectional deletion with exolll (section 2.3.3). 

Figure 3.1 

Direction of deletion 

I 	Ii 	 I 	II 
Sp XSm 	 E C B 

I 	I 	pTZ18R 

Msx-1 5 flanking DNA 	 pDEL3 
pGEM-7Zf(-) 

Figure 3.1 Map of clone pDEL3. Subclone derived from a Msx-1 cosmid into 
pGEM-7Zf, a vector suitable for the generation of unidirectional deletions. Restriction sites 
shown: Sp=SphI; X=Xbal; Sm=SmaT; E=EcoRI; C=ClaI 
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3.1.2 Production of a deletion library of pDEL3 

To facilitate sequencing, a series of nested deletions was created spanning the 

length of the pDEL3 insert. Exonuclease III (exolll) can create unidirectional deletions 

with use of specific restriction sites (see section 2.3.3). Deletions were made into the 

Smal end of the EcoRl-Smal Msx-1 fragment in pDEL3 (the 3' end with respect to 
transcription of Msx-l; see Fig. 3.1). The 3'-overhanging, exonuclease-resistant end 

was generated adjacent to the vector DNA by digestion with SphI at a site in the 

polylinker. The 5'-overhanging, exonuclease-digestible end was generated adjacent to 

the insert DNA by digestion with XbaI at the site into which the insert was cloned 

from pTZ. Deletions were generated as described with seven time points selected over 

a range which spans the whole insert. The time points have an approximate interval of 

300 bp as seen in figure 3.2. This interval allows for sequence information from one 

time point to overlap with that from another. There is heterogeneity in the extent of 

deletion within the population of DNA molecules in a given time point and this may 

lead to individual clones not having a deletion representative of their time point. This 

problem is overcome by analysing individual clones on an agarose gel and sequencing a 
representative selection. 

3.1.3 Sequencing of pDEL3 

Single-stranded DNA was prepared as described (section 2.2.3) and sequencing 

was performed using the Sequenase protocol for single-stranded DNA (section 2.6.1). 

Maximum information was collected from each reaction by using short (-2 hours) and 

long (-4 hours) gel-runs. Following assembly of the sequence, synthetic 

oligonucleotides were synthesised, complementary to the sequence at intervals of 200-

300 bp, and used to sequence double-stranded templates. The information from the 

complementary strand served to confirm the data produced from the deletion series 

and negated the need for a second set of deletions in the opposite direction. The 

STADEN (Amersham Staden-Plus; Release 1, Version 6) contig assembly computer 

program was used to match overlapping sequences and assemble them into longer 

stretches of contiguous sequence. Once the individual sequencing files had been 

assembled into a small number of large contigs, the sum length of which approximated 

the size of the insert, synthetic oligonucleotides were made to enable sequencing from 

the ends of these contigs across the remaining gaps. 

The sequence information generated from the pDEL3 insert is shown in figure 

3.3: in total 1683 base pairs were sequenced. 
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Figure 3.2 

6.6- 
4.3- 

2.0 2.3- 

Figure 3.2 	Ethidium bromide stained agarose gel of the products from the 
unidirectional Exoill deletions of pDEL3. Molecular weight markers demonstrate a total 
range of deletion of -2.5 kb. Lanes 2-8 (bracketed) were selected for sequencing. 
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Figure 3.3 

GAATTCGCTATCCCTCCGTGCTCGGATAATTACCCCTAAPTGGCCACGGCAGCCCCTTGT 

	

1 Eco RI---+ ---------+ ---------+ ---------+ ---------+ ---------+ 	60 
CTTAAGCGATAGGGAGGCACGAGCCTATTAATGGGGATTTACCGGTGCCGTCGGGGCA 

GTTTCCTGGAGATTAGAGCCCGGCAGTCATCAATGCACAGTCCCGGTGAGCCGCCJTCA 

	

61 ------------------------------------------------------------ 	120 
CAAAGGACCTCTAATCTCGGGCCGTCAGTAGTTACGTGTCAGGGCCACTCGGCGGTTAGT 

CCTCCTCCACCTCCCCCGGAGCCGCGAGCCTGGGCCCTGGGATGAGGCCATATGA 

	

121 ------------------------------------------------------------ 	iso 
GGAGGAGGTGGAGGGGGCCTCGGCGCTCGGACCCGGGACCCTATTCTCCGGTATATTTCT 

AAGCCCCCCCCCCCCCAACTCCCCAACAGCCTGTTCGAACCCAGTTTACJGGTCTTCT 

	

181 ------------------------------------------------------------ 	240 
TTTCGGGGGGGGGGGGGTTGAGGGGTTGTCGGACAGCTTGGGTCJATCTTCCAGJGA 

GTGGGTCCCCACTCCAACTTTCCTTCTTTTTGTATCAGTCAAACAAAACAAAACAAAACA 

	

241 ------------------------------------------------------------ 	300 
CACCCAGGGGTGAGGTTGAkAGGAAGAIAAACATAGTCAGTTTGTTTTGTTTTGTTTTGT 

	

301 ------------------------------------------------------------ 	360 
TTTGTTTTGAGCAGGAGCTTTAGCCCGTTTGTTTTGGTTCGGCCTGGTTTC 

ATATACCTCCAGGAACTGCTTATTTTTCCTACTGGCCCATCAAATGGGCCTCCACTCTGC 

	

361 ------------------------------------------------------------ 	420 
TATATGGAGGTCCTTGACGAATAAAGGATGACCGGGTAGTTTACCCGGAGGTGAGACG 

ACCAGCAGACAGACCCACAGTTAGTGAAGTGTGATTGTTTTTGAGGATTCATTGTCTGAG 

	

421 ------------------------------------------------------------ 	480 
TGGTCGTCTGTCTGGGTGTCAATCACTTCACACTAACAAAAACTCCTAAGTAACAGACTC 

GTCATGTTGAGGCCAGATTGTTGGTGGGTTCTGTTGGTCTTATTTCGGTCTTCACCCJG 

	

481 ------------------------------------------------------------ 	540 
CAGTACAACTCCGGTCTAACAACCACCCAAGACAACCAGAATAAAGCCAGAAGTGGGTTC 

GCATCCAGTGGCTTCTTTGGCTAGTAGCAGTTCTCTGGTAGAGGTGTJCTTTCTGGAGA 

	

541 ------------------------------------------------------------ 	600 
CGTAGGTCACCGAAGAAACCGATCATCGTCAAGAGACCATCTCCACATTGAJGACCTCT 
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AAAGTACGTATAGGGAGGGGGTACGTGTTTGCATGAGAACCAAACTCATTTCCCAGATC 
601 ------------------------------------------------------------ 	660 

TTTTCATGCATATCCCTCCCCCATGCACAAACGTACTCTTGGTTTGAGTAAAGGGTCTAG 

ATGTTACTTGTTCCCGTACCCACAGAACCCAGGACCTGTACTTTCTTTGATTpJCTTT 
661 ------------------------------------------------------------ 	720 

TACAATGAACAAGGGCATGGGTGTCTTGGTTGTCCTGGACATGAAAGAAACTAATTGAAA 

GTCCAGCCCTGGAGACAAAGGCCCATTTTTACTCCGAGGTAAATTTTTGAAGATTGGAAG 
721 ------------------------------------------------------------ 	780 

CAGGTCGGGACCTCTGTTTCCGGGTAAAAATGAGGCTCCATTTJPCTTCTJJCCTTC 

ACATAAGACACTTAGGGCGGCTTTTTTAAAIJGAAATTAGTATTATCCCTTGCTACTC 
781 ------------------------------------------------------------ 	840 

TGTATTCTGTGAATCCCGCCGAAAAA]TTTTTTTCTTTAJ\TCATTAGGGM\CGATGAG 

TGACAAATAACTATGAACATTCAAAGCAAACACCAAAAGAAAAAAAAAATTGTAAGTGAA 
841 ------------------------------------------------------------ 	900 

ACTGTTTATTGATACTTGTAAGTTTCGTTTGTGGTTTTCTTTTTTTTTTCATTCACTT 

TTGTGGTCGAGAAAGGGGGCCAGAAGAGGGAAAGGGGACAGAAAGAAATAGCACAGACCA 
901 ---------+ ---------+ ---------± ---------+ ---------+ ---------+ 	960 

AACACCAGCTCTTTCCCCCGGTCTTCTCCCTTTCCCCTGTCTTTCTTTATCGTGTCTGGT 

TAAGAGAACTGTGGAAAGAAGTAGTCTATGGAGAGGCAGGGTGGGTGGA 
961 ------------------------------------------------------------ 1020 

ATTCTCTTTGACACCTTTCTTTCATCAGATACCTCTCCTTGTCTTCTTCACCCATTTCCT 

TGGTGGAGGACGACTGGCAGAAGAGAGGACTAGTGAAAGTCCCTCTGGCTTGG 
1021 ------------------------------------------------------------ 1080 

ACCACCTCCTGCTGACCGTCTTCTCTTCCTGATCATTTCTTTTCAGGGAGACCTTGJCC 

TAGAATCCACATCCAGGAGTGTGGGGGTCCAGCCGGACCGATGCCCACCTGACTTAGCTA 

1081 ------------------------------------------------------------ 1140 

ATCTTAGGTGTAGGTCCTCACACCCCCAGGTCGGCCTGGCTACGGGTGGACTGJTCGAT 

GGCGGAAAAGCTCCCCAGGTACTCCGGCTCTGTCGCCTGTGCGGGTCAGGCCCTTCCCCG 
1141 ------------------------------------------------------------ 1200 

CCGCCTTTTCGAGGGGTCCATGAGGCCGAGACAGCGGACACGCCCAGTCCGGGJ\GGGGC 

AGCGCCCCAGGCCGAGCGCGCCTCGGGGCACGAGCACAGCCCAATGGTTCTCTCCGGACC 
1201 ------------------------------------------------------------ 1260 

TCGCGGGGTCCGGCTCGCGCGGAGCCCCGTGCTCGTGTCGGGTTACCJGAGAGGCCTGG 



CGCCCCCTCGCGCTCTGATTGGCCGCTGCCACGCTGGCCTTGCCTTATTpJ\CJJGTTCTC 

1261 ------------------------------------------------------------ 1320 

GCGGGGGAGCGCGAGACTAACCGGCGACGGTGCGACCGGAACGGAATAATTGTTCAAGAG 

AGGGGAGCGGCGGCGGACCCGGAGCCGGCGAGTGCGCCTCGGPJ\CTCGGCCTGAGCGGCG 

1321 --------------------------- 7 -----------+---------+---------+ 1380 

TCCCCTCGCCGCCGCCTGGGCCTCGGCCGCTCACGCGGACCCTTGAGCCGGACTCGCCGC 

CAGGGATCCAGGCCCCGCTCGCTCGAGTTGGCCTTCTGGGGAAGCCGCAGGAGGCTCGCG 

1381 ------------------------------------------------------------ 1440 

GTCCCTAGGTCCGGGGCGAGCGAGCTCAACCGGAJ.GACCCCTTCGGCGTCCTCCGAGCGC 

CGCGAGAGCCGGCCGGGCCAGGAACCCAGGAGCTCGCAGAAGCCGGTCAGGAGCTCGCAG 
1441 ------------------------------------------------------------ 1500 

GCGCTCTCGGCCGGCCCGGTCCTTGGGTCCTCGAGCGTCTTCGGCCAGTCCTCGAGCGTC 

AAGCCGGTCGCGCTCCCAGCCTGCCCGAAACCCATGATCCAGGGCTGTCTCGAGCTGCGG 

1501 ------------------------------------------------------------ 1560 
TTCGGCCAGCGCGAGGGTCGGACGGGCTTTGGGTACTAGGTCCCGACAGAGCTCGACGCC 

CTGGAGGGGGGGTCCGGCTCTGCATGGCCCCGGCTGCTGCTATGACTTCTTTGCCACTCG 

1561 ------------------------------------------------------------ 1620 
GACCTCCCCCCCAGGCCGAGACGTACCGGGGCCGACGACGATACTGJGAJCGGTGAGC 

GTGTCAAGTGGAGGATCCGCCTTCGCCAAGCCTGCTGGGGGAGGCGTTGCCJGCCCCC 
1621 ---------+ ---------+ ---------+ ---------+ ---------+ --------Sm 1680 

CACAGTTTCACCTCCTAGGCGGAAGCGGTTCGGACGACCCCCTCCGCJCGGTTCGGGGG 

GGG 

1681 a I 1683 

ccc 

Figure 3.3: 	Sequence of the insert in clone pDEL3 corresponding to the 5'- 
flanking region of mouse Msx- 1. The restriction sites used in the cloning of the insert, EcoRI 
and Smal, are marked at the ends of the sequence (section 3.1.1). The C underlined at 
position 1283 marks the transcriptional start site published by Kuzuoka et al. (1994). 

67 



3.2 Sequencing the 5'-flanking region of human MSX1 

To enable a comparative study between the upstream regions of the human and 

murine genes it was necessary to obtain a clone for the human cognate of mouse Msx-

1 (not cloned at this time). A cosmid library was screened to isolate the human gene 

and various fragments subcloned for sequencing. 

3.2.1 Isolation of a human MSX1 cosmid 

A cosmid library derived from a normal human male lymphoblastoid cell-line, 

constructed in the Lawrist-4 vector, was kindly donated by Dr Wendy Bickmore. The 

library was constructed by the cloning of Sau3A partially digested DNA into the 

BamHI site of Lawrist-4. Four amplified pools of clones were provided and -2.5 x 10 
colonies from each pool were screened (section 2.5.2) using the 215 bp SacI-NcoI 
fragment from the 5' region of the Msx- 1 cDNA as a probe (figure 3.4). This probe 

fragment was excised from plasmid pHox-7XS, a cDNA clone containing the full 

coding region inserted into the pTZ18R vector (R. Hill). The DNA probe was labelled 

by the random priming method (see section 2.4.2). A primary screen of the four pools 

of clones comprising the library (amplified) identified several positive clones in one 

particular pool. Six colonies corresponding to the signals on the autoradiographs were 

picked and taken through secondary and tertiary screens. The result of one such 

secondary screen can be seen in figure 3.5A which shows the autoradiograph produced 

from a high concentration plating of one particular primary positive suspension. One 

colony from this filter was picked and taken to a tertiary screen, performed as for the 

secondaries. The tertiary screen was performed at a range of lower concentrations to 

ensure that an individual colony could be selected. Figure 3.5B shows a tertiary screen 

filter: the positives on this filter represent the vast majority of colonies on the plate. 

The cosmid isolated from the individual tertiary colony picked was termed 

pCosHumfl7. 

3.2.2 Subcloning from MSX1 cosmid 

Subclones were derived from pCosHumH7 to enable sequencing of human 
MSX1 5'-flanking DNA. A fragment from the correct region, and of suitable size, was 
identified and cloned. The cosmid was digested with a panel of restriction enzymes and 
the fragments separated on an agarose gel (figure 3.6A). The gel was Southern blotted 
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Figure 3.5 
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Figure 3.5 Autoradiographs showing cosmid library screen for human Msx- 1 
clone, a) secondary screen: high density of colonies with considerable proportion of positives 
indicating accurate picking on primary plate. b) tertiary screen showing lower density 
plating: majority of colonies are positive and arrow indicates the colony picked as 
pCosHumH7. 
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Figure 3.6 
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Figure 3.6 A) Ethidium bromide-stained agarose gel of single restriction digests 
performed on pCosHumH7. The bracket on the right highlights the three EcoRI bands at 2.3-
2.5 kb (see text and figure 3.6 B) 
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Figure 3.6 
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gure 3.6 3.6 B) Autoradiograph of Southern blot from gel in figure 3.6 a). Blot 
was probed with SacI-NcoI fragment from 5 region of mouse Msx-1 cDNA. Arrow on right 
indicates 2.5 kb EcoRI band that was cloned to form pB I  (region bracketed in figure 3.6 a); 
see text) 
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onto Hyhond and the filter hybridised to the mouse SacI-NcoI fragment (figure 3.4), 

used to isolate the cosmid. Hybridisation to the Southern was performed under the 

conditions described for the cosmid screen (section 2.5.3). Figure 3.613 shows the 

autoradiograph obtained from this Southern blot. Lane 4 shows that a single EcoRI 

fragment of approximately 2.5 kb hybridises to the probe (arrowed). To further assess 

the suitability of this and other fragments, a second Southern blot was performed 

following separation of pCosHumH7 digested with various combinations of enzymes 

(figure 3.7). Figure 3.7 shows a clear reduction in size of approximately 1 kb between 

this EcoRI fragment (lane 3) and the EcoRI/NcoI fragment hybridising in lane 7, 

demonstrating that at large part of the EcoRI fragment lies upstream of the NcoI and 

constitutes 5-flanking DNA. I decided on the basis of this to subclone this EcoRI 

fragment. 

The ethidium bromide stained agarose gel revealed three closely spaced bands 

at the mobility indicated by the Southern hybridisation signal (Figure 3.6A). It was 

impossible to determine which of these three bands was the target of the hybridising 

probe so it was decided to shotgun clone the EcoRI digested cosmid and screen the 

resulting clones with the mouse SacI-NcoI fragment. An excess of EcoRI digested 

pCosHumH7 was ligated to EcoRl digested pGEM-7Zf and the products transformed 

into XL1-Blue cells. Transformants were screened with the mouse SacI-NcoI 

fragment. One positive was picked and termed pB lB. In order to avoid sequencing the 

whole pB1B insert a more precisely located sub-clone was generated. The smallest 

band hybridising to the probe was a PstIJNcoI fragment of approximately 1.1 kb 

(arrow fig. 3.713). This fragment was clearly visible on the ethidium stained gel of 

digested pB1B (fig 3.8, small arrow). Southern analysis confirmed that it was a sub-

fragment of the pB1B insert (not shown). This fragment was cloned into PstI-NcoI 

digested pGEM-5Zf. The resultant plasmid was termed pE31.1. Figure 3.9 shows the 

relationship between the human MSX1 locus and the subclones derived. 

3.2.3 Reported cloning of Human MSX1 

At this stage in the work a paper was published reporting the cloning of the 

human MSX1 gene. Hewitt et al. (1991) published sequence from a genomic clone 

that they too isolated from a cosmid library. Comparison of the SacI-NcoI mouse Msx-
1 fragment used as probe revealed 86% homology with the human. They identified the 

5' region as within the same 2.5 kb EcoRI fragment subcloned to form pB1B. An 

EcoRl site was present in the intron, 204 bp in from the 5 end, indicating that the 2.5 

kb EcoRI insert of pB1B carried approximately 1550 bp of sequence upstream of the 
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Figure 3.7 A) Ethidium bromide stained agarose gel 01 various single and double 
restriction digests on pCosHumll7. Molecular weight markers are seen in the left hand 
column. 
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Figure 3.7 
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Figure 3.7 3.7 B) Autoradiograph of Southern blot from gel in figure 3.7 A) .Blot 
was probed with SacI-NcoI fragment from 5 region of mouse Msx-1 cDNA. Open arrow 
indicates 2.5 kb EcoRI fragment corresponding to insert of pB lB. Closed arrow indicates 
-.1.1 kb PstI-NcoI fragment cloned as pE31.1 (see text). 
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Figure 3.8 
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Figure 3.8 Ethidium bromide stained agarose gel of multiple digests on the 
cosmid subclone pB1B. The large arrowhead indicates the 2.5 kb EcoRI insert fragment, the 
small arrow indicates that the 1.1 kb PstI-NcoI fragment (cloned as pE3 1.1) is a subfragment 
of this insert. 
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Figure 3.9 
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Figure 3.9 Map of the human MSXI locus showing the relationship of the subclones derived to features of the gene structure. At the top is the insert of the 
smaller subclone pE3 1.1 and below it the insert in the pB I B subclone. The two exons (light shading) are separated by a combination of known sequence and -700 bp of 

unsequenced DNA (Hewitt et a!, 1991). The mouse probe used to isolate the human cosmid is shown (dark shading) alongside the homologous human region (86% 

conserved in human). 



translational start codon. Hewitt et al. reported sequence for 420 bp upstream of the 

start codon leaving approximately 1100 bp of unknown sequence at the 5' end of the 
pB lB insert. The 5' end of the published sequence was used to design a complimentary 

oligonucleotide from which to sequence further upstream. 

3.2.4 PCR amplification from pCosHumH7 subclones 

A synthetic oligonucleotide was made complementary to bases 69-52 of the 
MSX1 sequence published by Hewitt et al. (5'-ACTCGCCCGGAGCGCTGG-3 1 ; oligo 
B962). This sequence is located approximately half way into both the pB1B insert and 

the pE31.1 insert. Oligo B962 was used in conjunction with the pUC/M13 reverse 

sequencing primer (5'-TCACACAGGAAACAGCTATGAC-3') to PCR amplify a 

region of approximately 800 bp from pE3 1.1 corresponding to the full extent of the 

unknown sequence of this clone. An annealing temperature of 50°C was used in a 
protocol described (section 2.3.4). Generation of this fragment and the use of cycle 

sequencing facilitated linking of the published sequence and the first bases beyond it in 

pE3 1. 1. 

3.2.5 Sequencing of Human MSXJ subclones 

The PCR amplification product was sequenced using a thermal-cycling method 

(GIBCO-BRL Cycle-Sequencing kit; section 2.6.2). This enabled rapid and precise 

generation of clear sequence data for this region. Oligos were end-labelled with 33P 
giving strong, even bands. Sequence was initially derived from the same oligos used in 

amplification. Internal oligos were made to bridge the gap between the sequence from 

these and to confirm sequence on the opposite strand. 

Sequence information from various oligonucleotides on both strands was 

assembled by visual comparison using the LINEUP program from the UWGCG 

package (Genetics Computer Group, 1991). 

The sequence generated from the upstream region of the human MSX1 gene is 

shown in figure 3.10: in total 1195 base pairs were sequenced. 

":1 



Figure 3.10 

CTGCAGATTCTAGATA]\TCTTACGTATTCTCACATCCTTGGCACTACAGGJGCTAGCTT 

1 	Pst I ------------------------------------------------------ 	60 
GACGTCTAAGATCTATTAGAATGCATAAGAGTGTAGGAACCGTGATGTCCTTCGATCGAA 

CTTCCCGCAAGGTTTACTCCAGCTCTAAGTTAGAGACAGGCCCACTTTTACCTCGAGG 

	

61 ------------------------------------------------------------ 	120 
GAAGGGCGTTCCAAATGAGGTCGAGATTCAATCTCTGTTTCCGGGTGAJTGGAGCTCC 

TAAAGTTTACAAGATTTCAGAACAGGAAGAJTGJGGTTTGGTTTTGTTTCCTTTCTT 

	

121 ------------------------------------------------------------ 	180 

GAAAAGAAGTTAATAGTATGTCTTTCTCCTAGGATTAGCCATGCGTATTTTAJC 

	

181 -------------------------------------------------- --------- + 	240 
CTTTTCTTCAATTATCATACAGAGAGGATCCTATTTATCGGTACGCATATTTTTG 

TATATATAAAAGGAATGTGTAAGAATCCTCAACTCTTATTGTGGTAGGpGA 

	

241 ------------------------------------------------------------ 	300 
ATATATATTTTCCTTACACATTCTTTATTGGAGTTGAGTTTAATCACCATCTTCTTCT 

GGGGGGGTCAGACAGTGGAGGGGGGCACAGGGAACCCAGCCACAGACTAJGAGGG 

	

301 ------------------------------------------------------------ 	360 
CCCCCCCAGTCTGTCACCTCCCCCCGTGTCCCTTTGGGTCGGTGTCTGATTTCTCTTTCC 

TAAAAGAAGCACTAGAGGAGAGAAACAAGGACGGGGAAAAAAAGAGGAGCGGAAAAGAGG 

	

361 ------------------------------------------------------------ 	420 
ATTTTCTTCGTCATCTCCTCTCTTTGTTCCTGCCCCTTTTTTTCTCCTCGCCTTTTCTCC 

GCTGAGGAGGGGAGGGGAGGGGAGGAGAGGAGGCAGAAGAAGAAGGAACGAGAACAAGGG 

	

421 ------------------------------------------------------------ 	480 
CGACTCCTCCCCTCCCCTCCCCTCCTCTCCTCCGTCTTCTTCTTCCTTGCTCTTGTTCCC 

AAAATCCCCCAGGGAACACAGAAAGATAGAGACCCAGGGGACTCCCGCAGAGAGAAGGAA  

	

481 ------------------------------------------------------------ 	540 
TTTTAGGGGGTCCCTTGTGTCTTTCTATCTCTGGGTCCCCTGAGGGCGTCTCTCTTCCTT 

CGAGAACAAGGGAAATCCCCCGGGAACACAGAAAGATAGAGACCCAGGGGACTCCCGCA 

	

541 ------------------------------------------------------------ 	600 

GCTCTTGTTCCCTTTTAGGGGGCCCTTGTGTCTTTCTATCTCTGGGTCCCCTGAGGGCGT 
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GAGAGGGCCTCTTGGGCTCAGCGCAGAGGAAAGTTTCCCGGGCACCCCCTGTGGTCCCCT 

	

601 ------------------------------------------------------------ 	660 

CTCTCCCGGAGAACCCGAGTCGCGTCTCCTTTCAJJGGGCCCGTGGGGGACACCAGGGGA 

GCACCTCCGCCGTGCCCTGCCCTGCGTGCCCCCAGGCCCAGCGCTCCGGGCGAGTCCCCA 

	

661 ------------------------------------------------------------ 	720 
CGTGGAGGCGGCACGGGACGGGACGCACGGGGGTCCGGGTCGCGAGGCCCGCTCAGGGGT 

GGAGCGCGGCCCAATGGATCGGCTCCGGCCCGCCCCCTCGCGCGCTGATTGCCGCCGCCC 

	

721 ------------------------------------------------------------ 	780 
CCTCGCGCCGGGTTACCTAGCCGAGGCCGGGCGGGGGAGCGCGCGACTJCGGCGGCGGG 

CCCGCTGGCCTCGCCTTATTAGCAAGTTCTCTGGGGAGGCGCGGTAGGGCCCGGAGCCGG 

	

781 ------------------------------------------------------------ 	840 
GGGCGACCGGAGCGGAATAATCGTTCMGAGACCCCTCCGCGCCATCCCGGGCCTCGGCC 

CGAGTGCTCCCGGGAACATGCTGCCAGCGCGGCTGGCAGGCJACGGAGGCCAGGGCCC 

	

841 ------------------------------------------------------------ 	900 

GCTCACGAGGGCCCTTTGTACGACGGTCGCGCCGACCGTCCGTTTGCCTCCGGTCCCGGG 

AGTACGCCGGAGCTGGCCTGCTGGGGAGGGGCGGGCAGGCGCGCGCGGGAGGCGTGCCCG 

	

901 ------------------------------------------------------------ 	960 

TCATGCGGCCTCGACCGGACGACCCCTCCCCGCCCGTCCGCGCGCGCCCTCCGCACGGGC 

CCAGGGCCCCGGGCGCTCGCAGAGGCCGGCCGCGCTCCCAGCCCGCCCGGAGCCCATGCC 

	

961 ------------------------------------------------------------ 	1020 
GGTCCCGGGGCCCGCGAGCGTCTCCGGCCGGCGCGAGGGTCGGGCGGGCCTCGGGTACGG 

CGGCGGCTGGCCAGTGCTGCGGCAGAAGGGGGGGCCCGGCTCTGCATGGCCCCGGCTGCT 

	

1021 ------------------------------------------------------------ 	1080 
GCCGCCGACCGGTCACGACGCCGTCTTCCCCCCCGGGCCGAGACGTACCGGGGCCGACGA 

GACATGACTTCTTTGCCACTCGGTGTCAAAGTGGAGGACTCCGCCTTCGGCJJGCCGGCG 

	

1081 ------------------------------------------------------------ 	1140 
CTGTACTGAAGAACGGTGAGCCACAGTTTCACCTCCTGAGGCGGGCCGTTCGGCCGC 

GGGGGAGGCGCGGGCCAGGCCCCCAGCGCCGCGGCGGCCACGGCAGCCGCCATGG 
1141 ---------+ ---------+ ---------+ ---------+ ------- -- Nco I 	1195 

CCCCCTCCGCGCCCGGTCCGGGGGTCGCGGCGCCGCCGGTGCCGTCGGCGGTACC 

Figure 3.10 Sequence of the insert in clone pE31.1 corresponding to the 5'-
flanking region of human MSX-1. The restriction sites used in the cloning of the pE31.1 
insert, PstJ and NcoI, are marked at the ends of the sequence (section 3.2.2). Oligo B962 is 
complementary to bases 698-715 (underlined; the adenine at position 715 was the 5 
nucleotide). 

ME 



3.3 Analysis and comparison of 5'-flanking sequences 

Having determined sequence from the 5'-flanking region of the mouse and 

human Msx-1 gene I analysed it for several features. There has been considerable 

description of similar regions from a variety of genes enabling me to examine the Msx-
1 genes for a number of features identified elsewhere. 

3.3.1 Human and Mouse Msx-1 genes are associated with CpG islands 

The dinucleotide CpG plays a specific role in the function of the vertebrate 

genome. It has been found to be unusually rare in vertebrate DNA where it is present 

at approximately one fifth of the expected level (Bird, 1986). Between 70% and 80% 

of CpG is methylated at position 5 of the cytosine ring. Deamination of 5-
methylcytosine, to give thymine, is thought to be responsible for the rarity of the CpG 

dinucleotide. The distribution of CpG can be assessed by exploiting its presence in the 

recognition sites of various restriction endonucleases. Mapping the sites of cleavage by 

restriction enzymes such as MluI, NotI, XhoI SacII and SmaI pinpoints regions 

relatively rich in CpG. This has led to the discovery that such sites often occur in 

clusters within the genome corresponding to the positions of genes, such that this 

feature is diagnostic of the location of a gene when analysing large sections of the 

genome. Such CpG 'islands' are proposed to be a consequence of differential 

methylation throughout the genome. Methylation in intergenic regions has led, 

gradually over evolutionary time, to a loss of CpG dinucleotides. Absence of 

methylation in the vicinity of genes is proposed as the reason for localised levels of 

expected CpG frequencies. It has been demonstrated that methylation of islands is 

associated with inactivation of the adjacent genes, suggesting a link between 

suppression of methylation and the mechanisms of gene regulation leading to 

maintenance of CpG. One possible relationship between the two would be a passive 

inhibition of upstream methylation by the binding to this region of the various trans-

regulatory proteins associated with expression of the gene. Alternatively, methylation 

and its negative effects may have been selected against in promoter regions, indeed 

there is evidence to suggest that an active mechanism of methylation-suppression exists 

(Szyf et al., 1990). The demonstrated absence of methylation at the island regions of 

several genes and the correlation of gene inactivation and methylation on the X-

chromosome suggests that methylation may be part of a regulatory mechanism 

whereby certain, unmethylated, genes are rendered 'open' for transcription and have the 
potential for activation in response to specific regulators. 



CpG islands are associated with all housekeeping genes studied so far; that is 

those genes performing essential functions in all cells and whose expression is 

constantly required (Antequera and Bird, 1993). According to the model described 

above, the constant presence of the transcriptional machinery at the promoter has 

prevented methylation and the mutability that it engenders. Such promoters often lack 

a TATA box and undergo transcriptional initiation at a variety of sites. It has been 

suggested that such multiple sites enable gene expression in the wide variety of cell 

types required because different combinations of transcription factors can act at 

different sites (Somma et al., 1991). Tissue-specific genes are frequently inactive due 

to the specific nature of their expression requirements and would be expected to 

undergo methylation induced suppression of CpG. There are however examples of 

tissue-specific genes associated with CpG islands: the lens-specific rat y-crystallin 

genes are all associated with CpG islands (denDennen et al., 1989) while human (X-

globin and mouse MyoD are both associated with, and maintain, non-methylated CpG 

islands in tissues in which they are not expressed (Antequera and Bird, 1993). While it 

appears that most, if not all, CpG islands are associated with genes, the converse is not 

true and the relationship between the expression of a gene and its association with an 

island remains obscure. 

Clearly, in a study of their transcriptional regulation it is of interest to examine 

the human and mouse Msx- 1 loci for the presence of CpG islands. I have joined the 

upstream sequences, that I generated, with the published sequences (full intron 

sequences are not available for either gene so the sequence used is a fusion of the two 

exons) and produced nucleotide composition data for both species. Using the 

WINDOW and STATPLOT programs of the GCG package (Genetics Computer 

Group, 1991) I have produced plots of the CpG and GpC dinucleotide content. The 

WINDOW program works by passing a 'window' of specified size along the sequence 

in steps of a specified 'shift increment' and at each point calculating the percentage 

content for the given pattern. To produce these graphs I used a window of 100 bases 

in size and scanned at 1 base increments. The table of figures produced by WINDOW 

is graphically represented by STATPLOT. Figures 3.11 and 3.12 show the plots 

generated. In both cases the x-axis represents the sequence and the y-axis is the 

percentage dinucleotide content. I have provided a cartoon representation of the locus 

between the plots to demonstrate the position of the observed CpG clustering in 

relation to the structural features of the gene, also an arrow indicates the position of 

the transcriptional start site (Kuzuoka et al., 1994). I visually divided the sequence into 

the region graphically demonstrated as having a raised incidence of CpG and the 



Figure 3.11 
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Figure 3.11 WINDOW plot of dinucleotide content across the mouse locus. The 
region covered is a fusion between the 5-flank sequence reported here (figure 3.3) and the 
published cDNA (Hill et al, 1989), i.e. the intron is not included. Between the plots is a 
representation of the locus showing the ORF and homeobox in thicker boxes, respectively. 
Top is the G+C and dinucleotide frequencies for the whole region. Above and below are the 
dinucleotide frequencies for the individual regions (divided by visual criteria). Bottom are the 
G+C frequencies for the individual regions. The arrowhead on the central schematic marks 
the published position of the transcriptional start site (Kuzuoka et al., 1994). 
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Figure 3.12 
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Figure 3.12 WINDOW plot of dinucleotide content across the human locus. The 
region covered is a fusion between the 5'-flank sequence reported here (figure 3.3) and the 
published sequence minus the intron sequence (Hewitt et al, 1991). Between the plots is a 
representation of the locus showing the ORF and homeobox in thicker boxes, respectively. 
Top is the G+C and dinucleotide frequencies for the whole region. Above and below are the 
dinucleotide frequencies for the individual regions (divided by visual criteria). Bottom are the 
G±C frequencies for the individual regions. 
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Table 3.1 

a) 

MOUSE G C GpC CpG Total 
length (bp) 

5' flank 217 244 40 22 1000 
3' flank 165 181 46 11 780 
'island' 475 508 175 109 1500 
whole 857 933 261 142 3280 

b) 

HUMAN G C GpC CpG Total 
length (bp) 

5' flank 172 102 17 12 600 
3' flank 264 278 50 22 1344 
'island' 509 573 224 149 1500 

hole  945 92 291 183 3444 

Table 3.1 A&B: Composition data for the mouse and human locus. Numbers of 
C and G nucleotides and their dinucleotides are given along with the full length of each 
region (figures 3.11 & 3.12). 
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regions flanking this 'island' 5' and 3' (figures 3.11 & 3.12). Using the COMPOSITION 

program I determined the number of each nucleotide and dinucleoiide in the island and 

flanking regions (Tables 3. 1A & B). From these data I calculated the percentage G+C 

content. The DNA flanking the 'island' has on average 43% and 45.25% G+C content 

for the human and mouse genes respectively. This fits well with the previously 

determined 40% G+C content of bulk DNA (Bird, 1986). Within the 'island' regions 

this value rises to 65.5% in mouse and 72.1% in human. Again, this corresponds well 

with the 65% described for CpG islands (Bird, 1986; Antequera and Bird, 1993a). 

Bird has described the island region as a sequence with a CpG content 

approximately 5 fold greater than that of bulk genomic DNA and with an 

approximately equal content of GpC and CpG dinucleotides, as would be expected in 

DNA free of suppression, (Bird, 1986). The percentage CpG content for the island 

regions was higher than that of the flanking regions by a factor of 5.5 (9.9--1.8) in 

human and 4.06 (7.3-- 1.8) in mouse, fitting the criteria well. The 'island' regions of the 

two Msx-1 cognates have a CpG:GpC ratio of 0.63 (7.3 ~ 11.6) in mouse and 0.62 (9.9 

- 15.9) in human. These values depart somewhat from the 1.0 predicted for a CpG 

island, though they are closer to this value than the flanking regions, 0.42 (1.8--4.3) 

and 0.56 (1.83~3.25) for mouse and human respectively. This may reflect a state of 

decay for the CpG islands associated with mouse and human Msx- 1. 

The two regions ('island' and flank) have very different nucleotide content, with 

features reminiscent of a CpG island. This possibility is further examined below. 

Is apparent clustering of CpG statistically significant? 

To assess whether the apparent heterogeneity of CpG distribution revealed in 

figures 3.11 and 3.12 is genuine I have constructed contingency tables and performed a 

x2 analysis. The null hypothesis is that CpG is equally distributed along the length of 

the locus. Testing the significance of the uneven distribution between the island and 

non-island regions will elucidate the actuality of a CpG island. Tables 3.2 and 3.3 test 

whether there is significant variation between the proportion of CpG in the island and 

in the flanking regions. Expected values represent the number of CpG's that would be 

found in each region, as a fraction of the known total (table 3. 1), if the dinucleotide 

were homogeneously distributed. The method used for calculation of the expected 

(legend to tables 3.2 & 3.3) does not take into account the variable G+C value for the 

alternative regions, it addresses only the question of whether there is CpG clustering. 

The probability of the result is determined by comparison to a X 2-distribution table. 

Both mouse and human show highly significant (p<O.Ol) deviation from the null 

hypothesis showing that CpG's are clustered and validating the visual division of the 
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Contigency tables 

Table 12 

Mouse - CpG 

OBSERVED 

CpG Non-CpG Totals 

Island 109 1390 1499 

Non-island 1 	33 1747 1780 

Totals 142 3137 3279 

EXPECTED 

CpG Non-CpG Totals 

Island 64.9 1434.1 1499 

Non-island 77.1 1702.9 l7() 

Totals 142 3137 3279 

= (10964.9)2 + (13901434.1)2 + (3377 . 1)2  + (17471702.9')2 = 57.688 
64.9 	1434.1 	77.1 	1702.9 

p <<0.001 

E:1 



CpG Non-CpG Totals 

Island 79.7 1419.3 1400  

Non-island 103.3 1 	1840.7 1044 

Totals 183 320 1 	344 

b) EXPECTED 

Table 3.3 

Human - CpG 

CpG Non-CpG Totals 

Island 149 1350 1499 

Non-island 34 1910 1944 

Totals 183 326() 

a) OBSERVED 

= (149-79.7) + (13501419 . 3) 2  + (34103 . 3) 2  + (19101840.7)2 = 112.74 

79.7 	1419.3 	103.3 	1840.7 
P <<0.001 

Tables 3.2 & 3.3: 	Contingency tables used to determine significance of 
variation between Island CpG and Non-Island CpG frequencies. Expected values are based 
on the null hypothesis that the observed number of CpG dinucleotides are homogeneously 
distributed throughout the locus; e.g. expected CpG (island) = (total CpG/total length) x 
island length. The x2  value, equal to Z(0-E) 21E, is calculated beneath each pair of tables 

along with the probability (p) obtained from X 2-distribution tables. 
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locus (into 'island' and flank) on the basis of the plots in figures 3.11 and 3.12. This 

crude test most likely reveals the unequal distribution of G and C nucleotides as similar 

tests showed clustering of GpC dinucleotides. 

Do any of the regions show CpG suppression? 

Is there any variation between 'island' and flank that is specific to CpG 

dinucleotides, possibly reflecting a discriminatory mechanism? Examination of tables 

3.4 and 3.5 shows that in all cases the observed level of CpG dinucleotide is lower 

than the expected level. The status of GpC dinucleotide is more variable in this regard. 

I have used the binomial theorem to assess the significance of variation from the 

expected in the numbers of CpG and GpC in each region. The expected value in this 

case is calculated using the G and C composition data (table 3.1) for the respective 

regions. Therefore in this case there is correction for the effect of the general variation 

in G+C content. 

In mouse Msx- 11 have shown that there is highly significant reduction of CpG 

in both island and flanking DNA suggesting a CpG suppression in all regions (Table 

3.4; equations 1 & 2). This suppression is, however, much stronger in the flanking 

region than in the island (binomial fraction of 6.74 compared to 4.35). In contrast, 

there is no significant variation from the expected in the level of GpC dinucleotides in 

either the 'island' sequence or the sequence flanking it (Table 3.4; equations 3 & 4). 

In human, CpG frequencies, as in the mouse, show a highly significant 

reduction for both island and flanking regions (Table 3.5; equations 5 & 6) though the 

deviation is again considerably greater in the flanking regions (binomial fraction of 5.58 

compared to 3.47). Unexpectedly, the incidence of GpC within both island and 

flanking DNA is significantly' different from the expected frequency (0.05 > p > 0.01; 

Table 3.5; equations 7 & 8) however the discrepancy in the island is due to an excess 

of GpC and in the flanking DNA significant deviation, due to reduced GpC, is only 

found at the 5' flank (not shown). 

There are no regions, in either the mouse or human loci, where CpG 

suppression is completely absent but the level of this suppression is markedly reduced 

in the 'island' region. It should be noted that the 'island' region as I have defmed it 

extends beyond the region traditionally viewed as the promoter (section 1.5.1). One 

interpretation of these observations is that in the germ-line the 5' region of the gene 

and its immediate 5' flank have been protected to some degree, though not completely, 

1 A probability of 0.05 is considered statistically significant while ! ~0.01 is considered highly 

significant. 



Table 3.4 
Mouse Msx-1 

Length 

(bp) 

G + C 

% 

Obs. CpG 

% (No.) 

Exp. CpG 

% (No.) 

Obs. GpC 

% (No.) 

Exp. GpC 

% (No.) 

Whole 3280 54.6 (857+933) 4.3(142) 7.4(243) 7.9(261) 7.4(243) 

Island 1500 65.6 (476+508) 7.3(109) 10.7 (161) 11.7 (175) 10.7 (161) 

5' flank 1 	1000 46.1 (217+244) 2.2(22) 5.3(53) 4.0(40) 5.3(53) 

3' flank 1 	781 44.3 (165+181) 1.4(11) 4.9(38) 5.9(46) 4.9 (38) 

	

CpG :-Island - 	(109-161) _______ = 4.35 	p <0.00003 (1) 
,J(1499 x 0. 107 0.893) 

I 

	

Flank - __________ (33-91) _________ = 6.74 	p <0.00003 (2) 
f(1780 x 0.051 x 0.949) 

	

GpC:-Island- 	(175-161) 	=1.17 	p=O.l2l 	(3) 
.,J(1499 x 0.107 x 0.893) 

(86-91) 

	

Flank- 	 =0.538 	p =0.2964 	(4) 
J(1780 x 0.051 x 0.949) 
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Table 3.5 

Human Msx-1 

Length 

(bp) 

G + C 

% 

Ohs. CpG 

% (No.) 

Exp. CpG 

% (No.) 

Ohs. GpC 

% (No.) 

Exp. GpC 

% (No.) 

Whole 3444 55.1 (945+952) 5.3(183) 7.6(262) 8.4(291) 7.6 (262) 

Island 1500 72.1 (509+573) 9.9(149) 12.9 (194) 14.9 (224) 12.9 (194) 

5' flank 1 	600 1 	45.7 (172+102) 2.0(12) 4.9(29) 1 	2.8 (17) 1 	4.9 (29) 

3' flank 1 	1345  1 	40.3 (264+278) 1.6(22) 4.1 (55) 1 	3.7 (50) 1 	4.1 (55) 

I 	 I 

	

CpG :-Island - 	
(149-194) 

_________________ = 3.47 	p =0.00029 	(5) 
499 x 0. 129 x 0. 87 1) 

I 	 I 

	

Flank - 	
(33-84) 

	5.58 	p <0.00003 	(6) 
./(1944x0.045x0.955) 

I 

	

 
GpC :-Island - 	 _ 

(224-194) 	=2.31 	p =0.01044 	(7) 
. J(1499x0.129x0.871 )I 

Flank - 

	

(67-84) 	
_ = 1.86 	p = 0.0314 	(8) 

1J(1944 xO.045 xO.955)I 

Tables 3.4 & 3.5: Measuring significance of variation in dinucleotide content 
using the binomial theorem: (O-E)t'Jnpq where 0 is observed value, E expected value, 
n=sainple size (length) and p=probability with p+q=1: p=(E/n)/100. G+C and dmucleotide 
content are shown as percentages of the sequence region. Figures in brackets are actual 
numbers. The expected CpG and GpC content for a given region was calculated by 
multiplying the C fraction and the G fraction. A probability of 0.00003 represents the limit of 
the tables used. 
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from the molecular machinery effecting CpG loss. Such a reduction in promoter 

accessibility might be due to nucleosomes or molecular apparatus concerned with their 

positioning, or might result from near constant occupancy of this region by proteins 

directly regulating transcription. A second interpretation is that in a common vertebrate 

ancestor the Msx-1 gene 5' region was acted upon by the forces that created CpG 

islands (whatever they were/are) and that in the period since there has been a gradual 

and partial loss of the island, possibly at slightly different rates in the two lineages once 

they diverged, resulting in the present situation. The relevance, if any, of the 

methylation status in the germ-line (directly causative to maintenance of the island) to 

the generation of the complex and highly regulated embryonic expression patterns 

remains obscure and will require further insight into the origin and function of the CpG 

island as a general phenomenon. 

3.3.2 Search for known transcription-factor binding-sites 

For many transcription factors the target DNA sequence to which they bind has 

been identified. David Ghosh has generated a database comprising published consensus 

binding-sites and actual binding sites from individual genes; the Transcription Factor 

Database or TFD (Ghosh, 1990; 1992; 1993). This database is maintained at the UK 

HGMP-RC where it can be searched using the SIGNALSCAN program (Prestridge, 

1991; 1993). Database consensuses are written using the IUAPC ambiguity codes 

(Nom. Cttee. Int. Union. Biochem., 1985) and STGNALSCAN matches database 

entries with the query sequence according to the ambiguous and non-ambiguous 

positions. Using this tool I have searched the mouse and human Msx-1 5-flanking 

sequences for matches to previously characterised transcription factor binding-sites. A 

sequence match to a specific consensus site does not necessarily imply that the 

transcription factor in question does bind to this sequence in vivo, merely that it may 

be capable of binding. A further qualification is that consensus sites are in many cases 

defined by in vitro binding assays and their applicability in vivo is often unclear. 

Determination of potential binding sites enables identification of candidates for 

regulatory genes acting upon Msx- 1, which in some cases may seem particularly 

appropriate due to an overlap in temporal and spatial expression of the transcription 

factor and the Msx- 1 gene. Functional conservation of cis-regulatory elements between 

species as divergent as Drosophila and mouse has been demonstrated (Awgulewitsch 

and Jacobs, 1992). The inclusion in TFD of cis elements from a wide variety of 

organisms may enable identification of protein binding sites for the products of non-

mouse genes. This is particularly important when examining the flanking DNA from 
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genes, such as Msx- 1, that were cloned by virtue of their homology to Drosophila 

genes. The presence of binding sites for Drosophila transcription factors may indicate 

structural conservation and the binding of homologous mouse genes to these sites. 

I have compared the 5-flanking sequences of Msx- 1 and MSX1 to all 

eukaryotic entries in the TFD. Both sequences provided matches with a large number 

and wide variety of different sites, reflecting the lack of functional criteria for 

matching. Sequences were found corresponding to binding sites for both general, 

ubiquitous transcription factors such as Sp 1 and CTF and for specific, regionally 

expressed factors such as AP-2 (section 1.5.2). Due to the rather small size of some 

consensus sequences and the non-discriminating nature of those consisting of several 

ambiguous positions, such sites are found in large numbers in any sequence of this 

length. An example is the HSTF consensus binding site (Williams and Morimoto, 

1990). This has the sequence NGAAN and clearly fortuitous matches will occur very 

frequently (once every 64bp in random DNA). For this reason I have omitted the 

matches found to consensus sequences of less than 5 bases (or equivalent). The single 

exception to this rule is the E-box (see below). 

The large amount of data generated by a TFD search is unsuitable for 

presentation here, consequently I have been selective with the information presented. 

Many of the matches were omitted on the grounds of insufficient consensus length. 

Several were grouped under the heading of CCAAT binding proteins. These all bind 

the same sequence but represent a varied set of factors of both the general and specific 

class (see section 1.5.1). The sites remaining include those for a variety of factors 

identified in human, mouse, rat, Drosophila and even yeast. Figures 3.13 and 3.14 

show graphical representations of the mouse and human Msx-1 5'-flanking sequences 

with the positions of a variety of putative binding sites, determined by TFD 

comparison, indicated by small coloured blobs. The relation of these positions to the 

start of translation is indicated on the scale at the bottom. 

Of the factors that provided a binding site match within the sequences, I have 

selected those known as common proximal promoter factors and those which have or 

may have developmental significance based upon their expression pattern or the genes 

that they are known to regulate. Tables 3.6 and 3.7 summarises the factors included in 

figures 3.12 and 3.13 giving their recognition sequence, structural details, organism of 

origin and the frequency at which a match would be found in random DNA. 

AP-1 is a transcriptional activation activity comprising the products of the fos 
and jun oncogenes (reviewed by Curran and Franza, 1988). It was first identified as an 

activator of the SV40 enhancer and the human metallothionein 11A gene. AP-1 has 
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Figures 3.13 Diagrammatic representation of the 5 Msx-1 sequence from mouse. 
Coloured blobs represent positions at which a match was found to the consensus binding-site 
of a specific transcription factor. The scale below marks the distance from the Ncol site 
conserved between the two species, the start codon and the position of the conserved 
sequence (red rectangle). An arrowhead denotes the transcriptional start site (Kuzuoka et al., 
1994). At the bottom is a composite of the potentially more interesting sites. 
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Table 3.6 

Mouse 

Concensus Frequency 
Factor Recognition Sequence(s) Structure Species of random 

sequence(s) found (where Isticntified) occurrence 
(every x bp) 

Spi GGGCGG GGGCGG zinc-finger human 4096 
AP-1 TGANTMA TGATTAA 2048 

TGACTTCT TGACTTCT leucine-zipper human 65536 
GAGAGGA GAGAGGA  16384 

AP-2 GSSWGSCC GGCAGCCC helix-span-helix mouse 4096 
GCCTCCC  

AP-3 TGTGGWWW TGTGGAAA 2048 
TGTGGAAA  

CF1 ANATGG AAATGG human 1024 
ATATGG  

CCAATbp' CCAAT CCAAT leucine-zipper 1024 
S 

GATA-1 GATAAG GATAAG 4096 
CCAATCT CCAATCT 16384 
MYWATCWY CCAATCAC zinc-finger human 2048 

CTAATCTC 

ACAATTCA 

TATCTT TATCTT  4096 
HNF-5 TRTTTGY TGTTTGC ? rat 4096 

TATTTGT  

PEA3 AGGAAR AGGAAA ETS domain  2048 
E-box CANNTG CAAATG leucine-zipper multiple 256 

CACCTG(MyoD) CACCTG  4096 
NF-icB GGGRHTYYHC GGGGCTTTTC Rel-homology human 14563 

GGGACTTTTC domain 
XREbf CACGCW CACGCT zinc-finger mouse 2048 
bicoid TCTAATCTC TCTAATCTC homeodomain Drosophila 262144 
zeste YGAGYC CGAGCC Drosophila 1024 

TGAGCC ? 
CGAGCG CGAGCG  4096 

ADR-1 GGAGA GGAGA zinc-finger S.cerevisiae 1024 

Table 3.6 Column 2 shows the consensus sequences derived from TFD. Column 3 shows 
the actual sequences matching the consensus that was found in the 5 flanking region of the mouse 
Msx-1 gene. Column 4 describes the structural class of the DNA-binding motif for the factor, where 
known. Column 5 states the organism in which the factor was first identified. Column 6 gives base 
frequency at which the concensus site would appear in random DNA (eg every 4096 bases). 
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Figures 3.14 	Diagrammatic representation of the 5' Msx- 1 sequence from 
human. Coloured blobs represent positions at which a match was found to the consensus 
binding-site of a specific transcription factor. The scale below marks the distance from the 
NcoI site conserved between the two species, the start codon and the position of the 
conserved sequence (red rectangle). An arrowhead denotes the relative position of the mouse 
transcriptional start site (Kuzuoka et al., 1994). At the bottom is a composite of the 
potentially more interesting sites. 



Table 3.7 

Human 

Concensus Frequency 
Factor Recognition Sequence(s) Structure Species of random 

sequence(s) found (where 1st icndfied) occurrence 
_______ (every x bp) 

Spi GGGCGG GGGCGG zinc-finger human 4096 
AP-1 TGACTTCT TGACTTCT leucine-zipper human 65536 

GAGAGGA GAGAGGA  16384 
AP-2 GSSWGSCC GGCAGCCC 4096 

GCCTCCC helix-span-helix mouse 
CCCCAGGC CCCCAGGC 65536 
CCSCRGGC CCCCGGGC  16384 

CCAATbp' CCAAT CCAAT leucine-zipper 1024 
5 

GATA-1 MYWATCWY CCAATCAC 2048 
CTAATCTC 

ACAATTCA zinc-finger human 
TATCTT TATCTT 4096 
WGATAR AGATAG 1024 

AGATAA  

PEA3 AGGAAR AGGAAA ETS domain  2048 
NF-icB GGGRHTYYHC GGGGCTTTTC 14563 

GGGACTTTTC Rel-homology human 
GGGRNTYYC GGGACTCCC domain 8192 
GGGATTTTCC GGGATTTTCC  1048576 

XREbf CACGCW CACGCA zinc-finger rat 2048 
zeste YGAGYC CGAGTC Drosophila 1024 

TGAGCC 

CGAGCG GCAGCG  4096 
ADR-1 GGAGA GGAGA zinc-finger S.cerevisiae 1024 

Table 3.7 Column 2 shows the consensus sequences derived from TFD. Column 3 shows 
the actual sequences matching the consensus that was found in the 5' flanking region of the human 
MSX1 gene. Column 4 describes the structural class of the DNA-binding motif for the factor, where 
known. Column 5 states the organism in which the factor was first identified. Column 6 gives base 
frequency at which the concensus site would appear in random DNA (eg every 4096 bases). 
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Figure 3.15 Compilation diagram providing a comparitive lineup of the two 5 flanking regions and the position of recognition sequences for a selected 
group of DNA-binding proteins. The arrow indicates the position of the mouse transcriptional start site (Kuzuoka et al., 1994). The position of the conserved sequence 
is seen to be greater from the start site in human (by - lOObp) presumably caused by loss of sequence in the mouse or gain in human in the interval between the 
conserved sequence and the start site. 



been shown to transduce the activation of these and other genes by phorbol esters 

(such as TPA), agents that mimic the action of diacyiglycerol in the activation of 

protein kinase C (Angel et at., 1987). This transduction pathway activates AP-1 by 

means of the phosphorylation-dependent inactivation of an AP-1 inhibitor, IF-i 

(Auwerx and Sassone-Corsi, 1992). 

The CCAAT binding protein group consists of CBP, CBF, CCAAT-bf, CRF, 

CTF and CDF (Cohen et al., 1986; Graves et at., 1986; Kingston et at., 1987; Goding 

et at., 1987; Green et at., 1987; Barberis et at., 1987). The consensus binding-

sequences included in TFD vary subtly according to the bases flanking the core 

CCAAT motif and variants were found upstream of different genes. The references 

given above are those quoted by the database for each individual CCAAT binding 

activity: how many different genes encode these activities is not clear though it is likely 

that some represent the same gene product. 

GATA- 1 (also known as NF-El, GF- 1 & Ery- 1) is a member of a family of 

transcription factors with related zinc-finger DNA-binding domains. Analysis of the 

preferred recognition sequences for several GATA family members has shown GATA-

1 to have considerable variation in its target site specificity (Merika and Orkin, 1993). 

This is reflected in the variety and the degenerate nature of the consensus sequences 

present in TFD: tables 3.6 and 3.7 show the various matches found to these. Given the 

broad spectrum of consensus it is perhaps not surprising that matches are found in 

sequences of this length however they cannot be dismissed as purely fortuitous on this 

basis. GATA-1 has been studied in the context of its essential role in erythroid 

differentiation. Targeted disruption in ES cells has revealed a requirement for the gene 

in the erythroid lineages of chimaeric mice derived using these cells (Pevny et at., 

1991). This fits closely with the previously determined expression patterns and 

regulatory influences of this gene (Wall et at., 1988). Studies on the expression of 

GATA family genes in Xenopus have revealed that GATA- 1 is active in the early 

gastrula, possibly involved in commitment of mesoderm toward haemopoietic tissue 

(Zon et at., 1991). Together these observations provide no support for the view that 

GATA- 1 regulates expression of Msx- 1 though this cannot be formally discounted. 

The E-box is a binding site for a number of proteins, involved in developmental 

and differentiation pathways, which are characterised by the helix-loop-helix DNA-

binding/dimerisation domain (Murre et al., 1989a & 1989). These proteins are capable 

of forming heterologous complexes that determine their mode of action. One such 

protein is the myogenic determinant MyoD which binds the sequence shown in table 

3.6. An E-box found in the proximal portion of the mouse Msx- 1 promoter is not 

conserved in human and its significance is therefore doubtful. 



Potential binding sites for Drosophila proteins bicoid and zeste are of interest 

for the reasons of functional homology described earlier. In mouse there is a single 

bicoid-binding site found near the distal end of the sequence determined. As shown in 

table 3.6 this sequence is a perfect match to the non-ambiguous site quoted by TFD. 

This consensus match is 9 bp in length and is therefore found fortuitously at a low 

frequency in random DNA (once every 262 kb), unfortunately its position at the distal 

end of the mouse promoter sequence puts it beyond the equivalent human sequence 

thereby preventing assessment of the level of conservation (further discussed in section 

3.5). Several zeste sites are found in both mouse and human though close examination 

of the sequence reveals no conservation between the two (figure 3.15 shows no 

positional homology). Presence of these sites is likely to be a result of their high GC 

content and that of the 5-flanking region, though maintenance by selection pressure 

cannot be ruled out. 

Several AP-2 consensus binding-sites are found in mouse and human Msx- 1 5-

flanks. A small number are conserved between the two species but many matches are 

found to be due to the degenerate nature of the consensus sites, matching runs of 

cytosine for example. AP-2 is an attractive candidate as a regulator of Msx- 1 for 

several reasons discussed in detail below (section 3.5). 

3.3.3 Search for homology between Mouse and Human Msx-1 

The strategy for identifying novel cis-regulatory regions acting upon Msx- 1 

was based upon a search for non-coding sequences that have been conserved, due to 

functional constraints, during the evolutionary interval separating mouse and human 

(-80 million years). Having obtained sequence of the proximal 5' flanking region of the 

gene for both species a comparison was carried out by computer. 

The COMPARE program of the GCG sequence analysis package (Genetics 

Computer Group, 1991) is a useful tool in the sensitive comparison of nucleotide and 

peptide sequences. A 'window/stringency' comparison using this program enables the 

production of a graphical display showing similarity as a series of points plotted as 

Cartesian co-ordinates in units of nucleotides of the compared sequences. Briefly, the 

user specifies a 'window size' and a 'stringency'. The vertical sequence slides along the 

horizontal sequence comparing all possible combinations. At each combination the 

program slides a window along the pair of sequences and calculates the value of the 

matches for all the nucleotide pairs within the window (based upon a Symbol 

Comparison Table for all possible symbol combinations). If the sum of the values 

within the window is greater than or equal to the stringency, a match is recorded and a 
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Figure 3.16 DOTPLOT comparison, generated by COMPARE, between promoter 
and coding sequences for mouse and human. Along the axes are schematic representations of 
the two loci indicating the position of the coding regions (thicker line) and the homeoboxes 
(even thicker line). The transcriptional start site of the mouse gene is marked by an arrow 
(Kuzuoka et al., 1994). The dotted boxes highlight regions of homology outside the coding 
region (see text). 
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point is registered on the graph. COMPARE performs the calculations involved in this 

comparison and the graph is produced from these figures by the DOTPLOT program. 

The default values for window size and stringency recommended for nucleotide 

comparison are 21 and 14 respectively. These values were used in the analysis and 

revealed the portions of the sequences likely to bear an interesting relationship to one 

another. 

Figure 3.16 shows the DOTPLOT output for a default window/stringency 

comparison (alternative values were tested and shown to provide no additional 

information). The comparison was between the mouse and human Msx-11MSX1 genes, 

a fusion of both previously published coding sequence (Hill et al., 1989; Hewitt et al., 

1991) and 5'-flanking sequences described here (sections 3.1.5 & 3.2.6). It shows a 

long, largely continuous diagonal line running bottom left to top right. The central, 

unbroken line represents homology between the coding region, including the 

homeobox, and the sequences immediately 5' and 3' it. The diagrammatic 

representation of the loci next to each axis illustrates how the comparison relates to the 

different regions of the genes. The thickened line represents the coding region while 

the thicker section within it is the homeobox. We see that the extended solid diagonal 

closely corresponds to the open reading frames and that outside of them the homology 

is considerably reduced. Additional short regions of homology can be seen outside the 

open reading frame. These are highlighted and will be dealt with individually. 

The comparison dotplot in figure 3.16 shows that conservation between the 

coding regions is considerable. Analysis with the GAP program shows there to be 

88.75% identity (not shown; also Hewitt et al., 1991). The dotplot also shows that 

homology extends beyond the initiation codon. The major line continues to a point 

close to the start of the published Msx-1 eDNA (Hill et al., 1989). The recently 

published mouse cap site position is a C nucleotide at position 1283 (Kuzuoka et al., 

1994; figure 3.3). This position is marked on the dotplot (arrow, figure 3.16) and is 

surrounded by a region of high homology, distinct from the ORF. 

Conservation in the 3' untranslated region 

Homology at the 3' end ceases abruptly at the stop codon, however there is a 

region of homology at the extreme 3' end of the message (upper box, figure 3.16). 

Closer inspection of this region reveals approximately 90bp which is perfectly 

conserved between human and mouse (figure 3.17). Remarkably, when the chicken 

Msx-1 sequence (Robert et al., 1991; Genbank accession number X61922) was 

examined for homology in this region a perfect match was found with the identity of 
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Figure 3.17 

GAP of: 
Mouse Msx-1 5' flaiik+cDNA from: 3000 to: 3280 
to: 
Human MSX1 5' flank+coding region from: 2500 to: 2800 

Gap Weight: 5.000 
Length Weight: 0.300 

Quality: 186.0 	Length: 320 
Ratio: 0.662 	Gaps: 	3 

Percent Similarity: 76.98 Percent Identity: 76.98 

3000 GCAGCAAAGCATTGCTCTGAGGGGGCAGGGCGCATGCTGCTGCTT 3049 

2500 

111111111 	 1111111111 	I 	liii 	I 
..... ACAACAAAACATTTGCTCTGGGGGGCAGGGAAAACACAGATGTGT 2540 

3050 CACCAAGGTAGGTTAAAGAGACTTTCCCAGGACCAGAAAAAAAGAAGTAA 3099 

2541 

I 	III 	 III 	I 

TGCAAAGGTAGGTTGAAGGGACCTCTCTCTTACC ........ AGTACCAG 2582 

3100 AAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAATCTGTTCTATTAACAGT 3149 

2583 

111111 	liii 	IllIlIllIllIllIll 	11111111 
AAACACAATTGTAAAATTAAAAAAAAAAAAAACTCTTTCTATTTAACAGT 2632 

3150 ACATTTTCGTGGCTCTCAAGCATCCCTTTTGAAGGGACTGGTGTGTACTA 3199 

2633 ACATTGT, GTGGCTCTGAAACAT . CCTCTGGAAGGATTATGTGTGTACTA 2680 

3200 TGTAATATACTGTATATTTGAAATTTTATTATCATTTATATTATAGCTAT 3249 

2681 

liii 	111111111111 	111111111 	III 	1111111111 	II 	liii 
TGTAATATACTGTATATTTGAAATTTTATTATCATTTATATTATAGCTAT 2730 

3250 ATTTGTTAAATAAATTAATTTTAAGCTACA ..........mouse 3280 

2731 

111111 	11111111111 	11111111111 
ATTTGTTAAATAAATTAATTTTAAGCTACA .......... human 2780 

Figure 3.17 GAP comparison of the 3' untranslated ends of human and mouse 
Msx-1, showing the high level of conservation in this region. There is 77% identity over the 
whole sequence pictured here. At the extreme 3' end there are 90 bp of continuous sequence 
unchanged between the two species. Numbers relate to sequence position within the files 
generated by fusion of the 5-flanking sequences and the open-reading frames. Details of the 
comparison are shown above. The upper sequence is mouse, the lower human. 
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Figure 3.18 

mouse 	CCCTTTTGAAGGGACTGGTGTGTACTATGTAATATACTGTATATTTGAAATTTTATTATCATTTATATTATAGCTATATTTGTTAAATAAATTAATTTTAAGCTACAn 

human 	TCCTCTGGAAGGATTATGTGTGTACTATGTAATATACTGTATATTTGAAATTTTATTATCATTTATATTATAGCTATATTTGTTAAATAAATTAATTTTAAGCTACA 

chicken GAGGGAAGGGGCTCTCTCTGTGTACTATGTAATATACTGTATATTTGAAATTTTATTATCATTTATATTATAGCTATATTTGTTAAATAAATTAATTTTAAGCTACA 
* * 	***************************************************************************************** 

Figure 3.18 LINEUP comparison of the 3' ends of the mouse, human and chicken Msx- 1 transcripts. The right-hand end of the sequence 
shown for mouse and chicken represents the known poly-adenylation site; the human gene was sequenced from a genomic clone but it is probable that 
the same position is also the polyA site. 



the human and mouse sequences (figure 3.18). The identical sequences extend over the 

same length of DNA with only one extra base pair matching between human and 

mouse. A stretch of 88bp in a non-coding portion of the transcript (as far as we know, 

though the absence of variation at the 1st and 3rd positions of the 'codons' argues 

against conservation at the protein level) has been perfectly conserved since the 

divergence of the lineages leading to birds and mammals, over 300 million years ago 

(Benton, 1990). The extremely high level of conservation in this sequence surely 

reflects constraint by natural selection on a function that it performs. One such possible 

function is that the 3' untranslated region (UTR) has an independent, trans regulatory 

capacity. A trans regulatory role has been assigned to the 3' UTR of several myogenic 

genes where expression of this region of the transcript was associated with exit from 

the cell cycle and myogenic differentiation. (Rastinejad and Blau, 1993). Expression of 

Msx- 1 has been associated with the opposite effect of blocking terminal myogenic 

differentiation (Song et al., 1992; section 1.4.2), however the construct transfected in 

these experiments did not extend to the conserved 3' UTR. A common mechanism may 

be acting through the 3' UTRs of these genes: the expression of Msx-1 in several 

regions of active cell proliferation (e.g., the progress zone of the limb, facial primordia) 

and the link that has been established between exit from the proliferative phase and 

determination of cell fate, particularly in the limb (Summerbell et al., 1973), make this 

an attractive proposal. Transfection experiments using a full length transcript of Msx- 1 

will be required to examine this possibility. No sequence data is yet available for the 3' 

UTRs of the myogenic genes concerned so comparison with the Msx- 1 sequence was 

not possible, though comparison of this sequence with the GenEMBL database 

revealed no significant matches. 

Conservation in the 5'-untranslated region 

Figure 3.16 reveals homology extending beyond the start codon toward the 

transcription start site. Examination of the conservation in this region has revealed an 

interesting feature also found in other homeobox gene sequences. The 5-untranslated 

region contains a small open reading frame also found in the human gene and in the 

chicken gene. Comparison of these reading frames shows that the carboxy-terminal 

portion of the protein is conserved while the remainder shows little homology across 

species. Possibly the most significant feature that is maintained is the length of the ORF 

which is 23 amino acids long in all three species. Figure 3.19 shows a lineup of the 

nucleotide and peptide sequences of the Msx- 1 5' ORFs from these species, and a 

fourth short ORF found upstream of the fushi tarazu gene of Drosophila. The 

Drosophila ORF is of approximately the same size (22 amino acids) though shows no 
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Figure 3.19 

A) 
HUMAN 	 ATGCCCGGCGGCTGGCCAGTGCTGCGGCAGAAGGGGGGGCCCGGCTCTGCATGGCCCCGGCTGCTGACATGA 

MOUSE 	 ATGATCCAGGGCTGTCTCGAGCTGCGGCTGGAGGGGGGGTCCGGCTCTGCATGGCCCCGGCTGCTGCTATGA 

CHICK 	 ATGAGCCGCGGCCGCCGCTCCCGCGAGACGGCGACACGGGGCCGCCCTGCATGGCCCCGGCTGCGGAGATGA 
*** * 	*** * * 	* 	* * 	** * ** ****************** * **** 

ft z 	 ATGCAGGATCTGCCGCAGGACCAGCTCATTCGCAAACTCACCAGCGTTGCGTGCACATCGCAGAGTTAG 

ff 
MOUSE 	 MIQGCLELRLEGGSGSAWPRLLL* 

HUMAN 	 MPGGWPVLRQKGGPGSAWPRLLT * 
CHICK 	 MSRGRRSRETATRGRPAWPRLRT* 

* * 	 ***** 

ftz 	 MQDLPQDQLIRKLTSVACTSQS* 

Figure 3.19 Lineup showing short open reading frames found in the 5' untranslated region of Msx- 1 in mouse, human and chick. Asterisks 

represent positions of identity between the three at both nucleotide and peptide level. Also shown is the short open reading frame in the 5' UTR of 

Drosophila ftz. The mouse, human and chicken 5'-ORFs overlap the first 7 codons of the major reading frame. The DNA sequences shown begin at 
position 1016, figure 3.10 for human and position 1534, figure 3.3 for mouse 
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homology to the Msx-1 5' ORFs. In mouse, human and chicken this small ORF 

overlaps the first 7 codons of the reading frame encoding the homeobox protein. It is 

possible that in this position it has a regulatory influence upon translation of the major 

protein. Upstream open reading frames (uORFs) are a feature of the translational 

regulation of several Saccharomyces cerevisiae genes involved in amino acid 

biosynthesis, including the transcription factor GCN4 (Hinnebusch and Liebman, 

1991). The introduction of a mutation of the Msx-1 uORF start codon would prove an 

interesting test of its function. 

Conservation in the 5'-flanking sequence 

The continuous line seen in figure 3.16, representing the highly homologous 

coding regions of mouse and human Msx- 1, begins to break down the further 5' one 

looks. A region of approximately 150bp (from 1200-1350 in the mouse gene) shows 

homology at a position beyond the main block associated with the open-reading 

frames. This was initially viewed as a potential location for the transcriptional start site 

though the absence of a clear TATA box in either gene prevented any firmer prediction 

in the absence of experimental data. Recently published work (Kuzuoka et al., 1994) 

has put the transcriptional start site at position 1283, in the centre of this conserved 

region. Gap analysis of the mouse sequence around the start and the human region 

highlighted as homologous from the dotplot reveals that the start site is flanked on 

either side by substantial homology, including a conserved CCAAT site immediately 

upstream (figure 3.20). 

A region of conservation in the 5'-flank (lower box, figure 3.16) is shown 

enlarged in figure 3.21. This 400bp x 400bp comparison emphasises a short unbroken 

diagonal plot (boxed) revealing a region of homology near the end of the known 

human sequence. Gap analysis of this region is seen in figure 3.22. 

The bracketed region in figure 3.22 comprises 44 bp of which 38 are identical 

between mouse and human (86%). Of the six differences between them, 3 are due to 

transversions and 3 to transitions. No sequences of similarly high homology are found 

within the surrounding regions (figure 3.16). Comparison of the 5'-flanking sequences 

shows a homology of 51% across the entire region. Clearly the sequence highlighted in 

figure 3.22 has an uncharacteristically high level of conservation. A sequencing-gel 

autoradiograph of this sequence from the mouse is shown in figure 3.23. In mouse this 

conserved sequence starts 808 bp 5' from the start codon, in human the homologous 

region is 929 bp 5' from the start codon. This difference of -100 bp is likely to be due 

to expansion, in human, of an interval between the coding region and the homologous 
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Figure 3.20 

GAP of: 
mouse Msx-1 from: 1100 to: 1500 
to: 
human Msx-1 from: 500 to: 900 

Gap Weight: 5.000 
Length Weight: 0.300 

	

Quality: 162.0 	Length: 494 

	

Ratio: 0.404 	Gaps: 	6 
Percent Similarity: 63.312 Percent Identity: 63.312 

1100 ................MOUSE ............. TGTGGGGGTCCAGCCGG 1116 

	

III 	I 	III 

550 GGGAAAATCCCCCGGGAACACAGAAAGATAGAGACCCAGGGGACTCCCGC 599 

1117 ACCGATGCCCACCT . GACTTAGCTAGGCGGAAAAGCTCCCCAGGTACTCC 1165 

I 	IIIIIIIIIIIII 	111111 	1111 	I 	III 
600 AGAGAGGGCCTCTTGGGCTCAGCGCAGAGGAAAGTTTCCCGGGCACCCCC 649 

1166 GGCTCTGTCGCCTGTGCGGGTCAGGCCCTTCCCCGAGCG .CCCCAGGCCG 1214 

I 	I 	I 	 II 

650 TGTGGTCCCCTGCACCTCCGCCGTGCCCTGCCCTGCGTGCCCCCAGGCCC 699 

1215 AGCGCGCCTCGGG ..... GCACGAGCACAGCCCAATGGTTCTCTCCGGAC 1259 

1111111 	II 	IIllIIIIIlllIIIIIl 	III 
700 AGCGCTCCGGGCGAGTCCCCAGGAGCGCCGCCCAATGGATCGGCTCCGCC 749 

.1. 	. 
1260 CCGCCCCCTCGCGCTCTGATTGGC. CGCTGCCACGCTGGCCTTGCCTTAT 1308 

750 CCGCCCCCTCGCGCGCTGATTGCCGCCGCCCCCCGCTGGCCTCGCCTTAT 799 

1309 TAACAAGTTCTCAGGGGAGCGGCGG . CGGACCCGGAGCCGGCGAGTGCGC 1357 

IIIIIIIIIII 	111111 	1111 	11 	111111111111111111 	1 
800 TAGCAAGTTCTCTGGGGAGGCGCGGTAGGGCCCGGAGCCGGCGAGTGCTC 849 

1358 CTGGG . AACTCGGCCTGAGCGGCGCAGGGATCCAGGCCCCGCTCGCTCGA 1406 

1 	111 	111 	I 	1111 	11 	11 	1 	II 	I 	I 	I 
850 CCGGGAAACATGCTGCCAGCGCGGCTGGCAGGCAAACGGAGGCCAGGGCC 899 

1407 GTTGGCCTTCTGGGGAAGCCGCAGGAGGCTCGCGCGCGAGAGCCGGCCGG 1456 

900 C ....................HUMAN ........................ 900 

Figure 3.20 A GAP comparison of the region surrounding the transcription start 
site. The C residue at the start site is arrowed at position 1283 (Kuzuoka et al., 1994). 
Upstream is a conserved CCAAT sequence, inderlined at position 1240. 
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Figure 3.21 
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Figure 3.21 Expansion of the distal homologous region in the 5 flank of Msx-1, as 
highlighted in the lower dotted box of figure 3.16. Sequence of the region of homology 
highlighted here is shown in Figure 21. 
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Figure 3.22 

GAP of: 
Mouse Msx-1 5' flanking region: from: 700 to: 800 	 Gap Weight: 5.000 	Quality: 56.0 	Length: 102 

to: 	 Ratio: 0.554 	 Gaps: 	0 
Human Msx-1 5' flanking region: from: 60 to: 160 	 Percent Identity: 56.000 	Length Weight: 0.300 

808 bases to ATG 

700 . 	 800 

II 	I 	1 	11 	I 	I 	IIIIIIIIIHIHIIIIIH 	111111111 	111 	111111 	I 	III 	I 	I 	I 	I 
60 TCTTCCCGCAAGGTTTACTCCAGCTCTAAGTTAGAGACAAAGGCCCACTTTTACCTCGAGGTAAAGTTTACAAGATTTCAGAACAGGAAGAAAATGAAGGT. 160  

929 bases to ATG 

Figure 3.22 A GAP alignment of the sequences from mouse and human Msx-1 5' flanking region shown to be similar by the COMPARE analysis 
(figures 3.16 & 3.21). The upper sequence is that of mouse, the lower is human. The brackets highlight the region of homology. Details of the alignment 
are given above. 



Figure 3.23 

C T A G 

• 	.- 

Figure 3.23 Autoradiograph showing the products of nucleotide sequencing from 
the conserved 5'-flanking region of the mouse Msx-1 gene. At the right, going 5 to 3 in 
descending, is the nucleotide sequence itself. 
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sequence. Sequence between bases 300-500 (section 3.2.6) is a potential site for such 

expansion due to the long stretches of polyA and polyG. 

3.3.4 Sequence homology is found with the HoxD cluster 

The conserved sequence identified upstream of Msx- 1 was compared with the 

GenbankIEMBL database and the Eukaryotic Promoter Database (Bucher, 1993) to 

determine whether a similar sequence was present in any previously identified gene or 

gene promoter. In addition to this search of computer databases, I compared the Msx-1 

conserved sequence with promoter sequences being published at the time that would 

not yet be included in the databases. This latter source was the sole origin of significant 

homology. One such sequence was published as part of an evolutionary comparison 

(similar to that presented here) between mouse and human Hoxd-9 and Hoxd-10 

(Renucci et al., 1992). Renucci and colleagues sequenced the region of the HoxD 

cluster between these two genes from both mouse and human and compared the 

sequences from the two species in an attempt to identify regions conserved due to 

functional constraints. I compared the conserved Msx-1 sequence (described in section 

3.3.3) with this entire intergenic region (3657 bp), using a combination of the 

COMPARE and GAP programs, and discovered that there was homology between the 

Msx- 1 sequence and a portion of the HoxD sequence which had itself been conserved 

between mouse and human. Bases 5123-5167 of figure 2 from the paper by Renucci 

and colleagues have similarity to the Msx- 1 conserved sequence (opposite orientation): 

this sequence is seen in figure 3.24B. Figure 3.24 is a lineup of the various similar 

sequences illustrating the level of homology and the positions conserved. Figure 3.24A 

shows that of the region conserved between mouse and human Msx-1, the 5' half is 

also highly homologous to the sequence in the Hoxd-9/d-10 intergenic region. This 

region is itself conserved between mouse and human (figure 3.24A; Renucci et al., 
1992). 
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Figure 3.24 

Human MSX1 	(93) 
Mouse Msx-1 (732) 
Mouse Hoxd-9P (-) 
Human Hoxd-9P (-) 

N 
Mouse Hoxd-9D (-) 
Human Hoxd-9D (-) 

GAGACAAAGGCCCACTTTTACCTCGAGGTAAAGTTTACAAGATT 
GAGACAAAGGCCCATTTTTACTCCGAGGTAAATTTTTGAAGATT 
GAGAGAAATGCCCATTGTCACTCCCAAATCCTAGGTACAAAGCC 
GAGGGAAATGCCCATTGTCACTCCCAAATCCATGGTACAAAGCC 
**** *** ***** * * ** * * * 	* ** 

GCCTGGGAGCCGAGACAAAAGCCGCACGCCAGCGGCGGCTGAGAGGACATATTCC 
GGCTGGGAGCC . AGACAAAAGCCGCACGA...........GCGAGGGCATAT. CC  

Figure 3.24 Side-by-side comparison of the homologous sequences found upstream of mouse and human Msx-1 and Hoxd-9. A) shows aline up 
of the two sequences from both species with the invariant positions marked below with asterisks. B) shows an additional similar sequence from Hoxd-9 
and its human counterpart. This sequence also comes from region B of Renucci et al (1992). The numbers in brackets refer to the positions of the 
sequence in figure 3.3 for mouse Msx-1 and figure 3.10 for human MSX1. A minus sign (-) indicates that this sequence is found in the opposite 
orientation with respect to transcription. Other sequences shown are found in the same orientation as the transcript. The human sequence in B) is 
shown including gaps for optimal alignment. 



3.4 Comparison of Msx gene coding sequences 

The evolutionary relationship between msh-like genes has clear relevance to the 

project described and in this regard I attempted to clarify this relationship by 

comparison of the gene sequences. Several computer programs are available to enable 

multiple alignment of sequences and to provide data from which one can determine 

sister groups and construct unrooted cladograms. From such comparisons it is possible 

to infer an evolutionary history of the Msx genes. 

Invertebrates (Drosophila; Gehring, 1987) and primitive chordates (Holland, 

1991 and personal communication) have a single Msh-like gene, while vertebrates 

characteristically have three such genes (section 1.4). It appears that there was a series 

of duplication steps, along the lineage leading to vertebrata, resulting in the modern 

situation. Comparison of msh-like genes from a variety of organisms may elucidate 

both the sequence of duplication events that has led to this amplification, and the 

relative position of each event in such a phylogeny. Holland has proposed that the 

vertebrate-specific amplification may have had a causal role in the evolution of the sub-

phylum as the genes are expressed during the formation of several of the features that 

distinguish vertebrates from other chordates. A combination of sequence-determined 

phylogenies and in situ study of expression patterns will enable a better resolution of 

the relationship between these genes and the evolution of the vertebrates. 

The msh-like genes represent an ideal opportunity for a truly informative 

comparison across phyletic boundaries due to the wide variety of organisms from 

which genes of this family have been cloned. Unfortunately sequences from some of 

the more 'primitive' organisms (those capable of clarifying the fundamental structure at 

the base of a phylogenetic tree) are limited to reports of homeobox sequence. 

Cnidarian, Ascidian, Drosophila and Honeybee sequences available at present are 

limited to the homeobox region. Given the highly conserved nature of the homeobox, 

its comparison between different species does not reveal an instructive degree of 

divergence. Trees that were constructed using homeobox sequence alone demonstrated 

this in the clearly incorrect nature of some of the clades predicted (e.g. chicken and 

human more closely related than mouse and human). Reluctantly it was decided to 

confine the comparison to genes for which full coding sequence was available. In 

practice this restricted comparison to vertebrate ,nsh-like genes. While little new 

information regarding the evolutionary timing of duplication events in the insh-like 

gene family will be forthcoming from such a comparison, it is a useful exercise in 

assessing the relative divergence of mouse and human Msx-1 and other orthologous 

genes. The comparison performed also clarifies the paralogous or orthologous status 
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of various msh-like genes. Full coding sequence is available for two mouse, two 

human, two Xenopus, two chicken, five zebrafish and one quail gene. Sequences were 

compared using the CLUSTAL program of the GCG package (Genetics Computer 

Group, 1991). This program uses the Neighbour Joining (NJ) method of Saitou and 

Nei (1987) to produce cladograms. This is a distance method which calculates 

similarities by the method of Wilbur and Lipman (1983). Figure 3.25 shows a 

cladogram generated using data in the '.nj' output file of CLUSTAL. The tree was 

rooted by inclusion of an outgroup known to be unrelated (human IGFII promoter was 

used here: the same root position was obtained using alternative outgroups). The tree 

divides into two major branches, one for the Msx- 1 lineage and one for Msx-2. The 

Msx-2 branch seems to conform to accepted views of phylogeny based on 

paleontological data. The most closely related species are quail and chicken with 

human and mouse also closely linked to one another and comprising a dade along with 

the birds. The bird and mammal dade branches earlier from the amphibia, represented 

by Xenopus. Together the tetrapods diverge from the bony fish (exemplified by 

zebrafish) at a yet earlier stage, though still post-dating the divergence of the msh 

orthologues. The Msx- 1 branch conforms in all but one respect. Again mouse and 

human are closely related, branching from chicken. The dade comprising birds and 

mammals, however, branches from zebrafish which dade branches earlier from 

Xenopus causing an apparent reversal of the relationship between fish and amphibia. 

The relationship of the various zebrafish genes is a point of considerable interest. There 

are at least 5 insh-like genes in the zebrafish genome and relating them to the more 

familiar vertebrate genes may provide information with regard to the timing and 

mechanism of their amplification. MsxA and MsxD form a trichotomy with the Msx- 1 

branch suggesting an additional duplication in this lineage soon after the initial 

duplication of the ancestral msh-like gene, which may have been coincidental with (or 

even causal to) the vertebrate radiation. MsxB and MsxC appear to have derived from 

a secondary duplication event in the Msx-2 lineage, though possibly later than that 

producing MsxA & D. The position of MsxE within the Msx-1 dade is more 

problematic and probably results from uncharacteristic rates of substitution. The extra 

genes present in the zebrafish genome may be due to an early genomic duplication 

(tetraploidy), or partial genomic duplication event. Such a hypothesis is supported by 

the presence of atypical numbers of members in other gene families in this organism 

(Ekker et al., 1992a). 

This analysis confirms that the primary msh duplication event within the 

chordates occurred prior to the vertebrate radiation, and clarifies the paralogous 

relationship between Zebrafish MsxE and the various Msx- 1 genes, and Zebrafish 
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Figure 3.25 

0.1 

Zebrafish MsxA 

Zebrafish MsxD 

Mouse Msxl 

Human Msxl 

Chicken Msxl 

Zebrafish MsxE 

Xenopus Msxl 

Xenopus Msx2 

Chicken Msx2 

Quail Msx2 

Mouse Msx2 

Human Msx2 

Zebrafish MsxC 

Zebrafish MsxB 

Figure 3.25 Cladogram displaying the phylogenetic relationships between the 

vertebrate msh-like homeoboxes. Calculated using full-length nucleotide coding sequences by 
a nearest-neighbour method (see text). The tree is rooted by inclusion of a known outgroup. 
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MsxC and MsxD and the Msx-2 genes. In the absence of full-length Msx-3 coding 

sequence the story is limited to the two genes described, though phylogenies based on 

second exon sequence alone (not shown) suggest that the Msx-3 branch may have split 

first from the branch leading to a later divergence of the Msx- 1 and Msx-2 genes 

However this data is not conclusive due to the problems of comparing homeoboxes 

(encoded in the second exon), where a single base substitution may result in a shift 

between clades, or even major branches. 

117 



3.5 Discussion 

I have described analysis of 5-flanking sequences of the human and mouse 

Msx- 1 genes. Examination of the nucleotide content, a search for specific sequence 

motifs and comparison of the two sequences has pointed to several features 

characteristic of transcriptionally active regions and to sequences with a probable role 

in transcriptional regulation. 

Analysis of the mouse and human Msx- 1 loci, including the 5'-flanking 

sequences, provides evidence for relief of CpG suppression in the 5' region of the gene. 

The existence of CpG islands is dependent upon their non-methylation in the germ-line. 

While the methylation state of the island in somatic cells may be significant to 

expression or repression of the associated gene it has no bearing upon the next 

generation. The absence of methylation at an island in germ-line cells should ensure 

maintenance of CpG content due to escape from the suppressing mechanism described, 

though the mechanistic link between promoter activity and suppression of methylation 

remains unclear. Based upon the data presented, an assessment of the state of the Msx-

1 promoter in the germ-line might be expected to reveal reduced methylation. Msx- 1 is 

not constitutively active but apparently has a promoter that escapes methylation to 

some degree. As mentioned there are examples of genes with restricted expression 

patterns that are associated with CpG islands. Larsen et al. (1992) have calculated that 

of among all genes, in human, associated with CpG islands approximately half are 

restrictively expressed genes, representing about 40% of the total number of genes 

expressed in this way. As alluded to previously (section 3.3.1), Msx- 1 may have a 

promoter of the type at which there is assembly of the transcriptional machinery but 

pausing of elongation (Lee et al., 1992). This situation may enable rapid induction of 

transcription in response to signals such as are responsible for the epithelial-

mesenchymal interactions with which Msx- 1 is implicated. Such a situation might 

mimic that found in constitutively active genes and result in the observed island effect. 

This possibility is discussed below in regard to potential GAGA elements in the 

conserved region. Alternatively, the CpG state of the promoter (showing raised levels 

but not to the degree expected in the absence of methylation) may reflect the presence 

of a 'fully intact' CpG island at some time during the history of the gene. This 'island' 

may now be in decay and what we see is a snapshot of this process. Such a model has 

been proposed by Antequera and Bird (1993b) who suggest that over time an 

increasing number of genes are losing their CpG islands, "succumbing to methylation" 

in their words, and that genes associated with such loss are exclusively those showing 
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restricted expression patterns. Interestingly, Antequera and Bird suggest that this 

process of island loss has occurred more rapidly in mouse than in human. if the Msx- 1-

associated islands in mouse and human are in a process of gradual erasure they appear 

not to conform to this general species difference. 

The presence, in the Msx- 1 promoter region, of consensus binding sites for a 

variety of transcription factors points directly to possible regulators of the gene. The 

properties of several of these factors are discussed below with reference to features 

that make some better candidates than others. 

Spi is a common site found in the proximal regions of a large number of 

promoters. It is generally considered a basal promoter element though sites are also 

found in enhancer regions providing transcriptional specificity. Sp 1 acts synergistically 

and a number of sites are often found in proximity to one another (Courey et al., 1989; 

Anderson and Freytag, 1991). Figures 3.13 and 3.14 show several consensus Sp 1 sites 

in mouse and human Msx-1 promoters. Comparison of the position of Spi binding 

sites does not pinpoint any conservation (figure 3.15). This may reflect the general 

maintenance of consensus sites (GGGCGG) within GC-rich regions such as these, or 

that the sites are fortuitous and non-functional. The proximal sequence of Msx- 1 shows 

no obvious consensus TATA-box (Kuzuoka et al. (1994) have recently highlighted a 

TATA sequence at 1104 bp upstream of the CAP site as determined by them. I have 

not considered this sequence given the uncharacteristically large distance involved). 

There is evidence that binding of Spi assists in positioning the initiation complex in the 

absence of a TATA-box (Pugh and Tjian, 1991). The numerous Spi sites in the mouse 

and human Msx- 1 promoters could participate in such a mechanism. 

CCAAT binding factors are common proximal promoter regulators (section 

1.5.1). It is of no great surprise that both mouse and human Msx- 1 promoters contain 

this sequence motif. Examination of the two sequences shows that the single CCAAT 

sequence in the human promoter is conserved with the second of the three CCAAT 

sequences found in the mouse (figure 3.15). This sequence may represent the binding 

site for a ubiquitous proximal promoter transcription factor. 

AP-2 is a transcriptional activator protein initially identified as a factor binding 

to the promoter of the human metallothionein "A  gene and to SV40 enhancers 

(Imagawa et al., 1987). The gene encoding AP-2 has been cloned revealing a novel 

class of regulator but bearing a common structural theme, a DNA-bindingldimerisation 

domain, in this case termed a 'helix-span-helix' motif (Williams et al., 1988; Williams 

and Tjian, 1991b). This gene encodes both the originally identified activator protein 

and, by means of alternative splicing, a second protein apparently lacking DNA-binding 
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activity but acting as a repressor of the activator function (Buettner et al., 1993). It is 

of particular interest that AP-2 binding sites should be found upstream of Msx- 1 (both 

mouse and human) as the two genes are expressed in a largely overlapping pattern 

during mouse embryogenesis (Mitchell et al., 1991; section 1.4). AP-2 is first 

expressed in the anterior portion of the embryo at 8.5 dpc. As development progresses 

expression is seen in the folds of the neural tube that will contribute the migratory 

neural crest cells. Sites such as the primordia of the developing face, the facial and 

acoustic ganglia primordia and the dorsal root ganglia of the spinal cord are all derived 

from the neural crest and show marked expression of AP-2. The early limb-bud 

expresses AP-2 in a diffuse pattern throughout, though as it develops further 

expression becomes confined to the distal mesenchyme, corresponding to the progress 

zone. Significantly, these sites of AP-2 expression in the developing craniofacial 

structures, limb and nervous system are all targets for retinoid-induced embryopathy. 

The RA-dependent induction of transient AP-2 expression in human teratocarcinoma 

cells had previously been characterised (LUscher et al., 1989). Together these 

observations lend support to the idea that AP-2 may be involved in a regulatory• 

cascade activated by retinoids, possibly effecting the morphogenetic responses that 

they induce. Expression of Msx- 1 in neural crest cells and lineages to which they 

contribute has been described (section 1.4). Expression patterns of Msx- 1 in the facial 

primordia and developing limbs are particularly striking in their similarity to those of 

AP-2. The coincidental expression, in several domains, of Msx- 1 and various retinoic 

acid receptors (RARs; Lyons et al., 1992), and the demonstration that RA can modify 

Msx gene expression in the limb (Yokouchi et al., 1991) provides a further potential 

link between AP-2 and Msx- 1, as RA-regulated genes. There are clearly large numbers 

of cells within these regions of the embryo that will be expressing both Msx- 1 and AP-

2 simultaneously. In this context the presence of AP-2 consensus binding sites 

upstream of mouse and human Msx- 1 may reflect a regulatory interaction between the 

two, possibly in response to RA-induced signals. It will be of interest in this regard to 

discover whether the AP-2 promoter contains Msx-1 binding sites: cross regulatory 

interactions and feedback loops are common features in Drosophila. These loops often 

include the action of extracellular signalling molecules such as growth factors. AP-2 

responds to protein kinase C and adenylate cyclase signal transduction pathways 

(Imagawa et al., 1987) making it a candidate as a molecule causing changes in gene 

expression patterns in response to extracellular stimuli. 

The bicoid-binding sequence in the Msx-1 5-flanking region represents not the 

consensus site for wild type bicoid protein (TCTAATCCC) but a mutant variant 

generated as part of a detailed study of homeodomain-DNA interaction (mutant 5 - 
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Hanes and Brent, 1991). This mutant gave a high level of binding activity in a yeast co-

transfection assay but with the added qualifier that the plasmid used contained a large 

number of such sites, possibly artificially inflating the level of transactivation observed. 

The mouse genome is known to encode at least one homeoprotein with a bicoid-like 

homeodomain. The goosecoid gene encodes a protein with the same helix 2 sequence 

in the helix-turn-helix motif (Blum et al., 1992). goosecoid has a lysine residue at 

position 9 of the recognition-helix as does bicoid giving it a similar binding specificity 

(section 1.1.6). goosecoid is active during early gastrulation (6.4-6.8 dpc) and in mid-

gestation (Blum et al., 1992; Gaunt et al., 1993) with the latter phase including 

expression in the branchial arches, the developing ear and the limb-buds, all sites of 

Msx-1 expression (section 1.4). Msx-1 expression is first seen around 7 dpc making it 

quite possible that either goosecoid protein persists and positively regulates Msx- 1 or 

that its down regulation releases Msx- 1 from goosecoid-mediated repression. Later, 

expression of Msx- 1 is restricted to the distal limb whereas goosecoid is found more 

proximally (Gaunt et al., 1993), suggestive of a possible negative interaction. While 

the sequence found was initially identified as a binding site for the bicoid protein it 

should be noted that all homeoproteins have a similar sequence specificity, i.e. the 

requirement for a TAAT core (section 1.1.6). As the suffix to the TAAT core has been 

changed in this mutant site it is quite possible that an alternative homeodomain 

interacts with this sequence, though none has yet been identified that has a preferred 

specificity to TAATCT (Treisman et al., 1992a). 

zeste is a Drosophila gene with a rather enigmatic status. It is known as a 

transcription factor acting upon a number of genes, including Ubx, upstream of which 

are specific binding sites for the protein. zeste is ubiquitously expressed throughout the 

Drosophila embryo and its status in the provision of region-specific transcriptional 

stimulation has been examined in this regard. A process known as transvection, in 

which regulatory elements act in trans on the second gene copy following homologous 

chromosome pairing, is known to involve zeste. Whether zeste acts as a site-specific 

transcription factor, upregulates by transvection or is a basal transcription activator is 

unclear. Null mutants in the zeste gene show no apparent phenotype and express Ubx 

in a normal manner. Nevertheless zeste has been shown to activate Ubx through the 

adjacent binding sites (Laney and Biggin, 1992). While transvection relies upon 

expression of zeste the absence of this process has no apparent ill effects on the fly 

(Goldberg et al., 1989). It appears that zeste has a redundant action as a transcription 

factor (at least in the case of Ubx regulation) where the activity of other ubiquitous 

factors is capable of compensating for its loss. Dissection of the Ubx promoter (Laney 

and Biggin, 1992) and use of artificial transgenic constructs suggests that multiple 
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ubiquitous factors (zeste, GAGA and NTF-l) act redundantly, and also co-operate 

with specifically expressed factors to provide regional restriction to downstream genes. 

Selective distribution of binding sites for these factors may augment the region-specific 

regulation by spatially localised factors to increase the complexity of expression 

patterns that can be generated with a limited number of proteins. 

Neither mouse nor human 5' flanking sequence contained Msx-1 binding sites 

Catron et al., 1993), providing no evidence for a transcriptional autoregulatoiy loop 

operating to control Msx-1 expression. 

The comparative sequencing approach has been adopted in a variety of 

systems, to study either the evolution of complex genomic regions, such as multigene 

clusters, or to exploit presumed evolutionary stability as a means of identifying 

functional domains within genes and their regulatory sequences. The most extensive 

comparative sequencing has been performed in the globin gene clusters and the gene 

complexes of the immune system, particularly the T-cell receptor locus (Shehee et al., 

1989; Hardison and Miller, 1993; Koop and Hood, 1994). These examples are of 

considerable value as the cis-regulation of these genes has been functionally 

characterised, enabling assessment of the level of conservation of known enhancers and 

promoter elements. The largest contiguous DNA comparison performed comprises 

approximately 100 kb of mouse and human sequence from the T-cell receptor locus 

(Koop and Hood, 1994). Unlike previous comparisons of the y-crystallin and 3-globin 

loci between human and rodent genomes (denDennen et al., 1989; Shehee et al., 1989) 

the T-cell receptor locus was found to be highly conserved throughout coding, non-

coding and intergenic regions. The level of conservation in this complex genomic 

region suggests that maintaining organisation of the coding segments has had more 

selective advantage than maintenance of their specific sequences, as might be expected 

from our knowledge of T-cell receptor function and the mechanism by which it 

generates its extraordinary diversity. With regard to cis-regulatory signals, the 

previously defined 3' Ccx and 5' C8 enhancers were both highly conserved (95% and 

80% respectively over limited core regions). The authors of this study conclude that 

"comparative sequence conservation may be a very powerful approach to identifying 

candidate regulatory regions", and have themselves detected potential cis-elements on 

the basis of their observations. Nuclear factors specific to B and T cells have been 

shown to bind at least one such sequence (Hood et al., 1992). Work on the 'y-globin 

gene has been performed using a similar strategy to that adopted here (Gumucio et al., 

1991). Nuclear factors were shown to bind to several conserved sequences found at 

least a kilobase upstream of the CAP site. Comparison of 3-Globin genes, in this case 
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from human and rabbit, demonstrates the co-localisation of homologous sequence and 

regions with regulatory function (Hardison and Miller, 1993). The comparative study 

of most relevance to this work is one performed on a region of the HoxD homeobox-

gene complex comparing mouse against human (Renucci et al., 1992; section 1.2). 

This is the only published study of this kind on a homeobox gene. The region of the 

HoxD cluster examined extended from the 5' leader of the Hoxd- 10 (Hox-4.5) gene, 

through the two exons and intron of that gene, the intergenic region leading to Hoxd-9 

(Hox-4.4) and on through to the Hoxd-9 transcription termination site. Outwith the 

coding regions, which are extremely highly conserved, there are four regions where 

similarity exceeds 75% over a region of 100 bases or more: the Hoxd-9 intron (the 

Hoxd- 10 intron was not sequenced from human) and three discreet regions of varying 

size in the intergenic region. Detailed examination of the three intergenic regions 

shows that they comprise several blocks of sequence showing near identity between 

mouse and human. Transgenic analysis suggested that one of the conserved regions 

(region C) may have a role in delineating the anterior-posterior expression boundary. 

In the absence of this region, expression still appeared to be directed to the correct 

tissue types suggesting that one of the other regions provides tissue-specificity, such as 

expression in mesodermal derivatives, though this hypothesis was not tested. It was 

suggested that region B (the region containing the Msx-1 5'-flanking homology) 

generated this specificity as region A comprises a series of functional homeodomain-

binding sites more likely involved in cross regulatory interactions between homeobox 

genes (Zappavigna et al., 1991). In vitro protein binding studies were performed using 

these homologous regions and these will be discussed in chapter 4. 

The presence of a markedly conserved sequence in the 3'-UTR of Msx- 1 may 

be significant in indicating a regulatory function for this region. This conservation has 

previously been noted as part of a detailed study examining the incidence of highly 

conserved regions (HCRs: defined as regions of ~!lOOnt with ~!70% similarity between 

cognate genes of species diverged by at least 300 million years) in non-coding sections 

of entries to the Genbank database (Duret et al., 1993). Duret and colleagues showed 

that such features are not uncommon, occurring in approximately 30% of genes 

examined, and with a bias for genes encoding DNA-binding or cytoskeletal proteins 

(about 10-fold more frequent than in genes encoding hormones, hormone receptors 

and enzymes). HCRs were predominantly found in the 3'-UTR, rather than the 5'-UTR 

or intron(s), and in the transcribed portion of the gene indicating a requirement for 

their presence in the mature message, likely reflecting a post-transcriptional regulatory 

role. Such regions of conservation may function in mRNA localisation, regulation of 

translation, control of transcript stability or yet undiscovered levels of post- 
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transcriptional regulation. The presence of this type of sequence in the Msx- 1 gene is 

not directly informative but it may hint at important levels of control and suggests a 

direction for future studies on distribution and regulation of Msx-1 protein synthesis. 

The best candidate for potential cis-regulatory function is the region highly 

conserved between mouse and human (between positions -550 and -507 from the 

transcription start site in mouse), and similar to the HoxD sequence. This sequence has 

been conserved at 38 of 44 positions (86 %) over a period of approximately 80 million 

years since the mammalian radiation. The conservation of this sequence and its similar 

position with relation to the coding region in both mouse and human (section 3.3.3) 

leads to the conclusion that this represents an island of conservation in a region of the 

gene that has diverged under non-selected drift. 

Interestingly the two conserved sequences, from Msx-1 and Hoxd-9, both 

extend 3' for 43 bases from the GAGA sequence. The Hoxd-9 sequence is part of a 

block of homology that extends further 5' while the GAGA represents the 5' limit of 

the Msx- 1 homology. Comparison reveals that although the two sequences are very 

similar in the 5' half (for -21 bases) they diverge as we move 3'. Such a 'bipartite' 

structure may reflect the presence of more than one protein-binding site in the whole 

43 bases and that only the 5' most site is conserved between the two genes. 

Alternatively the 3' half may not have such a strict level of similarity due to a 

requirement rather for a general base content than a specific pattern of nucleotides. 

Such "complex and degenerate functional requirements" have been proposed as a 

possible explanation for the apparent lack of conservation of certain previously 

characterised regulatory elements in the large scale study on the T-cell receptor 

discussed above (Koop and Hood, 1994). The 3' portion of the Msx- 1 conserved 

sequence has two polyT stretches that are largely conserved in human Msx- 1 but are 

absent in the HoxD sequence. Recent work on the function of Drosophila transcription 

factor dorsal has shown that this single protein is capable of positively or negatively 

regulating target genes dependent upon the alternative presence of two possible 

binding sites (Kirov et al., 1993; Jiang et al., 1993). The dorsal-dependent enhancer 

element consists of a single protein binding site specific for the dorsal protein. A 

dorsal-dependent silencer however comprises a similar dorsal-binding site adjacent to 

an AT-rich sequence that has been proposed to bind a co-repressor responsible for 

modification of the dorsal activation properties. It is possible that the stretches of T in 

the 3' half of the Msx-1 conserved sequence reflect a similar mechanism, with potential 

significance for the absence of the T's in the HoxD sequence. The interaction of a 

tissue-specific regulator (dorsal), general factors (co-repressors) and selective use of 

alternative DNA elements provides added levels of complexity without using additional 
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genes. Nothing is known regarding the mechanisms whereby the two proteins interact 

or cause suppression. In a similar way the silencing activity of the yeast mating-type-

specific protein a2 is dependent upon an interaction with a general factor MCM1 

(section 1.1.6). The correct recognition of a cis-element in this case is dependent upon 

the a2-MCM1 interaction. 

The sequence homology to the upstream region of Hoxd-9 is of particular 

interest in relation to gene expression in the developing limb. A considerable body of 

work has described the patterns, morphological consequences and regulating 

influences of HoxD gene expression in the vertebrate limb (Dollé et al., 1989; IzpisIa-

Belmonte et al., 1991; Morgan et al., 1992; Dolld et al., 1993b; Niswander et at., 

1993b). The 5 Abd-B cognate genes at the 5' end of the HoxD complex (figure 1.1) 

provide early patterning information in the limb bud (from here on '5' HoxD genes' 

refers to these 5 genes). Of these genes, Hoxd-9 is the most 3' and has the broadest 

expression pattern (section 1.3.4). Hoxd-9 is expressed throughout the early limb bud 

while its 5' neighbours are increasingly proximo-distally restricted (Dollé et al., 1989). 

All other 5' HoxD genes (Hox-dlO-13) are expressed within the Hoxd-9 domain. Msx-

1 is expressed in the limb bud at a similar stage of development (10-10.5 dpc) in a 

distally restricted domain with a posterior bias (Hill et al., 1989). Large regions of the 

early limb bud mesenchyme therefore express both genes. While the homology to the 

Msx- 1 conserved sequence is upstream of Hoxd-9 it may exert an influence on genes 

throughout the HoxD cluster. The long range function of enhancer sequences is one 

mechanism proposed for maintenance of cluster integrity, supported by results from 

transgenic studies that suggest sharing of cis elements by more than one gene (Sham et 

al., 1992; Eid et al., 1993). If the Msx-1/HoxD conserved sequence (section 3.3.4) 

acts as a functional cis element it may regulate all the 5' HoxD genes. The position of 

this sequence upstream of Hoxd-9 may be significant in this respect as this is the first 

of the 5' HoxD genes expressed, according to the temporal colinearity rule. Models 

predicting an 'opening' of the complex to account for colinearity might be expected to 

require an 'open' status for any global regulatory sequences, thereby necessitating their 

position early in the sequence. By predicting that a common cis element regulates Msx-

1 and 5' HoxD genes we might expect both to respond to similar signals. Work on limb 

patterning has defined a role for the Apical Ectodermal Ridge (AER) in specification of 

positional identity (Saunders, 1948; Summerbell, 1974). Combining surgical 

manipulations with gene expression studies has demonstrated a relationship between 

the AER and expression of Msx- 1 and HoxD genes in the underlying mesenchyme 

(Robert et at. 1991; Coelho et al., 1993a; Izpisüa-Belmonte et al., 1992). In brief, 

expression of both Msx-1 and 5' HoxD genes is dependent upon an intact AER. It is 
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possible then that Msx-1 and 5' HoxD genes respond to the same 

inductive/maintenance signal emanating from the AER. Recent work has gone some 

way to defining the molecular nature of AER function with the demonstration that 

fibroblast growth factor 4 (FGF-4) can largely substitute for the AER (Niswander et 

al., 1993). A factor binding the Msx-1/HoxD homologous sequence might respond to 

the signal transduction pathway activated by FGF-4 and thereby induce or stabilise 

expression of those genes in limb mesenchymal cells. 

The Msx-1 conserved sequence does not include any lengthy or complex 

consensus binding sites as determined by comparison to TED. As described the 5' end 

of this sequence, the region most widely conserved, includes a GAGA motif. 

Sequences consisting of alternating purines have been shown to bind proteins from a 

variety of sources (Gilmour et al., 1989; Kennedy and Rutter, 1992). In Drosophila a 

protein has been characterised, and recently cloned, that binds to the GAGAG 

sequence found in the proximal promoter regions of several genes, among them 

Ultrabithorax, fushi tarazu, even-skipped, Krüppel, hsp7O and hsp26 (Soeller et al., 

1993). This so-called GAGA factor is implicated in transcriptional activation by 

antirepression of the non-specific negative effects upon transcription of histone Hi 

(Croston et al., 1991). GAGA protein has also been shown to enhance activation and 

nuclease sensitivity of the hsp26 promoter, when fused to a reporter gene (Lu et al., 

1993). It has been proposed that GAGA factor has a role in the maintenance of 

promoter accessibility and absence of nucleosome suppression of transcription. In 

support of this hypothesis, recent work has demonstrated that GAGA factor is 

involved in an energy-dependent disruption of nucleosome order at the Drosophila 

hsp70 promoter (Tsukiyama et al., 1994). In this system GAGA factor is essential to 

the correct assembly of the transcription initiation complex at the promoter by means 

of realigning adjacent nucleosomes. It has been suggested that GAGA is one of an 

alternative class of transcription regulating molecules whose role is to prepare 

promoters by rearranging the chromatin structure that surrounds them (van Holde, 

1994). A study by Lee et al. (1992) demonstrated a role for GAGA in assembly of a 

paused transcription complex at the hsp7O promoter of Drosophila. The polymerase 

becomes engaged and then pauses in elongation after approximately 25 nucleotides 

thereby setting up a system capable of extremely rapid response to transcriptional 

inducing signals, in this case those associated with heat-shock response. Both Msx-1 

and the HoxD genes respond to the inductive influence of the AER (and in the case of 

Msx- 1 several other epithelial components), it is possible that such induction could 

occur by release of a stalled transcription of this type. 
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Chapter 4 

In vitro binding studies 



4 Introduction 

Given the complexity of the mammalian genome and the cellular environment 

that it occupies, characterisation of individual molecular interactions in a cellular 

system is, in the majority of cases, impractical. To surmount the problems such 

interactions are first studied in vitro, in a controlled, low complexity system. While 

findings from such experimental work should not be casually extrapolated to the in 

vivo situation, many fundamental properties of the molecules examined can be 

accurately assessed by this approach. Characterisation of the protein-DNA interactions 

that effect transcriptional regulation upon a gene is a typical example of such a 

situation. The wide spectrum of nuclear proteins and the large, complex nature of the 

genome serve to obscure attempts to identify interactions occurring between a 

sequence element, adjacent to a particular gene, and an individual protein or small 

number of proteins. By using an in vitro approach the complexity of at least one of the 

two components (protein and DNA) can be greatly reduced. 

This chapter describes the use of two key in vitro techniques for studying 

sequence-specific DNA-protein interactions, the gel retardation assay and South-

western blotting, in an attempt to assess the significance of the conserved sequence 

identified by comparing the mouse and human Msx- 1 5'-flanking region (section 3.3.3). 

Crude nuclear extracts were used in the presence of short, defined DNA sequences 

enabling assessment of any protein-binding by these sequences in the broadest possible 

context. HeLa cell extract is the best characterised cell-free transcription system, 

containing components of both basal (e.g. Usuda et al., 1991) and regulated (e.g. 

Vasseur-Cognet & Lane, 1993; Virbasius et al., 1993) RNA polymerase II 

transcription machinery. The HeLa cell line is a human epitheloid carcinoma (cervical 

adenocarcinoma) derived line (Gey et al., 1952). It has been used as a source in the 

purification of several well-known transcription factors such as Sp 1, CAAT-binding 

proteins and Oct-1 (e.g. Kadonaga and Tjian, 1986; Fletcher et al., 1987). However, 

these factors are all ubiquitous in their expression patterns and in the case of the Oct 

family (Schaffner, 1989), additional factors have been found that show cell-type-

specific expression and are not expressed in HeLa cells (namely Oct-2, a lymphoid-

specific factor). For these reasons HeLa extract was used along with extracts from cell 

lines with alternative lineages (B16 and H3M). The B16 cell line (more accurately 

termed B160 but from here on referred to as B16) is derived from a spontaneous 

melanoma in C57BL/6 mouse (Bennett, 1983). As a melanoma cell line, B16 

represents a member of the neural crest lineage. Msx- 1 is expressed in cells and tissues 

derived from the neural crest (section 1.4) and consequently it was felt that programs 
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of gene expression activated in this lineage may be represented by factors present in 

B16 cells. Novel transcription factors have previously been isolated from this cell line 

(Tagawa et al., 1990). Also this cell line was being successfully used in transcriptional 

studies by another group in the host institute (P. Budd & I. Jackson, pers. comm.). 

H3M derives from embryonic neural tube, including cells of the neural crest and for 

similar reasons was considered a good candidate as a cell line expressing regulators of 

Msx-1. In an attempt to relate the findings of these in vitro experiments to the situation 

in the embryo nuclear extracts were also prepared from dissected portions of 11 dpc 

mouse embryos. 

4.1 Gel-retardation assays 

The Gel-Retardation assay (a.k.a. Electrophoretic mobility-shift assay - EMSA, 

or Bandshift assay) is a convenient and flexible way to study DNA-protein interactions 

(see Lane et al., 1992 for review). The assay exploits the observation that migration of 

a length of DNA through a non-denaturing polyacrylamide gel is retarded when the 

DNA is present in the form of a DNA-protein complex (Fried and Crothers, 1981; 

Garner and Revzin, 1981). Protein is added to the DNA probe, which is radiolabelled, 

and the mixture is applied to a native polyacrylamide gel. Uncomplexed DNA migrates 

through the gel faster than DNA bound by protein thereby resolving the two 

populations of DNA which are detected by autoradiography. The ability to resolve 

complexed and uncomplexed DNA is dependent upon a variety of factors, briefly 

discussed below. 

The electrophoretic properties of DNA are well studied; equation a) describes, 

at a first approximation, the migration of DNA through a polyacrylamide gel (Lumpkin 

and Zimm, 1982). 

a) 	v=h2 xQxE/(L2 xf) 

where - v = velocity of migration 

h = end-end distance of DNA molecule 

Q = effective charge 

E = electric field 

L = contour length 

f = frictional coefficient 
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We can see that several factors influence DNA electrophoresis through 

polyacrylamide. Movement of DNA through the gel matrix has been assumed to occur 

in a worm-like fashion. A conformational change in the molecule, such as a bend, 

slows down this movement; the degree of retardation is dependent upon the position of 

the bend along the molecule and the degree of bend, hence the significance of the 

spatial distance between the two ends of the DNA (coefficient h; Marini et al., 1982). 

Binding of a protein to the DNA increases the mass of the complex thereby 

decreasing its relative mobility (observed mobility ~expected mobility). Many DNA-

binding proteins also produce a conformational change in the DNA adding to the 

retardation effect. It has been shown that resolution of complexed DNA is dependent 

not upon the absolute mass of the protein/DNA complex but upon the ratio of the 

masses of the two components of the complex. This is demonstrated by increasing the 

mass of the protein, which reduces the relative mobility of the complex, or increasing 

the mass of the DNA which has the opposite effect (Lane, 1992). However, 

particularly when using crude extracts, potentially containing a variety of proteins 

capable of binding the sequence under scrutiny, the relative mobility of various 

complexes cannot be used as an indication of the size of the proteins bound due to 

additional factors such as protein charge, conformation and the possibility of multiple 

proteins interacting with the DNA that may also affect movement through the gel 

(Fried, 1989). 

In order that specific interactions are analysed using this assay it is essential to 

suppress the large amount of non-specific DNA-binding activity present in protein 

extracts. This is of particular importance when using crude cellular extracts as a 

protein source. Non-specific binding of protein to DNA can be suppressed in two 

ways. Firstly, the presence of salt in the binding buffer disrupts non-specific 

electrostatic interactions; the higher the salt concentration, the more stringent the 

conditions. Secondly, non-specific 'competitor' DNA is included in the binding mixture. 

The use of fragmented E. coli or salmon sperm DNA as competitor has now largely 

been superseded by non-complex, synthetic copolymers such as poly d(I-C). Such 

copolymers have the advantage that they include no fortuitous recognition sites that 

might titrate the proteins binding the labelled probe. 

Gel concentration is important as this determines pore size within the matrix. 

Polyacrylamide gels have a sufficiently small pore size to resolve complexes and are 

favoured. Agarose gels have considerably larger pores and are neither able to 

discriminate on a conformational basis nor to resolve complexes unless the ratio of 

complex mass to free DNA mass is very large. DNA protein complexes appear more 

stable during electrophoresis than free solution kinetics suggest. This has been put 
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down to the 'caging' effect caused by the structure of the gel which prevents diffusion, 

maintaining a high local concentration of protein and DNA within the small 'cell' of the 

matrix (Fried and Crothers, 1981). It was shown that the effective salt concentration 

drops sharply as the complex enters the gel; this could also explain the gel-dependent 

stabilisation of the interactions. 

In many cases the gel-retardation assay is used to study the binding of purified 

or cloned proteins. In the case of the latter, it can be used in conjunction with various 

truncated proteins as an assay to localise DNA-binding function within the peptide 

(Ramsay et al., 1991; Ha et al., 1993). Alternatively this assay can be used in 

conjunction with crude nuclear extracts (Strauss and Varshavsky, 1984). The use of 

crude extracts broadens the scope of the assay, enabling its use to determine additional 

data. Extracts can be produced from cell lines of different status, for example 

embryonal carcinoma cells and differentiated cells (Flamant et al., 1987) or from cells 

in a synchronised culture at different stages of the cell cycle to look for stage-specific 

binding activity (Walsh et al., 1992). Protein-DNA interactions involving higher order 

complexes composed of more than a single protein can assemble in a crude extract, 

including both oligomeric binding-proteins and situations where a stretch of DNA has 

binding sites for more than one protein (Suzuki and Suzuki, 1988). 

The gel-retardation assay was employed in this study as the most convenient 

method for determining whether regions of Msx- 1 5'-flanking DNA, shown to have 

homology between mouse and human (section 3.3.3), bound proteins in a sequence-

specific manner. The size of the region of homology (44 bp) lends itself to the use of 

synthetic oligonucleotides as probes in the assay. The use of oligos enables a plentiful 

supply of DNA of constant quality. Oligos were purified by polyacrylamide-gel 

electrophoresis followed by elution to eliminate incomplete synthesis products (short 

oligos) and substances remaining from the synthesis that might affect enzymatic 

manipulations, such as radiolabelling or ligation (section 2.8.1). The oligos used were 

synthesised in complementary pairs and following purification these were annealed. 

Table 4.1 shows the sequence of the oligos used. Complementary oligos were 

synthesised representing both the mouse and human regions of Msx- 1 5'-flanking 

homology, the mouse Hoxd-9 sequence and an Octamer site used as a control. 
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Table 4.1 

Code Gene/Species Sequence 

D13 Msx-l/mouse 5 -ATTAACTTTGTCCAGCCCTGGAGACAAAGGCCCATTTTTACTCCGAGGTAATTTTTGAAGATT-3 
(top) 

D12 Msx-1/mouse 5 -AATCTTCAAAAATTACCTCGGAGTAAAAATGGGCCTTTGTCTCCAGGGCTGGACAAAGTTAAT-3 
(bottom) 

C611 Msx-1/human 5' -TTTACTCCAGCTCTAAGTTAGAGACAAAGGCCCACTTTTACCTCGAGGTAAAGTTTACAAGATTT-3 
(top) 

C679 Msx-1/human 5 -AAATCTTGTAAACTTTACCTCGAGGTAAAAGTGGGCCTTTGTCTCTAACTTAGAGCTGGAGTAAA-3' 
(bottom) 

D14 Hoxd-9/mouse 5 -GGCAGCCTTGAATCTGAGAGAAATGCCCATTGTCACTCCCAAATCC-3' 
(top) 

C617 Hoxd-9/mouse 5' -GGATTTGGGAGTGACAATGGGCATTTCTCTCAGATTCAAGGCTGCC-3' 
(bottom) 

B349 Octamer (top) 5 , -GTGAGCGAGAGGAATTTGCATTTCCACCGACCTTCCGC-3 

B351 Octamer (bottom) T  5' -TGTAGCGGAAGGTCGGTGGAAATGCAAATTCCTCTCGC-3 

Table 4.1 Sequences of the six oligos used as gel retardation probes and in the construction of concatenated South-western probes. They 
form complementary pairs, with the 'top strands of the first six corresponding to the homologous sequences shown in the lineup of figure 3.24. 



4.1.1 Conserved sequences bind similar proteins 

To determine whether the conserved sequence identified (section 3.3.3) binds 

nuclear proteins in a sequence-specific manner the gel-retardation assay was employed 

using protein extracts prepared by hypotonic lysis of cells and high salt extraction of 

the nuclei (Andrews and Faller, 1991; section 2.7.2). Binding conditions used were as 

follows - 0.25 mM DTF, 2 mM MgC12, 2.5% Glycerol, 4 mM spermidine, 100 mM 

KC1, 100 mM NaCl, 10 mM N- [2-Hydroxyethyl]piperazine-N'-[2-ethanesulphonic 

acid] (HEPES) pH 7.9 plus poly d(I-C) to a final concentration of 150 ng/pi (3j.tg per 

binding reaction). This buffer was used in the initial experiments and later titration of 

the salt content (not shown) showed that the concentrations used were close to the 

upper level at which binding was observed, i.e. providing the maximum suppression of 

non-specific interactions (see above). 

Figure 4.1 shows a retardation assay performed using both mouse and human 

probes (mouse probe = oligos D12/D13; human probe = oligos C61 1/C679; table 4.1 

for oligo sequence; section 2.8.1 for probe construction). Binding assays with these 

probes were performed in the presence of HeLa (Promega, HeLaScribelM)  and B 16 

nuclear extracts (section 2.7.2). Lanes 2 and 3 show binding of the mouse and human 

probe, respectively, to the HeLa cell extract . Lanes 4 and 5 show binding of the 

mouse and human probe (respectively) to the B 16 cell extract. Clearly the two probes 

have very similar protein-binding properties. Differences are, however, apparent in the 

binding patterns generated by the two protein sources used. The B 16 extract gives two 

clearly retarded bands of differing mobility. DNA-protein complexes of a similar 

mobility are formed with this extract by both the mouse and human Msx-1 probes. The 

HeLa extract also shows an identical pattern of complexes with both mouse and human 

Msx-1 probes. Two major complexes are seen, one of identical size to the smaller B16 

complex, the second of lower mobility than the second B 16 complex. A faint signal is 

seen at a similar position to that of the upper B 16 band suggesting a low level this 

complex in HeLa cells. It is possible that the upper HeLa band represents a higher 

order complex, specific to HeLa cells, but comprising in part similar components to the 

upper B16 band. 

Figure 4.2 shows gel-retardation of Octamer oligos B349/B35 1 by the HeLa 

extract (Table 4.1; the octamer core sequence is ATTTGCAT). This sequence was 

shown to generate a single retarded band that was of different (lower) mobility to any 

of those in Figure 4.1 (relative mobility of the octamer band is 0.075 compared with 

0.164 for the upper band in figure 4. 1, lanes 2 & 3). In addition the octamer did not 
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Figure 4. 1 

1 	2 	3 	4 
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Figure 4.1 Gel-retardation assay showing identical activity by both mouse and 
human conserved sequences. Lane 1 shows the mouse probe in the absence of protein. Lanes 2 
and 3 show HeLa protein (6.8 jig/lane) binding mouse and human probes. Lanes 4 and 5 show 
B16 (4.2 jig/lane) extract binding mouse and human probes. Unbound probe is arrowed at the 
bottom of the gel; bands above this represent probe retarded by complex formation with 
protein. In addition to the protein each lane contains IX binding buffer (section 4.1.1), 2.5% 
glycerol, - 105 cpm of probe and 3 jig poly d(I-C) in a total of 20 jii. 
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Figure 4.2 

Free 
Probe> 

Figure 4.2 Gel-retardation showing HeLa cell extract bound to Octamer probe 
(oligos B349/B351). Lane I contains no protein, Lane 2 contains 6.8j.tg of HeLa protein. 
Binding reactions were in the buffer described using - 10 5  cpm of probe. 
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compete with the Msx-1 sequence for complex formation (not shown). From this I 

conclude that the complexes seen in figure 4.1 are sequence-specific. 

4.1.2 Conserved sequences compete for binding of mouse proteins 

Binding assays performed for analysis by gel-retardation can be assessed for 

their specificity by inclusion into the reaction mixture of additional, unlabelled 

oligonucleotides potentially capable of competing with the labelled, probe oligo for 

protein binding. If the unlabelled 'competitor' binds the same proteins as the labelled 

probe oligo then the retarded protein-DNA complex will be titrated out and disappear 

as an autoradiograph signal. Oligos used as competitor can be identical to the probe, 

confirming the interaction observed, or can have a different sequence in order to 

investigate the relationship between proteins binding diverse sequences. 

Figure 4.3 shows competition of the complexes formed between the mouse 

Msx-1 conserved element and the B16 extract. Unlabelled, double-stranded 

oligonucleotides corresponding to this mouse sequence and to the mouse HoxD 

sequence are shown to compete these complexes. Oligonucleotides used as 

competitors were gel purified prior to annealing (section 2.8. 1) as for the probe oligos. 

It was found that purified oligos made more potent competitors than non-purified. 

Competition similar to that seen in figure 4.3 was achieved with unpurified oligos only 

when used in at least 200-fold molar excess. There is possibly a lower effective 

concentration of oligonucleotide in the unpurified sample as a result of a high 

proportion of partial synthesis products thereby reducing the actual amount of full 

length double-stranded oligo generated upon annealing. 

Lane 1 shows complex formation between proteins in the B 16 extract and the 

mouse Msx-1 conserved sequence. This is the same as a similar binding reaction shown 

in figure 4.1 (lane 4), though the bands are resolved with slightly less clarity here. Lane 

3 shows an identical binding reaction to which was added a 50-fold molar excess of 

unlabelled purified double-stranded oligonucleotide identical to that used as probe 

(1312/1313). There is a clear reduction in the level of the DNA-protein complexes, 

which is interpreted as competition by the unlabelled oligos for the proteins bound in 

the retarded complex bands Similar competition is also seen with a 10-fold molar 

excess of unlabelled competitor (lane 4), suggesting that the concentration of the 

protein (or proteins) binding the radioactive probe in this complex is strictly limiting. 

Lane 2 shows the resolution of a binding reaction, identical to that in lane 1, in which 

unlabelled purified double-stranded DNA corresponding to the HoxD sequence (oligos 

D14/C617) was added as a competitor to 50-fold molar excess. Again there is 
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Figure 4.3 
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Figure 4.3 Gel-retardation assay showing use of various unlabelled competitor 
oligos. Each lane contains 1X binding buffer (section 4.1.1), 2.5% glycerol, 3.tg poly d(I-C), 

radiolabelled probe, the described molar ratio of unlabelled competitor and 4.2.tg of B16 
extract, in a total volume of 20p.l. Lane 1 shows an uncompeted binding assay between B16 

extract and the mouse Msx-1 conserved sequence (D121D13). Lane 2 shows an identical 
binding reaction competed by inclusion of 50-fold unlabelled HoxD sequence (D14/C617). 
Lane 3 shows an identical binding reaction with inclusion of 50-fold unlabelled probe (mouse 
Msx-1 sequence: D1211313). Lane 4 shows an identical binding reaction with inclusion of 10-
fold unlabelled probe (mouse Msx-1 sequence: D121D13). 
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competition of the complexes formed (a reduction in their intensity) but to a lower 

level than in lane 3, when the probe itself was used unlabelled. Both the mouse Msx- 1 

sequence and the HoxD sequence are capable of competing with the mouse Msx- 1 

probe for the binding of proteins in specific DNA-protein complexes. Self competition 

by the probe sequence itself is expected. Competition by the HoxD sequence 

demonstrates that the two related sequences form complexes with the same protein 

components of the nuclear extract. 

4.2 South-Western blotting 

South-Western blotting is a method developed to detect a specific DNA-

binding protein within a heterogeneous protein mix, such as a crude nuclear extract 

(Bowen et al., 1980; Miskimins et al., 1985). As its name implies it is a hybrid 

technique using principles from Southern and Western blotting enabling the 

characterisation of DNA-protein interactions on a solid membrane support. 

SDS denaturation followed by polyacrylamide-gel electrophoresis enables 

separation of individual proteins according to size (Laemmli, 1970; section 2.9.2). 

These proteins are transferred onto a nitrocellulose membrane by migration toward the 

anode of an electric current, passed across a sandwich of the gel and the membrane 

(Towbin, 1979). South-western blotting involves the incubation, under optimal binding 

conditions, of the protein-laden filter with double-stranded DNA corresponding to a 

putative binding-site and radiolabelled to high specific-activity. As for the gel-

retardation assay, reagents are used to block non-specific interactions: in this case 

these are non-fat dried milk and poly-d(I-C) DNA (section 2.8.6). Conditions for DNA 

interaction with filter-bound protein have been optimised by two key modifications of 

the original protocol: repeated cycles of in situ denaturation (by guanidine hydrogen 

chloride) and renaturation of the proteins, and the use of concatenated DNA sites as 

probes (Vinson et al., 1988). Denaturation/renaturation is thought to facilitate the 

adoption of a correct conformation by the DNA-binding domain, as the denatured 

protein refolds, and was shown to increase the efficiency of filter-bound protein-DNA 

interactions. The use of concatenated copies of the DNA site decreases the 

dissociation rate constant thereby enhancing detection of membrane bound proteins. 

Such concatenated probes can also be labelled to very high specific-activity by nick-

translation, improving detection. After washing the filter has removed uncomplexed 

probe, proteins that specifically bind the labelled probe DNA will show up as bands on 

an autoradiograph, corresponding to the protein bands on the SDS-PAGE gel. 



The technique has been widely used in the study of DNA-binding proteins, in 

particular transcription factors (Matsuo et al., 1991; Benyajati et al., 1992; Dikstein et 

al., 1992; West et al., 1992; Lenormand et al., 1993). It provides quantitative 

information on the size of proteins bound by a particular sequence and it can provide 

qualitative information regarding the presence of such proteins in extracts from varying 

sources 

South-western blotting was used in this study to provide information on the 

nature of the protein (or proteins) binding the conserved DNA sequence identified, to 

compare the proteins bound by related sequences and to examine the distribution of 

binding proteins by using extracts from different regions of the embryo. 

Extracts shown to give DNA-binding activity by the gel-retardation assay, 

along with additional cellular and embryonic extracts, were examined by South-

western blotting and DNA-binding proteins within them were identified as single bands 

with a measurable molecular weight. Various reagents designed to suppress non-

specific hybridisation were tested, including gelatin, dried milk and bovine serum 

albumin. Dried milk gave the best results and it was used in the generation of all blots 

presented here (section 2.8.6). 

4.2.1 Mouse and Human sequences bind identically-sized proteins 

South-western blots were performed to assess whether the related sequences 

identified upstream of mouse and human Msx- 1 genes bind proteins with similar 

properties, as gel-retardation assays had suggested (section 4.1.1). Figure 4.4 shows a 

composite of two identical filters; one was probed with concatenated complementary 

oligonucleotides D12 and D13 (section 2.9.1), representing the mouse sequence, and 

the other with probe derived from oligonucleotides C611 and C679, representing the 

human sequence (see table 4.1 for oligonucleotide sequences). Details of the filter 

processing and hybridisation conditions are given in section 2.9.4 and these apply for 

all blots shown. 

All lanes show a hybridisation signal to a large polypeptide of molecular mass 

(M) approximately 127kD (large arrow figure 4.4; see section 4.2.2 for determination 

of molecular weight). In addition, all lanes show a much less distinct signal at 

approximately 3lkD (small arrow figure 4.4). In the case of the B16 cell extract this 

second signal resolves into two indistinct bands; the HeLa extract does not 

demonstrate two clear bands though the weakness of the signal does not preclude such 

a possibility. Variation between the two protein sources is seen in the presence of an 
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Figure 4.4 
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Mouse Msx-1 
	

Human Msx-1 

(D12/D13) 
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Figure 4.4 South-western blot showing similar proteins bound by both mouse and 

human Msx- 1 sequences. Mouse and Human sequences are shown binding to proteins from 
B16 melanoma cell line (mouse) and HeLa cell line (human). Lanes 1 & 3 loaded with 8.tg 
B 16 extract (section 2.8.3), lanes 2 & 4 loaded with lO1g HeLa extract (Promega). kiloDalton 
sizes on the left are derived from rainbow molecular weight markers (Amersham) run on the 
SDS-PAGE gel. 
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additional signal, at approximately 108kD (section 4.2.2), in the HeLa cell extract. A 

coomassie-blue stained SDS-PAGE gel, loaded with identical samples, did not show 

major proteins at the position of the peptides detected by hybridisation so these bands 

are unlikely to represent non-specific binding to highly abundant proteins. Background 

hybridisation is low, suggesting adequate competition of non-specific hybridisations by 

the poly-d(I-C) competitor. The large molecular mass signals are clear, strong and 

even in their intensity supporting the view that they represent a specific interaction 

between probe and protein. 

4.2.2 Similar DNA-binding proteins are found in several cell types 

Figure 4.5 shows the result of a South-western blot performed using protein 

extracts from several cell types probed with the mouse conserved sequence (oligos 

D12/1313). HeLa cell and B16 cell extracts are present along with protein from H3M 

cell line, ES (embryonic stem) cells and F9 mouse teratocarcinoma cells. Details of the 

gel loading are presented in the figure legend. The mouse H3M cell line is an 

immortalised cell line derived from an explant of neural tube from a 9dpc mouse 

embryo (a kind gift of S. Clay); Embryonic stem cells are cultured cells derived from 

the early embryo that maintain their pluripotent state (Martin, 1981); F9 cells are a line 

of mouse teratocarcinoma cells - an undifferentiated cell type cultured from malignant 

embryonic tumours (Bernstine et al., 1973). 

HeLa and B 16 extracts show results comparable to those presented in section 

4.2.1; in addition the H3M, ES and F9 cells all show binding activity similar to the B 16 

cells. HeLa shows the 127kD and 108kD signals shown in figure 4.4 though no signal 

of 3 lkD is detectable. B 16 shows a signal at 127kD but nothing at 108kD: there is an 

indistinct signal at 3 lkD but rather like the HeLa cell extract of figure 4.4 it has not 

resolved into clear bands. H3M, ES and F9 all show the 127kD signal along with the 

indistinct signal at 3lkD, identical to the B16 extract. 

Using this particular blot the molecular mass (M)  of the DNA-binding proteins 

was ascertained by constructing a standard curve based upon the rainbow molecular-

weight markers used (Amersham). Figure 4.6 shows this curve, relating it to the bands 

on the blot and producing size-estimates (used in this chapter) for the DNA-binding 

polypeptides detected. 

The conserved Msx-1-flanking DNA binds a protein (of -127kD) common to a 

variety of several cell types; cells derived from the early embryo, the embryonic neural 

tube, an epitheloid carcinoma (adenocarcinoma) and a melanoma cell line all express 

this protein. 
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Figure 4.5 
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Figure 4.5 South-western blot using proteins from a variety of cell lines. These 
were probed with oligos D12/D13 corresponding to the conserved sequence in the mouse Msx-
1 5-flanking region. Lane I - 34.Lg HeLa cell extract; Lane 2 - 14p.g B16 cell extract; Lane - 3 
15.tg H3M cell extract; Lane 4 - 15.tg Es cell extract; Lane 5 - 15.tg P9 cell extract. 
kiloDalton sizes on the left are derived from rainbow molecular weight markers (Amersham) 
run on the SDS-PAGE gel. 
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Figure 4.6 Assignment of molecular weight to the peptides detected by South-
western blotting is shown by comparison to a standard curve constructed from plotting the 
relative mobility (distance migrated/distance of electrophoretic front) against the known sizes 
(logarithmic scale) of the markers used (Amersham Rainbow markers). A section of the blot 
shown in figure 4.5 is aligned accordingly showing intersections of the relative mobilities of 
the bands with the standard curve and the size estimates they provide, in kD. 
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4.2.3 A sequence in the HoxD cluster binds identically sized proteins 

The HoxD sequence described as similar to the conserved Msx- 1 sequence 

(section 3.3.4) was tested for protein-binding activity by South-western blotting. 

Figure 4.7 shows a composite blot made from three separate filters, identical in their 

protein content and processing conditions but hybridised to different probes. On each 

filter are lanes carrying HeLa protein and B16 protein (HeLa left, B16 right). The left 

panel (A) was probed with the human Msx-1 probe, the centre panel (B) was probed 

with the mouse Hoxd-9 probe and the right panel (C) was probed with the mouse Msx-

1 probe (see legend for details). There is a clear and marked similarity among all three 

panels. As before the mouse and human Msx- 1 probes gave the same pattern of a band 

at 127kD and a diffuse signal at 3lkD, plus the HeLa-specific band at 108kD. 

Significantly the centre panel, probed with the Hoxd-9 flanking sequence, shows a 

similar pattern, strongly suggesting that all three sequence motifs are interacting with 

the same protein components of the extracts tested. 

4.2.4 The 127kD protein is expressed throughout the embryo 

Given our detailed knowledge of the spatial and temporal pattern of Msx- 1 

transcription (section 1.4), proteins with a causal role in the formation of this pattern, 

including transcription factors, may themselves show such restrictions. 

The DNA-binding proteins identified are putative transcriptional regulators of 

Msx- 1 and examining their distribution within the embryo may provide insight into any 

role they have in determining Msx- 1 transcription patterns. Not having a molecular 

probe for the protein (or proteins) itself, the South-western blotting technique was 

used as a means whereby regions of the embryo could be assayed for the presence of 

the DNA-binding protein activity. Dissection of 11 dpc mouse embryos was 

performed, based on a knowledge of Msx- 1 expression, and protein extracts produced 

for use in the South-western assay. Figure 4.8 shows a photograph of an 11 dpc mouse 

embryo across which several lines have been drawn indicating the mode of dissection. 

Both the forelimb and the hindlimb were severed at the point where they join the flank 

(figure 4.8 lines A & B); the hindbrain and majority of the mid and forebrain were 

removed (and discarded) by a single cut (line C) leaving the area of the outgrowing 

branchial arches which were removed from the trunk (line D); the remaining region 

anterior to the first limb bud was removed (line E) and used as a region of low 

expression (termed the '-v& region in figures 4.9 & 4.10) - this represents a region of 

the embryo showing much lower (though not zero) 
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Figure 4.7 
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Figure 4.7 South-western blot showing identical protein-binding activity by the 

three related sequences, from mouse and human Msx-1 and from the HoxD cluster. Three 
South-western blots are shown, A, B and C. All have two protein samples loaded; in lane I the 
B16 cell extract and in lane 2 the HeLa cell extract. Blot A was probed with the human Msx-1 

sequence (oligos C61 l/C679). Blot B was probed with the mouse Hoxd-9 sequence (oligos 

Dl4/C617). Blot C was probed with the mouse Msx-1 sequence (oligos 1312/1313). 
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Figure 4.8 

Figure 48 	I I dv mouse euihryo showing mode of dissection for generation of 

embryonic extracts. Lines marked by letters indicate cuts made (see section 4.2.4). Ignore 

numbers. 



expression than the others used; the remaining thorax and tail made up the trunk' 

extract. 

The proportion of Msx- 1 expressing cells in each of these regions varies 

greatly, and with it of course the concentration in a given extract of any factors specific 

to Msx- 1 expressing cells. The arch area has a very high level of expression at this 

stage, with Msx- 1 strongly transcribed in the primordia of the developing face (section 

1.4.1). Both the fore and hind limbs express Msx-1 strongly in their distal mesenchyme: 

the relative temporal delay of hindlimb development means that it will have a higher 

proportion of Msx- 1 expressing cells than the forelimb at this stage due to increased 

distal restriction of expression as the limbs grow out (section 1.4.2). Expression in the 

trunk is limited to the midline of the neural tube and the tail-bud/genital-ridge region 

(Lyons et al., 1992). The trunk section as a whole will therefore contain a low 

proportion of Msx-1 expressing cells. The so called '-ye' area is a portion of the embryo 

in which expression is limited to the narrow stripe of cells at the midline of the neural 

tube and also contains very few expressing cells. 

Figure 4.9 shows South-western hybridisation of the mouse probe 

(concatenated oligos D12 and D13) to the embryonic extracts described. Lanes 1 and 2 

carry B 16 and HeLa extracts, respectively, and give similar results to those described 

above (section 4.2.1). The remaining lanes show a binding pattern very similar to the 

B 16 pattern, with the 1 27kD protein and the doublet (resolved in this example) at 

3 lkD. This demonstrates that the cell lines tested and the embryo are expressing the 

same DNA-binding protein. Furthermore, there do not appear to be any gross 

variations in the distribution of the protein throughout the embryo. Faint signals are 

also visible on the blot at 64kD, as in the HeLa and H3M extracts in figure 4.5. The 

detection of these bands most likely reflects the better quality of hybridisation and 

background suppression in these two blots but it is impossible to say whether they 

represent low levels of additional polypeptides or degradation products, or high levels 

of non-specific proteins binding a detectable amount of the probe. 

Figure 4.10 shows a blot of an identical gel hybridised to a probe generated 

from oligos B349/B35 1 (Table 4.1) representing an octamer element. A single band of 

approximately 70kD is hybridised in all cases (this band may be slightly smaller in the 

branchial 'arch' region of the embryo), with the exception of the HeLa cell extract 

which contains an additional, higher molecular weight binding-protein of 

approximately 8OkD. The quality of signal is poor, possibly due to sub-optimal 

conditions for this interaction (the salt concentration may be above the optimal level 

for binding thereby destabilising the interaction), however it shows that the signals 
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Figure 4.9 
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Figure 4.9 Southwestern blot in which the mouse probe (131211313) was hybridised 
to protein extracts from a variety of cells lines and portions of 11 day mouse embryo (see text). 
Embryonic portions used are those depicted in figure 4.8 and described in the text. Amount of 
protein loaded was as follows: B16 - l0.tg; HeLa - 34tg; Forelimb-23.tg; Hindlimb - 23.tg; 
Arch - 35p.g; negative - 341g; trunk - 45ig; whole 10 dpc - 35ig. 
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Figure 4. 10 
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Figure 4. 10 Southwestern blot showing hybridisation of a concatenated octamer 

probe (oligos B3491B35 1) hybridised to protein extracts from a variety of cell lines and 

portions of 11 dpc mouse embryo. Loading is as in figure 4.9. Conditions as before. 
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detected by the Msx- 1 probes are sequence-specific and not detected by other DNA 

motifs. 

4.2.5 Msx-1 conserved sequence represses enhancer activity 

In vitro experiments were performed using the CAT (Chloramphenicol acetyl-

transferase) reporter gene as a first step in assessing the regulatory function, if any, of 

the Msx- 1 conserved sequence and the proteins it binds. These experiments were 

performed in collaboration with Dr. Alasdair MacKenzie. Having previously 

demonstrated identical protein-binding properties for the mouse and human sequences, 

these preliminary experiments were limited to use of the mouse sequence. The double 

stranded DNA fragment produced by annealing oligonucleotides D12 and D13 (Table 

4.1) was used to create four constructs (figure 4.11) in two different reporter vectors. 

The first construct consists of plasmid pBLCAT3 (Luckow and Schutz, 1987) with a 

single copy of the mouse conserved sequence cloned upstream of a tk promoter driving 

the CAT gene. Basal transcription levels from the promoter will be raised by the Msx- 1 

sequence if it is capable of enhancer function and the appropriate binding factors are 

present in the host cells. The other three constructs are into the same vector, pCAT -

Control (Promega), which has the CAT gene linked to a tk promoter and an SV40 

enhancer providing high levels of CAT expression that will be reduced if the conserved 

sequence has a silencer function. These constructs carry 1, 2 or 3 copies of the mouse 

conserved element inserted downstream of the enhancer (which is itself downstream of 

the CAT gene). Transfection of these constructs into tissue-culture cell lines and 

subsequent determination of the relative CAT levels that they express provides 

information on the regulatory influence that the Msx- 1 sequence has upon this gene. 

Figure 4.12 shows the results of transfection of these constructs into B16 and H3M 

cells. Results were standardised by dotblot measurement of transfected plasmid and 

averaged from two identical experiments (see legend to figure 4.12 for details). 

A similar pattern of relative activity is seen in both cell lines, though the general 

level is lower in H3M than B 16. In both cases the level of CAT activity in the absence 

of a reporter plasmid is barely detectable and effectively represents zero. Figure 

4.1 2A&B (lanes 7 & 8) shows that in neither cell line is there significant activity from 

the unmodified pBLCAT plasmids: in H3M there is fractionally higher expression from 

the tk promoter (pBLCAT3) than the promoterless reporter (pBLCAT2), though this 

is undetectable in B16. There is no detectable effect of adding a single copy of the 

conserved element upstream of the tk promoter in the H3M cells and a very small 

effect in B 16 (lane 6, figure 4.12B). The positive control plasmid (pCAT-Control; lane 
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Figure 111 
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Figure 4.11 Constructs used in reporter gene assays. A) pBLCAT3 carrying a 

single copy of the mouse Msx-1 sequence upstream of its tk promoter. B) pCAT-Control 

carrying 1, 2 or 3 copies of the mouse Msx- I sequence downstream of the SV40 enhancer, 
cloned in the orientation indicated. 
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Figure 4.12 
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Figure 4.12 CAT assay results from 1-13M and 1316 cells lines. The upper panel 
shows one of the two duplicate CAT assays performed for each cell line. The lower panel 
displays the results averaged from the two duplicate assays in histogram form (with bars 
showing maximum values). 4j.tg of plasmid DNA was added to each plate of -lO s  cells and 
grown for 72 hours before harvesting. The ordinate is the percentage acetylation of the 14C-
Chloramphenicol added, calculated by summing the values for the two upper spots (acetylated 
forms) and dividing this by the sum of all 3 spots. Lane 1: No plasmid control. Lane 2: pCAT-
Control. Lane 3: pCAT-Control+trimer (3 copies of the conserved sequence), Lane 4: pCAT-
Control+dimer, Lane 5: pCAT-Control+monomer, Lane 6: pB LCAT3 +monomer, Lane 7: 
pBLCAT3, Lane 8: pBLCAT2 (promoterless CAT). Measurements were performed using 
ImageQuant software after Phoshor Screen detection. Results were standardised by dotblot. 
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2) gives high levels of CAT activity in both cell lines confirming that both transfection 

and CAT assay have been successful. Addition of a single copy of the conserved 

sequence element downstream of the SV40 enhancer in this plasmid (figure 4.11) 

reduces the expression level from this enhancer by 3 fold in H3M and 2.5 fold in B16 

(lane 3). Addition, in a similar orientation, of three copies of the conserved element 

reduces expression by 5.1 fold in H3M and 2.7 fold in B16 (lane 5). Interestingly, two 

copies of the element, oppositely oriented in comparison to the other constructs, also 

represses but to a lesser extent than either one or three copies; 2.2 fold in both H3M 

and B16 (lane 4). This may reflect the opposite orientation of the Msx-1 sequence 

copies in the dimer construct as compared to the monomer or trimer (figure 4.11). 

Further experiments analysing the effects of element number and orientation are 

required to consolidate these early findings though it appears that the conserved 

element upstream of Msx- 1 functions as a repressor binding site. 

4.3 Discussion 

In vitro analysis has shown that the conserved sequences found upstream of the 

mouse and human Msx-1 genes (section 3.3.3) are capable of sequence-specific 

interactions with nuclear proteins. The proteins bound by these two sequences appear 

to have similar properties as adjudged by the gel-retardation assay. Sequences from 

mouse and human Msx- 1 bound proteins from mouse and human cell lines. Binding of 

the sequences to proteins separated by SDS-PAGE (South-western blotting) reveals 

that the sequences bind proteins of identical size and that binding to these proteins is 

specific to this sequence. A similar sequence found upstream of the mouse Hoxd-9 

gene (section 3.3.4) was shown, by gel retardation assay, to compete with the mouse 

Msx- 1 sequence for specific complex formation with the same proteins. This was 

confirmed by South-western hybridisation which showed that the HoxD sequence 

bound proteins of identical size to those bound by the Msx-1 sequences. The HoxD 

sequence is itself highly conserved between mouse and human and resides in a region 

proposed to have transcriptional regulatory function (Figure 3.24; Renucci et al., 

1992), though despite the conservation this was not one of the regions chosen by 

Renucci and colleagues for study by gel-retardation experiments. 

Besides the observed similarity in the proteins bound by these sequences there 

is variation, where both sequences bind an additional, smaller protein from HeLa cells. 

This second polypeptide may be encoded by a second gene, possibly related, different 

from that encoding the common, larger polypeptide. Alternatively it may be encoded 

by the same gene and represent a specific cleavage product derived from the larger 
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protein or the product of translation from an alternative transcript (such as from a 

different promoter or alternative splice form). Any of these alternatives may represent 

a human-specific variation as HeLa extracts were the only human protein source 

examined. Use of additional human cell lines and further characterisation of the factor 

will be required to distinguish between these various possibilities. 

Production of protein extracts from various parts of the 11 dpc mouse embryo 

enabled me to address, in a relatively crude way, the question of whether the proteins 

that were binding the Msx-1 conserved sequence were expressed in a spatially 

restricted manner. We might expect that certain features of the complex spatial 

distribution pattern of Msx- 1 transcripts in the mid-gestation embryo (section 1.4) are 

generated in response to the influence of transcriptional regulators that are themselves 

spatially restricted in their activity. Dissection of the mouse embryo was performed in 

such a way as to separate, as best as possible, the different expression domains that 

might be generated by a differential set of regulators. Expression in the limbs and face 

in particular might respond to regulators having a specific anterior-posterior 

distribution. However, as figure 4.9 shows, the dissection performed was not able to 

separate any regions having different levels of binding activity for the proteins 

concerned. The results presented support the view that proteins binding the Msx- 1 

conserved sequence are ubiquitously expressed in the 11 dpc embryo. This approach 

did not enable the examination of protein distribution in different tissue types, such as 

epithelium and mesenchyme. Features of its expression suggest that there may be 

differences in the regulatory capacity of these two tissues with respect to Msx- 1. It 

might be possible to perform similar experiments using extracts of cultured tissue 

explants to further investigate this. if there were a difference in protein activity 

between epithelium and mesenchyme the crude dissection used here would not have 

detected it and indeed would have shown homogeneous distribution as was seen. The 

suggestion that Msx- 1 plays a similar role in inductive epithelial-mesenchymal 

interactions in diverse parts of the body (section 1.4.3) lends support to the notion that 

expression responds to local, short range signals. Experiments to study the 

consequences of such signals on the regulation of transcription will require the use of 

in vitro recombination systems of the type used by Vainio et al. (1993) in their work 

on tooth development. 

Preliminary experiments to assess the transcriptional activity of the Msx- 1 

conserved sequence and the proteins that bind to it have provided evidence that it is 

the binding site of a transcriptional repressor. Though these findings are based on work 

that requires further confirmation we might speculate on the potential role for such a 

regulatory interaction. While it is thought unlikely that widespread repression has a 

154 



role in the definition of the Msx- 1 expression pattern it is possible that refinement of 

earlier expression may be accomplished by negatively acting signals. Temporal 

regulation of expression is also likely to be achieved, at least in part, by repressing 

earlier activation. In the limb, for example, cells leaving the progress zone are seen to 

down regulate Msx- 1 rapidly, possibly as a result of transcriptional repression. Such 

repression might be antagonised by short range signals from AER producing the sharp 

boundary of expression in the distal limb. Functional studies in the embryo will be 

required to test such models. 

The data presented suggest that a protein-binding DNA element has been 

identified upstream of the mouse Msx- 1 gene. This element is conserved in sequence 

and protein-binding function in the upstream region of human Msx-1. A similar 

element, with identical protein-binding properties is found within the HoxD cluster, 

between the Hoxd-9 and Hoxd- 10 genes. Proteins bound by the Msx- 1 sequence are 

broadly expressed throughout the developing mouse embryo and in several tissue-

culture cell types. In vitro reporter-gene studies suggest that the sequence is bound by 

a transcriptional repressor. 

In the wake of these findings attempts were made to pinpoint more precisely 

the bases involved in protein-binding. Knowledge of the precise bases required for 

binding would enable assessment of whether indeed these are the positions invariantly 

conserved between the various Msx- 1 and HoxD sites. With precise binding-site 

localisation it might also be possible to generate mutant sites with attenuated binding 

properties for use in functional studies. Localisation of binding is often done by 

Tootprinting' the target site - that is measuring the inhibitory effect of bound protein on 

the endonuclease DNase I, which will cleave a DNA molecule between each base 

excepting any portion of the DNA masked by a binding-protein. To perform such an 

assay it is necessary to produce radiolabelled target-site DNA saturated with protein, 

i.e. a sample in which the vast excess of DNA molecules are protein-bound. This 

proved impossible in this case due to the lack of pure protein (all work was done with 

crude nuclear extracts) and the presumed low level of the proteins in question within 

the extracts available. A possible way around this problem would be to attempt 

purification, or at least enrichment, of this protein from large quantities of crude 

extract by affinity chromatography. It may also be possible to footprint the protein-

DNA complex following direct isolation from a gel-retardation gel, however this is 

dependent upon a highly stable complex. if the complex dissociated during elution the 

protein component would at least be greatly enriched for the required peptide possibly 
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enabling later reassociation and footprinting. Such work was not possible within the 

confines of this study but represents a potential route for the continuation of this 

project. One way in which the protein-binding site might be more accurately defmed 

from the data presented is in comparison with the Hoxd-9 sequence. As seen in figure 

3.24 the homology between the Msx- 1 sequence and the Hoxd-9 sequence is shorter 

than that seen between each sequence and its cognate. Of the 44bp of similarity 

between the mouse and human Msx-1 only the 5' 24bp is similar to the Hoxd-9 

sequence with the similarity apparently reduced at the 3' end of this region. It is 

possible that this restricted similarity defines the common protein-binding site. Where 

the sequences diverge may reflect an additional protein binding site generating diversity 

of function between these sequences in the two genes (section 3.5). 

Protein purification by affinity chromatography for the purposes described may 

yield sufficient material from which to obtain some peptide sequence. This could 

subsequently be used in the design of a degenerate probe enabling isolation of a cDNA 

encoding a binding protein. An alternative approach to this traditional 'purify—protein 

sequence—*clone' route, taken in the characterisation of many genes encoding 

transcriptional regulators (e.g. Briggs et al., 1986 & Kadonaga et al., 1987), is the 

direct cloning of a DNA-binding protein from a cDNA expression library using the 

technology of detecting membrane-bound protein with a radiolabelled DNA target-site 

(Singh et al., 1988; Vinson et al., 1988). This method was tried twice, without 

success, at the end of this study using a B16 cDNA library (a gift from Dr. Ian 

Jackson) and the concatenated probes described (section 2.9.1) though the 

demonstrated feasibility of the South-western blotting provides optimism that this 

route to cloning the gene encoding the binding-protein will be possible in the future. 

The recurrence of similar cis-acting sequences in the regulatory regions of 

multiple genes is seen in two sets of circumstances: 1) where co-ordinate regulation of 

several genes is required in response to an individual signal, or 2) where the genes are 

cognates in different species and there has been evolutionary conservation of a cis-

acting element. It appears that the sequence identified upstream of Msx- 1 may fall into 

both categories. 

The original model of Britten and Davidson (1969) provided a conceptual 

framework upon which subsequent molecular models of co-ordinate regulation have 

been founded. They proposed that multiple genes may respond to a single regulator by 

way of possessing identical regulatory elements. This regulator would enable the 

conversion of a single signal (regulating the regulator) into more complex patterns of 

gene expression. Common binding sites for such regulators (transcription factors) have 
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since been found upstream of a number of sets of genes with related function, thereby 

putting them under co-ordinated control. Examples of such systems include the T cell 

receptor genes (Leiden, 1993), genes involved in melanin synthesis (Jackson et al., 

1994 and pers. comm.) and histone genes differentially expressed during the cell-cycle 

(van den Endt et al., 1994). Comparison of the increasing number of promoter 

sequences available will no doubt reveal more examples of this type of regulation. The 

sequence similarity between the Msx- 1 5' flanking sequence and the Hoxd-9 5' flank 

prompts the suggestion made in section 3.5 that these genes are subject to common 

controlling influences and are co-ordinately regulated in some respect. This idea is 

supported by the observation that both sequences bind similar proteins. 

Implicit in the assumption that conserved sequences highlight regulatory 

regions is that the specificity of the protein-DNA interactions has also been maintained 

during evolution, and therefore that the trans regulatory factors are highly conserved. 

Both mouse and human Msx-1 sequences bind proteins of a similar size from two 

different sources, one human and one mouse. This result is consistent with the 

observation that the two sequences are highly homologous and might be expected to 

have similar protein-binding properties. The presence of such similar sized proteins 

with similar DNA-binding specificity in both mouse and human cells implies that not 

only has the DNA sequence been conserved over the evolutionary interval separating 

the two species (-80 million years) but a specific protein that binds this sequence has 

also been highly conserved. A number of reports have been made in the last few years 

describing the remarkable conservation of cis and trans regulatory interactions 

between widely diverged species. Falb and Maniatis (1992) described the conservation 

of a bipartite cis element involved in regulation of the Drosophila and human alcohol 

dehydrogenase (Adh) genes. Cotransfection experiments showed that the Drosophila 

element was active in human cells and that activity from it was antagonised by addition 

of the Drosophila factor normally bound to it (AEF-1). The extreme conservation seen 

between genes of the Drosophila HOM-C and vertebrate Hox clusters (section 1.2) 

prompted experiments that have further demonstrated conservation across the 

vertebrate-invertebrate divide. Reciprocal experiments showed that an autoregulatory 

element from the Drosophila gene Deformed (Dfd), active in the head of the fly, 

provided similar spatial regulation in transgenic mice, and that conversely sequences 

upstream of the Hoxb-4 gene (a Dfd cognate) directed expression of a transgene to a 

region overlapping the expression domain of Dfd in the Drosophila head 

(Awgulewitsch and Jacobs, 1992; Malicki et al., 1992). Experiments such as these 

indicate an extremely high level of conservation within not only the components of the 

transcription regulating mechanisms but the systems into which these components are 
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organised. Future cloning of the proteins binding to the Msx- 1 conserved sequence and 

transgenic experiments using the human regulatory regions in mouse will reveal to 

what extent the regulatory system governing Msx- 1 expression has been conserved. At 

present it is impossible to assess whether there has been conservation in the regulatory 

mechanisms governing expression of the Drosophila msh gene, the archetype of the 

Msx family, as little work has been done on this gene since its initial description, 

though this situation may change soon (W. Gehring pers. comm.). In the meantime 

studies of Msx- 1 in species such as chicken will test and extend the findings reported 

here. Comparisons, similar to that presented here, between the mouse Msx- 1, -2 and -3 

genes will be of key interest as these genes share certain features of their complex 

developmental expression patterns and will very likely have in common regulatory 

pathways that are responsible for this coincidental expression. 

The next steps in the continuation of this project must involve demonstration of 

the regulatory activity of the sequence identified. Firstly regulatory activity in vitro can 

be assessed, particularly as cell lines have been identified in which putative regulatory 

proteins are expressed. Preliminary experiments of this type have been begun in 

collaboration with Dr. Alasdair MacKenzie (section 4.2.5). Early findings from CAT 

reporter studies are that the Msx- 1 conserved sequence acts as the binding site for a 

transcriptional repressor, as presence of the site reduced activity of the SV40 enhancer. 

This putative repressor is presumably one of the peptides detected by South-western 

blotting. 

As an extension to these findings in vivo functional analysis in transgenic 

animals is under way (by Dr. Alasdair MacKenzie) to determine the significance, if any, 

of this sequence to the developmental expression of Msx- 1. Using as a starting point a 

construct in which 5kb of the 5' flank is fused to the lacZ reporter gene, recreating 

many features of the early Msx-1 expression pattern (Robert Hill, unpublished results), 

deletion analysis has been initiated to locate the regulatory elements within this region. 

Alongside this study specific deletion of the conserved element has been achieved and 

its consequences examined. Early results suggest that this element may interact with 

other sequences in the generation of the spatially restricted expression pattern 

observed. 
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Summary 



Summary 

I have used an evolutionary approach to the identification of DNA elements 

with a role in the transcriptional regulation of the murine homeobox gene Msx- 1. This 

gene has a complex temporal and spatial pattern of transcription during murine 

embryogenesis and is proposed to have a role in the processes of pattern formation and 

morphogenesis. Comparison of the mouse and human genes along with sequence from 

their 5' flank has revealed regions of particularly high conservation between the two 

species. The supposition made is that a lack of modification since the common 

ancestor of mouse and human reflects a functional role for these sequences. Work was 

concentrated on a sequence found within the 5' flank of both genes as it was felt that 

this was most likely to represent a cis-acting transcriptional regulatory element. 

Results presented provide evidence for a sequence-specific DNA-protein 

interaction occurring between a site in the 5' flank of the Msx- 1 gene and a nuclear 

protein expressed throughout the mid-gestation mouse embryo. Gel-retardation assays 

showed binding to a nuclear factor and suggested that both mouse and human 

sequences had a conserved function. South-western blots demonstrated that both 

sequences interacted with the same proteins and that these proteins were conserved in 

size between mouse and human. The conservation of both the DNA and protein 

components of this interaction during the evolutionary interval separating mouse and 

human implies that they play an essential role in the function of the Msx- 1 gene. This 

function is most likely concerned with the transcriptional regulation of the gene given 

the position of the DNA sequence in relation to the coding region. Search for similar 

sequences in the 5' flank of other genes revealed only one match, in the 5' flank of a 

homeobox gene of the HoxD cluster, Hoxd-9. Using the same techniques this sequence 

was shown to have protein-binding properties identical to the Msx- 1 sequence. There 

are similarities in the expression pattern and regulating influences acting upon Msx- 1 

and Hoxd-9 (both AER responsive; section 3.5) and it is possible that this conserved 

sequence reflects response by both genes to a common molecular pathway, possibly 

stimulated by inductive interactions between the epithelium and mesenchyme. If this 

sequence does indeed act as a cis regulatory element then it may have influence over 

several genes in the HoxD cluster, most likely the five Abd-B homologues at the 5' end 

of the cluster expressed during development of the limb, at a stage similar to Msx- 1. 

Preliminary in vitro experiments suggest that this sequence is the binding site of a 

transcriptional repressor and further studies are underway to clarify the role of this 

element in the embryonic expression of Msx- 1. 
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Sequencing of the Msx-1 5'-flank from other organisms, in particular the 

chicken, will provide an extension to the findings reported here. The CpG island-like 

region discovered at the 5' end of the Msx- 1 gene in mouse and human is proposed to 

be in a process of loss, examination of the chicken gene in this regard will provide a 

further test for this hypothesis. Discovery of sequence similarity in the chick to those 

regions shown to be conserved between mouse and human would provide compelling 

evidence of their functional significance and may provide a more precise definition of 

the active sequences. The most direct test available at present to determine the 

functional significance of this putative regulatory element involves the use of 

genetically modified mice. Work is under way to test cis regulatory activity in the Msx-

1 5' flank using transgenic mice in which a lacZ reporter gene is fused to this sequence. 

Techniques of protein purification or direct expression cloning can be applied to isolate 

the gene (or genes) encoding trans-acting factor(s) that interact with cis elements 

pinpointed in these ways. Experiments would then be possible to establish the role of 

such genes in generating the Msx- 1 expression pattern. This might enable the ultimate 

goal of these studies which is to piece together the complex network of interactions 

taking place in the developing vertebrate body and to understand the relationship 

between molecules and morphology. 
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