1,797 research outputs found

    ANALOGY OF MECHANICAL AND TRANSPORT PROPERTIES IN DISPERSE COMPOSITES

    Get PDF
    Analogy ofthe mechanical andtransport properties on disperse composites is a literature research in identifying experimental data reported for mechanical and various transport properties in composite materials. The main objective is to explore the possibility to arrive at a common model for both effective thermal conductivity and shear modulus in terms of the properties of individual phases and the volume fraction. Poor utilization of one researcher's results in one field by other researchers is the problem that has been faced in developing approaches in prediction of the properties of disperse media. This study is concerned with particulate filled matrices constitute from a three and two dimensional composites. A large BHts&er of theoretical modelsand data gathered that had been proposed by earlier researcher are been studied and included in the literature review. Those models being identified in order to applythem to these experimental data and see how they compare. In the result part, the desired models, Eshelby and Halpin-Tsai winch chosen to be predictive model will be discussed in farther The assumptions and explanation for other models also included in discussion par

    Development of green composites based on epoxidized vegetable oils (EVOs) with hybrid reinforcements: natural and inorganic fibers

    Full text link
    The main aim of this work id to provide integral methods to predict and characterize the properties of composite structures based on hybrid polymers and reinforcements, that could lead to useful results from an industrial point of view. This is addressed, if possible, by theoretical predictions of the effective properties by using the available experimental data. The first part is focused on the scientific achievements of the author that allowed a quantitative characterization of the main effective properties of several composite architectures from hybrid polymers and reinforcements, based on bio matrices, tailor-made matrices and different theoretical and simulation methods using computer software to allow good comparison. The second part defines the future research lines to continue this initial investigation. The main objectives are clearly defined to give the reader a sound background with the appropriate concepts that are specifically discussed in the following chapters. As a main objective, this research work makes a first attempt to provide a systematic analysis and prediction of composite hybrid structures.El objetivo general del trabajo es proporcionar medios integrales para predecir y caracterizar las propiedades de las estructuras de compuestos basados en polímeros y refuerzos híbridos, principales que pueden producir resultados de utilidad práctica simultáneamente. Esto se logra comparando, siempre que sea posible, las predicciones teóricas de las propiedades efectivas con los datos experimentales disponibles. Una primera parte se ocupa de los logros científicos del autor que permitieron caracterizar cuantitativamente las principales propiedades efectivas de las arquitecturas de compuestos basados en polímeros y refuerzos híbridos, basados en matrices bio, auto-desarrollados y diferentes métodos teóricos y de simulación por ordenador utilizados para la comparación. La segunda parte identifica las orientaciones futuras para la evolución y desarrollo de la ciencia y la investigación. Los objetivos generales fueron subrayados y concisos para dar al lector una visión previa de los conceptos que serán discutidos específicamente en los siguientes capítulos. Indirectamente, apuntan hacia uno de los objetivos principales de este trabajo, a saber, proporcionar una dirección para el análisis sistemático de materiales compuestos a base de refuerzos híbridos.L'objectiu general d'aquest treball es proporcionar els mitjos integrals per tal de predir i caracteritzar les propietats d'estructures de compòsits basats en polímers i reforçaments híbrids, que poden produir resultats amb utilitat pràctica simultàniament. Aquest objectiu s'aconsegueix comparant, sempre que és possible, les prediccions teòriques de les propietats efectives amb les dades experimentals disponibles. Una primera part es centra en els temes científics en què ha treballat l'autor que han permès caracteritzar quantitativament les principals propietats efectives de les arquitectures de compòsits basades en polímers i reforçaments híbrids, derivats de matrius bio, auto-desenvolupats i diferents mètodes teòrics i de simulació informàtica per a una correcta comparació. La segona part identifica les orientacions futures per tal d'establir l'evolució i desenvolupament de la ciència i investigació lligada a la temàtica de la tesi. Els objectius generals han sigut clarament definits per tal de donar-li al lector una visió prèvia i sòlida dels conceptes que es discuteixen en capítols venidors. Indirectament, apunten cap a un dels objectius principals d'aquest treball, a saber, proporcionar una direcció per a l'anàlisi sistemàtica de materials compòsits a base de polímers i reforçaments híbrids.Motoc, D. (2017). Development of green composites based on epoxidized vegetable oils (EVOs) with hybrid reinforcements: natural and inorganic fibers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90399TESI

    Computational thermal homogenization of concrete

    Get PDF
    Cataloged from PDF version of article.Computational thermal homogenization is applied to the microscale and mesoscale of concrete sequentially. Microscale homogenization is based on a 3D micro-CT scan of hardened cement paste (HCP). Mesoscale homogenization is carried out through the analysis of aggregates which are randomly distributed in a homogenized matrix. The thermal conductivity of this matrix is delivered by the homogenization of HCP, thereby establishing the link between micro-mesoscale of concrete. This link is critical to capture the dependence of the overall conductivity of concrete on the internal relative humidity. Therefore, special emphasis is given to the effect of relative humidity changes in micropores on the thermal conductivity of HCP and concrete. Each step of homogenization is compared with available experimental data. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved

    Thermomechanical behaviour of multi-cracked brittle media taking into account unilateral effects : theoretical and numerical approaches

    Get PDF
    Micromechanical and numerical methods are explored to predict the effective thermal and thermoelastic properties of a microcracked media. The effective properties are given in 2D and3D. In this thesis, special attention is paid to the anisotropy, induced by the orientation of the cracks and the unilateral effect related to the opening and closing of the cracks. The cracks aremodelled as ellipsoidal inclusions. The open cracks are considered to have no stiffness and to be thermally insulating, whereas the closed cracks are represented by a fictitious isotropic material.The theoretical approach takes advantage of various homogenization schemes and bounds to derive closed-form expressions of effective properties. The numerical approach considers finiteelement modelling and is based on the same geometry and properties of cracks as in the theory. Finally, results are compared to demonstrate the consistency between the two approaches

    Shape memory polymeric nanocompsites for biological applications

    Get PDF
    The aim of this work is to develop novel shape memory polymers (SMPs) and nanocomposites for potential biological applications. A kind of commercial SMP, shape memory polyurethane (SMPU), was used to prepare nanocomposites by incorporating nano-clay into the SMPU substrate. The mechanical behaviour, thermal property and shape memory efficiency were studied with various nanofiller loadings. Chemical synthesis methods were also employed to prepare the other designable SMP and its nanocomposites, i.e. the shape memory polystyrene co-polymer (SMPS). Multiple technologies were adopted to enhance the SMPS matrix such as modifying the chemical components, introducing various functional nanoparticles into the polymeric network and improving the dispersion of the nanoparticles. Different methods were used to characterize the overall performance of the obtained materials. Mechanical tests were performed at different dimensional scales with a varied degree of localisation. Nanoindentation was firstly applied to assess the micro-mechanical properties of shape memory polymer nanocomposites at scales down to particle size. The micro-mechanical analysis provided the fundamental information on the SMPs and their nanocomposites for bio-MEMS applications. Potential applications were also explored through manufacturing different type of device models and testing their shape recovery efficiencies. Finally, theoretical contributions were made in two areas. The first one was the theoretical analysis on the nanoparticles enhancement to the soft polymeric matrix. The other was in developing a constitutive model to describe the thermo-viscoelastic property and shape memory behaviour for SMP nanocomposites

    Vibration and thermal stress analyses of functionally graded materials

    Get PDF

    Influence of Microstructure on Damage Behavior of Sound Absorbing Ceramics

    Get PDF
    Porous sound-absorbing ceramics contribute to the passive damping of thermo-acoustic instabilities and sound dissipation. As ceramic liners, they must satisfy all requirements respecting mechanical strength and thermal resistance. Design and development of such ceramics concern various aspects like thermal shock resistance, crack behavior, fatigue limit, creep and erosion resistance. The aim of this work is to investigate the mechanical behavior of highly porous sound absorbing ceramics and to predict the brittle damage behavior considering the material microstructure. It studies the applicability of such ceramics as insulation liners for the combustion chambers and gives a clue to further material improvement in terms of mechanical strength. Experiments were performed in this work to characterize the mechanical strengths of a new developed sound absorbing ceramic for the application as ceramic heat shields for the combustion chambers of premixed gas turbines. Compressive tests at both room and high temperature as well as four-point bending tests at room temperature have been carried out. Furthermore, the fits of fracture strengths of the material to the Normal, Weibull and Type I extreme value distributions are investigated. The characterization was then expanded to other physical properties such as porosity, density, thermal conduction coefficients and thermal expansion coefficients. A non-multi-physic but multi-scale approach is applied in this work which predicts the influence of the microstructure on the macroscopic properties. The scale transition method is known as mean-field homogenization method, based on assumed relations between average values of micro-strain and -stress fields in each phase. This homogenization model is based on the Eshelby model and assumes the pores (or rather inclusions) to be ellipsoidal. Influence of the pore density, pore form and pore orientation on the strength of these porous sound absorbing ceramic are studied here. Depending on the loading condition higher strength by higher porosity values is achievable by for example aligning the pores on a desired direction or changing their form from spherical to ellipsoid with high aspect ratios. Furthermore, direct finite element simulations of a representative-volume element (RVE) are also implemented in this work to investigate the pure brittle damage of this sound absorbing ceramic. An effective-stress degradation model has been implemented in a predefined user-subroutine of ABAQUS. It is based on the three dimensional rupture criterion and describes the pure brittle damage under mechanical, thermomechanical, static and quasi-static loadings. Different RVE s have been generated and investigated in terms of damage considering different structural parameters. The present results demonstrate the application potential of these sound absorbing ceramic as liner in terms of mechanical strengths, predict their brittle damage behavior considering the microstructure and provide a base for further material developments and numerical investigations. The applicability of these ceramic to line the combustion chambers in terms of sound absorption is investigated on an experimental set-up at the Faculty of Combustion of the Center of Applied Space Technology and Microgravity (ZARM). The validation of the results from this chapter will be performed on this set-up

    Design of Functionally Graded Materials Using Transient Nonlinear Simulations and Genetic Algorithm Optimization

    Get PDF
    The objective of this research is to develop a robust methodology for the design of functionally graded materials (FGMs). FGMs are advanced composite materials that are engineered to have a smooth spatial variation of material properties. This is achieved by gradually varying the relative volume fractions and microstructure of the material constituents during fabrication. FGM components typically exhibit smaller stresses and higher factors of safety than discretely bonded monolithic materials. The aim of this research project is to create a unified framework for the simultaneous optimization of structural shape, compositional profile and microstructure of metal/ceramic FGMs that are subjected to time varying thermal and mechanical loads. The proposed technique utilizes a nonlinear elastoplastic model and numerical simulations using a meshless method to accurately analyze candidate designs. A robust multi-objective genetic algorithm will be used to simultaneously optimize structure shape, fractional composition and microstructure of the material. If successful, this project will result in a powerful design tool that could assist engineers and other professionals engaged in the design process with FGMs. It will benefit society by contributing new knowledge regarding the simulation and optimization of FGMs and by reducing the failure of mechanical components. A user-friendly software package implementing the proposed method will be developed and distributed freely on the Internet through the PI\u27s web page. The educational plan will emphasize design as an important element of engineering education by incorporating computer-aided analysis, shape and material optimization to the PI\u27s machine design and composite materials courses
    corecore